ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Виды ДВС

В нижнеклапанном двигателе (в США известном как L-head или Flathead) клапаны расположены в блоке, по бокам цилиндров в один ряд, тарелками вверх. Распредвал тоже находится в блоке под клапанами, на одном уровне с коленчатым валом. Такая конструкция наиболее простая в изготовлении и обслуживании; двигатель достаточно надёжный, работает тихо и имеет легко съёмную головку блока. В то же время нижнеклапанный мотор из-за длинных подходов для топливной смеси и сложной формы камеры сгорания является низкооборотным и не может иметь высокой степени сжатия (следовательно, бывает только бензиновым). Это существенно снижает его мощность и экономичность в сравнении с верхнеклапанными силовыми агрегатами. Нижнеклапанные ДВС устанавливались на большинство довоенных автомобилей (кроме спортивных), а в 50-е гг. полностью исчезли в связи с появлением топлива с высоким октановым числом.

Разновидностью нижнеклапанного типа ГРМ является схема T-head, когда впускные клапаны расположены с одной стороны блока цилиндров, а выпускные — с другой, при этом распределительных вала два.

Также существовали двигатели со смешанным расположением клапанов (F-head), с верхними впускными, боковыми выпускными клапанами и одним распредвалом в блоке.

В верхнеклапанном двигателе типа OHV клапаны находятся в головке блока цилиндров, а распредвал — в самом блоке; привод клапанов осуществляется штангами-толкателями и коромыслами. Как правило, эта схема применяется только с двумя клапанами на цилиндр. В рядных двигателях распредвал установлен сбоку, в V-образных — в зазоре между блоками цилиндров. Преимущества такого ГРМ — в простоте конструкции, долговечности и компактных размерах, недостатки — в низких оборотах, крутящем моменте и мощности двигателя. Традиционно моторы OHV были распространены в США, где недостаток удельной мощности обычно компенсировался большим рабочим объёмом двигателя. В наше время механизм OHV уже практически не используется на легковых автомобилях. В двигателях типа OHC (Overhead Camshaft) клапаны и распределительный вал расположены в головке блока цилиндров. В качестве привода клапанов используются цилиндрические толкатели, рычаги (рокеры) или коромысла. Из-за удалённости распредвала от коленчатого вала его привод (ременной или цепной) имеет ограниченный ресурс. Схема SOHC предполагает один верхний распределительный вал, который управляет как впускными, так и выпускными клапанами. Применяется на моторах с двумя клапанами на цилиндр. Если двигатель имеет V-образную или оппозитную конфигурацию, он комплектуется двумя распредвалами (по одному на каждый блок). Разновидность верхнеклапанной системы OHC с двумя распределительными валами в головке блока цилиндров. Самая сложная и высокотехнологичная схема, обеспечивающая максимальную производительность. Существует несколько вариантов двигателей DOHC: с двумя клапанами на цилиндр, когда один распредвал действует на впускные клапаны, второй — на выпускные; или с тремя, четырьмя, пятью или шестью клапанами на цилиндр, когда каждый распредвал приводит в движение свой ряд клапанов. В V-образных и оппозитных двигателях система DOHC означает наличие четырёх распредвалов (по два на каждый блок), в W-образных — шести или восьми распредвалов.
Сегодня большинство легковых автомобилей оснащаются двигателями DOHC с четырьмя клапанами на цилиндр.

Ремонт двигателя: когда он нужен?

Ремонт двигателя – весьма трудоемкая и часто дорогостоящая операция. Однако благодаря ей автомобиль будет служить своему владельцу долгое время. В данной статье мы рассмотрим основные причины возникновения неисправностей силового агрегата и способы его ремонта.

Причины изнашивания двигателя

Двигатель является наименее надежным и долговечным агрегатом автомобиля. Это связано с тяжелыми условиями его работы: высокими нагрузками и температурами, механическими и химическими воздействиями.

Износу наиболее подвержены поршни, поршневые кольца, клапаны, цилиндры, коленчатый вал, шатунные и коренные вкладыши коленвала. Ресурс этих деталей определяет долговечность двигателя. При их поломке или неправильном расположении возникает необходимость в разборке и ремонте силового агрегата.


Когда следует ремонтировать двигатель?

Срок службы двигателя до его капитального ремонта определяется пробегом автомобиля и составляет, в среднем, 150-250 тыс. км. После прохождения этого периода характеристики и мощность силового агрегата снижаются, а основные детали требуют замены.

Признаками того, что двигатель нуждается в ремонте, являются:
  • Высокий расход масла на 1000 км
  • Повышенный расход топлива
  • Снижение мощности
  • Нагар и масло на свечах накала
  • Посторонние стуки
  • Частый перегрев
  • Низкое давление масла в системе
  • Нестабильная работа
  • Падение компрессии в цилиндрах
  • Механические повреждения
  • Попадание большого количества газов в картер

При обнаружении таких проблем следует незамедлительно продиагностировать состояние автомобиля в сервисном центре. Далее возможны два варианта развития событий: замена изношенных деталей или полноценный ремонт двигателя.

Выделяют регламентный, внеплановый и капитальный типы ремонта. В первом случае детали меняются на новые согласно рекомендациям автопроизводителя. При внеплановом ремонте определяются причины, по которым двигатель с неисчерпанным ресурсом вышел из строя, и проводятся необходимые манипуляции. Капремонт выполняется как по регламенту, так и после полной поломки силового агрегата.

В некоторых случаях можно обойтись и без капительного ремонта. Например, при возникновении неполадок в системе питания и управления, опорах двигателя, коробке передач, системе выпуска отработавших газов и т.п.


Этапы капитального ремонта

Подводя итог под вышесказанному, можно сделать вывод, что капремонт целесообразен только в случае возникновения целого комплекса перечисленных проблем.

Ремонт двигателя можно условно разделить на несколько этапов.

После разборки и очистки агрегата выполняется его дефектовка. В ходе этой процедуры проверяется степень износа определенных деталей, оценивается выработка, измеряются зазоры и т.д. Собранные данные сравниваются с заводскими допусками.

Затем составляется список деталей под восстановление или замену. Например, для ремонта головки блока цилиндров, скорее всего, потребуются новые направляющие втулки клапанов, маслосъемные колпачки и пр.

Некоторые компоненты, например, поршни двигателя, можно восстановить, успешность этой операции будет зависеть от наличия задиров на поверхностях.

Многие автопроизводители при сборке двигателя используют специальные антифрикционные покрытия. 

Серия антифрикционных покрытий MODENGY для деталей ДВС применяется при массовом производстве поршней

Этими материалами обрабатывают вкладыши, юбки поршней, штоки клапанов, шлицевые соединения, вкладыши коленвала и распредвала, дроссельные заслонки и другие детали.

Покрытия позволяют облегчить приработку, снижают трение, предотвращают возникновение задиров на поверхностях.

Однако со временем покрытия истираются, в результате характеристики двигателя ухудшаются.

Для восстановления защитного слоя применяют твердосмазочное покрытие MODENGY Для деталей ДВС. Основу этого материала составляют дисульфид молибдена и графит, которые распределены в полимерном связующем веществе.

Данное покрытие отличается высокими эксплуатационными характеристиками:
  • Широким диапазоном рабочих температур
  • Возможностью отверждения как при комнатной температуре, так и при нагреве
  • Низким коэффициентом трения
  • Видимым эффектом после применения: снижается расход топлива, уменьшается интенсивность износа деталей, устраняется шум при работе двигателя, повышается его КПД

В комплексе с покрытием рекомендуется использовать Специальный очиститель-активатор MODENGY. Он не только очищает поверхности, но и обеспечивает наилучшую адгезию покрытия к основанию.

Детальную видеоинструкцию по обработке поршней покрытием MODENGY смотрите ниже.

При ремонте блока цилиндров перед установкой новых деталей – ремонтных поршней, шатунов, поршневых колец и др. – проводится хонингование, расточка, гильзование. Если в ГБЦ были обнаружены трещины, то они устраняются, заменяются вкладыши, восстанавливается изношенная постель коленвала, выравниваются привалочные плоскости.

На последнем этапе силовой агрегат собирается и проверяется перед установкой. Затем производится пробный запуск, необходимый для приработки новых деталей. В это же время оценивается работа отремонтированного двигателя, выполняется настройка и регулировка систем питания и зажигания, механизма ГРМ и т.д.


Что выбрать: контрактный двигатель или капремонт?

Вместо ремонта автовладельцы все чаще приобретают и устанавливают контрактные двигатели – это дешевле в 1,5-2 раза.

Однако следует помнить о том, что такие агрегаты уже исчерпали часть своего ресурса. Кроме того, у транспортного средства с «неродным» двигателем могут возникнуть определенные проблемы при постановке на учет.

Рассматривать покупку контрактного силового агрегата следует в том случае, если замена двигателя необходима очень срочно, приобретение новых деталей затруднительно ввиду их редкости, высокой стоимости или других причин, а также если двигатель сильно поврежден и не подлежит восстановлению.

Исправный агрегат не может стоить дешево, поэтому приобретать контрактный двигатель по привлекательной цене специалисты не рекомендуют.


Правила эксплуатации автомобиля после капремонта двигателя

После проведения ремонта двигателя следует соблюдать определенные правила. Это обусловлено тем, что новым деталям необходима приработка, особенно в современных высокотехнологичных агрегатах с турбонаддувом.


Такие двигатели изготавливаются из алюсила, никосила и подобных мягких сплавов, что является одной из причин их малого ресурса – до 100 тыс. км. Если автовладельцы пренебрегают качественным топливом и маслами, срок службы двигателя может снизиться еще.

Избежать подобных проблем помогает гильзование блока цилиндров.

Залогом правильной работы двигателя является обкатка: обязательный прогрев в течение 5-10 минут перед каждой поездкой, а также ограничения, касающиеся высоких оборотов, резких разгонов и торможений, перевозки грузов и буксировки прицепов.

Период обкатки составляет 10-15 тыс. км. После этого нагрузка на двигатель постепенно увеличивается.

За время обкатки моторное масло меняется четыре раза: через 500, 1000, 1500 и 2000 км. Это делается для того, чтобы продукты износа, образующиеся в процессе приработки новых деталей, удалялись из системы.

Полностью обкатка завершается спустя 10-15 тыс. км после капремонта. После этого можно переходить на рекомендуемый интервал обслуживания и увеличивать нагрузку на двигатель.


Рекомендации по эксплуатации двигателя

Ресурс двигателя зависит от множества факторов, но для того, чтобы он проработал как можно дольше, следует своевременно производить замену масла, следить за его качеством и качеством топлива, менять топливный и масляный фильтры, не перегружать двигатель, а также вовремя устранять возникающие неисправности.

Основной причиной выхода двигателя из строя является несоблюдение регламента по замене масла и фильтрующих элементов.

Учитывая, что в нашей стране качество топлива и дорог не всегда находится на высоте, моторное масло быстро окисляется, а через засоренные фильтры в двигатель попадают посторонние частицы. Как следствие – усиленный износ деталей, закоксовка каналов смазки и т.д.

Масло перестает выполнять свои смазывающие и защитные функции уже к 10 тыс. км. пробега, поэтому даже самую дорогую и качественную жидкость рекомендуется обновлять не позднее данной отметки.

Большая проблема для автовладельцев заключается в присутствии большого количества контрафактной продукции на рынке. Основу поддельных масел, разлитых в канистры известных производителей, составляет некачественное минеральное сырье.

Особенно от фалификатов страдают современные силовые агрегаты с турбонаддувом: происходит закупоривание каналов системы смазки, на деталях появляются многочисленные задиры, возникает масляное голодание, заклинивание.

Ресурс любого двигателя во многом зависит от состояния его компонентов и их правильной конфигурации. Так, вследствие неправильной установки ремня ГРМ снижается мощность агрегата, могут возникать серьезные поломки. Именно поэтому любые изменения в работе двигателя нужно незамедлительно диагностировать и устранять.

Стоит обращать внимание на посторонние шумы в работающем двигателе. Их источником могут быть поршни, поршневые пальцы, шатуны, коленвал и распредвал, клапаны и гидрокомпенсаторы. При возникновении стуков эксплуатировать автомобиль не рекомендуется.

Крайне негативно на ресурсе двигателя сказывается его перегрев. Под воздействием очень высоких температур происходят такие неприятные и опасные явления как прогорание прокладки головки блока цилиндров, деформация ГБЦ и пр.

Необходимо также следить за состоянием системы охлаждения, так как попадание антифриза в моторное масло приводит к его разжижению и потере свойств.

Двигатель в разрезе: описание, детали

Строение двигателя внутреннего сгорания известно широкой массе автолюбителей. Но, вот не все, зная какие детали установлены в моторе, знают их расположение и принцип работы. Чтобы полностью понять устройство автомобильного движка необходимо посмотреть разрез силового агрегата.

Работа двигателя в разрезе представлена в данном видеоматериале

Работа двигателя

Что понимать расположение деталей автомобильного двигателя и перед тем, как показать двигатель в разрезе необходимо понимать принцип работы мотора. Итак, рассмотрим, что приводит в движение колеса автомобиля.

Топливо, которое находиться в бензобаке при помощи топливного насоса подаётся на форсунки или карбюратор. Стоит отметить, что горючее проходит такой важный этап, как фильтрующий топливный элемент, который останавливает примеси и чужеродные элементы, что не должны попасть в камеру сгорания.

После нажатия педали акселератора электронный блок управления даёт команду подать горючее во впускной коллектор. Для карбюраторных ДВС — педаль газа привязана к карбюратору и чем больше давление идёт на педаль, тем больше топлива льётся в камеру сгорания.

Далее, со второй стороны подаётся воздух, проходя воздушный фильтр и дроссель. Чем больше открывается заслонка, тем большее количество воздуха поступит непосредственно во впускной коллектор, где образуется воздушно-топливная смесь.

В коллекторе воздушно-топливная смесь равномерно разделяется между цилиндрами и поочерёдно поступает через впускные клапана в камеры сгорания. Когда поршень движется в ВТМ, создаётся давление смеси и свеча зажигания образует искру, которая поджигает горючее. От данной детонации и взрыва поршень начинает двигаться вниз в НМТ.

Движение поршня передаётся на шатун, который прикреплён к коленчатому валу и приводит его в действие. Так, делает каждый поршень. Чем быстрее движутся поршни, тем больше обороты коленчатого вала.

После того, как воздушно-топливная смесь сгорела, открывается выпускной клапан, который выпускает отработанные газы в выпускной коллектор, а затем сквозь выхлопную систему наружу. На современных автомобилях, часть отработанных газов помогает работе двигателя, поскольку приводит в работу турбонаддув, который увеличивает мощность ДВС.

Также, стоит отметить, что на современных движках не обойтись без системы охлаждения, жидкость которой циркулирует через рубашку охлаждения и подкапотное пространство, чем обеспечивает постоянную рабочую температуру.

Двигатель в разрезе

Теперь можно рассмотреть, как выглядит ДВС в разрезе. Для большей наглядности и понятности рассмотрим двигатель ВАЗ в разрезе, с которым знакомы большинство автомобилистов.

На схеме представлен двигатель ВАЗ 2121 в продольном разрезе:

1. Коленчатый вал; 2. Вкладыш коренного подшипника коленчатого вала; 3. Звёздочка коленчатого вала; 4. Передний сальник коленчатого вала; 5. Шкив коленчатого вала; 6. Храповик; 7. Крышка привода механизма газораспределения; 8. Ремень привода насоса охлаждающей жидкости и генератора; 9. Шкив генератора; 10. Звёздочка привода масляного насоса, топливного насоса и распределителя зажигания; 11. Валик привода масляного насоса, топливного насоса и распределителя зажигания; 12. Вентилятор системы охлаждения; 13. Блок цилиндров; 14. Головка цилиндров; 15. Цепь привода механизма газораспределения; 16. Звёздочка распределительного вала; 17. Выпускной клапан; 18. Впускной клапан; 19. Корпус подшипников распределительного вала; 20. Распределительный вал; 21. Рычаг привода клапана; 22. Крышка головки цилиндров; 23. Датчик указателя температуры охлаждающей жидкости; 24. Свеча зажигания; 25. Поршень; 26. Поршневой палец; 27. Держатель заднего сальника коленчатого вала; 28. Упорное полукольцо коленчатого вала; 29. Маховик; 30. Верхнее компрессионное кольцо; 31. Нижнее компрессионное кольцо; 32. Маслосъёмное кольцо; 33. Передняя крышка картера сцепления; 34. Масляный картер; 35. Передняя опора силового агрегата; 36. Шатун; 37. Кронштейн передней опоры; 38. Силовой агрегат; 39. Задняя опора силового агрегата.

Кроме рядного расположения цилиндров двигателя, как показано на схеме выше существуют ДВС с V- и W-образным расположением поршневого механизма. Рассмотри W-образный мотор в разрезе на примере силового агрегата Audi. Цилиндры ДВС располагаются так, что если смотреть на мотор спереди, то образуется английская буква W.

Данные движки обладают повышенной мощностью и используются на спорткарах. Данная система была предложена японским производителем Субару, но из-за высокого расхода горючего не получила широкого и массового применения.

V- и W-образные ДВС имеют повышенную мощность и крутящий момент, что делает их спортивной направленности. Единственным недостатком такой конструкции является то, что такие силовые агрегаты потребляют значительное количество топлива.

С развитием автомобилестроения компания General Motors предложила систему отключения половины цилиндров. Так, эти неработающие цилиндры приводятся в действие, только когда необходимо увеличить мощность или быстро разогнать автомобиль.

Такая система позволила значительно экономить топливо в повседневном использовании транспортного средства. Эта функция привязана к электронному блоку управления двигателем, поскольку, она регулирует, когда необходимо задействовать все цилиндры, а когда они не нужны.

Вывод

Принцип работы двигателя достаточно простой. Так, если посмотреть на разрез ДВС и понять расположение деталей можно легко разобраться с устройством движка, а также последовательности его процесса работы.

Вариантов расположения деталей мотора достаточно много и каждый автопроизводитель сам решает, как расположить цилиндры, сколько их будет, а также какую систему впрыска установить. Все это и даёт конструктивные особенности и характеристики мотора.

В помощь будущему автомеханику — корпусные детали двигателя

Корпусные детали двигателя

 

К корпусным деталям двигателя относятся:

• блок цилиндров;

• головка блока цилиндров;

• масляный картер;

• передняя и задняя крышки;

• крышка клапанов;

• картер маховика.

 

Блок цилиндров является основой двигателя, на нем крепятся все детали кривошипно-ш атунного и газораспределительного механизмов, а также детали и узлы других систем.

По расположению цилиндров двигатели подразделяют на рядные и V-образные.

При V-образной конструкции двигателя цилиндры расположены в два ряда в виде двух секций блока, отлитых как единое целое, обычно под углом 90 или 75° между их осями.

У рядного двигателя все цилиндры расположены в одном корпусе- блоке в одну линию (ряд).

У рядны х двигателей имеется одна секция блока цилиндров, а у V-образных — две секции (правая и левая), объединенные общим картером.

В дизелях давление газов при сгорании значительно выше, чем в карбюраторных двигателях, т.е. детали дизелей испытывают большие нагрузки, поэтому их делают более прочными и жесткими.

Блок-картер дизеля изготавливают из специального чугуна особенно прочным и жестким . Это достигается увеличением толщины стенок цилиндра и картера, наличием внутри картера большого количества ребер и смещением плоскости разъема картера существенно ниже оси коленчатого вала.

В передней и задней стенках блок-картера и его внутренних перегородках размещены опоры коленчатого и распределительного валов.

Перегородки соединены со стенками блок-картера ребрами, что повышает его жесткость.

Картер, отлитый как единое целое с блоком, имеет внизу плоскость с фланцем, к которому на прокладке крепится стальной штампованный поддон, служащий емкостью для масла и предохраняющий двигатель снизу от загрязнения.

Плоскость разъема картера совпадает с осью коленчатого вала или расположена ниже ее, что также увеличивает жесткость блок-картера.

На верхнюю плоскость блока цилиндров или каждой его секции при V-образной конструкции устанавливается общая или отдельная для каждого цилиндра головка, закрывающая цилиндры сверху.

 

Гильзы цилиндров центрируют по тщательно обработанным поясам в отверстиях перегородок.

В блоке гильза закрепляется верхним или нижним буртиком, входящим в выточки перегородок блока, и зажимается устанавливаемой сверху на блок головкой на прокладке. Д ля надежного закрепления гильзы ее верхний буртик должен немного выступать за верхнюю плоскость блока (на 0,02… 0,1 мм).

Внутренняя рабочая поверхность цилиндров, тщательно обработанная и отшлифованная, называется зеркалом цилиндра.

Между стенками цилиндров и наружными стенками блока имеется полость — рубашка, которая заполняется специальной жидкостью, охлаждающей двигатель.

Гильза, непосредственно соприкасающаяся с охлаждающей жидкостью, циркулирующей в рубашке блока, называется «мокрой». В этом случае гильзу надежно уплотняют в нижней перегородке блока медными или резиновыми кольцами, устанавливаемыми внизу в выточках на пояске гильзы.

Гильза, запрессованная в блок и не имеющая соприкосновения с охлаждающей жидкостью , называется «сухой».

 

Головка блока цилиндров карбюраторного двигателя отливается из алюминиевого сплава (типа AЛ4).

Такая головка обладает высокой теплопроводностью, вследствие чего снижается температура рабочей смеси в цилиндре двигателя в конце такта сжатия. Это дает возможность повысить степень сжатия без появления детонационного сгорания топлива во время эксплуатации двигателя.

Головка блока цилиндров дизеля отливается, как правило, из высокопрочного чугуна и имеет увеличенную жесткость конструкции.

В головке над цилиндрами имеются углубления, образующие камеры сгорания, а также рубашка системы охлаждения, сообщающаяся с рубашкой охлаждения блока. Кроме того, в головке цилиндров выполнены гнезда для клапанов, впускные и выпускные каналы и отверстия с резьбой для ввертывания свечей зажигания.

Камера сгорания карбюраторного двигателя обычно имеет полуклиновую форму, обеспечивающую наилучшие условия для сгорания рабочей смеси.

В случае верхнего двухрядного расположения клапанов камере сгорания придают шатровую или полусферическую форму. Камера сгорания такой формы вследствие ее простоты может быть подвергнута обработке резанием , что позволяет точно выдержать объем камер сгорания во всех цилиндрах и повысить равномерность работы двигателя.

Камеры сгорания обычно имеют поверхности, близко расположенные от днища поршня при его положении в ВМТ, — вытеснители, которые способствуют лучшему распределению объема сжатой рабочей смеси и ее завихрению, что снижает возможность возникновения детонации при сгорании смеси. Для этого днище поршня в двигателях некоторых типов сделано выпуклым.

В двигателях с непосредственным впрыском топлива головка не имеет углублений над цилиндрами, а камера сгорания образуется углублением в днище поршня.

Головка цилиндров плотно и равномерно по всей поверхности крепится к блоку болтами или шпильками с гайками.

Между блоком и головкой установлена прокладка, препятствующая утечке газов из цилиндров и охлаждающей жидкости из системы охлаждения в местах стыков.

Прокладка изготавливается из специальной жаростойкой композиции, облицованной тонкой листовой сталью или пропитанной графитом. В последнем случае края прокладки и отверстия в ней окантованы металлом.

Двигатель со всеми имеющимися на нем механизмами и устройствами крепится на раме автомобиля.

Подвеска двигателя сделана упругой, чтобы перекосы рамы, возникающие при движении автомобиля, не нарушали крепления двигателя, а вибрации от двигателя не передавались на раму и кузов.

Есть ли будущее у двигателя внутреннего сгорания без коленчатого вала со свободным поршнем?

Николай Макаренко

29 ноября 2020, 05:13

История совершенствования двигателя внутреннего сгорания (ДВС) — длительный путь постоянного усложнения систем, обслуживающих термодинамические процессы в камере сгорания машины объѐмного вытеснения с кривошипно-шатунным механизмом.

Нетрадиционным направлением развития конструкций двигателей внутреннего сгорания, является разработка свободнопоршневых энергетических установок. Их особенности работы связаны с отсутствием кривошипно-шатунного механизма, преобразующего в традиционном двигателе возвратно-поступательное движение поршня в однонаправленное вращение выходного вала. Отсутствие ограничителя движения поршня (кривошипно-шатунного механизма) приводит к иному закону движения, что позволяет получить качественно новые его характеристики.

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана. В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

В традиционной силовой установке среди нагромождения этих систем практически не виден сам двигатель, структурная схема основного механизма которого осталась неизменной со времѐн Ленуара, Отто, Бенца и Даймлера.

 

Существует своеобразное «табу» на основной механизм ДВС при котором значительно изменяется конструкция различных систем: газообмена, впрыска топлива и т. д., но существенным образом не изменяется схема кривошипно-шатунного механизма. И это при том, что кривошипно-шатунный механизм имеет много принципиальных недостатков: он обеспечивает возможность реализации далеко не идеального термодинамического процесса при постоянно изменяющемся рабочем объѐме и не позволяет преобразовывать максимальную нагрузку на поршень в крутящий момент на валу при нулевом эффективном плече; быстротекущие процессы расширения-сжатия определяют политропный процесс преобразования тепловой энергии, существенно отличающийся от идеального; прижатие поршня к цилиндру существенно ограничивает работоспособность и ресурс двигателя, а механизм одноцилиндрового двигателя вовсе кинематически неработоспособен и необходимо применение лишней массивной детали — маховика.

 

Кроме того повышение частоты вращения и степени сжатия, как способ увеличения литровой мощности двигателя, приводит к снижению его термодинамического совершенства. Как следствие имеется объективная причина поиска принципиально новых механизмов двигателей силовых установок.

 

Оригинальная концепция двигателя внутреннего сгорания — простота.

Одна из самых радикальных концепций ДВС в истории — двигатель со свободным поршнем. Первые упоминания о нем в специальной литературе относятся к 20-м годам прошедшего столетия. С 1930-х по 1960-е годы такие двигатели использовались в качестве воздушных компрессоров и газогенераторов, поскольку они обладали заметными преимуществами перед обычными двигателями внутреннего сгорания и газовыми турбинами.

Свободнопоршневой двигатель аналогичен обычному поршневому двигателю внутреннего сгорания, но с заменой системы коленчатого вала линейным поршневым узлом, который может работать свободно и только в линейном перемещении.

 

КПД такого двигателя теоретически больше 70%. Он легок и прост в производстве, а, значит, дешев. Но, не смотря на то, что этот двигатель известен около ста лет, широкого распространения он не получил. Причин тому несколько, и самая главная из них состоит в том, что до последнего времени инженеры не знали, каким способом можно было бы снять мощность с поршня, движущегося взад-вперед внутри цилиндра с частотой 20 000 раз в минуту.

Основная особенность свободнопоршневого двигателя в том, что движение поршня определяется не механической связью кривошипно-шатунного механизма, а соотношением нагрузки к силе расширяющихся газов. Степень сжатия, таким образом, у него получается переменной. Как следствие, этот двигатель можно просто настроить на бензин, дизельное топливо, этанол, природный газ, водород и т. д.

 

 

   

 

Первостепенная проблема — как снять мощность с такого двигателя, который механически представляет собой замкнутую систему? Как подключиться к поршню, который перемещается с высокой частотой?

 

Эта задача долго оставалась нерешенной, хотя попытки производились регулярно. В частности об нее обломали зубы инженеры General Motors в 1960-х годах в процессе разработки компрессора экспериментального газотурбинного автомобиля. Действующие образцы судовых насосов на основе свободнопоршневых двигателей в начале 1980-х были изготовлены французской компанией Sigma и британской Alan Muntz, но в серию они не пошли.

 

Растущий интерес к исследованиям и разработкам, а также инвестиции в эту технологию привели к появлению большего числа конфигураций прототипов двигателя со свободным поршнем. В целом они могут быть различного типа: двухтактные с оппозитными поршнями, четырехтактные с оппозитными поршнями, двухтактные с одним поршнем и двухтактные с двумя поршнями, используя свечи зажигания или принцип дизельного двигателя и пр. Известны даже двигатели со свободным поршнем, работающим по принципу Стирлинга.

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана. В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

Свободнопоршневой двигатель можно считать наиболее простой конструкцией хорошо приспособленной к требованиям массового производства, исходя из основных требований — простота, минимум подвижных звеньев, высокий КПД.

 

   

 

Преимущества свободнопоршневого двигателя заманчивы:

  • организация и условия протекания рабочего процесса, которые обеспечивают высокие КПД и динамические показатели при отсутствии дымления (сажи) (преимущества свободного поршня в дизеле заключаются в оптимальном подводе тепла, отсутствии ограничений на жесткость и максимальное давление цикла, высокий механический КПД, незначительный (до 10%) провал коэффициента избытка воздуха при наборе нагрузки;
  • многотопливность, возможность применения низкосортных альтернативных топлив и газов произвольного состава, включая сбросные и тощие (содержание метана более 10 – 20 % без потери мощности) с воспламенением от сжатия;
  • динамическая уравновешенность, отсутствие вибраций;
  • низкие затраты при эксплуатации и ремонте;
  • высокие пусковые качества при низких температурах;
  • возможность отключения одного или нескольких секций без остановки остальных;
  • возможность повышения давления наддува и максимального давления сгорания;
  • простота, надежность и технологичность конструкции;
  • удобство компоновки в пространстве (возможен модульный принцип построения):
  • удельная массовая и габаритная мощность значительно выше дизелей.

Свободнопоршневой двигатель можно считать наиболее простым по конструкции и хорошо приспособленным к требованиям массового производства среди всех используемых ДВС.

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана. В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

Свободнопоршневой двигатель. Источник: DLR

 

   

 

Однако не все так просто. Перед учеными стоят две важнейшие проблемы свободнопоршневого двигателя: отбор полученной мощности и управление капризным поршнем. Не так то просто снять механически мощность с двигателя, представляющего собой замкнутую систему, и контролировать работу установки при частоте до 20 000 циклов в минуту. Кроме того, верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда. Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленчатым валом. В свободнопоршневом же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в один из торцов цилиндра.

 

Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой. Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о его термодинамике и научиться управлять процессом сгорания смеси». Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для свободнопоршневого двигателя удастся разработать простую и дешевую систему управления».

 

Но наука и техника развиваются настолько стремительно, что проблемы, реализация которых была невозможна вчера, сегодня вполне реализуемые за счет новых материалов, технологий, микропроцессорной техники и интеллектуальных систем управления.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Материалы, применяемые в двигателестроении. — Студопедия.Нет

Основные показатели работы ДВС.

При проектировании двигателя конструктор решает коплекс сложных задач, включающий в себя: выбор процессов и компоновки двигателя. Под компоновкой понимают: массу двигателя, его объем и размеры. 1.Мощностные ряды двгателей. Двигатели, составляющие мощностной ряд, характеризуются одинаковой компоновкой и конструкцией главнейших узлов. При проектировании желательно, чтобы новый двигатель входил в уже существующий мощностной ряд. Двигатель МЗ 406(606.1, 606.2,606.3,606.4,405, 408, 409) ЗМЗ 24( 402, 403, 404, 410 и их модификации) РОдоначальник ЗМЗ 53( 511, 66, 73, 513, 512 и др.) Преимущества по проектированию мощностными рядами следующие: снижается стоимость изготовления двигателя, уменьшаются сроки освоения новых двигателей, улучшается качество двигателя. При проектировании мошностными рядами рационально использовать принцип геометрического подобия; основным размером, определяющим подобие двигателя является диаметр цилиндра и его соотношение с другими геометрическими размерами. Приступая к роектированию двигателя конструкторам известно из задания эффективная мощность Nе и др. параметры. Nе связана с конструктивными параметрами, средним эффективным давлением, в следующем соотношении: (формула) 2.Скорость поршня и частота вращения к/в. Определяют быстороходность двигателя, зависит от его типа и назначения. С увеличением скорости поршня увеличивается тепловая напряженность двигателя, силы инерции, а следовательно увеличивается износ деталей КШМ. В зависимости от назначения устанавливают следующие предщелы скорости поршня: 1.тихоходные Vп.ср( средняя скорость движения поршня) < 6,5 м/с; 2.среднебыстроходные Vп.ср= 6,5-8,5м/с; 3. быстроходные Vп.ср= 8,5-12м/с; 4. высокобыстроходные Vп.ср= более 12м/с; Частота вращения к/в измеряется в мин-1(об/мин). У большинства современных двигателей от 8000-9000 об/мин. 3.Отношение хода поршня к диаметру цилиндра S / D . Является основным компоновочным коэффициентом. Данное отношение определяет габаритные размеры и массу двигателя. Целесообразнее всего снижение S/D для V-образных двигателей, т.к. с уменьшением этого коэффициента уменьшаютя габаритные размеры, следовательно уменьается масса и скорость поршня, увеличивается жесткость и прочность конструкции КШМ. 4. Среднее эффективное давление( Ре). Зависит от способа и качества процессов. Величину Ре выбирают по данным при выполнении эскизного проекта и проверяют ее тпловым расчетом при выполнении технического проекта, окончательно величину Ре устанавливают в результате испытаний и доводки. При выборе Ре необходимо учитывать возможность дальнейшего форсирования двигателя. При проектировании ДВС стремятся к увеличению Ре применении наддува. 5. Число цилиндров и диаметр цилиндра. Смотреть в технические требования.* При выборе диаметра цилиндра необходимо учитывать возможности и способы дальнейшей форсировки двигателя. 6. Отношение радиуса кривошипа R к длине шатуна L шат.  R/Lшат= лямбдаявляется важным конструктивным параметром двигателя. Увеличение лямбды ведет к уменьшению габаритных размеров, а следовательно и массы двигателя. ( лямбда увеличится, если увеличится радиус кривошипа R и уменьшится, если уменьшить Lшат, лямбда где то 0, 2…-0,3) Величина лямбда выбирается при проектировании с учетом опытных данных уже действующих двигателей в зависимости от назначения проектируемого. 7. Габаритные размеры и масса двигателя. Для сравнительной оценки конструции двигателя по массе применяется показатель массы, приведенной мощности. Gn= m/Ne( кг/кВт, примерно 1,…)

2. Этапы проектирования двигателей. 1. Технические условия, включающие в себя общие требования к двигателю от заказчика: 1.1 Назначение и тип двигателя. 1.2 Номинальная мощность 1.3 Габаритные размеры и масса 1.4 Частота вращения, скорость поршня 1.5 Число тактов 1.6 Число и расположение цилиндров 1.7 Тип механизмов и систем. 2. Выбор размеров цилиндра и конструктивные схемы двигателя. Основные параметры выбираются с учетом новейших разработок конструкции ДВС, придерживаются принципа проектирования по мощностным рядам, учитывая возможность длительной эксплуатации. 3. Составление эскизного проекта- заключается в выборе оптимальной конструкции основных деталей и узлов двигателя. Проект выполняется в нескольких вариантах небольшой группой конструкторов. Каждый из вариантов проекта должен удовлетворять требования заказчика. После составления все варианты эскизного проекта выставляются на рассмотрение и защиту представителям заказчика, который выбирает устроивший их вариант. В этом проекте помимо схем, деталей и узлов входят поперечный и продольный разрезы двигателя. 4. Технический проект. Выполняется группой конструкторов и технологов, включает в себя достаточно подробные чертежи деталей и узлов, механизмов, систем ДВС,доработанные чертежи эскизного проекта и следующие расчеты: тепловой, динамический, на прочность и износостойкость. При этом необходимо стремиться: а) уменьшить кол-во деталей; б) использовать стандартные детали и узлы. 5. Составление рабочих чертежей. ВЫполняется в три этапа: 1.Чертежи крупных кованных и литых деталей для изготовления которых иребуется сложная технологическая оснаска и длительная мех. обработка (к/в, блок, головка блока, шьаны) 2.Чептежи мелких деталей, в том чмсле крепежных. 3.Продольный и поперечный разрез двигателя с учетом всех изменений.6. Испытание и доводка двигателя. В процессе испытаний выявляются все несоответствия выходящих показателей двигателя тех. проекта и несовершенство отдельных деталей и узлов. Доводочные работы направлены на устранение всех выявленных недочетов и усовершенствование конструкции ДВС.

 

Материалы, применяемые в двигателестроении.

1. Чугун.  Чугун- это сплав железа и углерода, где углерода более 2%. Свойства: хорошие металлические качества и обрабатываемсть резанием, высокая износостойкость, жароустойчивость, прочность, выносливость. В некоторых двигателях общий вес чугунных деталей составляет до 80% массы двигателя( крупногабаритные дизеля, судовые, тепловозные) Чугуны бывают серые, белые, отбеливающие, ковкие. 1.1 Серые чугуны- детали, получаемые лтьем, имеющие сложную форму и обрабатываемость резанием( блок цилиндра, маховик) 1.2 Отбеливающие- р/в. 1.3 Ковкий  чугун применяется редко( рычаги, рамы, иногда поршни) 1.4 Белые легированные- детали, подврегающиеся большим ударным коррозиционным нагрузкам( пример: на выпускном клапане есть наплавки) Чугуны редко применяются в чистом виде. Легирующие элементы: титан, никель, хром, молибден,марганец, вольфрам.

5.Стали. Стали- это сплав железа и углерода, где углерожда меньше 2%. Стальные детали изготавливают литьем, штамповкой, ковкой. В двигателестроении наибольшее применение получили штамповка и ковка. Штампованные детали- шатун,поддон,крышки; Кованные детали- цепи, к/в; Литые детали- р/в, маховик, к/в. Стали легируют одним, двумя или тремя основными элементами ( ХГН, 40Х, 20Х)

 

6.Сплавы. 3.1 Сплавы с малым коэффициентом тепловых расширений( железо, никель,хром), тк. коэффициент теплового расширения очень маленький, то применяется для изготовления поршней и компенсаторов.3.2 Тяжелые сплавыиспользуются для изготовления противовесов, грузов. 3.3 Титановые сплавы(алюминий, ванадий,марганец, молибден,хром,кремний). Свойства: прочность,лекгость, не подвержен коррозии, не магничен, жароустойчив. Применяют как заменители стали для наиболее ответственных деталей двигателя. 3.4 Литейные алюминиевые сплавы : 1.силумины- обладают высокой прочностью 2.алюминий и медь- более прочные по сравнению с силуминами, поэтому их применяют в более ответственных деталях( поршни, штанги) 3.5 Литейные магнивые сплавы- имеют более высокие физические свойства по сравнению с аллюминиевыми. Широкое применение не получили, в связи с высокой взрывоопасностю. В качестве основны присадок используют аллюминий, цинк,марганец.

Сплавы на медной основе. 1.Сплав латуни- сплав меди и цинка; присадки(кремний, олово, алюминий,никель- улучшают физические и механические свойства, литейные качества, обрабатываемость резанием и давлением. ) преимущества: высокая антикоррозиционная стойкость и износостойкость.2. Бронзы- сплав меди+олово. Свойства: более пластичен, чуть лучше литейные свойства. 3. Припои. 3.1оловянисто-свинцовые 3.2 Оловянисто-свинцовосурьмяные; Для пайки алюминиевых сплавов применяются оловянисто-цинковые припои. 

7.Подшипниковые сплавы. Сплавы на основе кадмия. Должны обладать высокими антикоррозиционными свойствами, теплостойкостью, хорошей сплавляемостью с основой вкладыша.

 

8. Неметаллические сплавы. 1. Стекло-текстолит— тканевая основа изготовлена из стекловолокна. Обладает повышенными механическими свойствами и теплостойкостью. 2.Бумалит— материал, в котором ткань заменена бумажными … Достоинства: дешево; Минусы: не прочность 3.Волокнит— композиционный материал, получаемый при использовании в качестве наполнителя волокон.

 

9.Литые пластмассы. 1.Органическое стекло- термопластичная масса, получаемая полимеризацией метилового эфира метакриловой кислоты при нагреве и воздействии перекисных соединений. 2.Асбест. применяют в виде аморфных масс, листов, шнуров,лент,тканей, как теплостойкий и уплотняющий материал. 3.Резиновые материалы. Детали из резины износостойки, хорошо сопрягаются с металическими и покрытыми тканями деталями( ремни приводов, прокладки, диафрагмы). 4.Кожанные материалы. Используются для прокладок,чехлов,инструментальных сумок толщиной 0,5- 7 мм. 5.Текстильные материалы. Материалы из хлопка, шелка,шерсти,льна, нитей,лент, шнуров, ваты,войлока,применятся в качестве уплотнений,фильтрующих материалов. 6.Стекла и эмали. Эмали из смесей окислов натрия,алюминия,кобальта, никеля, железа, титана и др.материалов. Стойки при t=3500 С и в виде пленки толщиной до 0,2мм, нанесенных на поршни,клапаны, хорошо противостоят тепловым ударам и защищают детали от тепловых потоков и коррозии. 7.Лаки и краски. Широко используют для защиты материалов от коррозии в качестве декоративного покрытия и для окраски трубопроводов в условные цвета. Лаками называются растворы искусственных или природных смол в спирте,бензине,ацетоне,маслах. Эмалевые краски- смеси растворов,лаков с красящими пегментами различных цветов.

 

10.Теоретические циклы. Замкнутые теоретические циклы — совокупность обратимых термодинамических процессов, протекающих последовательно друг за другом, графически составляют замкнутый цикл. Замкнутые теор. циклы в отличии от действительных процессов,происходят в цилиндре двигателя, осуществляются в воображаемой тепловой машине и характеризуется следующими особенностями: 1. Все процессы цикла осуществляются без теплообмена рабочего тела с окружающей средой,т.е. являются обратимыми. 2.Преобразование тепла в мех.работу осуществляется в замкнутом объеме. 3. Процессы сжатия и расширения протикают по аддиабате с постоянными показателями. 4. Подвод теплоты производиться от постороннего источника при постоянном объеме( Отто), при постоянно давлении (Дизель), при смешанном цикле( Тринклер). ТЕоритические цикл хар-ся 2мя основными показателями: 1.термический кпд. 2Удельная работа цикла рt- называется отношение количества теплоты,превращенной в механическую работу к рабочему объему. (Дж/л) Разомкнутые теоретические циклы по сравнению с замкнутыми,используя термодинамические соотношения, дополнительно учитывают: 1.Процессы впуска и выпуска 2.Изменение качествав рабочего тела на протяжении одного цикла,т.е учитывают изменение состава рабочего тела и зависимость его теплоемкости от темперауры. 3.Зависимсть показателей аддиабат сжатия и расширения от средней теплоемкости,но без учета теплопередачи и следовательно без учета тепловых потерь вв процессах сжатия и расширения. 4.Процесс сгорания топлива 5.Потери теплоты,связанные с изменением температуры. Вывод: таким образом разомкнтые теоретические циклы значительно точнее отображают процессы, происходящие в реальных ДВС, а количественные показатели параметров этих циклов могут служить оценочными для соотвествующих параметров действительных процессов.

 

 

11.Методы расчета процессов впуска и газообмена . Анализ протекания процесса впуск показывает,что он фактически является сложным процессом наполнения цилиндра свежим зарядом. При этом процесс впуска практически состоит из 3х различных периодов: 1период- от момента начала открытия впускного клапана (т.d) до момента закрытия выпускного клапана r’, происходит одновременное наполнение цилиндра свежим зарядом и выпуск отработавших газов и их смешивание. 2период- от точки r’ до точки а- характеризуется основной период впуска свежего заряда. 3период- от точки а до точки а’ происходит одновременно завершение процесса наполнения цилиндра(дозарядка) и начало сжатия смеси. Давление и температура окруж. среды. При работе двигателя без наддува в цилиндр поступает воздух из атмосферы,в этом случае при расчете рабочего цикла принимают Pо= 0,1 Мпа, То=293 К. При работе двигателя с наддувом воздух поступает из компрессора (нагнетатель), где он предварительно сжимается. В зависимости от степни наддува принимаются следующие значения Рк наддувочного воздуха: при низком наддуве Рк= 1,5Ро, при среднем наддуве Рк= (1,5-2,5)Ро, при высоком наддуве Рк= (2,2-2,5)Ро, Температура воздуха за компрессором: Тк= То( Рк/Ро) пк-1/пк, где пк- показатель политропы сжатия воздуха в компрессоре. Давление остаточных газов. Давление остаточных газов устанавливается в зависимости от числа и расположения клапанов, фаз газораспределения,нагрузки. Для автомобильных двигателей без наддува, в также с наддувом и выпуском в атмосферу давление остаточных газов: Pr= (1,05-1,25)Ро. Температура остаточных газов зависит от: типа двивгателя, от степени сжатия, частоты вращения к/в, коэффиц. избытка воздуха(альфа). Tr для двигателей с впрыском(КД)= 900-1100 К, для ДД= 600-900 К. Температура подогрева свежего заряда. дельта Т зависит от расположения и конструкции впускного трубопровода, системы охлаждения и наддува. Повышение температуры улучшает процесс испарения топлива, но снижает плотность заряда, таким образом отрицательно влияет на наполнение двигателя. В зависимости от типа двигателя дельта Т принимаем: Для КД=0-20 С, для ДД без наддува= 10-40 С, для ДД с наддувом= 0-10 С. В двигателях с наддувом величина подогрева свежего заряда снижается из-за уменьшения температурного перепада между деталями и температурой наддувочного воздуха. Давление в конце впуска.   Ра- основной фактор, определяющий количество рабочего тела, поступающего в цилиндр двигателя. Ра= Ро-∆Ра; Ра= Рк-∆Ра, где ∆Ра-потери давления за счет сопротивления впускной системы и затухание скорости движения заряда в цилиндре. БД: ∆Ра= ( 0.05-0.2) Ро, Для ДД ∆Ра= ( 0.03-0.18) Ро Плотность заряда: где -удельная газовая постоянная воздуха. Коэффициент остаточных газов. гr-характеризует качество очистки цилиндра от продуктов сгорания. С ее увеличением уменьшается количество свежего заряда, поступающего в цилиндр двигателя. Температура в конце впуска. Зависит от: температуры рабочего тела, коэффициента остаточных газов, степени подогрева свежего заряда.    Коэффициент наполнения. Представляет собой отношение действительного количества свежего заряда, поступившего в цилиндр к тому количеству, которое могло бы поступить в рабочий объем цилиндра.

 

13. Сущность процессов сжатие и сгорание. В период процесса сжатия в двигателе повышается давление и температура рабочего тела, что обеспечивает надежное воспламенение и эффективное сгорание топлива. (рис.) Условно принимаем,Что процесс сжатия в действительном цикле происходит по политропе с переменным показателем n1, который в ачальный период сжатия превышает показатель аддиабаты к1(идет подвод тепла от нагретых стенок к рабочему телу), в какой то момент времени n1 становится равным к1( температура выравнивается у рабочего тела и у стенок), а далее n1 становиться менее к1( потому что рабочее тело отдает тепло стенкам цилиндра). Но в связи с трудностью определения n1 принимают, что процесс сжатия происходит по политропе с постоянный показателем n1. Расчет процесса сжатия сводиться к определению среднего показателя политропы сжатия n1, давления и температуры в конце процесса сжатия Рс и Тс.

Значение показателей политропы сжатия n1, в зависимости от к1 устанавливаются в следующих пределах:    пределы изменения Рс и Тс: Для двигателей с впрыском: для КД: для ДД:         Процесс сгорания. Основной процесс рабочего цикла,в течении которого теплота, выделяющаяся вследствие сгорания топлива идет на повышение внутренней энергии рабочего тела и совершение механической работы. На характер протекания процесса сгорания оказывает влияние большое число различных факторов: 1.параметры процессов впуска и сжатия; 2. Качество распыления топлива; 3.Частота вращения к/в. С целью упрощения термодинамических расчетов принимают, что процесс сгорания в БД происходит при постоянном объеме, а в ДД при постоянном объеме и давлении. Целью расчета процесса сгорания является определение температуры и давления в конце видимого сгорания(Pz и Tz) Степень повышения давления: Степень предварительного расширения:

 

14. Методы расчета процессов выпуска и расширения. Изменение давления в конце процесса расширение, показанное на рисунке, схематически показывают действительное изменение давления в цилиндрах двигателя. В реальных условиях расширение протекает по сложному закону, зависящему от теплообмена между газами и стенками цилиндра. Т.к процесс расширения протекает по политропе с переменным показателем, который в начальный период изменяется с 0 до 1( идет интенсивное догорание топлива, температура газов повышается несмотря на то, что идет процесс расширения),затем увеличивается достигает значения показателя адиабаты и наконец превышает показатель адиабаты. Для упрощения расчетов кривая процесса расширения обычно принимается за политропу с постоянным показателем n2. Среднее значение величины n2 изменяется в пределах: БД ДДю Формулы для определения Тв и Рв: где д= е/с- степень последующего расширения.

Пределы изменения. Процесс выпуска:           b’-открытие выпускного клапана r’- закрытие выпускного клапана. Вначале расчета процесса впуска задаются параметры расчета выпуска: температура и давление остаточных газов, а точность выбора величины давления и температуры остаточных газов проверяется по формуле: При проектировании двигателя стремятся уменьшить величины Pr,чтобы избежать возрастания насосных потерь и коэф-та остаточных газов. В настоящее время проблема снижения токсичности решается как создателями та и эксплуатационниками двигателей. С точки зрения конструкции двигателистов эта проблема решается по 3м основным направлениям: 1.Совершенствование рабочего процесса( применение систем питания с эл. впрыском, вентиляцией картера) 2.Разработка дополнительных устройств               (нейтрализаторы) 3.Разработка принципиально новых двигателей, позволяющих кардинально решать проблему не загрязнения окр. среды в процессе эксплуатации.

 

http://www.lib.grsu.by/library/data/resources/catalog/159587-343403.pdf

 

15. Методика построения круговой индикаторной диаграммы. Существует 2 способа построения диаграммы: 1.аналитический 2.графический. Графический метод более точный, но излишне сложный, поэтому для приближенного расчета ДВС пользуются аналитическим методом,  применяя значения давлений и объемов, полученных в тепловом расчете. Построение диаграммы осуществляется на миллиметровой бумаге формата А3 в следующей последовательности: 1.Выписываются исходные данные из теплового расчета и определяются значения объема камеры сгорания. Значения: Pa, Pc, Pz, Pb, Pr, Po Va, Vh, Vc, n1,n2,Va= Vh+Vc, Vc= Vh/ е-1, е  2.Выбор масштабов давления и объема- осуществляется с учетом максимального давления и объема, а также размеров миллиметровой бумаги, при этом высота диаграммы должна быть в полтора раза больше ее ширины. Mp= Pz max/ Lвысот. [Мпа/ мм] Mv= Va max/ Lшир.[См3/мм] 3. Определение координат переходных точек диаграммы. (ФОРМУЛЫ) 4.Проводим оси координат и откладываем переходные точки. 5.Определение координат переходных точек политропы сжатия и расширения. Задаемся не менее чем 6тью объемами между ВМТ и НМТ. При этом большее число объемов( 2/3) берется ближе к ВМТ, т.к по ВМТ давление изменяется более резко. 6.По заданным объемам определяем значение соответствующих давлений. А)построение политропы сжатия формула б) построение политропы расширения 7.Для дизеля 8. Построение круговой индикаторной диаграммы по расчетным точкам.

 

16. Тепловой баланс бензиновых и дизельных ДВС. Тепло, выделяющееся при сгорании топлива в цилиндрах двигателя не может быть полностью преобразовано в полезную механическую работу. Распределение тепловой энергии топлива, сгоревшего в двигателе наглядно иллюстрируется составляющими внешнего теплового баланса. Тепл.бал позволяет определить тепло, превращенное в полезную эффективную работу, т.е установить степень достигнутого совершенства теплоиспользования и наметить пути уменьшения имевшихся потерь. Знания отдельных составляющих теплового баланса позволяют судить о тепло напряжённости деталей двигателя, рассчитать систему охлаждения, выяснить возможность использования теплоты отработавших газов. В общем виде тепл.балас может быть представлен в виде след. составляющих:  

 

http://engineavto.ru/termodinamicheskie-sootnosheniya-v-processe/teplovoj-balans-dvigatelya.html

 

http://bse.sci-lib.com/article109890.html

 

низшая теплота сгорания, часовый расход топлива; теплота, эквивалентная эффективной работе двигателя; теплота, потерянная с отработавшими газами ; теплота, передаваемая охл.среде; коэффициент пропорциональности; диаметр цилиндра, взятый в см; показатель степени; теплота, потерянная из-за химической неполноты сгорания топлива; неучтенные потери

 

17. Методика проведения теплового расчета ДВС. 1. При проведении теплового расчета для нескольких скоростных режимов обычно выбирают 3-4 основных режима: 1.1режим min частоты вращения nxx(600-1000) 1.2 max крутящего момента nMкр.max= (0,4-0,6)nN   1.3 номинальной мощности nN= nN

1.4 max частота вращения к/в  nmax= (1,05-1,2) nN2. Выбор топлива( от степени сжатия) 3.Параметры рабочего тела. 3.1Теоритически необходимое кол-во воздуха для сгорания 1кг. топлива; 3.2 Количество горючей смеси, М1; 3.3Общее количество продуктов сгорания.М2; 4. Давление и температура окружающей среды. 5.Процесс впуска; 6.Процесс сжатия; 7.Процесс сгорания; 8.Процесс расширения и выпуска( проверка температуры Тr) 9.Индикаторные параметры рабочего цикла; 10. Эффективные показатели; 11. Основные параметры цилиндра и двигателя; 12.Построение индикаторной диаграммы; 13.Тепловой баланс ДВС

 

18. Индикаторные параметры рабочего цикла. 1.Среднее индикаторное давление. Площадь не скруглённых диаграмм в определенном масштабе выражает теоритическую расчетную работу газов за один цикл двигателя. Эта работа, отнесенная к ходу поршня является теоритическим средним индикаторным давлением-pi Есть формулы для расчета как для БД так и для ДД(длинная). Среднее индикаторное давление pi действительного цикла, отличается от piна величину, пропорциональную уменьшению расчетной диаграммы за счет скругления в точках с,z,в.ьУменьшение теоритического среднего индикаторного давления вследствие отклонения действительного процесса от расчетного цикла, оценивается коэффициентом полноты диаграммы ци и величиной среднего давления насосных потерь ∆ pi. Коэффициент полноты диаграммы принимается из предела для каждого двиг. свой(примерно до 1).Среднее индикаторное давление определяется по формуле: pi= pi* ци 2. Индикаторная мощность- работа, совершаемая газом внутри цилиндра в единицу времени.

 

3.индикаторный КПД и удельный расход топлива. з i —характеризует степень использования в действительном цикле теплоты топлива для получения полезной работы и представляет собой отношение теплоты, эквивалентной индикаторной работе цикла ко всему кол-ву теплоты, внесенной в цилиндр с топливом. Таким образом, индикаторный КПД учитывает все тепловые потери действительного цикла. 4.Индикаторный удельный расход топлива. Пределы изменения: Ид: 180-230; КД: 210-275; ДД: 170-210

 

19. Эффективные показатели двигателя. 1. Механические потери. Потери на преодоление различных сопротивлений оценивают величиной мощности механических потерь или величиной работы, соответствующей мощности механ. потерь, отнесенной к единице рабочего объема цилиндра. При проведении предварительных расчетов двигателя, механические потери, характеризуемые средним давлением( Рм), приближенно можно определить по линейной зависимости от средней скорости поршня. 2. Среднее эффективное давление(Ре). Представляет собой отношение эффективной работы на валу двигателя к единице рабочего объема. С ростом Ре улучшаются условия использования рабочего объема цилиндра, что дает возможность создавать более легкие и компактные двигатели. 3. Механический КПД- отношение среднего эффективного давления к индикаторному. С увеличением потерь в двигателе – механический КПД уменьшается. 4. Эффективная мощность- N е- полезная работа, получаемая на валу двигателя в единицу времени.  5. эффективный КПД и эффективный удельный расход топлива.  Эффективный КПД характеризует степень использования теплоты топлива двигателя с учетом всех потерь — тепловых и механических. Эффективный КПД- отношение кол-ва теплоты, эквивалентной полезной работе на валу двигателя, к общему количеству теплоты, внесенной в двигатель с топливом называется эффективным КПД.

 

ᐈ Стандартные иллюстрации двигателей внутреннего сгорания, Роялти-Фри Изображения векторные изображения двигателей внутреннего сгорания

ᐈ Стоковые векторные изображения ДВС | скачать на Depositphotos®Engine frot sideДвигатель внутреннего сгорания. Инсульт. Вектор искусства, иллюстрации. Современный автомобиль двигатель внутреннего сгорания Контур двигателя Схема четырехтактного двигателя. Старый двигатель внутреннего сгорания Двигатель внутреннего сгорания. Инсульт. Вектор искусства, иллюстрации. Старый двигатель внутреннего сгорания. Автомобильный двигатель. Линия плоских цветных векторных иконок автомобильных запчастей с элементами двигателя внутреннего сгорания.Промышленный. Мультяшный стиль. Иллюстрация и элемент дизайна. Автосервис. Техническое обслуживание.Четыре поршняСложный технический чертеж частей двигателя автомобиля, векторная иллюстрация Старый двигатель внутреннего сгорания Двигатель внутреннего сгорания. Четыре удара, векторные искусства, иллюстрации. Набор чертежей двигателей — двигатель внутреннего сгорания автомобиля, мотоцикл, электродвигатель и ракета. Его можно использовать для иллюстрации идей науки, инженерного дизайна и высокотехнологичных систем впрыска бензинового топлива. Изменить набор автомобильных запчастей с плоской векторной иконкой Engine OilLine с элементами двигателя внутреннего сгорания со стороны ходовой части.Промышленный. Мультяшный стиль. Иллюстрация и элемент дизайна. Монохромный. Автосервис. Техническое обслуживание. Впрыск топлива — это подача топлива в двигатель внутреннего сгорания, чаще всего автомобильные, с помощью инжектора. Реалистичный рекламный баннер синтетического моторного масла. Реалистичный вектор рекламного баннера синтетического моторного масла. Диагностика двигателя. Набор чертежей двигателей внутреннего сгорания. двигатель, мотоцикл, электродвигатель и ракета. Его можно использовать для иллюстрации идей науки, инженерного дизайна и высокотехнологичных двигателей внутреннего сгорания.Часть 3 Облако слов гибридного транспортного средстваWoodcut Иллюстрация поршняОблако слов гибридного транспортного средстваОблако слов гибридного транспортного средстваДвигатель внутреннего сгоранияЗначки автомобильных запчастей и услугДвигатель внутреннего сгоранияДвигатель внутреннего сгоранияАвтомобильная производственная линия или ремонтная мастерскаяДвигатель внутреннего сгоранияВекторный вектор двигателя внутреннего сгоранияСельскохозяйственный тяговый двигатель, старинная гравюра Двигатель V8, вид сбоку, изолированный на беломДвигатель внутреннего сгоранияГоризонтальный Паровоз, старинная гравюра. Векторные искусства, дизайн иллюстрации.EngineLine плоский цветной векторный значок автомобильных запчастей с элементами двигателя внутреннего сгорания со стороны ходовой части. Промышленный. Мультяшный стиль. Иллюстрация и элемент дизайна. Автосервис. Техническое обслуживание. Векторные стальные шестерниАвтомобильные иконкиВекторный двигательМоторный двигатель значокСовременный зеленый автомобильАвтомобильные сервисные иконкиГоризонтальный паровой двигатель, старинная гравюраМеханизм автомобильного двигателяАвтомобильный двигатель3d рука, держащая шестеренку, значок двигателей внутреннего сгоранияАвтомобильные объектыИконка моторного механика рядом с автомобилем с инструментом Ценовое сгорание двигателя — Отличные предложения по сгоранию двигателя от глобального сгорания продавцов двигателей

Отличные новости !!! Вы попали в нужное место для сгорания двигателя.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот двигатель верхнего сгорания вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свой двигатель внутреннего сгорания на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в том, что сгорает двигатель, и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести Двигатель внутреннего сгорания по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Проверить детали двигателя внутреннего сгорания и факты

  • Что такое двигатель внутреннего сгорания?

Это тепловой двигатель, в котором сгорание воздуха и топлива происходит внутри цилиндра и генерирует крутящий момент, используемый для движения автомобиля.

  • Кто изобрел двигатель внутреннего сгорания?

Автором этого изобретения является ЖАН ДЖОЗЕФ ЭТЬЕН ЛЕНУАР. Ленуар родился в Мюсси-ла-Виль, часть Бельгии, в 1832 году. В возрасте 28 лет он переехал во Францию, где начал проявлять большой интерес к гальванике. Его интерес к гальванике и анализу работы электричества привели Ленуара к созданию первого одноцилиндрового двухтактного двигателя.

Классификация двигателей внутреннего сгорания: —

  1. Поршневой двигатель (использование в автомобилях)
  2. Роторный двигатель (использование в турбине)
  • В зависимости от типа топлива
  1. Бензиновый двигатель (бензиновый двигатель)
  2. Дизельный двигатель
  3. Газовая турбина (LPG, CNG)
  4. Спиртовой двигатель (этанол, метанол и т. Д.)
  1. Двухтактный
  2. Четырехтактный
  • В соответствии с рабочим циклом
  1. Двигатель с циклом Отто (постоянный объем)
  2. Дизельный двигатель (постоянное давление)
  3. Двигатель с двойным циклом сгорания (полудизельный цикл)
  • Согласно п.Цилиндр
  1. Одноцилиндровый
  2. Многоцилиндровый
  • По подаче топливовоздушной смеси
  1. Карбюраторный (подача топлива через карбюратор)
  2. Тип впрыска (впрыск топлива в цилиндр непосредственно перед зажиганием)
  1. С воздушным охлаждением
  2. С водяным охлаждением
  1. Высокая скорость
  2. Средняя скорость
  3. Низкая скорость
  1. Вертикальная
  2. Горизонтальная
  3. Рядный
  4. V-образный
  5. Радиальный
  6. Поршневой двигатель
  1. Удар и двигатель с отсутствием управления
  2. Двигатели с количественным управлением
  3. Двигатель с качественным управлением
  1. Для наземного транспорта
  2. Судовой двигатель для приведения в движение судов
  3. Авиационный двигатель
  4. Промышленный двигатель
  5. Первичные двигатели для электрического генератора

Проверить, что то Основные компоненты двигателя внутреннего сгорания: —

Цилиндр : его очень важная часть поршня, в которой поршень движется или совершает возвратно-поступательное движение.Он должен иметь высокую прочность и выдерживать давление выше бар и температуру выше 2000.

Обычный двигатель, который мы сейчас используем, изготовлен из чугуна, а двигатели для тяжелых условий эксплуатации — из стального или алюминиевого сплава. Многоцилиндровые двигатели отлиты в один блок, известный как блок цилиндров.

Головка цилиндра: Это верхняя часть цилиндра, на которой установлены впускной и выпускной клапаны, свеча зажигания или форсунки. Для герметичного соединения между цилиндром двигателя и головкой блока цилиндров предусмотрена прокладка из меди или асбеста.

Поршень : поршень передает усилие, возникающее при сгорании смеси топлива и воздуха, на шатун. Поршни обычно изготавливаются из алюминиевого сплава, который имеет хорошие теплопроводные свойства и большую прочность при более высоких температурах.

Поршневые кольца : Эти кольца расположены между поршнем и цилиндром и изготовлены из стальных сплавов, которые сохраняют упругие свойства даже при очень высоких температурах.

Типы поршневых колец: — 1) Компрессионные кольца

2) Масляные кольца

Компрессионное кольцо — это верхнее кольцо поршня, которое обеспечивает герметичное уплотнение для предотвращения утечки сгоревших газов в нижнюю часть.

Масляное кольцо — это нижнее кольцо, которое обеспечивает эффективное уплотнение для предотвращения утечки масла в цилиндр двигателя.

Шатун: Основная функция шатуна — преобразовывать возвратно-поступательное движение поршня в круговое движение коленчатого вала. Меньший конец шатуна соединен с поршнем поршневым пальцем, а больший конец шатуна соединен с кривошипом шатунным пальцем. Шатуны изготавливаются из стального или алюминиевого сплава.

Коленчатый вал: Основная функция коленчатого вала заключается в преобразовании возвратно-поступательного движения поршня во вращательное движение с помощью шатуна. Для изготовления коленчатого вала используются специальные стальные сплавы. Он состоит из эксцентриковой части, называемой кривошипом.

Картер коленчатого вала : это металлический кожух вокруг цилиндра и коленчатого вала двигателя внутреннего сгорания, а также картер для смазочного масла.

Маховик : Основная функция маховика — накапливать энергию вращения, он установлен на коленчатом валу и поддерживает постоянную скорость вращения коленчатого вала.Он накапливает избыточную энергию во время рабочего хода, которая возвращается во время другого хода.

В двигателе внутреннего сгорания используется другая терминология: —

  1. Диаметр цилиндра (D): Номинальный внутренний диаметр цилиндра двигателя.
  2. Площадь поршня (A): Площадь круга диаметром, равным отверстию цилиндра.
  3. Ход (L): Максимальное расстояние, пройденное поршнем в цилиндре в одном направлении, называется ходом.
  4. Мертвая точка: положение рабочего поршня и подвижных частей, которые механически связаны с ним, в момент, когда направление движения поршня меняется на противоположное (в любой конечной точке хода).

(a) Нижняя мертвая точка (НМТ): крайнее положение поршня в нижней части цилиндра вертикального двигателя.

(b) Верхняя мертвая точка (ВМТ): крайнее положение поршня в верхней части цилиндра вертикального двигателя.

  1. Рабочий объем или рабочий объем (Vs): номинальный объем, создаваемый рабочим поршнем при перемещении от одной мертвой точки к следующей, и выражается как

Vs = A × L

  1. Свободный объем (Vc): Объем, содержащийся в цилиндре над верхней частью поршня, когда поршень находится в верхней мертвой точке.
  2. Объем цилиндра (V): Общий объем цилиндра.

В = Vs + Vc

  1. Степень сжатия (r): это отношение объема, когда поршень находится в нижней мертвой точке, к объему, когда поршень находится в верхней мертвой точке.

Степень сжатия варьируется от 5: 1 до 10: 1 для бензиновых двигателей и от 12: 1 до 22: 1 для дизельных двигателей.

Коэффициент сжатия =

Что такое двигатель SI: —

Двигатель

SI представляет собой двигатель с искровым зажиганием, в котором воздушно-топливная смесь воспламеняется от свечи зажигания.

Что такое двигатель CI: —

Двигатель

CI представляет собой двигатель с воспламенением от сжатия, в котором топливо впрыскивается в виде брызг, и воспламенение происходит из-за высокой температуры воздуха в цилиндре из-за механического сжатия.

Сравнение двигателей SI и CI: —

Ср. № SI Двигатель CI Двигатель
1 Работает по циклу отто, и сгорание топлива происходит при постоянном объеме (V = Постоянный). Работает по дизельному циклу и сгорание топлива происходит при постоянном давлении (P = постоянное).
2 Всасывает смесь бензина и воздуха во время такта всасывания. Он всасывает воздух во время такта всасывания.
3 Карбюратор используется для смешивания воздуха и топлива в необходимом соотношении и подачи в двигатель во время такта всасывания. Форсунка используется для впрыска топлива в конце такта сгорания.
4 Воспламенение топливно-воздушной смеси с помощью свечи зажигания. Топливо впрыскивается в виде мелких брызг. Температура сжатого воздуха достаточно высока для воспламенения топлива.
5 Степень сжатия от 6 до 10. Степень сжатия от 15 до 25.
6 Запуск двигателя легкий благодаря низкой степени сжатия. Запуск двигателя затруднен из-за высокой степени сжатия.
7 Эксплуатационные расходы высоки. Эксплуатационные расходы низкие.
8 Тепловой КПД около 26%. Тепловой КПД около 40%.
9 Это высокоскоростной двигатель. Это низкооборотный двигатель.
10 Обычно используется в легких транспортных средствах, таких как скутеры, мотоциклы и автомобили. Это также используется в самолетах. Обычно используется в тяжелых транспортных средствах, таких как грузовики, автобусы и землеройные машины.

Сравнение двухтактных и четырехтактных двигателей: —

Sr. No. Двухтактный двигатель Четырехтактный двигатель
1 Один оборот коленчатого вала и два хода поршня Два оборота коленчатого вала и четыре хода поршня
2 Один рабочий ход за каждый оборот коленчатого вала Один рабочий ход за два оборота коленчатого вала
3 Маховик легче (равномерный поворот) Маховик тяжелый (неравномерный поворот)
4 Мощность в два раза больше, чем у четырехтактного двигателя Мощность меньше
5 Легкий и компактный Тяжелый и громоздкий
6 Требуется сильное охлаждение Требуется меньшее охлаждение
7 Высокая скорость износа Низкая скорость износа
8 Начальная стоимость низкая Высокая начальная стоимость
9 Объемный КПД низкий из-за меньшего времени индукции Объемный КПД высокий из-за большого времени индукции
10 Тепловой КПД низкий Тепловой КПД высокий
11 Используется там, где важны низкая стоимость, компактность и легкий вес Используется там, где важна эффективность

Следите за нами и ставьте лайки:

Сравните электромобили с автомобилями с двигателем внутреннего сгорания

Электрический автомобили очень приятны в управлении по сравнению с автомобилями с двигателем внутреннего сгорания.Основное отличие в том, что они очень тихие и поэтому очень расслабляют в движении. Они также обеспечивают невероятно плавную передачу мощности, что устраняет необходимость в коробке передач, что делает управление автомобилем еще проще.

По мере того, как цены на бензин и дизельное топливо продолжают расти и вступают в силу более строгие условия в отношении выбросов транспортных средств, производители двигателей поощряются к разработке альтернатив традиционным автомобилям с двигателями внутреннего сгорания (ICEV).

Электромобили (EV) должны обслуживаться меньше, чем автомобили с двигателем внутреннего сгорания, из-за отсутствия коробки передач, а также масел и охлаждающих жидкостей, которые используются в ICEV. У электродвигателей гораздо меньше движущихся частей, чем у обычного бензинового / дизельного двигателя. Эксплуатационные расходы электромобилей в среднем значительно ниже при поездках на работу или по магазинам.

Долговечность батареи все еще остается неизвестной областью, многие производители предлагают длительные гарантии, чтобы успокоить потенциальных клиентов.Renault предлагает схему аренды аккумуляторов, при которой вы платите ежемесячную плату, а они гарантируют работоспособность аккумуляторов.

Прелесть электромобилей в том, что выбросы из выхлопной трубы равны нулю, что делает наши города более приятными. Однако они не лишены воздействия на окружающую среду; электричество, используемое для зарядки, должно откуда-то поступать! Если вы получаете электричество от угольной электростанции, она может быть не более эффективной по выбросам CO2, чем обычный дизельный автомобиль.

Предполагается, что большинство электромобилей будут заряжаться дома за ночь, так как большинство поездок будет в пределах их досягаемости. Значительное государственное финансирование идет на развитие инфраструктуры для зарядки транспортных средств. Гранты доступны для внутренних пунктов зарядки, операторов автопарка и схем взимания платы на улице. Таким образом, зарядка электромобилей станет более практичным вариантом по мере расширения сети Великобритании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *