Четырехтактный двигатель: принцип работы, основные отличия
Четырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.
Принцип работы и основная характеристика
Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:
- цилиндр заполняется топливной смесью;
- смесь сжимается;
- топливная смесь воспламеняется;
- газы расширяются и цилиндр очищается.
В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.
Двухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за
Основные характерные показатели 4 тактного двигателя:
- За счет движения рабочего поршня происходит обмен газов.
- Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
- Происходит обмен газов в момент отдельного полуоборота коленвала.
- Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.
История
Приблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор
. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.
Особенности работы 4-х тактного двигателя
В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.
Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.
Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.
Конструкция агрегата
Распредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.
Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще, клапаны не могут закрыть полностью каналы выпуска и впуска.
У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.
Работа двигателя
Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.
Этапы работы :
- Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
- Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
- Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
- Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.
Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей
Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.
Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.
Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.
Основные отличия двухтактных и четырехтактных двигателей:
- Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
- Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
- У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.
Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.
Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.
В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).
В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.
В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.
Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.
Такт работы двигателя
В нижней мертвой точке (НМТ) у поршня происходит «перекладка» т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.
Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой «бьет» правая сторона юбки поршня.
После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя — сжатие топливо-воздушной смеси.
Такт сжатия
Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.
С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого — в цилиндр, ни обратного — из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.
На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и «недозарядки» цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).
При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой — по нижним торцевым поверхностям колец и канавок.
Перекладка поршня в нижней мертвой точке.
Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый «насосный» эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего «насосный» эффект и прорыв газов быстро прогрессируют.
Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала «видимого» сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.
Поскольку горение смеси — химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и «растягивается» по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая — при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.
Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко — свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh — рабочий объем цилиндра (Vh = Fn.S), Fn — площадь поршня; S — ход поршня; VKc — объем камеры сгорания.
Степень сжатия — величина чисто геометрическая. По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже — порядка 1,1-1 ,5 МПа.
При приближении поршня к ВМТ начинают «работать» так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы «вытесняется» в зону камеры сгорания, образуя потоки определенного направления.
Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу — турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.
При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.
При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.
Стойкую к износу пару трения «кольцо-цилиндр» образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.
При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше «перекладка», но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.
Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.
Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна — так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.
Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска.
Сколько тактов в двигателе — Морской флот
Как это работает?
Итак, начнём. Двигатель автомобиля (Engine), что же это такое?
Автомобиль – сложный организм, сродни человеческому. У него много различных механизмов(органов), без которых он не будет работать. Но как и у человека, у автомобиля есть «сердце» и этим сердцем является автомобильный двигатель.
История автомобильного двигателя
Чуть-чуть истории. Двигатель прошёл долгую историю развития. По сути, первыми двигателями являлись парус и водяное колесо. Водяным колесом широко пользовались в странах Древнего мира(таких как Египет, Китай, Индия) для оросительных систем, а в средние века в Европе использовали как основу энергетической базы производства. Дальше появились двигатели внешнего сгорания. Широкое распространение получили паровые двигатели.
Паровой двигатель(Steam engine) — двигатель ВНЕШНЕГО сгорания, который преобразовывает энергию пара в механическую работу. Советую почитать очень интересную и непростую историю развития данного двигателя: http://www.bibliotekar.ru/encAuto/5.htm
Далее в процессе развития двигателей появились двигатели внутреннего сгорания, ДВС. Одним из них, нашедший наибольшее распространение — бензиновый двигатель.
Бензиновые двигатели (petrol engine, gasoline engine) — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая смесь топлива(бензина) и воздуха поджигается электрической искрой. Главное преимущество бензинового двигателя заключается в малой массе и быстром запуске, поэтому он вытеснил паровые двигатели, а теперь он широко используется в автомобилях.
Позже появились дизельные двигатели.
Дизельный двигатель — это двигатель внутреннего сгорания, работающий по принципу воспламенения распыленного дизельного топлива от соприкосновения с разогретым сжатым воздухом. Плюсом является экономичность топлива, более высокий крутящий момент. Однако, минусом является сложность систем, дороговизна изготовления и эксплуатации.
Ну и заглянем в будущее автомобилей. Итак, существуют так же электрические двигатели.
Электрический двигатель — Это установка, в которой электрическая энергия превращается в механическую работу и тепло. Это развивающееся направление в автомобилестроении. Однако, на дорогах большинство машин имеют бензиновый или дизельный двигатель, поэтому, оставим будущее и вернёмся к настоящему.
Принцип действия
Итак, автомобильный двигатель. Прежде чем рассматривать его устройство, давайте чуть-чуть разберёмся с тем, как работает автомобильный двигатель не вдаваясь в детали.
У каждого двигателя есть свой рабочий цикл.
Рабочий цикл двигателя — периодически повторяющиеся процессы в двигателе по преобразованию тепловой энергии в механическую.
У каждого двигателя есть цилиндры, в которых ходят поршни. Это главное место, где происходит самый главный процесс.
ВМТ — Верхняя Мёртвая Точка.
НМТ — Нижняя Мёртвая Точка.
Такт — это движение поршня от ВМТ к НМТ или от НМТ к ВМТ;
Двигатели могут быть двухтактные и четырёхтактные. Двухтактные двигатели на автомобиле не используются, однако предлагаю быстренько ознакомиться с принципом их работы. Для общего образования, так сказать.
Двухтактные двигатель
Перед нами двухтактный двигатель. Здесь всё предельно просто.
Первый такт — Поршень двигателя движется вверх(картинка А), открывает отверстие(1) и сжимает смесь, которая уже находится в цилиндре. После чего, свеча зажигания воспламеняет горючее(картинка В).
Второй такт — После загорания опускающийся поршень(картинка С) сначала открывает выпускное отверстие(2), а затем переходное отверстие(3). После этого через него впускается новая порция воздушно-топливной смеси.
Таким образам поршень также заменяет клапаны двигателя, и в горючее добавляется масло для смазки поршня. Многие двухтактные двигатели снабжены ребрами для воздушного охлаждения цилиндра.
Четырёхтактный двигатель
А теперь вернёмся к четырёхтактном автомобильному двигателю.
Автомобильные двигатели, как мы уже сказали, могут быть бензиновыми и дизельными. И поэтому предлагаю рассмотреть их такты вместе. Несмотря на то, что они схожи, но в них есть так же и различия.
1-й такт впуск (наполнение).
Поршень движется от ВМТ к НМТ, впускной клапан открыт. Под действием перепада давления, возникающего в результате движения поршня:
Бензиновый двигатель: бензовоздушная смесь через впускной канал наполняет цилиндр.
Дизельный двигатель: воздух через впускной канал наполняет цилиндр.
2-й такт сжатие.
Поршень движется от НМТ к ВМТ, все клапана закрыты. Давление и температура в цилиндре поднимаются.
бензиновый двигатель: в конце такта сжатия на свечу зажигания подается высокое напряжение, между электродами свечи проскакивает искра и поджигает бензовоздущную смесь
дизельный двигатель: через форсунку высокого давления подается дизельное топливо, которое воспламеняется от нагретого в процессе сжатия воздуха.
3-й такт рабочий ход. Поршень движется от ВМТ к НМТ, все клапана закрыты. В начале такта продолжается сгорание топлива, начавшееся в конце такта сжатия. Температура и давление газов повышается. Давление передается поршню и перемещает его к НМТ. Тепловая энергия сгоревшего топлива превращается в механическую работу движения поршня.
4-й такт выпуск. Поршень движется от НМТ к ВМТ, выпускной клапан открыт. Происходит выталкивание
отработавших газов из цилиндра.
Для большей наглядности взгляните на следующие рисунки:
Такты бензинового двигателя:
Такты дизельного двигателя:
Таким образом 1 рабочий цикл 4-х тактного двигателя происходит за 2 оборота коленчатого вала (720° его поворота). Отличие между бензиновым и дизельным двигателем лишь в топливе и способе его воспламенении на такте сжатия. Однако, это вносит свои изменения в применяемые агрегаты, но об этом речь пойдёт потом.
Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания топлива, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).
Рабочие циклы четырехтактных двигателей и показатели их работы
Категория:
Техническое обслуживание автомобилей
Публикация:
Рабочие циклы четырехтактных двигателей и показатели их работы
Читать далее:
Рабочие циклы четырехтактных двигателей и показатели их работы
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.
Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.
Рекламные предложения на основе ваших интересов:
В карбюраторном четырехтактном одноцилиндровом двигателе (рис. 1.3) рабочий цикл происходит следующим образом.
Рис. 1. Рабочий цикл четырехтактного одноцилиндрового карбюраторного двигателя
Такт впуска. Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.
От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.
Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.
Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан 4 закрывается, а выпускной 6 закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.
Такт расширения, или рабочий ход. В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.
При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.
Такт выпуска. Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.
Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12.
По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.
Рабочие циклы четырехтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из-за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное топливо, которое под действием высокой температуры воздуха самовоспламеняется.
В четырехтактном дизеле рабочие процессы происходят следующим образом.
Такт впуска. При движении поршня от в.м.т. к н.м.т. вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан 5 поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0,08—0,95 МПа, а температура 40—60 °С.
Такт сжатия. Поршень движется от н.м.т. к в.м.т. Впускной 5 и выпускной 6 клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 550—700 °С при давлении воздуха внутри цилиндра 4,0—5,0 МПа.
Такт расширения, или рабочий ход. При подходе поршня к в.м.т. в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом. Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6—9 МПа, а температура 1800-2000 °С. Под действием давления газов поршень перемещается от в.м.т. к н.м.т. Происходит рабочий ход. Около н.м.т. давление снижается до 0,3—0,5 МПа, а температура—до 700—900 °С.
Такт выпуска. Поршень перемещается от н.м.т. к в.м.т. и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газа снижается до 0,11—0,12 МПа, а температура — до 500—700 °С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Показатели работы двигателя. Работа, совершаемая газами в единицу времени внутри цилиндра двигателя, называется индикаторной мощностью.
Рис. 2. Рабочий цикл четырехтактного дизеля
Мощность, получаемая на коленчатом валу двигателя, называется эффективной мощностью. Она меньше индикаторной на значение мощности, затрачиваемой на насосные потери и на трение в криво-шипно-шатунном и газораспределительном механизмах двигателя, а также на приведение в действие вентилятора, жидкостного насоса и других вспомогательных устройств.
Таким образом, эффективная мощность меньше, чем индикаторная мощность, из-за механических потерь, расходуемых в механизмах и системах двигателя. На основании этого механическим к.п.д. (коэффициентом полезного действия) двигателя называют отношение эффективной мощности к индикаторной.
Механический к.п.д. карбюраторных двигателей составляет 0,70— 0,85, а дизелей — 0,73—0,87.
Мощностные показатели двигателя в значительной мере определяются количеством теплоты, превращенным в полезную работу. Степень использования теплоты, введенной в двигатель с топливом, оценивают эффективным к.п.д., который представляет собой отношение количества теплоты Qe, превращенной в эффективную работу, к количеству теплоты Qt, выделившейся в результате сгорания
Рис. 3. Схемы компоновки цилиндров двигателей
—
Дизель. Рассмотрим процесс протекания каждого такта в цилиндре дизеля (рис. 7).
Первый такт — впуск. Цилиндр заполняется воздухом, кислород которого обеспечивает сгорание топлива. Чем больше воздуха поступает в цилиндр, тем большее количество топлива можно сжечь в нем и тем выше будет давление газов на поршень при рабочем ходе (увеличивается мощность).
Во время впуска поршень движется вниз, впускной клапан открыт, а выпускной закрыт. Воздух, поступающий в цилиндр, нагревается при смешивании с горячими остаточными газами и от нагретых деталей работающего дизеля.
К концу первого такта температура воздуха достигает 40… 60 °С, и его плотность уменьшается. Кроме того, при движении он встречает сопротивление во впускных каналах дизеля. По этим причинам давление в цилиндре оказывается ниже атмосферного (0,08… 0,09 МПа).
Второй такт — сжатие. Поршень перемещается вверх, оба клапана закрыты. Под действием поршня воздух сжимается в 15…17 раз (степень сжатия е=15… 17) и при этом нагревается. Давление в конце сжатия доходит до 3…4 МПа, а температура — до 550…600 °С, что значительно превышает температуру самовоспламенения топлива.
Рис. 4. Схема рабочего цикла одноцилиндрового четырехтактного дизеля: 1 — форсунка; 2 — топливный насос.
Третий такт — расширение. Перед самым окончанием такта сжатия, когда поршень почти дошел до в. м.т., в цилиндр через форсунку впрыскивается порция топлива. Большая часть его сразу же воспламеняется и сгорает. Температура газов повышается до 2000…2100 °С, а давление — до 5,5…8,0 МПа. Под таким давлением расширяющихся газов поршень перемещается вниз и через шатун проворачивает коленчатый вал. В процессе расширения сгорает остальная часть впрыснутого топлива. По мере перемещения поршня давление газов в цилиндре падает, а температура уменьшается. К концу третьего такта давление снижается до 0,2…0,3 МПа, а температура — до 600…650 °С.
Четвертый такт — выпуск. Впускной клапан закрыт, а выпускной открыт. Из цилиндра выталкиваются отработавшие газы. Давление оставшихся газов падает до 0,11…0,12 МПа. Температура отработавших газов в месте выхода из цилиндра составляет 400…500 °С.
Далее рабочий цикл повторяется.
Карбюраторный двигатель. Подобным образом рассмотрим рабочий цикл четырехтактного карбюраторного двигателя.
Такт впуска. Выпускной клапан закрыт, а впускной открыт. При движении поршня от в. м. т. вниз цилиндр заполняется смесью топлива с воздухом. Такая смесь приготовляется в специальном приборе — карбюраторе и называется горючей смесью. Поступая в цилиндр, она перемешивается с остаточными газами, в результате чего образуется рабочая смесь.
Давление рабочей смеси в цилиндре при такте впуска из-за сопротивления в карбюраторе ниже, чем в цилиндре дизеля, и составляет 0,07…0,08 МПа. Температура рабочей смеси повышается 60…120 °С в основном за счет высокой температуры остаточных газов.
Такт сжатия. При этом такте, как и в дизеле, рабочая смесь, сжимаясь, нагревается. С увеличением степени сжатия растет давление и температура смеси, а также скорость ее сгорания. В результате повышается экономичность и мощность двигателя. Но при повышенной температуре возникает опасность преждевременного воспламенения (самовоспламенения) смеси. Чтобы избежать этого, рабочую смесь сжимают незначительно (е=4…8). Давление в цилиндре в конце такта сжатия — 0,9…1,2 МПа, а температура не превышает температуры самовоспламенения, доходя лишь до 330 °С.
Такт расширения. Перед окончанием такта сжатия между электродами искровой свечи зажигания проскакивает электрический заряд. Искра воспламеняет рабочую смесь. Температура горящих газов доходит до 2500 °С, а давление повышается до 3,0…4,5 МПа. Под действием силы давления газов поршень перемещается вниз. К концу . третьего такта давление снижается до 0,3…0,4 МПа, а температура — до 900…1200 °С.
Такт выпуска происходит так же, как в дизеле, но при несколько более высокой температуре газов.
Сравнительная оценка дизеля и карбюраторного двигателя.
По сравнению с карбюраторным (бензиновым) двигателем дизель имеет следующие преимущества:
— дизель экономичнее: на единицу выполненной работы вследствие высокой степени сжатия он расходует на 25% меньше топлива;
— топливо, на котором работает дизель, менее опасно в пожарном отношении и оказывает меньшее коррозионное действие на детали, чем бензин.
Недостатки дизеля:
— из-за высокого давления газов в цилиндрах, корпус и другие детали, работающие со значительными нагрузками, тяжелее и имеют большие размеры;
— для пуска дизеля требуется более мощный стартер или специальный карбюраторный пусковой двигатель;
— дизель работает со значительным избытком воздуха, поэтому размеры цилиндров и других деталей и сборочных единиц увеличены.
Рекламные предложения:
Читать далее: Блок и головка цилиндров
Категория: — Техническое обслуживание автомобилей
Главная → Справочник → Статьи → Форум
Рабочий цикл четырехтактного карбюраторного двигателя — Студопедия
Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.
Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:
– четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,
– двухтактные,в которых рабочий цикл совершается за два хода поршня.
На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.
Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
– впуск горючей смеси,
– сжатие рабочей смеси,
– рабочий ход,
– выпуск отработавших газов.
Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск
Первый такт – впуск горючей смеси(рис. 8а).
Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.
Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.
Второй такт – сжатие рабочей смеси(рис. 8б).
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.
Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.
В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – «степень сжатия» (например 8,5). А что это такое?
Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.
В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.
Третий такт – рабочий ход(рис. 8в).
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.
Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.
Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.
При такте рабочего хода температура в цилиндре достигает более 2000 градусов.
Коленчатый вал при рабочем ходе делает очередные пол-оборота.
Четвертый такт – выпуск отработавших газов(рис. 8г).
При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.
После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.
Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.
Маховик(рис. 9)–это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.
Рис. 9. Коленчатый вал двигателя с маховиком:1 –шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя
Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.
Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.
В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.
Принцип работы четырех тактного двигателя внутреннего сгорания
⇐ ПредыдущаяСтр 4 из 18Следующая ⇒
В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность над поршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, над поршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.
Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.
Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания.
При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса. Технические характеристики двигателя. При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра.
Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра. Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя.
Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливовоздушной смеси, что влияет на токсичность выбросов при работе ДВС. Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко. Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней части цилиндра.
Такты
Первый такт — такт впуска Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.
Второй такт — такт сжатия Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.
Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля. После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.
Четвертый такт — такт выпуска Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.
После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.
Показатели двигателей
Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.
Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндропоршневой группы и клапанов.
Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).
Крутящий момент увеличивается с ростом: рабочего объема. Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется «стуком поршневых пальцев») или ростом нагрузок в дизелях.
Максимальный крутящий момент двигатель развивает при определенных оборотах, они вместе с его величиной указываются в технической документации.
Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость колен вала (число оборотов в минуту, умноженное на определенный коэффициент).
Двигатели большей мощности производители получают увеличением:
рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей; оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов; давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндропоршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.
Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.
Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.
Рекомендуемые страницы:
двухтактный против. Четырехтактные двигатели мотоциклов
Во время такта впуска поршень опускается от верха цилиндра к низу, уменьшая давление внутри цилиндра. Затем он втягивает смесь топлива и воздуха в цилиндр через впускной канал, готовый к такту сжатия.При закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая топливно-воздушную смесь. Вот что происходит во время такта сжатия.
Смесь сжатого воздуха и топлива воспламеняется от искры. Давление от сгорания топливно-воздушной смеси с огромной силой толкает поршень вниз, удерживая коленчатый вал во вращении. Это фаза рабочего хода, которая является основным источником крутящего момента и мощности двигателя.
Наконец, во время такта выпуска поршень снова поднимается и выталкивает сгоревший газ из цилиндра через выпускной клапан. Еще стоит упомянуть, что свеча зажигания срабатывает только один раз за два оборота. Двухтактный двигатель
Когда поршень опускается после сгорания, отработанные газы могут выходить из камеры через выхлопное отверстие. Топливно-воздушная смесь всасывается через входное отверстие, расположенное ниже в камере.Когда поршень снова поднимается, он перекрывает впускное и выпускное отверстия, сжимая газы в верхней части камеры. Свеча зажигания загорается, и процесс начинается заново. Двигатель срабатывает при каждом обороте. Да начнется бой!
Двухтактный двигатель может производить вдвое большую мощность (и производить в два раза больше шума), чем четырехтактный двигатель того же размера. Это потому, что он срабатывает один раз за каждый оборот, что дает ему вдвое большую мощность, чем четырехходовой, который срабатывает только один раз за каждый второй оборот.Примечательно, что он также имеет более высокое соотношение веса к мощности, потому что он намного легче.
Двухтактные двигатели проще и дешевле в производстве по сравнению с четырехтактными двигателями из-за их более простой конструкции. Четырехтактные двигатели служат дольше, чем двухтактные двигатели, у которых нет специальной системы смазки. Однако свечи зажигания в двухтактном двигателе служат дольше, чем в четырехтактном.
Четырехтактные двигатели более экономичны и безопасны для окружающей среды по сравнению с двухтактными двигателями, которые также создают неприятный запах.Двухтактные двигатели несут ответственность за гораздо большее загрязнение из-за сгорания масла.
Двухтактные агрегаты также могут превышать установленные законом пределы шума в некоторых областях. Вот почему вам следует подумать о том, чтобы проверить, действуют ли какие-либо ограничения в вашем регионе, прежде чем покупать его.
Бензиновый двигатель | Британника
Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициированным электрической искрой.Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, малые грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые бортовые морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. Д. станки и электроинструменты. Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих портативных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.
V-образный двигательПоперечный разрез V-образного двигателя.
Encyclopædia Britannica, Inc.Типы двигателей
Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана. В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей.В поршневом двигателе давление, создаваемое сгоранием бензина, создает силу на головку поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями. Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.
бензиновые двигателиТипы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8.
Encyclopædia Britannica, Inc.Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.
Типовая схема поршневой цилиндр бензинового двигателя.
Encyclopædia Britannica, Inc.Четырехтактный цикл
Из различных методов восстановления мощности процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.
Двигатель внутреннего сгорания: четырехтактный циклДвигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал.
Encyclopædia Britannica, Inc. Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасНедостатком четырехтактного цикла является то, что завершается только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.
2-тактные и 4-тактные двигатели — в чем разница?
Новости, которые можно использовать за декабрь 2005 г.В большинстве небольших ручных инструментов для газонов и садов, таких как струнные триммеры и бензопилы, используются двухтактные двигатели, а в более крупных машинах, таких как садовые тракторы и садовые тракторы, используются четырехтактные двигатели. .Газонокосилки доступны с любым типом двигателя.
ИнженерLSU AgCenter доктор Дик Пэриш объясняет различия и объясняет, почему двухтактные двигатели чаще используются на небольших инструментах.
«Большинство людей используют термины« 2-тактный »или« 4-тактный »для описания двух типов двигателей, — говорит Пэриш. «Эта общая терминология, хотя и понятна, но неверна».
Инженер говорит, что каждый поршневой двигатель внутреннего сгорания работает в рамках «цикла» из пяти функций — впуска, сжатия, зажигания, сгорания и выпуска.В двухтактном двигателе все пять функций цикла выполняются всего за два хода поршня (или за один оборот коленчатого вала). В 4-тактном двигателе для выполнения пяти функций требуется четыре хода поршня (или два оборота коленчатого вала).
Parish сообщает, что двухтактные двигатели смазываются не резервуаром в картере, а маслом, смешанным с бензином. Большая часть этого масла не сгорает в двигателе и выбрасывается с выхлопными газами, что увеличивает выбросы и дым.
Он также говорит, что удельная мощность 2-тактных двигателей выше, чем у большинства 4-тактных двигателей, поэтому более легкие 2-тактные двигатели хорошо работают в ручных приложениях, таких как нагнетатели и триммеры.
«Обычно 2-тактные двигатели развивают более высокие скорости, чем 4-тактные двигатели, и на это приходится большая часть более высокой мощности на фунт», — говорит Пэриш. «Кроме того, в небольших 2-тактных двигателях вместо клапанов используются впускные и выпускные отверстия, что позволяет сэкономить на весе и стоимости клапанного механизма.
Пэриш добавляет, что засорение свечей зажигания более распространено в двухтактных двигателях из-за наличия масла в топливе, а это означает, что может потребоваться более частая замена свечей зажигания.
Инженер говорит, что 4-тактные двигатели смазываются маслом в картере, поэтому масло не смешивается с бензином.
«На небольших двигателях, таких как те, которые используются в газонокосилках, выступ на нижней части штока поршня разбрызгивает масло в цилиндр», — говорит он. «В более крупных двигателях, таких как те, которые используются на садовых тракторах, масляный насос распределяет масло под давлением через масляный фильтр.«
Parish предупреждает, что разные производители двигателей рекомендуют разные соотношения масел в смеси для своих двигателей.
«Если у вас более одного двухтактного двигателя и они не одной марки, вам, возможно, придется хранить отдельные топливно-масляные смеси для машин», — говорит он. Типичное соотношение составляет от 32 до 1 (бензин к маслу) до 50 до 1.
«Вы можете купить небольшие емкости с маслом, которые отмерены, чтобы обеспечить нужное количество масла на галлон бензина при заданном рекомендуемом соотношении смеси», — говорит Пэриш.«Но покупка нефти в больших количествах может быть более экономичной».
Еще одна проблема, о которой предупреждает Parish, — это проблема с поиском небольшого контейнера, измеренного в требуемом вам соотношении, если вы не вернетесь к дилеру. Большинство хозяйственных магазинов, садовых центров, дисконтных магазинов и подобных магазинов имеют только одно или два соотношения.
«Не думайте, что небольшая емкость с маслом для двухтактных двигателей, которую вы купите в дисконтном магазине, будет иметь правильное соотношение для вашего двигателя», — предупреждает Пэриш. «Проверьте соотношение на этикетке.Если у вас нет подходящей мерной емкости, полезно знать, сколько масла вам нужно для требуемого соотношения.
Parish рекомендует начать с чистой пустой емкости и налить нужное количество масла. Затем добавьте 1 галлон бензина, закройте емкость и встряхните, чтобы топливо перемешалось. Каждый раз перед заливкой бензиновой смеси встряхивайте емкость.
«Любой тип двигателя может хорошо работать, если используется в соответствующем приложении», — говорит Пэриш.«Если у вас двухтактный двигатель, убедитесь, что масло и газ правильно смешаны».
###
Обращайтесь: Дик Пэриш по телефону (985) 543-4125 или [email protected]
Редактор: Рик Богрен по телефону (225) 578-5839 или [email protected]
2-тактный двигатель Vs. 4-тактный двигатель
Одно из решений, которое вы должны принять при покупке новой газонокосилки, — это выбрать газонокосилку с 2-тактным двигателем или с 4-тактным двигателем. Как и все сравнения, у обоих есть свои преимущества и недостатки.Вопрос в том, какой из вариантов лучше всего подходит для вашей ситуации? Вот несколько фактов, которые помогут вам принять решение.
Как работают двигатели?
Во-первых, нам нужно перейти к небольшому элементарному занятию в дизайне двигателя. Как работает тактный двигатель?
Слово «ход» относится к поршням и их движению в двигателе. Например, двухтактный двигатель совершает один ход в каждом направлении
Существует два типа двигателей для газонокосилок: двухтактный и четырехтактный.(Предоставлено: Стивен, flickr.com)
, в то время как 4-тактный двигатель имеет один такт сжатия и один такт выпуска с одним обратным ходом.
2-тактный двигатель сжимается при ходе вверх и выпускает при ходе вниз. По этой причине этому двигателю необходимо смешанное с топливом смазочное масло.
4-тактный двигатель сжимает топливно-воздушную смесь перед взрывом газа в первых двух тактах, а затем происходит два такта, которые выталкивают сгоревшие газы из выхлопных газов.
Преимущества двухтактного двигателя
2-тактный двигатель имеет простую конструкцию и базовую конструкцию, он меньше весит и дешевле в производстве, чем 4-тактный вариант. Двухтактный двигатель при одинаковых оборотах в минуту (обороты в минуту) также работает в два раза больше, чем четырехтактный.
Недостатки двухтактного двигателя
Срок службы двухтактного двигателя меньше, чем у четырехтактного, потому что он быстрее изнашивается из-за отсутствия специальной системы смазки и создает больше загрязнений.Кроме того, масло, специально предназначенное для 2-тактных двигателей, может быть более дорогим, а двигатель не является топливосберегающим, что означает, что со временем он будет стоить больше на газ.
Выбор наиболее подходящего двигателя
При выборе типа двигателя необходимо учитывать ряд факторов. Самое главное — как вы это будете использовать. Если стоимость является самой большой проблемой, то 2-тактный двигатель, вероятно, ваш лучший выбор, потому что он дешевле, чем 4-тактный, более простой по конструкции и идеально подходит для базовых применений.
И наоборот, производство 4-тактного двигателя обходится дороже, поскольку в нем используются более совершенные технологии, обеспечивающие эффективность и более длительный срок службы. Так что, если ваша газонокосилка должна работать на более чем базовом уровне, то вам следует выбрать 4-тактный двигатель.
Векторные изображения Четырехтактный двигательСтоковые векторные изображения Четырехтактный двигатель
Стоковые векторные изображения Четырехтактный двигатель | Схема четырехтактного двигателя.Головка цилиндра Цилиндр Ход зажигания Двигатель внутреннего сгорания Гоночный двигатель, вид спереди Двигатель внутреннего сгорания, вид спереди. Поршни серого автомобиля на белом фоне. Четыре удара, векторные искусства, иллюстрации. Двигатель внутреннего сгорания. Инсульт. Векторное искусство, иллюстрация. Двигатель внутреннего сгоранияПоршни автомобилейТележка Bullock Коричневая — мультяшное векторное изображение Двигатель внутреннего сгорания с пламенемДвигатель внутреннего сгоранияДвигатель внутреннего сгоранияПоршни автомобиляСтяжной ход поршня. дизайн для образованияПоршневой бензиновый двигатель, структурное сечение в базовой конструкции для образовательных учреждений, четырехсторонний цикл сгорания, одноцилиндровая векторная иллюстрацияПоршневой бензиновый двигатель, структурное сечение и четырехтактный цикл сгорания в базовой конструкции для обучения образование, цикл сгорания с четырьмя ударами Авто рикша или тук-тук — мультяшное векторное изображениеВекторная иллюстрация двух цветных и черных векторных иконок автомобильного двигателя может использоваться для мобильных устройств, пользовательского интерфейса, значка велосипеда webQuad в виде заполненных, тонких линий, контуров и штрихов. Векторная иллюстрация двух цветных и черных дизайнов векторных значков знака квадроцикла может использоваться для мобильных устройств, пользовательского интерфейса, значка webQuad в виде заполненных, тонких линий, контуров и штрихов. Векторная иллюстрация двухцветных и черных четырехугольных векторных иконок может быть использована для мобильных устройств, пользовательского интерфейса, значков webEngine с заливкой, тонкой линией, контуром и стилем штриха.Векторная иллюстрация двух цветных и черных дизайнов векторных значков двигателя может использоваться для мобильных, пользовательского интерфейса, векторных значков webEngine на белом фоне Значок индикатора неисправности в заполненном, тонком стиле, линии, контуре и стиле обводки. Векторная иллюстрация двух цветных и черных дизайнов иконок векторных индикаторов неисправности может быть использована для мобильных, пользовательских интерфейсов, веб-сайтов. Простой векторный значок. Идеальная цветная современная пиктограмма на редактируемом штрихе. Значок индикатора неисправности. Линейная векторная иллюстрация из коллекции сигналов приборной панели автомобиля.Наброски неисправности индикатор значок вектора. Символ тонкой линии для использования в веб-приложениях и мобильных приложениях, логотип, значок printEngine с заливкой, тонкой линией, контуром и стилем штриха. Векторная иллюстрация двухцветных и черных дизайнов векторных значков двигателя может быть использована для мобильных устройств, пользовательского интерфейса, значков webQuad с заливкой, тонкой линией, контуром и стилем штриха. Векторная иллюстрация двух цветных и черных векторных иконок четырехугольника может быть использована для мобильных, пользовательского интерфейса, векторных иконок webQuad. Тонкая линия черного квадрата, плоская векторная простая иллюстрация элемента из съедобной концепции свободного времени, изолированный штрих на белом фоне Значок автомобильного двигателя с заливкой, тонкой линией, контуром и стилем штриха.Векторная иллюстрация двух цветных и черных дизайнов векторных иконок двигателя автомобиля может использоваться для мобильных устройств, пользовательского интерфейса, веб-серых иконок на белом фоне. Тонкая линия черного значка индикации неисправности, плоский векторный простой элемент иллюстрации из концепции съедобных форм, изолированный штрих на белом фонеПоршни для автомобилей на белом фонеПоршни для автомобилей на белом фонеКрасный трактор — мультяшное векторное изображениеВид сбоку скутера — мультяшное векторное изображениеАвто рикша или тук-тук с выражениями персонажей — мультяшный вектор Коричневая овощная тележка — мультяшное векторное изображениеЗеленый мини-фургон или путешественник в темпе — мультяшное векторное изображение Значок индикатора неисправности в векторной иллюстрации другого стиляКабельный автомобиль спереди и сзади с выражениями — мультяшное векторное изображениеЖелто-красный грузовик с большими колесами — мультяшное векторное изображениеСиний корабль — мультяшное векторное изображениеУлыбающийся авто рикша или тук-тук — мультяшное векторное изображениеЖелтый красочный корабль — мультяшное векторное изображениеЗеленый автобус, вид спереди с выражениями — мультяшное векторное изображениеГрузовик с выражениями — мультяшное векторное изображениеСиний мусорный фургон — мультяшное векторное изображениеАвтомобиль с выражениями — мультяшное векторное изображениеРозовая игрушечная машинка — мультяшное векторное изображениеДвигатель Велосипед — Векторное изображение из мультфильма Ремонт автомобилей — Плоские векторные иконки Летающий вертолет, вид сбоку — Векторное изображение мультфильма Милый мотоцикл с глазами — Векторное изображение мультфильма Дети на лодке — Векторное изображение мультфильмаИгрушечный поезд — Векторное изображение мультфильма Вид зеленого фургона спереди — Векторное изображение мультфильма2-тактный двигатель
Настройка 2-тактного двигателя Устранение неисправностей Масло Анимация Ремонт Ремонт Ремонт Детали схемы Газ
Настройка 2-тактного двигателя
Руководство для двухтактных тюнеров Гордона Дженнингса
Лучшая статья о настройке двухтактного двигателя за все время, написанная легендарным Гордоном Дженнингсом!
Руководство Гордона Дженнингса для двухтактных тюнеров Ясно, что это самая полная техническая статья о настройке двухтактных двигателей из когда-либо написанных.Руководство Гордона Дженнингса по настройке двухтактных двигателей называется библией по настройке двухтактных двигателей . Этот документ по настройке двухтактных двигателей содержит формулы, теорию, примеры и иллюстрации, которые буквально превратят любого в профессионального гуру двухтактных двигателей.Гордон Дженнингс всю жизнь был энтузиастом мотоциклов и писателем, который работал редактором журналов Cycle Magazine и Motorcyclist Magazine. Гордон имел естественную любовь ко всему механическому и в 1973 году опубликовал свой Two-Stroke Tuner Handbook , который вскоре стал коллекционным руководством по настройке двухтактных двигателей.Эта статья о настройке двухтактного двигателя любезно предоставлена edj.net/2stroke/jennings/.
Анимация двухтактного двигателя
Смотрите здесь анимацию двухтактного двигателя
Анимации, изображения и сопутствующие статьи с двухтактным двигателем
Это одна из лучших анимационных картинок с двухтактным двигателем, которые я когда-либо видел. Он четко показывает топливовоздушную смесь в виде зеленого тумана, попадающего в двигатель через впускной канал. Когда кривошип вращается, поршень движется вверх, сначала закрывая впускные каналы, а затем закрывая выпускное отверстие сразу после того, как возвращающаяся волна выхлопных газов выталкивает свежую смесь, которая была втянута по трубе, и сжимает ее обратно в цилиндр.Наконец, смесь начинает становиться серой, поскольку она становится летучей из-за экстремального давления непосредственно перед тем, как свеча зажигания воспламеняет смесь с красным взрывом, толкая поршень обратно в цилиндр. Эта анимация с двухтактным двигателем сопровождается отличной статьей с несколькими схемами двухтактного двигателя и подробными объяснениями цикла двухтактного двигателя. Эта анимация, статья и диаграммы для двухтактного двигателя любезно предоставлены сайтом www.southernskies.net.Устранение неисправностей 2-тактного двигателя
Советы и рекомендации по устранению неисправностей двухтактного двигателя
Видео и статьи об устранении неисправностей двухтактных двигателей.
Возникли проблемы с запуском двухтактного двигателя? Это базовое руководство по поиску и устранению неисправностей двухтактного двигателя поможет вам снова запустить двухтактный двигатель. В этой статье мы профессионально подходим к устранению основных неисправностей двухтактного двигателя . Мы покажем вам, как проверить воздух, искру и топливо, а также дадим советы, которые помогут вам снова запустить его. Эта статья по поиску и устранению неисправностей двухтактного двигателя — хорошее место для начала, если вы просто здесь, чтобы изучить основы двухтактного двигателя.Эта статья написана мной, создателем этого сайта Джимом Марквардтом.Масло для 2-тактных двигателей
Лучшее масло для 2-тактных двигателей
Мнения о масле для 2-тактных двигателей
Что касается масла для 2-тактных двигателей , то у всех есть свое мнение. Нет ничего лучше прекрасного запаха премикса по утрам. В этой статье мы объясняем разницу между маслами на нефтяной и синтетической основе, а также преимущества и недостатки обоих. В конце статьи я рекомендую масло, которое мне больше всего подошло.Я использую высокоэффективные двухтактные двигатели на своих мотоциклах для бездорожья около 30 лет. Моя страсть — это скалолазание на мотоциклах, и в этом виде спорта мы настраиваем двигатели для получения максимальной мощности при полностью открытой дроссельной заслонке. Альпинисты — истинный свидетель того, как масло для двухтактных двигателей работает и защищает двигатель в самых экстремальных условиях. Есть много хороших масел для двухтактных двигателей, и я надеюсь, что эта статья поможет вам решить, какое масло вы хотите использовать.Карбюраторная струя
How To Jet You’re Mikuni, Keihin или Lectron Carb
Некоторая отличная информация о карбюраторе для 2-тактного двигателя
2-тактный двигатель Карбюраторная форсунка — это то, что вам абсолютно необходимо знать, если вы хотите получить максимальную производительность от своего 2-тактного двигателя.С одной стороны, изменение параметров струи может дать вам недорогое средство мгновенного увеличения мощности, отклика дроссельной заслонки и характеристик мощности. С другой стороны, если все сделать неправильно, это может привести к заклиниванию двигателя, загрязнению свечей и очень плохому дню. Щелкните ссылку выше, чтобы узнать о форсунках карбюраторов Mikuni, Keihin и Lectron Carbs.Ремонт двухтактных двигателей
Обучение ремонту 2-тактного двигателя
Видео, фотографии и статьи о ремонте двухтактных двигателей
Восстановление 2-тактного двигателя
Пошаговое восстановление 2-тактного двигателя
Видео, фотографии и статьи, посвященные ремонту 2-тактного двигателя
Схема двухтактного двигателя Схема двухтактного двигателя