Устройство двигателя: схема, строение и принцип работы ДВС
На чтение 10 мин. Просмотров 1.3k. Опубликовано Обновлено
Практически все современные автомобили оснащены двигателем внутреннего сгорания, имеющим аббревиатуру ДВС. Несмотря на постоянный прогресс и сегодняшнее стремление автомобильных концернов отказаться от моторов, работающих на нефтепродуктах в пользу более экологичной электроэнергии, львиная доля машин ездит на бензине или дизельном топливе.
Основными принципом ДВС является то, что топливная смесь воспламеняется непосредственно внутри агрегата, а не вне его (как, к примеру, в тепловозах или устаревших паровозах). Такой способ имеет относительно большой коэффициент полезного действия. К тому же, если говорить об альтернативных моторах на электрической тяге, то двигатели внутреннего сгорания обладает рядом неоспоримых преимуществ.
- большой запас хода на одном баке;
- быстрая заправка;
- согласно прогнозам, уже через несколько лет энергосистемы развитых стран не будут в силах погасить потребность в электроэнергии из-за большого количества электрокаров, что может привести к коллапсу.
Классификация двигателей внутреннего сгорания
Непосредственно ДВС отличаются по своему устройству. Все моторы можно разделить на несколько самых популярных категорий в зависимости от принципа работы:
Бензиновые
Наиболее распространенная категория. Работает на главных продуктах нефтепереработки. Основным элементом в таком моторе является цилиндро-поршневая группа или ЦПГ, куда входит: коленвал, шатун, поршень, поршневые кольца и сложный газораспределительный механизм, который обеспечивает своевременное наполнение и продувку цилиндра.
Бензиновые двигатели внутреннего сгорания подразделяются на два типа в зависимости от системы питания:
- карбюраторные. Устаревшая в условиях современной реальности модель. Здесь формирование топливно-воздушной смеси осуществляется в карбюраторе, а пропорцию воздуха и бензина определяет набор жиклеров. После этого карбюратор подает ТВС в камеру сгорания. Недостатками такого принципа питания является повышенное потребление топлива и прихотливость всей системы. К тому же она сильно зависит от погоды, температуры и прочих условий.
- инжекторные или впрысковые. Принципы работы двигателя с инжектором кардинально противоположны. Здесь смесь впрыскивается непосредственно во впускной коллектор через форсунки, а затем разбавляется нужным количеством воздуха. За исправную работу отвечает электронный блок управления, который самостоятельно высчитывает нужные пропорции.
Дизельные
Устройство двигателя, работающего на дизеле, кардинально отличается от бензинового агрегата. Поджог смеси здесь происходит не благодаря свечам зажигания, дающим искру в определенный момент, а из-за высокой степени сжатия в камере сгорания. Данная технология имеет свои плюсы (больший КПД, меньшие потери мощности из-за большой высоты над уровнем моря, высокий крутящий момент) и минусы (прихотливость ТНВД к качеству топлива, большие выбросы СО2 и сажи).
Роторно-поршневые двигатели Ванкеля
Данный агрегат имеет поршень в виде ротора и три камеры сгорания, к каждой из которых подведена свеча зажигания. Теоретически ротор, движущийся по планетарной траектории, каждый такт совершает рабочий ход. Это позволяет существенно повысить КПД и увеличить мощность двигателя внутреннего сгорания. На практике это сказывается гораздо меньшим ресурсом. На сегодняшний день только автомобильная компания Mazda делает такие агрегаты.
Газотурбинные
Принцип работы ДВС такого типа заключается в том, что тепловая энергия переходит в механическую, а сам процесс обеспечивает вращение ротора, приводящего в движения вал турбины. Подобные технологии используются в авиационном строительстве.
Устройство двигателя внутреннего сгорания
Любой поршневой ДВС (самые распространенные в современных реалиях) имеет обязательный набор деталей. К таким частям относится:
- Блок цилиндров, внутри которого двигаются поршни и происходит сам процесс;
- ЦПГ: цилиндр, поршни, поршневые кольца;
- Кривошипно-шатунный механизм. К нему относится коленвал, шатун, «пальцы» и стопорные кольца;
- ГРМ. Механизм с клапанами, распределительными валами или «лепестками» (для 2-х тактных двигателей), который обеспечивает корректную подачу топлива в нужный момент;
- Cистемы впуска. О них говорилось выше – к ней относятся карбюраторы, воздушные фильтры, инжекторы, топливный насос, форсунки;
- Системы выпуска. Удаляет отработанные газы из камеры сгорания, а также снижает шумность выхлопа;
Принцип работы ДВС
В зависимости от своего устройства, двигатели можно разделить на четырехтактные и двухтактные. Такт – есть движение поршня от своего нижнего положения (мертвая точка НМТ) до верхнего положения (мертвая точка ВМТ). За один цикл двигатель успевает наполнить камеры сгорания топливом, сжать и поджечь его, а также очистить их. Современные ДВС делают это за два или четыре такта.
Принцип работы двухтактного ДВС
Особенностью такого мотора стало то, что весь рабочий цикл происходит всего за два движения поршня. При движении вверх создается разреженное давление, которое засасывает топливную смесь в камеру сгорания. Вблизи ВМТ поршень перекрывает впускной канал, а свеча зажигания поджигает топливо. Вторым тактом следует рабочий ход и продувка. Выпускной канал открывается после прохождения части пути вниз и обеспечивает выход отработанных газов. После этого процесс возобновляется по новой.
Теоретически, преимуществом такого мотора более высокая удельная мощность. Это логично, ведь сгорание топлива и рабочий такт происходит в два раза чаще. Соответственно, мощность такого двигателя может быть в два раза больше. Но эта конструкция имеет массу проблем. Из-за больших потерь при продувке, большого расхода топлива, а также сложностей в расчетах и «норовистой» работе двигателя, эта технология сегодня используется только на малокубатурной технике.
Интересно, что полвека назад активно велись разработки дизельного двухтактного ДВС. Процесс работы практически не отличался от бензинового аналога. Однако, несмотря на преимущества такого мотора, от него отказались из-за ряда недостатков.
Основным минусом стал огромный перерасход масла. Из-за комбинированной системы смазки топливо попадало в камеру сгорания вместе с маслом, которое потом попросту выгорало или удалялось через выпускную систему. Большие тепловые нагрузки также требовали более громоздкой системы охлаждения, что увеличивало габариты мотора. Третьим минусом стал большой расход воздуха, который вел к преждевременному износу воздушных фильтров.
Четырёхтактный ДВС
Мотор, где рабочий цикл занимает четыре хода поршня, называется четырехтактным двигателем.
- Первый такт – впуск. Поршень двигается из верхней мертвой точки. В этот момент ГРМ открывает впускной клапан, через который топливно-воздушная смесь поступает в камеру сгорания. В случае с карбюраторными агрегатами поступление может осуществляться за счет разрежения, а инжекторные двигателя впрыскивают топливо под давлением.
- Второй такт – сжатие. Далее поршень движется из нижней мертвой точки вверх. К этому моменту впускной клапан закрыт, а смесь постепенно сжимается в полости камеры сгорания. Рабочая температура поднимается до отметки 400 градусов.
- Третий такт – рабочий ход поршня. В ВМТ свеча зажигания (или большая степень сжатия, если речь идет о дизеле) поджигает топливо и толкает поршень с коленчатым валом вниз. Это основной такт во всем цикле работы двигателя.
- Четвертый такт – выпуск. Поршень снова движется вверх, выпускной клапан открывается, а из камеры сгорания удаляются отработанные газы.
Дополнительные системы ДВС
Независимо от того, из чего состоит двигатель, у него должны быть вспомогательные системы, которые способны обеспечить его исправную работу. К примеру, клапаны должны открываться в нужное время, в камеры поступать нужное количество топлива в определенной пропорции, вовремя подаваться искра и т.д. Ниже рассмотрены основные части, способствующие корректной работе.
Система зажигания
Эта система отвечает за электрическую часть в вопросе воспламенения топлива. К основным элементам относится:
- Элемент питания. Основным источником питания является аккумулятор. Он обеспечивает вращение стартера на выключенном двигателе. После этого в работу включается генератор, который питает двигатель, а также подзаряжает саму аккумуляторную батарею через реле зарядки.
- Катушка зажигания. Устройство, которое передает одномоментный заряд непосредственно на свечу зажигания. В современных автомобилях количество катушек равносильно количеству цилиндров, которые работают в двигателе.
- Коммутатор или распределитель зажигания. Специальной «умное» электронное устройство, которое определяет момент подачи искры.
- Свеча зажигания. Важный элемент в бензиновом ДВС, который обеспечивает своевременное воспламенение топливно-воздушной смеси. Продвинутые двигатели имеют по две свечи на цилиндр.
Впускная система
Смесь должна вовремя поступать в камеры сгорания. За этот процесс отвечает впускная система. К ней относится:
- Воздухозаборник. Патрубок, специально выведенный в место, недоступное для воды, пыли или грязи. Через него осуществляется забор воздуха, который потом попадает в двигатель;
- Воздушный фильтр. Сменная деталь, которая обеспечивает очистку воздуха от грязи и исключает попадание посторонних материалов в камеру сгорания. Как правило, современные автомобили обладают сменными фильтрами из плотной бумаги или промасленного поролона. На более архаичных моторах встречаются масляные воздушные фильтры.
- Дроссель. Специальная заслонка, которая регулирует количество воздуха, попадающего в впускной коллектор. На современной технике действует посредством электроники. Сначала водитель нажимает на педаль газа, а потом электронная система обрабатывает сигнал и следует команде.
- Впускной коллектор. Патрубок, который распределяет топливно-воздушную смесь по различным цилиндрам. Вспомогательными элементами в этой системе являются впускные заслонки и усилители.
Топливная систем
Принцип работы любого ДВС подразумевает своевременное поступление топлива и ее бесперебойную подачу. В комплекс также входит несколько основных элементов:
- Топливный бак. Резервуар, где хранится топливо. Как правило, располагается в максимально безопасном месте, вдали от мотора и сделан из негорючего материала (ударопрочный пластик). В нижней его части установлен бензонасос, который осуществляет забор топлива.
- Топливопровод. Система шлангов, ведущая от топливного бака непосредственно к двигателю внутреннего сгорания.
- Прибор образования смеси. Устройство, где смешиваются топливо и воздух. Об этом пункте уже упоминалось выше – за эту функцию может отвечать карбюратор или инжектор. Основным требованием является синхронная и своевременная подача.
- Головное устройство в инжекторных двигателях, которое определяет качество, количество и пропорции образования смеси.
Выхлопная система
В ходе того, как работает двигатель внутреннего сгорания, образуются выхлопные газы, которые необходимо выводить из мотора. Для правильной работы эта система обязана иметь следующие элементы:
- Выпускной коллектор. Устройство из тугоплавкого металла с высокой устойчивостью к температурам. Именно в него первоначально поступают выхлопные газы из двигателя.
- Приемная труба или штаны. Деталь, обеспечивающая транспортировку выхлопных газов далее по тракту.
- Резонатор. Устройство, снижающее скорость движения выхлопных газов и погашение их температуры.
- Катализатор. Предмет для очистки газов от СО2 или сажевых частиц. Здесь же располагается лямда-зонд.
- Глушитель. «Банка», имеющая ряд внутренних элементов, предназначенных для многократного изменения направления выхлопных газов. Это приводит к снижению их шумности.
Система смазки
Работа двигателя внутреннего сгорания будет совсем недолгой, если детали не будут обеспечиваться смазкой. Во всей технике используется специальное высокотемпературное масло, обладающее собственными характеристиками вязкости в зависимости от режимов эксплуатации мотора. Ко всему, масло предотвращает перегрев, обеспечивает удаление нагара и появление коррозии.
Для поддержания исправности системы предназначены следующие элементы:
- Поддон картера. Именно сюда заливается масло. Это основной резервуар для хранения. Контролировать уровень можно при помощи специального щупа.
- Масляный насос. Находится вблизи нижней точки поддона. Обеспечивает циркуляцию жидкости по всему мотору через специальные каналы и его возвращение обратно в картер.
- Масляный фильтр. Гарантирует очистку жидкости от пыли, металлической стружки и прочих абразивных веществ, попадающих в масло.
- Радиатор. Обеспечивает эффективное охлаждение до положенных температур.
Система охлаждения
Еще один элемент, который необходим для мощных двигателей внутреннего сгорания. Он обеспечивает охлаждение деталей и исключает возможность перегрева. Состоит из следующих деталей:
- Радиатор. Специальный элемент, имеющий «сотовую» структуру. Является отличным теплообменником и эффективно отдает тепло, гарантируя охлаждение антифриза.
- Вентилятор. Дополнительный элемент, дующий на радиатор. Включается тогда, когда естественный поток набегающего воздуха уже не может обеспечить эффективное отведение тепла.
- Помпа. Насос, который помогает жидкости циркулировать по большому или малому кругу системы (в зависимости от ситуации).
- Термостат. Клапан, который открывает заслонку, пуская жидкость по нужному кругу. Работает совместно с датчиком температуры движка и охлаждающей жидкости.
Заключение
Первый двигатель внутреннего сгорания появился еще очень давно – почти полтора столетия назад. С тех пор было сделано огромное количество разных нововведений или интересных технических решений, которые порой меняли вид мотора до неузнаваемости. Но общий принцип работы двигателя внутреннего сгорания оставался прежним. И даже сейчас, в эпоху борьбы за экологию и постоянно ужесточающийся норм по выбросу СО2, электромобили все еще не в силах составить серьезную конкуренцию машинам с ДВС. Бензиновые автомобили и сейчас живее всех живых, а мы живем в золотую эпоху автомобилестроения.
Ну а для тех, кто готов погрузиться в тему еще глубже, у нас есть отличное видео:
Двигатель внутреннего сгорания — 1″ src=»https://www.youtube.com/embed/K_xr7766H-0?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Как устроен и как работает двигатель внутреннего сгорания?
Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.
ДВС что это?
Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.
ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.
Основные механизмы двигателя внутреннего сгорания
Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.
1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.
2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.
3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.
4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.
5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:
• Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.
• Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.
6. Шатун служит соединительным элементом между поршнем и коленчатым валом.
7. Коленчатый вал преобразует поступательные движения поршней во вращательные.
8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.
Это интересно! Самые мощные в мире ДВС выпускает фирма Wartsila. Они предназначены для кораблей. Их мощность достигает 110 000 л.с., что равно 80 мВт.
Принцип работы двигателя внутреннего сгорания
В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.
Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.
Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.
Впуск
Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.
Сжатие
Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты.
Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.Рабочий ход
Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.
Выпуск
Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.
После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.
А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.
Достоинства и недостатки
Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.
Преимущества ДВС:
1. Возможность длительного передвижения на полном баке.
2. Небольшой вес и объём бака.
3. Автономность.
4. Универсальность.
5. Умеренная стоимость.
6. Компактные размеры.
7. Быстрый старт.
8. Возможность использования нескольких видов топлива.
Недостатки ДВС:
1. Слабый эксплуатационный КПД.
2. Сильная загрязняемость окружающей среды.
3. Обязательное наличие коробки переключения передач.
4. Отсутствие режима рекуперации энергии.
5. Большую часть времени работает с недогрузом.
6. Очень шумный.
7. Высокая скорость вращения коленчатого вала.
8. Небольшой ресурс.
Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Основные типы ДВС. Бензиновые и дизельные двигатели | «Оптимум Авто» — сеть автосервисов в Москве
Принцип действия двигателя внутреннего сгорания заключается в том, что он преобразует тепловую энергию, образующуюся при воспламенении топлива, в крутящий момент, используемый для вращения ведущих колес.
Существует три типа таких моторов – газовые, бензиновые и дизельные, но наиболее распространенными являются два последних. Они решают одинаковые задачи и используют один и тот же принцип, но имеют конструктивные и эксплуатационные особенности.
Дизельные двигатели отличаются не только типом используемого топлива, но и рабочим процессом. Смесеобразование осуществляется непосредственно в цилиндре, а для воспламенения искра не требуется – это происходит за счет высокой температуры находящегося там воздуха. Он прогревается благодаря сжатию, которое создается при движении поршня до верхней мертвой точки. В этот момент форсунки подают топливо, и при смешивании его с горячим воздухом происходит воспламенение.
В дизельных двигателях вместо свечей зажигания применяются свечи накаливания. В сущности, они исполняют функцию предпускового подогревателя, обеспечивая требуемую температуру при запуске холодного мотора. В процессе последующей езды они не задействуются.
Изначально автомобильный двигатель был бензиновым. Первые дизельные машины появились лишь в 30-х годах прошлого века, после чего данное направление получило активное развитие.
Основными преимуществами бензиновых двигателей является хорошая динамика, более простая конструкция, высокий уровень надежности и безотказности. Важное достоинство по сравнению с дизельными моторами – возможность использования при любых морозах, поскольку бензин в отличие от солярки не густеет и не выделяет парафин при низких температурах.
С другой стороны, дизельные автомобили являются намного более экономичными. Например, современный мотор объемом 1,6 л потребляет в среднем 4-5л/100 км при движении в смешанном цикле. Аналогичный бензиновый двигатель при прочих равных условиях расходует около 7,5-8л/100 км.
При использовании качественного топлива дизельные моторы безотказны даже при сильном морозе. Именно на таких двигателях работает большинство грузовых машин, специальная и военная техника, железнодорожный и морской транспорт, и пр.
Принцип работы двс кратко
Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.
Виды моторов
Существует три вида двигателей, встречаемых в транспортных средствах:
- поршневой
- роторно-поршневой
- газотурбинный
Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.
Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.
Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.
Устройство мотора
Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:
- Цилиндры, образующие отдельный блок
- Головку блока с ГРМ
- Кривошипно-шатунный механизм
Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.
Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.
Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:
- зажигания, основная роль которой заключается в воспламенении топлива,
- содержащего также воздух;
- впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
- топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
- система смазки, снижающая износ трущихся деталей конструкции во время их работы;
- выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.
Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.
Рабочий цикл ДВС
Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.
Первый такт: впуск
Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.
Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.
После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.
Второй такт: сжатие
Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.
Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.
Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.
Третий такт: рабочий ход
Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.
Четвертый такт: выпуск
Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.
Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:
- избавляет от ненужных вибраций;
- уравновешивает силы, которые действуют на работу коленвала;
- организует ровную работу мотора.
Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.
Как работает двухтактный мотор
Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.
Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.
Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.
Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.
Преимущества и недостатки
Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.
Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.
На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.
🔧 Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье «как устроены бензиновые и дизельные двигатели».
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
🔧 Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
🔧 Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.
Определение и общие особенности работы ДВС
Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.
Классификация двигателей внутреннего сгорания
В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.
Устройство двигателя внутреннего сгорания
Корпус двигателя объединяет в единый организм:
- блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
- кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
- газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
- система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
- система удаления продуктов горения (выхлопных газов).
Четырёхтактный двигатель внутреннего сгорания в разрезе
При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.
Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.
Принципы работы ДВС
— Принцип работы двухтактного двигателя
Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.
В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.
В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.
При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.
В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.
— Принцип работы четырёхтактного двигателя
Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.
Процесс работы двигателя внутреннего сгорания
Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:
- Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
- Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
- Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
- Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.
Вспомогательные системы двигателя внутреннего сгорания
— Система зажигания
Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:
- Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
- Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
- Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
- Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.
Система зажигания ДВС
— Впускная система
Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:
- Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
- Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
- Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
- Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
- Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
- Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
- Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
- Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
- Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
- Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.
Схема топливной системы ДВС
— Система смазки
Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:
- Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
- Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
- Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
- Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.
— Выхлопная система
Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):
- Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
- Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
- Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
- Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
- Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.
Выхлопная система ДВС
— Система охлаждения
Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.
- Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
- Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
- Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
- Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.
Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.
В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.
Toyota Hybrid: принцип работы гибридной системы
Сегодня компания Toyota является одним из крупнейших производителей гибридных автомобилей в мире. Этот тип автомобилей становится все более популярным из-за высокую производительность, надежность, экологичность и низкие эксплуатационные расходы. Но чем основной принцип работы гибридной системы автомобилей Toyota отличается от бензиновых и электрических автомобилей?
Гибридная система Toyota использует бензиновый двигатель и электромотор. Это «полный» гибрид — автомобиль может передвигаться как по принципу совместного использования двигателя внутреннего сгорания (ДВС) и HV-батареи, так и исключительно на электроэнергии. Этим Toyota Hybrid отличается от других «мягких» гибридных систем, в которых электромотор работает только для повышения производительности бензинового двигателя и исключительно вместе с ним.
Система Toyota Hybrid состоит из:
- бензинового двигателя, который работает по циклу Аткинсона. Самый эффективный ДВС при средних и высоких оборотах, имеет высокий КПД и низкие расход топлива и уровень шума
- управляющего электромотора. Выполняет роль генератора энергии от ДВС для подзарядки высоковольтной батареи, а также роль стартера ДВС;
- тягового электромотора. Предназначен для приведения автомобиля в движение. Также выполняет роль генератора при рекуперации;
- гибридной трансмиссии. Представляет собой планетарную передачу, является делителем мощности и распределяет крутящий момент между тяговым электромотором и ДВС. Гибридная трансмиссия не является вариатором в классическом его понимании, поскольку в ней отсутствуют валы, фрикционы, ремни / цепи;
- инвертора. Преобразует переменный ток (АС) с электродвигателя на постоянный (DC) для подзарядки батареи и наоборот. Также конвертирует напряжение 250В с HV-батареи в 650В для запуска и работы тягового электромотора;
высоковольтной батареи. Имеет высокую плотность энергии. Никель-металл-гидридных батарея обеспечивает стабильное подзарядки / разрядки от 30% до 90% для наиболее эффективной работы батареи, идеально подходит для работы при низких температурах и не требует внешнего подзарядки.
Toyota Hybrid может работать в трех режимах: CHARGE, ECO и POWER. В зависимости от режима движения и манеры управления водителя автомобиль определяет оптимальный режим и соответственно отображает его на индикаторе гибридной силовой установки.
CHARGE — автоматическая зарядка HV-батареи гибридной системы автомобиля происходит при плавном и стабильном торможении за счет рекуперации кинетической энергии. HV-батарея также автоматически заряжается при движении накатом. Накопленный заряд используется электромотором для дальнейшего движения, позволяет экономить на топливе. В режиме ECO гибридный привод используется максимально эффективно. Во время движения в городе в режиме ECO система часто позволяет двигаться исключительно на электротяге. POWER — при ускорении, обгоне или движении на высокой скорости автомобиль использует синергию мощности ДВС и гибридной системы для получения высоких динамических показателей.
Гибридная система в Toyota Camry HybridГибридна система в Toyota Camry Hybrid Description:
Применяя такой эффективный принцип совместного использования бензинового двигателя и электрических компонентов, автомобиль может преодолевать расстояния, и подзарядка не нужна. Благодаря этому гибридный автомобиль Toyota является оптимальным выбором как для передвижения по городу, так и для длительных путешествий. Современный водитель стремится стать владельцем автомобиля, который бы отвечал требованиям нового smart-стиля жизни и повышенным стандартам качества. Самозарядные бензиново-электрические гибриды Toyota удовлетворяют современные критерии эффективности, надежности и прогрессивности.
За дополнительной информацией о Toyota Hybrid, включая ценам на доступный модельный ряд, просим обращаться по телефону: (044) 537-54-54 или по адресу Харьковское шоссе 179.
Принцип работы двигателя внутреннего сгорания
На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.
При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.
Работа двигателя внутреннего сгорания
Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:
- бензиновые моторы;
- двигатели, потребляющие дизельное топливо;
- газовые установки;
- газодизельные устройства;
- роторные варианты.
Принцип работы ДВС этих типов практически одинаковый.
Такты ДВС
В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.
В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.
Такты:
- открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
- происходит герметизация камеры и уменьшение ее объема в такте сжатия
- взрывается смесь и выталкивает поршень, который получает импульс механической энергии
- камера сгорания освобождается от продуктов горения
В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.
Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.
Работа карбюратора
Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.
Устройство карбюратора
Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.
Недостатки карбюраторных систем:
- нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
- превышение лимитов вредных веществ в выхлопных газах;
- низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.
Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.
Работа инжекторных моторов
Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.
Конструкция инжектора
Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.
За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:
- увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
- заметная экономия бензина;
- улучшение экологических характеристик по выбросам.
Но при таких достоинствах есть и недостатки. Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.
Способы впрыска топлива
В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.
Одноточечный вариант впрыска
Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.
Моноточечный вариант подачи топлива
Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.
Прямой впрыск в камеру
Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.
Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.
Интересное по теме:
загрузка…
Вконтакте
Одноклассники
Google+
Что такое газотурбинные двигатели, почему они не прижились в обычных машинах и как их будут использовать в гибридах
На проходящем в Женеве автосалоне сразу два автопроизводителя представили концептуальные машины с гибридными силовыми установками, в которых батареи заряжаются миниатюрными газотурбинными двигателями. Обе машины, к слову, китайские. Это седан Hybrid Kinetic H600 с элегантным дизайном от Pininfarina и суперкар Techrules Ren с футуристичной внешностью работы Джорджетто Джуджаро.
Не надо думать, что в данном техническом направлении трудятся лишь китайцы. Несколько лет назад никто иной как Jaguar показал гибридный концепт C-X75 с теми же микротурбинами. Так что же это за технология?
Газотурбинные двигатели впервые нашли серийное применение в конце Второй мировой войны, но… в авиации, на немецких истребителях Messerschmitt. В последующие 20 лет они фактически полностью вытеснили поршневые ДВС в военной и гражданской авиации, в прямом смысле спустив их с небес на землю. Моторы отечественных Ту и Superjet, европейских Airbus и американских Boeing — все это газотурбинные двигатели.
Их принцип действия прост. В камере сгорания воспламеняется топливо, газы под давлением подаются на лопасти турбины, турбина вращается. На одном валу с турбиной расположены лопасти компрессора, который, будучи приводим в движение от турбины, нагнетает воздух в камеру сгорания.
Газотурбинный двигатель
В авиации на том же валу спереди может располагаться винт (как, например, на самолетах Ан-24), а может более мощный компрессор, который прогоняет воздух через весь двигатель, создавая воздушную струю и тягу для самолета. При этом к валу газотурбинного двигателя можно прицепить не только винт или тяговый компрессор, но и что-то другое. Например, электрогенератор или коробку передач, а через нее соединить такой мотор с колесами автомобиля.
Как видите, все выглядит гораздо проще, чем в поршневом ДВС. Так и есть — проще. Меньше деталей, меньше трущихся частей — это одно из преимуществ газотурбинных двигателей. Второе неоспоримое преимущество — это высокая удельная мощность. Иными словами при равной отдаче газотурбинные моторы в несколько раз легче и компактнее поршневых. Именно этот факт определил их доминирование в авиастроении.
Есть, однако, и существенные недостатки. Именно с ними столкнулись автомобильные конструкторы при попытке установить такой мотор под капот автомобиля. Попыток было много: в США, в Европе и даже в СССР — наши инженеры, в частности, экспериментировали с автобусами.
Выяснилось, что такой мотор потребляет очень много топлива в переходных режимах: на холостом ходу и при наборе скорости. Конструкцию попытались усложнить, применив не один вал, а два: на первом располагался компрессор и малая турбина, которой хватало для вращения компрессора и обеспечения холостого хода. А на втором — основная турбина и отбор мощности на автоматическую коробку передач. На холостом ходу газы на вторую турбину не подавались. А при старте с места открывались заслонки, поток газа направлялся на лопасти тяговой турбины и машина ехала. Такая конструкция, к слову, позволила отказаться от механизма сцепления или гидротрансформатора — поскольку два вала не имели механической связи друг с другом автомобиль не мог заглохнуть.
Techrules Ren
Тем ни менее, расход топлива все равно был выше, чем у поршневых двигателей во всех режимах кроме равномерного движения по трассе. Всплыли и другие недостатки, но о них — позже.
Так или иначе, где-то с 70-х годов XX века от идеи отказались. До тех пор, пока не началась нынешняя гибридно-электрическая революция.
Дело было в далеком 2011 году. Компания Opel тогда пригласила журналистов из России в Нидерланды на тест-драйв подзаряжаемого гибрида Ampera (он же Chevrolet Volt), который в General Motors почему-то называли электрокаром.
После поездки у журналистов, в том числе у меня, накопилось много вопросов относительно устройства машины. Отвечать на них пришлось тогдашнему главе электрического подразделения Opel Кристиану Кунстману. Меня интересовало в частности, почему конструкторы выбрали в качестве ДВС для гибрида наиболее архаичный и неэффективный бензиновый атмосферный мотор объемом 1,4 литра.
Jaguar C-X75
Поскольку концепт Jaguar C-X75 тогда уже представили, я спросил у доктора Кунстмана, что он думает насчет того, чтобы установить под капот Opel Ampera микротурбину вместо поршневого ДВС. Ответ меня удивил.
«Это был бы лучший вариант», — признался инженер. «Однако главная проблема заключается в том, что у нас нет таких двигателей. Для их производства пришлось бы полностью перестроить все заводы. Это огромные инвестиции. Но если бы нам пришлось строить моторный завод с нуля, то мы бы крепко задумались над тем, какие двигатели для гибридов там выпускать — поршневые или газотурбинные».
Действительно, если микротурбина не связана ни с колесами, ни с коробкой передач, а лишь вращает генератор, работая в режиме постоянной тяги — значит все проблемы с высоким расходом топлива в переходных режимах отпадают сами собой? Все так. Вот почему китайцы, у которых в отличие от Opel нет заводов поршневых двигателей, и строить предстоит с нуля, сейчас уцепились за эту идею. Увы, расход топлива — не единственный недостаток.
Первый нерешенный минус газотурбинного двигателя — очень высокая температура газов, попадающих на лопасти турбины. В авиации с этим борются за счет использования дорогих термостойких сплавов, но в массовом автомобилестроении это не применимо из-за высокой стоимости.
Hybrid Kinetic H600
Решить проблему еще в 50-е годы пытались за счет теплообменников, которые нагревают входящий воздух и охлаждают газы, выходящие из камеры сгорания. Это повышает КПД и бережет турбину, но заметно усложняет конструкцию двигателя. И китайцам надо иметь это в виду.
Есть и другие сложности. В частности, газотурбинным моторам надо значительно больше воздуха, чем поршневым двигателям. Причем воздуха чистого. У самолетов нет с этим проблем. А у машин — есть. Необходимые воздушные фильтры достигают такого размера, что преимущество микротурбин компактности полностью сводится на нет.
Вы, возможно, в курсе, что газотурбинные моторы пробовали применять на серийных танках: советском Т80 и американском «Абрамсе». Военных привлекло сочетание мощности и компактности мотора. Увы, простые танкисты жаловались на необходимость постоянно чистить огромные воздушные фильтры. И на колоссальный расход топлива — тоже.
Наконец, последний недостаток — токсичность. Опять же, это следствие повышенного расхода топлива в промежуточных режимах. Создатели концептов Techrules и особенно Hybrid Kinetic H600 уверяют, что их микротурбины экологичнее поршневых ДВС. Но точных данных пока не приводят.
В любом случае, все показанные гибридные автомобили, использующие подобную технологию — пока лишь концепты и их серийное будущее покрыто туманом. Но согласитесь, звучит заманчиво!
Дизайндля естественного увеличения груди: принцип ICE
Фон: Опубликованные авторами исследования помогли определить красоту груди, обозначив ключевые параметры, которые способствуют ее привлекательности. Принцип «ICE» воплощает дизайн в жизнь. Это упрощенная формула для планирования разрезов под грудной складкой в рамках процесса выбора и установки имплантата для воспроизведения соотношения 45:55, ранее описанного как фундаментальное для естественного внешнего вида груди.Формула выглядит следующим образом: размеры имплантата (I) — вместимость груди (C) = требуемый избыток ткани (E). Целью этого исследования было проверить точность принципа ICE для получения устойчивых естественных красивых результатов при увеличении груди.
Методы: Был проведен проспективный анализ 50 женщин, последовательно перенесших первичное увеличение груди с помощью разреза инфрамаммарной складки с использованием анатомических или круглых имплантатов.Принцип ICE применялся во всех случаях для определения выбора имплантата, его установки и положения разреза. Были проанализированы изменения параметров между дооперационными и послеоперационными цифровыми клиническими фотографиями.
Полученные результаты: Среднее отношение верхнего полюса к нижнему полюсу изменилось с 52:48 до операции до 45:55 после операции (p <0,0001). Средний угол наклона соска также был статистически значимо увеличен с 11 градусов до 19 градусов в сторону неба (p ≤ 0.0005). Точность выполнения разреза в складке составила 99,7% справа и 99,6% слева, при стандартной ошибке всего 0,2%. Произошло снижение вариабельности по всем ключевым параметрам.
Заключение: Авторы показали, используя простой принцип ICE для хирургического планирования увеличения груди, что привлекательная натуральная грудь может быть достигнута последовательно и с точностью.
Клинический вопрос / уровень доказательности: Терапевтический, IV.
Дизайн для естественного увеличения груди
Предыдущее отмеченное наградами исследование определяет естественную красоту груди
Понимание того, что представляет собой красота груди, очень важно для тех, кто проводит эстетическую операцию на груди.Авторы, пластические хирурги из Лондона, доктор Патрик Маллуччи и доктор Оливье Александр Бранфорд, ранее определили широко признанные маркеры красоты груди в своей Международной статье года по пластической хирургии 2015 года в официальном медицинском журнале Пластическая и реконструктивная хирургия ®. Американского общества пластических хирургов (ASPS).
Популяционный анализ идеальной груди: морфометрический анализ
Исследователи пластической хирургии спрашивают: «Что такое идеальная грудь?»
Это исследование с участием 1315 участников из всех демографических групп признало, что подавляющее большинство людей предпочитают естественную красоту груди: стремление к чрезмерному и негабаритному «фальшивому» виду, похоже, беспрепятственно проникло в практику за последние десятилетия.Негативные последствия слишком больших грудных имплантатов хорошо известны и являются одной из наиболее частых причин повторной операции.
Возможно, наиболее значительным наблюдением в этом исследовании было распределение верхнего полюса полюса к нижнему полюсу — так называемое соотношение 45:55, при котором нижний полюс всегда был немного полнее, чем верхний полюс, при этом 55 процентов высоты груди было ниже. сосок и этот полный нижний полюс составляют основу естественной красоты груди. Это было фундаментальным наблюдением и противоречит общепринятым представлениям о полноте верхнего полюса как желательной конечной цели увеличения груди: красота находится в нижнем полюсе груди.
Новое исследование применяет принципы на практике
Следующая задача исследователей заключалась в последовательном и воспроизводимом применении этих принципов на практике на благо хирургов и, что более важно, их пациентов. Это основа принципа «ICE», цель которого — добиться естественной красоты груди и отказаться от вульгарности имплантатов большого размера.
Дизайн для естественного увеличения груди: принцип ICE
Принцип «ICE» касается выбора и установки имплантата, включая положение разрезов для воспроизведения оптимальной формы, и может применяться как к анатомическим, так и к круглым имплантатам.Это упрощенная формула для планирования разреза подгрудной складки как части процесса выбора и установки имплантата, чтобы воспроизвести соотношение 45:55, ранее описанное как основополагающее для естественной красоты груди.
Принцип «ICE» — это формула, учитывающая два параметра имплантата — высоту и выступ, а также для мягких тканей, ширину основания и соска — значения складки при растяжении под грудью. Формула: I (размеры имплантата) — C (емкость груди) = E (требуется лишняя ткань, другими словами, насколько необходимо уменьшить разрез).Это было проверено на 50 пациентах, перенесших увеличение груди. Результаты показали, что положение имплантата и размещение разреза были очень точными, что привело к естественному виду груди, которое было ближе к естественному соотношению 45:55. Точное расположение разреза в подгрудной складке имеет решающее значение — это определяющий маркер нижнего полюса груди.
Авторы предполагают, что принцип «ICE» будет способствовать более «здоровому» выбору имплантатов в долгосрочных интересах пациентов.Сочетание этой философии с эстетическими целями приведет к оптимальным результатам. Сегодня женщины все чаще требуют «естественного» образа, чтобы вернуть уверенность и женственность. Авторы полагают, что принцип «ICE» будет использоваться в качестве основы для дизайна в эстетической хирургии груди, представляя интересы пациента не только с эстетической точки зрения, но также с точки зрения долголетия и безопасности пациента.
Взгляды, выраженные в этом блоге, принадлежат автору и не обязательно отражают мнение Американского общества пластических хирургов.
Отдых, лед, сжатие и подъем (RICE)
Обзор темы
Как можно скорее после травмы, такой как растяжение связок колена или лодыжки, вы можете облегчить боль и отек и способствовать заживлению и гибкости с помощью RICE — Rest, Лед, сжатие и возвышение.
- Остальное . Отдохните и защитите травмированный или больной участок. Прекратите, измените или сделайте перерыв в любой деятельности, которая может вызывать у вас боль или болезненные ощущения.
- Лед . Холод уменьшит боль и отек. Сразу же приложите лед или холодный компресс, чтобы предотвратить или минимизировать отек. Прикладывайте лед или холодный компресс на 10-20 минут 3 или более раз в день. Если через 48–72 часа отек исчез, приложите тепло к больному месту. Не прикладывайте лед или тепло непосредственно к коже. Положите полотенце на холодный или теплый компресс, прежде чем прикладывать его к коже.
- Сжатие . Сдавливание или обертывание травмированного или больного участка эластичным бинтом (например, бинтом Ace) поможет уменьшить отек.Не заворачивайте его слишком плотно, так как это может вызвать еще больший отек под пораженным участком. Ослабьте повязку, если она станет слишком тугой. Признаки того, что повязка слишком тугая, включают онемение, покалывание, усиление боли, прохладу или припухлость в области под повязкой. Поговорите со своим врачом, если считаете, что вам нужно использовать обертывание дольше 48–72 часов; может присутствовать более серьезная проблема.
- Высота . Прикладывая лед, а также когда вы сидите или лежите, приподнимайте травмированный или больной участок на подушках.Старайтесь держать область на уровне сердца или выше, чтобы уменьшить отек.
Нестероидные противовоспалительные препараты (НПВП) может также помочь уменьшить боль и отек. К ним относятся:
- Ибупрофен, например Адвил или Мотрин.
- Напроксен, например Алеве или Напросин.
Будьте осторожны с лекарствами. Прочтите и следуйте всем инструкциям на этикетке.
Когда болезненность и болезненность утихнут, медленно начинайте упражнения на растяжку и укрепляющие упражнения, а затем постепенно увеличивайте их количество.
Кредиты
Текущий по состоянию на: 16 ноября 2020 г.
Автор: Healthwise Staff
Медицинский обзор:
Уильям Х. Блахд младший, доктор медицины, FACEP — неотложная медицина
Адам Хусни, доктор медицины, семейная медицина
Э. Грегори Томпсон, доктор медицины, внутренняя медицина
Кэтлин Ромито, доктор медицины, семейная медицина
Джоан Ригг, PT, OCS — Физиотерапия
Действует по состоянию на 16 ноября 2020 г.
Автор: Здоровый персонал
Медицинский обзор: Уильям Х.Блахд-младший, доктор медицины, FACEP — неотложная медицина и Адам Хусни, доктор медицины — семейная медицина и Э. Грегори Томпсон, врач внутренних болезней, Кэтлин Ромито, доктор медицины, семейная медицина и Джоан Ригг, PT, OCS — физиотерапия
Метод RICE для лечения травм (отдых, Лед, сжатие, подъем)
Если вы когда-либо повредили лодыжку или имели другой тип растяжения или напряжения, скорее всего, ваш врач рекомендовал отдых, лед, сжатие и подъем (RICE) в качестве одного из ваших первых методов лечения. Метод RICE — это простая техника ухода за собой, которая помогает уменьшить отек, облегчить боль и ускорить заживление.
Легкие травмы можно лечить методом RICE в домашних условиях. Вы можете попробовать это, если у вас болит колено, лодыжка или запястье после занятий спортом. Если боль или отек усиливаются или не проходят, обратитесь к врачу.
Метод RICE включает следующие четыре этапа:
Шаг 1. Отдых
Боль — это сигнал вашего тела о том, что что-то не так. Как только вы получите травму, прекратите занятия и как можно больше отдыхайте в течение первых двух дней. Не пытайтесь следовать философии «нет боли — нет выгоды».Такие действия при определенных травмах, например, при растяжении связок голеностопа от средней до тяжелой, могут усугубить повреждение и замедлить ваше выздоровление. Врачи говорят, что вам не следует нагружать травмированный участок в течение 24-48 часов. Отдых также помогает предотвратить дальнейшие синяки.
Шаг 2: Лед
Лед — проверенный на практике инструмент для уменьшения боли и отеков. Прикладывайте пакет со льдом (накрытый легким впитывающим полотенцем, чтобы предотвратить обморожение) на 15-20 минут каждые два-три часа в течение первых 24-48 часов после травмы.Нет пакета со льдом? Подойдет пакет замороженного гороха или кукурузы.
Шаг 3: Сжатие
Это означает обертывание травмированного участка для предотвращения отека. Оберните пораженный участок эластичной медицинской повязкой (например, повязкой ACE). Вы хотите, чтобы она была плотно прилегающей, но не слишком тугой — если она будет слишком тугой, кровоток прервется. Если кожа под повязкой посинела, почувствовала холод, онемение или покалывание, ослабьте повязку. Если эти симптомы не исчезнут сразу, немедленно обратитесь за медицинской помощью.
Шаг 4: Подъем
Это означает поднятие больной части тела над уровнем сердца. Это уменьшает боль, пульсацию и отек. Это не так сложно, как вы думаете. Например, если у вас растяжение связок голеностопного сустава, вы можете подпереть ногу подушками, сидя на диване. CDC рекомендует по возможности держать травмированный участок приподнятым, даже если вы его не обледеневаете.
Лечение с использованием риса
Ваш врач может посоветовать использовать нестероидные противовоспалительные препараты (например, ибупрофен или напроксен) вместе с лечением RICE.Они доступны без рецепта и по рецепту. Перед приемом этих лекарств проконсультируйтесь с врачом об истории вашего здоровья.
Что такое скоринговая модель ICE?
Модель оценки ICE — это относительно быстрый способ присвоить численное значение различным потенциальным проектам или идеям для определения их приоритетности на основе их относительной ценности с использованием трех параметров: влияние, уверенность и легкость.
Что такое скоринговая модель ICE?
ICE Scoring — одна из многих стратегий приоритизации, доступных для выбора правильных / следующих функций для продукта.Модель подсчета баллов ICE помогает приоритизировать функции и идеи путем умножения трех числовых значений, присвоенных каждому проекту: «Воздействие», «Уверенность» и «Легкость». Каждому оцениваемому элементу присваивается рейтинг от одного до десяти для каждого из трех значений, эти три числа умножаются, и результатом является ICE Score этого элемента.
Воздействие смотрит на то, насколько проект сдвинет стрелку на ключевой целевой метрике. Уверенность — это уверенность в том, что проект действительно окажет прогнозируемое воздействие.Легкость оценивает уровень усилий для завершения проекта.
Например, у предмета 1 влияние семи, уверенности шесть и легкости пять, а у предмета два — девять, уверенность семь и легкость два. Баллы ICE будут равны 210 для элемента 1 и 126.
Эти баллы затем можно сравнить с беглым взглядом, и элемент с наивысшим баллом получит верхнюю позицию в иерархии приоритетов (в нашем примере это будет элемент 1). Относительно низкое значение Легкости Второго предмета привело к снижению показателя ICE этого предмета, несмотря на тот факт, что он имел бы большее влияние при более высоком уровне уверенности, чем Первый предмет.Это связано с тем, что все три элемента уравнения обрабатываются одинаково, в отличие от модели взвешенной оценки.
Почему оценка ICE полезна и кто ее создал?
Существует множество различных моделей подсчета очков, но ICE в первую очередь выделяется из общей массы тем, что он проще и легче, чем большинство альтернатив. Поскольку ICE требует только три входных данных (влияние, уверенность и легкость) для каждой рассматриваемой идеи, команды могут быстро рассчитать балл ICE для всего и принять соответствующие решения по расстановке приоритетов.
Это даже более простой расчет, чем модель RICE, которая добавляет охват в качестве четвертого элемента в уравнении (в нем также заменяется простота на усилия, поэтому для формулы используется охват * влияние * уверенность / усилия).
Тот факт, что ICE настолько быстр, в немалой степени благодаря человеку, который его создал, Шону Эллису. Эллис наиболее известен тем, что ввел термин «взлом роста» и помог компаниям быстро наращивать эксперименты. Предполагается, что эксперименты по взлому роста должны быть быстрыми и итеративными, поэтому логично, что оценочная модель, используемая для определения приоритетности экспериментов, также будет быстрой и простой в использовании.
Оценка ICE в основном является «достаточно хорошей» оценкой и гораздо менее строгой, чем другие модели оценки, на которые обычно полагаются продуктовые команды. Также существует высокая степень вариативности ICE Score любого предмета в зависимости от того, кто выставляет оценку. Поскольку это почти полностью субъективно, два человека могут приписывать очень разные значения атрибутам разных идей и в итоге прийти к противоположным мнениям.
Тот факт, что низкая оценка легкости может так легко повлиять на оценку ICE элемента, также подчеркивает «экспериментальное» происхождение модели; в стране роста хакерства «быстро терпеть неудачу» чрезвычайно ценно из-за извлеченных уроков, и команды обычно не хотят тратить кучу времени на какой-либо отдельный проект.Однако некоторые вещи, которые окажут большее влияние, требуют больших ресурсов и времени. Полагаясь исключительно на баллы ICE, можно было бы заставить команду продолжать стремиться к «низко висящим плодам» вместо того, чтобы делать более крупные инвестиции в проект, который мог бы иметь гораздо большее значение в долгосрочной перспективе.
ICE Scoring лучше всего использовать для относительной приоритезации; если вы рассматриваете несколько претендентов, это отличный способ выбрать победителя. Точно так же, если вы примените его ко всему бэклогу, это поможет выделить верхний уровень вариантов для цели, на которую нацелена в данный момент.
Главный недостаток ICE Scoring состоит в том, что относительно небольшое количество людей в организации будет иметь достаточно информации, чтобы точно предсказать все три элемента уравнения. Воздействие и уверенность являются бизнес-соображениями, а легкость относится к технической сфере.
Участие в разработке продукта для обеспечения легкости ранжирования для каждого элемента, рассматриваемого в процессе выставления оценок, является одним из способов ограничить субъективность теми областями, в которых участники оценки должны обладать более обширными знаниями, и избавляет лиц, принимающих решения, от работы по оценке разработки наугад. сроки.Однако быстрая и дешевая природа ICE Scoring может противоречить просьбе разработчиков приложить усилия для десятков или сотен возможных проектов.
Также важно иметь последовательное определение шкалы от 1 до 10 для ранжирования каждого из элементов ICE. Если нет согласия о том, что означает степень уверенности «7», это может привести к очень непоследовательным оценкам со стороны различных членов команды.
Хотя ICE Scoring определенно имеет свои достоинства, вероятно, это не лучший метод определения приоритетов для всей дорожной карты продукта, но он лучше подходит для предварительной работы или использования конкретной возможности.
Заключение
Скорость и простота — главные преимущества ICE Scoring, которые могут помочь продуктовым группам сузить круг вопросов. Однако его сильная сторона также является одной из его слабых сторон, поскольку он оценивает влияние элемента только на единственную цель — в организации с несколькими одновременными целями он отстает от возможностей других скоринговых моделей.
Несмотря на отсутствие нюансов и сложности, ICE Scoring может предложить отличный способ урезать вещи и предоставить некоторые относительные точки сравнения для лиц, принимающих решения.И когда вы пытаетесь достичь консенсуса, иногда исключение чего-либо так же полезно, как и выяснение, какой из пунктов является лучшим из лучших.
Чтобы узнать больше о приоритезации, просмотрите следующий веб-семинар.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Что такое изостатическая регулировка ледников?
Последний ледниковый период произошел всего 16 000 лет назад, когда огромные ледяные покровы покрыли большую часть северного полушария Земли. Хотя лед давно растаял, земля, некогда находившаяся под льдом и вокруг него, все еще поднимается и опускается в ответ на бремя ледникового периода.Это продолжающееся движение земли называется ледниковой изостатической регулировкой.
Земля всегда находится в движении, постоянно, хотя и медленно, но меняется. Температуры повышаются и понижаются циклически на протяжении миллионов лет. Последний ледниковый период произошел всего 16000 лет назад, когда огромные ледяные покровы толщиной в две мили покрыли большую часть северного полушария Земли. Хотя лед давно растаял, земля, некогда находившаяся под льдом и вокруг него, все еще поднимается и опускается в ответ на бремя ледникового периода.
Это продолжающееся движение земли называется ледниковой изостатической регулировкой. Вот как это работает: представьте, что вы лежите на мягком матрасе, а затем встаете с того же места. Вы видите углубление в матрасе на том месте, где раньше находилось ваше тело, и вздутую область вокруг углубления, где матрас поднимался. Когда вы встаете, матрасу требуется немного времени, прежде чем он вернется в исходную форму.
Даже самые прочные материалы (включая земную кору) двигаются или деформируются при приложении достаточного давления.Итак, когда лед мегатонны оседал на частях Земли в течение нескольких тысяч лет, лед давил на землю под ним, и земля поднималась за периметр льда — точно так же, как матрац, когда вы ложились, а затем становились прочь от этого.
Это то, что произошло на больших участках Северного полушария во время последнего ледникового периода, когда лед покрыл Средний Запад и Северо-Восток Соединенных Штатов, а также большую часть Канады. Несмотря на то, что лед отступил давным-давно, Северная Америка все еще поднимается там, где его толкали массивные слои льда.Восточное побережье США и районы Великих озер, которые когда-то находились на выступающих краях или выступах этих древних ледяных слоев, все еще медленно опускаются из-за обрушения переднего выступа.
Обрушение Форбалджа — одна из основных причин наземного движения в Соединенных Штатах. Многие места на востоке США тонули тысячи лет и будут продолжать тонуть еще тысячи. Фактически, по оценкам, земля вокруг Чесапикского залива утонет на полфута в течение следующих 100 лет из-за обрушения переднего выступа.К другим важным факторам движения грунта в США относятся землетрясения и осадки. Проседание — это когда земля опускается либо по естественным причинам, либо когда ресурсы, такие как вода, газ и нефть, выкачиваются из земли.