ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Датчик Холла — принцип работы


В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.

Содержание:

  1. Датчик Холла, что это такое
  2. Применение датчика в автомобиле
  3. Преимущества автомобильного датчика Холла
  4. Зажигание с датчиком Холла
  5. Подключение и проверка датчика Холла

Датчик Холла, что это такое

Все автомобильные датчики классифицируются по параметру, который они определяют.

Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.

Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.

Применение датчика в автомобиле

Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры.

Схема датчика проста и мы ее помещаем ниже.

Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.

Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые  приборы.

Преимущества автомобильного датчика Холла

Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:

  • компактность;
  • возможность разместить в любой точке двигателя или любого другого механизма;
  • стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
  • стабильность не только в работе, но и стабильность характеристики сигнала.

Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:

  1.  Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
  2.  Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
  3.  Работоспособность датчика Холла сильно зависит от электронной схемы.
  4. Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.

Зажигание с датчиком Холла

Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.

Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.

Подключение и проверка датчика Холла

Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.

Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.

Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!

Читайте также:


где находится устройство, проверка на неисправности мультиметром и замена своими руками

Датчик Холла или распредвала — это такое устройство, которое отвечает за образование искры для запуска двигателя. От его рабочего состояния зависит бесперебойное функционирование двигателя авто.

Содержание

Открытьполное содержание

[ Скрыть]

Для чего нужен датчик Хола в автомобиле?

Прибор используется вместо контактных элементов и может применяться для слежения за величиной тока нагрузки. Благодаря этому датчику выполняется деактивация двигателя при появлении токовых перегрузок в бортовой сети. Если контроллер перегревается, производится включение температурной защиты.

Принцип работы

Скачки напряжения в электросети мотора могут иметь последствия для датчика. Поэтому современные устройства дополнительно комплектуются диодными элементами, которые препятствуют обратной активации напряжения. Принцип действия приспособления основан на эффекте Холла. Поперечная разность потенциалов образуется при перемещении одного из проводников в магнитное поле. Данный эффект достигается благодаря тому, что токи проходят через клеммные элементы пластины, которая находится в самом поле, с полупроводником.

Когда работает двигатель и вал силового агрегата вращается, стальные лопасти ходят по специальным прорезям, установленным внутри корпуса. Это способствует подаче электрического сигнала на коммутаторное устройство. В результате узел открывает транзисторный элемент и подает напряжение на катушку. Последняя выполняет процедуру преобразования низковольтного импульса в высоковольтный. Этот сигнал подается на свечи зажигания.

Подробно о принципе действия контроллера Холла рассказал канал «Радиолюбитель TV».

Где находится и как выглядит?

При необходимости замены неисправного устройства потребителю надо знать, где стоит контроллер. Он располагается в трамблере автомобиля и выполнен в корпусе в виде небольшого цилиндрического элемента. Чтобы получить доступ к устройству, необходимо разобрать распределительный узел и снять крышку, бегунок и прочие детали механизма. На наружной стороне трамблера к контроллеру Холла подключается разъем с проводкой.

Устройство

Оптический регулятор положения распределительного вала устроен так:

  • 1 — постоянное магнитное устройство;
  • 2 — лопасть роторного механизма;
  • 3 — магнитопроводы;
  • 4 — пластиковый корпус, в который заключаются все элементы устройства;
  • 5 — плата;
  • 6 — контактные выводы.

Схема приспособления контроллера Холла

Устройство комплектуется тремя контактами:

  • первый используется для подключения к массе, то есть кузову автомобиля;
  • второй необходим для подсоединения плюсового напряжения, рабочий параметр которого составляет примерно 6 вольт;
  • третий контакт предназначен для подачи с него импульса на коммутаторное устройство.

Какие могут быть неисправности?

Признаки неполадок контроллера Холла:

  1. Наблюдается резкий рост потребления топлива в системе. Это обусловлено тем, что впрыск горючей смеси в силовом агрегате происходит больше одного раза за цикл прокручивания коленвала.
  2. Мотор машины стал функционировать менее стабильно. Транспортное средство во время движения дергается, мощность двигателя может резко падать. Иногда не получается увеличить скорость машины более чем на 60 км/ч. Во время движения силовой агрегат может произвольно заглохнуть.
  3. Иногда поломка датчика Холла становится причиной фиксации рычага трансмиссии. Скорости коробки передач переключить не получается, такая особенность характерна для новых иномарок. Чтобы решить проблему, необходимо перезапустить силовой агрегат.
  4. Неисправность может проявиться в виде отсутствия искры для воспламенения горючей смеси. Из-за этого запуск мотора машины будет невозможен.
  5. Вероятны сбои в функционировании системы самодиагностики. К примеру, на контрольном щитке появляется индикатор проверки мотора, если агрегат работает на холостом ходу. Когда обороты двигателя увеличиваются, ошибка с приборной панели пропадает.

Канал «Авто-Мото» рассказал о признаках неисправности регулятора, а также других элементов системы зажигания в автомобиле.

Если сам контроллер Холла целый и рабочий, то неисправность может быть связана с такими причинами:

  1. На корпус устройства попала грязь или другие посторонние предметы.
  2. Произошло повреждение либо обрыв сигнального кабеля, по которому подключен контроллер.
  3. В колодку для соединения датчика Холла с бортовой сетью попала влага. Решить проблему можно путем просушки разъема.
  4. Произошло замыкание сигнального проводника с кузовом или электросетью транспортного средства. Для определения неисправности необходимо прозвонить устройство.
  5. Произошло повреждение экранирующей составляющей на жгуте с проводкой. Возможен обрыв отдельных кабелей.
  6. Проблема может заключаться в повреждении проводников, предназначенных для питания контроллера Холла.
  7. При подключении устройства была спутана полярность. Из-за этого датчик функционирует некорректно или вовсе не работает.
  8. Неисправности в функционировании высоковольтной цепи системы зажигания.
  9. Неполадки в функционировании управляющего модуля автомобиля.
  10. При установке контроллера был неверно выставлен люфт между самим датчиком, а также магнитопроводящей пластиной.
  11. Проблема может заключаться в повышенной амплитуде торцевого воздействия шестеренки распредвала. Требуется детальная диагностика схемы.

Дмитрий Мазницын в ролике рассказал о причинах неисправности регулятора и дал рекомендации по их устранению.

Проверка датчика

Есть несколько способов диагностики контроллера. Самый точный вариант, который позволит получить осциллограмму — воспользоваться специальным оборудованием. Осциллограф не только определит состояние контроллера, но и даст точно понять, что устройство скоро выйдет из строя. Такое оборудование есть не у каждого электрика, поэтому ниже рассмотрены более простые, но не менее эффективные варианты.

Диагностика мультиметром

Перед выполнением тестирования устройство надо настроить в режим измерения постоянного тока, рабочий диапазон должен составить 20 вольт. Также потребуется два металлических штыря. Перед проведением диагностики с разъема устройства демонтируется резиновый чехол.

Процедура предварительной проверки, позволяющей установить, что на контроллер Холла подаются необходимые сигналы, выполняется так:

  1. С распределительного узла отключается основной бронепровод. Его необходимо соединить с массой автомобиля для предотвращения случайного появления разряда. Поскольку это приведет к запуску силового агрегата при диагностике.
  2. Затем производится активация системы зажигания.
  3. Разъем отключается от распределительного механизма.
  4. На тестере выставляется режим постоянного тока с диапазоном 20 вольт.
  5. Отрицательный контакт мультиметра подключается к кузову автомобиля, можно выбрать любое место. Положительный выход тестера будет использоваться для замера рабочего параметра напряжения.
  6. Разъем, подключенный к распределительному узлу, оснащается тремя контактами — красным, зеленым и белым, но расцветка проводников может быть другой. На первом выходе величина напряжения должна составить 11,37 вольт либо около 12 В, на втором — тоже в районе этого показателя. А на последнем проводнике рабочий параметр должен составить 0 вольт.

Следующий этап диагностики:

  1. Берутся два металлических штыря, можно использовать гвозди. Один из них устанавливается в средний контакт колодки (обычно зеленый цвет), а другой подключается к массе. Его расцветка, как правило, белая. Затем сам разъем подсоединяется обратно к распределительному устройству. Штыри используются в качестве проводников тока. На обратной стороне разъема открытых контактов нет, поэтому для проверки сами кабели придется оголить, а делать это не рекомендуется.
  2. Затем зажигание активируется. Положительный контакт тестера надо подключить к штырю среднего выхода на разъеме, а отрицательный — к белому проводнику. Производится замер напряжения. Если контроллер Холла рабочий, то полученная величина должна составить около 11,2 вольт.
  3. Затем надо прокрутить коленчатый вал силового агрегата и одновременно проверить показатели, которые выдает тестер. Если значения в ходе прокручивания снизятся до 0,02 вольт и затем увеличатся до 11,8 В, то это нормально. Так и должно быть в нижнем и верхнем пределе измерений. Можно отключать тестер.

Контроллер Холла считается рабочим, если при прокручивании коленчатого вала верхний предел измерений будет не ниже 9 вольт, а нижний — не выше 0,4 В.

Канал «Автоэлектрика ВЧ» подробно показал процедуру диагностики датчика с использованием тестера и рассказал об основных особенностях этого процесса.

Проверка сопротивления

Чтобы произвести диагностику этого параметра, потребуется простое устройство, состоящее из резисторного элемента на 1 кОм, диодной лампочки, а также гибких кабелей. К ножке источника освещения надо подключать резистор, для надежной фиксации используется пайка. К этой детали подсоединяются два проводника необходимой длины, важно, чтобы они были не короткими.

Принцип проверки выглядит так:

  1. Производится демонтаж крышки распределительного механизма. От контактов отсоединяется сам трамблер, а также колодка с проводами.
  2. Выполняется диагностика исправности электроцепи. Для этого тестер надо соединить с первой и третьей клеммами, а затем активировать зажигание. Если все проводники целые, то величина напряжения на дисплее мультиметра составит от 10 до 12 вольт.
  3. Затем аналогичным образом выполняется подключение собранного прибора к тем же выходам. Когда полярность соблюдена, то диодная лампочка загорится, если нет — то кабели надо поменять местами.
  4. Потом проводник, подключенный к первому выходу, остается нетронутым. А конец третьей клеммы переключается на вторую. Выполняется прокручивание распределительного вала. Это можно сделать руками либо с использованием стартерного механизма.
  5. Если в процессе выполнения этих действия источник освещения стал моргать, то контроллер работает правильно и не нуждается в замене.

Канал Altevaa TV рассказал о способе проверки датчика с использованием обычной лампочки на примере автомобиля Фольксваген.

Создание имитации контроллера Холла

Такой вариант диагностики датчика Холла считается наиболее быстрым, но его реализация возможна при наличии питания в системе зажигания и отсутствия искры.

От распределительного механизма отключается трехконтактный разъем. Производится активация зажигания в машине и с помощью куска проводника замыкаются контакты под номерами 2 и 3, это выходы сигнала и пин. Если в результате подключения на центральном кабеле образовалась искра, это говорит о поломке контроллера Холла. При выполнении задачи высоковольтный проводник необходимо держать у массы авто.

Устранение неисправностей

Ремонт рассмотрен на примере автомобиля Фольксваген.

Для восстановления работоспособности датчик можно отремонтировать:

  1. Для возобновления работы контроллера необходимо заменить логический компонент. Для этого заранее надо приобрести устройство S441А.
  2. В центральной части корпуса датчика, как показано на фото, с помощью дрели просверливается небольшое отверстие. Для этого потребуется качественное сверло, поскольку внутри контроллера, за пластиковой частью, имеется металлический каркас.
  3. Используя канцелярский нож, необходимо срезать каждый проводник. Затем прокладываются канавки от сделанного отверстия с помощью надфиля к остаткам кабелей.
  4. Само измерительное устройство монтируется в окошко корпуса. Для диагностики используется магнит. Если приложить этот элемент к контактам, на которые заранее подключен прибор, состоящий из диодной лампочки и резистора. Такое устройство использовалось для диагностики. В результате проверки лампа должна загореться. Если этого не произошло, то надо проверить полярность.
  5. Затем делается разводка выводов по канавкам корпуса. В самом окошке необходимо оставить проводники для соединительной колодки нового контроллера. Производится пайка элементов.
  6. На завершающем этапе производится проверка выполненных действий. Для этого используется тестер. Визуально необходимо убедиться в целостности всех контактов. Если устройство рабочее, то механизм герметизируется с помощью клея или другого состава, но не пластика. Этот материал может деформироваться при работе в условиях повышенных температур.
  7. Выполняется сборка контроллера, все действия осуществляются в обратной последовательности.

Как заменить датчик своими руками?

Чтобы поменять контроллер, надо действовать так:

  1. От аккумулятора автомобиля отключаются клеммные зажимы.
  2. Производится демонтаж распределительного механизма. От устройства отсоединяется колодка с проводниками, выкручиваются болты, фиксирующие узел.
  3. Выполняется демонтаж крышки распределителя. В зависимости от модели трамблера она может фиксироваться на болтах или специальных зажимах. Элементы крепления выкручиваются и демонтируются.
  4. После снятия важно совместить риску газораспределительного устройства с отметкой на коленвале силового агрегата. Также необходимо запомнить положение распределительного узла. Перед снятием рекомендуется сделать соответствующую метку.
  5. Элементы крепления корпуса откручиваются с помощью гаечного ключа. Производится демонтаж фиксаторов, если они установлены на механизме.
  6. Из распределительного узла извлекается вал.
  7. От контроллера Холла отсоединяются зажимы с клеммами.
  8. Выполняется демонтаж датчика из посадочного места. Для проведения задачи устройство надо потянуть на себя и аккуратно извлечь. Датчик демонтируется через появившееся отверстие.
  9. Берется новый контроллер и устанавливается вместо старого. Процедура монтажа выполняется в обратной последовательности.

Видео «Последствия неправильной установки датчика Холла»

Пользователь Дядя Саша рассказал, к чему может привести неверный монтаж устройства и дал рекомендации по устранению такой проблемы.

Датчик Холла, виды, устройство и принцип работы.

Датчик Холла — это датчик магнитного поля, на двигателе он фиксирует магнитные импульсы от сопряженного с ним устройства (трамблёр, распредвал) и на основе его показаний распределяется искра по цилиндрам.

Современный автомобиль может похвастаться наличием нескольких десятков датчиков. Есть датчики, контролирующие количество топлива, есть датчики, проверяющие давление в двигателе, но самым незаменимым является датчик Холла.

Впервые он был применен при строительстве автомобилей еще более 70 лет назад, и с тех пор достойной альтернативы ему не нашлось. Он продолжает использоваться, и каждый из автомобилистов наслышан о его существовании.

Что представляет собой датчик Холла и для чего он нужен в автомобиле.

Данный датчик единственный в автомобиле, который имеет собственное имя. Он назван в честь известного американского физика Эдвина Холла, который открыл особенности поведения полупроводника в магнитном поле. В техническом плане датчик Холла представляет собой простейшее магнитоэлектрическое устройство. Фактически это датчик, который фиксирует наличие магнитного поля. Принцип его действия достаточно прост, и в нем вполне можно разобраться.

Конструктивно, работает это следующим образом. Плоский проводник под напряжением помещается в магнитное поле. Под действием магнитного поля, ток смещается в одному краю проводника, таким образом возникает разница потенциалов.

В автомобиле, датчик Холла работает как обычный ключ (размыкатель и замыкатель). Магнит вращается в трамблере машины, и влияет на датчик, закрепленный стационарно. Когда датчик «чувствует» магнитное поле трамблера, он подает импульс, который вызывает искру зажигания.

Собственно, данный датчик – один из основных элементов системы зажигания автомобили. Он присутствует в любой машине вне зависимости от ее стоимости. Кроме того, он может быть использован в цифровых спидометрах и тахометрах, проверять скорость вращения передаточных колес и контролировать работу антиблокировочной системы автомобиля.

Также стоит отметить тот факт, что датчик Холла очень надежен. Сам по себе он может работать долгие годы, и чаще всего, поломка происходит из-за физического воздействия или чрезмерного загрязнения датчика. Достаточно часто, датчик Холла специально устанавливают таким образом, чтобы его можно было быстро снять и заметить. Исключение составляют лишь устройства, которые контролируют работу сложных систем автомобиля.

Виды современных датчиков Холла.

Техническая революция коснулась даже консервативного датчика Холла. Благодаря применению современных полупроводниковых материалов, устройство стало намного меньше, компактнее и надежней. В настоящее время различают аналоговые и цифровые датчики Холла.

  • Аналоговый датчик. Данное устройство с полным правом можно считать классическим, так как именно оно появилось первым. Принцип работы устройства следующий – индукция магнитного поля преобразуется в напряжение в зависимости от силы поля. Чем сильнее магнитное поле – тем больше будет напряжение. Кроме того, имеет значение расстояние, на котором находится магнит, излучающей поле. В настоящее время подобные датчики практически не используются в автомобилях, так как имеют значительные размеры и устаревшую конструкцию.
  • Цифровые датчики. Работает лишь в двух положениях (магнитное поле зафиксировано и не зафиксировано). Индукция достигается лишь в том случае, если магнитное поле превысило определённое значение. Если индукция слишком слабая, то датчик попросту не сработает. Самый распространённый тип датчика, повсеместно используется в автомобильной промышленности. В свою очередь, цифровые датчики подразделяются на униполярные и биполярные. Униполярные датчики срабатывают при нарастании магнитного поля, и выключаются, когда сила магнитного поля ослабевает. В свою очередь, биполярные датчики реагируют не на силу магнитной индукции, а на полярность. Говоря проще одна полярность включает датчик, а другая выключает его. Также, стоит отметить тот факт, что цифровой датчик Холла имеет сложную конструкцию. Используется полупроводниковый монолитный кристалл, который в случае повреждения не подлежит ремонту

Как проверить работоспособность датчика Холла?

Существует несколько способов проверки данного датчика. Каждый из них может быть использован в тех или иных обстоятельствах, и имеет право на существование.

  • Проверка с помощью тестера. Необходимо взять любой цифровой тестер, установить его в режим вольтметра, и померять напряжение на датчике Холла. Правильно работающий датчик будет показывать напряжение от 0,2 и до 3 Вольт. Если напряжение отсутствует вовсе или выше трех Вольт, то датчик вышел из строя и нуждается в срочной замене.
  • Проверка с помощью аналогично работающего устройства. Вместо датчика Холла, работоспособность которого необходимо проверить, можно подключить аналогично работающее устройство. Создать устройство, использующее в работе эффект Холла не сложно. Необходим небольшой кусок провода и колодка с распределителем. Естественно, автомобиль не может использовать такую конструкцию в течение долгого времени, но для однократной проверки этого более чем достаточно. Такая несложная проверка покажет, кроется проблема в датчике, или дело совсем не в нем.
  • Проверка с помощью нового датчика Холла. Можно установить изначально исправный датчик Холла, и таким образом решить проблему с диагностикой неисправности.

Это достаточно затратный вид ремонта, но в случае если неисправность крылась именно в датчике, это сразу решит проблему с установкой и заменой.

Как проверить датчик Холла на автомобильном трамблере

Каждый уважающий себя пользователь автотранспорта скажет Вам, что датчик-распределитель зажигания является незаменимой и очень важной деталью для выработки и дальнейшей сегрегации ведущих синхроимпульсов, производимых в процессе влияние на свечи и концентратор. Большинство людей, владеющих любым транспортным средством знают, как проверить датчик холла.

Именно поэтому автолюбителю несомненно важно знать, как не делать роковую ошибку при проверке и не допустить неисправность своего транспортного средства. Система работы высокоэффективного устройства функционирует по не малоизвестной схеме, которую открыл в 1879 году Эдвин Холл.

Механизм действия достаточно прост и известен знатокам физики. Итак, ученый описал состояние проводника, помещенного в определенное магнитное поле с постоянным током. При всем при этом, будь то проводник или полупроводник постоянно находится под воздействием магнитного поля.

Неисправности датчика Холла воспрепятствуют нормальной работе и даже запуску мотора. А это, знаете ли, всегда финансовая и материальная нагрузка. Первые признаки неисправности, которые подает Ваш автомобиль нужно уметь распознать и принять во внимание. Если не заводится двигатель – тут уже ничего не поможет, даже мучения электростартера.

Неисправность датчика очевидна для авто пользователя. Понимание этого процесса выплывает из его конструкции. Итак, датчик входит в систему зажигания и представляет собой соединённые определенным способом проводник и вектолит, а связующим звеном выступает металлический цилиндр с экранным отражателем.

Как проверить датчик Холла в ограниченных условиях

Подвергнуть проверке устройство на работоспособность совершенно не сложно, для этого существует несколько простых и эффективных способов. Каждый из представленных вариантов подразумевает проверку датчика электронного зажигания исключительно на Вашем транспортном средстве.

Способ первый: искусственное создание правильной работы

Итак, этот способ предполагает использование прибора, вольтметра, с подсоединением его к датчику Холла. Следовательно, на работающем измерителе вольтметр продемонстрирует напряжение от половины до трех Вольт.

В случае получения иных исходных данных лучшим решением будет замена. Так же можно поменять его на прибор, который будет исполнять функцию имитации работы датчика трамблера. Правильная проверка дело не сложное, но требующее системности и аккуратности.

Способ второй: как проверить на трамблере датчик зажигания без вольтметра

Это возможно при непосредственном контакте с Вашим автотранспортом с помощью следующих перечисленных шагов. Для начала нужно, подсоединив свечу к проводу индуктора объединить резьбу и массу. Далее необходимо одновременно подсоединить каретку и разъем с датчиком Холла, а после всего этого запустить зажигание.

Напоследок с помощью исключительно металлической отвертки определить проскакивает ли искра на свече, проведя отверткой около датчика зажигания. В результате, если искра все таки есть, значит, Ваш трамблер рабочий.

Нужно понимать, что используя такой способ проверки, стоит обязательно протестировать аккумулятор, а так же замок зажигания с ключом, коммутатор и бобину, предохранители и проводку.

Как заменить датчик Холла на трамблере после выявления его неисправности

Замена старого датчика на работающее устройство производится по определенной технологии с учетом техники безопасности и возможных рисков. Вы должны понимать, что делать это нужно в случае серьезных неполадок.

Сбои в работе проявляются в абсолютно разных формах, поэтому заметить их во время не сможет даже самый профессиональный мастер. Итак, критические случаи, в которых необходимо заменить неисправный датчик:

1) Мотор совсем не заводится или вообще не запускается;

2) Появились перебои или рывки в функционировании двигателя;

3) На повышенных оборотах машина дергается;

4) Во время движения глохнет силовой агрегат.

Комплекс действий, необходимых для замены датчика Холла результативен в случае осторожности и системности. Для начала отключите крышку распределителя. Далее нужно так повернуть коленчатый вал, чтобы расположенная на шкиве метка совпала с меткой на крышке газораспределительного механизма.

Определите для себя, на какой отметке находится бегунок распределителя зажигания, а потом, воспользовавшись ключом выкрутите гайки и достаньте трамблер. Используя среднего размера молоток необходимо выбить штифт, которым присоединена маслоотражательная муфта. С помощью пассатижей достаньте штифт, а муфта тогда снимется вместе с шайбой.

После проделанных действий извлеките вал из корпуса ремонтируемого трамблера. Как только образуется отверстие, следует отключить зажимы на датчике Холла, аккуратно открутив и достав его. А вот уже после установки новой детали и выполнении всех описанных действий, обязательно нужно протестировать датчик работоспособность с помощью вышеуказанных действий.

Поделитесь информацией с друзьями:


Датчик Холла: устройство и принцип работы


Когда американский физик Эдвин Холл открывал свой эффект взаимодействия электрического тока с магнитным полем, у него и в мыслях не было, что чаще всего его фамилия станет употребляться на автомобильных рынках в России. Удивительно, но факт — самые разные люди, весьма далёкие от физики, понятия не имеющие кто такой Холл, знают, что такое датчик Холла в автомобиле, и даже одно время страдали от их дефицита.

В чём проявляется эффект Холла, и как это можно использовать в технике
Магнитное поле широко используется в автомобильной технике, несмотря на свою невидимость и неосязаемость. Даже свет, состоящий из электрических и магнитных полей, воспринимается благодаря своей электрической составляющей. Тем не менее, с помощью специальных магниточувствительных датчиков поле можно зафиксировать и даже измерить.

В основу одного из таких датчиков лёг эффект Холла, заключающийся в появлении поперечной разницы потенциалов на кристалле полупроводника, вдоль которого течёт ток. Образуется она только при помещении кристалла в магнитное поле, всё прочее пластину легированного кремния не поляризует. Это напряжение и подлежит фиксации, означая, что датчик попал в зону действия магнитного поля.

Собственно, всего этого недостаточно для использования кристалла в качестве датчика. Магнитное поле присутствует везде, надо определить его превышение над естественным фоном и помехами. Для этого к пластине подключается усилитель слабого сигнала и регулируемый пороговый элемент (компаратор). Вся схема выдаёт на выходе логический «0» по электрическому уровню, если поле есть, и логическую единицу во всех прочих случаях. Такая негативная логика обычно принята в цифровой технике. А чтобы в момент смены сигнала не наблюдалась «болтанка» выхода из-за неопределённости, устройство снабжается триггером Шмитта. Это такая схема, которая обеспечивает амплитудное запаздывание срабатывания (гистерезис), защищая от цифрового дребезга и помех в момент переключения, гарантируя одиночный крутой фронт сигнала и однозначность привязки во времени.

Устройство и принцип действия датчика

Если бы всё перечисленное выполнялось на дискретных элементах, то датчик был бы размером с магнитолу, столько же стоил, работал ненадёжно и потреблял много электроэнергии. В реальности всё устройство датчика Холла выполняется методами интегральной микроэлектроники всё на том же полупроводниковом кристалле, который с лёгкой руки деятелей из Кремниевой долины давно уже принято называть чипом.

Сам датчик миниатюрен настолько, что его размерами можно пренебречь на фоне габаритов корпуса, электрического разъёма, подводящих проводов и вспомогательного постоянного магнита. Кристалл полностью заливается пластмассой для защиты от внешних воздействий, снаружи остаётся только разъём и полюс магнита. В зависимости от назначения, датчик может иметь прорезь, внутри которой будет проходить край задающего синхронизацию реперного диска с пазами.

Принцип работы датчика Холла в автомобилях состоит в том, что при появлении в рабочей зоне изменений магнитного поля, например, прорези реперного диска вместо его цельной части, или ступеньки на шкиве, или метки на фланце распредвала, сигнал на выходе сменит своё значение с нуля на единицу или наоборот. Таким образом, электронный блок, считывающий показания датчика, узнает о наступлении определённого момента во вращении вала, например, верхней мёртвой точки поршня определённого цилиндра или любого его положения относительно этой ВМТ, нужная информация задаётся разработчиками двигателя. Это ложится в основу расчёта блоком управления двигателя таких важных данных, как момент зажигания, периодичность впрыска топлива, порядок открытия форсунок.

Разные случаи применения датчиков на эффекте Холла
Впервые такой датчик был использован на автомобилях с карбюраторными двигателями для замены контактов системы зажигания. Потом появились и другие применения магниточувствительных сенсоров.

Датчик Холла в системе зажигания карбюраторного двигателя

Классическая батарейная система зажигания действует по принципу накопления энергии в магнитном поле катушки зажигания за счёт протекания тока по её первичной обмотке с последующим резким разрыванием цепи, что вызывает рост напряжения на вторичной обмотке и искровой разряд в свече. Контакты прерывателя при этом работают в крайне тяжёлых условиях, обгорают, изнашиваются и долго не живут. К тому же их возможности ограничивают рост мощности системы, а значит и работу двигателя с дальнейшим обеднением смеси для экономии горючего.

Проблему частично решило появление электронной бесконтактной системы зажигания с прерывателем на основе датчика Холла (ДХ). Здесь уже нет обгорающих и требующих регулировки зазора контактов, имеется лишь реперный диск, вращающийся в прорези датчика. Пока мимо магнита ДХ проходит цельная стенка диска, коммутатор зажигания, представляющий собой простой усилитель тока, управляемый сигналом ДХ, отдыхает, то есть ждёт момента начала накопления энергии. По переднему фронту прорези выходной ключ коммутатора открывается, начинается накопление энергии в катушке.

Ток увеличивается не до бесконечности. Выйдя на расчётную номинальную величину порядка полутора десятков ампер, он стабилизируется, а в момент появления второго края прорези датчик срабатывает, ключ размыкается, начинается рост напряжения на обмотках катушки вплоть до пробоя искрового зазора.

Датчик Холла здесь полностью оправдывает свои способности, он очень точно и стабильно задаёт моменты срабатывания всех элементов системы, а значит и ровную работу двигателя без пропусков зажигания и детонации. Сам ДХ при этом не изнашивается, служит теоретически вечно, избавляя водителей и ремонтников от всех неприятностей классического контактного прерывателя-распределителя (трамблёра). И только бракованные детали, а также мнительность заставляли людей покупать датчики для проверки и впрок, создавая дефицит, о котором было упомянуто ранее.

В качестве датчика положение коленчатого вала (ДПКВ)

Чаще всего здесь используется простейший и надёжный индуктивный ДПКВ. Это обычная катушка с тонким проводом, намотанная на постоянный магнит. Мимо неё проходит зубчатый венец шкива коленвала, на котором один зубец отсутствует. Выходной сигнал представляет собой последовательность импульсов переменного тока, один из которых имеет увеличенную длительность и амплитуду. Компьютеру электронного блока управления двигателем (ЭБУ) не составит труда, располагая такой временной диаграммой, привязать все процессы во времени к фазам положения коленвала.

Однако некоторых разработчиков подобная простота не устраивала, возможно, им хотелось большей точности, поэтому в качестве датчика они использовали всё тот же ДХ. Принцип работы здесь такой же, зубцы задающего шкива замыкают и размыкают магнитный поток через датчик, изменяя его выходной цифровой сигнал. Получается последовательность импульсов, по форме несколько другая, но несущая в точности ту же самую информацию и выполняющая те же цели. Это основной и самый главный датчик двигателя, единственный, без которого мотор даже не заведётся, поэтому датчик Холла это то, что здесь нужно, повышенная надёжность тут очень кстати.

Выдача сигналов о положении распределительного вала


Очень хорошо датчику Холла подходит ещё одна работа, для которой он часто используется. Это синхронизация фазированного многоточечного впрыска топлива.

Вообще, системы впрыска могут быть самыми различными:

  • одноточечные, или моновпрыск, не сильно отличается от карбюратора, имеется один центральный модуль, где форсунка распыляет бензин во впускной коллектор, откуда он равномерно, или не очень, всасывается цилиндрами;
  • многоточечный, здесь на каждый цилиндр приходится своя форсунка, срабатывающая после окончания такта выпуска, чтобы подготовить смесь к впуску;
  • многоточечный фазированный, для его реализации как раз и потребуется датчик Холла.

Недостатком обычного впрыска является отсутствие его точной синхронизации с моментом начала впуска в конкретный цилиндр. Дело в том, что информация для ЭБУ приходит с датчика коленвала, а по его положению невозможно точно засечь конкретный такт в цилиндре, ведь полный цикл требует двух оборотов вала, которые с точки зрения ДПКВ абсолютно одинаковые и ничем не различаются. Поэтому впрыск будет происходить два раза за цикл, причём один раз совершенно бесполезно, на закрытый перед рабочим ходом впускной клапан.

Для совершенствования системы был применён датчик положения распредвала, разумеется, на эффекте Холла. Конструкция уже известна, дисковый репер и магнитный ДХ с выходом на ЭБУ. Теперь блок управления точно знает, как отличить ВМТ сжатия от ВМТ выпуска и каждая форсунка откроется строго в нужный момент. У бензина не будет времени, чтобы бесполезно оседать на стенках коллектора.

Как проверяют ДХ при возникновении подозрений


Устройство это очень надёжное, но абсолютной защиты от неисправности не существует. Поэтому иногда приходится проверять и эти датчики.

  1. Самое простое — подменить ДХ на заведомо исправный. Это избавит от возни со щупами, пробниками и осциллографами. А стоит датчик недорого, его всегда полезно иметь в запасе если не для замены, то именно для проверки забарахлившей системы впрыска или зажигания.
  2. Люди, знающие принцип действия датчика Холла, могут проверить его простейшими и не очень приборами. Например, щупом-пробником со светодиодом. Выход датчика представляет собой каскад с открытым коллектором. Это означает, что в положении физического нуля транзистор открыт, и если пробник включён между плюсом питания и выходом ДХ, то индикатор засветится. Перемещая репер перед полюсами датчика, можно заставить его мигать, что почти точно укажет на исправность ДХ и подсоединённых цепей проводки.
  3. Слово «почти» было употреблено в том смысле, что точно убедиться в исправности можно лишь с помощью цифрового запоминающего осциллографа, который имеется у многих диагностов как приставка к ноутбуку. С его применением можно проверить параметр, который недоступен щупам — быстродействие датчика. Фронты напряжения должны быть достаточно крутыми, что осциллограф и покажет. «Заваленный» фронт может оказаться тем самым случаем, когда датчик вроде работает, и пробник или мультиметр это подтверждают, а система сбоит и светит ошибки.

Почти все случаи, поясняющие, что такое датчик Холла в автомобиле, рассмотрены, остаётся упомянуть вполне возможное менее явное присутствие этих небольших приборов в автоэлектронике. Многие машины оснащаются достаточно мощными электродвигателями, где также для работы силовой электроники используются датчики Холла, следящие за положением ротора в магнитном поле. И даже этим, возможно, проникновение ДХ в авто не заканчивается. Компактный, надёжный и точный прибор всегда найдёт себе область работы во всё больше обрастающем электроникой современном автомобиле.

как проверить датчик холла, как он работает и для чего нужен


Датчик Холла в разных сферах производства

Попробуем разобраться, для чего нужен этот датчик Холла в автомобильном производстве. На сегодня эти устройства являются основой системы зажигания, которое находится в каждом автомобиле. Благодаря этому механизму происходит полноценный контроль над изменениями тока. Если происходит проблема в эксплуатации данного механизма, то функциональность системы зажигания также терпит неполадки. Это несет за собой негативные последствия в остальных важных аспектах автомобильных механизмов.
Для чего нужен датчик Холла в автомобиле? Это неотъемлемая его часть, благодаря своему небольшому размеру и формату прямоугольного электрического сигнала, что дает способность набирать нужную константу без скачков, набрали широкую популярность в создании автомобиля. Также он помогает в повышении мощности силового агрегата, усиливает действие всех остальных автомобильных устройств, что защищает его от аварийных ситуаций и способствует длительной эксплуатации авто.

Проверить работоспособность устройства Холла возможно своими силами. Для этого есть несколько способов. Первый, это проверка специальным тестером цифрового формата. Благодаря этому способу возможно замерять напряжение в механизме. Если напряжение будет колебаться до 3 вольт, то его можно использовать далее. Если же предел превышен, то устройство необходимо ремонтировать. Второй способ проверки — это проверка с помощью аналогичного устройства, только совершенно нового. При этом необходимо сравнить показатели обоих механизмов. Если второй вызовет у вас нарекания, тогда необходимо применить детальную проверку первым способом.

Также рассмотрим, что собой представляет датчик Холла в телефоне. Для этой сферы датчик является микросхемой, которая на выходе создает необходимый информационный сигнал. При создании телефона, разработчики используют этот механизм для контроля сигнала, что отображает это как наличие единицы или нуля. Проверить это можно на примере магнитного чехла. Когда на смартфон надевают чехол на магнитной застежке, то при его открывании, смартфон должен отреагировать и загореться. При закрывании срабатывает обратная реакция. Такие команды телефону и задает именно датчик Холла и заставляет его работать.

Убедиться, что в вашем телефоне стоит такой датчик, можно лишь внимательно прочитав описание самого телефона. А также если на мобильном рынке продаж на ваш телефон существует огромный выбор умных чехлов, которыми он руководит, тогда можете не сомневаться в наличии данного устройства в вашем смартфоне.

На сегодняшний день существует две разновидности устройства:

  • Цифровые
  • Аналоговые

Цель аналогового датчика — это изменение и переработка индукции в напряжении. Величина, которую он показывает, зависит от установленной дистанции, а также силы и полярности поля. Цифровой механизм определяет наличие поля. Они делятся на биполярные и униполярные. Принцип работы биполярного датчика является реагирование на изменение полярности поля, где одна полярность включает устройство, другая же выключает. Работа униполярного устройства происходит при уменьшении индукции поля.

Как работает датчик Холла и как он устроен?

Проводя свои исследования, Холл установил: когда пластина в магнитном поле и под напряжением, в ней происходит отклонение электронов. Поток магнитных частиц движется перпендикулярно этому движению. Направление отклонения электронов напрямую зависит от полярности магнитного поля. Значит, на различных сторонах металлической пластинки плотность электронов будет разной.

Холл взял металлический прямоугольник и, расположив его в магнитном поле, подал ток на узкие грани проводника, а напряжение зафиксировал на широких гранях.

Технологии совершенствовались, и этот принцип лег в основу прибора, который сейчас принято называть по имени человека, открывшего это явление.

Схема работы датчика следующая:

  • Сквозь пластины устройства проходит электричество.
  • В магнитном поле образуется разница потенциалов. Затем она постепенно выравнивается с помощью постоянного магнита. Сила тока на выходе при этом может различаться.
  • Когда на вход прибора поступает сигнал, формируется постоянный импульс, имеющий прямоугольную форму. Этот импульс видим только на осциллографе.

Есть аналоговые и цифровые измерители. Аналоговый трансформирует магнитную индуктивность в электричество. Сила тока находится в зависимости от величины магнитного поля.

Эту конструкцию не используют в новых машинах — она устарела. Индукция цифрового прибора достигается, только если значение магнитного поля переходится через определенный рубеж. Устройство не активируется при слишком слабом магнитном поле. В старых авто датчик применяли для подачи искры на свечи.

Устройство датчика Холла таково:

  • магнитная основа;
  • роторная лопатка;
  • провод для прохождения магнитного потока;
  • корпус из пластика;
  • электронная микросхема;
  • контактная система.

Всего в контроллере 3 контакта. Первый подводится к массе. Второй нужен для подключения напряжения, сила которого составляет 6 вольт. С третьего контакта происходит передача импульсов на коммутатор.

Основные сведения

Начнем с базовой информации: где находится датчик Холла, что это такое, для чего он нужен. «Голый» датчик — это небольшой измеритель (сенсор, обнаружитель), почти всегда черный (цвет зависит от предпочтений производителя), размером в несколько миллиметров. Автомобильные изделия имеют сравнительно большой пластиковый защитный короб, «фишку» с кабелем с разъемом подключения.

Сенсор фаз осуществляет мониторинг магнитных полей, их параметров (напряженности), при этом выдает заданные алгоритмы работы (смыкание контактов и пр.).

Рассматриваемым сенсорам присвоили наименование от фамилии ученого Холла, открывшего, что разность потенциалов (холловского напряжения) возникает, если в поле помещают объекты с постоянными токами.

Автомобильный сенсор тока находится в трамблере — узле для подключения свечей, он скрыт пластиковой фишкой с тремя проводами и разъемом под них. На иных приборах он может размещаться где угодно. Обычно на печатных платах — это крошечная черная коробочка стандартно на 3, реже — на 4 ножках. Линейные Hall sensor напоминают микросхему. Изделие также определяют по маркировке, обозначения есть в справочниках радиодеталей, (распространенные S41, 41F, U18, 3144, 44E, 49E).

При токовом течении в одном направлении электроны отклоняются в проводниках, размещенных перпендикулярно к полю. Участки их имеют неравномерную плотность частиц, это и есть разность потенциалов, фиксируемая датчиком Холла. Становится возможным анализ напряжения под прямым углом к току.

Есть также Hall effect sensor упрощенный как, например, в смартфонах: только с функцией подтверждения наличия магнитных явлений, напряженность не анализируется. На базе узла, включающего датчик и магнитомер, телефон снабжается опцией компаса.

Как функционирует

Принцип работы, использования датчика Холла:

  • Электроны при прохождении тока движутся по сенсору прямолинейно.
  • При воздействии поля частицы с зарядом отклоняются силой Лоренца по изогнутой траектории.
  • Отрицательно заряженные элементы, они же электроны, притягиваются на 1 сторону Hall sensor, а плюсовые (дырки) — к иной.
  • Описанное накопление по разным сегментам создает разное напряжение, это и есть разность потенциалов. Пропорциональность возникшего напряжения к электротоку и напряженности поля прямая. Эти окончательные явления и отслеживаются сенсором, принцип используется для определения положения подконтрольных им обслуживаемых объектов.

Где применяются

Датчики фаз начали устанавливаться в конструкции около 75 лет после их изобретения, когда появились доступные технологии создания полупроводниковых пленочных материалов.

Характерные области применение датчиков Холла:

  • первая область, где началось использование — машиностроение, для замеров углов распредвалов, коленвалов, фиксации искрения на узлах зажигания;
  • переключатели (бесконтактного типа), анализаторы уровня веществ, скорости вращения лопастей, приспособления дистанционного обнаружения токов;
  • сканирование магнитных обозначений;
  • как замена герконам (автоматические выключатели, смыкающие контакты посредством магнита). В этой сфере описываемые устройства наиболее распространенные из-за многочисленности приборов: микроэлектроника, техника от наушников до манипуляторов, клавиатур, в лифтах, охранном оснащении (двери, запорные элементы).

В смартфоне

Датчик холла в смартфоне применяются для таких целей:

  • как часть компаса, магнитомера;
  • для мониторинга закрытия/открытия чехла с магнитной защелкой отслеживанием ослабления/повышения поля;

Опишем, для чего нужен датчик холла в смартфоне на обложке. При отдалении магнита с обнаружителя идет импульс на активацию табло, когда ближе — на отключение. Разновидность таких чехлов — отдельный вид изделия, именуемый обычно Smart Case. Есть и дополнительные функции, принцип действия их такой: если применяется обложка без окошек около дисплея, то посредством обнаружителя отключается экран, когда он закрыт, при открытии — автоматическая активация. При наличии окошек инициируется переключение содержимого на табло. На видимой области — часы и пр., на всем дисплее — вся информация.

Не все смартфоны имею описанное усовершенствование, а также не всегда производители указывают его в перечне опций, поэтому нужно уточнять этот параметр. Но если в рекомендуемых аксессуарах есть отметка о таковых подходящих из категории Smart Case, то данная опция присутствует.

Магнитные датчики

Основное преимущество использования датчиков магнитного поля, заключается в их бесконтактной работе. Они бывают аналоговыми и дискретными. Первый тип считается классическим. В его основе лежит принцип, что чем сильнее будет магнитное поле, тем больше будет величина напряжения. В современных приборах и устройствах такой тип уже практически не используется из-за значительных размеров. Цифровой же датчик построен на режиме работы «ключ» и имеет два устойчивых положения. Если сила индукции недостаточна он не срабатывает.

Разделяются дискретные элементы Холла на два типа:

  • униполярные — срабатывание которых зависит от полюса магнитного поля;
  • биполярные — переключения состояния датчика происходит при изменении магнитного полюса;
  • омниполярные — реагируют на действие магнитной индукции любого направления.

Конструктивно датчик представляет собой электронный прибор с тремя выводами. Он может выпускаться как в стандартном исполнении DIP, DFN или SOT, так и в герметичном: например, 1GT101DC (герметичный), A1391SEHLT-T (DNF6), SS39ET (SOT), 2SS52M (DIP).

Характеристики устройства

Выпускаемые датчики, использующие явление Холла, как и любые электронные радиокомпоненты характеризуются своими параметрами. Главным из них является тип прибора и напряжение питания. Но, кроме этого, выделяют следующие технические характеристики:

  1. Величина измеряемой индукции. Измеряется она в гауссах или миллитеслах.
  2. Чувствительность — определяется значением магнитного потока, на который реагирует датчик, единица измерения мВ/Гс или мВ/мТл.
  3. Нулевое напряжение магнитного поля — значение разности потенциалов, соответствующее отсутствию магнитного поля.
  4. Дрейф нуля — изменение напряжения, зависящее от температуры. Указывается в процентном отклонении от температуры 25 °C.
  5. Дрейф чувствительности — изменение чувствительности, вызванное изменением температуры.
  6. Полоса пропускания — уровень снижения чувствительности с шагом в 3 дБ.
  7. Индукция включения и выключения — это значение напряжённости поля, при котором датчик устойчиво срабатывает.
  8. Гистерезис — разность между индукциями включения и выключения;
  9. Время срабатывания — характеризуется промежутком времени перехода из одного устойчивого состояния в другое.

Изготовление приборов

Материал, из которого выполняется элемент Холла, должен обладать большой подвижностью носителей зарядов. Для получения наибольшего значения напряжения вещество не должно иметь высокую электропроводностью. Поэтому при производстве устройств используется: селенид, теллурид ртути, антимонид индия. Тонкопленочные датчики получаются методом испарения вещества и осаждения его на подложку. В качестве её служит слюда или керамика.

Изготавливают датчики также из полупроводников — германия и кремния. Их легируют мышьяком или фосфорной сурьмой. Такие устройства обладают низкой зависимостью от изменения температуры, а величина образуемой на них ЭДС может достигать одного вольта.

Типовой процесс производства пластинчатого датчика Холла состоит из следующих операций:

  • обрезка пластины нужного размера;
  • шлифовка поверхности;
  • формирование с помощью пайки либо сварки симметричных выводов;
  • герметизация.

Одним из главных преимуществ датчиков, выполненных на этом эффекте, является электрическая изоляция (гальваническая развязка) делающие их применение удобным и безопасным.

Аналоговые/пропорциональные датчики для повышения стабильности и точности

Аналоговые измерительные приложения позволяют конечному пользователю мгновенно получать обратную связь о положении магнита. Аналоговый датчик Холла обладает высокоточным выходным сигналом с высоким разрешением.

Ранее аналоговые датчики Холла измеряли у магнитов плотность потока и в значительной степени зависели от внешней температуры. Так как в последние годы аналоговые технологии эффекта Холла развивались, теперь, вместо традиционной амплитуды поля, микросхема с датчиком Холла теперь измеряет угол поля, делая его намного менее чувствительным к изменениям температуры. Это улучшение позволяет датчику обеспечивать более стабильный аналоговый выходной сигнал в широком диапазоне температур.

Рассмотрим два типа датчиков Холла, которые могут быть выбраны для аналоговых измерительных схем:

Поворотный датчик Холла: преимущества и применение

Этот полупроводниковый датчик изменяет выходное напряжение при изменении магнитного поля. Он сочетает в себе измерительный элемента на основе эффекта Холла и электрическую схему, обеспечивающую аналоговый выходной сигнал, который соответствует изменению вращающегося магнитного поля без использования каких-либо движущихся частей. Этот датчик предлагает два варианта выходного сигнала: аналоговый или широтно-импульсно-модулированный (ШИМ). Устройство программируется таким образом, чтобы инженер мог связать определенное выходное напряжение или ШИМ сигнал с точной степенью поворота. При повороте до 360° доступны несколько точек программирования. Каждая программируемая точка представляет собой напряжение или ШИМ сигнал, который соответствует заданному углу магнитного поля. Это приводит к получению выходного сигнала, пропорционального углу поворота.

В отличие от механического и резистивно-плёночного поворотных устройств поворотный датчик Холла не испытывает механического износа или изменения значений сопротивления. Кроме того, он очень стабилен при нормальных рабочих температурах вплоть до +105°C. Результаты измерения угла поворота в диапазоне 0°–360° точно калибруются в соответствующем диапазоне выходного постоянного напряжения 0,5В–4,5В или коэффициента заполнения ШИМ сигнала 10–90%.

Поворотные датчики Холла становятся очень популярными для замены механических резистивно-пленочных потенциометров. Они используются в автомобильных и внедорожных приложениях, таких как определение положения клапана EGR в двигателях. Эти датчики также могут использоваться для определения положения поворотных ручек в приборах и бытовой технике.


Рисунок 3 – Поворотный датчик Холла, используемый в поворотной ручке стиральной машины

Линейный датчик Холла: преимущества и применение

Линейные датчики Холла похожи на поворотные датчики Холла, за исключением того, что они измеряют не угловое, а линейное движение магнитного поля. Датчик Холла программируется для выдачи заданного напряжения, пропорционального заданному расстоянию. Типы выходного сигнала у него такие же, как и у поворотного датчика Холла. Датчик измеряет линейное перемещение и относительный угол потока магнитного привода на расстоянии до 30 мм на каждую микросхему с датчиком Холла. Это дает в результате выходной сигнал, точно пропорциональный перемещению датчика.

Перед программированием выходных напряжений или значений ШИМ-сигнала, соответствующих относительному значению магнитного поля от магнита на приводе, датчик и привод могут быть помещены на место окончательного монтажа в устройстве, чтобы в процессе программирования учесть все магнитные воздействия от близлежащего окружения. Это позволит инженеру отрегулировать выходной сигнал датчика, поскольку в процессе программирования будут учтены любые шунтирующие, механические воздействия и воздействия посторонних магнитных полей.

Линейные датчики Холла часто используются в качестве датчиков контроля уровня жидкости. В этом применении датчик определяет положение движущегося поплавка с прикрепленным магнитом. Линейные датчики также полезны в более сложных конструкциях, таких как автомобильная коробка передач.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.} где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},} где n{\displaystyle n} — концентрация носителей заряда. Тогда E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом

(или
константой
)
Холла
. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определить знак их заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Виды датчиков

С развитием науки технология стала использоваться во многих устройствах. Этому способствовало и то, что всего существует несколько видов датчиков:

  1. Цифровые. Предназначены для обнаружения магнитного поля. При достаточно высокой индукции, устройство срабатывает. Это определенная логическая команда, которая определяется как «один» такой сигнал означает – поле присутствует. При низкой чувствительности, слабом магнитном поле, или полном его отсутствии, срабатывает сигнал «ноль».
  2. Униполярные. Особый вид, который включается и выключается одним и тем же магнитным полем. Включен прибор или же выключен, зависит от интенсивности магнитного поля.
  3. Биполярные. Сложный тип датчика Холла. Его работа основана на взаимодействии с обоими полюсами. К примеру, он включается только южной стороной магнита. Если включение произошло, то этой стороной уже нельзя повлиять. Не поможет изменение плотности магнитных волн или расстояния меду магнитом и проводником. Чтобы отключить его, нужно развернуть магнит на противоположный полюс и эту сторону поднести к прибору.

Причины и диагностика поломки датчиков положения

Причиной поломки датчиков Холла могут стать:

  • значительный перегрев электромотора – выше 150–180 °С;
  • механические повреждения;
  • скачки напряжения;
  • попадание воды внутрь корпуса электродвигателя или ручки газа.

Явным признаком поломки датчиков Холла считается подергивание МК при старте во время поворота ручки газа. Для диагностики такой неисправности достаточно вольтметра. Также для проверки работоспособности мотор-колеса, контроллера или ручки газа удобно воспользоваться диагностирующим тестером. Он позволяет продиагностировать датчики положения и обмотки, выявить имеющиеся дефекты, проверить фазовый угол и корректность переключения фаз.

Область применения

Широкое распространение устройств Холла началось с массового производства полупроводниковых пленок. С развитием микроэлектроники приборы приняли миниатюрные размеры, в их корпусах стоит магнит, чувствительный элемент и микросхема. Используются они в машиностроении, авиации, в конструкциях серводвигателей.

В автомобиле прибор применяется для контроля положения различных узлов и механизмов, в том числе распредвала и коленвала. Он работает в качестве замыкателя и размыкателя. На стационарно закрепленный преобразователь влияет магнит, расположенный и вращающийся в трамблере.

Под влиянием магнитного поля прибор подает импульс, вызывающий искру зажигания. На фото можно видеть, как он расположен в трамблере.

Размещение прибора в трамблере.

Как большие электрические нагрузки можно контролировать с помощью датчиков Холла

Мы уже знаем, что выходная мощность датчика Холла очень мала (от 10 до 20 мА). Поэтому он не может напрямую контролировать большие электрические нагрузки. Тем не менее, мы можем контролировать большие электрические нагрузки с помощью датчиков Холла, добавив NPN-транзистор с открытым коллектором (сток тока) к выходу.

Транзистор NPN (приемник тока) функционирует в насыщенном состоянии в качестве переключателя приемника. Он замыкает выходной контакт заземлением, когда плотность потока превышает предварительно установленное значение «ВКЛ».

Выходной переключающий транзистор может быть в разных конфигурациях, таких как транзистор с открытым эмиттером, транзистор с открытым коллектором или оба. Вот так он обеспечивает двухтактный выход, который позволяет ему потреблять достаточный ток для непосредственного управления большими нагрузками.

Малопотребляющие датчики Холла от Honeywell

В ассортименте одного из старейших производителей датчиков Холла – компании Honeywell – также присутствуют две модели малопотребляющих датчиков положения, отличающихся лишь чувствительностью.

Структурная схема (рисунок 11), технические характеристики (таблица 3) и принцип работы микросхем SM351 и SM353 во многом аналогичны рассмотренным выше микросхемам DRV5032 производства компании Texas Instruments. Для уменьшения энергопотребления питание на аналоговые узлы подается только во время измерений, продолжительность которых составляет 15 мкс. Коммутация питания осуществляется с помощью транзисторного ключа, управляемого таймером, содержащим тактовый генератор, счетчик, дешифратор и другие необходимые компоненты. Средняя частота измерений напряженности магнитного поля равна 10 Гц. При напряжении питания 1,8 В такой режим работы при типовом значении тока в режиме измерений около 1 мА позволяет уменьшить средний ток микросхемы до уровня, не превышающего 0,4 мкА.

Рис. 11. Структурная схема датчиков SM351 и SM353

Микросхемы SM351 и SM353 нечувствительны к полярности внешнего магнитного поля и имеют двухтактные выходы, позволяющие подключать их к микроконтроллеру без использования внешних подтягивающих резисторов. Оба прибора выпускаются в компактных корпусах SOT-23 и могут работать в широком диапазоне питающих напряжений (1,65…5,5 В) и температур (-40…85°С), что позволяет использовать их в автомобильной и промышленной электронике совместно с большинством наиболее популярных микроконтроллеров.

Таблица 3. Технические характеристики датчиков Холла производства Honeywell при напряжении питания 1,8 В

ПараметрыНаименование
SM351SM353
Тип выходаДвухтактный
Напряжение питания, В1,65…5,5
Длительность активного режима, тип., мкс15
Рабочая температура, °С-40…85
КорпусSOT-23
Частота опроса, тип., Гц10
Чувствительность, мТл0,71,4
Максимальный ток в активном режиме, тип., мА10,8
Средний потребляемый ток, мкА0,360,31

В отличие от изделий Texas Instruments, датчикам Honeywell необходима другая ориентация магнитного поля. Для корректной работы внешние магниты должны быть ориентированы полюсами к торцевой поверхности микросхем (рисунок 12), в то время как для датчиков Texas Instruments такое расположение магнитов попадает в «слепую» зону.

Рис. 12. Ориентация магнитного поля для датчиков SM351 и SM353

Датчик Холла в системе зажигания

В современных бесконтактных системах зажигания вместо механического размыкателя применяют датчик Холла. Сам сенсор установлен на корпусе трамблера и имеет специальную прорезь, с одной стороны которой установлен постоянный магнит, с другой – микросхема с чувствительным элементом. На оси прерывателя закреплена металлическая коронка с прямоугольными зубцами и прорезями (в соответствии с количеством цилиндров двигателя). Сам принцип работы достаточно прост. При вращении ротора распределителя металлические зубцы коронки проходят через зазор датчика Холла.

В результате:

  • Когда щель между постоянным магнитом и чипом свободна (это происходит в момент прохождения прорези вращающейся коронки через зазор датчика), на выходе сенсора напряжение отсутствует (либо оно минимально). ЭБУ «воспринимает» такой сигнал как логический ноль.
  • И наоборот, когда металлическая пластина входит в зазор датчика и перекрывает магнитный поток, на выходе устройства появляется значительное напряжение, которое поступает на ЭБУ. Блок «включает» в работу высоковольтную катушку и в нужном цилиндре происходит воспламенение воздушно-топливной смеси.

Для информации! Существуют датчики (в зависимости от марки автомобиля и прошивки его «мозгов»), алгоритм работы которых выглядит с точностью «до наоборот» (по сравнению с вышеописанным).

Ремонт и замена своими руками

При повреждении элементов конструкции ремонт датчика невозможен. Владельцу автомобиля необходимо поменять деталь на оригинальный сенсор или найти по справочникам либо каталогам аналог. Алгоритм установки нового датчика зависит от конструктивных особенностей автомобиля. Для выполнения работ нужен набор слесарного инструмента (гаечные ключи и отвертки). Процедура занимает 10–20 минут.

Чтобы заменить неисправный датчик положения распределительного вала, необходимо (на примере Lada Priora с 16-клапанным мотором):

  1. Найти точку установки сенсора по электрической схеме или жгуту проводки, подведенному к передней крышке двигателя рядом со шкивом коленчатого вала.
  2. Снять колодку проводки и отвернуть 2 болта, а затем аккуратно вынуть датчик из посадочного гнезда.
  3. Осмотреть изделие. Если на корпусе имеются следы механического воздействия, снять пластиковый кожух и проверить состояние газораспределительного механизма. В противном случае установить новый сенсор, завернуть крепежные болты и подключить сигнальный кабель. При монтаже убедиться в наличии резинового уплотнителя.

Ряд производителей автомобилей рекомендует проводить замену датчика Холла через 100–150 тыс. км пробега.

Подобные требования обусловлены жесткими условиями эксплуатации (узлы работают в условиях перепадов температуры и подвергаются вибрационным нагрузкам). Циклы нагрева и охлаждения негативно влияют на полупроводники и способны разрушить пластиковый корпус. Вода или конденсат проникает в трещины и ускоряет выход датчика из строя.


Чтобы заменить датчик, нужно найти точку установки сенсора.

Для замены датчика в трамблере следует:

  1. Отстегнуть защелки и снять крышку.
  2. Установить метки на шкиве коленчатого вала и газораспределительного механизма.
  3. Отвернуть болты крепления и снять распределитель зажигания для дальнейшей разборки.
  4. Демонтировать неисправный датчик и произвести осмотр и обслуживание элементов конструкции.
  5. Установить новый сенсор и произвести сборку в обратной последовательности.
  6. Проверить работоспособность двигателя и произвести регулировку зажигания (при необходимости).

Датчик Холла

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру. Но вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил? Разность потенциалов на гранях А и C! Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект – в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла.

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер.

Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью.

Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.


Схема подключения мультиметра для проверки ДХ
На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.


Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.


Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Принцип работы

Рассмотрим, как устроен импульсный преобразователь. Он выдает сигналы, если изменяется разность потенциалов, которая возникает в проводнике, когда его пересекает магнитное поле. Создается магнитное поле постоянным магнитом, который находится в приборе.

Магнитное поле меняется, если репер (металлический зуб) замыкает специальный разъем. Репер может находиться либо на зубчатом колесе распредвала, либо на задающем диске, расположенном на валу. На схеме показано устройство преобразователя.

Схема устройства прибора.

Если двигатель оборудован системой изменения газораспределителых фаз, то устройство устанавливается на выпускной и впускной клапан распредвала.

Схема работы устройстваВ дизеле устройство Холла помогает определить положение распредвала относительно коленвала. Таким образом обеспечивается устойчивая работа силового агрегата во всех режимах. Для реализации этого процесса изменена конструкция задающего диска распредвала. Он имеет репер для каждого цилиндра.

Знание устройства дает возможность понять, из-за чего могут возникнуть неисправности, как выполнить ремонт либо замену своими руками.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Виды устройств

Основной задачей этого прибора считается определение напряженности магнитного потока. Практически это сенсор определения значений магнитного поля. Существуют датчики двух видов:

  • цифровые;
  • аналоговые.

Униполярные приборы включаются при появлении любой полярности и отключаются по мере ее уменьшения. Цифровые сенсоры измеряют индукцию и появление соответствующего напряжения, то есть наличие или отсутствие магнитного поля.

Прибор показывает единицу, когда индукция поля достигает пороговое значение. До этого момента сенсор будет показывать ноль. Такой датчик не сможет определить наличие магнитного поля со слабой индукцией. Кроме того, на точность показаний будет влиять дистанция до измеряемого объекта.

Особенности малопотребляющих дискретных датчиков Холла

Различают линейные и дискретные датчики Холла (рисунок 1). Выходные сигналы линейных датчиков пропорциональны величине магнитной индукции. Основная сфера применения подобных устройств – измерители напряженности магнитного поля, датчики постоянных и переменных токов (рисунок 2), бесконтактные потенциометры, датчики угла поворота и прочие приложения, работающие с непрерывными сигналами. Кроме усилителя и схем температурной компенсации микросхемы, в зависимости от специализации, могут содержать множество других узлов, например, АЦП, компараторы тревожных сигналов для активизации центрального микроконтроллера, контроллеры популярных интерфейсов передачи данных, (USART, I2C, SPI и других), а также энергонезависимую память для хранения настроек.

Рис. 1. Структурные схемы датчиков Холла

Рис. 2. Датчик Холла для измерения тока

Когда абсолютное значение индукции магнитного поля не имеет значения, а важно определить лишь факт наличия или отсутствия магнитного поля – используют датчики Холла с дискретным выходом. В эти микросхемы обычно интегрируются один или несколько компараторов с гистерезисом, сравнивающих напряжение на выходе дифференциального усилителя с пороговыми уровнями. Областью применения дискретных датчиков Холла является широкий спектр автоматизированных приложений: датчики открытия дверей, частотомеры, синхронизаторы, автомобильные системы зажигания, контроллеры подвижных элементов (клапанов, задвижек, крышек и прочего), охранные системы, устройства управления электродвигателями и многие другие.

Классическим примером использования дискретных датчиков Холла являются электродвигатели, используемые в компьютерном оборудовании (рисунок 3). Размещенный на плате двигателя датчик Холла измеряет напряженность магнитного поля, создаваемого постоянным магнитом ротора, формируя импульсный сигнал с логическими уровнями, частота которого пропорциональна частоте вращения, что позволяет оценить как исправность, так и производительность вентилятора.

Рис. 3. Датчик Холла в компьютерном вентиляторе

Относительно новой областью применения дискретных датчиков Холла являются устройства дистанционного мониторинга, в которых они постепенно вытесняют традиционно используемые в данных приложениях герметичные электромеханические контакты (герконы). Например, использование датчика Холла совместно с трехосевым акселерометром в беспроводном дверном датчике DMS-100, выпускаемом компанией Pandora (рисунок 4), позволяет распознать удар, поворот и состояние (открыто/закрыто) дверей, люков, крышек кофров, багажников, прицепов. Поскольку датчик DMS-100 использует беспроводной интерфейс передачи данных и питается от аккумулятора, его можно легко и быстро разместить в труднодоступных местах.

Рис. 4. Беспроводной датчик двери Pandora DMS-100

Основными преимуществами датчиков Холла по сравнению с герконами являются высокая надежность, компактность и повышенная чувствительность. Кроме этого, измерительный элемент может определять не только величину, но и полярность магнитного поля, в том числе – по нескольким координатам. Все эти преимущества позволяют позиционировать датчики Холла в качестве перспективной элементной базы.

В случае, когда непрерывный мониторинг объекта не требуется (например, для систем безопасности), энергопотребление датчика Холла может быть снижено за счет перевода в прерывистый режим работы. Например, при контроле двери или окна нет необходимости постоянно определять их состояние, достаточно это делать несколько раз в секунду, ведь скорость их перемещения относительно невелика. Благодаря тому, что измерительный элемент датчика Холла является практически безынерционным, а современная элементная база отличается высоким быстродействием, для проведения измерений уровня магнитного поля без ущерба для точности достаточно всего нескольких десятков микросекунд. Таким образом, если микросхема датчика большую часть времени будет находиться в спящем режиме, при котором потребляемый ток снижается до уровня нескольких микроампер, то среднее значение тока, потребляемого датчиком, может быть уменьшено на несколько порядков.

Например, пусть для проведения измерений достаточно 100 мкс и тока 5 мА. Если проводить измерения 10 раз в секунду с интервалом 100 мс, то при токе потребления в спящем режиме 5 мкА средний потребляемый ток Iср будет рассчитан по формуле 1 (рисунок 5): $$I_{ср}=\frac{T_{1}}{T}\times I_{1}+\frac{T_{2}}{T}\times I_{2},\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где T1 = (t1 – 0) – продолжительность этапа измерения, T2 = (T – t1) – продолжительность спящего режима, то есть (0,1/100)∙5000 + (99,9/100)∙5 ≈ 10 мкА.

Рис. 5. Сравнение энергопотребления датчиков Холла при различных режимах работы (в условном масштабе)

Это в 500 раз меньше тока 5 мА, который бы потребляла микросхема, выполняя непрерывные измерения. Таким образом, использование прерывистого режима является эффективным средством уменьшения энергопотребления дискретных датчиков Холла без ущерба для их функциональности, что делает их идеальными для широкого круга компактных приложений с батарейным питанием.

Открытие эффекта Холла

Будущий физик Эдвин Герберт Холл родился в американском городе Горем в 1855 году. Получив начальное образование, он в 1875 году поступил в университет, где и ставил свои первые эксперименты. Так, изучая труды Максвелла об электричестве и магнетизме, Холл заинтересовался двумя фактами.

Первый заключался в том, что силы, возникающие в проводнике, расположенном поперечно линиям магнитной индукции, прикладываются непосредственно к веществу. Второй же сообщал, что значение этих сил зависит от скорости движения зарядов. В 1879 году вышла статья учёного Эдмунда Холла, доказывающая факт, что магнитное поле действует с одинаковым усилием как на подвешенный, так и зафиксированный объект.

Анализируя, какая сила может управлять движением заряженных частиц, он пришёл к выводу, что это может быть только напряжение. Для первого опыта физик использовал согнутую в спираль проволоку зажатую между диэлектриков. Эту конструкцию он поместил между двумя магнитами и запитал её от химического элемента тока. В качестве регистратора использовался мост Витстона с гальванометром Кельвина. В совокупности было проведено около тринадцати экспериментов и более четырёхсот измерений с разными условиями. Результатами экспериментов стало утверждение, что магнитный поток может изменять сопротивление материала.

По совету профессора Роуланда было выработано направление нового эксперимента, заключающее в следующем:

  1. К проводящей пластине подводился электрический ток.
  2. Гальванометр подключался к краям проводника.
  3. Включался электромагнит так, чтобы линии напряжённости поля лежали перпендикулярно плоскости пластины.

Предполагалось обнаружить условия для изменения протекания тока. Но опыт не получался, пока в качестве пластины не попробовали использовать тонкий лист из золота. Поставленный новый опыт оказался удачным. Гальванометр чётко зафиксировал появившееся напряжение.

Но как только на пластину воздействует магнитное поле, линии индукции которой перпендикулярны направлению тока, заряд перераспределяется к краям, и возникает разность потенциалов. В этом и заключается эффект Холла, на базе которого были после построены одноимённые датчики.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

В автомобилях

На транспорт датчики Холла стали ставить с 70–80 годов прошлого столетия, когда начали внедрять электрозажигание вместо контактного. Принцип функционирования: вал мотора вращается с прохождением его крыльчатки по корпусным прорезям, что фиксирует обнаружитель, посылающий команду коммутатору, который и отпирает транзистор, подающий напряжение на элемент зажигания с обмоткой. Последний создает высокий вольтаж для свечи.

Конструкция

Коробочка, «фишка» с тремя контактами, три жилы и разъем подключения – это классическое устройство автомобильных Hall effect sensor. На разных моделях отличаются лишь мелочи. Такую конструкцию, учитывая нюансы обслуживаемых объектов, можно рассматривать как общий образец.

Датчик холла, устройство, схема:

  • «масса» (автомобильный корпус), это «–» или рабочий ноль;
  • «+», работающие исправные изделия имеют там около 6 В;
  • контакт для транспортировки импульса коммутатору.

Есть такие достоинства датчиков тока для зажиганий электронного типа:

  • нет постоянно подгорающего объемного контактного узла;
  • на свече выше 30 кВ против 15 кВ, что намного лучше;
  • сенсоры ставят на тормозные, антиблокировочные системы, тахометры, поэтому есть немаловажные дополнительные плюсы: повышается производительность ДВС, ускоряются и работают эффективнее все системы машины. Как следствие, возрастает удобство эксплуатации, безопасность.

Описание схемы сигнализации на датчике Холла

Ниже приводится принципиальная схема охранной сигнализации построенной с применением отечественного датчика Холла ДХК-0.5А.

Поскольку напряжение на выходе самого датчика не велико, то его следует повысить при помощи операционного усилителя с большим коэффициентом усиления. В качестве усилителя применен один из двух операционных усилителей LM358 (DA2.1), второй (DA2.2) использован в качестве компаратора.

Опорное напряжение, сформированное элементами VD2, R7, подается на вывод 5 DA2.2 усилителя LM358. Подстроечным резистором осуществляется регулировка чувствительности датчика охранной сигнализации. В момент приближения магнита к датчику Холла на выходе 7 ОУ DA2.2 появляется логический уровень равный 9 В, если же отвести магнит от датчика, то на том же выходе напряжение будет равно нулю.

Для формирования задержки срабатывания сигнализации в момент ее включения построен таймер на логических элементах DD1,1 и DD1,2 (И-НЕ)

. Параметры таймера устанавливаются путем подбора элементов C3, R2, R3, R5 и при указанных на схеме значениях время работы таймера составляет примерно 2 минуты. За это время конденсатор C3 заряжается через сопротивление R5 до уровня лог.1, в результате чего на выходе DD1.1 образуется лог.0 которая инвертируется в лог.1 элементом DD1.2.

При отсутствии магнита вблизи датчика холла, на выводе 9 элемента DD1.3 и следовательно на выходе 11 DD1.4 уровень логического нуля, система находится в режиме охраны.

При срабатывании охранной сигнализации (приближении магнита к датчику Холла) на выводе 7 DA2. 2 образуется высокий логический уровень, который приводит к появлению лог.1 на выходе 11 DD1.4. Диод VD4 не позволяет отключить срабатывание охранной сигнализации при удалении магнита от датчика Холла. Сигнал тревоги включается не сразу, а через определенный промежуток времени, который необходим для отключения сигнализации хозяином.

Данный временной интервал задержки задается элементами C4, R9 (при тех номиналах, которые указаны на схеме задержка составляет около 20 сек). Когда время задержки включения сигнала тревоги проходит, на затвор полевого транзистора поступает лог.1 , в результате чего через реле включается сирена, в качестве которой может выступать сирена от автомобильной сигнализации.

Поскольку ток потребления в режиме охраны небольшой, то питание охранной сигнализации осуществляется от любого аккумулятора с напряжением 12 вольт. Альтернативой датчика Холла ДХК-0.5А в данной схеме, может служить датчик KMZ10В фирмы Philips (возможно, потребуется настройка компаратора).

Дополнительная информация

При диагностике датчиков в автомобиле следует проверять сопряженные узлы. Например, причиной плохой работы зажигания может стать влага в контактах или надломленная жила в жгуте проводки. Некоторые владельцы сталкиваются со скрытыми дефектами в блоках управления (окислением или отгоранием дорожек на печатной плате). Чрезмерный износ шестерен привода распределителя может стать причиной периодических сбоев в системе зажигания.

При некорректной работе датчика на машинах с распределенным впрыском топлива в память контроллера записываются ошибки. После проведения ремонта возможно включение предупредительных ламп в комбинации приборов. Для сброса кодов необходимо отключить аккумулятор от бортовой сети на 5–7 минут. Если процедура не помогла, то стереть идентификаторы неисправностей можно при помощи диагностического сканера, подключенного к разъему OBD-II.

Искать на сайте

Это и есть генератор Холла.

Все очень просто. Следующим этапом нам потребуется аккуратно отпаять ножки элемента от тестовой схемы и подключить его к стандартным контактам разъема.

Включаешь зажигание.

В схему датчика входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание схемы. Вытяните штифт пассатижами. В исправном устройстве напряжение будет изменяться от 0,4 В до 11 В. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Импульсы же возникают благодаря тому, что прорези идут не через одинаковое расстояние, а через разное, то есть они чередуются. Замена датчика: инструкция для автомобилистов Для установки нового датчика зажигания нужно правильно вынуть тот, который вышел из строя. Резисторы R1, R2 задают выходной ток нашего импульсного датчика.

Отсоедините крышку трамблера. Третий провод используется для передачи сигнала, полярность которого изменяется относительно общего провода питания. Подключите вольтметр к выходу датчика. Потребует применения такого датчика контроль оборотов выходных валов редукторов, контроль направления вращения двух и более синхронизируемых механизмов, учет расхода жидкости.

Датчики магнитного поля. Датчики Холла в схемах на МК

Еще раз проверяем работу тестером и на этом работа по ремонту датчика Холла можно считать завершенным. Если же невозможно установить исправный датчик, можно воспользоваться несложным устройством, которое будет дублировать его работу. Но наибольшее применение генератор Холла получил в автомобильной промышленности — для измерения положения распределительного и коленчатого валов, в качестве бесконтактного электронного зажигания и в других целях. Первые приборы получались довольно громоздкими и не очень эргономичными.

Применение неодимовых магнитов самых сильных постоянных магнитов позволяет уместить на диске достаточное количество малогабаритных магнитов. Обычно замена датчика Холла состоит из нескольких этапов: Прежде всего, трамблер снимается с машины. Также не стоит исключать из вида и другие неисправности системы зажигания , встречающиеся в автомобилях. Новый датчик Холла устанавливается в обратной последовательности. Наиболее легким способом считается замена прибора на исправный. установка зажигания с датчиком холла на мотоцикле .БАШКИРИЯ СТЕРЛИТАМАК

Ремонт

В ремонте датчиков Холла смысла нет, так как затраты на это превысят его стоимость, которая в границах 3–5$.

Если ради интереса кто-то захочет заняться починкой, то это можно попробовать сделать для автомобильных изделий, но ремонт будет касаться не самой сердцевины сенсора, а «фишки» и кабеля: часто сгорает конденсатор, его и провода можно перепаять. Причина неисправности может крыться в закисших контактах, их зачищают.

Что такое датчик холла в автомобиле

Современные автомобили нашпигованы большим количеством датчиков. Эти приборы отправляют огромный массив информации ежесекундно на бортовой электронный блок управления. На основании полученной и обработанной информации компьютер отдает команды исполнительным устройствам.

Чтобы не случались сбои в работе оборудования, важно поддерживать работоспособность контролирующей системы и ее элементов. Своевременная диагностика помогает выявить возможные сбои или неполадки. Также необходимо знать, где располагается такое оборудование, что собой представляет и как работает, например, что такое датчик Холла в автомобиле.

Расположение и функционал

Известный американский физик, занимавшийся разработками во второй половине 19-го века, дал свое имя одному из электроприборов в машине. Эдвин Холл изучал поведение полупроводников, которые вступали во взаимодействие с магнитным полем. Понять, как работает датчик Холла, что это, и на чем основан его принцип действия, помогает наглядный пример.

Плоскую пластину полупроводника располагают в области влияния магнитного поля. После того как на данный элемент от внешнего источника поступает напряжение, то ток начинает смещаться из-за влияния линий поля на какой-то из концов пластины. Таким образом формируется разница потенциалов. Именно ее изменения и фиксируются прибором.

Принцип действия датчика Холла востребован в бесконтактных системах зажигания. ДХ представляет собой контрольный прибор, который применяется для фиксации изменений в магнитном поле за счет изменения выходного напряжения двигателя.

На прорезях металлического экрана формируется магнитное поле, что провоцирует создание в полупроводниковой пластине напряжения. Такие прорези во время работы чередуются, появляющиеся импульсы получают невысокое напряжение. В результате импульсный датчик выполняет функции прибора, формирующего специальные маловольтные электроимпульсы.

Важно знать, что выход из строя датчика Холла спровоцирует сбои в работе инжекторной системы.

Чтобы понять, для чего нужен датчик Холла в машине, нужно знать его функции. Прибор имеет возможность осуществлять такие задачи:

  • передача текущих командных сигналов;
  • мониторинг актуальной скорости;
  • переключение некоторых контактов.

Система демонстрирует функционал аналоговых преобразователей. С помощью такого аппарата при сбоях в работе ДВС удастся замерить силу тока, не прерывая цепь. Это помогает в том случае, когда машина глохнет.

Способы проверки датчика

Необходимо знать, за что отвечает датчик Холла. У прибора достаточно широкие возможности. Его используют как в бензиновых моторах, так и в дизельных двигателях. Чаще всего возможности ДХ применяют в таких ситуациях:

  • в трамблере бензинового ДВС;
  • при мониторинге вращения коленвала, для вывода значений на приборную доску;
  • дизели используют электроприбор для выявления положения коленвала и последующей синхронизации работы форсунок;
  • найти прибор удастся в системах АБС;
  • задействован в некоторых коробках «автоматах».

При выходе из строя датчика определить поломку без диагностического оборудования вряд ли удастся. Можно лишь заметить явные механические поломки или повреждения, сигнализирующие об обрыве электроцепи.

Детальная проверка осуществляется при помощи осциллографов. На экране будет отражаться список потенциальных неисправностей.

Необходимость в проверке зачастую возникает после выявления косвенных негативных признаков, к которым относятся проблемы с запуском двигателя. Он может туго запускаться либо полностью перестанет реагировать на действия автомобилиста. Также при выходе из строя ДХ в моторе на холостых оборотах проявляются рывки, перебои или слышны «плавающие» обороты.

Стоит присмотреться к поведению автомобиля на больших оборотах. Сбои проявляются в нестабильной подаче мощности, отчего авто «дергается». В некоторых случаях ДВС беспричинно глохнет.

Одним из наиболее простых вариантов проверки работоспособности датчика является вариант замены его на аналогичный с другой машины, но гарантированно работающий прибор. Когда проблема ушла, то высока вероятность в поломке именно этого узла.

Если нет возможности обмена, то воспользуйтесь мультитестером. Потребуется его переключить в режим вольтметра. При мониторинге напряжения значение на выходе должно быть в интервале 0,4–11 В. Когда отсутствует возможность проверки мультиметром, то обычно проводят мониторинг следующим образом:

  • подключаем свечу к выводу проводки катушки;
  • наводим контакт отрицательной клеммы АКБ с резьбой свечи;
  • демонтируем каретку с датчиком и соединяем разъем;
  • запускаем зажигание автомобиля и проводим наконечником хорошо изолированной отвертки около датчика.

При выявлении искры после таких мероприятий можно быть уверенным в работоспособности датчика. В противном случае он нуждается в замене.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Введение — Автомобильные ИС магнитных датчиков (ИС на эффекте Холла)

ИС магнитных датчиков для автомобильного использования ABLIC Inc., которые представляют собой ИС с эффектом Холла, реализующие высокоточную магнитную чувствительность, позволяют однополярное или биполярное обнаружение с высоким выдерживаемым напряжением и высокой температурой эксплуатации и лучше всего подходят для автомобильных приложений.

Наши интегральные схемы магнитных датчиков предназначены для широкого спектра применений, таких как обнаружение вращения (биполярное обнаружение) для двигателей вентиляторов, двигателей мансардных окон, двигателей рулевого управления с электроусилителем, двигателей стеклоочистителей и т. Д.в бесщеточном управлении двигателем постоянного тока, а также в обнаружении открытия / закрытия или скольжения (униполярное обнаружение) для гидроусилителя руля, замков ремней безопасности, электрического стеклоподъемника, рычагов переключения передач и дверей.

ABLIC Inc. производит и поставляет автомобильные ИС со своими традициями системы высокой надежности и прочным послужным списком на японском рынке, а также предоставляет клиентам стабильные, безопасные и высококачественные автомобильные ИС Холла.

  1. Высокоточная магнитная чувствительность позволяет определять положение и вращение с меньшим разбросом
  2. Автомобильное качество: квалификация AEC-Q100 / PPAP, высокотемпературная работа, высокое выдерживаемое напряжение, тройное температурное испытание (низкое, нормальное, высокое)

1.Высокоточная магнитная чувствительность позволяет определять положение и вращение с меньшим разбросом

ABLIC Inc. предлагает широкий выбор продуктов с высочайшим в отрасли классом магнитной чувствительности ± 1,0 мТл. Высокая точность магнитной чувствительности позволяет уменьшить разброс операций в системе в сочетании с магнитом, что дает больше свободы при проектировании механизма, что способствует миниатюризации магнитов и снижению общей стоимости.

ИС с защелкой на эффекте Холла

и ИС переключателя на эффекте Холла обеспечивают высокоточное управление вращением двигателей и высокоточное обнаружение открытия / закрытия или скольжения, соответственно.
* 1. Точность магнитной чувствительности: Дисперсия магнитной чувствительности. (Магнитная чувствительность составляет ± 1,0 мТл при Bop = 3,0 мТл ± 1,0 мТл)

Дайджест анимации (Продолжительность: 1:43)

1. Это введение в автомобильную ИС с эффектом Холла при температуре 150 ° C S-57P1 S.

2. S-57P1 — это автомобильная биполярная ИС с защелкой на эффекте Холла, работающая при 150 ° C и обеспечивающая высокую чувствительность и высокую точность магнитной чувствительности.

3. В дополнение к использованию стандартной магнитной чувствительности 3,0 мТл, за счет использования высокой магнитной чувствительности 0,5 мТл,

4. Эта ИС может эффективно управлять двигателями за счет минимизации задержки фазы вращающегося магнита и выхода ИС Холла.

5. Кроме того, S-57P1 обеспечивает высокую точность ± 1,0 мТл при любой магнитной чувствительности.

6. Благодаря превосходной синхронизации выходного сигнала эта ИС обеспечивает стабильное управление вращением бесщеточных двигателей.

7.Серия S-57P1 S — это высокочувствительная и высокоточная ИС на эффекте Холла, работающая при 150 ° C.
Этот продукт позволяет использовать двигатели с низким уровнем вибрации, что позволяет производить более комфортабельные автомобили.

Далее: Введение — ИС автомобильных магнитных датчиков (ИС на эффекте Холла) -2

Датчик Холла (HS)

Общее описание
Сигнал первичного зажигания датчика Холла обычно используется в двигателях с распределителем, но в настоящее время распределительное зажигание используется очень редко.
Если система зажигания использует HS, она выдает первичный сигнал для зажигания и для впрыска топлива.

Принцип работы датчика Холла
Датчик Холла обычно устанавливается на автомобилях с распределителем, в котором находится переключатель Холла. ЭБУ двигателя питает датчик напряжением немного ниже номинального напряжения аккумуляторной батареи. Цепь датчика Холла замкнута кабелем для обратной связи на землю. Напротив переключателя Холла расположен магнит, поле которого заставляет переключатель возвращать низкое напряжение на модуль зажигания.На оптической оси распределителя закреплен щиток с прорезями, количество которых соответствует количеству цилиндров. Переключатель Холла включается и выключается, пока магнит проходит между экраном и датчиком. Напряжение подается на усилитель по третьему сигнальному кабелю, а переключатель находится напротив оптического разъема. Пока плотная часть экрана прилегает к переключателю, сигнал возвращаемого напряжения прерывается из-за отклонения магнитного поля. Количество возвращенных импульсов в четырехтактном двигателе равно количеству слотов.Важно отметить, что обратный сигнал представляет собой напряжение или его отсутствие и имеет прямоугольную форму.

Процедура проверки состояния датчика Холла
Быстрая проверка датчика Холла
(без запуска двигателя)

ПРИМЕЧАНИЕ: В большинстве систем датчик Холла Датчик находится в распредвале. Только в некоторых системах (VW / Audi) датчик Холла расположен на маховике.

  • Отсоединить центральный высоковольтный кабель от общей клеммы крышки распределителя и подсоединить к головке блока цилиндров дополнительным кабелем.
  • Отсоединить разъем датчика Холла от трамблера.
  • Найдите клеммы источника питания, выходного сигнала и заземления.
  • Замкните на короткое время контакты < 0 > и <> жгута проводов датчика Холла с помощью дополнительного кабеля.
  • Если искра проскакивает между дополнительным кабелем, соединенным с высоковольтным кабелем, и головкой блока цилиндров, катушка зажигания и автоматический выключатель зажигания могут вызвать искру, и возможная причина неисправности находится в самом датчике Холла.

Проверить датчик Холла осциллографом

  • Отодвиньте защитную резиновую крышку разъема датчика Холла.
  • Подключите пробник заземления осциллографа к заземлению шасси.
  • Подключите активный конец щупа осциллографа к сигнальной клемме датчика Холла.
  • Запустить двигатель и оставить его работать на холостом ходу.
  • Обязательно обратите внимание на следующий сигнал (рис. 2). Это форма сигнала правильно работающего датчика Холла. Рабочий цикл составляет примерно 35%.


Фиг.2

Если автоматический выключатель зажигания не работает должным образом, вы должны увидеть следующую форму сигнала (рис. 3):


Фиг.3

На рис. 4 показано, как выглядит сигнал неисправного датчика Холла.


Фиг.4

Другие возможные повреждения:
Отсутствие сигнала напряжения или рабочего цикла

  • Остановите двигатель и снимите крышку распределителя.
  • Когда подключена муфта датчика Холла и включено зажигание, подключите активный конец щупа осциллографа к сигнальной клемме датчика Холла. Установите диапазон напряжения осциллографа на ± 15 В.
  • Медленно провернуть коленчатый вал двигателя.
    Когда прорезь экрана проходит через воздушный зазор, напряжение должно измениться с 10 В 12 В до 0 В.

Отсутствие сигнала напряжения

  • Отсоединить разъем датчика Холла от трамблера.
  • Подключите активный конец щупа осциллографа к клемме < 2 > ( 0 ) жгута проводов разъема.
    Напряжение должно быть 10 В 12 В.
  • Если нет напряжения бортового компьютера на клемме < 2 >, проверьте проводимость сигнальной цепи между датчиком Холла и бортовым компьютером с помощью омметра.
  • Если цепь в порядке, проверьте, есть ли напряжение на соответствующей клемме разъема бортового компьютера. Если напряжение отсутствует, проверьте все клеммы питания и массы бортового компьютера.
    Если соединения в порядке, вероятная причина — сам бортовой компьютер.
  • Проверить наличие напряжения (10¸12В) на выводе < 1 > (+) бортового компьютера. Если напряжение питания выходит за указанные пределы, проверьте проводимость цепи между датчиком Холла и бортовым компьютером с помощью омметра.
  • Проверить заземление на выводе <3> (-) датчика Холла.
  • Если напряжения питания и заземления в норме, под подозрение попадает сам датчик Холла.

OEM Автомобильный датчик эффекта Холла — датчики скорости и положения для тяжелого оборудования

Магнитные датчики

Sensor Solutions используются в широком спектре автомобильного и тяжелого оборудования. Мы поставляем OEM-датчики, заменяемые OEM-датчики и датчики для применения в автомобилях послепродажного обслуживания, а также датчики, используемые в строительном оборудовании и специальных транспортных средствах для тяжелых условий эксплуатации.

Решения для датчиков

Переключатели на эффекте Холла и датчики обнаружения передач используются в приложениях для контроля кулачков и коленчатого вала, а также предоставляют информацию о скорости / направлении двигателя и трансмиссии от различных целей в трансмиссии транспортных средств.

За пределами силовой передачи Датчики обнаружения передач обеспечивают один или несколько цифровых импульсных выходов, которые используются для отслеживания скорости и направления движения, отслеживания вращательного положения компонентов системы и отслеживания скорости крана и лебедки в транспортных средствах и строительном оборудовании.

В приложениях для контроля скорости вала, где нет доступа к шестерне, квадратурные магнитные датчики и мишени для воротников вала могут измерять скорость и направление вращения от приводного вала или вспомогательного вала.

Бесконтактные датчики

из черных металлов, переключатели на эффекте Холла и аналоговые датчики на эффекте Холла часто используются в автомобильной промышленности и тяжелом оборудовании для контроля выравнивания, близости, положения или ориентации движущихся компонентов в транспортных средствах и специализированном тяжелом оборудовании.

Применение в автомобильном и тяжелом оборудовании

Sensor Solutions Engineers в настоящее время поставляет датчики для множества различных автомобильных и промышленных транспортных средств. Мы разработали несколько датчиков специально для контроля компонентов трансмиссии, от двигателя до трансмиссии и т. Д.

Мы поставляем датчики нескольким компаниям для послепродажных высокопроизводительных комплектов, установленных во многих различных моделях автомобилей, и можем предоставить датчики скорости двигателя, датчики коленчатого вала, датчики распределительного вала и специальные датчики для измерения приближения, положения или выравнивания компонентов.

Другие автомобильные приложения, в которых используются наши датчики:

  • Определение превышения и пониженной скорости вала и шестерни
  • Измеритель скорости и направления вращения вала
  • Интеллектуальные датчики для контроля состояния реле в зависимости от скорости и направления движения
  • Разрешающее вращательное положение валов и шестерен
  • Измерение скорости и направления вала лебедки
  • Скорость и направление выходной мощности автомобильной трансмиссии
  • Датчики и магнитная лента для автоматизированных транспортных средств (AGV)
  • Измерение дефектов через алюминиевый корпус полностью собранных узлов трансмиссии
  • Датчики положения кулачка и коленчатого вала
  • Датчики положения коробки передач для автомобилей с высокими эксплуатационными характеристиками
  • Датчики положения распредвала и коленчатого вала для вторичного рынка
  • Определение скорости вращения и направления вращения колеса
  • Обнаружение обратного направления в полуприцепах
  • Измерительный клапан высоты подъема в дизельных двигателях
  • Обнаружение биения вала
  • Определение отключения вентилятора (остановка двигателя)
  • Определение положения поршней через алюминиевый корпус
  • Решение проблемы подвода кабеля в горнодобывающей промышленности и на шельфе
  • Направление вращения барабана для смешивания цемента
  • Подсчет пройденного расстояния рисовальщиком
  • Разрешающее вращательное положение валов и шестерен
  • Системы индикации закрытия дверей с защитой от взлома

Датчики для автомобильных клиентов:

Текущие автомобильные приложения, которые мы предоставляем, включают следующие датчики:

  • Датчики зубьев шестерен и переключатели на эффекте Холла, для контроля коленчатого и распределительного валов (OEM и вторичный рынок).
  • Датчики приближения из черных металлов для контроля положения штанги переключения передач для контроля трансмиссии.
  • Датчики зубьев шестерни для контроля частоты вращения двигателя
  • Датчики переключателя скорости для контроля условий превышения или понижения скорости для предотвращения срабатывания систем с приводом от ВОМ в специальных транспортных средствах.
  • Квадратурные магнитные датчики
  • на автобетоносмесителях для контроля скорости и направления вращения барабана.
  • Датчики зубьев шестерни для контроля частоты вращения первичного и выходного валов на ходовой части.
  • Датчики зубьев шестерен и квадратурные магнитные датчики для контроля подачи и направления лебедки кранов
  • Датчики зубьев шестерен и квадратурные магнитные датчики для контроля положения вращения инструментов тяжелого оборудования, таких как ковши и совки.
  • Датчики зубьев шестерни, контролирующие положение шарнирных компонентов тяжелого оборудования
  • Датчики зубьев шестерни для контроля скорости вращения колес в окрасочном оборудовании.
  • Датчики зубьев шестерни для контроля хода подвески.

Системы безопасности транспортных средств

Системы безопасности транспортных средств

Скачать PDF, версия

Кристин Грэм, системный инженер

Датчик положения сиденья

Рисунок 1.Передние и боковые подушки безопасности требуют точных данных о расположении сидений и пассажиров.

Безопасность пассажиров — один из важнейших элементов конструкции автомобиля. В результате системы безопасности продолжают совершенствоваться, чтобы ограничить и, в конечном итоге, предотвратить травмы людей в случае аварии.

Датчик положения сиденья используется в системах безопасности для определения положения пассажира по отношению к рулевому колесу, предотвращая срабатывание подушек безопасности с чрезмерной силой.

Наиболее распространенное сегодня решение включает двухпроводные униполярные переключатели на эффекте Холла для определения зон дискретного положения сиденья. ИС датчика должна передавать эту информацию в виде цифрового выхода на блок контроллера, указывающего конкретную зону. Эта информация должна быть верной при запуске автомобиля, поэтому выходной сигнал ИС датчика должен декодироваться без каких-либо действий пользователя.

Направляющая сиденья обычно изготавливается из черного металла, способного прерывать магнитное поле между датчиком Холла IC и магнитом.Черный металл направляющей сиденья проходит между переключателем и магнитом, заставляя переключатель включаться или выключаться, передавая информацию о положении сиденья на блок управления. Изменение состояния выхода ИС датчика указывает блоку управления, что сиденье перешло в определенную зону.

Может быть любое количество зон в зависимости от того, сколько микросхем датчиков Холла используется, при условии, что две микросхемы датчиков на каждую направляющую сиденья, будут возможны четыре зоны. Информация, предоставленная ИС датчика Холла, обрабатывается контроллером для определения положения сиденья относительно рулевого колеса.Сиденье, которое находится в одной из зон, ближайших к рулевому колесу, будет указывать блоку управления, что необходимо задействовать меньшее усилие. Положение сиденья, которое находится в одной из самых дальних от рулевого колеса задних зон, требует развертывания более высокого усилия. Блок контроллера декодирует выходные состояния микросхем датчика Холла, чтобы определить, в какой зоне расположено сиденье. Две микросхемы датчиков обеспечивают удобный вывод кода Грея, как показано на рисунке 2 и в таблице ниже.

Рисунок 2.Микросхемы датчиков положения передают блоку контроллера правильное положение сиденья на протяжении всего времени движения автомобиля. Пассажиры не знают о том, что автомобиль принимает решения о жизни или смерти автоматически и не требует пользовательского интерфейса.

Зона Холл 2 Выход Холл 1 Выход
1 0 0
2 0 1
3 1 1
4 1 0

Обширный выбор ИС датчиков Холла позволяет использовать разные решения для одного и того же приложения.Может потребоваться более высокое разрешение, чтобы всегда точно определять, где находится сиденье. Решением с самым высоким разрешением является использование линейного аналогового датчика Холла ИС, который выдает выходное напряжение, пропорциональное силе магнитного поля. Двухполюсный магнит в скользящей конфигурации с линейным будет обеспечивать выходную мощность от 0 до 5 вольт при правильной конструкции.

Технология Холла отличается высокой надежностью и относительно невысокой стоимостью. Если требуется автоматическое определение, решение должно быть надежным.

Если требуется более высокая точность, доступны программируемые переключатели и линейные устройства, которые могут минимизировать допуски на стек, позволяя программировать в конце строки.

Цели из черных металлов могут быть обнаружены с помощью ИС датчика Холла с обратным смещением. Эти сенсорные ИС включают в себя цепь Холла и гранулу редкоземельного элемента в одной отформованной сборке. Предлагаются решения с обратным смещением для коммутаторов и линейных конструкций. Эти сборки упрощают производство и предлагают оптимизированную электрическую и магнитную конструкцию в едином отформованном корпусе.

Датчик пряжки ремня безопасности

Пряжка ремня безопасности SBB — еще одна область, в которой технология Холла использовалась как часть системы безопасности. Двухпроводной униполярный переключатель — это снова простое, но надежное решение, обычное для многих современных автомобилей. Назначение устройства на эффекте Холла (HED) — гарантировать правильную фиксацию пряжки, обеспечивая надлежащее удержание пассажира в случае аварии или внезапной остановки.

Подобно приложению определения положения сиденья, переключатели пряжки ремня безопасности работают по принципу прерывания лопатки.В этом случае пряжка, сделанная из железного материала, отвечает за прерывание магнитного поля между магнитом и устройством на эффекте Холла. Обычно, когда поле прерывается, выход устройства включается, а при снятии пряжки устройство выключается. Эта информация отправляется контроллеру, который затем обрабатывает данные вместе с данными от IC датчика положения сиденья и других выходных сигналов, чтобы надежно задействовать подушки безопасности в случае аварии.

Препятствия при применении

  • ИС датчика SBB имеет жесткие пространственные ограничения, что затрудняет использование печатной платы.Поэтому приваривание соединительных проводов к выводам HED является более распространенным подходом как часть процесса упаковки для минимизации размеров. Однако приварка к выводам требует опыта в области сварки и, как правило, выполняется по контракту со сварочным предприятием. Одна из наиболее распространенных ошибок, наблюдаемых при сварке устройств на эффекте Холла, — это чрезмерное количество тепла / мощности, которое может достигать ИС, что приводит к катастрофическому повреждению проводных соединений. Другой распространенной ошибкой, наблюдаемой в новых процессах сварки, является недостаточный зажим выводов, из-за чего выводы могут скручиваться или тянуться во время контакта с концом сварного шва.Это также вызовет катастрофическое повреждение проводных соединений.

Помимо пространственных ограничений, ИС датчика подвержена высоким уровням электростатического разряда и магнитным помехам из-за:

  • доступных клиентам точек в автомобиле, например язычок пряжки в сборе,
  • шунтирующее воздействие на магнитное поле на ИС датчика из-за свойств железа пряжки в сборе, а
  • допускает большие отклонения узла механической пряжки, вызывая большие колебания магнитного поля, воздействующего на ИС датчика Холла.

Выбор правильной ИС датчика критически важен для удовлетворения всех требований приложения.

Прикладные решения

Рис. 3. Типовая механическая сборка пряжки ремня безопасности, показывающая электрическое соединение с ИС датчика Холла.

  • Защита от переходных процессов / электростатических разрядов реализована с помощью байпасного конденсатора 0,1 мкФ, приваренного между питанием ИС датчика и землей ИС датчика. В случае печатной платы в дополнение к байпасному конденсатору использовался MOV для защиты ИС датчика от жестких условий электромагнитной совместимости / электростатического разряда из-за использования заземления шасси.Если микросхема датчика устойчива к ЭМС / электростатическим разрядам, может быть достаточно просто байпасного конденсатора.
  • Для преодоления шунтирующего эффекта, вызываемого самим узлом пряжки, требуется достаточно большой магнит. SmCo и неодим — распространенные магнитные материалы, используемые в пряжках ремней безопасности. Они обеспечивают большие уровни поля для компенсации механических допусков и, возможно, больших воздушных зазоров (> 3 мм), наблюдаемых в приложениях SBB.
  • Допуски механической сборки могут вызвать большие колебания по Гауссу (сотни Гаусс) в уровне поля, воздействующего на ИС датчика; поэтому необходимо описать все условия, чтобы ИС датчика никогда не переключалась в неправильное состояние.Условия, которые не должны вызывать ложное переключение ИС датчика Холла, следующие:
    • Нормальное положение с пряжкой, язычок на месте.
    • Нормальное расстегнутое положение с удаленным язычком.
    • Превышение хода язычка, когда его толкает и удерживает человек, сидящий на нем, или детское сиденье, опирающееся на узел пряжки.
    • Состояние ложной защелки, когда что-то, кроме самого язычка, вдавливается, удерживая пряжку в ложно защелкнутом состоянии (палочка для мороженого, игрушка и т. Д.).

    Предлагаемые устройства

    Allegro ™
    Номер детали
    Температура
    Диапазон
    Тип корпуса Лента и катушка
    В наличии
    A115x EL LH, UA Есть
    A119x E, L LH, UA Есть

Что такое датчик Холла и как он работает?

Ⅰ Введение

Эффект Холла — наиболее распространенный метод измерения магнитных полей. Датчики на эффекте Холла широко используются и находят широкое применение в наше время.Например, они используются в автомобилях в качестве датчиков скорости вращения колес и датчиков положения коленчатого или распределительного вала. Их часто используют в качестве переключателей, МЭМС-компасов, датчиков приближения и других приложений. Теперь мы рассмотрим некоторые из этих датчиков, чтобы увидеть, как они работают, но сначала давайте определим эффект Холла.


Каталог


Ⅱ Что такое эффект Холла

Эксперимент, описывающий эффект Холла , выглядит следующим образом: если у нас есть тонкая проводящая пластина, подобная показанной, и подавать на нее ток, носители заряда будут течь по прямой линии от одной сторона к другой.

Теперь, если мы приложим магнитное поле около пластины, мы можем нарушить прямой поток носителей заряда из-за силы, известной как сила Лоренца. Электроны отклонятся на одну сторону пластины, а положительные дырки — на другую. Это означает, что если мы теперь соединим две другие стороны с помощью измерителя, мы можем получить напряжение, которое можно измерить.

Как упоминалось ранее, эффект получения измеримого напряжения известен как эффект Холла в честь Эдвина Холла, который открыл его в 1879 году.


Ⅲ Что такое датчик на эффекте Холла

Датчик на эффекте Холла обнаруживает изменения в силе магнитного поля. Этот датчик открывает широкий спектр возможностей для применения в роботизированных датчиках.

Их можно использовать в таких приложениях, как определение приближения, позиционирования, скорости и тока. Обычно они используются на пневматических цилиндрах, где они используются для передачи положения цилиндра в ПЛК или роботизированный контроллер.

Автомобильная промышленность, персональная электроника и робототехника — это лишь некоторые из отраслей, в которых используются датчики Холла.В зависимости от области применения они имеют некоторые преимущества перед другими датчиками.

Они полностью закрыты, поскольку работают с магнитным полем, что делает их менее уязвимыми для повреждений в грязных или влажных условиях. Они реже, чем механические системы, изнашиваются или искажают показания после большого количества циклов.

Датчики на эффекте Холла

полезны для широкого спектра применений благодаря своей надежности и долговечности, поскольку для правильной работы им не нужен физический контакт.Они могут обеспечить большую повторяемость и точность, чем механические узлы, потому что они физически не мешают работе оборудования или инструментов.


Ⅳ Как работает датчик на эффекте Холла

Чтобы понять, как работает датчик на эффекте Холла, лучше всего начать с основ эффекта Холла. Когда ток течет через проводник в присутствии магнитного поля, электроны отталкиваются магнитным полем к одной стороне проводника.

Эффект Холла можно использовать для измерения электрического тока в проводниках, построенных с учетом определенных параметров.Например, напряжение на плоском металлическом проводнике обнаруживает эффект Холла намного лучше, чем напряжение на примерно единице.

Электроны, движущиеся по проводнику, оттесняются в сторону, когда к плоской пластине прикладывается магнитное поле. Поскольку сумму прогиба можно вычислить, устройство имеет широкий спектр применения.

Плоский проводник используется для расчета магнитной силы в датчике на эффекте Холла. Когда магнит приближается к датчику, датчик обнаруживает его и отправляет информацию контроллеру.

Заряд через пластину смещается в одну сторону, в то время как магнит находится рядом с датчиком, создавая положительный заряд с одной стороны и отрицательный — с другой. Определяется разница напряжений между двумя сторонами пластины, и ее можно использовать для расчета магнитной силы или близости датчика.


Ⅴ Типы датчиков на эффекте Холла

Датчики на эффекте Холла бывают двух основных типов:

5.1 Порог

Когда напряженность поля достигает определенной амплитуды и / или полярности, порог (также известный как цифровой или двухпозиционный) производит постоянное напряжение холла.Существует несколько различных конфигураций пороговых устройств, таких как фиксирующие устройства, которые включаются, когда положительная напряженность поля достигает порогового значения, но выключаются только тогда, когда отрицательное поле такой же напряженности достигает порогового значения, устройства, которые включаются, когда только положительное поле достигает порогового значения. порог, но выключены в противном случае, и устройства, которые включаются, когда положительное или отрицательное поле достигает порога. Пороги также можно запрограммировать на некоторых компьютерах.

5.2 Linear

Linear (датчик аналогового выхода) генерирует напряжение Холла, пропорциональное напряженности магнитного поля вокруг него. Полярность колебаний напряжения определяется направлением окружающего магнитного поля. Когда выразительные движения должны восприниматься как небольшие изменения положения, в музыкальных приложениях чаще используются линейные устройства.


Ⅵ Датчик на эффекте Холла Использует

Датчики на эффекте Холла питаются от магнитного поля, и во многих приложениях один постоянный магнит, подключенный к движущемуся валу или устройству, может управлять устройством.Существует множество различных форм движений с обнаружением магнита, включая, среди прочего, «лобовое движение», «вбок», «толкание-толкание» и «толкание-толкание». Для обеспечения оптимальной чувствительности магнитные линии потока всегда должны быть перпендикулярны чувствительной области системы и иметь правильную полярность, независимо от конфигурации.

Магниты с высокой напряженностью поля со значительным изменением напряженности поля для необходимого движения также необходимы для обеспечения линейности. Существует несколько способов обнаружения магнитного поля, и две из наиболее распространенных конфигураций обнаружения с использованием одного магнита показаны ниже: обнаружение лобового и бокового обнаружения — это два типа обнаружения.

6.1 Лобовое обнаружение

Магнитное поле должно быть перпендикулярно системе обнаружения эффекта Холла и приближаться к датчику прямо к активной поверхности для «лобового обнаружения», как следует из названия. В каком-то смысле это «фронтальный» подход.

Этот прямой подход создает выходной сигнал VH, который в линейных устройствах отражает мощность магнитного поля или плотность магнитного потока как функцию расстояния от датчика Холла.Выходное напряжение увеличивается по мере приближения и, следовательно, усиления магнитного поля, и наоборот.

Положительные и отрицательные магнитные поля также можно различать линейными приборами. Для индикации определения положения нелинейные устройства могут быть сделаны так, чтобы запускать выход «ВКЛ» на предварительно установленном расстоянии воздушного зазора от магнита.

6.2 Обнаружение сбоку

«Обнаружение сбоку» — вторая конфигурация обнаружения.Это требует перемещения магнита в сторону по лицевой стороне элемента с эффектом Холла. Например, подсчет вращающихся магнитов или измерение скорости вращения двигателей, вбок или обнаружение скольжения полезно для обнаружения наличия магнитного поля, когда оно движется по лицевой стороне элемента Холла в пределах фиксированного расстояния воздушного зазора.

Линейное выходное напряжение, представляющее как положительный, так и отрицательный выходной сигнал, может генерироваться в зависимости от направления магнитного поля, когда оно проходит через осевую линию нулевого поля датчика.Это позволяет идентифицировать направленное движение как в вертикальном, так и в горизонтальном направлениях.

Датчики на эффекте Холла

имеют широкий спектр применения, особенно в качестве датчиков приближения. Там, где к факторам окружающей среды относятся вода, вибрация, грязь или масло, например, в автомобилях, их можно использовать вместо оптических и световых датчиков. Настоящее зондирование также может быть выполнено с помощью инструментов на эффекте Холла.

Круговое электромагнитное поле образуется вокруг проводника, когда через него проходит ток, как мы узнали в предыдущих уроках.Электрические токи в диапазоне от нескольких миллиампер до тысяч ампер можно рассчитать по индуцированному магнитному полю, поместив датчик Холла рядом с проводником без использования больших или дорогих трансформаторов и катушек.

Датчики на эффекте Холла

могут использоваться для обнаружения ферромагнитных материалов, таких как железо и сталь, в дополнение к обнаружению наличия или отсутствия магнитов и магнитных полей, путем размещения небольшого постоянного «смещающего» магнита позади активной области устройства.Любой сдвиг или нарушение этого магнитного поля, вызванное введением железистого материала, может быть обнаружено с чувствительностью до мВ / Г.

В зависимости от типа устройства, цифрового или линейного, существует множество способов подключения датчиков Холла к электрическим и электронным схемам. Использование светоизлучающего диода, как показано ниже, является очень простым и легким в сборке примером.

Датчики на эффекте Холла

можно использовать по-разному из-за различных магнитных перемещений.Как в промышленных, так и в бытовых условиях эти инструменты чаще всего используются для измерения присутствия, положения и близости объектов.

Датчики тока, датчики давления и датчики потока жидкости — все это популярные приложения для датчиков Холла в промышленных и производственных процессах. В трансформаторах тока датчики на эффекте Холла представляют собой недорогой бесконтактный способ измерения магнитного потока постоянного тока.


Ⅶ Применение датчика Холла

7.1 Датчик на эффекте Холла в вращающихся приложениях

Датчики скорости работают, подсчитывая количество оборотов вала или диска за заданный промежуток времени. Диск, прикрепленный к валу двигателя, вращается рядом с датчиком Холла и имеет магниты по периметру.

Состояние датчика смещается при движении через него магнитов. На основании этих данных датчик рассчитывает обороты. Например, если диск или вал имеет четыре магнита, датчик может переключать состояния четыре раза за оборот.

Это позволяет датчику измерять частоту вращения на основе известного параметра, согласно которому на один оборот будет приходиться четыре импульса.

Эта технология используется в бесщеточных двигателях постоянного тока для отслеживания скорости и определения положения вала. Это позволяет им работать в определенных диапазонах оборотов, но при этом изменять скорость двигателя в любое время.

Это значительно упрощает управление двигателями. Это также позволяет им контролировать расположение вала на двигателе, что делает их гораздо более гибкими в робототехнике, чем двигатели без датчиков Холла.

7.2 Датчик на эффекте Холла для работы с приближениями

На основе магнитного поля датчики на эффекте Холла могут обнаруживать приближение. Если напряженность магнитного поля постоянна и определена, можно определить положение датчика по отношению к магниту.

Когда магнит перемещается в зону его действия, датчик меняет состояние и предупреждает контроллер. Бесконтактные датчики на эффекте Холла можно использовать по-разному. Роботизированные инструменты, роботизированные захваты, пневматика и множество других не роботизированных приложений используют их.

7.3 Использование бесконтактных датчиков на эффекте Холла в робототехнике

Бесконтактные датчики на эффекте Холла также могут использоваться в робототехнике. Они хороши для определения магнитной силы и близости магнита. Датчики на эффекте Холла могут использоваться для удовлетворения различных требований безопасности. Они часто используются в инструментах для подтверждения зажима на управляющее устройство.

Подтверждение зажима блокирует работу ячейки до тех пор, пока все секции не будут полностью зажаты, что позволяет ей функционировать безопасно.Магниты, встроенные в инструмент, которые попадают в диапазон чувствительности датчика Холла при правильном зажиме, обычно требуют подтверждения детали. Роботизированный контроллер или ПЛК знает, что ячейка безопасна для работы, когда все датчики отображают сигнал.

В робототехнике датчики на эффекте Холла чрезвычайно полезны. Для определения изменений в клетке большинство роботизированных клеток используют датчик Холла. Они используются для считывания скорости и положения бесщеточных двигателей постоянного тока. Они используются в пневматических цилиндрах, чтобы определить, выдвинут или втянут цилиндр.

Их также можно использовать для поддержания здоровья персонала, уведомив контролирующий орган о подтверждении зажима инструмента. Без датчиков Холла индустрия робототехники будет совсем другой.


Ⅷ Как проверить датчики на эффекте Холла

Датчики положения распредвала и коленчатого вала — это датчики на эффекте Холла, которые управляют положением распредвала и коленчатого вала соответственно. Перед датчиком проходит небольшой магнит. Выходное напряжение увеличивается по мере приближения магнита к датчику.Напряжение падает по мере удаления магнита от датчика. Для оценки положения вала электронный модуль управления отслеживает выходные сигналы этих датчиков. Контроллер ЭСУД может поддерживать точное управление двигателем благодаря датчикам положения распределительного и коленчатого валов, а также другим электрическим датчикам, соленоидам и форсункам. Понимание основ датчиков на эффекте Холла поможет вам правильно протестировать сомнительный датчик.

• Шаг 1

Снимите датчик с блока цилиндров.Удалите масло, грязь или металлическую стружку с наконечника датчика.

• Шаг 2

Изучите схему двигателя на предмет датчика распределительного вала или сигнала коленчатого вала, поступающего в ECM. Сигнальный провод от блока управления двигателем следует снять. Подключите сигнальный провод к одному концу перемычки. Подключите другой конец перемычки к краю датчика Optimistic. Подключите отрицательный щуп к устойчивому заземлению шасси. При необходимости подключите отрицательный щуп к заземлению шасси с помощью перемычки и зажимов типа «крокодил».

Чтобы проверить напряжение постоянного тока, включите электрический вольтметр. Поверните пусковой переключатель в положение «Вкл.». В идеале напряжение должно быть около 0 вольт. Медленно поверните магнит перпендикулярно передней части датчика. Когда магнит приближается к датчику, напряжение должно расти, а по мере удаления напряжение должно падать. Проблема с датчиком или его подключениями, если напряжение не меняется.


Ⅸ FAQ

1. Как работает датчик Холла?

Используя полупроводники (например, кремний), датчики на эффекте Холла работают, измеряя изменяющееся напряжение, когда устройство находится в магнитном поле.Другими словами, как только датчик на эффекте Холла обнаруживает, что он теперь находится в магнитном поле, он может определять положение объектов.

2. Что запускает устройство на эффекте Холла?

Датчики

на эффекте Холла активируются магнитным полем, и во многих приложениях устройством можно управлять с помощью одного постоянного магнита, прикрепленного к движущемуся валу или устройству. Существует множество различных типов движений магнита, таких как «лобовое движение», «вбок», «толкание-толкание» или «толкание-толкание» и т. Д. С обнаружением движений.

3. Для чего нужен датчик Холла?

Датчики

на эффекте Холла обычно используются для измерения скорости вращения колес и валов, например, для определения угла опережения зажигания двигателя внутреннего сгорания, тахометров и антиблокировочных тормозных систем. Они используются в бесщеточных электродвигателях постоянного тока для определения положения постоянного магнита.

4. В чем принцип эффекта Холла?

Принцип эффекта Холла гласит, что когда токопроводящий проводник или полупроводник помещается в перпендикулярное магнитное поле, напряжение может быть измерено под прямым углом к ​​пути тока.

5. Насколько чувствителен датчик Холла?

Эти логометрические устройства имеют чувствительность 5 мВ / Гс и 2,5 мВ / Гс соответственно, диапазон рабочих температур от -40 ° C до + 150 ° C и температурную компенсацию во всем рабочем диапазоне.

6. В чем разница между датчиком на эффекте Холла и индуктивным датчиком?

Индуктивные датчики обнаруживают металлические предметы, а датчики на эффекте Холла обнаруживают наличие магнитного поля.

7. Каково происхождение эффекта Холла?

История эффекта Холла начинается в 1879 году, когда Эдвин Х. Холл обнаружил, что небольшое поперечное напряжение появляется на тонкой металлической полоске с током в приложенном магнитном поле.

8. Как определить неисправность датчика Холла?

Потеря мощности, громкий шум и ощущение, что двигатель каким-то образом заблокирован, часто являются признаком того, что либо контроллер не работает, либо у вас могут быть проблемы с датчиками холла внутри двигателя.

9. Что находится внутри датчика Холла?

Датчик на эффекте Холла представляет собой тонкую полоску из полупроводникового материала, похожую на микросхему внутри микро- или RAM-устройства. Работает по принципу электромагнетизма. При перемещении магнита достаточно близко к датчику генерируется небольшое напряжение. Это идет на усилитель, который повышает напряжение до уровня, достаточного для использования другими электронными устройствами.

Лучшим примером является датчик скорости вращения колеса.Небольшой магнит прикреплен к внутренней части автомобильного колеса. Каждый раз, когда магнит проходит мимо датчика, происходит один оборот колеса. Информация передается на блок спидометра и одометра, где отображается водителю.

10. Для чего нужен датчик Холла в автомобиле?

Датчик на эффекте Холла работает с помощью магнитного поля и также может называться датчиком положения кривошипа. Он проверяет положение коленчатого вала двигателя для зажигания свечей зажигания.В плохом состоянии двигатель может заглохнуть и не запустится без сигнала датчика Холла.

Датчики

на эффекте Холла также могут использоваться для определения скорости, расстояния или положения коленчатого вала двигателя и положения распределительного вала. Все датчики на эффекте Холла имеют разную внутреннюю электронику с разными программными измерениями и не являются взаимозаменяемыми.

Альтернативные модели

Часть Сравнить Производителей Категория Описание

Что нужно знать о датчиках Холла и герконовых переключателях

Датчики на эффекте Холла и герконовые датчики: преимущества и применение

Геркон и датчики на эффекте Холла применяются в бытовых приборах и автомобильных системах.Оба устройства используют изменения магнитного поля для активации или деактивации переключающих контактов. Читайте дальше, чтобы узнать о герконовых переключателях и датчиках холла, а также о том, как они работают в аналоговых приложениях и приложениях, управляемых микрочипами.

Цифровые датчики в дискретных приложениях

Многие специальные приложения для магнитных датчиков включают цифровые датчики, которые неоднократно доказывали свою эффективность. Они очень надежны в системах, требующих цифрового вывода для проверки положения объекта.Например, если цифровой датчик не обнаруживает защитное ограждение на элементе оборудования, оборудование не будет работать. Вот типичные области применения магнитных датчиков:

Геркон: использование и преимущества

Датчик герконового переключателя не требует никаких электрических цепей или питания для работы и подходит для силовых нагрузок переменного и постоянного тока. В механизме переключения используются контакты на язычках из драгоценных металлов, например ферромагнетика, в герметичном стеклянном корпусе. Например, в дверце холодильника контакты замыкаются, чтобы загореться светодиод, когда дверца открыта (потому что геркон не может обнаружить магнитное поле).К преимуществам язычкового датчика относится защита от таких факторов окружающей среды, как влажность.

Применение и преимущества цифрового датчика Холла

Цифровые датчики Холла используют полупроводники. Колебания магнитного поля, а не физические движения магнита, диктуют свое выходное напряжение. Переключатель может работать только с низким постоянным напряжением и током. Он основан на активной схеме и всегда использует небольшой ток. Эти цифровые датчики обладают высокой надежностью с точки зрения высокоскоростных и высокоточных датчиков в стиральных машинах и аналогичных бытовых приборах.

Аналоговые / ратиометрические датчики

Современный аналоговый переключатель на эффекте Холла с высокой точностью определяет положение магнита и мгновенно обеспечивает высокоточный логометрический выходной сигнал. Его аналоговый выходной сигнал очень стабилен в широком диапазоне температур, поскольку он отслеживает угол магнитного потока, а не амплитуду.

Типы датчиков Холла для аналоговых датчиков включают:

Поворотные датчики на эффекте Холла — Сценарии их использования включают в себя автомобильную промышленность, а также определение положения клапана рециркуляции ОГ на двигателях автомобиля и положения шкалы в приборах.Его преимущества включают точность и стабильность в нормальных диапазонах рабочих температур.

Линейный датчик на эффекте Холла — Эти датчики отслеживают линейное движение магнитного поля, а не его вращение. Они обеспечивают высокоточный логометрический выходной сигнал относительно конкретного положения / движения датчика. Их наиболее распространенные применения включают переключение передач трансмиссии в автомобилях и отслеживание уровня жидкости.

При выборе высокоточных цифровых / аналоговых датчиков часто приходится учитывать герконовый переключатель ипреимущества переключателя на эффекте Холла. Оба они используются в обычных автомобильных и бытовых приборах. Если вы ищете эти или другие магнитные решения, немедленно свяжитесь с нами в Allied Components International. Мы специализируемся на изготовлении электрических компонентов на заказ, включая силовые индукторы и трансформаторы.

Allied Components International

Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы на заказ и трансформаторы на заказ.Мы стремимся предоставлять нашим клиентам продукцию высокого качества, обеспечивать своевременные поставки и предлагать конкурентоспособные цены.

Мы — растущее предприятие в магнитной промышленности с более чем 20-летним опытом.

Датчики и приложения на эффекте Холла

С тех пор, как Эдвин Холл обнаружил эффект, названный в его имени эффектом Холла, этот принцип использовался во многих приложениях за последние полвека, и список продуктов, основанных на эффекте Холла, продолжал расти. от автомобилей до самолетов, от посудомоечных машин до стиральных, от станков до медицинского оборудования.Эффект Холла — идеальная технология, которую можно использовать для зондирования. Элемент Холла изготовлен из тонкого листа проводящего материала или полупроводника. Выходные соединения элемента Холла перпендикулярны направлению тока. Когда они присутствуют в магнитном поле, носители заряда испытывают силу, называемую силой Лоренца, поперек направления приложенного магнитного поля и тока. Эффект силы Лоренца, действующей на носители заряда, заключается в отклонении носителей заряда в одну сторону для создания напряжения ЭДС (электродвижущей силы), напряжения Холла на элементе Холла, как показано ниже.Напряжение Холла пропорционально напряженности приложенного магнитного поля.

Были изобретены различные типы датчиков на эффекте Холла, такие как переключатели на эффекте Холла, защелки на эффекте Холла и линейные датчики на эффекте Холла. Эти датчики на эффекте Холла широко используются во многих продуктах, таких как приборы, торговые автоматы, банкоматы, медицинское оборудование, автомобили, фитнес-оборудование, токовые клещи, копировальные аппараты, средства автоматизации и т. Д.

Регулировка автокресла

Автокресло Схема блока управления (Mouser.com)

Традиционные автокресла с ручной регулировкой со временем были заменены автокреслами с электронным управлением. Датчики Холла и электродвигатели широко используются для автоматического управления и регулировки сидений водителей и пассажиров. Комфорт автокресел был очень важным фактором, влияющим на наши впечатления от поездки. Кроме того, простая, быстрая и точная регулировка сиденья предлагает водителю более безопасную, удобную и простую рабочую среду.Сложная система управления сиденьем, объединяющая AI (искусственный интеллект), позволяет глубоко изучать стиль, уравновешенность и жесты водителя, чтобы предоставить водителю эргономически здоровую систему взаимодействия человека с машиной.

В настоящее время электрическое сиденье автомобиля в основном состоит из внутреннего двигателя, датчика Холла, механизма регулировки положения сиденья, схемы привода двигателя и однокристального микрокомпьютера. Среди них двигатель соединен с механизмом регулировки положения сиденья, образуя силовую часть; и микрокомпьютер на одной микросхеме подключен к цепи управления двигателем и датчику Холла, образуя часть автоматического управления.В вышеупомянутых разделах датчик Холла может измерять внешний вращающийся вал двигателя и передавать импульсный сигнал на однокристальный микрокомпьютер. Однокристальный микрокомпьютер может получать информацию о вращении двигателя, относящуюся к импульсному сигналу, путем подсчета импульсных сигналов, то есть информацию о текущем положении сиденья. Когда сиденье отрегулировано на месте и двигатель выключен, однокристальный микрокомпьютер может сохранить номер импульса, соответствующий этому положению.

Драйвер может выбрать, устанавливать ли текущее положение в состояние по умолчанию, тем самым заменяя исходную информацию о положении по умолчанию.Когда сиденье наклоняется вперед и назад, схема управления вызывает однокристальный микрокомпьютер для управления двигателем вперед и назад, а однокристальный микрокомпьютер регулирует количество импульсов, принимаемых датчиком Холла в исходном процессе (по умолчанию position соответствует номеру импульса) на основе операций сложения и вычитания для получения информации о положении сиденья по умолчанию.
TI DRV5057-Q1 — это линейный датчик на эффекте Холла с выходом PWM для автомобильных приложений, таких как определение положения, торможение, ускорение, педали сцепления, переключатель передач, положение дроссельной заслонки, а также многие другие приложения для кодирования абсолютного угла.DRV5057-Q1 реагирует пропорционально плотности магнитного потока, чтобы точно определять небольшое изменение углового положения. Устройство работает от источников питания 3В или 5В. Когда он не находится в магнитном поле, его выходной сигнал представляет собой прямоугольную волну с коэффициентом заполнения 50%. Рабочий цикл на выходе изменяется линейно в зависимости от приложенной плотности магнитного потока, и линейность может поддерживаться с магнитным полем от 8% до 92%.

Texas Instruments DRV5057-Q1TI DRV5057-Q1 Отклик магнитного поля на выходе ШИМ

Управление зажиганием двигателя

С развитием автомобильных двигателей в направлении высокой скорости, высокой степени сжатия, высокой мощности, низкого расхода топлива и низкого уровня выбросов , традиционные устройства зажигания не соответствуют требованиям использования.Основными компонентами устройства зажигания являются катушка зажигания и переключающее устройство. Когда энергия катушки зажигания увеличивается, свеча зажигания может генерировать искры с достаточной энергией. Это основное условие адаптации устройства зажигания к работе современных двигателей. Основной принцип, по которому датчики Холла могут использоваться большинством производителей автомобилей в качестве воспламенителя, заключается в следующем:

Генератор сигналов на эффекте Холла является активным устройством, он должен обеспечивать питание для работы, мощность интегрированного блока Холла составляет обеспечивается воспламенителем.Коллектор выходного электрода ИС Холла является открытым выходом, а сопротивление нагрузки коллектора элемента Холла задается в воспламенителе.

Генератор сигналов на эффекте Холла имеет три провода и подключается к воспламенителю, один из которых является проводом подачи питания, один — проводом вывода сигнала, а другой — проводом заземления. При работе распределителя лезвие вращается вместе с валом распределителя. Всякий раз, когда лопасть входит в воздушный зазор между элементами эффекта Холла постоянного магнита, магнитное поле в блоке Холла запускается обходом лопасти крыльчатки (или магнитной изоляцией). При этом элемент с эффектом Холла не генерирует напряжение Холла. В этот момент выходной транзистор интегральной схемы отключается, и генератор сигналов выдает высокий потенциал.

Когда лопасть крыльчатки спускового механизма выходит из воздушного зазора, магнитный поток постоянного магнита образует петлю, проходящую через направляющую пластину через коллекторный блок. В это время элемент Холла генерирует напряжение Холла, триод выходного полюса интегральной схемы находится в проводящем состоянии, выходной сигнал генератора низкий потенциал. Когда задний край выемки рабочего колеса поворачивается так, что обнажается только половина поверхности магнитного полюса, напряжение на выходе сигнала мгновенно перескакивает с низкого потенциала на высокий, и это момент зажигания.Постоянно выходной сигнал датчика представляет собой последовательность импульсов ШИМ с переключением импульсов от почти 0 В до примерно 2,5 В. Частота переключения увеличивается с увеличением оборотов двигателя.

Катушка распределителя звукоснимателей на эффекте Холла (от Pico Technology) Принцип работы змеевика на распределителе на эффекте Холла (от Pico Technology)

Массажное кресло

2-проводной датчик Холла без печатной платы Melexis Датчик положения двигателя сиденья на эффекте Холла — Контроллер автомобильного автокресла Без печатной платы Melexis 2-проводной датчик положения сиденья с фиксацией положения сиденья на эффекте Холла

В условиях быстрого роста нашей экономики наши жилищные условия улучшились очень хорошо, но мы всегда заняты учебой и работой весь день.Обычно мы проводим долгое время в офисе, сидя за столом, что заставляет нас чувствовать усталость в конце дня. Мы хотим полностью освежить свое тело. Один из самых простых способов быстро расслабить тело — это массажное кресло. С массажным креслом вы можете остаться дома и отдохнуть, чтобы провести еще один свежий день.
Массажное кресло управляется микроконтроллером для выполнения сложных движений и задач планирования времени. Узел движения для массажа спины перемещается вперед и назад между верхней точкой хода и нижней точкой хода в направляющей рамы для массажа спины.Чтобы массажное движение спины могло точно определять верхнюю и нижнюю точки перемещения, массажное кресло оснащено постоянным магнитом в каждой из верхней и нижней точек перемещения, а датчик защелки на эффекте Холла установлен в массажном движении спины. сборка.
Таким образом, постоянные магниты и датчики защелки на эффекте Холла в верхней и нижней точках перемещения составляют два набора датчиков эффекта Холла: при массаже спины механизм перемещается от нижнего до верхнего предела перемещения, датчик защелки на эффекте Холла срабатывает магнитным полем постоянного магнита, установленного в верхней точке перемещения, относительное положение массажного механизма является выходным сигналом в виде напряжения; также, когда механизм массажа спины перемещается сверху вниз при движении вниз, его датчик эффекта Холла срабатывает магнитным полем постоянного магнита, установленного в точке хода вниз. Датчик эффекта Холла выдает относительное положение массажа спины. механизм в виде напряжения.

Управление посудомоечной машиной

Littelfuse Замечания по применению — Магнитное зондирование в посудомоечной машине

С постоянным повышением уровня жизни людей степень интеллектуальности электрических приборов становится все выше и выше. Многие семьи использовали полностью автоматические бытовые посудомоечные машины, которые могут полностью заменить ручную очистку посуды, палочек для еды, тарелок, ножей, вилок и другого кухонного инвентаря.

В настоящее время представленные на рынке автоматические посудомоечные машины можно разделить на два типа: бытовые и коммерческие.Полностью автоматические бытовые посудомоечные машины в основном бывают шкафного, настольного, раковинного и встроенного типа. По структуре коммерческие посудомоечные машины можно разделить на пять категорий: тип шкафа, тип крышки, тип корзины, тип ремня передачи и ультразвуковой тип. Для таких мест, как рестораны, отели и правительственные столовые, он очень подходит для промышленных посудомоечных машин. Это может снизить трудоемкость поваров, повысить эффективность работы и улучшить чистоту и гигиену.
Какую роль играет Hall в полностью автоматической посудомоечной машине? Его можно использовать для управления вращением разбрызгивателя, который обычно представляет собой свободно вращающееся вращающееся устройство, приводимое в действие как горячей, так и холодной водой под высоким давлением. Очень важно убедиться, что разбрызгиватель не забит неправильно размещенной посудой или посудой в корзинах. Когда разбрызгиватель неожиданно останавливается, он будет мыть посуду только там, где остановился. Если разбрызгиватель приводится в действие электродвигателем, остановка может привести к продолжительному сгоранию двигателя.Переключатель с защелкой на эффекте Холла используется для защиты разбрызгивателя. Когда разбрызгиватель с установленным на нем магнитом проходит мимо переключателя эффекта Холла, переключатель срабатывает, чтобы вывести низкий сигнал, и он выдает высокий уровень, когда магнит проходит мимо переключателя. Если MCU контроллера посудомоечной машины не обнаруживает срабатывания переключателя в течение заданного времени, он запускает подпрограмму защиты, чтобы либо остановить машину, либо подать аварийный и предупредительный световой сигнал. В посудомоечной машине датчики на эффекте Холла также могут использоваться для дверных защелок и запирающих систем, переключателей потока воды и поддона для смягчения мыла / воды.

Положение бесщеточного двигателя постоянного тока

Honeywell Управление бесщеточным двигателем постоянного тока с датчиками положения на эффекте Холла

Бесщеточный двигатель постоянного тока состоит из корпуса двигателя и привода и является типичным продуктом мехатроники. Обмотки статора двигателя в основном выполнены в трехфазном симметричном соединении звездой, что очень похоже на трехфазный асинхронный двигатель. Ротор мотора приклеен постоянными магнитами, которые намагничены. Для определения устойчивости ротора двигателя в двигатель установлен датчик положения.
Драйвер состоит из силовых электронных устройств и интегральных схем. Его функции: принимать сигналы пуска, останова и торможения двигателя для управления пуском, остановкой и торможением двигателя; принимать сигнал датчика положения, а также сигналы прямого и обратного направления для управления. Включение-выключение каждой силовой трубки переменного моста создает постоянный крутящий момент; он принимает команды скорости и сигналы обратной связи по скорости для управления и регулировки скорости; обеспечивает защиту, отображение и т. д.

Двигатели постоянного тока обладают быстрым откликом, большим пусковым крутящим моментом и могут обеспечивать номинальный крутящий момент от нулевой скорости до номинальной скорости, но преимущества двигателей постоянного тока также являются его недостатками, поскольку двигатели постоянного тока должны обеспечивать постоянное вращение при Номинальная нагрузка.Характеристики момента, магнитного поля якоря и магнитного поля ротора должны поддерживаться на уровне 90 °, что требует угольных щеток и коммутаторов. Угольная щетка и коллектор будут производить искры и угольный порошок при вращении двигателя. Поэтому, помимо повреждения компонентов, также ограничиваются случаи использования. Двигатели переменного тока не имеют угольных щеток и коммутаторов. Они не требуют обслуживания, прочные и широко используются. Однако для достижения производительности, эквивалентной характеристикам двигателей постоянного тока, требуются сложные методы управления.В настоящее время полупроводники быстро развиваются, и частота переключения силовых компонентов намного выше, что улучшает характеристики приводных двигателей. Скорость микропроцессора также становится все быстрее и быстрее, чего можно достичь, поместив управление двигателем переменного тока во вращающуюся двухосную прямоугольную систему координат для правильного управления составляющей тока двигателя переменного тока на двух осях для достижения аналогичного двигателя постоянного тока. управление и эквивалент двигателя постоянного тока.

Датчик тока

Линейные датчики Холла Infineon для измерения тока

Магнитопровод выполнен в виде натяжной конструкции, устройство Холла помещается в отверстие магнитопровода, а кольцевой магнитопровод зажимается снаружи провода через через который протекает измеренный ток, и ток, протекающий через него, может быть измерен.Эти клещи могут измерять как переменный, так и постоянный ток. Токоизмерительные клещи могут использоваться для обнаружения случайных токов различного источника питания и электрического оборудования.

Принцип измерения токоизмерительных клещей постоянного и переменного тока обычно используется для проверки постоянного тока. Поскольку токоизмерительные клещи переменного тока не могут использовать метод электромагнитной индукции. Датчик Холла размещен, как показано на рисунке ниже. Генерируемый магнитный поток пропорционален основным постоянным и переменным токам в зажимной головке. Это датчик Холла, который определяет магнитный поток и преобразует его в выходное напряжение.

Управление фонтаном

С развитием общества ритм жизни людей постепенно увеличивается, а качество жизни постоянно улучшается. Появление питьевых фонтанов изменило традиционный способ питья. Традиционная форма кипячения в чайнике постепенно заменяется водой из бочек или водопроводными питьевыми фонтанчиками. Использование питьевых фонтанчиков не только экономит время и силы, но и гарантирует сохранность питьевой воды. Это устройство для нагрева или охлаждения минеральной или чистой воды из бочек, чтобы облегчить людям питье.Фактически, внутренняя структура диспенсера для воды очень проста и в основном состоит из таких устройств, как резервуар для воды, водопроводная труба, нагревательный резервуар, устройство для стерилизации, выключатель питания и таймер.

Принцип работы: Когда вода протекает через узел ротора, магнитный ротор вращается, чтобы вывести импульсный сигнал, и скорость изменяется линейно с расходом. Переключатель Холла выдает соответствующий импульсный сигнал на контроллер, чтобы определить размер и наличие расхода воды.Отрегулируйте ток пропорционального клапана, чтобы контролировать поток воды через пропорциональный клапан.

Расходомер воды на эффекте Холла

Здравоохранение — Измерение артериального давления

Измерение артериального давления обычно делится на два типа: один — традиционный метод аускультации, а другой — осциллометрический метод, то есть метод колебаний, который используется в электронных приборах измерения артериального давления. Электронный сфигмоманометр — это медицинское устройство, в котором используются современные электронные технологии и принцип косвенного измерения артериального давления для измерения артериального давления.По мере развития технологий измерение крови без манжеты становится более популярным, чем другие традиционные методы измерения крови. Пульсиметр с магнитоплетизмограммой на запястье (MPG) был разработан для контроля артериального давления с помощью датчика Холла, чувствительного к магнитному полю. Пульсиметр состоит из постоянного магнита, установленного на силиконовом корпусе в центре лучевой артерии. Артериальное давление и частоту пульса можно измерить без использования манжеты. С помощью пульсиметра MPG зарегистрированные импульсы лучевой артерии преобразуются в сигналы напряжения.Чтобы получить точное кровяное давление, сигналы, генерируемые пульсиметром MPG, одновременно сравниваются с областями систолы и диастолы в пульсовых волнах лучевой артерии.

На диаграмме показана базовая структура носимого на запястье пульсиметра с радиальной артериальной магнитоплететизмограммой (MPG) — Санг-Сук Ли и др.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *