ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Как работает упорный подшипник?

Упорные подшипники


Упорные подшипники поглощают осевые нагрузки от вращающихся валов в стационарные корпуса или крепления, в которых они вращаются. Осевые нагрузки – это те, которые линейно передаются вдоль вала. Хорошими примерами осевых нагрузок являются тяга вперед на лодках или самолетах с пропеллерным приводом в результате быстрого вращения их винта. Упорные подшипники также используются в дрелях, где пользователь вкладывает свой вес во вращающееся долото, чтобы просверлить прочные материалы. Карусели имеют массивные упорные подшипники для поддержки всего вращающегося веса.

Чистые упорные подшипники


Чистые упорные подшипники называются так, потому что они разрешают только осевые силы от вращающегося компонента в их крепление, а не радиальные силы. Как и в других типах подшипников, существует две основные группы этих подшипников: подшипники скольжения и подшипники качения. Примером упорного подшипника скольжения является [упорной шайбой] (https://itstillruns.com/thrust-washer-5077325.html), которая представляет собой материал с низким коэффициентом трения между валом и цапфами вдоль вращающегося компонента. Типы упорных подшипников качения – это шарикоподшипники и специализированные конические роликовые подшипники.

Комбинированные подшипники


Многие двигатели и машины используют комбинированные подшипники, которые разрешают как осевые, так и радиальные усилия с одним подшипником. Это могут быть конические роликовые подшипники, такие как те, которые используются на автомобильных колесах, шариковые подшипники, работающие в унисон, такие как подшипники на небольших колесах с шарикоподшипниками в вагонах и тележках. Они также могут быть шарикоподшипниками с глубокими желобками. Комбинированные подшипники контролируют вращательное движение вокруг вала и выдерживают вес автомобиля. Они также ограничивают боковое движение вдоль вала, например, при сильном повороте в спортивном автомобиле.

В этом качестве они действуют как упорные подшипники. Комбинированные подшипники используются в тех случаях, когда осевая нагрузка может быть случайной или относительно небольшой по сравнению с радиальной нагрузкой. Чистые упорные подшипники используются в тех случаях, когда осевые нагрузки являются преобладающими силами, передаваемыми вращающимися компонентами в их стационарную защитную оболочку.

Упорный подшипник


Упорные подшипники скольжения, такие как шайбы Oilite, используются в некоторых электрических устройствах. Шайбы скользят по плоским сторонам вала, чтобы предотвратить перемещение вала назад и вперед вбок. В главных подшипниках автомобилей они выполнены в виде двухстороннего кожуха между коленвалами в качестве шейки среднего подшипника. Большинство авиационных двигателей, как поршневых, так и реактивных и пропеллерных, включая все, от подвесных лодок до морских судов, имеют отдельные упорные подшипники, а также комбинированные или радиальные подшипники для поддержки вращающихся валов, зубчатых колес и гребных винтов. Когда их двигатели вращают пропеллеры, они обеспечивают линейную тягу или толчок, который перемещает автомобиль вперед. Эта тяга пытается протолкнуть карданный вал или карданный вал через конец двигателя. В этом случае шарики подшипников вращаются между двумя рифлеными шайбами, которые действуют как осевые кольца для удержания шариков. Эти подшипники имеют вид поворотного стола, поскольку они плоские. Тяга определяется вращающимся валом гребного винта в соответствующие опоры, и судно движется вперед.

Опорные подшипники: конструкция и эксплуатация

Опорный или, как принято называть, упорный подшипник представляет собой особый тип подшипников качения и скольжения, воспринимающих исключительно осевую нагрузку. Также существуют и виды в большей или меньшей степени воспринимающие радиальные усилия — радиально-упорные и упорно-радиальные подшипники.

Навигация по статье

Конструкция опорных подшипников

В обычном варианте опорный подшипник состоит из двух колец с выточенными в них канавками, в которых расположены тела качения сферической или цилиндрической формы. Тела, как правило, крепятся в сепараторе. Посадочная поверхность свободного и наружного кольца может иметь сферическую или плоскую форму. Подшипник опорный может быть открытым или закрытым, иметь одно или два кольца (например, рассчитан на установку в корпус машины). Также он может не иметь сепаратора, быть одинарным или двойным.

Дорожки опорного подшипника воспринимают только ограниченное центробежное усилие при движении тел качения, что значительно ограничивает его частоту вращения. Поэтому при высоком количестве оборотов рекомендуется использовать упорно-радиальные подшипники.

Назначение опорных подшипников

Опорные подшипники широко используются в различных машинах и механизмах где действуют серьёзные осевые усилия:

  • Тихоходные редуктора.
  • Шпиндели и вращающиеся центры станочного оборудования.
  • Поворотные устройства.
  • Задвижки.
  • Вертикальные валы различных механизмов.
  • Металлорежущие станки.
  • Прокатное и другое металлургическое оборудование.
  • Ходовая часть автомобилей — опорный подшипник передней стойки и т. д.
  • Домкраты и другие устройства и оборудование на транспорте, в энергетической горной, металлургической и других сферах промышленной деятельности.

Виды и особенности опорных подшипников

Во многих механизмах используется опорный подшипник скольжения, но всё же наиболее массовое применение получили подшипники качения. На них и остановим наше внимание. В первую очередь опорный подшипник можно классифицировать по распределению нагрузки:

  • Упорные подшипники — предназначены для восприятия преимущественно осевой нагрузки. Допустима лишь предельно малые радиальные усилия.
  • Упорно-радиальные — воспринимают преимущественно осевую и небольшую радиальную нагрузку.
  • Радиально-упорные подшипники — воспринимают комбинированную осевую и радиальную нагрузку.

По количеству рядов тел качения опорные подшипники подразделяются на:

  • Однорядные.
  • Двухрядные.
  • Многорядные.

В зависимости от способности компенсации перекосов валов подшипники подразделяются на:

  • Несамоустанавливающиеся. Взаимный перекос колец может достигать 8°.
  • Самоустанавливающиеся. Возможен перекос колец до 4°.

Возможность восприятия того или иного типа нагрузки во многом определяется формой тел качения подшипника. Существует два основных типа — шариковые и роликовые опорные подшипники. Шариковый опорный подшипник воспринимает исключительно осевые нагрузки и является несамоустанавливающимся. При однорядном исполнении может воспринимать односторонние усилия. Двухрядный шариковый опорный подшипник воспринимает двустороннюю нагрузку.

Опорный роликовый подшипник применяется при высоких осевых нагрузках. В зависимости от формы тела качения они подразделяются на:

  • Конические опорные роликовые подшипники — рассчитаны на работу при очень высоких нагрузках, при механических ударах и высоких скоростях вращения.
  • Опорные подшипники с цилиндрическими роликами. Данный тип оптимально подходит для работы на сравнительно небольших скоростях, но при высоких нагрузках.
  • Подшипники опорные со сфероконическими роликами. Характеризуются стойкостью к высоким осевым и радиальным нагрузкам. Важной особенностью является способность к самоустанавливаемости.

Важной особенностью опорных подшипников является конструкция его сепаратора. Существует два основных типа:

  • Цельный полностью закрытый, где в каждом гнезде находится тело качения.
  • Штампованный без отдельных гнезд для каждого ролика или шарика.

Устройство с цельным сепаратором дороже в производстве и выпускаются ведущими мировыми производителями. Открытые сепараторы удешевляют подшипник, то их применение при высоких скоростях вращения крайне не рекомендуется. Причина в том, что перемычки могут просто не выдержать создаваемых при быстром вращении усилий, и тела качения сгруппируются и будут свободно перемещаться по дорожке. Результатом будет не только выход из строя и, соответственно, преждевременная замена опорного подшипника, но и вероятная поломка дорогостоящего оборудования. Поэтому рекомендуется приобретать и устанавливать высококачественные опорные подшипники от известных мировых брендов с литым сепаратором, стойкие к высокой нагрузке.

Особенности обслуживания опорных подшипников

В процессе эксплуатации оборудования, при проведении периодического обслуживания, рабочих осмотров или замены смежных деталей, необходима обязательная диагностика опорных подшипников для принятия решения об их дальнейшей работе.

Порядок осмотра:

  • Взятие пробы пластичной смазки для анализа на примеси и соответствие требованиям эксплуатации.
  • Оценка количества пластичной смазки в подшипниковом узле.
  • Удаление смазки для тщательного осмотра.
  • Проверка наличия повреждений и дефектов сепаратора.
  • Контроль состояния видимых частей тел качения и дорожки качения.

При принятии решения по дальнейшей эксплуатации или замене опорного подшипника необходимо принять во внимание следующие факторы:

  • Наличие дефектов, их характер и степень повреждений.
  • Режим эксплуатации оборудования.
  • Производительность оборудования.
  • Периодичность осмотров.

При выявлении повреждений необходимо установить причину и провести профилактические мероприятия, которые включают:

  • Анализ и улучшение технологии монтажа подшипника или узлов оборудования.
  • Применение более качественных уплотнений.
  • Защита от коррозии при простоях.
  • Усовершенствование способа подачи смазки, использование смазочных материалов с требуемыми свойствами.
  • Проверка точности обработки посадочных мест.
  • Проверка внутренних зазоров подшипника, а также другие работы в зависимости от особенностей конструкции оборудования.

Подшипники скольжения упорные| Принцип работы

Упорный подшипник – это узел, предназначенный для восприятия исключительно осевых нагрузок. Обычно он используется как опора вала в продольном направлении, удерживая его в проектном положении. Применение подшипников этого типа чрезвычайно разнообразно, но  чаще всего они используются во всевозможных роторах, так как обеспечивают надежную фиксацию вала и позволяют точно выдерживать зазоры, необходимые для работы этих устройств.

Устройство и принцип работы упорного подшипника скольжения

В роторах чаще всего применяют сегментные упорные подшипники, способные эффективно воспринимать осевые силы и при этом простые в монтаже и обслуживании. Конструкция упорного подшипника для ротора наглядно показывает все особенности  таких опор, поэтому мы расскажем об устройстве этой группы деталей на его примере.

Основная часть узла – это вкладыш, состоящий из двух отдельных половин. Они надежно соединены горизонтальными фланцами, удерживающими деталь в сборе. Внутри вкладыша помещена втулка с установленными на нее упорными колодками. Чтобы вал турбины мог опираться на подшипник, его изготавливают с упорным диском (гребнем) опирающимся на упорные колодки, залитые сверху баббитом. Такое покрытие нужно вовсе не для того, чтобы максимально трение в подшипнике – на роли баббита мы подробно остановимся в конце нашей статьи.

Внутрь вкладыша подается масло, вид и параметры которого подбирают в соответствии с режимом и условиями работы механизма. Жидкость заполняет все пространство внутри вкладыша и единственным местом для ее вытекания является отверстие в верхней части узла. Конструкция изделия обеспечивает вращение упорного диска вала в масляной ванне и его прижим к колодкам усилием, направленным вдоль оси. Принцип работы упорного подшипника подразумевает наличие между диском и баббитовыми поверхностями колодок несущего слоя масла, который предотвращает сухое трение между поверхностями и тем самым увеличивает КПД узла и срок службы его элементов.

Работать масло начинает сразу же после запуска механизма. Поверхность гребня вала, начавшего вращение, захватывает масло и увлекает его под колодку. На рабочей части колодки в это время образуется особое распределение давлений, помогающее создать плотный и очень устойчивый клин из жидкости, давление которого без проблем компенсирует нагрузку от веса вала и приложенных к нему рабочих усилий. При этом каждая колодка имеет особый шарнирный механизм, позволяющий ей изменять положение в зависимости от того, как изменяется осевой момент приложения сил. Благодаря этому давление масла всегда остается достаточным для эффективной работы механизма.

Требования к упорным подшипникам скольжения


Основной проблемой при изготовлении подшипников упорного типа является обеспечение их надежности. Поломка изделия, особенно в машинах, валы которых вращаются с большими скоростями, приводит к разрушению узла вращения и в том числе к серьезным повреждениям проточки. Выход из строя детали возможен по нескольким основным причинам:

• Потеря несущей способности масла;
• Повышение температуры узла в процессе работы;
• Расплавление нанесенного на колодки слоя баббита.

Свои свойства масло может изменить по нескольким причинам, но чаще всего в этом виноват перегрев детали. В свою очередь повышение температуры может быть следствием недостаточного количества масла, из-за чего вращение в подшипнике происходит с сухим или полусухим режимом трения. Может это происходить и из-за неэффективного отвода тепла.

Также происходят аварии и из-за неправильного выбора модели подшипника. Иногда при сборке узлов агрегатов применяют радиально упорный подшипник скольжения, не рассчитанный на то, чтобы на него воздействовала большая осевая нагрузка. Поэтому расчет усилия, которое должен воспринимать опорный узел и точное определение его типа и направления, является важнейшей задачей для любого конструктора, проектирующего узел с продольно нагруженным валом.

Важной частью конструирования таких узлов является также правильный выбор зазора между опорной баббитовой частью колодок и поверхностью диска. При этом учитывается множество факторов, таких как качество поверхности вала и колодок, качество масла, способность поверхности материала воспринимать смачивание, конусность диска, а также такая характеристика как вибрация механизма в процессе работы.

Если характеристики узла вращения не подразумевают высокой точности зазора, то его принимают в пределах 50-60 мкм. В этом случае на каждую колодку при работе механизма будет оказываться давление 1,5-2 МПа. Если нужна высокая точность, то принимают размер зазора 40 мкм. В этом случае давление составит 3,5-4 МПа. Делая расчет нужно не забывать и о том, что чем меньше зазор, тем выше риск перегрева детали. Температура 90 градусов Цельсия в этом случае считается критической. При дальнейшем повышении риск расплавления баббитового слоя колодок, а значит и поломки подшипника, значительно растет.

Реальные условия эксплуатации подшипников скольжения могут оказаться гораздо более экстремальными, чем планировалось. Проблемы могут возникнуть из-за появления нагрузок, направленных радиально, с которыми не справляется парный опорный подшипник. Также негативное влияние оказывают резкие сбросы нагрузки или наоборот, слишком резкий старт. В связи с этим упорные подшипники скольжения, как и опорные узлы качения, берут с солидным запасом  по многим параметрам.

Самые важные части упорного подшипника скольжения – это колодки. При этом ключевую роль в надежности этих элементов узла играет баббитовая заливка. Важно помнить, что в упорных и опорных подшипниках она играет абсолютно разную роль. В опорных моделях, рассчитанных на радиальный тип нагрузки, эта часть колодок работает в условиях сухого и полусухого трения. В случае с изделиями упорного типа, эти виды трения не наблюдаются, так как диск вала «плавает» в масляной ванне и не касается поверхности баббита.

Можно подумать, что в этом случае слой антифрикционного материала не нужен, но это не так. При резком увеличении осевого усилия баббит практически мгновенно расплавляется, порождая сильный осевой сдвиг. В этот момент срабатывает защита, реагирующая на этот эффект и механизм отключается без ущерба для подшипника и вала. Баббитовый слой предотвращает быстрое стирание колодок и загрязнение частицами металла масла в системе. Со временем толщина заливки уменьшается вследствие износа и когда ее толщина составляет около 0,9 мм, обычно производят новую заливку колодок.

Если вы ищете где купить упорный подшипник скольжения, то наша компания готова предложить вам лучшие по качеству и цене варианты от известных мировых брендов. У нас вы найдете как упорный и радиальный, так и сферический  подшипник для применения в самых различных механизмах. Все продукты из нашего каталога – это оригинальные модели деталей с официальной гарантией на территории нашей страны.

Радиально-упорные шариковые подшипники — размеры по ГОСТ с таблицей, однорядные и двухрядные, схемы установки, особенности

В многообразии сборочных узлов особое положение занимают те, которые способны воспринимать и осевую нагрузку, и направленную снаружи. В статье поговорим про радиально-упорные подшипники качения – шариковые и роликовые, представим размеры в виде таблиц, а также посмотрим чертежи и фото.

Общее описание детали

Элемент служит для придания движения вращения одних частей системы, в то время как сердцевина (обычно это вал) остается неподвижной. Можно достигать высоких оборотов и скорости, а также увеличить сопротивляемость давлению и силе трения, если правильно эксплуатировать запчасть. Конструктивно механизм прост и состоит из:

  • внешнего и внутреннего кольца;
  • тел вращения – шариков или роликов;
  • сепараторов, создающих ячейки;
  • уплотнителей, предотвращающих попадание грязи.

Чтобы сопряженные поверхности лучше скользили, их требуется постоянно смазывать. Есть не только делали, устроенные по принципу качения, но и скольжения. В них вместо мелких металлических элементов находится полость для смазки или твердый вкладыш, который улучшает движение и препятствует появлению большой силы трения.

Неподвижным может оставаться либо втулка, либо обод. При этом нужно достигать высокой степени соосности при креплении. Но при самом эффективном монтаже может быть зазор, он заполняется смазывающими субстанциями. Иногда одно из колец вовсе отсутствует, это очень положительно сказывается на сопряжении, достигается максимальный контакт, но может использоваться только в системах, которые хорошо защищены от попадания влаги, загрязнений.

Достоинство и особенность радиально-упорных подшипников в отличие от опорных – их устройство создано для двух типов нагрузок одновременно. И для радиальных, и для осевых в различной мере. Это позволяет применять узлы в различных сферах, значительно увеличивая их значимость и востребованность.

Виды

Классификация происходит по различным параметрам – по размеру, использованию различных тел вращения, по конструктивным особенностям, количеству рядов, а также по производителям. В интернет-магазине «Подшипник Моби» представлен широкий ассортимент продукции отечественных и зарубежных компаний. Если вы точно не знаете, какая модель вам необходима, то консультанты помогут вам с выбором. Главное знать размерный ряд и назначение узла. Рассмотрим, какие они бывают, ниже.

Подшипники шариковые радиально-упорные однорядные

Конструкцию таких шарикоподшипников можно назвать классической. Шарики немного смещены по отношению к внутреннему и внешнему кольцу, это позволяет воспринимать высокую осевую нагрузку на деталь. Производиться они могут открытыми и с закрывающими уплотнителями. При этом везде есть сепараторы. Они могут быть штампованными (более дешевый вариант) или более прочными – из латуни. Также можно разделить все модели на разборные и цельные. Первые хороши тем, что их можно открыть, прочистить и смазать, а во вторых смазка заложена на весь период эксплуатации.

К особенностям следует отнести то, что двигаются они обычно в одном направлении, так что при необходимости вращения в обе стороны их устанавливают парой. У них низкая угловая самоустанавливаемость, поэтому они неприменимы в системах с повышенным уровнем вибрации или частыми ударами, механическими повреждениями. Обычно угол контакта в изделии доходит до 40 градусов. Такой наклон обеспечивает хорошее восприятие осевых нагрузок и увеличенную грузоподъемность – все это в сравнении как с опорными, так и с обыкновенными радиальными узлами.

Подшипники шариковые радиально-упорные двухрядные

Они конструктивно схожи с предыдущим типом, но отличаются двумя дорожками качения с разделителем между ними и увеличенным, соответственно, числом тел вращения. Шарики могут быть расположены симметрично по отношению друг к другу или в шахматном порядке. В целом деталь напоминает два сдвоенных однорядных шарикоподшипника, но места занимают гораздо меньше, более компактны, чем этот тандем.

По назначению они более универсальны, потому что за счет возможности работать в двух направлениях, увеличивается спектр действий. У них также незначительная самоустанавливаемость (то есть допустимо отклонение до 4 градусов), а угол контакта 25-35°, поэтому осевая нагрузка на них допустима меньшая, зато грузоподъемность одинакова в обе стороны.

Есть еще одна приятная особенность – не обязательна строгая соосность валов, работа будет оптимальной даже при небольшом зазоре.

Радиально-роликовые, оснащенные короткими цилиндрическими роликами

Они могут иметь любое количество рядов, дорожек. Основное конструктивное отличие – наличие цилиндров небольшой длины вместо шариков. Это приводит к очень большой грузоподъемности и к восприятию значительных нагрузок извне. Зато осевые воздействия допустимы только кратковременные. Это объясняет отсутствие быстроходности. Основное применение – в крупных машинах, например, для металлообработк, когда необходимо производить мало вращений, но требуется работа с крупногабаритными и тяжелыми соседствующими запчастями.

Еще один значительный плюс – это способность к самоустановке. Она характерна для всех роликоподшипников, потому что контакт элементов намного больше. Результат – кромочного напряжения фактически нет, можно применять даже в условиях частых или усиленных вибраций.

Относятся к изделиям с повышенной прочностью и долгим сроком службы.

Роликовые радиально-упорные двухрядно-сферические подшипники: обозначение и отличия

Основная нагрузка – перпендикулярно валу, при этом выдерживают очень большую грузоподъемность. На ось тоже может быть достаточно крупное воздействие, но оно не должно быть не более 25% от допустимого радиального напряжения. Очень неприхотливые с точки зрения монтажа, соосности и других технических погрешностей. Работают в оба направления за счет двух рядов тел вращения, которые представляют из себя сферы, а не цилиндры. За счет скругления роликов по краям обеспечивается достаточная самоустановка, а также отсутствие кромочного напряжения.

Узлы находят себе применения в крупных объектах, которые отличаются габартами и несоосностью деталей, а также не требуют высокой осевой нагрузки. Это могут быть водяные насосы, промышленные вентиляторы, большие редукторы, лесопильные рамы, гребные валы, прокатные станы.

Маркировка и особенности игольчатых радиально-упорных подшипников

Иглы – это те же ролики, но с меньшим сечением и большей частотой установки. Миниатюрные размеры в ширину позволяют делать маленькие сборочные узлы с большой грузоподъемностью и восприятием высоких нагрузок.

Отличия и технические характеристики:

  • В сравнении с шарикоподшипниками они воспринимают большее радиальное напряжение, хотя размером могут быть такими же. Это объясняется контактом элементов, который превышает шариковый.
  • Отсутствие чувствительности к механическим ударам и вибрациям.
  • Возможность изготовления без сепараторов – тогда можно увеличить нагрузку, но будет снижена скорость вращения. Обычно разделители делаются штампованными или изготавливаются из латуни.
  • Есть варианты даже без обоих колец – внешнего и внутреннего.
  • Малые габариты.
  • Низкая предельная скорость.

Обычно они маркируются сочетанием RN в начале, затем цифры.

Как правильно установить и в каких условиях использовать радиально упорные подшипники с витыми роликами

Навивка тел вращения производится посредством металлической ленты. Если изделие двухрядное, то важно направление этого процесса в разные стороны. Это позволяет не только двигаться в два направления, но и способствует наилучшему распределению смазки. Из плюсов можно выделить – не чувствительны к загрязнениям, не ломаются от механических воздействий, ударов.

Зато есть недостатки, относительно цилиндрических роликов или шарикоподшипников:

  • совсем не воспринимается осевая нагрузка;
  • невысокая грузоподъемность;
  • низкая частота вращения.

Установка таких узлов происходит в тихоходных машинах без необходимости высокой скорости движения, но с работой в условиях возможных загрязнений. Например, в сельскохозяйственных машинах.

ГОСТ для подшипников радиально-упорных шариковых

Здесь мы уже не будем разделять их на однорядные и двухрядные, в приведем общие черты конструкции. Нормативный документ, который обусловливает их изготовление и использование – ГОСТ 831-75. Но стандарты настолько интернациональны, что есть иностранное повторение российских изделий любого типоразмера. В приведенной документации содержится подробная номенклатура всех размеров, а также несколько чертежей. Приведем их здесь:

Размерный ряд полностью воплотить в рамках одной статьи фактически невозможно, но мы приведем пример таблицы, чтобы было понятно, как с ней обращаться, ниже.

Подшипник роликовый радиально-упорный конический

Ролики в виде конуса дают преимущество с точки зрения восприятия как осевых, так и радиальных нагрузок. Первые зависят от площади контакта тел вращения с дорожками качения. Чем она выше, тем больше грузоподъемность.

Их допустимая скорость и частота оборотов небольшая даже по сравнению с цилиндрическими роликоподшипниками, она больше соотносится со сферическими.

Могут быть однорядными, двухрядными, четырёхрядными, а также со съемной конструкцией и неразъемные, без внешнего или внутреннего кольца.

Из чего состоит подшипник шариковый упорный

Радиальная нагрузка – небольшая, как и площадь контакта шариков с дорожкой. Зато хорошая осевая грузоподъемность и увеличенная скорость вращения. Чтобы не было высокой силы трения, сепараторы часто изготавливают не путем металлической штамповки, а из стеклонаполненного полиамида.

Упорно-роликовые

Аналог предыдущего, но в роликоподшипнике больше допустимое напряжение, перпендикулярное валу. Поэтому их применяют на более крупных изделиях. При этом пропорционально падает скорость вращения. Особенность, как устанавливать радиально-упорные роликовые подшипники в том, что им не требуется высокая точность и соосность. Они будут работать при отклонениях до 2,5 градусов.

Шарнирные

Это узел, который работает не по принципу качения, а на технологии скольжения. Это два кольца – наружнее и внутреннее, которые имеют сферические поверхности. Благодаря ним, изделия являются самоцентрирующимися. Нагрузка распределяется очень равномерно, т.к. нет тел вращения, то и кромочной нагрузки фактически тоже нет, поэтому можно говорить о очень высоких осевых и радиальных напряжениях.

В зависимости от материалов изготовления и напылений они могут менять свои характеристики – быть более или менее прочными, требовать дополнительного обслуживания (смазки) или нет.

Назначение и схема установки радиально-упорных подшипников

Они находят свое применение в изделиях, для которых важны оба типа нагрузок. При этом далее смотрят на необходимую скорость, грузоподъемность, условия эксплуатации, наличие вибраций и ударов, потребность в самоустановке, направленность в одну или две стороны и прочие характеристики, чтобы подобрать модель из классификационного перечня, который мы сегодня привели.

Использование – в общетехнических отраслях повсеместно, в машиностроении, танкостроении, самолетостроении, химической отрасли и множественных других сферах.

Покажем схему распределения радиальной и осевой нагрузки:

Таблицы размеров

Все типоразмеры можно найти в многочисленных ГОСТ. В документах представлено обширное перечисление, но мы покажем, как оно выглядит и как им пользоваться, на примере однорядных радиально-упорных шариковых подшипников – их разница перед радиальными в том, что они могут одновременно воспринимать и осевое напряжение.

Маркировка

Внутренний диаметр

Внешний диаметр

7200В

10 мм

30 мм

7201В

12 мм

32 мм

7301В

12 мм

37 мм

7202В

15 мм

35 мм

7302В

15 мм

42 мм

7203В

17 мм

40 мм

7303В

17 мм

47 мм

7204В

20 мм

47 мм

7205В

25 мм

52 мм

7206В

30 мм

62 мм

7207В

35 мм

72 мм

7208В

40 мм

80 мм

7209В

45 мм

85 мм

7210В

50 мм

90 мм

7211В

55 мм

100 мм

7212В

60 мм

110 мм

7213В

65 мм

120 мм

7214В

70 мм

125 мм

7215В

75 мм

130 мм

7216В

80 мм

170 мм

Аналогичным образом можно посмотреть другие таблицы, мы приведем несколько маркировок, чтобы понимать, как по буквам или цифровому ряду отличить одни изделия от других. В таблице мы привели только список с «В» на конце, но есть еще «А» и «С» таких же размеров. Отличие заключается в грузоподъемности, в использованных материалах. Также можно встретить такое обозначение – 72 BE или 72 B – это то же самое, но на зарубежный манер, однако все типоразмеры соответствуют ГОСТ. Плюс к маркировке могут присоединяться суффиксы – «А», «АС», «В», «СА» и друге, они обозначают угол контакта и прочие особенности конструкции. Узнать подробнее о каждой модели можно, позвонив консультанту интернет-магазина «Подшипник Моби». Здесь хорошие цены и качественный сервис.

Установка

Рекомендации при монтаже:

  • проверьте узел на визуальные дефекты, повращайте его;
  • измерьте радиальный зазор;
  • вал требуется посмотреть на его прямолинейности осей;
  • соосность не должна превышать допустимую в технической сопровождающей документации;
  • сопрягаемые поверхности должны быть чистыми, сухими, при необходимости – обработанными смазкой.

Видео – монтаж пары радиальных шарикоподшипников

В статье мы рассказали про строение и особенности подшипников. В качестве завершения темы, посмотрим ролик:

Применение подшипников в автомобиле — Статьи от компании Берг инжиниринг

Типы подшипников, используемых в легковых автомобилях

Гораздо чаще применяются подшипники качения, использующие незначительное сопротивление фрикционного трения. В оборудовании тяжелого типа, экскаваторах, погрузчиках, домкратах, легко найти шарнирные подшипники скольжения, а в легковых автомобилях — редкость. Чаще используются разного рода втулки и шайбы скольжения, особенно в элементах, от которых необходим самый низкий уровень шума, малый вес и небольшое пространство для установки между валом и корпусом.

Наиболее распространенными являются шариковые подшипники, начиная от радиальных одно- и двухрядных обычных, заканчивая опорными подшипниками (стопорными) сложной конструкции. Не менее распространены также конические роликоподшипники.

Очень часто можно встретить различные разновидности игольчатых подшипников, при этом абсолютно преобладают так называемые игольчатые роликоподшипники, т. е. контейнеры с телами качения.

Относительно редкие цилиндрические роликоподшипники, и это из-за их ограничения в отношении переноса сложных нагрузок.

Реже всего в автомобилях встречаются подшипники самоустанавливающиеся, будь то шариковые или роликовые.

Упорные сферические роликоподшипники также отсутствуют. Однако следует упомянуть, что они доминируют в тяжелом оборудовании и сельскохозяйственной технике.

Стоит помнить, что конструкции подшипников, применяемых в автомобильной промышленности, часто отличаются от стандартных конструкций. Наиболее распространены незначительные изменения размеров в отношении стандартных деталей, которые чаще являются результатом политики производителя, чем требованиями технических регламентов. Однако во многих случаях мы имеем дело со сложными конструкциями, такими так натяжной ролик, элементы руля и т. д.

Стандартные подшипники можно встретить в ступицах колес и мостах, в генераторах и кондиционерах.

Основные области применения подшипников в автомобилях

Ходовая часть

Ходовые колеса (подшипники ступиц передних и задних колес)

В старых автомобилях наиболее распространено применение двух подшипников колес, конических подшипников качения. Они переносят как радиальные, так и осевые нагрузки. Они монтируются в ступице парами и устанавливаются относительно себя наоборот. Преимуществом решения с двумя коническими роликоподшипниками является то, что всегда можно заменить поврежденный подшипник с минимальными затратами. Тем не менее, следует поддерживать высокую точность монтажных операций, потому что конические роликоподшипники очень чувствительны к ошибкам монтажа.

В новых конструктивных решениях в качестве подшипника ступицы колеса используется радиально-упорный двухрядный шарикоподшипник. Такое решение занимает меньше места в осевом направлении, чем с двумя коническими подшипниками, что имеет немаловажное значение для конструкции. Другие преимущества — легкий монтаж и то, что подшипник уже идет с необходимым уплотнением и смазкой, достаточной на весь срок эксплуатации.

Комплексная ступица первого поколения была оснащена ранее упомянутым двухрядным угловым шарикоподшипником, в котором одна из беговой дорожки опирается на внутренний элемент системы подвески, а вторая прижимается к ней через центральную гайку ступицы.

В задней ступице второго поколения отказались от кольца внешнего подшипника, выполняя беговую дорожку в материале ступицы, имеющей фланец. Таким образом, ограниченное количество элементов снизило затраты на производство, а также уменьшилась масса элементов опоры.

В решении ступицы третьего поколения можно говорить о подшипнике, являющимся одновременно ступицей и поворотным колесом. Внутренняя беговая дорожка выполнена в ступице, а благодаря использованию крепежного фланца на наружном кольце его можно фиксировать на элементы подвески колеса.

Система подвески

Система подвески, когда дело доходит до традиционных автомобилей, не относится к подшипниковым узлам. Чаще всего мы имеем дело с валовым коническим подшипником легкой конструкции, чаще с сепаратором, выполненным из пластика. Можно встретить также решения, основанные на шариковых подшипниках. В обоих случаях производители используют сложные конструкции, облитые пластиком, где простая их замена невозможна.

Рулевое управление

Сердце рулевого управления — рулевой механизм, часто называемый парусником.

Здесь можно встретить как обычные однорядные подшипники серии 60.., 62.., 63..,

стандартные шариковые подшипники типа HK.., а также специальные конструкции, основанные, правда, на игольчатых или шариковых подшипниках. Поперечный рулевой наконечник — это элемент подобной конструкции для верхних тяг.

Система привода

Виды и типы используемых подшипников связаны не только с самой системой, но и, прежде всего, с видом конструкции. В системе привода преобладают плотные, компактные и комплексные конструкции. Встречаются игольчатые роликоподшипники, однорядные конические роликоподшипники, цилиндрические роликоподшипники типа NU.., радиальные шарикоподшипники. Трудно определить доминирующие решения, они связаны с размером транспортного средства и прежде всего с маркой автомобиля.

Коленвал

Здесь используют игольчатые роликоподшипники специальной конструкции, в которых ось симметрии порядка игл не совпадает с цепью корзины. Это две серии: в KZK.. оси элементов прижаты внутри, в КБК.. — снаружи. Также все чаще применяются подшипники скольжения, втулки/вкладыши скольжения.


Двигатель

Вал или ролики грм, натяжного ролика, натяжной ролик

Распределительный вал на подшипниках, как правило, работает с помощью скользящего подшипника, так называемой скользящей пластины. Ролик натяжителя ремня ГРМ является наиболее распространенной комплексной конструкцией, в которой подшипники являются неотъемлемой частью. В так называемых натяжителях используются игольчатые роликоподшипники и радиальные шариковые подшипники.

Коробка передач

Вал сцепления, выжимной подшипник сцепления, промежуточный вал

В валах сцепления используются шариковые однорядные и двухрядные подшипники, радиально-упорные шарикоподшипники, двунаправленные (серия Q.. или QJ..), а также конические. В сцеплении применяется так называемый выжимной подшипник сцепления. Отдельные шестерни передач — чаще всего игольчатые роликоподшипники. Промежуточный вал — игольчатые роликоподшипники (типа HK..), подшипники качения (типа NUP..).

Дифференциал

Преобладают почти полностью конические роликоподшипники.

Система охлаждения

Подшипник насоса охлаждающей жидкости имеет специальную конструкцию шарикоподшипников. Как правило, эти подшипники встроены, так что трудно на первый взгляд определить тип опоры.

Подшипники вентилятора — шарикоподшипники и втулки скольжения.

Электрическая система

В генераторе используются исключительно однорядные шарикоподшипники. Доминирует серия 62.., но также используются серии 60.., 63.., а также серии 622.. или 630..

Топливная система

Подшипник топливного насоса

Кондиционер

Подшипник кондиционера, чаще один шарикоподшипник.

Самый обычный автомобиль насчитывает огромное множество и разнообразие подшипников. Так, только в колесе автомобиля мы можем найти радиальные шарикоподшипники, такие как 6204 и 6205, конические подшипники, начиная от метрических 32010 AX и заканчивая дюймовыми, LM11749/10, двухрядными радиально-упорными с разъемным внутренним кольцом, BC346037, и двухрядными конические роликоподшипники с разъемным внутренним кольцом, BT408037.

Проходят годы, меняются конструкции, материалы и, конечно, модели автомобилей. Тем не менее, правила передачи привода и нагрузки остаются неизменны. Быть может, через несколько лет мы не найдем в машине ни одного, в полном смысле этого слова, подшипника. Но, безусловно, модульная конструкция является символом нашего времени, и не только в автомобильной промышленности.

Валопровод судна. Упорный подшипник — MirMarine

Валопровод служит для передачи мощности от коленчатого вала главного двигателя к гребному винту. Валопровод состоит из упорного, промежуточных и гребного валов, соединенных между собой. Валы изготавливают из углеродистой стали, а для небольших судов — из легированной стали. Валопровод с расположением главного двигателя в кормовой части судна показан на рис. 97.

Упорный вал присоединяется непосредственно к коленчатому валу двигателя и служит для передачи упора гребного винта через упорный подшипник и его фундамент на корпус судна.

Промежуточные валы предназначены для соединения упорного вала с гребным. Если главный двигатель размещен в средней части судна, применяют несколько промежуточных валов, которые располагаются в туннеле валопровода. При расположении главного двигателя в кормовой части судна длина валопровода существенно сокращается. В этом случае может быть всего один промежуточный вал. Промежуточные валы имеют шейки, которыми опираются на опорные подшипники. При необходимости застопорить валопровод используют тормоз, который обычно устанавливается на первом промежуточном валу после упорного вала.

Гребной вал находится в подшипниках дейдвудного устройства и имеет на конце конус и резьбу для насадки и крепления гребного винта. В случае применения шпоночного соединения гребного винта с валом шпоночный паз на конусе гребного вала делают ложкообразной формы. Это снижает местные напряжения в теле вала у шпоночного паза. Если дейдвудный подшипник смазывается водой, то на шейки гребного вала напрессовывают бронзовые облицовки, предохраняющие вал от соприкосновения с водой. Поверхность вала между облицовками также имеет предохранительное покрытие. Для этой цели вал обычно обертывают стеклотканью и покрывают эпоксидной смолой. При смазке дейдвудного устройства маслом бронзовые облицовки не применяют. В местах расположения подшипников гребной вал имеет шейки увеличенного диаметра. Для уменьшения влияния электрохимической коррозии, разрушающей облицовки гребного вала и гребной винт, на участке гребного вала, выходящего из дейдвудного устройства внутрь судна, в последние годы стали устанавливать токосъемное устройство. Валы судового валопровода показаны на рис. 98.

Соединяют валы чаще всего фланцами, откованными заодно с валами, при помощи призонных болтов, плотно входящих в отверстия фланцев.

Для соединения сплошных валов небольшого диаметра применяют фланцевые муфты. Конструкция фланцевой конической муфты представлена на рис. 99. Обе конические полумуфты сидят на конусах валов на шпонках и затянуты гайками. Соединяют полумуфты коническими болтами, устанавливаемыми во фланцы полумуфт.

В последнее время все большее распространение получает бесшпоночное соединение валов. На рис. 100 показано такое соединение, собираемое гидропрессовым способом. В этой конструкции на концы валов 1, тщательно обработанные под строго определенный диаметр, надевается гильза 2. Гильза имеет внутреннюю цилиндрическую и наружную коническую поверхности. На гильзу надевается муфта 3 с внутренней конической поверхностью. Через специальные отверстия 4 в зазор между поверхностями гильзы и муфты нагнетают масло насосом высокого давления (до 1600 бар) и продвигают муфту по конусу гильзы с помощью гидравлических домкратов. Операцию заканчивают после получения необходимого натяга и силы трения, достаточной для передачи крутящего момента на гребной винт. Подобное соединение позволяет без особых трудностей применять в качестве подшипников валопровода подшипники качения.

Опорные подшипники служат для поддержания упорного и промежуточного валов. Количество подшипников зависит от длины валопровода и его массы. Опорные подшипники устанавливают на фундаменты, которые прикрепляются к набору судна.

На судах применяются опорные подшипники качения и скольжения (последние бывают с фитильной и с дисковой смазкой).

При фитильной смазке на крышке подшипника располагается масленка, состоящая обычно из двух масляных ванн. В отверстиях каждой из ванн установлены трубки, в которые вставляют фитили, скрученные из шерсти. Стекающее с фитилей масло по сверлению в корпусе и вкладыше подшипника поступает на шейку вала. На рабочей поверхности верхнего вкладыша подшипника имеются канавки, распределяющие масло по всей рабочей поверхности подшипника. Подшипник с дисковой смазкой (рис. 101) имеет масляную ванну 12, уровень масла в которой контролируют щупом (на рисунке не показан). Диск 11, жестко закрепленный на валу, при вращении вала захватывает масло из масляной ванны и подает его наверх, где оно снимается маслосъемником. Отсюда по каналу 6 масло поступает в масляную канавку и холодильники верхнего 2 и нижнего 1 вкладышей, равномерно распределяясь по рабочей поверхности подшипника. Отработавшее масло стекает в масляную ванну и, охладившись, снова поступает на смазку. Для охлаждения масла в ванне установлены змеевики 13, по которым прокачивается охлаждающая вода. В целях предотвращения выброса масла из подшипника предусмотрены маслоотражатели 4 и 10 и сальниковые манжеты 5 и 9. Маслоотражатель 4 закреплен на валу. Вытекающее из подшипника по поверхности вала масло отбрасывается маслоотражателем на стенки маслоулавливающей камеры и стекает в масляную ванну. Масло в подшипник заливают при открытой крышке 7 в горловину 8 через предохранительную сетку 3. Дисковая смазка по сравнению с фитильной обеспечивает более надежную и интенсивную смазку. За счет охлаждения и повторного использования стекающего в ванну масла его расход значительно сокращается.

В качестве опорного подшипника качения обычно применяют роликовый сферический двухрядный подшипник (рис. 102). В нем роликовый подшипник 3 закреплен на валу с помощью конической втулки 1 и затянут гайкой 5. Подшипник в корпусе 6 установлен на скользящей посадке, чтобы обеспечить возможность его продольного перемещения при осевом перемещении валопровода (тепловое удлинение, перемена хода двигателя и т. п.). С торцов подшипник закрывается боковыми крышками 4 с сальниковым уплотнением. В верхней части корпуса установлена масленка 2 для подачи смазки. По сравнению с подшипниками скольжения роликовые сферические двухрядные подшипники обладают значительными преимуществами, а именно: малым коэффициентом трения, высокой надежностью, долговечностью и т. д.

Упорный подшипник служит для восприятия упора гребного винта и передачи его через фундамент на корпус судна. В качестве упорного подшипника применяют подшипники скольжения или качения. Однако последние встречаются редко.

Упорный подшипник может быть выполнен отдельно от двигателя или встроен в его фундаментную раму. Отдельно выполненный упорный подшипник имеет жесткий фундамент, прочно соединенный с набором судна.

Упорные подшипники скольжения конструктивно подразделяются на многогребенчатые (Пенна, Модcлея) и одногребенчатые (Митчеля). Первые, ввиду их ограниченной способности к восприятию осевого усилия, а также значительных габаритов и сложности обслуживания, в настоящее время практически не применяются. Одногребенчатые подшипники находят широкое применение на морских судах.

В одногребенчатом упорном подшипнике упор гребного винта передается через упорные подушки (сегменты), число которых может быть от шести до двенадцати. Упорную подушку (рис. 103) изготовляют из стали с рабочей поверхностью 2, залитой баббитом. С противоположной стороны в подушку вставляют закаленный сферический упор 3, центр которого смещен по отношению к оси симметрии подушки.

На рис. 104 показана схема работы упорных подушек на передний и на задний ход. При вращении упорного вала его гребень захватывает масло и непрерывно затягивает его под подушки. Одновременно за счет упора гребного винта гребень через слой масла давит на подушку соответствующего хода. Так как центр качения подушки смещен, она поворачивается, пытаясь прижаться к гребню тем концом, расстояние от которого до центра качения меньше. В результате этого давление масла в месте наименьшего зазора между гребнем и подушкой достигает нескольких десятков и более бар, т. е. создается и непрерывно поддерживается масляный клин. Это позволяет значительно повысить удельную нагрузку на рабочую поверхность трущихся пар. Воспринимаемые подушками усилия от упора гребного винта передаются через цилиндрические упоры и опорное кольцо на корпус судна. При изменении направления вращения гребного винта работают упорные подушки другого хода.

Упорный подшипник (рис. 105) состоит из корпуса 1, в котором находятся два опорных подшипника, состоящие из верхних и нижних вкладышей 4. На этих подшипниках лежит упорный вал 5 с откованным заодно гребнем 12. Упорный подшипник закрыт крышкой 6. В корпусе установлены опорные кольца 9 с закаленными цилиндрическими упорами 2. При вращении вала упор винта передается гребнем 12 через упорные подушки 7 и упоры 3 и 2 на опорное кольцо 9 соответствующего хода. Изменением толщины прокладок 10 регулируют масляный зазор (разбег) между упорным гребнем и упорными подушками переднего и заднего хода. Корпус подшипника залит маслом. Захватываемое гребнем масло снимается маслоулавливающей скобой 8 и направляется по каналам на смазку опорных вкладышей. Охлаждается масло водой прокачиваемой через змеевик 13. Разъемные торцевые крышки 11 с манжетами предотвращают утечки масла. Контроль уровня масла и температуры — по масломерному стеклу и термометру.

Похожие статьи

Общее описание: подшипники роликовые радиально-упорные с коническими роликами

 

Подшипники роликовые радиально-упорные с коническими роликами воспринимают радиальные и осевые нагрузки. Способность воспринимать осевые нагрузки зависит от угла контакта дорожки качения наружного кольца. При его увеличении осевая грузоподъемность возрастает, при этом уменьшается радиальная.

Допустимые частоты вращения конических роликовых подшипников по сравнению с подшипниками, имеющими цилиндрические ролики, значительно ниже, они примерно такие же, как у сферических роликоподшипников. Подшипники роликовые конические разъемные, что позволяет производить раздельный монтаж и демонтаж наружных и внутренних колец с комплектом роликов.

Наряду с основной конструкцией (тип 7000) выпускаются подшипники роликовые конические следующих разновидностей:

  • Тип 67000 — с упорным бортом на наружном кольце, наличие борта позволяет производить сквозную расточку корпуса, не создавая в нем заплечиков;
  • Тип 27000 — с большим углом конуса наружных колец, они хорошо работают при больших осевых нагрузках;
  • Тип 97000 — двухрядные;
  • Тип 537000 — двухрядные с утолщенным наружным кольцом, применяют в качестве опорных роликов прокатного, литейного и другого оборудования;
  • Тип 77000 — четырехрядные.

Однорядные подшипники типов 7000 и 27000 предназначены для восприятия радиальных и односторонних осевых нагрузок. Допускают раздельный монтаж колец, а также регулирование осевого зазора, как при установке, так и в процессе эксплуатации. Подшипники можно устанавливать с предварительным натягом, который создается при монтаже пары подшипников в одной опоре.

Подшипники типа 67000 применяют в тех случаях, когда нежелательно предусматривать крепление или опорные заплечики в корпусах для фиксации положения наружных колец или когда необходимо сократить ширину опоры.

При монтаже и в процессе эксплуатации однорядных роликовых конических подшипников требуется тщательная регулировка осевых зазоров. При этом необходимо избегать очень малых или, наоборот, чрезмерно больших зазоров, которые могут привести к недопустимому повышению рабочей температуры и даже к разрушению деталей подшипника.

Однорядные подшипники основной модификации широко используют в редукторах общемашиностроительного назначения, в трансмиссиях автомобилей и тракторов (в катках гусеничных тракторов), в ступицах колес различных транспортных средств (в колесах самолетов, автомобилей, вагонеток и кранов). Обычно их устанавливают в паре, что позволяет регулировать зазоры в подшипниках как при изготовлении объектов, так и при их эксплуатации.

Однорядные прецизионные подшипники основной модификации, а также модификацию с упорным бортом на наружном кольце применяют в шпинделях токарных, фрезерных и других типах металлообрабатывающих станков.

Крупногабаритные однорядные подшипники применяют в тяжелом машино и станкостроении.

Двухрядные подшипники типа 97000 предназначены для восприятия радиальных и двусторонних осевых нагрузок. Заданный осевой зазор в подшипнике обеспечивается подшлифованием дистанционного кольца, установленного между внутренними кольцами. Допустимая радиальная нагрузка в 1,7 раза выше, чем радиальная нагрузка у соответствующего однорядного подшипника. Осевая нагрузка подшипников типа 97000 (а =10°…17°) не должна превышать 40% от неиспользованной допустимой радиальной нагрузки, т. е. Fa < Fr’.

Двухрядные подшипники малых и средних габаритов применяют в редукторах объектов общего машиностроения (в рабочих и транспортных рольгангах, мощных редукторах, опорах барабанов и других узлах), когда требуются высокие долговечность и жесткость.

Крупногабаритные двух, а также четырехрядные подшипники используют в основном в тяжелом машиностроении и прокатном оборудовании. Эти модификации не требуют регулировки зазоров и при необходимости способны фиксировать положение вала относительно корпуса и воспринимать двусторонние осевые нагрузки.

Четырехрядные подшипники типа 77000 предназначены для восприятия больших радиальных и относительно небольших двусторонних осевых нагрузок. Допускается регулирование осевого зазора между соседними рядами роликов путем подшлифования или замены дистанционных колец, установленных между наружными и внутренними кольцами. Допустимая радиальная нагрузка в 3 раза выше, чем у соответствующего однорядного подшипника. Осевая игра (а =10°…17°) не должна превышать 20% неиспользованной допустимой радиальной на­грузки, т.е. Fa < 0,2Fr’.

Двух и четырехрядные подшипники фиксируют положение вала относительно корпуса в осевом направлении в обе стороны.

Подшипники роликовые радиально-упорные с коническими роликами изготавливаются классов точности 0, нормальный, 6Х, 6 и 5 для общего машиностроения и автомобильной промышленности, а также более высоких классов точности для станкостроения.

Подшипники выпускаются с метрической (в «минус») и дюймовой (в «плюс») системами задания посадочных допусков.

Знай свои упорные подшипники | Конструкция машины

М. Хонсари
Проф. Машиностроения
Луизиана State Univ.
Батон-Руж, штат Луизиана

Э. Р. Бузер
Консультант
Веро-Бич, Флорида

Упорные подшипники воспринимают осевые нагрузки на вращающихся валах. Конструкции варьируются от простых плоских шайб размером с монету в бытовых приборах до сложных узлов в несколько футов в диаметре для гидроэлектрических генераторов.

Доступны шесть основных типов. Первый, гидростатический упорный подшипник с внешним давлением, работает для низкоскоростного, сильно нагруженного оборудования, включая телескопы, купола обсерваторий и большие радиоантенны, конструкции которых могут весить миллион фунтов и более.

В гидростатических упорных подшипниках используется внешний насос для создания давления масляной пленки, когда простое внутреннее гидродинамическое перекачивание не может создать достаточную силу. Основное применение — оборудование, работающее на чрезвычайно низких скоростях, при высоких нагрузках, с жидкостями с низкой вязкостью или в ограниченном пространстве.Компактный упорный подшипник может подавать масло под высоким давлением, например, в единственный карман на конце ротора. Подшипники большего размера могут иметь три или более гильзы под давлением. Гидравлические резисторы потока в линии подачи в каждый карман или равный поток в каждый карман от сгруппированных шестеренчатых насосов обеспечивают асимметричное давление в карманах, необходимое для поддержки смещенных от центра нагрузок. Нагрузка агрегата на такие подшипники обычно ограничивается величиной от 0,5 до 0,75 × давление подачи внешнего насоса до примерно 5000 фунтов на квадратный дюйм.

Другие пять типов упорных подшипников создают внутреннее давление масла (самодействующее) для поддержки осевых нагрузок.Здесь вращающаяся поверхность или кольцо вала нагнетают масло на опорную опорную поверхность.

Упорные подшипники с конической землей находят применение в средне- и крупногабаритных высокоскоростных машинах, таких как турбины, компрессоры и насосы. В большинстве конструкций плоская площадка простирается на дополнительные 10-20% окружной ширины B на задней кромке каждого сегмента. Это расширение может повысить грузоподъемность от 10 до 15% и снизить износ при пусках, остановках и на низких скоростях. Постепенный износ увеличивает эту плоскую часть примерно до 30-50% от общей площади, что помогает поддерживать грузоподъемность.Во многих турбинах и компрессорах отдельные сегменты имеют квадратную форму (радиальная длина L = B ) и конусность по окружности около 0,003 B 0,5 .

Подшипники с конической посадкой чувствительны к нагрузке, скорости и вязкости смазочного материала, и поэтому обычно разрабатываются для соответствия условиям эксплуатации конкретных машин с постоянной скоростью.

Упорные подшипники с поворотными подушками обычно используются в турбинах, компрессорах, насосах, а также в судовых приводах, примерно такого же размера и диапазона нагрузок, что и конструкции с конической площадкой.Колодки автоматически регулируются, образуя почти оптимальный масляный клин, который выдерживает высокие нагрузки при широком диапазоне скоростей в любом направлении и с различными смазочными материалами. Выравнивающие звенья за шарнирами компенсируют незначительные перекосы и выравнивают нагрузки на каждую из трех-десяти колодок. Большинство агрегатов содержат шесть колодок, внешний диаметр которых вдвое больше внутреннего диаметра. Щелевидные впускные отверстия для масла между отдельными колодками занимают около 15% доступной площади между внутренним и внешним диаметрами.

Смещение оси поворота примерно на 65% за пределы передней кромки увеличивает грузоподъемность, снижает рабочие температуры и снижает потери мощности. Замена стали медью для основы подшипникового материала баббита также снижает пиковую температуру поверхности. Масло, подаваемое непосредственно в канавку на передней кромке каждой колодки (незаполненная смазка), сводит к минимуму перенос горячего масла от колодки к колодке. Это также позволяет маслу стекать из корпуса, что в основном устраняет паразитные потери мощности при высоких скоростях движения. Положение поворота обычно устанавливается на 55–58% радиально наружу на подушке, чтобы избежать радиального наклона.

Толщина пленки минимальна для жидкостей с низкой вязкостью, таких как вода, жидкие металлы и газы.В таких случаях подушечки имеют небольшую сферическую или цилиндрическую коронку высотой от 0,5 до 2 минимальной толщины пленки. Компоновка выдерживает нагрузки, примерно равные площадкам с плоской поверхностью, которые имеют оптимальное положение поворота. Обратная сторона: подшипники со смещенными шарнирами вращаются только в одном направлении.

Подпружиненные упорные подшипники являются одними из самых крупных самодействующих типов, несущих миллионы фунтов, например, в гидроэлектрических генераторах. Каждая колодка устанавливается на гнездо предварительно сжатых пружин, чтобы избежать высоких контактных напряжений, которые в противном случае возникают из-за нагрузки на отдельные шарниры.В небольших подшипниках, где осевое пространство ограничено, резиновая основа обеспечивает гибкую опору.

Подпружиненные подшипники обычно работают со скоростью от 50 до 700 об / мин при расчетной единичной нагрузке от 400 до 500 фунтов на квадратный дюйм. В то время как отдельные колодки часто имеют квадратную форму ( L / B = 1), в подшипниках самого большого диаметра используются удлиненные колодки, причем B короче L . Укороченный путь в тангенциальном направлении движения позволяет избежать перегрева масляной пленки и несущей поверхности баббита.

Эти большие подпружиненные подшипники имеют жесткие допуски, которые помогают поддерживать тонкую масляную пленку при пусках и остановках и обеспечивают достаточную толщину масляной пленки для непрерывной работы.

В упорных ступенчатых подшипниках используется чеканная или вытравленная ступенька. Таким образом, они хорошо подходят для серийно выпускаемых небольших подшипников и упорных шайб. Они работают с жидкостями с низкой вязкостью, такими как вода, бензин и растворители. Высота ступеньки должна почти равняться минимальной толщине пленки для оптимальной грузоподъемности, но при этом быть достаточно большой, чтобы допускать некоторый износ.Ступенька обеспечивает такое же гидродинамическое насосное действие, как и клин, хотя ступенчатая конструкция не прижилась в больших машинах, потому что она имеет тенденцию накапливать грязь. Износ и эрозия снижают эффективность шага.

Упорные подшипники с плоской посадкой — самые простые и недорогие в изготовлении. Они справляются с легкими грузами для простого позиционирования роторов в электродвигателях, приборах, коленчатых валах и других механизмах. Подшипники с плоской посадкой несут от 10 до 20% нагрузки других упорных подшипников.Это связано с тем, что плоские параллельные поверхности не создают прямое давление масляной пленки за счет перекачивания. Вместо этого они зависят от теплового расширения как масляной пленки и несущей поверхности, чтобы сформировать клин поддерживая нефть.

Маленькие плоские подшипники без канавок для распределения масла выдерживают нагрузку от 20 до 35 фунтов на квадратный дюйм. В более крупных подшипниках добавление четырех-восьми радиальных маслораспределительных канавок улучшает подачу масла и охлаждение, повышая нагрузку на агрегат примерно до 100 фунтов на квадратный дюйм.

МАТЕРИАЛЫ
Оловянный баббит (обычно ASTM B23, сплав 2: 88% олова, 7.5% сурьмы, 3,5% меди) используется в большинстве промышленного, морского и транспортного оборудования. Этот материал устойчив к коррозии и помогает предотвратить образование задиров на вращающихся стальных упорных поверхностях, поскольку твердые частицы грязи и частицы износа легко проникают в его поверхность. Нанесение тонкого слоя олово-баббит — толщиной несколько мил на бронзовой или стальной оболочке и до 125 мил на более крупных агрегатах — частично компенсирует низкую усталостную прочность материала из-за колебательных нагрузок. Нанесение тонкого гальванического покрытия из баббита на подложку из медного сплава помогает избежать переноса последнего на стальные упорные направляющие.

Свинцовый баббит (обычно ASTM B23, сплав 15: 83% свинца, 15% сурьмы, 1% мышьяка, 1% олова) стоит меньше, чем оловянный баббит. Используйте хорошо ингибированное смазочное масло, чтобы избежать коррозии из-за окисленного масла, особенно при загрязнении водой.

Свинцовые бронзы (83% меди, 7% олова, 7% свинца, 3% цинка) используются во многих малых и тихоходных машинах в качестве недорогих упорных шайб и упорных поверхностей втулок.

Армированные пластмассы, пористое железо и бронза используются для подшипников и упорных шайб в двигателях с малой мощностью, бытовых приборах, автомобильном и сельскохозяйственном оборудовании.Углеродный графит и резина для подшипников, работающих в воде и различных жидкостях с низкой вязкостью.

Для получения дополнительной информации см. М. М. Хонсари и Э. Р. Бузер, Прикладная трибология: конструкция подшипников и смазка, Wiley Book Co., 2001.

Упорные подшипники с наклонной подушкой

Упорные подшипники с наклонной подушкой предназначены для передачи высоких осевых нагрузок от вращающихся валов с минимальными потерями мощности, упрощая установку и обслуживание.Диаметр вала, на который рассчитаны подшипники, составляет от 20 мм до более 1000 мм. Максимальные нагрузки для различных типов подшипников колеблются от 0,5 до 500 тонн. Подшипники большего размера и грузоподъемности считаются нестандартными, но могут быть изготовлены по специальному заказу.

Каждый подшипник состоит из ряда подушек, поддерживаемых несущим кольцом; каждая площадка может свободно наклоняться, что создает самоподдерживающуюся гидродинамическую пленку. Несущее кольцо может быть как одно целое, так и пополам с различным расположением.

Несколько вариантов

Существуют два варианта смазки. Первый — полностью залить корпус подшипника. Второй, более подходящий для более высоких скоростей, направляет масло на упорную поверхность. Затем это масло свободно стекает из корпуса подшипника.

Точно так же существуют два геометрических варианта. Первый вариант не использует выравнивающие или выравнивающие звенья (рисунок 1). Эта опция используется во многих редукторах и других системах валов, где обеспечивается перпендикулярность между осевой линией вала и поверхностями подшипников.


Рис. 1. Заливная смазка:
Типовая схема двойной тяги

Подшипники как для заливной, так и для направленной смазки предназначены для машин, в которых уравновешенный упорный подшипник определяется требованиями API или где подшипник может потребоваться по другим причинам.

Затопленная и направленная смазка

Обычный метод смазки упорных подшипников с наклонной подушкой заключается в заполнении корпуса маслом с использованием отверстия на выходе для регулирования потока и поддержания давления.Давление в корпусе обычно составляет от 0,7 до 1,0 бар (от 10,1 до 14,5 фунтов на квадратный дюйм), и для минимизации утечки требуются уплотнительные кольца в местах, где вал проходит через корпус.

Хотя заливная смазка проста, она приводит к большим паразитным потерям мощности из-за турбулентности на высокой скорости. Там, где ожидаются средние скорости скольжения, превышающие 50 метров в секунду (м / с), эти потери могут быть в значительной степени устранены за счет использования системы направленной смазки. Наряду с уменьшением потерь мощности обычно на 50 процентов, направленная смазка снижает температуру подшипника и, в большинстве случаев, поток масла.

Некоторые типичные двойной тяги подшипников с использованием механизмов, направленных смазки показаны на рисунке 2.


Рис. 2. Направленная смазка: типичная двойная тяга
Меры, предназначенные для предотвращения массового налива
Масло от контакта с воротником

Следует отметить, что:

  • Направленные и затопленные подшипники имеют одинаковые базовые размеры и используют одинаковые упорные подушки.

  • Предпочтительное давление подачи масла для направленной смазки — 1.4 бара (20,3 фунта / кв. Дюйм).

  • Скорость масла в подающих каналах не должна превышать трех метров в секунду (м / с), чтобы обеспечить полное давление на подшипник.

  • В корпусе подшипника не должно быть масел за счет наличия достаточного дренажного участка по периметру буртика.

  • На валу не требуются уплотнительные кольца.

Производители предлагают самые разные материалы колодок.Некоторые полимерные материалы могут работать при температурах на 120 ° C (248 ° F) выше, чем у обычного белого металла или баббита. Кроме того, положение поворота колодки может влиять на температуру прижимной колодки.

Все колодки могут поставляться со смещенными шарнирами, но колодки с центральным шарниром предпочтительнее для работы в двух направлениях, надежной сборки и минимальных запасов. На умеренных скоростях поворотное положение не влияет на грузоподъемность; однако там, где средняя скорость скольжения превышает 70 м / с, смещенные шарниры могут снизить температуру поверхности подшипника и, таким образом, увеличить грузоподъемность в рабочих условиях.

Упорные подшипники могут быть оснащены датчиками температуры, бесконтактными датчиками и датчиками веса.

В гидравлических системах тяги учета, гидравлический поршень расположен позади каждой упорной площадки и соединен с источником подачи масла под высоким давлением. Затем давление в системе дает меру приложенной осевой нагрузки. На Рисунке 3 показана типичная установка этой системы в комплекте с панелью управления, которая включает масляный насос высокого давления и манометр системы, откалиброванный для считывания осевой нагрузки.


Рисунок 3. Гидравлический измеритель тяги
Расположение

Для систем, включающих тензодатчики или гидравлические поршни, обычно необходимо, чтобы увеличить общую осевую толщину упорного кольца.

Наконец, упорные подшипники включают в себя гидравлические домкраты. Эти положения обеспечивают наличие соответствующей масляной пленки между упорным колесом и подушками подшипника при работе на низких скоростях.

При запуске грузоподъемность упорных подшипников качения ограничивается примерно 60% от максимально допустимой рабочей нагрузки.Если пусковая нагрузка на подшипник превышает эту цифру и подшипник большего размера не является вариантом, производитель может поставить упорные подшипники, оснащенные системой гидростатического подъема, чтобы подшипник мог работать с большими нагрузками на низких скоростях. Эта система вводит масло под высоким давлением (обычно от 100 до 150 бар (от 1450 до 2175 фунтов на квадратный дюйм) между поверхностями подшипников для образования гидростатической масляной пленки.

Следует отметить, что аналогичный подход используется при выполнении гидравлических подъемных механизмов для радиальных подшипников.Гибридный упорный подшипник предлагается компанией Kingsbury and Colherne (Великобритания) под названием KingCole.

Требования к корпусу подшипника для подшипников KingCole LEG аналогичны требованиям для стандартных упорных подшипников. Сальники в задней части несущих колец не требуются, потому что масло на входе ограничено проходами внутри узла базового кольца. Свежее масло поступает в подшипник через кольцевое пространство, расположенное в нижней части основного кольца. Сливное пространство должно быть достаточно большим, чтобы свести к минимуму контакт между сливаемым маслом и вращающейся муфтой.Выпускное отверстие для нагнетательного масла должно быть такого размера, чтобы масло могло свободно вытекать из полости подшипника.

Производитель рекомендует тангенциальное выпускное отверстие, равный диаметр до 80 процентов от рекомендуемой толщины воротника. По возможности выпускной патрубок должен располагаться в нижней части корпуса подшипника. В качестве альтернативы он должен располагаться по касательной к вращению воротника. Опорные колодки и кольца несущей сконструированы таким образом, чтобы на входе в неразбавленном виде круто масло течет от передней кромки канавки в вкладыша подшипника непосредственно в масляной пленки.Холодное масло в клине масляной пленки изолирует белую металлическую поверхность от уноса горячего масла, которое прилипает к вращающемуся кольцу.

В отличие от подшипников LEG, масло для подшипников с распылительной подачей впрыскивается между поверхностями подшипников, а не непосредственно на них. Это может привести к неравномерным смазкам подшипников и необходимости снабжать nonpractical высокого давления для достижения истинного эффективного размыва горячего масла уноса придерживаясь тягами воротника. Небольшие отверстия для форсунок также могут забиваться посторонними предметами.

Утверждается, что потери мощности на трение ниже, чем в залитых подшипниках и подшипниках с распылительной подачей, благодаря уменьшенному потоку масла. Поток холодного масла через переднюю кромку снижает температуру поверхности колодки и увеличивает производительность KingCole.

Полученные в результате улучшения производительности показаны на рисунке 4.

Рисунок 4.Подшипники LEG в сравнении со стандартными подшипниками с заливной головкой и подшипниками с распылительной подачей

Предполагая, что температура масла на входе составляет 50 ° C (122,4 ° F), можно оценить температуру белого металла подшипников передней кромки KingCole по рисунку 5. Эти температуры являются функцией скорости поверхности и контактного давления.

Рисунок 5. Температура белого металла ножек в положении 75/75 (серия с 6 и 8 контактными площадками, стальные колодки)

Выбор подшипника

Осевая нагрузка, частота вращения вала, вязкость масла и диаметр вала через подшипник определяют размер подшипника, который необходимо выбрать.

Подшипники передней кромки рассчитаны на нормальную нагрузку и скорость, когда переходная нагрузка и скорость находятся в пределах 20 процентов от нормальных условий.

Все кривые основаны на вязкости масла ISO VG32 при температуре масла на входе 50 ° C (122.4 ° F). Производитель рекомендует вязкость масла ISO VG32 для средне- и высокоскоростных применений.


Таблица 1.
Упорный подшипник Обозначение
Номера и пеленг
(Упорные подшипники KingCole с 8-мя подушечками)

Радиальные подшипники качения

Основные принципы работы с изменением наклона пусковой площадкой журнала подшипников описаны в руководствах отбора и связанные с литературой многих компетентных производителей.Одно из них — Waukesha Bearings, Waukesha, Wisconsin.

Источники
Компания «Глейшер Металл» в Лондоне, Англия, и Мистик, Коннектикут; Kingsbury Inc. в Филадельфии, штат Пенсильвания, и Waukesha Bearings в Вокеше, штат Висконсин.

Примечание редактора:
Эта статья была опубликована в книге Хайнца Блоха Практическая смазка для промышленных объектов . Эту и другие книги по смазочным материалам можно приобрести в Интернет-магазине Noria.

Конструкция и конструкция упорных подшипников

Упорный подшипник — это тип поворотных подшипников, которые обеспечивают высокую нагрузочную способность в агрессивных средах. Подшипники этого типа предназначены для работы параллельно валу и обеспечивают высокую осевую нагрузку, однако различные виды упорных подшипников с различными конструктивными особенностями и размерами обеспечивают разную производительность, грузоподъемность и точность. Существует несколько различных типов и подкатегорий упорных подшипников, но их можно разделить на два основных типа.

Применение упорных подшипников

Поскольку разные типы упорных подшипников обеспечивают разную производительность, точность и грузоподъемность, они могут применяться по-разному. Обычно шариковые упорные подшипники используются в таких отраслях, как аэрокосмическая, химическая и коммунальная, в то время как роликовые упорные подшипники подходят для сельского хозяйства и других отраслей, где требуется высокая грузоподъемность.

Материал, используемый в упорных подшипниках

Для производства упорных подшипников используется множество материалов, в то время как некоторые из наиболее распространенных материалов — нержавеющая сталь и керамика. Обычно клетка изготавливается из латуни, полиамида или стали в зависимости от области применения и потребностей. Для повышения общей производительности устройства используется специальная смазка, а также специальные покрытия, уплотнения и экраны для защиты от пыли и влаги.

Типы упорных подшипников

Двумя основными типами упорных подшипников являются шариковые упорные подшипники и роликовые упорные подшипники, оба этих типа используются в различных приложениях и оборудовании из-за их различных характеристик, долговечности, точности и грузоподъемности.Упорные шариковые подшипники обеспечивают высокую производительность, но, как правило, несут меньшую осевую нагрузку, чем их аналоги. С другой стороны, роликовые упорные подшипники используются в приложениях и машинах, где требуется высокая грузоподъемность.

Подшипники упорные с шариками

В этом конкретном типе упорных подшипников шарики используются для разделения обоих колец, которые называются шайбами ​​из-за их формы и конструкции. Обойма удерживает шарикоподшипники в нужном месте между дорожками качения.Этот тип упорных подшипников может работать на более высоких скоростях. Из-за конструктивных ограничений шариковые упорные подшипники необходимо использовать попарно, чтобы избежать перекоса при установке. В зависимости от области применения и конкретных требований одна шайба может быть немного меньше другой. Обычно шариковые упорные подшипники изготавливаются с двумя вариантами конструкции: один с канавкой, которая делает движение подшипников без трения, а другой без дорожки с канавкой, что обеспечивает более высокую осевую нагрузку.

Подшипники упорные с роликами

Этот тип упорных подшипников очень похож на шариковые упорные подшипники с точки зрения внешнего дизайна, но есть существенные различия в их внутренней структуре и применении, а также в свойствах.Роликовые упорные подшипники, как правило, обладают высокой нагрузочной способностью, но они не так эффективны, как шариковые упорные подшипники, хотя характеристики роликовых упорных подшипников можно повысить с помощью специальной смазки. Как и их аналог, роликовые упорные подшипники также поставляются с двумя шайбами, роликами и сепаратором, удерживающим эти ролики. Как и шариковые упорные подшипники, роликовые упорные подшипники также должны использоваться в соответствующих парах.

Типы подшипников — Принцип работы подшипников

Существует много типов подшипников, каждый из которых используется для разных целей.К ним относятся шариковые подшипники, роликовые подшипники, упорные шариковые подшипники, упорные роликовые подшипники и упорные конические роликоподшипники.

Шариковые подшипники

Шариковые подшипники , как показано ниже, вероятно, являются наиболее распространенным типом подшипников. Их можно найти везде, от роликовых коньков до жестких дисков. Эти подшипники могут выдерживать как радиальные, так и осевые нагрузки, и обычно используются в приложениях, где нагрузка относительно невелика.

В шарикоподшипнике нагрузка передается от внешнего кольца к шару и от шара к внутреннему.Поскольку мяч представляет собой сферу , он контактирует с внутренним и внешним кольцом только в очень маленькой точке, что помогает ему вращаться очень плавно. Но это также означает, что площадь контакта, удерживающая эту нагрузку, не так велика, поэтому при перегрузке подшипника шарики могут деформироваться или сдавить, что приведет к повреждению подшипника.

Роликовые подшипники

Роликовые подшипники , подобные показанному ниже, используются в таких приложениях, как ролики конвейерной ленты, где они должны выдерживать большие радиальные нагрузки.В этих подшипниках ролик представляет собой цилиндр , поэтому контакт между внутренним и внешним кольцом представляет собой не точку, а линию. Это распределяет нагрузку на большую площадь, позволяя подшипнику выдерживать гораздо большие нагрузки, чем шариковый подшипник. Однако этот тип подшипника не рассчитан на большие осевые нагрузки.

В разновидности этого типа подшипника, называемой игольчатым подшипником , используются цилиндры очень маленького диаметра. Это позволяет подшипнику помещаться в труднодоступных местах.

Упорный шарикоподшипник

Упорный шарикоподшипник , подобный показанному ниже, в основном используется для низкоскоростных приложений и не может выдерживать большие радиальные нагрузки. Барные стулья и проигрыватели Lazy Susan используют этот тип подшипника.

Упорный роликовый подшипник

Упорный роликовый подшипник , подобный показанному ниже, может выдерживать большие осевые нагрузки. Они часто встречаются в зубчатых передачах, таких как автомобильные трансмиссии, между шестернями, а также между корпусом и вращающимися валами.Цилиндрические шестерни, используемые в большинстве трансмиссий, имеют наклонные зубья — это вызывает осевую нагрузку, которая должна поддерживаться подшипником.

Конические роликоподшипники

Конические роликоподшипники могут выдерживать большие радиальные и осевые нагрузки.

Конические роликоподшипники используются в ступицах автомобилей, где они обычно устанавливаются парами в противоположных направлениях, чтобы они могли выдерживать тягу в обоих направлениях.

Руководство по выбору упорных подшипников | Инженерное дело360

Упорные подшипники имеют тела качения, которые в первую очередь воспринимают осевые нагрузки вращающихся устройств.Подшипники нескольких типов доступны в упорных конфигурациях.

В то время как подшипники с радиальной нагрузкой устанавливают шариковые или роликовые дорожки на противоположных внутреннем и внешнем кольцах подшипников, в большинстве упорных подшипников дорожки качения выточены на торцах сопряженных колец. Такая конструкция поддерживает нагрузку, параллельную оси подшипника, но практически не поддерживает радиальные нагрузки. Упорные подшипники также не способны выдерживать моментные нагрузки.

Шарики, цилиндрические ролики, конические ролики, сферические ролики и игольчатые ролики являются наиболее распространенными телами качения, используемыми для осевых приложений.Сепараторы / фиксаторы почти всегда используются для поддержания равномерной загрузки роликов и расстояния между ними. Хотя гидравлические подшипники и магнитные подшипники также производятся для осевых нагрузок, эти области лучше освещены на соответствующих страницах, но здесь они указаны как применимые.

Типы

Упорные подшипники качения

Упорный конический роликовый подшипник — Угол, образованный между осью подшипника и линией контакта между дорожкой качения и коническим роликом, определяет степень осевого усилия, которое может выдержать этот подшипник.Если этот угол больше 45 °, подшипник лучше подходит для осевых нагрузок. Когда угол между осью подшипника и осью ролика достигает 90 °, подшипник может выдерживать только осевые нагрузки. Эти подшипники требуют сепаратора, а иногда и фланца, чтобы удерживать роликовый узел.

Упорные конические роликоподшипники для тяжелых условий эксплуатации также изготавливаются со вторым рядом противоположных конических роликов. За счет изменения формы дорожки качения этот тип «завинчиваемого» подшипника сопротивляется легкому или умеренному угловому смещению.

Цилиндрический роликовый упорный подшипник — этот тип подшипника раздувает цилиндрические ролики вокруг оси подшипника перпендикулярно радиально. Эти ролики должны иметь венчик или иметь свободный конец, чтобы уменьшить напряжение между роликами и внешней стенкой дорожки качения шайбы домика. Для их развертывания не требуется много места в осевом направлении, а также они бывают двухрядными. Хотя они подходят для значительных осевых нагрузок, они не рекомендуются для радиальных нагрузок.

Сферический упорный роликовый подшипник — Тела качения имеют бочкообразную форму, а дорожки качения очень похожи на конические и чашечные, характерные для стандартных конических роликоподшипников.Это обеспечивает возможность самоцентрирования подшипника, что полезно в тех случаях, когда возможен прогиб вала или ударные нагрузки. Они поддерживают сильную осевую нагрузку в одном направлении (хотя существуют варианты для обоих направлений), а также могут выдерживать умеренные радиальные нагрузки. Как и в случае упорных конических роликоподшипников, угол между осью ролика и осью подшипника определяет соотношение осевой / радиальной нагрузки.

Упорный шарикоподшипник — Упорный шарикоподшипник не может передавать радиальную нагрузку.Этот тип подвержен смещению, и производители часто включают сферическую канавку на шайбу корпуса, чтобы уменьшить эту возможность. Хотя они отлично подходят для высокоскоростных приложений, их производительность страдает при больших нагрузках.

Needl e Упорный роликовый подшипник — Упорные игольчатые роликоподшипники ценятся своей минимальной высотой и большим количеством тел качения. По существу, они иногда реализуются без вала или шайбы корпуса; при необходимости тела качения находятся в прямом контакте с вращающимися деталями. Они могут выдерживать очень высокие осевые и ударные нагрузки, но абсолютно не допускают радиальной нагрузки.

Сравнительная таблица

В прилагаемой таблице показаны относительные возможности упорных подшипников.

Кредит стола: Timken

Подшипники упорные с жидкостной пленкой

Жидкопленочные подшипники ценятся в высокоскоростных приложениях с высокими нагрузками. Как правило, они дешевле подшипников качения и имеют исключительно длительный срок службы.

Гидродинамический

Прочная смазка или воздушная подушка под высоким давлением выдерживают осевую нагрузку благодаря геометрии подшипника и вязкости смазки. Во время вращения жидкость притягивается к подушке подшипника и создает буфер жидкости с минимальным трением. Нагрузка поддерживается клиньями жидкости, создаваемыми геометрией колодки. Уплотнения и сепаратор особого типа необходимы для поддержания давления и диспергирования смазки соответственно. Гидродинамические подшипники могут страдать от высокого крутящего момента, высоких минимальных нагрузок и чрезмерной инерции подшипников, но это во многом зависит от типа используемой жидкости.

Гидродинамические подшипники изготавливаются с наклонной подушкой, которая допускает неравномерные осевые нагрузки на подшипник, но сохраняет гидравлическое уплотнение, несмотря на это смещение.

гидростатический

В этом случае смазка или воздушная подушка прокачиваются через подшипниковый узел для поддержания положительного давления. Это позволяет преодолеть некоторые проблемы с инерцией и крутящим моментом, с которыми сталкиваются гидродинамические подшипники, но этот узел требует непрерывно работающего насоса, который следует учитывать в энергоэффективности подшипника.Гидростатические подшипники с воздушной подушкой имеют допуски всего 0,2 мкм, что делает их идеальным выбором для прецизионной обработки.

Подшипники упорные магнитные

Эти типы упорных подшипников поддерживают нагрузки за счет магнитной левитации. Постоянные магниты подходят для легких нагрузок, но электромагниты необходимы для средних и высоких нагрузок — типы магнитных подшипников с приводом называются «активными». Некоторые магниты оснащены как постоянными магнитами, так и электромагнитами для поддержки статических и динамических нагрузок соответственно.Магнитные подшипники — это устройства с очень низким коэффициентом трения, которые не нуждаются в смазке. За некоторыми исключениями они также не требуют обслуживания. Этот тип подшипника не поддерживает несоосные нагрузки.

Технические характеристики

Размерное пространство и опорная поверхность

Геометрия подшипника, указанная в метрических или британских единицах измерения, должна соответствовать размещению корпуса в приложении.

  • Диаметр шайбы вала — это размер поперечного отверстия, которое является стыком вала.Это соответствует внутреннему диаметру не-упорного подшипника.

  • Диаметр шайбы корпуса — это прямая линия между противоположными точками на этом компоненте, на которой выгравирована дорожка качения для тел качения.

  • Ширина — это размер со стороны подшипника, параллельной оси вала; это также можно рассматривать как «высоту» подшипника.

Рабочие параметры

Минимальная нагрузка

Для стабильной работы на высоких скоростях подшипник должен иметь минимальную нагрузку на тела качения и дорожки качения.Это предотвращает повреждение внутренних компонентов из-за чрезмерного трения. В следующей таблице приведены формулы для определения этого для каждого из основных типов упорных подшипников.

Динамическая и статическая осевая нагрузка

Динамическая нагрузка представляет собой механическую нагрузку на подшипник во время работы, а статическая нагрузка — это нагрузка, испытываемая подшипником в состоянии покоя. В большинстве случаев приложенная осевая нагрузка равна как динамической, так и статической нагрузке.Обе характеристики имеют важное значение для выбора упорного подшипника, а также поможет определить ожидаемый срок службы подшипника.

Упорный подшипник типа

Эквивалентная динамическая нагрузка

Эквивалентная статическая нагрузка

Ключ

Конический ролик

Цилиндрический ролик
Игольчатый ролик
Мяч
Сферический ролик

Срок службы

После определения некоторых из приведенных выше значений динамической нагрузки можно рассчитать срок службы подшипника.

Упорный подшипник типа

Срок службы

Ключ

Цилиндрический ролик
Игольчатый ролик
Мяч
Сферический ролик
Конический ролик

Поскольку гидравлические и магнитные подшипники обеспечивают вращение без трения, их срок службы практически неограничен.

Рабочие температуры

Допустимая рабочая температура определяется требованиями к оборудованию, возможными ограничениями по смазке и обслуживанию подшипника, материалами подшипника и ожидаемым сроком службы. Равновесная температура подшипника — это температура, при которой в подшипнике выделяется тепло с той же скоростью, при которой он истощается. Однако это идеальный вариант и непрактичный для многих приложений. Тепло накапливается за счет трения в подшипнике, температуры окружающей среды и других механизмов, выделяющих тепло.Тепло рассеивается смазочными материалами, материалами и массами подшипника, площадью поверхности подшипника и обменом воздуха внутри компонентов подшипника.

Прецизионные инструменты сильно подвержены тепловому расширению, но большая часть промышленного оборудования менее чувствительна. В переходных условиях температура достигает пика перед стабилизацией из-за неравномерного нагрева компонентов подшипника. Новые подшипники также нагреваются до очень высоких температур перед «приработкой».

Большинство стандартных подшипниковых сталей не могут выдерживать температуры выше 275 ° F, но производители закаляют сталь для соответствующих применений, повышая температурный порог стали до 800 ° F.Выше этой температуры сплавы кобальта проявляют устойчивость к термическим изменениям и окислению.

Крутящий момент

Крутящий момент подшипника можно отнести к нескольким параметрам, таким как размер ролика, количество роликов, состав сепаратора, допуски подшипника, тип и наполнение смазки, а также нагрузка на подшипник. Крутящий момент подшипника подразделяется на три категории.

  1. Пусковой крутящий момент — это измерение крутящего момента, необходимого для начала вращения одной дорожки качения подшипника.Это значительно выше рабочего крутящего момента.

  2. Средний рабочий крутящий момент — это средний уровень крутящего момента, которому подшипник подвергается при постоянной частоте вращения.

  3. Пиковый крутящий момент — это максимальный крутящий момент, который испытывает подшипник, но его бывает трудно определить. Это обеспечивает некоторую однородность партии подшипников.

Жидкостные подшипники сталкиваются с минимальным начальным крутящим моментом и почти без рабочего крутящего момента.Единственный фактор, определяющий крутящий момент, — это вязкость смазки; Подшипники с воздушной подушкой сталкиваются с незначительным инерционным сопротивлением. Магнитные подшипники не испытывают крутящего момента.

Компоненты

Механические подшипники

  • На шайбе корпуса выгравирована глубокая канавка для направления тел качения. Этот компонент эквивалентен внешней дорожке качения радиального подшипника и предназначен для установки с невращающимся компонентом узла.Большинство шайб корпуса могут воспринимать усилие только в одном направлении.

    • Металлический фланец (без рисунка) часто используется для предотвращения выхода высокоинерционных роликов с дорожки качения.

    • Уплотнения (без изображения) предотвращают попадание влаги и мусора в дорожку качения, а также вытекание смазки. Обычно они изготавливаются из резины, полиуретана или металла и могут быть контактными или бесконтактными.

  • Элементы качения — это механизмы снижения трения, обеспечивающие надежное вращательное движение.Элементы качения могут быть шариковыми или роликовыми (коническими, сферическими, цилиндрическими, игольчатыми). Это основные несущие конструкции.

  • Обойма удерживает элементы качения в узле и размещает их вокруг дорожки качения для обеспечения равномерного распределения нагрузки. Иногда сепараторы с радиальными подшипниками необязательны, но почти для всех упорных подшипников они необходимы.

  • Шайба вала взаимодействует с вращающимся компонентом узла.Он эквивалентен внутреннему кольцу радиального подшипника.

  • Смазка (без иллюстрации) предотвращает контакт металлических поверхностей деталей подшипников, тем самым снижая износ, трение, нагрев и шум. Однако для «влажных» смазок требуется регулярное повторное смазывание через смазочные отверстия в шайбе корпуса. Типы смазочных материалов включают:

    • Масло : Опции включают синтетические масла (умеренные нагрузки и скорости), нефтяные масла (отличная смазка при высоких нагрузках), минеральные масла (умеренные нагрузки, высокие скорости) и силиконовые масла (термостойкие, безопасные для резины, низкие скорости).

    • Консистентная смазка : Обеспечивает минимальный рабочий крутящий момент, но обеспечивает смазку с высоким пусковым крутящим моментом. Их лучше всего использовать на высоких скоростях.

    • Сухие пленки : следует использовать только там, где «влажные» смазочные материалы не подходят. Сухие пленки со временем отслаиваются и затрудняют вращение.

Подшипник жидкостно-пленочный

Гидродинамические подшипники напоминают гидростатические подшипники, изображенные справа, но не используют насос.

  • Каретка / колодки : это несущий вращающийся компонент подшипникового узла. Этот компонент остается на плаву в гидравлическом масле или на воздушной подушке.

  • Слой жидкости : расстояние между бегуном / подушками и корпусом, которое создается давлением жидкости.

  • Корпус : он устанавливается как невращающийся компонент подшипника, а внутренняя выемка направляет жидкость между корпусом и бегунком или подушками.

  • Уплотнения : они помогают поддерживать внутреннее давление подшипника. Качественные уплотнения — основная причина, по которой гидродинамические подшипники работают без насоса.

  • Ограничитель (только гидростатический): клапан, регулирующий расход жидкости через корпус.

  • Насос (только гидростатический): он создает давление, которое поддерживает колодки посредством жидкости.

Магнитные подшипники

Электромагнитный подшипник на фото справа поддерживает радиальные нагрузки, но работа электромагнитного упорного подшипника остается подобным.Упорные подшипники с постоянными магнитами полагаются на отталкивание одинаковых полюсов, чтобы выдерживать небольшую нагрузку, и не требуют подключенных компонентов.

  • Ротор : несущая поверхность магнитного подшипника, который вращается вокруг статора.

  • Статор : неподвижная дорожка качения подшипника, при необходимости оснащенная электромагнитами.

  • Усилители : подают ток на электромагниты, расположенные на противоположных сторонах ротора.

  • Контроллер : регулирует подачу тока для управления скоростью и положением подшипника.

  • Датчики зазора : обеспечивает обратную связь с контроллером относительно скорости и положения ротора.

Характеристики

  • Рейтинг ABEC : точность и точность шарикоподшипника были оценены на основе отраслевых рекомендаций Северной Америки, которые устанавливают пять рейтингов, каждый из которых обеспечивает превосходную гарантию точности и допусков.Это: ABEC 1, ABEC 3, ABEC 5, ABEC 7 и ABEC 9.
  • Вспомогательные ролики : магнитный подшипник включает ролики или втулки для предотвращения контакта статора и ротора, когда они не заряжены.

  • Керамика / металлокерамика : шары изготавливаются из керамики или композитного материала, что повышает надежность, точность и ряд других ключевых факторов. Они распространены в электродвигателях.

  • Комбинированная нагрузка : упорный подшипник может воспринимать незначительную радиальную нагрузку.

  • Мониторинг состояния : конструкция подшипника поддается автоматическому контролю с помощью оборудования, которое определяет, когда работа подшипника была нарушена.

  • Термическая обработка : термостойкость подшипника улучшена в процессе постпроизводства.

  • Рейтинг ISO : шарикоподшипник сравнивался с ISO 492, который устанавливает иерархию рейтингов подшипников, от наименее эффективных к наиболее эффективным: класс 6x, класс 6, класс 5, класс 4 и класс 2.
  • Гальваническое покрытие : на подшипник наносится металлическое покрытие, например, из кадмия или хрома.

  • Предварительно нагруженный : подшипник взаимодействует с пружинным механизмом, который всегда обеспечивает минимальную нагрузку.

  • Разборный : подшипник можно сегментировать для облегчения установки и обслуживания.

  • Самоустанавливающиеся : ролики подшипников и дорожки качения могут выдерживать ограниченную степень перекоса.

  • Двусторонний : подшипник может поддерживать осевые нагрузки в обоих направлениях, которые, как правило, выполнены с вторым комплектом элементов качения и упорной шайбой.

  • Источник бесперебойного питания (ИБП): подшипниковый насос или электромагнит имеет аварийный источник питания.

Стандарты

Прилагаемые стандарты часто служат руководством для производителей при производстве подшипников и могут содержать полезную информацию при выборе подшипников.

ABMA 12240-3 — Подшипники роликовые упорные сферические

ABMA 23.2 — Конструкция упорных конических роликоподшипников

ABMA 24.2 — Конструкция упорных шариковых и цилиндрических роликоподшипников

ABMA 104 — Размеры упорных роликовых подшипников

ABMA 199 — Допуски роликовых упорных подшипников

ресурса

Подшипники AST — упорные подшипники

Syncrony — терминология магнитных подшипников

Подшипники Timken

Springer Reference — гидростатический упорный подшипник

Конструкция машины — гидродинамические подшипники

Zollern — Точность до микрометра.Гидростатика и аэростатика …

SKF — Подшипники, узлы и корпус

Изображение кредита:

SKF | NTN | Подшипник National Precision | Морские дизели | Викимедиа | Централ-Лубе Технологии Ко.


Завод Инжиниринг | Как работают подшипники

Подшипник делает возможным многие машины, которые мы используем каждый день. Без подшипников мы бы постоянно заменяли детали, которые изнашиваются от трения.

Предметы катятся легче, чем скользят.Колеса твоей машины похожи на большие подшипники. Если бы у вас было что-то вроде лыж вместо колес, вашу машину было бы намного сложнее толкать по дороге.

Когда объекты скользят, трение между ними вызывает силу, которая имеет тенденцию замедлять их. Но если две поверхности могут перекатываться друг с другом, трение значительно снижается.

Подшипники

уменьшают трение, обеспечивая гладкие шарики или ролики, а также гладкие внутренние и внешние поверхности, по которым шарики катятся. Эти шарики или ролики «несут» нагрузку, позволяя устройству плавно вращаться.

Опорные нагрузки

Подшипники

обычно испытывают два вида нагрузки — радиальную и осевую. В зависимости от того, где используется подшипник, он может испытывать радиальную нагрузку, осевую нагрузку или их комбинацию.

Подшипники в комбинации электродвигателя и шкива испытывают только радиальную нагрузку. Большая часть нагрузки возникает из-за натяжения ремня, соединяющего шкивы.

Подшипники барных стульев и ленивых Susans полностью нагружены осевой нагрузкой. Вся нагрузка исходит от веса предметов.

Подшипник ступицы автомобильного колеса должен выдерживать как радиальные, так и осевые нагрузки. Радиальная нагрузка зависит от веса автомобиля; осевая нагрузка возникает из-за силы поворота при прохождении поворота.

Шариковые подшипники

Шариковые подшипники являются наиболее распространенным типом подшипников (см. Рисунок). Эти подшипники могут выдерживать как радиальные, так и осевые нагрузки, и обычно используются в приложениях, где нагрузка относительно невелика.

В шарикоподшипнике нагрузка передается от внешнего кольца к шарикам и от шариков к внутреннему кольцу.Поскольку мяч является сферой, он касается внутренней и внешней обоймы только в одной точке, что помогает ему плавно вращаться. Но это также означает, что площадь контакта, несущая эту нагрузку, не так уж велика. Если подшипник перегружен, шарики могут деформироваться или треснуть, что приведет к повреждению подшипника.

Подшипник роликовый

Роликовые подшипники

используются в таких устройствах, как ролики конвейерной ленты, где они должны нести большие радиальные нагрузки. В этих подшипниках ролик представляет собой цилиндр. Контакт между внутренней и внешней обоймами представляет собой линию, а не точку.Это распределяет нагрузку на большую площадь, позволяя подшипнику выдерживать гораздо большие нагрузки, чем шарикоподшипник. Однако этот тип подшипников не предназначен для восприятия осевых нагрузок.

Игольчатый подшипник представляет собой разновидность роликоподшипника. Он использует цилиндры, которые представляют собой ролики очень маленького диаметра. Это позволяет подшипнику помещаться в труднодоступных местах.

Подшипник упорный шариковый

Упорные шариковые подшипники в основном используются для низкоскоростных приложений и не выдерживают больших радиальных нагрузок.Этот тип подшипников используется в вращающихся стульях и небольших ручных инструментах.

Подшипник упорный роликовый

Упорные роликовые подшипники могут выдерживать большие осевые нагрузки. Они часто встречаются в зубчатых передачах автомобильных трансмиссий между шестернями и между корпусом и вращающимися валами. Цилиндрические шестерни, используемые в большинстве трансмиссий, имеют угловые зубья. Это вызывает осевую нагрузку, которую должен поддерживать подшипник.

Подшипник роликовый конический

Конические роликоподшипники

выдерживают большие радиальные и осевые нагрузки.Они используются в автомобильных ступицах, где обычно устанавливаются парами в противоположных направлениях, поэтому они могут выдерживать тягу в обоих направлениях.

Магнитные подшипники

В некоторых высокоскоростных устройствах, таких как усовершенствованные системы накопления энергии с маховиком, используются магнитные подшипники. Эти подшипники позволяют маховику плавать в магнитном поле, создаваемом подшипником.

Некоторые маховики работают со скоростью около 50 000 об / мин. Шариковые или роликовые подшипники могут расплавиться или взорваться на этих скоростях. Магнитные подшипники не имеют движущихся частей.Они могут справиться с этой невероятной скоростью.

Что такое упорные подшипники, опрокидывающиеся колодки?

Рисунок 1: Подшипник с фиксированной геометрией плоской поверхности

Упорные подшипники обычно классифицируются как фиксированные или наклонные. На рис. 1 показан простой плоский подшипник с фиксированной геометрией. Поверхности прокладок и тяги воротник параллельно по дизайну. Из-за отсутствия очевидного сходящегося клина этот подшипник подходит только для несения небольшой осевой нагрузки (<0,5 МПа или 75 фунтов на кв. Дюйм). Источник его несущей способности широко обсуждался в истории, потому что его нельзя объяснить теорией изотермической смазки.В настоящее время принято считать, что именно тепловая деформация контактных площадок приводит к небольшому схождению во время работы.

Этот отрывок взят из доклада Минхуи Хе и Джеймса М. Бирна «Основы работы и моделирования упорных подшипников с жидкостной пленкой» из BRG Machinery Consulting, представленного на Азиатском симпозиуме по турбомашинному оборудованию и насосам в 2018 году.

Для повышения грузоподъемности на поверхность колодки необходимо добавить сужающийся клин. На рис. 2 показаны различные способы создания сходящейся пленки на фиксированной подушке.Коническая фаска и параллельная коническая фаска являются относительно популярными конструкциями. В этих конструкциях сужающийся конус обрабатывается от передней кромки колодки до некоторого места вблизи задней кромки. В то время как конус отвечает за создание гидродинамического давления, плоская область рядом с задней кромкой обеспечивает поверхность для установки ротора во вращение или положение, а также облегчает производство. Покрытая коническая поверхность может использоваться, когда недостаточный поток масла является проблемой, потому что кожух или направляющая помогают удерживать смазку внутри зазора.

Рисунок 2: Конструкции подшипников с фиксированной геометрией

Поскольку форма пленки должна сходиться, все конструкции на Рисунке 2, за исключением плоской площадки, являются однонаправленными, что означает, что они не могут выдерживать значительную нагрузку, если направление вращения меняется на противоположное. Упорное кольцо и опорная поверхность должна оставаться параллельно, так что все колодки равномерно распределяют нагрузку. Кроме того, осевое биение тяги воротник должен быть очень маленьким. Однако при наличии углового смещения вала одни колодки будут испытывать большую нагрузку, чем другие.При чрезмерно высокой нагрузке одна колодка может выйти из строя из-за высокой температуры или трения. Это создает цепную реакцию, поскольку нагрузки на оставшиеся колодки увеличиваются из-за потери первой колодки, что быстро приводит к выходу подшипника из строя. Подшипники с фиксированной геометрией и подшипники с наклонными накладками сами по себе не способны компенсировать это перекос.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *