ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Порядок работы цилиндров ne 6 t. Шестицилиндровый V-образный двигатель

Порядок работы двигателя с 4, 6, 8 цилиндрами — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

Расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120°).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90°).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Всегда придерживался мнения, что если ты ездишь на машине, то должен хотя бы отдаленно представлять как эта штуковина работает. Хотя бы общие принципы. В этом нет минусов, зато имеется куча плюсов: по шуму в подвеске уже примерно можно определить, что именно «болит», можно самостоятельно провести мелкий ремонт, при этом не поломав еще что-то, пока чинишь поломку, в конце концов вас будет сложнее «развести» ушлому автомеханику.

Самая главная часть автомобиля — ДВС. Двигатель внутреннего сгорания. Есть огромное множество видов этих самых двигателей, начиная от бензин/дизель/газ/неведомая субстанция и заканчивая минимальными отличиями в конструкции «сердца автомобиля».
Самый большой класс — это бензиновые и дизельные моторы.

Бывают чаще всего четырех, шести, восьми, и двеннадцатицилиндровыми.
Коротко пробежимся по основным принципам работы и понятиям.
Цилиндр — такая штука, снизу в которой есть поршень (как в шприцах), а сверху — свеча зажигания. В цилиндр подается топливо с воздухом, свеча дает искру, смесь взрывается, поршень пошел вниз, поднимая по средствам коленвала другой поршень в другом цилиндре.


Распредвал — выглядит как буд-то кто-то решил пожарить шашлык из вареных яиц. Нужен для регулировки впуска-выпуска разных смесей в цилиндры.
Коленвал — железяка, которая соединена с поршнями в цилиндрах, выглядит так, как буд-то кто-то идет на рекорд в игре «змейка» на старой Нокии. Выглядит так потому, что поршни имеют одинаковый размер, но должны каждый находится на своей высоте в цилиндрах.


Коленвал по средствам магии превращает взрывы в цилиндрах в крутящий момент, а потом в дымящуюся резину.

Цилиндры никогда не работают одновременно. И не работают по очереди (если речь не идет о двухцилиндровом моторчике).
Порядок работы цилиндров зависит, от:
— расположения цилиндров в ДВС: однорядно, V-образное, W-образное.
— количество цилиндров
— конструкция распредвала
— тип и конструкция коленвала.

Итак, рабочий цикл двигателя состоит из газораспределительных фаз. Вся нагрузка на коленвал должна быть равномерной, чтобы этот самый вал не сломать ненароком и чтобы двигатель работал равномерно.
Ключевой момент — последовательно работающие цилиндры никогда не должны находится рядом. Главным цилиндром всегда является цилиндр #1.


У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться.
Четыреста второй двигатель ЗМЗ работает так: 1-2-4-3, а четыреста шестой: 1-3-4-2.

Полный рабочий цикл четырехтактного двигателя проходит в два полных оборота коленвала.

Колена коленвала расположены под определенными углами, чтобы поршням было проще вращать. Угол зависит от количества цилиндров и тактности двигателя.
У стандартного однорядного 4 цилиндрового двигателя чередование тактов происходит через 180 градусов вращения вала, у шестицилиндрового — 120 градусов, порядок работы выглядит как 1-5-3-6-2-4.
Восьмицилиндровая «вэшка» будет отрабатывать очередность 1-5-4-8-6-3-7-2 (интервал — 90 градусов)
То есть если в первом цилиндре происходит рабочий цикл, то через 90 градусов поворота коленвала, рабочий цикл будет уже в 5 цилиндре. Для полного оборота коленвала нужно (360/90) 4 рабочих хода.
Мощный W12 отрабатывает другую схему: 1-3-5-2-4-6 (левый ряд), 7-9-11-8-10-12 — правый ряд.
Естественно, чем больше цилиндров, тем работа мотора плавнее и мягче.

Если так подумать, то зачем нам, обычным автолюбителям знать порядок, в котором работают цилиндры автомобиля? Ну, работают исправно и, слава богу. Да, конечно, это отрицать сложно и вполне бессмысленно, но только до того момента, пока Вам не захочется своими руками настроить зажигание или заняться регулировкой клапанных зазоров. И вот тогда эти знания о порядке работы автомобильных цилиндров будут абсолютно не лишними. Захотите Вы присоединить провода высокого напряжения к свечам или трубопроводы с высоким давлением у дизеля. А вдруг Вы решите перебрать головку блока цилиндров? Согласитесь с тем, что немного глупо будет ехать на СТО с потребностью правильной установки высоковольтных проводов. Да и как Вы это сделаете, когда двигатель то троит?

Порядок работы цилиндров, что это значит?

Последовательность, с которой чередуются одноимённые такты в различных цилиндрах именуется порядком работы цилиндров. От каких же факторов зависит данный параметр? От чего зависит порядок работы цилиндров? Есть несколько таковых, и мы их сейчас перечислим:

— расположение цилиндров в двигателе: рядное или V-образное;

Количество цилиндров;

Конструкция распределительного вала;

Конструктивные особенности и тип коленчатого вала.

Фазы цилиндров

Рабочий цикл автомобильного двигателя разделяется на газораспределительные фазы. Их последовательность обязана равномерно распределяться на коленчатый вал по силе их воздействия. Только в таком случае двигатель будет работать равномерно. Необходимым и строгим условием является нахождение цилиндров, работающих последовательно, относительно друг друга. Они просто не должны располагаться рядом. Именно с этой целью производители двигателей и разрабатывают схемы, в которых указан порядок работы цилиндров мотора. Но все схемы объединяет единый фактор: порядок работы всех цилиндров начинается главного цилиндра под номером один.

Разные двигатели – разный порядок работы

Однотипные двигатели с разными модификациями могут иметь различия в работе цилиндров. Возьмём двигатель ЗМЗ для примера. Порядок работы 402-го двигателя таков — 1-2-4-3, хотя у 406-го цилиндры работают совершенно в другом порядке – 1-3-4-2.

Если погрузиться глубже теорию работы двигателя внутреннего сгорания, но не сильно, дабы не запутаться, то мы сможем увидеть следующее: четырёхтактный двигатель проходит свой полный рабочий цикл за два оборота коленчатого вала. Если рассматривать в градусах, то это равняется 720 градусам. У двухтактного двигателя – 3600 градусов. Чтобы коленчатый вал постоянно находился под поршневым усилием, его колена смещают под определённым углом. Градус этого угла прямо зависит от тактности двигателя и числа цилиндров. У рядного четырёхцилиндрового двигателя такты чередуются через каждые 1800 градусов.

Порядок работы же такого мотора на автомобилях ВАЗ таков: 1-3-4-2, на автомобилях ГАЗ 1-2-4-3. Шестицилиндровый рядный двигатель работает по такому порядку: 1-5-3-6-2-4, чередование тактов составляет 1200 градусов. Восьмицилиндровый V-образный двигатель работает в таком режиме: 1-5-4-8-6-3-7-2, воспламенения происходят с интервалом в 900 градусов. Интересен порядок работы двенадцатицилиндрового W-образного двигателя: 1-3-5-2-4-6 – работа левых головок блока цилиндров, а правых: 7-9-11-8-10-12

Для того, чтобы Вы не путались со всеми этими цифровыми порядками, давайте рассмотри один пример. Возьмём восьмицилиндровый двигатель грузового автомобиля ЗИЛ со следующим порядком работы его цилиндров: 1-5-4-2-6-3-7-8. Расположение кривошипов находится под углом в 900 градусов. Возьмём первый цилиндр, во время его рабочего цикла происходит 90 градусов оборота коленвала, затем цикл переходит на пятый цилиндр и так последовательно в следующем порядке 4-2-6-3-7-8. В данном случае один оборот коленчатого вала приравнивается четырём рабочим циклам. Вывод из всего этого очевиден – двигатель с восьмью цилиндрами работает гораздо равномернее и плавнее шестицилиндрового.

Да, согласимся, что настолько глубокие познания в работе цилиндров мотора Вашей машины, скорее всего, не пригодятся. Но хотя бы обобщённое представление об этом Вы должны иметь. А если Вас настигнет необходимость произвести ремонт головки блока цилиндров, тогда эти знания будут уж точно не лишними. Друзья, желаем Вам успехов в изучении этих премудростей!

Порядок работы цилиндров в разных двигателях отличается, даже с одним и тем же количеством цилиндров порядок работы может быть разным. Рассмотрим, в каком порядке работают серийные двигатели внутреннего сгорания различного расположения цилиндров и их конструктивные особенности. Для удобства описания порядка работы цилиндров, отсчёт будет производиться от первого цилиндра, первый цилиндр- это тот который спереди двигателя, последний, соответственно, возле коробки передач.

3-х цилиндровый

В таких двигателях всего 3 цилиндра и порядок работы самый простой: 1-2-3 . Запомнить легко, и работает быстро.
Схема расположения кривошипов на коленвале выполнена в виде звёздочки, они расположены под углом 120° друг к другу. Вполне возможно применить схему 1-3-2, но производители не стали этого делать. Так что единственной последовательностью работы трёхцилиндрового двигателя является последовательность 1-2-3. Для уравновешивания моментов от сил инерции на таких двигателях применяется противовес.

4-х цилиндровый

Существуют как рядные, так и оппозитные четырёх цилиндровые двигатели, коленвалы у них выполнены по одной и той же схеме, а порядок работы цилиндров разный. Это связано с тем, что угол между парами шатунных шеек равен 180 градусов, то есть, 1 и 4 шейки находятся на противоположных сторонах со 2 и 3 шейками.

1 и 4 шейки с одной стороны, 3 и 4- на противоположной.

В рядном двигатели применяется порядок работы цилиндров 1-3-4-2 — это самая распространённая схема работы, так работают практически все машины, от Жигулей до Мерседеса, бензиновые и дизельные. В ней последовательно работают цилиндры с расположенные на противоположных сторонах шейках коленвала. В данной схеме можно применить последовательность 1-2-4-3, то есть поменять местами цилиндры, шейки которых расположены на одной стороне. Используется в 402 двигателе. Но такая схема встречается крайне редко, в них будет другая последовательность в работе распредвала.

Оппозитный 4-х цилиндровый двигатель имеет другую последовательность: 1-4-2-3 либо 1-3-2-4. Дело в том, что поршни достигают ВМТ одновременно, как с одной стороны, так и с другой. Такие двигатели чаще всего встречаются на Субару (у них почти все оппозитники, кроме некоторых малолитражек для внутреннего рынка).

5-ти цилиндровый

Пятицилиндровые двигатели нередко применялись на Мерседесах или АУДИ, сложность такого коленвала заключается в том, что все шатунные шейки не имеют плоскости симметрии, и развёрнуты относительно друг друга на 72° (360/5=72).

Порядок работы цилиндров 5-ти цилиндрового двигателя: 1-2-4-5-3 ,

6-ти цилиндровый

По расположению цилиндров 6-ти цилиндровые двигатели бывают рядными, V-образными и оппозитными. У 6-ти цилиндрового мотора есть много различных схем последовательности работы цилиндров, они зависят от типа блока и применяемого в нём коленвала.

Рядный

Традиционно применяется такой компанией, как БМВ и некоторыми другими компаниями. Кривошипы расположены под углом 120° друг к другу.

Порядок работы может быть трёх видов:

1-5-3-6-2-4
1-4-2-6-3-5
1-3-5-6-4-2

V-образный

Угол между цилиндрами в таких двигателях составляет 75 либо 90 градусов, а угол между кривошипами составляет 30 и 60 градусов.

Последовательность работы цилиндров 6-ти цилиндрового V-образного двигателя может быть следующей:

1-2-3-4-5-6
1-6-5-2-3-4

Оппозитный

6-ти цилиндровые оппозитники встречаются на автомобилях марки Subaru, это традиционная компоновка двигателей для японцев. Угол между кривошипами коленвала составляет 60 градусов.

Последовательность работы двигателя: 1-4-5-2-3-6.

8-ти цилиндровый

В 8-ми цилиндровых двигателях кривошипы установлены под углом 90 градусов друг к другу, так уак в двигателе 4 такта, то на каждый такт работает по 2 цилиндра одновременно, что сказывается на эластичности двигателя. 12-ти цилиндровый работает ещё мягче.

В таких двигателях, как правило, наиболее популярной используется одна и та же последовательность работы цилиндров: 1-5-6-3-4-2-7-8 .

Но Феррари использовала другую схему- 1-5-3-7-4-8-2-6

В данном сегменте каждый производитель использовал ему только известную последовательность.

10-ти цилиндровый

10 цилиндровый не особо популярный мотор, редко производители использовали такое количество цилиндров. Тут возможны несколько вариантов последовательностей воспламенения.

1-10-9-4-3-6-5-8-7-2 — используется на Dodge Viper V10

1-6-5-10-2-7-3-8-4-9 — BMW заряженных версий

12-ти цилиндровый

На самых заряженных машинах ставили 12-ти цилиндровые двигатели, к примеру, Феррари, Ламборгини или более распространённые у нас Фольцвагеновские двигатели W12.

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ?

3D работа двигателя внутреннего сгорания, видео:

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

  • расположение цилиндров двигателя: однорядное или V-образное;
  • количество цилиндров;
  • конструкция распредвала;
  • тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 360 0 .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

  • Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180 0 , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).
  • Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120 0).
  • Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90 0).
  • Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90 0 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

«Порядок работы цилиндров типичных двигателей внутреннего сгорания»

Многие автомобилисты «со стажем» считают, что порядок работы цилиндров у всех типичных автомобильных двигателей одинаков.

Рассмотрим этот вопрос подробнее, сравнив порядок работы 4, 6 и 8 цилиндровых однотипных двигателей внутреннего сгорания разных моделей автомобилей.

Для начала вспомним теоретические основы, которые определяют порядок работы цилиндров двигателей внутреннего сгорания.

Порядок работы цилиндров зависит от чередования воспламенения рабочей смеси топлива в цилиндрах и угла чередования тактов.

Рабочий цикл 4-тактного рядного, 4-цилиндрового двигателя проходит за два полных оборота коленчатого вала, т.е. за 720 градусов, а чередование тактов происходит через 180 градусов.

Рабочий цикл 4-тактного, 6-цилиндрового, V-образного двигателя проходит также за два полных оборота коленчатого вала, 720 градусов, а чередование тактов происходит уже через 120 градусов.

Рабочий цикл 4-тактного рядного, 8-цилиндрового, V-образного двигателя имеет чередование тактов через 90 градусов.

Рассмотрим порядок работы 4-цилиндровых рядных двигателей на базе двигателей Заволжского Моторного Завода и двигателей автомобилей Ауди.

Порядок работы цилиндров двигателя ЗМЗ-402 – 1-2-4-3.

Порядок работы цилиндров двигателя ЗМЗ-406 – 1-3-4-2.

Порядок работы цилиндров двигателя ЗМЗ-21 – 1-2-4-3.

Порядок работы цилиндров двигателей автомобиля Ауди 80 B3 – 1-3-4-2.

  • Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 1800, ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

  • Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 1200).

  • Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 900).

  • Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Как видно в данных двигателях порядок работы цилиндров разделён на 2 типа: 1-3-4-2 и 1-2-4-3.

Порядок работы цилиндров 6-цилиндрового V-образного двигателя также имеет различные типы работы.

Порядок работы цилиндров двигателя, установленного на автомобиль Пежо 306 – 1-6-3-5-2-4.

Порядок работы цилиндров двигателя ЯМЗ-236, который применяется на автомобилях семейства Камаз, ЗИЛ, тракторах ДТ – 1-4-2-5-3-6.

Порядок работы цилиндров рядного 6-цилиндрового двигателя так же отличается от работы двигателей, описанных выше и имеет следующий порядок воспламенения смеси – 1-5-3-6-2-4.

Для двигателей MIVEC, 6G72 которые устанавливаются на автомобилях марки Митсубиси и Тойота порядок работы, цилиндров 1-2-3-4-5-6.

Следует отметить, что 6-цилиндровые V-образные двигатели являются не сбалансированными, т.е. для уменьшения вибрации при работе двигателя необходимо применять специальные устройства и механизмы, которые соответственно будут уравновешивать моменты сил инерции поршней и верхних частей шатунов, например противовесы или маховики и шкивы с дисбалансом.

Из этого следует, что и в данных двигателях порядок работы цилиндров не одинаков.

8-цилиндровые V-образные двигатели автомобилей ЗИЛ, КАМАЗ, ГАЗ, автобусов ПАЗ имеют следующее чередование тактов – 1-5-4-2-6-3-7-8.

На двигателях М60, которые применяются на автомобилях марки БМВ порядок работы цилиндров – 1-5-4-8-6-3-7-2.

8-цилиндровые, V-образные двигатели, применяемые на автомобилях Форд Экспедишн, Линкольн-Навигатор, F-150 имеют порядок работы 1-3-7-2-6-5-4-8.

Это опять говорит о том, что и в 8-цилиндровых двигателях разных нет единого порядка работы цилиндров.

В заключении хочется отметить, что при производстве работ по ремонту двигателей, которые ранее не ремонтировались на предприятиях или станциях по обслуживанию автомобилей, с целью исключения проблем, связанных с неправильной сборкой, необходимо предварительно обязательно уточнять порядок работы цилиндров в соответствии с технической документацией, которая имеется на ремонтируемый двигатель, ведь несоблюдение порядка сборки может повлечь новые поломки двигателя.

Январь 2015 г.

Cписок литературы

1. Кузнецов А.С. Техническое обслуживание и ремонт автомобиля. Часть 1: Учебное пособие для начального профессионального образования. — М.: Издательский центр «Академия», 2012.

2. Туревский И.С. Техническое обслуживание автомобилей. Книга 1. Техническое обслуживание и текущий ремонт автомобилей: Учебное пособие. –

М.: ФОРУМ: ИНФРА-М, 2005.

3. Энциклопедия автомобилиста. – М.: ООО «ИД «РАВНОВЕСИЕ», 2004.

Шестицилиндровый V-образный двигатель. Как работают цилиндры двигателя Порядок работы 4 цилиндрового двигателя 1.6 митсубиси

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720: 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторных двигателей 1-3-4-2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1- 5-4-2-6-3-7-8, а шестицилиндровых 1-4-2-5-3-6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание-расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

    силы P давления газов на поршень

    силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

    реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

    сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

    центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Иллюстрация процесса:

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:


Коленвал:


Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

  • рядная;
  • оппозитная.

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:


Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.


Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Блок цилиндров:

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:


ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:


Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.

Всегда придерживался мнения, что если ты ездишь на машине, то должен хотя бы отдаленно представлять как эта штуковина работает. Хотя бы общие принципы. В этом нет минусов, зато имеется куча плюсов: по шуму в подвеске уже примерно можно определить, что именно «болит», можно самостоятельно провести мелкий ремонт, при этом не поломав еще что-то, пока чинишь поломку, в конце концов вас будет сложнее «развести» ушлому автомеханику.

Самая главная часть автомобиля — ДВС. Двигатель внутреннего сгорания. Есть огромное множество видов этих самых двигателей, начиная от бензин/дизель/газ/неведомая субстанция и заканчивая минимальными отличиями в конструкции «сердца автомобиля».
Самый большой класс — это бензиновые и дизельные моторы.
Бывают чаще всего четырех, шести, восьми, и двеннадцатицилиндровыми.
Коротко пробежимся по основным принципам работы и понятиям.
Цилиндр — такая штука, снизу в которой есть поршень (как в шприцах), а сверху — свеча зажигания. В цилиндр подается топливо с воздухом, свеча дает искру, смесь взрывается, поршень пошел вниз, поднимая по средствам коленвала другой поршень в другом цилиндре.


Распредвал — выглядит как буд-то кто-то решил пожарить шашлык из вареных яиц. Нужен для регулировки впуска-выпуска разных смесей в цилиндры.
Коленвал — железяка, которая соединена с поршнями в цилиндрах, выглядит так, как буд-то кто-то идет на рекорд в игре «змейка» на старой Нокии. Выглядит так потому, что поршни имеют одинаковый размер, но должны каждый находится на своей высоте в цилиндрах.


Коленвал по средствам магии превращает взрывы в цилиндрах в крутящий момент, а потом в дымящуюся резину.
Цилиндры никогда не работают одновременно. И не работают по очереди (если речь не идет о двухцилиндровом моторчике).
Порядок работы цилиндров зависит, от:
— расположения цилиндров в ДВС: однорядно, V-образное, W-образное.
— количество цилиндров
— конструкция распредвала
— тип и конструкция коленвала.

Итак, рабочий цикл двигателя состоит из газораспределительных фаз. Вся нагрузка на коленвал должна быть равномерной, чтобы этот самый вал не сломать ненароком и чтобы двигатель работал равномерно.
Ключевой момент — последовательно работающие цилиндры никогда не должны находится рядом. Главным цилиндром всегда является цилиндр #1.


У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться.
Четыреста второй двигатель ЗМЗ работает так: 1-2-4-3, а четыреста шестой: 1-3-4-2.

Полный рабочий цикл четырехтактного двигателя проходит в два полных оборота коленвала.

Колена коленвала расположены под определенными углами, чтобы поршням было проще вращать. Угол зависит от количества цилиндров и тактности двигателя.
У стандартного однорядного 4 цилиндрового двигателя чередование тактов происходит через 180 градусов вращения вала, у шестицилиндрового — 120 градусов, порядок работы выглядит как 1-5-3-6-2-4.
Восьмицилиндровая «вэшка» будет отрабатывать очередность 1-5-4-8-6-3-7-2 (интервал — 90 градусов)
То есть если в первом цилиндре происходит рабочий цикл, то через 90 градусов поворота коленвала, рабочий цикл будет уже в 5 цилиндре. Для полного оборота коленвала нужно (360/90) 4 рабочих хода.
Мощный W12 отрабатывает другую схему: 1-3-5-2-4-6 (левый ряд), 7-9-11-8-10-12 — правый ряд.
Естественно, чем больше цилиндров, тем работа мотора плавнее и мягче.

Порядок работы 4 цилиндрового двигателя обозначается как Х―Х―Х―Х где Х ― номера цилиндров. Это обозначение показывает последовательность чередования тактов цикла в цилиндрах.

Порядок работы цилиндров зависит от углов между кривошипами коленчатого вала, от конструкции механизма газораспределения, и системы зажигания бензинового силового агрегата. У дизельного место системы зажигания в этой последовательности занимает ТНВД.

Для управления автомобилем это знать, конечно, необязательно.

Порядок работы цилиндров необходимо знать, регулируя зазоры клапанов, меняя ремень ГРМ либо выставляя зажигание. Да и при замене проводов высокого напряжения понятие порядка рабочих тактов не будет лишним.

В зависимости от числа тактов, составляющих рабочей цикл, ДВС делятся на двухтактные и четырехтактные. Двухтактные двигатели не ставят на современные автомобили, они используются лишь на мотоциклах и в качестве пускателей тракторных силовых агрегатов. Цикл четырехтактного бензинового двигателя внутреннего сгорания включает в себя следующие такты:

Цикл дизеля отличается тем что при впуске всасывается только воздух. Топливо же впрыскивается под давлением после сжатия воздуха, а воспламенение происходит от контакта дизеля с разогретым от сжатия воздухом.

Нумерация

Нумерация цилиндров рядного двигателя начинается с наиболее удаленного от коробки перемены передач. Иными словами, со стороны либо цепи.

Очередность работы

У коленвала рядного 4-х цилиндрового ДВС кривошипы первого и последнего цилиндра располагаются под углом 180° друг к другу. И под углом 90° к кривошипам средних цилиндров. Поэтому для обеспечения оптимального угла приложения движущих сил к кривошипам такого коленвала, порядок работы цилиндров бывает 1―3―4―2, как у вазовских и москвичевских ДВС либо 1―2―4―3, как у газовских моторов.

Чередование тактов 1-3-4-2

Угадать порядок работы цилиндров двигателя по внешнем признакам нельзя. Об этом следует читать в мануалах производителя. Порядок работы цилиндров двигателя проще всего узнать в инструкции по ремонту вашей машины.

Кривошипно-шатунный механизм

  • Маховик поддерживает инерцию коленвала для вывода поршней из верхних или нижних крайних положений, а также для более равномерного его вращения.
  • Коленчатый вал преобразует линейное движение поршней во вращение и передает его через механизм сцепления на первичный вал КПП.
  • Шатун передает усилие, прикладываемое к поршню на коленчатый вал.
  • Поршневой палец создает шарнирное соединение шатуна с поршнем. Изготавливается из легированной высокоуглеродистой стали с цементацией поверхности. По сути является толстостенной трубкой со шлифованной наружной поверхностью. Бывает двух видов: плавающий или закрепленный. Плавающие свободно перемещаются в бобышках поршней и во втулке, запрессованной в головку шатуна. Не выпадает палец из этой конструкции благодаря стопорным кольцам, устанавливающимся в пазы бобышек. Закрепленные удерживаются в головке шатуна за счет горячей посадки, а в бобышках вращаются свободно.

Для обычного автовладельца принцип работы двигателя, например, шестицилиндрового, является чем-то вроде магии, интересной лишь автомеханикам и гонщикам.

С одной стороны, у большинства действительно нет никакой нужды в этой информации. Но с другой, отсутствие этих знаний порождает необходимость ехать на поклон в автосервис, чтобы решить простейшие задачи.

Знание об устройстве и работе автомобиля пойдет большим плюсом в личное дело любого автолюбителя. Особенно это касается движка – важнейшего элемента и сердца железного коня. ДВС имеет уйму разновидностей – начиная от типа горючего и заканчивая уникальными для каждого авто мелкими нюансами.

Но суть работы примерно одинакова:

  1. Горючая смесь (топливо и кислород, без которого ничего гореть не будет) попадает в цилиндр двигателя и воспламеняется свечей зажигания.
  2. Энергия взрыва смеси толкает поршень внутри цилиндра, который, опускаясь, вращает коленвал. При вращении, коленвал поднимает к распределительному валу (который отвечает за подачу смеси через клапана) следующий цилиндр.

Благодаря последовательной работе цилиндров, коленвал находится в постоянном движении, образуя крутящий момент. Чем больше цилиндров – тем легче и быстрее будет вращаться коленвал. Вот и нарисовалась схема, знакомая даже школьникам, не разбирающимся в матчасти – больше цилиндров – мощнее мотор.

Порядок работы двигателя

Если объяснять по-простому, то порядок работы двигателя – это выверенная последовательность и интервал работы его цилиндров. Как правило, цилиндры мотора не работают строго по очереди (за исключением двухцилиндровых моторчиков). Этому способствует «змейкообразная» форма коленвала.

Порядок работы движка всегда начинается с первого цилиндра. А вот дальнейший цикл уже у всех разный. Причем даже у однотипных моторов разных модификаций. Знание этих нюансов будет необходимым, если вы захотите откалибровать работу клапанов или настроить зажигание. Поверьте, просьба подключить высоковольтные провода на автосервисе вызовет у мастеров чувство жалости.

Шестицилиндровый двигатель

Вот мы и добрались до сути. Порядок работы такого ДВС будет зависеть от того, как именно 6 цилиндров расположены. Здесь выделяют три типа — рядный, V-образный и оппозитный.

Стоит поподробнее остановиться на каждом:

  • Рядный двигатель. Такая конфигурация горячо любима немцами (в автомобилях BMW, AUDI и т.п. такой движок будет именоваться R6. Европейцы и американцы предпочитают маркировки l6 и L6). В отличии от европейцев, почти повсеместно оставивших рядные двигатели в прошлом, у BMW таким типом мотора может похвастаться даже навороченный X шестой. Порядок работы у таких 1 — 5 — 3 — 6 — 2 — 4 цилиндры соответственно. Но можно встретить и варианты 1 — 4 — 2 — 6 — 3 — 5 и 1 — 3 — 5 — 6 — 4 — 2.
  • V-образный движок. Цилиндры расположены по три в два ряда, пересекающихся снизу, образуя букву V. Хоть такая технология и пошла на конвейер в 1950 году, менее актуальной она не стала, комплектуя самых современных железных коней. Последовательность у таких движков 1 — 2 — 3 — 4 — 5 — 6. Реже 1 — 6 — 5 — 2 — 3 — 4.
  • Оппозитный мотор. Традиционно используется японцами. Чаще всего можно встретить на Субару и Сузуки. Двигатель такой компоновки будет функционировать по схеме 1 — 4 — 5 — 2 — 3 — 6.

Владея даже этими схемами, вы сможете грамотно подрегулировать клапана. Не обязательно вдаваться в историю развития технологий, физические характеристики и сложные формулы расчета – оставим это подлинным фанатам темы. Наша цель – научится самостоятельно делать то, что вообще возможно сделать самостоятельно. Ну а знание о функционале вашего мотора идет приятным бонусом.

Порядок работы цилиндров двигателя внутреннего снорания. Порядок работы цилиндров двигателя внутреннего снорания Порядок работы 6 цилиндрового двигателя 1hz

Если так подумать, то зачем нам, обычным автолюбителям знать порядок, в котором работают цилиндры автомобиля? Ну, работают исправно и, слава богу. Да, конечно, это отрицать сложно и вполне бессмысленно, но только до того момента, пока Вам не захочется своими руками настроить зажигание или заняться регулировкой клапанных зазоров. И вот тогда эти знания о порядке работы автомобильных цилиндров будут абсолютно не лишними. Захотите Вы присоединить провода высокого напряжения к свечам или трубопроводы с высоким давлением у дизеля. А вдруг Вы решите перебрать головку блока цилиндров? Согласитесь с тем, что немного глупо будет ехать на СТО с потребностью правильной установки высоковольтных проводов. Да и как Вы это сделаете, когда двигатель то троит?

Порядок работы цилиндров, что это значит?

Последовательность, с которой чередуются одноимённые такты в различных цилиндрах именуется порядком работы цилиндров. От каких же факторов зависит данный параметр? От чего зависит порядок работы цилиндров? Есть несколько таковых, и мы их сейчас перечислим:

— расположение цилиндров в двигателе: рядное или V-образное;

Количество цилиндров;

Конструкция распределительного вала;

Конструктивные особенности и тип коленчатого вала.

Фазы цилиндров

Рабочий цикл автомобильного двигателя разделяется на газораспределительные фазы. Их последовательность обязана равномерно распределяться на коленчатый вал по силе их воздействия. Только в таком случае двигатель будет работать равномерно. Необходимым и строгим условием является нахождение цилиндров, работающих последовательно, относительно друг друга. Они просто не должны располагаться рядом. Именно с этой целью производители двигателей и разрабатывают схемы, в которых указан порядок работы цилиндров мотора. Но все схемы объединяет единый фактор: порядок работы всех цилиндров начинается главного цилиндра под номером один.

Разные двигатели – разный порядок работы

Однотипные двигатели с разными модификациями могут иметь различия в работе цилиндров. Возьмём двигатель ЗМЗ для примера. Порядок работы 402-го двигателя таков — 1-2-4-3, хотя у 406-го цилиндры работают совершенно в другом порядке – 1-3-4-2.

Если погрузиться глубже теорию работы двигателя внутреннего сгорания, но не сильно, дабы не запутаться, то мы сможем увидеть следующее: четырёхтактный двигатель проходит свой полный рабочий цикл за два оборота коленчатого вала. Если рассматривать в градусах, то это равняется 720 градусам. У двухтактного двигателя – 3600 градусов. Чтобы коленчатый вал постоянно находился под поршневым усилием, его колена смещают под определённым углом. Градус этого угла прямо зависит от тактности двигателя и числа цилиндров. У рядного четырёхцилиндрового двигателя такты чередуются через каждые 1800 градусов. Порядок работы же такого мотора на автомобилях ВАЗ таков: 1-3-4-2, на автомобилях ГАЗ 1-2-4-3. Шестицилиндровый рядный двигатель работает по такому порядку: 1-5-3-6-2-4, чередование тактов составляет 1200 градусов. Восьмицилиндровый V-образный двигатель работает в таком режиме: 1-5-4-8-6-3-7-2, воспламенения происходят с интервалом в 900 градусов. Интересен порядок работы двенадцатицилиндрового W-образного двигателя: 1-3-5-2-4-6 – работа левых головок блока цилиндров, а правых: 7-9-11-8-10-12

Для того, чтобы Вы не путались со всеми этими цифровыми порядками, давайте рассмотри один пример. Возьмём восьмицилиндровый двигатель грузового автомобиля ЗИЛ со следующим порядком работы его цилиндров: 1-5-4-2-6-3-7-8. Расположение кривошипов находится под углом в 900 градусов. Возьмём первый цилиндр, во время его рабочего цикла происходит 90 градусов оборота коленвала, затем цикл переходит на пятый цилиндр и так последовательно в следующем порядке 4-2-6-3-7-8. В данном случае один оборот коленчатого вала приравнивается четырём рабочим циклам. Вывод из всего этого очевиден – двигатель с восьмью цилиндрами работает гораздо равномернее и плавнее шестицилиндрового.

Да, согласимся, что настолько глубокие познания в работе цилиндров мотора Вашей машины, скорее всего, не пригодятся. Но хотя бы обобщённое представление об этом Вы должны иметь. А если Вас настигнет необходимость произвести ремонт головки блока цилиндров, тогда эти знания будут уж точно не лишними. Друзья, желаем Вам успехов в изучении этих премудростей!

Самым простым автолюбителям не нужно знать все тонкости работы цилиндров двигателя. Работает как-то, ну и ладно. Весьма сложно с этим согласится. Наступает тот самый момент, пока нужно будет отрегулировать систему зажигания, а также клапанов зазора.

Не будет лишней информацией о порядке работы цилиндров, когда нужно будет подготовить высоковольтные провода к свечам или трубопроводы большого давления.

Порядок работы цилиндров двигателя. Что это означает?


Порядок работы любого двигателя — это определенная последовательность, при которой происходит чередование одноименных тактов в разных цилиндрах.

Порядок работы цилиндров и от чего он зависит? Есть несколько основных факторов его работы.

К ним можно отнести следующее:

  1. Система расположения цилиндров: однорядная, V-образная.
  2. Количество цилиндров.
  3. Распределенный вал и его конструкция.
  4. Коленвал, а также его конструкция.

Что такое рабочий цикл двигателя автомобиля?

Этот цикл состоит, прежде всего, из распределения газораспределительных фаз. Последовательность должна четко распределяться по силе воздействия на коленчатый вал. Только так и добиваться равномерной работы.

Цилиндры не должны находиться рядом, это основное условие. Производители создают схемы работы цилиндров. Старт работы начинается с первого цилиндра.

Разные двигатели и разных порядок работы цилиндров.


Разные модификации, разные двигатели, их работа может распределяться. Двигатель ЗМЗ. Определенный порядок работы цилиндров двигателя 402 — один-два-четыре-три. Порядок работы двигателя модификации — один-три-четыре-два.

Если сделать углубление в теорию работы двигателя, то мы сможем увидеть следующую информацию.

Полный цикл работы четырехтактного двигателя происходит за два оборота, то есть 720 градусов. Двухтактный двигатель, догадайтесь за сколько?

Коленвал смещают на угол для того, чтобы получить максимальное углубление поршней. Данный угол зависит от тактов, а также количества цилиндров.

1. Четырехцилиндровый двигатель происходит через 180 градусов, порядок работы цилиндров может быть один-три-четыре-два (ВАЗ), один-два-четыре-три (ГАЗ).

2. Шестицилиндровый двигатель и порядок его работы один-пять-три-шесть-два-четыре (интервалы между воспламенениями составляют 120 градусов).

3. Восьмицилиндровый двигатель один-пять-четыре-восемь-шесть-три-семь-два (интервал составляет 90 градусов).

4. Есть и двенадцати цилиндровый двигатель. Левый блок — один-три-пять-два-четыре-шесть, правый блок — семь-девять-одинадцать-восемь-десять-двенадцать.

Для понятности небольшое пояснение. У восьмицилиндрового двигателя ЗиЛ порядок работы всех цилиндров: один-пять-четыре-два-шесть-три-семь-восемь. Угол — 90 градусов.

В одном цилиндре происходит рабочий цикл, через девяносто градусов рабочий цикл в пятом цилиндре и дальше последовательно. Один поворот коленвала — четыре рабочих хода. Восьмицилиндровый двигатель, конечно, работает плавно, чем двигатель из шести цилиндров.

Мы дали только общее представление работы, более глубокие знания Вам не нужны. Желаем Вам успехов в изучении порядка работы цилиндров двигателя.

Порядок работы двигателя с 4, 6, 8 цилиндрами — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

Расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120°).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90°).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720: 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторных двигателей 1-3-4-2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1- 5-4-2-6-3-7-8, а шестицилиндровых 1-4-2-5-3-6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание-расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

    силы P давления газов на поршень

    силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

    реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

    сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

    центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

Порядок работы 4 цилиндрового двигателя обозначается как Х―Х―Х―Х где Х ― номера цилиндров. Это обозначение показывает последовательность чередования тактов цикла в цилиндрах.

Порядок работы цилиндров зависит от углов между кривошипами коленчатого вала, от конструкции механизма газораспределения, и системы зажигания бензинового силового агрегата. У дизельного место системы зажигания в этой последовательности занимает ТНВД.

Для управления автомобилем это знать, конечно, необязательно.

Порядок работы цилиндров необходимо знать, регулируя зазоры клапанов, меняя ремень ГРМ либо выставляя зажигание. Да и при замене проводов высокого напряжения понятие порядка рабочих тактов не будет лишним.

В зависимости от числа тактов, составляющих рабочей цикл, ДВС делятся на двухтактные и четырехтактные. Двухтактные двигатели не ставят на современные автомобили, они используются лишь на мотоциклах и в качестве пускателей тракторных силовых агрегатов. Цикл четырехтактного бензинового двигателя внутреннего сгорания включает в себя следующие такты:

Цикл дизеля отличается тем что при впуске всасывается только воздух. Топливо же впрыскивается под давлением после сжатия воздуха, а воспламенение происходит от контакта дизеля с разогретым от сжатия воздухом.

Нумерация

Нумерация цилиндров рядного двигателя начинается с наиболее удаленного от коробки перемены передач. Иными словами, со стороны либо цепи.

Очередность работы

У коленвала рядного 4-х цилиндрового ДВС кривошипы первого и последнего цилиндра располагаются под углом 180° друг к другу. И под углом 90° к кривошипам средних цилиндров. Поэтому для обеспечения оптимального угла приложения движущих сил к кривошипам такого коленвала, порядок работы цилиндров бывает 1―3―4―2, как у вазовских и москвичевских ДВС либо 1―2―4―3, как у газовских моторов.

Чередование тактов 1-3-4-2

Угадать порядок работы цилиндров двигателя по внешнем признакам нельзя. Об этом следует читать в мануалах производителя. Порядок работы цилиндров двигателя проще всего узнать в инструкции по ремонту вашей машины.

Кривошипно-шатунный механизм

  • Маховик поддерживает инерцию коленвала для вывода поршней из верхних или нижних крайних положений, а также для более равномерного его вращения.
  • Коленчатый вал преобразует линейное движение поршней во вращение и передает его через механизм сцепления на первичный вал КПП.
  • Шатун передает усилие, прикладываемое к поршню на коленчатый вал.
  • Поршневой палец создает шарнирное соединение шатуна с поршнем. Изготавливается из легированной высокоуглеродистой стали с цементацией поверхности. По сути является толстостенной трубкой со шлифованной наружной поверхностью. Бывает двух видов: плавающий или закрепленный. Плавающие свободно перемещаются в бобышках поршней и во втулке, запрессованной в головку шатуна. Не выпадает палец из этой конструкции благодаря стопорным кольцам, устанавливающимся в пазы бобышек. Закрепленные удерживаются в головке шатуна за счет горячей посадки, а в бобышках вращаются свободно.

🔧 Порядок работы 4, 6, 8 цилиндрового двигателя.. | Aydos Bekbergenov

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120° ).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90° ).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы восьмицилиндрового двигателя

Главная » Блог » Порядок работы восьмицилиндрового двигателя

Порядок работы 8 цилиндрового двигателя

Для большинства автолюбителей принцип работы двигателя с 8 цилиндрами остается тайной за семью печатями. В каком-то смысле это нормально, ведь тема не самая простая, чтобы каждый второй смог досконально изучить ее.

Однако бывают ситуации, когда определенные базовые знания о работе движка все же будут не лишними.

Немного истории

Начало ХХ века ознаменовалось целой кучей патентов в области автопромышленности. Двигатели, шины, диски, формы кузова и т.п. Все это ознаменовало масштабный скачок автомобильной индустрии, выдвинув ее едва ли не в первые промышленные дивизионы. Большинство технологий, используемых при сборке современных автомобилей, были зачаты в те самые годы. Нашим современникам осталось лишь отточить их до нынешнего вида.

Патент на первый восьмицилиндровый двигатель не так давно отметил свое столетие. Правда об автомобилях с таким объемом мотора тогда речи не шло – скорее небольшие корабли и молодые образцы авиатехники. А вот с 1914 года немногие тогдашние автолюбители могли ощутить гул работы цилиндров 8 цилиндрового авто двигателя. Его объем на тот момент не превышал 4х литров. Были, конечно, и более ранние опыты с установкой такого движка на авто, но упоминать о них смысла нет, так как они очень быстро сходили на нет, не оставив для нас ни одного рабочего прототипа.

А как сейчас?

Вопреки расхожему мнению, двигатели с 8 цилиндрами ставят не только на люксовые иномарки, но и на обычные тракторы, грузовики и строительную технику. Как и с двигателями послабее, наиболее сбалансированным видом является рядный тип мотора. Иными словами, когда все цилиндры расположены в ряд. Именно ими долгое время комплектовали самые дорогие автомобили. Особенно ценима такая конструкция была в Америке. Впрочем, рекордсменами здесь являются немцы, высоко ценящие баланс и надежность рядного движка.

Но даже им, со временем, пришлось перейти на V-образные двигатели. Причина проста и банальна – восьмицилиндровый «питон»  попросту не вмещался в стандартном моторном отсеке современных авто.

Порядок работы

Именно это будет наиболее прикладной информацией для рядового водителя. Дело в том, что зная порядок работы сердца вашего авто, вы без труда сможете подкорректировать зазор клапанов или заняться зажиганием.

Описывать порядок работы 8 цилиндров рядного двигателя смысла нет, так как в легковых авто они сейчас почти не встречаются. А вот V-образные движки имеют достаточно выверенную последовательность: 1 – 5 – 4 – 8 – 6 – 3 – 7 – 2. Интервал рабочего цикла составляет 90 градусов (т.е. через 90 градусов поворота коленвала, после начала работы первого цилиндра, начинает работать следующий. В нашем случае, пятый.). Такой интервал обеспечивает весьма мягкую работу двигателя. Если вы счастливый обладатель дизельного гиганта ЗиС, то порядок работы будет немного отличаться: 1 – 5 – 4 – 2 – 6 – 3 – 7 – 8. Как видите, при любом раскладе (это касается всех двигателей любой цилиндровости) рабочий цикл движка начинается с первого цилиндра.

Стоит помнить, что работа 8 цилиндрового V-образного двигателя отличается от двигателя 6 цилиндров и выполняется в индивидуальном для  каждого производителя порядке. Схема приведенная выше является наиболее обобщенной, но не стопроцентно подходящей для каждого авто. Даже тип модификации мотора играет роль.

Понятное дело, что при необходимости калибровки клапанного зазора, большинство хозяев поведут своих коней в автосервис. Да и головку БЦ не каждый возьмется чинить самостоятельно. Но если вы подлинный фанат автомобилей, то вы просто обязаны хотя бы раз поработать с вашим мотором самостоятельно. А знание о порядке работы движка вам в этом сильно поможет.

Видео пример работы

21 Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720 : 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных     тракторных     двигателей 1—3—4—2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1— 5—4—2—6—3—7—8, а шестицилиндровых 1—4—2—5—3—6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание—расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

  • силы P давления газов на поршень

  • силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

  • реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

  • сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

  • центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном — DRIVE2

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя? ↑

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

— расположение цилиндров двигателя: однорядное или V-образное;— количество цилиндров;— конструкция распредвала;

— тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 3600.

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

— Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 1800, ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

— Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 1200).

— Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 900).

— Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 900 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля. ©

Работа многоцилиндрового двигателя

Во время работы двигателя на его механизмы действуют значительные силы давления газов в цилиндре, силы инерции неравномерно движущихся деталей кривошипно-шатунного механизма, а также центробежные силы, возникающие вследствие вращения деталей. Эти силы непостоянны по величине и направлению своего действия, поэтому они вызывают неравномерную работу двигателя.

При неравномерной работе двигателя его механизмы работают с переменной нагрузкой, вследствие чего происходит интенсивный износ деталей. Особенно велика неравномерность работы одноцилиндрового четырехтактного двигателя.

Для достижения равномерности работы двигателя или устанавливают на коленчатом валу тяжелый маховик, или выполняют его многоцилиндровым.

Маховик накапливает энергию во время рабочего хода и отдает ее при совершении вспомогательных тактов. Но тяжелый маховик применяется только для стационарных двигателей, работающих, как правило, на постоянном режиме. Тяжелый маховик вследствие значительной инерции не обеспечивает необходимой автомобильному двигателю приемистости, т.е. способности двигателя быстро развивать и уменьшать обороты. Поэтому в автомобильных двигателях равномерность работы достигается не увеличением веса маховика, а за счет выполнения двигателя многоцилиндровым. В многоцилиндровом двигателе такты рабочего хода равномерно чередуются в отдельных цилиндрах, вследствие чего в значительной мере уравновешиваются силы инерции, возникающие в кривошипно-шатунном механизме при работе двигателя.

Для обеспечения наибольшей равномерности работы многоцилиндрового двигателя необходимо, чтобы такты рабочего хода в различных цилиндрах чередовались через равные промежутки времени и в определенной последовательности. Эта последовательность повторения одноименных тактов в различных цилиндрах называется порядком работы цилиндров двигателя.

Рис. Таблица чередования тактов четырехцилиндрового четырехтактного двигателя с порядком работы цилиндров 1—2—4—3 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Однако не при любом порядке обеспечивается хорошая работа двигателя. Необходимо, чтобы очередные такты рабочего хода следовали в цилиндрах, наиболее удаленных одни от другого. В этом случае нагрузка на коренные подшипники коленчатого вала будет распределяться более равномерно; кроме того, отработавшие газы из цилиндра, в котором начинается выпуск, не будут попадать через выпускной трубопровод в цилиндр, в котором выпуск еще не закончился.

Наиболее удобными порядками работы автомобильных двигателей являются: для четырехцилиндрового — 1—2—4—3 и 1—3—4—2, для шестицилиндрового — 1—5—3—6—2—4 и для восьмицилиндрового — 1—5—4—2—6—3—7—8.

Порядок работы цилиндров обычно изображается в виде таблицы чередования тактов.

Рассмотрим, как происходит работа четырехтактного четырехцилиндрового двигателя с порядком работы цилиндров 1—2—4—3. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а число рабочих ходов, происходящих за это время, равно четырем, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 180° (720°: 4), т.е. на пол-оборота коленчатого вала, и находятся, таким образом, в одной плоскости.

Во время работы двигателя поршни в первом и четвертом цилиндрах при первом полуобороте первого оборота коленчатого вала перемещаются от верхней мертвой точки к нижней, в первом цилиндре происходит рабочий ход, в четвертом цилиндре — такт впуска. Во втором и третьем цилиндрах поршни перемещаются в это время к верхней мертвой точке, во втором цилиндре происходит такт сжатия, а в третьем — такт выпуска.

Во время второго полуоборота первого оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт выпуска, а в четвертом — такт сжатия. Поршни второго и третьего цилиндров в это время перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит рабочий ход, в третьем — такт впуска.

Во время первого полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемешаются от верхней мертвой точки к нижней, в первом цилиндре происходит такт впуска, в четвертом — рабочий ход. Поршни второго и третьего цилиндров в это время перемещаются от нижней мертвой точки к верхней, во втором цилиндре происходит такт выпуска, в третьем такт сжатия.

Во время второго полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт сжатия, в четвертом —такт выпуска. Поршни во втором и третьем цилиндрах перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит такт впуска, в третьем — рабочий ход.

Четырехцилиндровый четырехтактный двигатель с порядком работы цилиндров 1—3—4—2 отличается от двигателя с порядком работы 1—2—4—3 лишь конструкцией распределительного механизма, которая определяет несколько иную последовательность открытия и закрытия клапанов и чередования тактов.

Оба порядка работы цилиндров, принятые для отечественных четырехтактных четырехцилиндровых двигателей, полностью равноценны и по равномерности, и по качеству работы двигателей. На отечественных автомобилях широко используются шестицилиндровые двигатели, у которых цилиндры расположены в один ряд. Такие двигатели называются рядными в отличие от двигателей, цилиндры которых расположены в два ряда под некоторым углом один к другому.

В шестицилиндровом рядном двигателе коленчатый вал имеет шесть кривошипов. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а количество рабочих ходов за это время равно шести, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 120° (720°: 6), т. е. на одну треть оборота вала.

Для однорядных шестицилиндровых двигателей применяется следующее расположение кривошипов: 1—6 — вверх, 2—5 — налево, 3—4 — направо, если смотреть со стороны переднего конца вала.

При вращении коленчатого вала поршни в шестицилиндровом двигателе проходят через мертвые точки не все одновременно, как в четырехцилиндровом двигателе, а только попарно. Поэтому и такты во всех цилиндрах начинаются и кончаются также не одновременно, а смещены в одной паре цилиндров относительно другой на 60°.

Перекрытие тактов и порядок чередования рабочих ходов в шестицилиндровом четырехтактном двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов шестицилиндрового четырехтактного двигателя с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Особенностью двухтактных дизелей является то, что их рабочий цикл совершается за один оборот коленчатого вала (360°). Поэтому и взаимное расположение кривошипов коленчатых валов имеет свои особенности: в четырехцилиндровом двигателе кривошипы смещены один относительно другого на 90° (360°: 4), в шестицилиндровом — на 60° (360°: 6).

Рис. Таблица чередования тактов шестицилиндрового двухтактного дизеля с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Перекрытие тактов и порядок чередования рабочих ходов в двухтактном шестицилиндровом дизеле показаны в таблице на рисунке.

В настоящее время на автомобилях широкое применение получили восьмицилиндровые V-образные двигатели. Цилиндры у этих двигателей располагаются в два ряда, чаще всего под углом 90°. Коленчатый вал таких двигателей имеет четыре кривошипа, смещенных один относительно другого на 90°. На каждую шейку кривошипа опираются одновременно по два шатуна.

В восьмицилиндровом двигателе за рабочий цикл (720°) совершается восемь рабочих ходов; их чередование, следовательно, происходит через 90° (720°: 8). Порядок работы цилиндров и чередование тактов в восьмицнлиндровом двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов восьмицилиндрового двигателя с порядком работы цилиндров 1—5—4—2—0—3—7—8 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

В многоцилиндровых двигателях вследствие непрерывного чередования рабочих ходов и перекрытия их одного другим обеспечивается более плавное и равномерное вращение коленчатого вала. Многоцилиндровые двигатели работают более устойчиво, без толчков и сотрясений, присущих одноцилиндровым двигателям.

Порядок работы цилиндров двигателя разных авто

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Иллюстрация процесса:

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:


Коленвал:


Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

  • рядная;
  • оппозитная.

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:


Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.


Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Блок цилиндров:

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:


ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:


Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.

Ноя 6 2014

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Информация о порядке работы цилиндров двигателя авто непременно понадобится в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате.

В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.

Порядок работы цилиндров двигателя – теория

Порядком работы цилиндров называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата.

Данная последовательность зависит от следующих факторов:

  • количество цилиндров;
  • тип расположения цилиндров: V-образное либо рядное;
  • конструкционные особенности коленвала и распредвала.

Особенности рабочего цикла двигателя

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов.

Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора.

Двигатель работает максимально равномерно при наименьшем промежутке воспламенения. Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Порядок работы цилиндров двигателей разных автомобилей

У разных версий однотипных моторов цилиндры могут работать по-разному.

Для примера можно взять двигатель ЗМЗ. Порядок работы цилиндров 402 двигателя выглядит следующим образом – 1-2-4-3.

Но, если говорить о порядке работы цилиндров двигателя 406, то в данном случае он составляет 1-3-4-2.

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней.

Данный угол определяется тактностью силового агрегата и числом цилиндров.

  • порядок работы 4 цилиндрового двигателя со 180-градусным интервалом между воспламенениями может составлять 1-2-4-3 либо 1-3-4-2;
  • порядок работы 6 цилиндрового двигателя с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями выглядит так: 1-5-3-6-2-4;
  • порядок работы 8 цилиндрового двигателя (V-образный) – 1-5-4-8-6-3-7-2 (90-градусный интервал между воспламенениями).

В каждой схеме двигателя, независимо от его производителя, порядок работы цилиндров начинается с главного цилиндра, отмеченного номером 1.

Наиболее вероятно, информация о порядке работы цилиндров двигателя автомобиля, не будет очень актуальной для вас.

Желаем успехов в определении порядка работы цилиндров мотора вашей машины.

К такому двигателю относится четырехтактный дизель ЯМЗ-236. Угол развала между его цилиндрами равен 900. Колена коленчатого вала расположены в трех плоскостях под углом 1200 одно к другому. Особенностью этого двигателя является коленчатый вал, имеющий три кривошипа, к каждому из которых присоединено по два шатуна: к первому кривошипу — шатуны первого и четвертого цилиндров; ко второму второго и пятого цилиндров и к третьему — третьего и шестого цилиндров.

В этом двигателе, имеющем порядок работы 1 — 4 — 2 — 5 — 3 — 6, одноименные такты в цилиндрах происходят неравномерно через 90 и 1500 (табл. 4). Если в первом цилиндре осуществляется рабочий ход, то в четвертом он начинается через 900, во втором — через 1500, в пятом — через 900, в третьем через 1500 и в шестом — через 900. Поэтому двигатель ЯМЗ-236 имеет повышенную неравномерность хода и в нем приходится устанавливать на коленчатом валу маховик с относительно большим моментом инерции (на 60070% большим, чем для однорядного двигателя).

Восьмицилиндровый V-образный двигатель. Цилиндры в таком двигателе (например, двигатели автомобилей ГАЗ-53А, ГАЗ-53-12, ЗИЛ и КамАЗ-5320) расположены под углом 900 один к другому (рис. 24,6). Одноименные такты в цилиндрах начинаются через угол поворота коленчатого вала.

Рис. 24 — Схемы кривошипно-шатунного механизма четырехтактных V -образных двигателей:

а — шестицилиндрового; б — восьмицилиндрового; 1-8 — цилиндры.

Таблица 4. Чередование тактов в четырехтактном V -образном шестицилиндровом двигателе с порядком работы 1 — 4 — 2 — 5 — 3 — 6.

Впуск равный 720: 8 = 900. Следовательно, кривошипы коленчатого вала расположены крестообразно под углом 900. К первому кривошипу присоединены шатуны первого и пятого цилиндров, ко второму — второго и шестого цилиндров, к третьему — третьего и седьмого цилиндров, к четвертому — четвертого и восьмого цилиндров. В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов. Перекрытие рабочих ходов в различных цилиндрах происходит в течение поворота коленчатого вала на угол 90С, что способствует его равномерному вращению. Порядок работы восьмицилиндрового двигателя 1 — 5 — 4 — 2 — 6 — 3 — 7 — 8 (табл. 5).

Таблица 5. Чередование тактов в четырехтактном V -образном с порядком работы 1 — 5 — 4 — 2 — 6.


Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопровод к форсункам и отрегулировать клапаны.

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Ремонт, диагностика, сервис — Порядок работы цилиндров двигателя на разных авто — — Заказ запчастей

Информация о порядке работы цилиндров двигателя авто непременно понадобится в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате. Стать опубликована в паблике Машины. В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.


Порядок работы цилиндров двигателя – теория:

Порядком работы цилиндров называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата. Данная последовательность зависит от следующих факторов:

Количество цилиндров; тип расположения цилиндров:
V-образное либо рядное;
Конструкционные особенности коленвала и распредвала.

Особенности рабочего цикла двигателя:

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов. Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора. Двигатель работает максимально равномерно при наименьшем промежутке воспламенения.

Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Порядок работы цилиндров двигателей разных автомобилей:

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней. Данный угол определяется тактностью силового агрегата и числом цилиндров.

Порядок работы 4 цилиндрового двигателя со 180-градусным интервалом между воспламенениями может составлять 1-2-4-3 либо 1-3-4-2;

Порядок работы 6 цилиндрового двигателя с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями выглядит так: 1-5-3-6-2-4;

Порядок работы 8 цилиндрового двигателя (V-образный) – 1-5-4-8-6-3-7-2 (90-градусный интервал между воспламенениями).

В каждой схеме двигателя, независимо от его производителя, порядок работы цилиндров начинается с главного цилиндра, отмеченного номером 1.

-+

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:


-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.


Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120°).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90°).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы цилиндров (автомобиль)

2.6.

Порядок зажигания цилиндров Порядок зажигания цилиндров

улучшает распределение свежего заряда в коллекторе к цилиндрам
и способствует выпуску выхлопных газов, в то же время подавляя крутильные колебания
. Эти условия следующие.
(i) Последовательное срабатывание цилиндров позволяет восстанавливать заряд в коллекторе и сводит к минимуму взаимодействие
между соседними или соседними цилиндрами.Обычно выбираются цилиндры с противоположного конца
коллектора или из альтернативных рядов цилиндров в двигателях * V, чтобы поочередно тянуть
. Однако эта компоновка становится трудной по мере уменьшения количества цилиндров
.
(ii) Разделение последовательных цилиндров, которые выпускаются, даже более важно, чем
для индукции. Это связано с тем, что, если периоды выхлопа совпадают с периодами выхлопа цилиндров, противодавление выхлопных газов может предотвратить выход продуктов сгорания из цилиндров.
(Hi) Силовые импульсы вызывают заводку коленчатого вала. Кроме того, если собственные крутильные колебания
вала совпадают с этими возмущающими импульсными частотами, могут иметь место крутильные колебания
. Поэтому, как правило, желательно иметь
последовательных импульсов мощности на чередующихся концах коленчатого вала.

Рис. 2.15. Одноцилиндровое устройство.
2.6.1.


Одноцилиндровые устройства

Одноцилиндровый двигатель имеет рабочий ход каждые
720 градусов / 1 л.е. 720 градусов поворота коленчатого вала
для четырехтактного двигателя. Двигатель
имеет просто одноходовой шатун, а вращающаяся шейка шатуна
или шатунная шейка соединены с поршневым пальцем поршня
с помощью шатуна, чтобы иметь как линейное движение
, так и колебательное движение (Рис. 2.15).
Когда поршень находится в ВМТ, он либо завершает сжатие
и собирается начать рабочий такт, либо это
в конце такта выпуска и начале такта впуска.Если предположить, что поршень первоначально находится в ВМТ
при нулевом угле поворота коленчатого вала, затем он находится в НМТ на 180 градусов и 540 градусов, а
в ВМТ при 360 градусах и 720 градусах вращения коленчатого вала.
2.6.2.

Двухцилиндровый механизм

A. Рядный Параллельный

Двухцилиндровый двигатель с рядным расположением рядных цилиндров имеет мощность
импульсов каждые 720 градусов / 2, то есть 360 градусов поворота коленчатого вала
. В коленчатом валу используется одноходовой шатун с поршнями и шатунами
, прикрепленными к общей шатунной шейке
или шатунной шейке (рис.2.16).
Когда поршень 1 находится в ВМТ, он находится на вершине своего такта сжатия
и вот-вот начнет свой рабочий такт. Поршень 2 тогда находится в положении
своего такта выпуска в ВМТ и вот-вот начнет свой ход впуска
. При повороте коленчатого вала на 180 градусов оба поршня
находятся в НМТ, и поршень 1 собирается начать свой такт выпуска, а поршень 2 — такт сжатия.
Второе вращение коленчатого вала на 180 градусов переводит поршни 1 и 2 в ВМТ, чтобы начать их индукционный и рабочий ход
соответственно.При третьем повороте коленчатого вала на 180 градусов поршни
перемещаются в НМТ, и поршни 1 и 2 собираются начать такты
сжатия и выпуска соответственно. Четырехтактный цикл на 720 градусов завершается, когда четвертый поворот на 180 градусов
приводит поршни в исходное исходное положение.

B. Линия, сдвинутая по фазе на 180 градусов

При таком расположении импульсы мощности возникают с неравномерными интервалами
, то есть через каждые 180 градусов и 540 градусов смещения коленчатого вала
.Цилиндры расположены параллельно
друг к другу, когда поршень 1 находится в ВМТ, поршень 2 находится в НМТ и
ход кривошипа сдвинут по фазе на 180 градусов относительно друг друга
(рис. 2.17). Если первоначально поршень 1 находится в конце сжатия, а
— в начале своего рабочего такта, то поршень 2 находится в конце
мощности и в начале своего такта выпуска.
Первый поворот коленчатого вала на 180 градусов приводит поршень 1
к НМТ, который собирается начать свой такт выпуска после завершения рабочего такта
, в то время как поршень 2 находится в ВМТ, в конце такта выпуска
и около начала такта сжатия.omt-
двухцилиндрового расположения фаз.

Рис. 2.18. Горизонтально-оппозитный двухцилиндровый агрегат
.
л. Поршень 1 находится в конце выпуска и в позиции
в начале такта всасывания, а поршень 2 — в позиции
, начинающей свое сжатие после завершения своего хода всасывания
.
Третий поворот на 180 градусов коленчатого вала
переводит поршень 1 в НМТ, заканчивая индукцию
и начиная такт сжатия, в то время как поршень 2
находится в ВМТ и готов к следующему такту
после завершения такта сжатия.При четвертом повороте коленчатого вала на 180 градусов поршень 1
перемещается в ВМТ, а поршень 2 — в НМТ, переводя их в исходное исходное положение.

C. Горизонтально противоположно

Эта конструкция обеспечивает импульсы мощности с равными интервалами через каждые 360 градусов вращения коленчатого вала
. Ход кривошипа сдвинут по фазе на 180 градусов. Шатуны и поршни
расположены на противоположных сторонах коленчатого вала,
напротив друг друга (рис. 2.18), при этом оси цилиндров смещены друг относительно друга.Таким образом, поршни приближаются к положениям ВМТ
и НМТ вместе, хотя они все время движутся в противоположных направлениях. Предположим, что поршни
находятся в ВМТ, поршень 1 — в конце сжатия и начале рабочего хода, а затем поршень 2
заканчивает выпуск и собирается начать свой ход всасывания.
Первый, второй и третий поворот коленчатого вала на 180 градусов приводит к поршни в положения НМТ, ВМТ
и НМТ соответственно, выполняя свои соответствующие ходы, как показано на рисунке.
Четвертый поворот на 180 градусов завершает цикл событий четырехтактного цикла и возвращает поршни
в их исходные исходные положения. Эти двигатели используются в небольших легковых автомобилях.

D. 90 градусов * V

В этой конструкции два цилиндра расположены под углом 90 градусов друг к другу, причем оба больших конца
прикреплены к одной шатунной шейке (рис. 2.19). В этой конфигурации импульсы мощности имеют
неравномерных интервалов, которые происходят через каждые 270 градусов и 450 градусов движения коленчатого вала.Ряды цилиндров
спроектированы так, чтобы образовывать V слева или справа, если смотреть со стороны
спереди двигателя. Используются параллельные соединительные дороги, и два ряда цилиндров смещены на
друг относительно друга.
Предполагая, что поршень 1 сначала в конце такта сжатия
находится в состоянии готовности к срабатыванию, а поршень 2 имеет значение
, затем в середине такта, приближаясь к ВМТ на выпуске
или такте сжатия. Пусть поршень 2 находится в положении
в середине такта выпуска.Поворот кривошипа на
на 450 градусов завершает его исходные
такты подъема, индукции и сжатия в
готовности к стрельбе. В этот момент поршень 1 находится в середине хода
на такте всасывания, поэтому поворот кривошипа
еще на 270 градусов завершает
как его действие, так и такты сжатия. Общий интервал угла поворота коленчатого вала
для этих двух событий срабатывания
составляет 450 + 270, то есть 720 градусов.
V-образные двухцилиндровые двигатели могут иметь лишь умеренную степень динамического баланса, а их неравномерные интервалы наполнения
и недостаточная плавность циклического крутящего момента делают их непригодными для

Рис.2.19. Расположение цилиндров V-образное.
вагон. Этот случай был обсужден для того, чтобы объяснить базовую конструкцию цилиндров
с V-образным рядом цилиндров с шатунами, имеющими общий шатунный шатун. Это важная компоновка двигателя.
2.SJ3.

Рядный трехцилиндровый агрегат

Трехцилиндровый двигатель имеет импульс мощности каждые 720 градусов / 3, то есть 240 градусов поворота коленчатого вала
для работы в четырехтактном цикле. Ходовая часть кривошипа и шатунные шейки
расположены с интервалом в 120 градусов, и предусмотрены четыре основных шейки и подшипники (рис.2.20)
для опоры коленчатого вала.
Когда поршень 1 находится в верхней точке такта сжатия и в начале рабочего такта, поршни 2
и 3 находятся под углом поворота коленчатого вала 60 градусов от НМТ на своих тактах
впуска и выпуска соответственно. При повороте коленчатого вала на 20 градусов поршень 3 находится в ВМТ в конце его хода выпуска
и начале его хода всасывания, а поршни 1 и 2 — на 60 градусов от НМТ на их ходах мощности и сжатия
соответственно.
Второе вращение коленчатого вала на 120 градусов перемещает поршень 2 в ВМТ, завершая такт сжатия
в готовности к его рабочему такту.Поршни 1 и 3 находятся под углом 60 градусов от НМТ на своих
тактах выпуска и впуска. Третье перемещение на 120 градусов приводит поршень 1 к ВМТ
, так что он только что заканчивает такт выпуска и вот-вот начнет свой ход впуска. Поршни 2 и 3 теперь
находятся под углом 60 градусов от НМТ на их соответствующих ходах мощности и сжатия
. Наконец, четвертый поворот коленчатого вала на
на 120 градусов помещает поршень
3 в ВМТ на его такте сжатия и готов к
пусковому такту. Эта последовательность событий
приводит к порядку срабатывания 1, 2, 3.
Эти двигатели динамически сбалансированы.
Дополнительный цилиндр в достаточной мере сглаживает циклический крутящий момент
, так что двигатель
уступает популярной четырехцилиндровой конфигурации
. Эта конфигурация обеспечивает экономию веса и длины
, а также снижает возвратно-поступательное движение
и сопротивление вращению, что улучшает расход топлива
.
2.6.4.

Расположение с четырьмя цилиндрами

A. Рядный

Четырехцилиндровый рядный двигатель имеет импульс мощности
каждые 720 градусов / 4 дюйма.е. 180 градусов движения коленчатого вала
. Коленчатые валы имеют ходы кривошипа
, расположенные с интервалом в 180 градусов друг относительно друга
в том порядке, в котором предназначены импульсы мощности
. При таком расположении коленчатого вала (рис.
2.21) все четыре хода кривошипа лежат в одной плоскости,
шатунные штифты 1 и 4 находятся в фазе, но под углом 180 градусов
к шатунным штифтам 2 и 3.
Предполагая, что шатун 1 находится в верхней части такт сжатия
, шатун 4 должен находиться в верхней части такта выпуска
, а вращение коленчатого вала составляет

Рис.2.20. Рядный трехцилиндровый агрегат.

Рис. 2.21. Рядный четырехцилиндровый двигатель.
для опускания при рабочем такте и при такте всасывания соответственно. Вращение коленчатого вала
на 180 градусов помещает шатуны 1 и 4 в нижнюю часть их ходов, в то время как шатуны 2 и
Satthetop их аистов после такта сжатия или выпуска. Кроме того, предполагается,
, что поршень 3 опускается следующим при рабочем такте, в то время как поршень 2 опускается при такте индукции
.При этом порядок стрельбы 1,3.
При втором повороте коленчатого вала на 180 градусов шатунные штифты и поршни 1 и 4 находятся на отметке
в верхней точке их рабочего хода и рабочего хода соответственно, так что в этот момент порядок срабатывания
составляет 1, 3, 4. Третий поворот коленчатого вала на 180 градусов снова помещает поршни 2 и 3 в верхнюю часть их хода
. Поскольку поршень 3 ранее опускался на рабочий ход, поршень 2 теперь находится на своем рабочем ходе
, так что полный порядок запуска составляет 1, 3, 4, 2. Последний поворот на 180 градусов завершает смещение коленчатого вала на 720
градусов за четыре -тактный двигатель.
Если цилиндр 2 выбран вместо цилиндра 3 для зажигания после цилиндра 1, то порядок зажигания будет
1,2,4,3. Оба этих порядка зажигания имеют равные достоинства и ограничения в отношении скручивания коленчатого вала
и неравномерных интервалов дыхания между соседними цилиндрами. Наибольшей популярностью пользуются рядные четырехцилиндровые двигатели
на конденсаторы от 0,75 до 2,0 л.

B. Горизонтально противоположный плоский

Для этой конструкции требуется одноплоскостной коленчатый вал с шатунными шейками, разнесенными на 180 градусов с интервалом
.Поэтому ходы кривошипа спарены так, что шатунные шейки 1 и 4 расположены диаметрально на
мм напротив шатунов 2 и 3 (рис. 2.22). Пусть поршни 1 и 2 находятся в ВМТ, а поршни 3 и 4
— в НМТ, с учетом порядка срабатывания. Пусть поршень 1 находится в конце своего хода
сжатия и только для начала рабочего такта, тогда поршень 2 завершает выпуск, в то время как поршни 3 и 4 находятся на
тактах мощности и такта всасывания соответственно.
Вращение коленчатого вала на 180 градусов помещает поршни 3 и 4 в ВМТ в конце
их соответствующих тактов выпуска и сжатия, а поршень 4
собирается начать рабочий такт.Поршни 1 и
2 находятся в НМТ, завершая соответствующие ходы мощности и
тактов индукции. Порядок срабатывания 1, 4. Второй поворот на 180 градусов приводит поршни 1 и 2 в ВМТ,
в конце их соответствующих ходов выпуска и сжатия
, в то время как поршни 3 и 4 находятся в НМТ com-
выполняя их соответствующие индукционные и силовые ходы.
Порядок срабатывания: 1, 4, 2.
Третье вращение на 180 градусов приводит поршень 3 и
4 в ВМТ в конце их соответствующих тактов сжатия
и выпуска, в то время как поршни 1 и 2 находятся в НМТ
, завершая свои соответствующие индукционно-силовой
ход.Полный порядок стрельбы 1,4,2,3. Последний поворот на 180 градусов на
завершает смещение коленчатого вала на 720 градусов на
.
Плоский четырехцилиндровый двигатель имеет немного лучший динамический баланс, чем рядный четырехцилиндровый двигатель
, но плавность крутящего момента в обоих случаях одинакова. Плоская форма делает
подходящим для двигателей, установленных сзади, но расположенный напротив цилиндр оставляет очень мало места для обслуживания головки
.

Фиг.2.22. Горизонтально-оппозитная плоская четырехцилиндровая
.

C.60 градусов V

В этом расположении цилиндры стреляют через равные интервалы 180 градусов и
расположены под номерами 1 и 2 в левом ряду и числами 3 и 4 в правом ряду.
Шатуны шатунов расположены неравномерно с попеременным интервалом 60 градусов и 120 градусов (рис.
2.23), и они лежат в двух плоскостях, если смотреть спереди.Коренные шейки и подшипники
предусмотрены на каждом конце, с третьей шейкой между шатунными шейками 2 и 3. При таком расположении пары поршней
находятся на вершине своего хода, но в разных рядах цилиндров.
Когда поршни 1 и 4 находятся в ВМТ, любой из них может быть выбран так, чтобы он находился в конце своего хода сжатия
и вот-вот сработает. Тогда другой поршень
будет в конце выпуска и только что начнет свой ход впуска
. Пусть поршни 1 и 4 находятся в конце
тактов сжатия и выпуска соответственно.Вращение коленчатого вала
на 180 градусов помещает поршни 2 и 3 в положение
наверху их соответствующих ходов выпуска и сжатия
, вызывая в этой точке порядок срабатывания 1, 3.
Второй поворот на 180 градусов возвращает поршни 1 и 4
в положение ВМТ, при этом поршень 1 завершил свой ход выпуска
и собирается начать свой ход всасывания, в то время как поршень
4 находится в конце сжатия и собирается начать рабочий ход
. Порядок стрельбы до этого момента 1,3,4.Третий поворот на
на 180 градусов устанавливает поршни 2 и 3 в ВМТ,
с поршнем 2 в конце сжатия и готовится начать
его рабочий ход. Полный порядок зажигания теперь составляет 1, 3,
4, 2. Наконец, четвертый поворот на 180 градусов завершает поворот коленчатого вала на 720
градусов.
Это чрезвычайно компактный двигатель, но динамический баланс
такой компоновки оставляет желать лучшего, требуется дополнительный уравновешивающий вал
.

2.6.5.

Рядный пятицилиндровый агрегат

В этой схеме импульс мощности подается каждые 720 градусов / 5 i.е. 144 градуса поворота коленвала
. Имеется пять ходов кривошипа, все в отдельных плоскостях, расположенных с интервалом 72 градуса
относительно друг друга. Коленчатый вал может иметь коренную шейку и подшипник на каждом конце и
между каждой парой кривошипов, образуя коленчатый вал с шестью коренными шейками. В качестве альтернативы, основные шейки
между шатунными шейками 1 и 2, а также 4 и 5 могут быть удалены с немного уменьшенной опорой
, чтобы получить более короткий коленчатый вал с четырьмя основными шейками. Порядок зажигания учитывается для коленчатого вала
, показанного на рис.2.24.
Когда поршень 1 находится в ВМТ в конце такта сжатия и собирается начать свой рабочий ход, поршни
4 и 5 находятся под 72 градусом от ВМТ на своих тактах впуска и выпуска соответственно.
и поршни 2 и 3 находятся под углом 36 градусов от НМТ на их соответствующих ходах сжатия и мощности
. Вращение коленчатого вала на 144 градуса приводит поршень 2 к верхнему такту сжатия
и началу мощности, в то время как поршни 3 и 5 находятся под 72 градусами от ВМТ на своих соответствующих тактах выпуска и впуска
, а поршни 1 и 4 находятся под 36 градусами от НМТ. на их
соответствующие ходы мощности и сжатия.

Рис. 2.23. «V-образный четырехцилиндровый двигатель.
В конце второго поворота
коленчатого вала на 144 градуса поршень 4 находится вверху, завершает
сжатие и собирается начать свой рабочий ход
. Поршни 1 и 3 находятся под 72 градусами от ВМТ
на их соответствующих ходах выпуска и всасывания
, а поршни 2 и 5 находятся под углом 36 градусов
от НМТ на их соответствующих ходах мощности и сжатия
. В конце третьего поворота кривошипа
на 144 градуса поршень 5 достигает ВМТ,
до конца сжатия и начала своего рабочего хода
.Поршни 1 и 2 находятся под углом 72 °
от ВМТ при их соответствующих тактах подачи и отвода
, а поршни 3 и 4 находятся под углом 36 °
° от НМТ при соответствующих тактах сжатия
и рабочего хода. Четвертый поворот на 144 градуса —
перемещает поршень 3 в ВМТ на такте
сжатия и приближается к началу рабочего такта. Поршни 2 и 4 при этом совершают такты
впуска и выпуска соответственно, а поршни 1 и 5 находятся в тактах сжатия и увеличения мощности соответственно. Такое расположение
обеспечивает порядок срабатывания 1,2,4, 5, 3.Последние 144 градуса поворота завершают смещение коленчатого вала на 720
градусов.
Расстояние между ходами кривошипа при нечетном количестве пяти цилиндров гарантирует, в отличие от четырехцилиндрового механизма
, что поршни не останавливаются и не запускаются вместе вверху. и
нижней части каждого штриха. Следовательно, такое расположение обеспечивает очень плавный ход.
2.6.6.

Расположение с шестью цилиндрами

A. Рядный

Шестицилиндровый рядный двигатель имеет импульс мощности
каждые 720 градусов / 6 л.е. 120 градусов поворота коленвала
. Коленчатый вал имеет шесть кривошипов
, расположенных под углом 120 градусов относительно фазы
друг к другу, которые могут быть расположены
только в трех плоскостях. Поэтому шатун
фазировки расположен попарно (рис. 2.25). Для тяжелонагруженных дизельных двигателей
предусмотрено семь шеек и подшипники
на каждом конце и между соседними шатунными шейками
. Для бензиновых двигателей
предусмотрены только 4 или 5 коренные шейки. Порядок зажигания
с коленчатым валом
, показанным на рис.2.25 считается.
Когда поршень 1 находится в верхней части такта сжатия
, его противоположный поршень 6 находится в верхней части такта выпуска
. Поворот коленчатого вала на 120 градусов приводит поршни 2 и 5 к их ВМТ
, и любой из них может быть приспособлен для завершения такта сжатия. Если поршень 5
расположен в конце сжатия и в начале своего рабочего хода, то поршень 2 должен быть
на своем такте выпуска. Поворот коленчатого вала через вторые 120 градусов положения поршней 3

Рис.2.25. Рядный шестицилиндровый агрегат.

рис. 2.24. Рядный пятицилиндровый агрегат. ,
и 4 в ВМТ, поэтому любой из них может находиться в такте сжатия. Если поршень 3 выполнен как
на сжатие, поршень 4 должен быть на такте выпуска.
Третий поворот на 120 градусов возвращает поршни 1 и 6 обратно в ВМТ, где поршень 6
расположен на сжатии, а поршень 1, следовательно, на своем такте выпуска. Четвертый поворот на
на 120 градусов приводит поршни 2 и 5 в их ВМТ.Поршень 2 теперь находится на уровне сжатия
, а поршень 5 — на такте выпуска. Поворот коленчатого вала на пятое место на 120 градусов приводит поршень
3 и 4 в ВМТ. Поршень 4 находится на стадии сжатия, а поршень 3 — на такте выпуска. Окончательный поворот на
120 градусов завершает смещение коленчатого вала на 720 градусов и переводит поршни в положения
для следующего цикла. Этот цикл обеспечивает порядок срабатывания 1, 5, 3, 6, 2, 4.
Если фазирование парных ходов кривошипа 3 и 4 и 2 и 5 поменяно местами, то второй
, также подходящий порядок срабатывания 1, 4, 2, 6, 3, 5 достигается.Такое расположение обеспечивает превосходный динамический баланс
и равномерность крутящего момента и является предпочтительным для двигателей объемом более 2,5 л.
при условии, что длина не является главным соображением.

B. Горизонтально противоположный плоский

У этого шестицилиндрового двигателя три цилиндра расположены в горизонтальной плоскости с каждой стороны
коленчатого вала. Импульсы мощности синхронизируются, как для рядного шестицилиндрового механизма
, с каждыми 120 градусами поворота коленчатого вала.Коленчатый вал имеет шесть шатунов, расположенных с интервалом 60
градусов вокруг коленчатого вала. Обычно используются пять коренных цапф и подшипники.
Пары поршней, по одному с каждой стороны банка одновременно достигают ВМТ и НМТ (рис.
2.26). Подобно рядному шестицилиндровому двигателю, эта компоновка очень хорошо сбалансирована,
, но ее плоская широкая конфигурация затрудняет установку спереди или сзади автомобиля.
Предположим, что поршни 1 и 2 находятся в ВМТ, при этом поршень 1 находится в конце сжатия и собирается начать рабочий ход
, а поршень 2 — в конце своего такта выпуска.
Поршни 3, 4, 5 и 6 затем находятся под углом 60 градусов от НМТ на
их тактах
выпускного, компрессионного, индукционного и рабочего хода соответственно. Когда коленчатый вал поворачивается на 120
градусов, поршни 3 и 4 достигают ВМТ в конце своих
ходов выпуска и сжатия. Поршни 1, 2,
, 5 и 6 затем находятся под углом 60 градусов от НМТ по их соответствующим ходам мощности, хода впуска, сжатия и выпуска.
Порядок срабатывания в этой точке — 1, 4.
Второе перемещение на 120 градусов помещает поршни 5 и
6 в ВМТ, завершая такты сжатия и выпуска
соответственно.Поршни 1, 2, 3 и 4 затем находятся под углом 60 градусов
от НМТ при тактах выпуска, сжатия, индукции и мощности
соответственно. Порядок стрельбы становится 1,4,5. При третьем повороте на 120 градусов на
поршни 1 и 2 снова устанавливаются в ВМТ
, завершая такты выпуска и такты сжатия
соответственно. Поршни 3, 4, 5 и 6 находятся под углом 6 градусов
от НМТ при тактах сжатия, выпуска, мощности и индукции
соответственно. Порядок срабатывания в этой точке: 1,
4, 5, 2,
. Четвертый поворот на 120 градусов снова помещает поршень 3 и 4 в ВМТ, завершая сжатие
и такты выпуска соответственно.Поршни 1, 2, 5 и 6 находятся под углом 60 градусов от НМТ на своих

Рис. 2.26. Горизонтально-оппозитный плоский шестицилиндровый
.
такты впуска, мощности, выпуска и сжатия соответственно. Порядок срабатывания становится 1,
4, 5, 2, 3. Пятый поворот на 120 градусов снова возвращает поршни 5 и 6 в ВМТ, завершая такты выпуска
и такты сжатия соответственно. Поршни 1, 2, 3 и 4 затем находятся под углом 60 градусов от BDC
при тактах сжатия, выпуска, мощности и впуска соответственно.Полный порядок стрельбы
составляет 1,4,5,2,3,6. Последний поворот на 120 градусов завершает смещение
коленчатого вала на 720 градусов, что позволяет начать следующий цикл.

C. 60 градусов * V Шестицилиндровый

В этой схеме цилиндры стреляют через равные интервалы в 120 градусов. Цилиндры
расположены под номерами 1,2 и 3 в левом ряду и номерами 4, 5 и 6 в правом ряду
. Коленчатый вал использует шесть кривошипов для поддержки вала, расположенных на равном расстоянии с интервалом 60
градусов и расположенных в трех плоскостях.На каждом конце и между парами кривошипных шатунов расположены четыре основных шейки и подшипники
, обеспечивающие поддержку вала, что обеспечивает относительно короткую, но жесткую конструкцию
(рис. 2.27). Относительно хороший динамический баланс обеспечивает короткий компактный двигатель
по сравнению с рядным шестицилиндровым двигателем.
Возможны четыре команды срабатывания, но три из них включают последовательное срабатывание трех цилиндров
в каждом ряду, и только четвертый позволяет поочередно запускать цилиндры из каждого ряда
, имеющего порядок срабатывания 1, 4, 2, 5, 3, 6.Эта компоновка также предлагает лучший выбор из соображений крутильной вибрации
. При таком расположении пары поршней в разных рядах цилиндров
находятся в верхней части своего хода.
Предположим, что поршни 1 и 5 находятся в ВМТ после тактов сжатия и выпуска соответственно, так что
поршень 1 собирается начать рабочий ход, а поршень 5 — такт впуска. При повороте коленчатого вала на угол A120 градусов на
поршни 3 и 4 достигают вершины тактов выпуска и сжатия
соответственно.На этом этапе порядок срабатывания составляет 1, 4. Второй поворот на 120 градусов приводит к позиционированию поршней
2 и 6 в ВМТ на тактах сжатия и выпуска на
соответственно. Порядок срабатывания в этой точке
равен 1, 4, 2.
При третьем повороте на 120 градусов поршни 1 и
5 помещаются в ВМТ на тактах выпуска и сжатия соответственно
, так что в этот момент порядок срабатывания равен 1, 4,
2, 5. Четвертый поворот коленчатого вала
на 120 градусов переводит поршни 3 и 4 в ВМТ на тактах сжатия и
выпусков соответственно.Порядок срабатывания:
: 1, 4, 2, 5, 3. Пятый поворот на 120 градусов
приводит поршни 2 и 6 вверху тактов выпуска и
тактов сжатия соответственно. Таким образом, окончательный порядок срабатывания
составляет 1,4,2,5,3, 6. Следующие 120 градусов поворота на
завершают установку
смещения коленчатого вала на 720 градусов, так что готов к следующему циклу событий.
2.6.7.

Восьмицилиндровый механизм

A. Рядный Прямой

В этой схеме импульс мощности составляет каждые 720
градусов / 8 i.е. 90 градусов поворота коленчатого вала.
Ход коленчатого вала расположен с интервалом 90
градусов друг к другу в порядке импульса мощности.

Рис. 2.27. Vsix-цилиндровое расположение.
ses (рис. 2.28). Может быть только четыре относительных угловых положения. Следовательно, фазировка кривошипа
расположена попарно, и, следовательно, ход кривошипа лежит в двух плоскостях. Для поддержки коленчатого вала требуется пять или
девять основных шейек. Компоновка, представленная на рисунке
, напоминает четырехцилиндровый коленчатый вал в одной плоскости со сдвоенными кривошипами на обоих концах, образующими вторую плоскость
под прямым углом к ​​первой.Такое расположение иногда называют «разделенными четырьмя рядами
» и «восьмеркой».
Пусть поршни 1 и 8 находятся в ВМТ, при этом поршень 1 в конце сжатия готов к срабатыванию, а поршень
8 в конце своего такта выпуска. Поршни 3 и 6 находятся в середине рабочего хода на своих тактах выпуска и сжатия
; поршни 2 и 7 в НМТ в конце индукционного и силового
тактов соответственно; и поршни 4 и 5 в середине хода при их соответствующих мощностных и индукционных
ходах.
При повороте коленчатого вала на 90 градусов поршни 3 и 6 устанавливаются в ВМТ в конце
тактов выпуска и сжатия соответственно.Поршни 2 и 7 в этом случае находятся в середине хода на своих
тактах сжатия и выпуска; поршни 4 и 5 в НМТ в конце рабочего хода и
тактов впуска соответственно; и поршни 1 и 8 в середине рабочего хода при их соответствующих тактах мощности и
тактов всасывания. Порядок зажигания в этом положении — 1, 6.
Второй поворот коленчатого вала на 90 градусов обеспечивает порядок зажигания в этом положении как 1,6,
2. Положение вращения на третий градус дает порядок зажигания как 1, 6, 2, 5. ; четвертый поворот на 90 градусов
положение как 1, 6, 2, 5, 8; пятая позиция поворота на 90 градусов как 1, 6, 2, 5, 8, 3 и шестая позиция поворота на 90 градусов
позиция перемещения как 1, 6, 2, 5, 8, 3, 7.7, 4.
Дальнейшее перемещение на 90 градусов составляет
, всего 720 градусов, и завершает два
оборота коленчатого вала или четыре хода в
готовности к началу следующего цикла. За счет организации
различных пар кривошипов в двигателях
использовались другие порядки зажигания: 1, 5, 2, 6, 4, 8, 3, 7 и 1, 7, 3, 8,
4, 6. , 2, 5.
Чтобы иметь дополнительную способность выдерживать большие нагрузки
, коленчатый вал
может быть удлинен еще на два цилиндра. Несмотря на то, что эта конструкция
динамически сбалансирована, могут возникнуть проблемы с крутильными колебаниями
, а также может быть трудно разместить удлиненную длину
в некоторых грузовиках
.

B. 90 градусов * V восемь с одноплоскостным коленчатым валом

Подобно двухплоскостному коленчатому валу рядного восьмицилиндрового двигателя, одноплоскостная компоновка
, используемая для восьмицилиндрового двигателя, обеспечивает импульс мощности через каждые 90 градусов вращения коленчатого вала. Одноплоскостной коленчатый вал
использует четыре пары шатунов, чтобы внешний и оба внутренних шатуна
были синхронизированы по фазе. Каждый шатун имеет два больших конца шатуна, и обычно для поддержки коленчатого вала используются пять основных шейек
(рис.2.29).

Рис. 2.28. Рядный рядный восьмицилиндровый двигатель.

Рис. 2.29. V-образный восьмицилиндровый двигатель
с одноплоскостным коленчатым валом.
Позвольте поршням 1 и 4 оставаться в ВМТ, при этом поршень 1
в конце сжатия и готов к срабатыванию, а поршень
4 в конце своего такта выпуска. Поршни 2 и 3 находятся в положении
, а затем в НМТ в конце рабочего и индукционного тактов
соответственно; поршни 5 и 8 находятся в середине хода на тактах выпуска и сжатия
соответственно; и
поршни 6 и 7 находятся в середине рабочего хода на впускном и
рабочем тактах соответственно.
Первый, второй, третий, четвертый, пятый и шестой поворот коленчатого вала на 90
градусов обеспечивает порядок зажигания
в их соответствующих положениях, как, 1, 8; 1, 8, 3; 1, 8, 3, 6;
1, 8, 3, 6, 4; 1, 8, 3, 6, 4, 5; и 1, 8, 3, 6, 4, 5, 2. Окончательный порядок зажигания
завершается после поворота на 360 градусов
, т. е. седьмого поворота коленчатого вала
на 90 градусов и составляет 1, 8, 3, 6, 4, 5 , 2, 7.
Восьмой поворот на 90 градусов завершает поворот коленчатого вала на 720
градусов четырехтактного цикла
и готов к следующему циклу событий.
Одноплоскостной коленчатый вал, в отличие от двухплоскостного коленчатого вала
с V-образной восьмеркой, обеспечивает интервалы между соседними цилиндрами не менее 180 градусов из-за
импульсов, а
с модификацией с одним коллектором может быть увеличен с
до 360 градусов, прежде чем могут возникнуть помехи от импульсов. происходить.

C. 90 градусов * V Восьмицилиндровый

с двухплоскостным коленчатым валом
Такое расположение цилиндров обеспечивает стрельбу
с одинаковыми интервалами фаз в 90 градусов.Цилиндры
расположены под номерами 1, 2, 3 и 4 в левой полосе
и под номерами 5, 6, 7 и 8 в правой полосе
, как показано на рис. 2.30. Двухплоскостной коленчатый вал использует
пар кривошипов, фазированных с интервалом 90 градусов.
Каждая шатунная шейка включает в себя два отдельных шатуна
, шарнирно прикрепленных к поршням в разных рядах цилиндров. На каждом конце предусмотрены коренная шейка
и подшипник, а между соседними шатунными шейками
. Поскольку два шатуна
имеют общий шатун, эти коленчатые валы с пятью коренными шейками
чрезвычайно короткие и менее сложные.
Двухплоскостной коленчатый вал имеет динамический баланс, на
намного превосходящий таковой у одноплоскостного коленчатого вала, и, следовательно,
более популярен.
Примите во внимание порядок рабочих ходов цилиндра — кольцо
при вращении коленчатого вала, как показано на рис. 2.30.
С поршнем 1 в ВМТ после такта сжатия и в положении

Рис. 2.30. Восьмицилиндровый V-образный вал 90 градусов
с двухплоскостным коленчатым валом.
начало мощности, поршень 5 находится в середине хода сжатия.Поршень 3 и 7 в этом случае находятся в положении
среднего такта выпуска и в начале выпуска соответственно; поршни 4 и 8 находятся в начале сжатия
и в середине хода всасывания соответственно; а поршни 2 и 6
находятся в середине рабочего хода и в начале всасывания соответственно.
С последующими первым, вторым, третьим, четвертым, пятым, шестым и седьмым поворотами на 90 градусов
коленчатого вала задает порядок зажигания в этом случае как 1, 5, 4, 8, 6, 3, 7, 2. Окончание восьмой поворот на 90
градусов завершает смещение коленчатого вала на 720 градусов.
2.6.8.

Двенадцать цилиндров

Эти двигатели изначально предназначались для самолетов. Но некоторые автомобили, такие как Rolls Royce,
Packard, Lincoln Zephyer и Daimler «Double» Six, также использовали эти двигатели. Эти
обеспечивают намного превосходящий крутящий момент и идеальный динамический баланс, но имеют дополнительное усложнение и высокую стоимость изготовления.
По сути, двенадцатицилиндровый агрегат состоит из двух рядных шестицилиндровых двигателей, каждый из которых
образует ряд, наклоненный под углом 60 или 75 градусов.Они используют общий коленчатый вал
и распределительный вал с шестью наборами вилочных и простых соединительных стержней. Для достижения наилучших результатов в двигателе используются пара магнитных катушек зажигания
, два циркуляционных насоса и два карбюратора. Эти двигатели
имеют порядок включения 1, 4, 9, 8, 5, 2, 11, 10, 3, 6, 7, 12. Итальянский Ferrari — единственный автомобиль
, который производится с двенадцатицилиндровым двигателем. двигатель.
2.6.9. Расположение шестнадцати цилиндров
Эти двигатели имеют два набора прямых восьмицилиндров, наклоненных под углом или «V», и
идеально сбалансированы.Этот двигатель работает плавно благодаря непрерывному потоку мощности через
восемь импульсов мощности, равномерно распределенных на каждый оборот коленчатого вала. Порядок включения цилиндров
: 1, 4, 9, 12, 3, 16, 11, 8, 15, 14, 7, 6, 13, 2, 5, 10. Автомобиль Cadillac
использует этот двигатель и имеет Диаметр цилиндра и ход поршня 88,9 мм каждый, объем цилиндра
7060 куб. см, мощность 136 кВт при 3600 об / мин. Цилиндры, расположенные в двух рядах по восемь цилиндров
в каждом, наклонены под углом 135 градусов.Одна отливка включает оба ряда цилиндров и большую на
часть картера. Типы толкателей клапанов с гидравлической компенсацией используются для
, автоматически поддерживая правильный зазор.

Вот почему разные типы двигателей звучат так по-разному — Особенность — Автомобиль и водитель

ДЖУСТИН МАКОНОЧИ

Из январского выпуска 2015 г. Автомобиль и водитель

Что отличает плоский шестицилиндровый двигатель Porsche от Toyota Avalon V-6 — помимо угла крена, выходной мощности, расположения двигателя и вашей заинтересованности в его покупке? На полном газу Porsche издает агрессивный механический скрежет, в то время как Avalon издает неугрожающий звук.Как два шестицилиндровых двигателя могут звучать так по-разному?

Прежде чем мы ответим на этот вопрос, краткое руководство по звуку: он возникает как вибрация, вызывающая нарушения давления воздуха, воздействующие на наши барабанные перепонки. Частота или герц (Гц) звуковой волны — сколько раз волна колеблется в секунду — определяет, как наш мозг обрабатывает и интерпретирует ее как определенный тон. Чем выше частота, тем выше тон, и наоборот. Двигатель автомобиля под нагрузкой воспроизводит диапазон частот, но его основная нота — высота звука, на которой построен музыкальный аккорд — определяется его так называемой доминирующей частотой.

Эти звуковые колебания возникают в результате сгорания в каждом цилиндре и соответствующих волн давления во впускной и выпускной системах. Все они привязаны к частоте вращения двигателя; по мере того, как обороты повышаются и падают, высота звука повышается и понижается.

Вычислить эту доминирующую частоту при любых оборотах несложно. Сначала вы конвертируете обороты двигателя в герцы, единицу частоты, по следующей формуле: 60 об / мин = 1 оборот в секунду или 1 Гц. Таким образом, можно сказать, что двигатель V-6, вращающийся со скоростью 1800 об / мин, работает с частотой 30 Гц (1800/60 = 30).

Но поскольку четырехтактный двигатель запускает каждый цилиндр только один раз за каждые два оборота кривошипа, нас беспокоит только половина цилиндров двигателя. Умножьте наше значение 30 Гц на три (количество событий зажигания на один оборот коленчатого вала для шестицилиндрового двигателя), и вы получите доминирующую частоту 90 Гц, которая определяет звук шестицилиндрового двигателя при 1800 об / мин. По мере увеличения оборотов двигателя частота зажигания увеличивается пропорционально.

В шестицилиндровом двигателе его также называют «третьим порядком двигателя», потому что частота вращения в три раза превышает частоту вращения двигателя.В восьмицилиндровом двигателе частота работы двигателя соответствует четвертому порядку; в V-10 он пятый.

Но эта частота третьего порядка — всего лишь один из компонентов тембра шестицилиндрового двигателя, что является причудливым термином для обозначения его отличительного звукового характера. Даже если плоская шестерка генерирует ту же доминирующую частоту третьего порядка, что и V-6, наш Porsche и наша Toyota все равно могут звучать очень по-разному. Общий тембр двигателя зависит от тысяч переменных, поскольку частота зажигания вызывает дополнительные колебания в конструкции и водопроводе.У большинства хриплых, агрессивно звучащих машин очень высокие полустройства, например, в 2,5 и 3,5 раза выше частоты стрельбы. Они производят рычание, желаемое для спортивного автомобиля. Обычно они регулируются настройкой выхлопа. Относительная громкость высших порядков определяет различные тембры этих двух двигателей. Это высота звука, которая строится на основной ноте, чтобы создать характерный аккорд двигателя.

Какие вспомогательные частоты разрешены для пения, а какие приглушены — это работа инженера по шуму, вибрации и резкости (NVH).Глушитель выхлопа подавляет некоторые неприятные частоты, которые в противном случае могли бы резонировать в салоне при определенной нагрузке и частоте вращения. Звук каждого двигателя является продуктом целого оркестра втулок, диаметров труб и сотен металлических деталей разной толщины, а также конструктивных факторов, таких как расположение выхлопных газов, изоляция и кожух кузова.

«Каждый цилиндр издает грохот, а форма двигателя, порядок зажигания и расположение [выпускного] коллектора определяют, как удары смешиваются друг с другом», — говорит Мэтт Маундер, специалист по шуму и вибрации трансмиссии в Ricardo.

Представьте себе два громких и гордых восьмицилиндровых двигателя, которые ни на что не похожи. Порядок включения плоского (180-градусного) кривошипного двигателя V-8 Ferrari 458 Italia чередуется между рядами цилиндров, создавая шелковистый, звучный звук. Напротив, малоблочный восьмицилиндровый двигатель Chevy Corvette издает неровное бормотание из-за его кривошипа, расположенного в поперечной плоскости (90 градусов), и порядка зажигания, который дает импульсы с неравномерным интервалом от каждого ряда цилиндров.

Так почему же Toyota V-6 звучит иначе, чем «шестерка» Porsche? По той же причине, что никто никогда не ходит в Метрополитен, чтобы послушать Mötley Crüe.

Цвета ветра

Эти графики быстрого преобразования Фурье (БПФ), созданные для нас экспертами по NVH из Sound Answers, показывают частоты, записанные на выхлопных трубах соответствующего автомобиля во время пробега через шестерни. Цвет указывает громкость в децибелах (желтый — самый громкий, указывает на доминирующие частоты), а вертикальная ось показывает частоты (более высокая частота создает более высокий тон).

ДЖУСТИН МАКОНОЧИ

Как заставить шесть звучать как восемь

Электронное улучшение звука, также известное как то, что вы действительно ненавидите в новейших автомобилях BMW M, использует динамики салона или электромагнитный шейкер, прикрепленный к противопожарной стене, для создания собственного саундтрека к внутреннему сгоранию.Зная только обороты двигателя и нагрузку, можно полностью изменить воспринимаемый тембр двигателя. Если вы хотите, чтобы шестицилиндровый двигатель звучал как V-8, при 1800 об / мин вы генерируете 120 Гц и кратные этой частоте четвертого порядка, а не естественную частоту третьего порядка шестицилиндрового двигателя, равную 90 Гц. Искусственное улучшение может быть табу среди пуристов, но оно становится все более популярным среди автопроизводителей, поскольку дешево, эффективно и добавляет минимальный вес.

ДЖУСТИН МАКОНОЧИ

По мнению федеральных властей, легковые автомобили и малотоннажные грузовики могут быть настолько громкими, насколько автопроизводители осмеливаются их строить.Тем не менее, инженеры рассматривают правила проезжающего шума, установленные в различных штатах, округах и городах, как национальные правила для упрощения логистики производства и продаж. Пределы громкости варьируются от 80 до 96 дБА, а иногда и выше, в зависимости от местности и типа автомобиля. Процедура испытания определена стандартом SAE J986, который требует, чтобы автомобиль разгонялся на полностью открытой дроссельной заслонке с начальной скорости 30 миль в час на второй или третьей передаче до красной черты.

ДЖУСТИН МАКОНОЧИ

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

(PDF) Анализ шума и вибрации 6-цилиндрового дизельного двигателя SL 90 типа

Международный журнал науки и передовых технологий (ISSN 2221-8386) Том 1 № 2 апрель 2011 г.

http://www.ijsat.com

55

Анализ динамической вибрации для многоцилиндрового двигателя

Дизельный двигатель SL90 типа

Nilesh Dimbale, Ashok Bhujbal, Rahul Hanabar, S.Х. Гаванде, Л. Г. Навале, Ганеш Дафал

Инженерный колледж общества современного образования, Пуна-411001.

Махараштра, Индия.

Электронная почта: [email protected]

Аннотация. В данной работе представлен упрощенный подход к динамическому анализу вибрации

для нахождения первичных и вторичных моментов

6-цилиндрового рядного дизельного двигателя типа SL90. Поршневые двигатели

широко используются в качестве источника энергии поколения

в различных механических приложениях, начиная от производства электроэнергии

до автомобилей.Эти двигатели подвержены

шуму, вибрации и резкости, вызванным неуравновешенной инерцией

сил и моментов, которые дополнительно усложняют их работу

. Для минимизации вибрации рассматриваемый поршневой двигатель

анализируется на наличие неуравновешенных сил и моментов

для различной конфигурации цилиндров и срабатывания

порядков. Код C ++ был разработан для этого анализа, чтобы минимизировать время и вычисления.На основе проведенного анализа

установлено, что для той же конфигурации рядного шестицилиндрового двигателя

можно сравнить с виртуальным V-образным двигателем на основе

результирующих первичных и вторичных сил и моментов. Предлагаемая V-образная конфигурация

уменьшает общую длину, высоту и вес двигателя

по сравнению с эквивалентной линейной конфигурацией

. Из аналитического анализа установлено, что если такой же 6-цилиндровый рядный двигатель

преобразовать в V-образный двигатель, уровень

амплитуд первичных и вторичных моментов снижается до

на 50%.

Ключевые слова — Inline Engine; Первичный и вторичный момент, двигатель типа V-

, анализ вибрации

ВВЕДЕНИЕ

Большой интерес промышленности двигателей и исследовательского центра

по вибрации поршневого двигателя обусловлен

положительными результатами, полученными с использованием различных подходов.

Уравновешивание сил сотрясения и моментов сотрясения во внутреннем двигателе внутреннего сгорания

важно для улучшения их динамических характеристик

за счет снижения вибрации, шума и износа.

Поршневой двигатель — это тепловой двигатель, который использует один или несколько возвратно-поступательных поршней

для преобразования давления во вращательное движение

. Они широко используются в автомобилях, генераторах

и самолетах. Двигатели, использующие более одного цилиндра

, являются многоцилиндровыми двигателями, которые широко используются в настоящее время. Эти двигатели могут быть рядными, v-образными или радиальными. Рядные двигатели

обычно встречаются в четырех- и шестицилиндровых конфигурациях

, со всеми цилиндрами, выровненными в один ряд, без смещения

.Они использовались в автомобилях, локомотивах и самолетах

, хотя термин «рядный» имеет более широкое значение, когда

применяется к авиационным двигателям. Рядный двигатель

значительно легче построить, чем аналогичный горизонтально

оппозитный или V-образный двигатель, потому что и ряд цилиндров, и коленчатый вал

можно фрезеровать из цельного металлического литья, а для

требуется меньше головок цилиндров и распределительных валов. .Рядные двигатели

также намного меньше по габаритным физическим размерам, чем двигатели

, такие как радиальные, и могут быть установлены в любом направлении.

Прямые конфигурации проще, чем их V-образные аналоги

. У них есть опорный подшипник

между каждым поршнем, по сравнению с двигателями с плоским двигателем и V-образным двигателем, которые имеют опорные подшипники

между каждыми двумя поршнями. V-образный двигатель — это общая конфигурация

для двигателя внутреннего сгорания.Цилиндры

,

и поршни выровнены в двух отдельных плоскостях или «рядах», так что

выглядят как «V», если смотреть вдоль оси

коленчатого вала. V-образная конфигурация обычно уменьшает общую длину, высоту и вес двигателя

по сравнению с эквивалентной линейной конфигурацией

. В разных двигателях используются различные углы наклона ряда цилиндров

V; В зависимости от количества цилиндров

могут быть углы, которые лучше других подходят для устойчивости

.Обычно и широко используемый угол V составляет 90˚. Двигатели V

обычно используются в автомобилях и самолетах.

Точное прогнозирование механического шума и вибрации двигателя

анализируется в [1], в котором автор

представляет современные возможности CAE в модели

динамического и акустического поведения двигателя. двигатель

и фокусируется на относительных достоинствах модификации и полной структурной / акустической оптимизации

двигателя, вместе с

создание новых малошумных конструкций.Принимая во внимание, что полное усилие

и балансировка момента линейных четырехзвенных рычагов объяснены

в [2], в котором представлены расчетные уравнения и методы

, которые позволяют встроенному четырехзвенному рычажному механизму быть полностью сбалансированным по усилию

и моменту, независимо от любой вариации входной

угловой скорости. Конструкция коленчатого вала для полной балансировки первичной неуравновешенной силы

в поршневом двигателе

поясняется в [3].Новый метод определения полного набора

плоских четырехзвенных рычагов, сбалансированных по силе и моменту, — это

, представленный в [4], с использованием комплексных переменных для моделирования кинематики

рычажного механизма, силы, в которой момент

балансирующих ограничений записываются в виде алгебраических уравнений над

комплексными переменными и совместными угловыми скоростями. Решение

задачи, как в [2, 4], уравновешивание момента сотрясения и сотрясения

планарных механизмов различными методами

на основе генерации движений противовесов

объяснено в [5] и [6].

Плюсы и минусы разных типов двигателей

Наиболее распространенные типы двигателей — четырехцилиндровый, четырехцилиндровый, рядный шестицилиндровый, V6 и V8 — имеют свои плюсы и минусы. Вот все, что вам нужно знать, в одном удобном руководстве …

Что делает большую мощность, 4.0-литровый двигатель V6 или 4,0-литровый V8? Ответ не так прост. При обсуждении различных двигателей компоновка не является самым большим фактором, влияющим на их мощность. Приложив немного изобретательности (а вы знаете, денег), четырехцилиндровый двигатель может развить столько же мощности, что и V12. Так что же заставляет производителей выбирать разные компоновки двигателей? Вот преимущества и недостатки каждого макета.

1.Четырехцилиндровый рядный четырехцилиндровый

Начнем с одного из самых распространенных двигателей — рядного четырехцилиндрового двигателя. Есть причина, по которой это распространено, в основном потому, что это так просто: один ряд цилиндров, одна головка цилиндров и один клапанный механизм. Вот все, что вам нужно знать:

Преимущества:

  • Четырехцилиндровый рядный четырехцилиндровый двигатель мал и компактен, что означает, что он легко помещается практически в любой моторный отсек.
  • Кроме того, он легкий, а вес всего лишь с одним выпускным коллектором еще меньше.
  • При только одной головке блока цилиндров меньше движущихся частей, чем в двигателях с несколькими рядами цилиндров. Это означает меньшие потери энергии, что снижает вероятность неисправностей.
  • Первичные силы уравновешены, потому что два внешних поршня движутся в противоположном направлении по сравнению с двумя внутренними поршнями (см. Рисунок выше).
  • Четырехцилиндровые двигатели просты в эксплуатации; Головка блока цилиндров является самой высокой точкой, что упрощает работу свечей зажигания и доступ к клапанному механизму.
  • Четырехцилиндровые двигатели требуют меньших производственных затрат.

Недостатки:

  • Вторичные силы не сбалансированы, что в конечном итоге ограничивает размер двигателя.
  • Рядные четверки редко превышают 2,5–3,0 литра.
  • Более крупные четырехцилиндровые двигатели часто требуют балансировки валов для гашения вибрации, вызванной вторичным дисбалансом.
  • Высокий центр тяжести по сравнению с некоторыми вариантами (h5).
  • Не такой жесткий, как у некоторых макетов (V6, V8).

Вот краткое видео объяснение четырехцилиндрового двигателя:

2.Горизонтально-оппозитный

С точки зрения производительности не так много вариантов, столь же привлекательных, как двигатель с горизонтально расположенными цилиндрами. Boxer Four не так распространен, как другие двигатели в этом списке, но с инженерной точки зрения это логичный выбор для вашего гоночного автомобиля.

Преимущества:

  • Первичные и вторичные силы хорошо сбалансированы.Это плавный двигатель.
  • Это позволяет уменьшить вес коленчатого вала, что приводит к меньшим потерям мощности из-за инерции вращения.
  • Низкий центр тяжести упрощает управление.

Недостатки:

  • Размер упаковки: это очень широкие двигатели.
  • Плоские двигатели когда-то использовались в Формуле 1 из-за их преимуществ в производительности, но из-за своей ширины они препятствовали воздушному потоку и больше не используются.
  • Сложность — две головки блока цилиндров / клапанный механизм.
  • Качающаяся пара (дисбаланс плоскостей) из-за смещения поршней для соединения шатунов с коленчатым валом.
  • Техническое обслуживание может быть затруднено, если упаковка герметична.

3.Рядная шестерка

Объект привязанности инженеров, рядная шестерка — результат присоединения еще двух цилиндров к рядному четырехцилиндровому двигателю. BMW любит их, и это компоновка одного из самых известных двигателей с наддувом — 2JZ. Так что же такого особенного в рядной шестерке?

Преимущества:

  • Рядная шестерка сбалансирована по своей сути.
  • Компоновка в сочетании с порядком зажигания обеспечивает, по сути, самый плавный двигатель.
  • V12 и Flat-12 — это следующий шаг к дальнейшему снижению вибрации, так как это два I6, сочетающиеся друг с другом.
  • Более низкая стоимость производства — единый блок цилиндров со всеми цилиндрами в одной ориентации.
  • Простой дизайн, легко работать, как и I4.

Недостатки:

  • Упаковка может быть затруднена из-за длины.
  • Не подходит для автомобилей FWD.
  • Высокий центр тяжести (по сравнению с плоскими двигателями).
  • Более низкая жесткость, чем у V-образных двигателей, поскольку он длинный и узкий.

Вот краткое видеообъяснение прямой шестерки:

4.V6

Теперь разрежьте эту прямую шестерку пополам и совместите два ряда цилиндров с общим кривошипом. V6 — это обычная компоновка, когда задействовано шесть свечей зажигания. Это также текущая компоновка двигателей Формулы-1. Зачем это нужно?

Преимущества:

  • Они компактны и могут легко использоваться как для автомобилей с передним, так и с задним приводом.
  • Обеспечивает больший рабочий объем, чем четырехцилиндровые двигатели, что обычно означает большую мощность.
  • Жесткая конструкция.
  • Формула 1 решила использовать в сезоне 2014 года двигатели V6, а не I4, потому что они хотели использовать двигатель в качестве напряженного элемента автомобиля.

Недостатки:

  • Две головки блока цилиндров означают добавленную стоимость, сложность и вес.
  • Дополнительная инерция вращения и трение (больше движущихся частей).
  • Высокий центр тяжести по сравнению с плоскими двигателями.
  • Стоимость часто превышает встроенную.
  • Вторичный дисбаланс требует дополнительной нагрузки на коленчатый вал.
  • Два выпускных коллектора означают дополнительный вес.

5.V8

Когда вы добавляете цилиндр к каждому блоку V6, вы получаете значок как в американской мускулистой, так и в европейской экзотике — V8. Он может издавать изысканный вой или дрожащее бормотание. Так что же делает этот макет таким популярным?

Преимущества:

  • Размер упаковки (короткая по длине).
  • Хорошая балансировка, в зависимости от типа коленчатого вала и порядка зажигания (плоскость или поперечная плоскость).
  • Жесткая конструкция.
  • Обеспечивает большой рабочий объем.

Недостатки:

  • Двигатель V8, как и V6, может иметь большой вес.
  • Дополнительная инерция вращения и трение (больше движущихся частей).
  • Стоимость и сложность будут выше.
  • Более высокий центр тяжести по сравнению с плоскими двигателями.
  • Масса двигателя обычно увеличена.
  • Упаковка большая, обычно только для автомобилей с задним и полным приводом.

Сообщите нам ниже, какой тип двигателя вы используете в настоящее время, и что вам нравится и что не нравится в нем.

Торсионные характеристики выходной мощности поршневого двигателя, EPI Inc.

Крутильное воздействие поршневых двигателей на оборудование, на котором они работают

ПРИМЕЧАНИЕ: Все наши продукты, конструкции и услуги ЯВЛЯЮТСЯ ОРГАНИЧЕСКИМИ, БЕЗ ГЛЮТЕНА, НЕ СОДЕРЖАТ ГМО и не нарушат чьи-либо драгоценные ЧУВСТВА

Чтобы разработать оборудование, которое будет приводиться в движение поршневыми двигателями, необходимо понимать природу продукции, производимой поршневыми двигателями.В отличие от турбины или электродвигателя, поршневой двигатель производит не плавную мощность, а очень «комковатую». Интенсивность этой «комковатости» зависит от количества цилиндров и равномерности порядка зажигания. В следующих подразделах дается объяснение крутильных возбуждений поршневого двигателя.

Поршневые двигатели

часто называют двигателями внутреннего сгорания (ВС), что является неправильным названием. «IC» на самом деле означает ПРЕРЫВНОЕ ГОРЕНИЕ.

В результате прерывистого сгорания и движения поршня, описанного на предыдущей странице, поршневой двигатель представляет собой вибрационную машину.Он генерирует горизонтальные и вертикальные сотрясения, передний и задний качающие моменты, а также изобилие крутильных колебаний. Торсионная составляющая на выходе является предметом данного обсуждения.

ОДНОЦИЛИНДРОВЫЙ ДВИГАТЕЛЬ

Рассмотрим, как работает 4-тактный поршневой двигатель. При каждом повороте коленчатого вала на 720 ° каждый цилиндр в современном 4-тактном поршневом двигателе создает выходной крутящий момент при вращении коленчатого вала примерно от 140 ° до 160 ° (в зависимости от абсолютного давления в коллекторе, КПД двигателя, частоты вращения двигателя, характеристик топлива и т. Д.), и требует крутящего момента , вход во время оставшегося вращения от 560 ° до 580 °. Общая форма этой характеристики мгновенного крутящего момента при полностью открытой дроссельной заслонке хорошо известна и показана на рис. 1 .

Рисунок 1

Обратите внимание, что пиковое значение выходного крутящего момента примерно на , в 15 раз больше, чем средний выходной крутящий момент двигателя (крутящий момент, который измеряет динамометр). Также обратите внимание, что кривая крутящего момента содержит отрицательный пик (впадину), который почти в 5 раз превышает среднего крутящего момента двигателя.(Впечатляет, что двигатель вашей газонокосилки остается вместе, не так ли?)

Теперь давайте рассмотрим характеристики крутящего момента различных конфигураций многоцилиндровых двигателей. Следующие ниже графики представляют работу с полным открытием дроссельной заслонки для различных конфигураций двигателя и показывают форму кривой крутящего момента, которую каждый двигатель применяет к тому, что подключено к выходному фланцу коленчатого вала. Значения крутящего момента отображаются в процентах от среднего крутящего момента.

Эти диаграммы были подготовлены путем математического наложения данных для одного цилиндра, показанных на Рисунке 1, чтобы показать влияние различных компоновок двигателя.Однако помните, что, хотя эти кривые были построены математически, они не представляют собой какую-то форму инженерной фантазии. Они имеют поразительное сходство с реальными данными, которые мы получили от приборов, установленных поперек датчика нагрузки на динамометрическом стенде двигателя.

На любом двигателе форма и амплитуда сигнала могут отличаться от показанных, в зависимости от конкретных деталей двигателя. Однако факт остается фактом: мощность поршневого двигателя состоит из пиков и впадин, а пики значительно превышают измеренный крутящий момент двигателя.

Вы можете заметить, что, как правило, с увеличением количества цилиндров пиковые амплитуды уменьшаются, и форма сигнала имеет тенденцию становиться более приблизительно синусоидальной.

В этом разделе представлены общеизвестные двигатели «с равномерным зажиганием» , а также несколько двигателей с «нечетным зажиганием» . Двигатель с равномерным зажиганием — это двигатель, в котором срабатывание каждого цилиндра отделено от его предшественника одинаковым угловым ходом коленчатого вала. Двигатель с нечетным зажиганием — это двигатель, в котором каждый цилиндр работает с другим интервалом вращения, чем его предшественник.Машины с нечетным зажиганием интересны тем, что они производят более сложное возбуждение, возникающее из-за неравномерного интервала между импульсами, а также потому, что близко соседние импульсы соединяются неожиданным образом, что может повысить амплитуды возбуждения и изменить форму волны, создавая значительные гармоники более высокого порядка.

ДВИГАТЕЛЬ ЧЕТЫРЕХ ЦИЛИНДРОВ

В стандартном рядном или горизонтально-оппозитном четырехцилиндровом двигателе срабатывает один цилиндр через каждые 180 ° поворота коленчатого вала. Кривая на Рис. 2 кривая мгновенного крутящего момента для равномерно работающего 4-цилиндрового двигателя, измеренная на выходном фланце коленчатого вала.

Рисунок 2

Обратите внимание, что форма волны на рис. 2 содержит два пика крутящего момента, которые почти на 300% выше среднего крутящего момента, и две впадины крутящего момента, которые примерно на 200% ниже среднего крутящего момента. Эта форма волны является примером возбуждения «второго порядка», потому что на один оборот коленчатого вала приходится два полных импульса (цикла) крутящего момента вверх и вниз.

Также обратите внимание, что эта форма волны приближается к пилообразной, а в нижней части впадины есть небольшая отрицательная «точка», что означает, что выходной сигнал двигателя содержит сложную смесь гармонических порядков.Форма волны и реверсирование крутящего момента делают очевидным, что конструкторы металлических воздушных винтов проделали потрясающую работу.

ШЕСТИЦИЛИНДНЫЙ ДВИГАТЕЛЬ EVEN-FIRE

В стандартном 6-цилиндровом двигателе с рядным, горизонтально-оппозитным или V-образным расположением под 60 ° срабатывает один цилиндр через каждые 120 ° поворота коленчатого вала. (Один вариант GM 90 ° -V-6 имеет коленчатый вал с разъемным штифтом, который имеет смещение 30 ° между соседними шатунами для обеспечения равномерного зазора в 120 °). На рис. 3 показана форма кривой крутящего момента 6-цилиндрового двигателя с равномерным запуском, который представляет собой возбуждение третьего порядка, имеющее три пика на оборот.

Рисунок 3

Обратите внимание, что в результате более близко расположенных импульсов мощности величина, на которую пики превышают среднее значение, меньше, чем в примере с 4 цилиндрами, и хотя впадины все еще опускаются ниже нуля, отрицательная амплитуда уменьшается. Также обратите внимание, что форма сигнала по-прежнему напоминает пилообразную кривую и имеет некоторую неправильную форму в долине отрицательного импульса, что указывает на наличие сложных гармоник.

ШЕСТИЦИЛИНДРОВЫЙ ДВИГАТЕЛЬ ODD-FIRE

Примером нестандартного двигателя является GM 90 ° -V6 с коленчатым валом с «общим штифтом» (концептуально это компактный Chevy V8 с вырезанными цилиндрами 3 и 4). Эта версия V6 часто используется в высокопроизводительных приложениях, потому что кривошип с общим штифтом немного сильнее, чем кривошип со сплошным штифтом, используемый в двигателях GM 90 ° -V6 с равномерным зажиганием.

При такой компоновке импульсы зажигания неравномерно распределены и возникают с интервалами вращения коленчатого вала 150 ° -90 ° -150 ° -90 ° -150 ° -90 °.Этот двигатель производит сложную смесь возбуждения крутящего момента, как показано на Рисунок 4 .

Рисунок 4

С точки зрения скручивания этот двигатель ужасен. Он демонстрирует связь по соседним импульсам, неравномерное расстояние между соседними пиками и значительные провалы в отрицательный диапазон крутящего момента. Эта конкретная кривая содержит большие составляющие возбуждения порядка 1,5, 2,4 и 4 th (и другие), которые может быть трудно подавить. Известно, что высокопроизводительные шестицилиндровые шестицилиндровые двигатели способны разрушить самые прочные приводные валы динамометров за довольно короткое время.

8-ЦИЛИНДРОВЫЙ ДВИГАТЕЛЬ EVEN-FIRE

В двигателе V8 стандартной компоновки (как двухплоскостной, так и одноплоскостной коленчатый вал) один цилиндр срабатывает через каждые 90 ° поворота коленчатого вала. На рисунке 5 показана характеристика мгновенного крутящего момента для этого типа двигателя. Это возбуждение четвертого порядка, которое при 800 об / мин на холостом ходу производит 53 импульса в секунду (Гц), а при 5000 об / мин производит 333 импульса в секунду (Гц).

Обратите внимание, что в этой схеме из-за близкорасположенных импульсов мощности впадины не опускаются ниже нуля.

Рисунок 5

На рис. 5 показано, что амплитуда пикового крутящего момента примерно вдвое превышает средний крутящий момент двигателя. Этот конкретный двигатель производит средний крутящий момент 625 фунт-фут. при определенных оборотах, но при этом среднем значении крутящего момента мгновенные пики крутящего момента составляют около 1235 фунт-фут. и долины около 68 фунтов-футов. Обратите внимание, что форма волны по-прежнему выглядит как пилообразная, хотя и более округлая, чем в предыдущих примерах.

ДВИГАТЕЛЬ EVEN-FIRE 12 ЦИЛИНДРОВ

В 60 ° V-12, 120 ° V12 или горизонтально расположенном 12-цилиндровом двигателе один цилиндр срабатывает через каждые 60 ° вращения коленчатого вала, производя шесть импульсов мощности на один оборот коленчатого вала. На рисунке 6 показана характеристика мгновенного крутящего момента для этого типа двигателя. Обратите внимание, что в этой схеме, в результате еще более близко расположенных импульсов мощности, пики выходят только на 40% выше среднего, а впадины — только на 40% ниже среднего.

Рисунок 6

Эта форма волны генерируется двигателями Allison и Merlin V-12, которые приводили в действие значительное количество успешных самолетов Второй мировой войны (P-38, P-39, P-40, P-51, P-63, Spitfire, Hurricane, Lancaster). и т. д.), не говоря уже о бесчисленных Ferrari, Maserati, Lamborghini, Jaguar и других автомобильных двигателях V-12.

ДВИГАТЕЛЬ ODD-FIRE V-12

Некоторые примеры двигателей с нечетным зажиганием демонстрируют неожиданную характеристику: когда один цилиндр очень близко следует за своим предшественником, последующий импульс объединяется с предшествующим импульсом, чтобы произвести один больший импульс крутящего момента, и форма выходного сигнала изменяется на порядок двигателя с половина количества цилиндров. Следовательно, частота возбуждения вдвое меньше, чем у равномерно расположенного двигателя V-12, а амплитуда значительно больше.

Конкретный пример этого явления — двигатель V-12 под углом 90 °, используемый в китплане некой копии самолета Warbird (P-51). Этот необычный двигатель, по сути, представляет собой пару рядных шестицилиндровых двигателей, физически разделенных на 90 ° друг от друга, но имеющих общий коленчатый вал 120 °. Он имеет интервал между импульсами зажигания 90 ° -30 ° -90 ° -30 °, что дает форму выходного сигнала, показанную на рис. 7 .

Рисунок 7

Обратите внимание, как цилиндр, который следует за своим предшественником только на 30 °, комбинируется с предыдущим, чтобы получить форму волны порядка 3 -го порядка вместо чистых 6 -го порядка , как у равномерного V-12.

Пики крутящего момента этого двигателя составляют примерно 140% от среднего крутящего момента вместо 40%, обычно ожидаемых от равномерного V-12 (Allison, Merlyn и т. Д., Как показано на , рис. 6, ), а впадины расширяются. ниже нуля (примерно -120% среднего крутящего момента). Также обратите внимание, что форма импульса меньше похожа на синусоидальную волну, а больше на пилообразную волну. Такая форма предполагает наличие в возбуждении сложных гармонических составляющих.

Существенная разница между этим двигателем и V-12 равномерного горения может привести к некоторым очень неприятным сюрпризам, если система PSRU не будет спроектирована с учетом характеристики крутящего момента этого конкретного двигателя.В данном случае спасительным преимуществом может быть тот факт, что (а) PSRU на этом конкретном двигателе является подделкой Orenda ™ PSRU, которое очень велико, но начало проявлять вызванные вибрацией проблемы при эксплуатации более 150 часов. и (b) силовая установка V-12, описанная здесь, поставляется с композитным винтом MT с 4 лопастями, который вполне прощает большие количества крутильного возбуждения. Только накопленный сервис покажет, соответствует ли данный PSRU работе.

ОБНОВЛЕНИЕ ПСРУ V-12

Недавно мы видели несколько таких нестандартных V-12 PSRU отдельно для проверки и ремонта после примерно 100-125 часов работы в полете.. В результате этих проверок группа строителей заключила контракт с EPI на разработку решения для устранения этих вибраций, приводимых в движение двигателем. EPI разработала реализацию своей очень успешной системы изоляции привода для этой силовой установки, но правильное решение было сочтено «слишком дорогим». {9000 долларов слишком дорого, чтобы починить самолет за 250 000 долларов ?? — — — Перейти Рисунок.}

Вместо этого EPI попросили разработать модернизируемый пластырь для предотвращения катастрофического вылета карданного вала из коробки передач в полете.Это исправление было установлено (насколько нам известно) во всех оставшихся примерах этого самолета. Реальное решение проблемы вибрации остается разработанным, но не реализованным.

Двигатель

V — Engineering Learn

Двигатель V-типа

Введение двигателя V

Двигатель V: — Двигатель типа V также называется двигателем Vee, который имеет общую конфигурацию для двигателей внутреннего сгорания. Конфигурация V-образного двигателя состоит из двух рядов цилиндров, имеющих одинаковое количество цилиндров в каждом ряду, которые взаимосвязаны с общим коленчатым валом.Ряды цилиндров расположены, в частности, под углом друг к другу, чтобы образовывать V-образную форму из рядов, если смотреть спереди двигателя.

Установлено, что V-образные двигатели имеют меньшую длину по сравнению с любыми другими двигателями и, в частности, по сравнению с рядными двигателями, тогда как компромисс имеет большую ширину. Наиболее распространенная компоновка автомобильного двигателя — это двигатель V6, V8 или V12, который имеет шесть, восемь или двенадцать цилиндров соответственно.

История V-образного двигателя

Первый V-образный двигатель, двухцилиндровый или V-образный, был разработан очень известным человеком Вильгельмом Майбахом, который использовался в 1889 году на автомобиле Daimler Stahlradwagen.

После того, как V-образные двигатели были обнаружены, в 1903 году был выпущен первый двигатель V8, который был разработан Леоном Левавассером и использовался в гоночных лодках и самолетах. Первые двигатели V12 были произведены на заводе Putney Motor Works в Лондоне, который также использовался в гоночных лодках. Первый двигатель V6, который был запущен в производство, появился вскоре после 1908 года немецкой компанией для использования в качестве генератора для электрических железнодорожных двигателей.

Таким образом, только в 1950 году двигатели V6 использовались в серийном производстве автомобилей.Первый двигатель V6 использовался под углом 60 градусов для разделения шатунов для каждого цилиндра, чтобы свести к минимуму проблемы вибрации, которые возникали при более ранних попытках производства двигателей V6.

Если говорить о сравнении, то нужно сказать, что V-образные двигатели имеют довольно меньшую длину, но в то же время оказываются значительно шире. Это эффект, который увеличивает количество цилиндров в двигателе, разница в длине между V-образными и прямыми двухцилиндровыми двигателями может быть не такой значительной, в то время как двигатели V8 имеют значительно меньшую длину по сравнению с прямыми двигателями.

Технические характеристики двигателя V-образного типа

V-образный угол или угол между рядами цилиндров значительно различаются для разных двигателей. Существуют различные двигатели, в которых угол вертикальной оси почти 180 градусов такой же, как у плоского двигателя. Это двигатели, которые используются в двигателях Ferrari V12. На другом конце шкалы двигатели V-4 и VR6 используют небольшой угол всего в 10 градусов, который включает одну головку блока цилиндров, которая используется обоими группами цилиндров.

Балансировка двигателя V12 такая же, как и у идеального первичного или вторичного баланса. Баланс двигателя для V-цилиндров зависит от таких факторов, как интервал зажигания, противовесы коленчатого вала и наличие балансирных валов

V-образный двигатель имеет два ряда цилиндров, которые обычно образуют угол 60 ° или 90 ° внутри двух. банки. Двигатели V-8 имеют восемь цилиндров, обычно имеющих угол 90 °, тогда как существуют различные небольшие шестицилиндровые авиационные двигатели, которые обычно имеют горизонтально расположенные цилиндры.Конкретное размещение распределительного вала в основном происходит над головой, что называется верхним кулачком (OHC) или двойным верхним кулачком (DOHC).

Отсек для привода распределительного вала включает шестерню, цепь или ремень внутри переднего или заднего конца блока или крышки. Зубчатый ремень обычно используется для обеспечения точного или отзывчивого управления клапанным механизмом. Колоколообразный кожух образован рядом с задним блоком цилиндров, который охватывает маховик и обеспечивает крепление передающего корпуса.Водяные рубашки сформированы по всему цилиндру с соответствующим заполнителем и соединительным каналом для циркуляции потока охлаждающей жидкости .

Двигатель V Принцип работы и конструкция

Конструкция блока цилиндров изменяется, если расположение клапанов четырехтактного двигателя изменяется или отклоняется из-за удобства отверстий цилиндра в двухтактном. тип. Двигатель с верхнеклапанным двигателем был в значительной степени заменен двигателем с L-образной головкой, поскольку его клапаны полностью расположены в головке блока цилиндров.Блок цилиндров двигателя продолжается только до одной стороны отверстий цилиндра, которые имеют седла клапанов и каналы для впуска и выпуска вместе с направляющими клапана, которые образованы в продолжении этого блока.

После этого головка блока цилиндров становится крышкой с водяной рубашкой, которая обеспечивает резьбовые отверстия для свечей зажигания с ее нижней стороной, профилированной таким образом, что камера сгорания желаемого размера и формы формируется над отверстием цилиндра.Форма пространства, образующего камеру сгорания, изменяется, когда поршень максимально приближается к головке цилиндра, и его объем, заключенный по отношению к поршню, смещается относительно объема, который чрезвычайно важен и влияет на его рабочие характеристики.

V-образный двигатель — это компактный двигатель нового поколения, в котором цилиндры расположены под определенным углом, а не по прямой по отношению друг к другу. Угол между цилиндрами варьируется в основном от 60 до 90 градусов.Этот угол образует V-образную форму между цилиндрами, из-за чего двигатель известен как V-образные двигатели .

В основном V-образные двигатели изготавливаются с четным числом цилиндров. Например, количество цилиндров кратно 2, например 4, 6, 8 или 12 и так далее. Эта конструкция значительно помогает уменьшить высоту, длину и вес двигателя по сравнению с любой другой конструкцией двигателя с таким же количеством цилиндров.

Применение двигателя V-типа

V-образные двигатели на другом конце имеют сложную конструкцию и, следовательно, имеют довольно высокую стоимость изготовления по сравнению с другими двигателями аналогичной мощности.Используемый 2-цилиндровый двигатель также известен как V-Twin. Производители обычно используют их для высококлассных видов спорта, таких как велосипеды и круизеры. В то время как, с другой стороны, супербайки высокого класса используют дизайн V-4. V-образные двигатели чаще всего используются в автомобилях с объемом двигателя более 3,0 л. Распределительный вал двигателя расположен в головке цилиндра, который известен как верхний распределительный вал (SOHC или DOHC).

Большинство легковых автомобилей, таких как семейные седаны, внедорожники и спортивные автомобили, в основном имеют только двигатели V-типа.Некоторые из автомобилей с двигателями V-образного типа — это Toyota Camry, Mercedes Benz E 400 Cabriolet, C63 S AMG, E 63 AMG, G 63 AMG, GL 63 AMG, некоторые модели BMW 5 серии, 6 серий и 7 серий и Ferrari. 458 Special, Spider, 488 GTS, модели California T.

Популярные внедорожники с V-образным двигателем: Toyota Land Cruiser, Land Rover Discovery-4, Range rover, Audi Q5, Q7 и т. Д., Которые пользуются большим спросом в Индии.

Преимущества двигателя V-образного типа

  • Самый маленький из восьмицилиндровых двигателей.
  • Более низкое положение капота улучшает аэродинамику.
  • Увеличивает первичный баланс и снижает вибрации
  • Более плавная работа для высоких скоростей
  • Компактность делает его подходящим для спортивных автомобилей высокого класса

Различия между V-образным двигателем и INLINE ENGINE

Рядные двигатели

также известны как В двигателе I из-за вертикального расположения цилиндров в рядном двигателе поршни располагаются таким образом, чтобы они оставались прямо обращенными к небу.Расположение рядного цилиндра наиболее популярно во всех остальных четырехцилиндровых двигателях, которые в основном используются в компактных седанах и кроссоверах. В их двигателях также можно разместить нечетное количество цилиндров.

Двигатель V-образного типа получил свое название из-за наклонного или V-образного расположения цилиндров, вместо того, чтобы стоять вертикально в ряд. Поршни отклонены друг от друга, чтобы образовать долинообразное разделение. Такая схема хорошо заметна на двигателях с шестью, восемью или десятью цилиндрами.

Если вы рассматриваете конкретный двигатель V-типа, он имеет 12 цилиндров, установленных в виде буквы V с углом 60 °, и в значительной степени состоит из технологий, которые используются в таких двигателях, как TDI V6 и V8 Audi. Включая бензиновые двигатели, такие как 5,0-литровый V10 TFSI и 6,0-литровый W12, V12 TDI входит в число лучших.

Конструкции различных двигателей V-образного типа

Эта конструкция была разработана в 2006 году и к 2010 году стала доступной для всех крупных автомобильных компаний.Компания-производитель роскошных автомобилей, такая как Audi, попыталась изменить угол с 90 ° примерно до 60 °, чтобы добиться наилучшего качества двигателя. Большая часть технологий используется в V12 в качестве источника V10, который подходит для R10. V12 устанавливается с B.S. Система впрыска, которая имеет давление впрыска Common Rail до 2000 бар, что очень похоже на те, что используются в Audi R10. Двигатель V12 имеет следующие характеристики:

  • Превосходная производительность.
  • Меньше потребление энергии
  • Меньше расход топлива
  • Меньше шума и вибрации
  • Низкоземельный
  • Конструкция двигателя V12, под углом 60 °
  • Электрически 5934 [см3]
  • Диаметр цилиндра X [мм] 83 × 91 .4
  • Степень сжатия 16: 1
  • Воздушный контур Турбонаддув
  • Максимальная мощность 500 [CP] скорость [об / мин] 3750
  • Максимальный крутящий момент 1000 [Нм] скорость [об / мин] 1750-3250

Стандарты контроля выбросов говорят что коленчатый вал двигателя изготовлен из легированной стали с высокой прочностью. Для уменьшения крутильных колебаний коленчатого вала он снабжен вязкостным амортизатором. Чтобы повысить сопротивление усталости, было выбрано решение с тарифом на шейку шатуна.Таким образом, в основном это два поршня, которые противостоят друг другу, но все же соединены через шатун на одной и той же цапфе кривошипа. Конструкция блока цилиндров основана на опыте, полученном с двигателями V6 и V8 TDI. Чтобы получить повышенную жесткость, блок двигателя залит литым пластинчатым графитом. Также масляный поддон изготовлен из алюминия, чтобы уменьшить общую массу двигателя.

Система зажима и впрыска в V-образном двигателе

Головка цилиндра содержит систему зажима, известную как завихрение.Эта система предназначена для создания серпа воздуха в цилиндрах, чтобы смесь воздуха и топлива была более однородной и полной. Также есть система фильтрации, которая установлена ​​в головке блока цилиндров газового корпуса. Система впрыска работает с высоким давлением впрыска, которое достигает 2000 бар.

В основном это две аппарели для топлива и две топливных насоса, по одной на каждый ряд из 6 цилиндров. Эта система впрыска в основном разделена на две цепи, каждая из которых управляется индивидуально.Входной канал, откуда поступает воздух, также состоит из двух независимых контуров. Это сделано, так как они содержат воздушный фильтр, датчик заземления воздуха и радиатор охлаждения сжатого воздуха. Обе цепи соединяются через дроссель перед заглушками.

Есть такие системы, как распределительная система, масляный насос и насосы впрыска высокого давления, которые приводятся в действие цепью. Коленчатый вал отвечает за возникновение промежуточного колеса. Это вызывает вал выпускного распредвала.Валы выпускного распредвала с помощью зубчатой ​​передачи, расположенной на противоположной стороне двигателя, приводят в действие распредвалы впускных клапанов. В головке цилиндра находятся распределительные валы, клапаны, форсунки, свечи накаливания и часть простенки впускного коллектора. Распределительные валы представляют собой трубчатые штаны, которые придают им высокую жесткость.

Подробнее о двигателях V-образного типа

Каждый ряд использует турбокомпрессор в 6-цилиндровом двигателе. Ветровые турбины охлаждаются водой, а их геометрия регулируется с помощью электрического привода, который сводит к минимуму потери тепла, а выпускные коллекторы состоят из двух слоев изолированного металла, среди которых — воздух.Для уменьшения турбулентности потока воздуха на входе в компрессор, который оборудован триммером потока. Это также сделано для уменьшения шума, возникающего из-за потока воздуха, когда компрессор оснащен амортизатором.

Газы фильтруются и снова попадают во впускной коллектор. Пары масла проходят через сепаратор, который, возможно, играет роль фильтра и разделяет жидкость с помощью масла на пары масла. В зависимости от температуры двигателя пары масла, попадающие в двигатель, возникают благодаря электрическому резистору.Электронная система управления двигателем использует два компьютера впрыска, которые соединены друг с другом в главном подчиненном устройстве. Эта концепция помогает при независимом управлении впрыском в каждом ряду из 6 цилиндров.

Форсунки также имеют 8 дополнительных отверстий для потока, что улучшает распыление топлива в камере сгорания. Впрыск делится и производится по режиму работы двигателя. Для большей эффективности поршень снабжен радиальными каналами, по которым циркулирует моторное масло.Система доочистки выхлопных газов снова разделена на два контура. Таким образом, канал откачки каждого ряда 6-го цилиндра содержит окисленный каталитический нейтрализатор и сажевый фильтр.

Все соответствующие эксперименты проводились между 1980-1986 годами, которые показали слишком высокие значения вибраций и шумов, производимых V-образным двигателем. Его пытались контролировать с помощью резиновых амортизаторов, чтобы уменьшить вибрации, которые передавались от двигателя на шасси.Было обнаружено, что только три модели дают лучшие результаты.

В чем разница между двигателем V-6 и V-8?

В чем разница между двигателем V6 и V8?

Нет ничего лучше выбора, и попытка решить, нужен ли вам V6 или V8, может быть захватывающей и запутанной. Хотя разница между автомобилями с двигателями V6 и V8 может быть действительно технической, решение относительно того, какой из них лучше, принимается лично вами.Давайте разберемся в различиях между двигателями V6 и V8.

« Сайты с объявлениями об автомобилях — это хлопоты, как мне продать свою машину бесплатно?»

Если вы хотите узнать, как продать автомобиль в Интернете, получите бесплатное предложение RumbleOn за наличные. Вы получите быструю, бесплатную и простую продажу с нулевыми хлопотами и бесплатным самовывозом.


Двигатель 101: Что такое двигатель внутреннего сгорания?

Чтобы понять разницу между двигателями V6 и V8, нам нужно рассказать, как работает двигатель внутреннего сгорания.

Все мы знаем, как выглядит паровой двигатель. Вероятно, первое, что приходит вам в голову, — создать образ паровоза, и эти типы двигателей были в моде, пока двигатель внутреннего сгорания не стал основным источником энергии. Первый коммерчески успешный двигатель внутреннего сгорания был создан около 1859 года бельгийским инженером Этьеном Ленуаром, а в 1876 году Николаус Отто создал первый двигатель внутреннего сгорания, работавший на нефтяном газе, предшественник современных двигателей.

Не вдаваясь в технические подробности, основной принцип работы двигателя внутреннего сгорания основан на преобразовании энергии от искрового зажигания. Двигатель внутреннего сгорания состоит из движущегося поршня и неподвижного цилиндра. Газы выделяются при сгорании топливовоздушной смеси, которая толкает поршень и вращает коленчатый вал. Затем в результате цепной реакции и движения шестерен трансмиссии колеса автомобиля приходят в движение.

«Что означает двигатель V6?»

Что такое V6? Это двигатель с шестью цилиндрами, установленными на коленчатом валу в два ряда по три, расположенных в форме буквы V.Эти типы двигателей были впервые разработаны в 1905 году, но не стали популярными до середины 20 века, когда их начали использовать гоночные автомобили.

Источник видео: m f YouTube

В основном, по сравнению с двигателем с четырьмя цилиндрами, двигатели V6 обеспечивают большую мощность благодаря большему количеству поршней для преобразования большего количества топлива в полезную энергию. Двигатели V6 работают тише, чем четырехцилиндровый двигатель, имеют компактную жесткую конструкцию, которая требует меньше места под капотом и, как правило, обеспечивает лучшую экономию топлива, чем V8.

Двигатели

V6 популярны и используются во многих современных задних, передних и полноприводных двигателях, поскольку они предлагают большую мощность, чем обычные двигатели, но являются золотой серединой между четырехцилиндровым двигателем и V8.

«Что означает V8?»

Что такое V8? Проще говоря, двигатели V8 имеют восемь цилиндров, установленных в двух наборах по четыре, по сравнению с шестью цилиндрами в V6. V8 плавно вырабатывают больше мощности и обеспечивают более быстрое ускорение. Однако из-за дополнительных цилиндров V8 эти двигатели потребляют больше топлива, чем V6.Двигатели V8 имеют жесткую конструкцию, которая обеспечивает больший рабочий объем, ассоциируется с высокой мощностью и стала фаворитом для маслкаров.

Источник видео: Разъяснения инженеров YouTube

В отличие от обычно используемого и адаптируемого V6, большинство автомобилей V8 ограничены либо задним, либо полным приводом. V8 тяжелее, чем V6, и требуют более высокой стоимости обслуживания из-за повышенного трения в движущихся частях.

В чем разница между V6 и V8?

Двигатели V6…
  • Имеют шесть цилиндров
  • Обычно дешевле, чем V8
  • Обеспечивает топливную экономичность и мощность
  • Компактны по конструкции и работают тише
  • На полпути по мощности между четырехцилиндровым двигателем и V8
  • Может устанавливаться на большинство полноприводных, передних и задних колес
  • Для вас, если вам нужен автомобиль с меньшим трением и меньшими затратами на обслуживание, чем V8
  • Не для вас, если вам нужен двигатель с высокой выходной мощностью и более быстрым разгоном

Двигатели V8…
  • Имеют восемь цилиндров
  • Стоимость больше, чем V6
  • В основном используются в автомобилях с задним и полным приводом
  • Имеют более высокие затраты на техническое обслуживание из-за повышенного трения и движущихся частей
  • Жесткая конструкция с большим рабочим объемом
  • Обеспечивает гораздо большую мощность, чем V6, но потребляет больше топлива
  • Для вас Если вы ищете прямую мощность и не возражаете против дополнительных затрат
  • Не для вас, если вы изредка ездите по городу, так как расход топлива может быть неэкономичным

Что вам больше подходит: V6 или V8? Торгуй автомобилем онлайн и найди свою идеальную поездку!

Когда я хотел продать свою машину, дилерский центр просто не работал.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *