ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Двигатель внутреннего сгорания - Что такое Двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания - тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

  • принципиально проще (нет парокотельного агрегата),

  • компактнее,

  • легче,

  • экономичнее,

  • требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания


По назначению:

  • транспортные, 

  • стационарные, 

  • специальные.

По роду применяемого топлива:

  • легкие жидкие (бензин, газ), 

  • тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

  • внешнее (карбюратор),

  • внутреннее (в цилиндре ДВС).

По способу воспламенения:

  • с принудительным зажиганием, 

  • с воспламенением от сжатия, 

  • калоризаторные.

По расположению цилиндров:

  • рядные, 

  • вертикальные, 

  • оппозитные с одним и с двумя коленвалами, 

  • V-образные с верхним и нижним расположением коленвала, 

  • VR-образные и W-образные, 

  • однорядные и двухрядные звездообразные, 

  • Н-образные, 

  • двухрядные с параллельными коленвалами, 

  • "двойной веер", 

  • ромбовидные, 

  • трехлучевые и др.

Поршневой двигатель - это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель - это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. 

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. 

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. 

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания.  

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель - двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель - двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века. 

Основа двигателя - треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. 

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. 

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

Двигатели внутреннего сгорания

О профессии

Транспортные перевозки играют ключевую роль в развитии экономики стран и регионов. Практически все силовые установки автомобильного, воздушного, водного, железнодорожного и специального транспорта являются тепловыми двигателями, в большинстве своем – поршневые. Двигатели внутреннего сгорания используются в генераторах, служащих основными и резервными источниками электрической энергии практически во всех сферах деятельности. При проектировании, строительстве и эксплуатации альтернативных источников энергии генераторы с поршневыми двигателями являются вспомогательными и резервными источниками электрической энергии. Современные направления в двигателестроении – создание малотоксичных и экономичных двигателей внутреннего сгорания, транспортных средств с гибридными силовыми установками, использования традиционных и альтернативных топлив.

Выпускники выполняют научно-исследовательские работы любой сложности в области малой энергетики, работают в научно-исследовательских институтах и на заводах двигателестроительной отрасли, занимающихся разработкой новых и модернизацией существующих моделей силовых установок для транспорта и малой энергетики; в сервисных центрах по обслуживанию, ремонту и проектированию автомобилей, тракторов, быстроходных гусеничных машин, специальной колёсной и гусеничной техники и т.д.

 

Учебный процесс

 

Учебный процесс в магистратуре направлен на изучение основ создания, исследования, моделирования, производства, эксплуатации ДВС и энергетических установок с ДВС, процессы преобразования энергии в ДВС, комбинированных ДВС и их элементов. Магистр техники и технологий приобретает навыки по принятию обоснованных решений на стадиях выбора, проектирования, создания, испытаний, эксплуатации, обеспечивающих надежную и экономичную работу энергетических установок с ДВС и комбинированных ДВС.

Специалист может пользоваться принятыми в отрасли методами расчетов, графическими пакетами, базами данных для обеспечения надежной эксплуатации энергетических установок; способен выполнять расчеты по определению основных показателей экономичности и надежности ДВС и комбинированных ДВС.
Изучаемые специальные дисциплины охватывают основные направления энергетического машиностроения, применительно к двигателям внутреннего сгорания: «Математическое моделирование тепловых двигателей», «Современные энергетические технологии», «Патентоведение», «Автоматическое регулирование тепловых двигателей», «Когенерационные установки на базе тепловых двигателей», «Современные компьютерные коммуникационные технологии», «Методы испытаний ПГТ», «Специальные главы теории тепловых двигателей», «Автоматическое регулирование тепловых двигателей», «Системы топливоподачи ДВС», «Проблемы снижения вредных выбросов ДВС», «Современные проблемы науки и производства в энергетическом машиностроении», «Специальные главы теории и конструирования ДВС».

 

Практика

 

В ходе прохождения научно-исследовательских практик студенты знакомятся с современной техникой, организацией и управлением предприятиями, а также новейшими методами ведения научных исследований. В рамках педагогической практики обучающиеся получают навыки преподавательской деятельности. Департамент машиностроения и приборостроения имеет долгосрочные и продуктивные связи с ведущими российскими вузами (МГТУ им. Баумана, МАДИ, МЭИ, КАИ, МАИ, МАМИ и др.). Практики организуются на таких предприятиях, как ПАО «МОСЭНЕРГО», Объединенный институт высоких температур РАН, ОАО «Коломенский завод», ТЭЦ-25 и других флагманах теплоэнергетики.

 

Карьера

 

По окончании обучения у выпускника есть возможность построения успешной карьеры в инновационно-ориентированных высокотехнологичных двигателестроительных, энергетических и машиностроительных компаниях. Выпускники подготовлены для работы в структурах, занимающихся научной и конструкторской деятельностью, в научных и научно-производственных учреждениях и предприятиях реального сектора экономики и образовательных учреждениях высшего образования. После окончания магистратуры есть возможность продолжения учебной и научной деятельности в аспирантуре.

Программа аккредитована «ENAEE - Европейская сеть аккредитации инженерного образования (Бельгия)»

Сериал Двигатель внутреннего сгорания 1 сезон 1 серия смотреть онлайн бесплатно в хорошем HD 1080 / 720 качестве

ivi
  • Мой ivi
  • Фильмы
    • Артхаус
    • Боевики
    • Военные
    • Детективы
    • По комиксам
    • Для всей семьи
    • Катастрофы
    • Для детей
    • Документальные
    • Драмы
    • Исторические
    • Комедии
    • Криминальные
    • Мелодрамы
    • Мистические
    • Приключения
    • Триллеры
    • Ужасы
    • Фантастика
    • Фэнтези
    • Эротика
    • Новинки
    • ivi. рейтинг
    • Скоро на ivi
    • Трейлеры
    • Фильмы 2021 года
    • Фильмы 2020 года
    • Фильмы в 4K
    • Фильмы в HD
    • Русские
    • Зарубежные
    • Советское кино
    • Выбор ivi
    • Новинки подписки
    • Фильмы Amediateka
    • Фильмы Paramount Play
    • IVI Originals
  • Сериалы
    • Боевики
    • Военные
    • Детективы
    • Драмы
    • Исторические
    • Комедийные
    • Криминальные
    • Мелодрамы
    • Приключения
    • Медицинские
    • Романтические
    • Триллеры
    • Дорамы
    • Фантастические
    • Новинки
    • ivi. рейтинг
    • Сериалы 2021 года
    • Сериалы 2020 года
    • Сериалы в HD
    • Русские
    • Зарубежные
    • Американские
    • Украинские
    • Индийские
    • Турецкие
    • Сериалы FOXNOW
    • Бесплатные сериалы
    • Передачи National Geographic

О двигателе внутреннего сгорания : Кафедра ДВС : АлтГТУ

Весьма скромный по габаритам, малютка в сравнении с такими монстрами энергетики, как гидравлические, тепловые и атомные станции, но далеко не простой по конструкции, впитавший в себя все лучшие мировые достижения в технологиях, материалах, нефтехимии, гидравлики, электротехники и электроники, двигатель внутреннего сгорания обеспечивает более 90% от суммарного объема мощности всех установленных энергетических агрегатов мира.

На первый взгляд, это феномен, так как мощность единичного ДВС относительно невысокая: от десятой доли киловатта до десятков тысяч. Но никакого феномена нет. Двигатель весьма востребован в деятельности человека и берет фантастическими объемами, массовостью производства. Он всюду — где человек, там и он. На земле и под землей, на воде и под водой, в околоземном пространстве и в космосе. Нет сферы деятельности человека, где бы не использовался ДВС, и в этом его первая особенность.

Вторая особенность в том, что именно ДВС, осуществляя энергообеспечение машин и механизмов, на которые он устанавливается, главным образом и обеспечивает качество и прогресс в развитии этой техники. Легендарный танк Т-34 времен Великой Отечественной войны стал эталоном боевых машин благодаря установленному на нем дизелю Д-12, производство которого осуществлялось и на барнаульском заводе «Трансмаш». Современный легковой автомобиль стал таким, какой он есть: экономичным, надежным, комфортным, безопасным, динамичным, эргономичным благодаря значительным успехам, достигнутым в конце прошлого и начале нынешнего столетия в развитии двигателестроения. Газотурбинный регулируемый и динамический наддув, непосредственный впрыск бензина, многоклапанные системы газораспределения с изменяемыми фазами, рециркуляция отработавших газов, электронные системы управления, гибридные двигатели (ДВС + электрическая машина)  — вот далеко не полный перечень мероприятий, которые позволили современному ДВС обеспечить жесткие требования ЕВРО по удельной мощности и вредным выбросам, по расходу топлива и масла, приемистости, экономичности мобильных машин. Шестьдесят киловатт мощности с литра объема цилиндра дизеля (в бензиновых еще выше), менее четырех литров топлива на 100 км пробега, разгон до 100 км/час менее чем за 5 секунд. 

Но это не предел — эволюционное развитие двигателя продолжается. Впереди новые задачи, среди них — расширение создания гибридных двигателей, использование водорода как топлива, адаптация двигателя к работе на биологическом топливе и др.

Вы, нынешние абитуриенты, а затем студенты — бакалавры и магистры, будете их решать и решите, ведь прогресс в энергетике остановить невозможно.

Audi отказалась от разработки двигателей внутреннего сгорания

Как рассказал немецкому изданию Automobilwoche глава Audi Маркус Дюсманн (Markus Duesmann), компания остановила все работы над новыми двигателями внутреннего сгорания. Это значит, что бензиновых и дизельных моторов следующего поколения не будет, хотя инженеры продолжат текущую модернизацию существующих моторов.

Предстоящее введение  в 2025 году стандарта Евро 7 с более жёсткими ограничениями на выбросы, несомненно, разделит автомобильный мир на две разные группы. С одной стороны, найдутся те, кто будет по-прежнему производить автомобили с двигателями внутреннего сгорания, хотя и сократит их ассортимент в связи с переходом на гибриды. На другой стороне, которая будет более многочисленной, окажутся те автопроизводители, у кого нет другого выбора, кроме как навсегда отказаться от двигателей внутреннего сгорания в пользу электродвигателей. К этой группе присоединилась Audi, официально объявив о завершении разработки двигателей внутреннего сгорания.

Генеральный директор немецкого бренда Маркус Дюсманн заявил, что разработка новых двигателей внутреннего сгорания более невозможна и что было бы лучше адаптировать существующие двигатели к будущим стандартам, прежде чем они будут окончательно сняты с производства. Это означает, что выпуск культовых двигателей TDI и TFSI на Audi близок к завершению, как и выпуск двух знаковых моделей Audi — R8 и TT, у которых не ожидается прямых преемников.

В ближайшие 5 лет Audi планирует вывести на рынок 20 электрических моделей. Бренд также объявил о намерении к концу десятилетия превратить основные модели, такие как A4 и A6, в полностью электрические автомобили.

Это ставит Audi на тот же путь, по которому планирует продвигаться конкурирующий бренд Mercedes. На прошлой неделе Маркус Шефер (Markus Schäfer), член совета директоров, ответственный за развитие Mercedes, заявил, что компания больше не будет разрабатывать двигатели внутреннего сгорания. «Это означает, что основная часть инвестиций теперь действительно может пойти на электромобили», — сообщил Шефер в интервью ресурсу Handelsblatt.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Как спасти двигатель внутреннего сгорания / НГ-Энергия / Независимая газета

Чиновники Еврокомиссии подтасовывают факты в пользу электромобилестроения

Строительство завода электромобилей американской корпорации Tesla под Берлином. Фото Reuters

Каждая четвертая новая легковая машина в Германии имела в 2020 году альтернативный двигатель. Из электрических моделей наибольшим спросом пользовались малый класс и внедорожники. Об этом сообщает немецкое государственное информационное агентство Deutsche Welle (DW). Продажи автомобилей марки Mercedes выросли в Германии в 2020 году на 545,7%, у бренда Volkswagen рост составил 463,3%, Renault продал на 233,8% больше, Hyundai – на 215,5%, Audi – на 133,5%, Tesla – на 55,9%... Такие астрономические цифры опубликовало Федеральное автотранспортное ведомство (KBA). Речь идет о немецком рынке электромобилей.

Бум гибридов и электромобилей на падающем рынке

В ситуации, когда число проданных в ФРГ в прошлом году новых легковых машин из-за пандемии коронавируса, двух локдаунов и рецессии снизилось по сравнению с 2019 годом на 19%, в данном сегменте крупнейшего в Европе автомобильного рынка наблюдался бурный рост. Продажи автомобилей, работающих исключительно на электрической тяге (Battery Electric Vehicle, BEV), за год увеличились более чем в три раза (на 206,8%) и достигли 194 163 единиц. Еще более высокими темпами (342,1%) рос спрос на подзаряжаемые гибриды (Plug-in Hybrid Electric Vehicle, PHEV). В результате было зарегистрировано 200 469 новых плагин-гибридов. Всего же продажи различных видов гибридов достигли почти 528 тыс. В итоге примерно каждая четвертая новая легковая машина, выехавшая в прошлом году на дороги Германии, имела альтернативный двигатель, указывает KBA.

Ведомство включает в эту категорию не только электромобили и различные виды гибридов, но также легковые машины, работающие на водороде и газе – компримированном или сжиженном. Однако на немецком рынке они продолжают играть незначительную роль. Продажи автомобилей на компримированном газе, к примеру, упали в прошлом году на 6,1% и составили всего 7159 единиц.

Так что в Германии из всех альтернатив классическим двигателям внутреннего сгорания (ДВС), бензиновым и дизельным, в начале нового десятилетия перспективной представляется только электрическая тяга. Переходу на нее из экологических и климатических соображений активно содействует правительство Германии, предоставляя покупателям электромобилей и плагин-гибридов субсидии, которые могут достигать 9 тыс. евро.

Благодаря этой системе субсидирования и произошел тот коренной перелом, которого добились в 2020 году BEV и PHEV на немецком рынке. Именно так трактует итоги прошлого года глава KBA Рихард Дамм: электромобильность перестала быть экзотикой, она прочно вошла в жизнь страны.

«При сохранении темпов роста регистрации новых автомобилей на электрической тяге примерно в 22%, достигнутых в последнем квартале 2020 года, можно будет добиться провозглашенной федеральным правительством цели – выйти на уровень от 7 млн до 10 млн зарегистрированных в Германии электрических автомобилей к 2030 году», – считает глава автотранспортного ведомства.

В 2020 году больше всего от этого тренда выиграл тот немецкий автостроитель, который решительнее других сделал ставку на электрификацию выпускаемого им легкового автотранспорта: группа Volkswagen. Статистика KBA показывает, что именно этот концерн со всеми его дочерними фирмами и брендами добился в прошлом году самых значительных успехов, став, причем с существенным отрывом от конкурентов, бесспорным лидером на немецком рынке электромобилей и плагин-гибридов, особенно в сегменте BEV.

Конечно, рост продаж электромобилей сразу на 463% во многом связан с эффектом низкой базы: в 2019 году бренд VW еще не мог предложить покупателям ничего оригинального – только оснащенные электрическими моторами модели Golf или, скажем, серийное производство VW ID.3, первого электромобиля компании, с самого начала сконструированного для работы с электрическим двигателем, началось лишь в конце того года.

Но в значительной мере именно эта модель, реально поступившая к дилерам лишь в сентябре 2020 года, обеспечила бренду взрывной рост продаж и, по данным KBA, долю сразу в 23% среди всех новых BEV, зарегистрированных в прошлом году в Германии. На электромобили марки Audi пришлись 4,3%, еще одна дочерняя фирма концерна, Skoda, завоевала 2,4% при росте продаж за год на 132,7%.

Таким образом, по итогам 2020 года группа Volkswagen контролирует примерно 30% немецкого рынка электромобилей. Второе место с долей в 16,2% занял французский автостроитель Renault, чья компактная модель ZOE уже несколько лет пользуется большой популярностью во всей Европе, третье место с долей в 8,3% досталось американской корпорации Tesla.

Сравним эти показатели с данными из Норвегии, ставшей первым в мире рынком, где покупают больше электромобилей, чем легковых машин с двигателями внутреннего сгорания. В 2020 году 54,3% всех зарегистрированных в этой стране новых автомобилей имели электрические или гибридные двигатели, сообщила Служба информации дорожного движения (OFV) в Осло. По итогам 2019 года данный показатель составлял 42,4%.

Обращает на себя внимание, что четыре самые востребованные в Норвегии модели – это чисто электрические BEV: внедорожник Audi e-tron, Tesla Model 3, Volkswagen ID. 3 и Nissan Leaf. Пятое место заняла гибридная версия VW Golf. Расклад сил напоминает тот, что сложился и в Германии: группа Volkswagen явно лидирует, заняв три позиции из пяти. В ближайшие дни станет понятно, в какой мере подобное распределение долей наблюдается и в других странах Европы.

Статистика KBA позволяет сделать еще некоторые выводы о специфике немецкого рынка электромобилей. Лучше всего в 2020 году продавались BEV, относящиеся к малому классу (29,9%), к городским внедорожникам SUV (19,9%), к компактному классу (19,6%) и к классу мини (16,2%). Средний класс был меньше востребован, бизнес-класс – существенно меньше.

Таким образом, жители Германии приобретали электромобили главным образом для езды по городу или в качестве второго автомобиля в семье. Либо останавливали свой выбор на особо модных в последнее время городских внедорожниках. Именно в этих сегментах рынка группа Volkswagen с брендами VW и Audi хорошо позиционирована. К классу SUV относится и электромобиль VW ID. 4, продажи которого должны начаться в 1-м квартале этого года.

Но как раз в этом классе концерн может вскоре столкнуться с мощной конкуренцией со стороны американской компании Tesla, которая после завершения строительства своей гигафабрики под Берлином собирается уже летом этого года начать там выпуск городского внедорожника Model Y.

Однако «хоронить» двигатель внутреннего сгорания в Германии еще рано.

Спасение двигателя внутреннего сгорания

Немецкая газета Welt опубликовала на днях статью о путях спасения двигателя внутреннего сгорания в условиях климатического разворота. Как известно, эти шаги являются крайне актуальными. Дело в том, что Еврокомиссия предложила проект ужесточения выбросов для автомобилей. Речь идет о нормативах Евро-7, которые должны быть введены с 2025 года. Глава немецкого союза автомобильной промышленности (VDA) Хильдергард Мюллер сравнивает это нововведение с фактическим запретом двигателя внутреннего сгорания. Вопрос, пишет газета, однако, связан с определением лимита сокращения выбросов. Насколько его можно сокращать, чтобы еще можно было использовать двигатель внутреннего сгорания? Чтобы ответить на этот вопрос, Комиссия ЕС собрала группу независимых ученых и поручила им разработать различные сценарии. Ученые должны были ответить на основной вопрос, к каким последствиям приводят различные низкие границы выбросов. Ученые разработали три сценария. Однако при презентации в Комиссии ЕС был представлен только один сценарий – самый жесткий. Как сообщили ученые немецкой газете Stuttgarter Zeitung, указание представить именно этот сценарий им поступило от вице-президента Комиссии ЕС Франса Тиммерманса, ответственного за Green Deal («зеленую сделку»). Напомним читателям, что «зеленая сделка» – это 24-страничный документ, в котором изложен путь ЕС к климатической нейтральности и радикальному снижению уровня выбросов парниковых газов в атмосферу к 2050 году. Документ затрагивает разные сферы жизнедеятельности – энергетику, сельское хозяйство, транспорт, биоразнообразие и др. Депутат Европарламента, христианский демократ Маркус Пипер высказал сомнение в таком узком и идеологизированном подходе Комиссии ЕС. Однако германская автомобильная промышленность предполагает, что именно самый жесткий сценарий и будет одобрен Комиссией ЕС, чтобы ввести нормативы Евро-7. Введение этого норматива будет означать запрет двигателя внутреннего сгорания «через заднюю дверь», или, другими словами, не напрямую. Для лимита выброса окиси азота в Евро-7 предусмотрен лимит в 10–30 мг на пройденный километр пути независимо от ситуации на дороге, погоды и состояния самого двигателя. Независимые ученые считают эти показатели в техническом плане просто недостижимыми. Поэтому они сделали вывод, что те, кто ставит цели, подобные Евро-7, просто намерены запретить двигатель внутреннего сгорания. Депутат Марк Пипер уверен, что если Евро-7 станет реальностью, то через пять или шесть лет обычные (не электрические) автомобильные моторы уже не будут производиться. И это, по его мнению, равносильно уничтожению моторостроения и промышленности, производящей компоненты для автомобильной промышленности. При этом экология не получит никакой выгоды. По мнению Пипера, электромобили имеют на самом деле гораздо худший баланс двуокиси углерода по сравнению с самыми современными дизельными автомобилями, которые после введения Евро-7 не будут больше собираться. На этот счет известно исследование группы CESifo из мюнхенского Института экономических исследований (IFO).

Сравнительное исследование транспортных средств среднего класса Tesla Model 3 и Mercedes C 220 d показало, что первая модель выбрасывает в атмосферу больше углекислого газа, чем второй автомобиль – с дизельным двигателем. К такому выводу пришли ученые исследовательской группы CESifo Института экономических исследований в Мюнхене. Результаты их работы представлены на сайте учреждения.

Опасный для окружающей среды электромобиль

Несмотря на мнение большинства о том, что массовое внедрение электромобилей экологически безопасно, выяснилось, что электромобиль производит на 25% больше выбросов, чем модель немецкого автоконцерна. Mercedes C 220 d выделяет 117 г диоксида углерода за километр, в то время как электромобиль – 159 г.

В исследовании подчеркивается, что добыча и переработка лития, необходимого для производства аккумуляторных батарей, также требует большого количества энергии. Батарея мощностью 75 кВт-ч выделяет от 10 тыс. до 14 тыс. кг углекислого газа. По мнению ученых, ввиду 10-летнего срока эксплуатации аккумулятора и среднегодового пробега электромобиля в 15 тыс. км, на который рассчитана батарея, на изготовление и дальнейшую переработку аккумулятора приходится 73–98 г углекислого газа на километр.

Отмечается, что дизельные двигатели, работающие на метане, то есть природном газе, значительно меньше загрязняют окружающую среду. В сравнении с дизельными двигателями выбросы метанового мотора меньше на треть. В настоящее время крупнейшие автоконцерны форсируют производство электромобилей. Так, например, японский производитель Toyota объявил о намерении ориентировочно к 2025 году полностью прекратить выпуск автомобилей с бензиновыми или дизельными двигателями, оставив в своей модельной линейке только гибриды, электромобили и автомобили, работающие на водороде.

Катализаторы и альтернативное топливо

Сторонники традиционного двигателя внутреннего сгорания делают сегодня ставку на новые катализаторы, в которых применяются… препараты из мочевины – AdBlue. Подобные катализаторы резко снижают в выхлопных газах оксид азота. Сегодня они находят применение автомобильной промышленности для достижения норм Евро-6. Зеленые в Европарламенте требуют дальнейшего совершенствования катализаторов с AdBlue и полагают, что это поможет внедрению норм Евро-7 для традиционных автомобильных моторов.

В Германии по этому поводу разгорается дискуссия о новой концепции энергетического налога и замене им традиционного топливного налога, который учитывается в цене бензина на немецких бензоколонках. На сегодня, по данным Statista, в цене 1,449 евро за литр Супер, на налоги приходится 65% цены. Важнейшими налогами при этом являются наряду с НДС энергетический или топливный налог.

Речь идет о том, чтобы бензин или дизель оценивался с позиций воздействия на окружающую среду и эмиссии двуокиси углерода. Это позволило бы повысить конкурентоспособность альтернативных видов топлива, которые более благоприятны в отношении окружающей среды. Консалтинговая фирма Frontier Economics и исследовательский институт при Кельнском университете (FiFo) разработали концепцию реформы энергетического налога с позиций усиления охраны окружающей среды. С точки зрения разработчиков, чтобы достичь климатических целей, и на транспорте необходимо наряду с повышением уровня электромобильности активнее внедрять альтернативные виды топлива. В данном случае речь идет о биотопливе из растительных масел и отходов, а также о новых видах топлива, производимого исключительно с использованием возобновляемых источников энергии. Речь идет о водороде. Разумеется, производство такого топлива дороже, чем изготовление топлива из ископаемого сырья. Но чтобы обеспечить их выход на рынок, необходимо создание соответствующих условий, и главную роль в создании таких условий будет играть налоговая политика.

Сегодня же, указывает газета, именно роль такого регулятора, как энергетический налог, остается вне поля зрения экологов. Подход к энергетическому налогу должен быть изменен. Как известно, в Германии с 15 июля 2006 года он в качестве потребительского налога заменил налог на нефтепродукты и регулирует налогообложение всех видов энергоносителей как природного, так и искусственного происхождения. Вопрос заключается в том, что именно облагать налогом. Немецкий институт прикладной экологии (Institute for Applied Ecology) рекомендует дополнительно включить в энергетический налог ставку на выбросы двуокиси углерода.

Иной подход демонстрирует уже упомянутая выше группа ученых из FiFo Кельнского университета. Они предлагают изменить измеряемую базу энергетического налога. Если в действующем налоге в части автомобильного бензина или дизельного топлива налогом облагается, по сути, уровень содержания серы, то в будущем налогом должен облагаться только уровень содержания углерода ископаемого топлива. Благодаря этому альтернативные виды топлива станут конкурентоспособнее, чем традиционные виды топлива, производимые из нефти. Встает вопрос – что это даст? В сравнении с планами по введению Евро-7, который может исключить использование двигателя внутреннего сгорания, новое налогообложение топлива позволит сохранить парк автомобилей с двигателем внутреннего сгорания. Адриан Виллиг, управляющий немецкого научно-исследовательского института тепла и мобильности (IWO), который совместно с экспертами объединения топливной промышленности Германии (MWV) подготовил исследование по перспективам двигателя внутреннего сгорания в мире, утверждает, что даже при бурном расширении электромобильности в 2030 году по дорогам Германии будут ездить 35 млн автомашин с двигателем внутреннего сгорания и жидкие виды топлива по-прежнему будут играть важную роль в транспорте. Отсюда и необходимость того, чтобы и двигатель внутреннего сгорания вносил свой вклад в снижение выбросов парниковых газов. Предлагаемые изменения могут позволить реализовать в случае бензина и дизеля, производимых из ископаемых энергоносителей, налоговую ставку в 300–400 евро на тонну выбросов СО2, которые потребителя не столь затронут, как введение Евро-7. А для инвесторов будет дан сигнал вкладывать средства в производство альтернативных видов топлива. 

Газовые, паровые турбины и двигатели внутреннего сгорания

Описание программы:


13.03.03
Энергетическое машиностроение
Инженерное дело, технологии и технические науки
Уральский энергетический институт
Бакалавриат
2019-2021
Очная: 4 года
Заочная: 5 лет

Русский

Образовательная программа «Газовые, паровые турбины и двигатели внутреннего сгорания» включает две траектории: «Газотурбинные, паротурбинные установки и двигатели» и «Поршневые двигатели внутреннего сгорания». Выпускник по данному направлению и траекториям подготовки в соответствии с полученной квалификацией сможет осуществлять профессиональную деятельность в области конструирования и проектирования, исследования, монтажа, наладки, эксплуатации и ремонта энергетических машин, агрегатов, установок и систем их управления, в основу рабочих процессов которых положены различные формы преобразования энергии.

Профессиональную деятельность выпускник сможет выполнять в проектных и производственных организациях энергомашиностроительной отрасли, в ремонтных и эксплуатационных организациях энергетической отрасли, а также на газотранспортных предприятиях газовой промышленности.

Программа предполагает фундаментальную подготовку по естественнонаучным и общеинженерным дисциплинам, достаточную для продолжения обучения по программам магистратуры.

Обучение по образовательной программе осуществляет кафедра «Турбины и двигатели». Сайт кафедры: http://tid.enin.urfu.ru/

 

Контакты



Артемова Татьяна Георгиевна
Руководитель образовательной программы
Старший преподаватель, Заведующий учебной лабораторией
Аудитория: ул. Софьи Ковалевской, 5, Т-007
Телефон: +7 (343) 3754851
Электронная почта: [email protected]

Первый шаг к поступлению -
регистрация в
личном кабинете абитуриента

Внутреннее сгорание - обзор

2 Моделирование эффективного транспортного средства внутреннего сгорания

В качестве справки будут рассмотрены рабочие характеристики обычных транспортных средств с двигателями внутреннего сгорания с использованием тех же инструментов моделирования, которые будут использоваться для последующего моделирования аккумулятора. водородные и гибридные автомобили. Моделирование основано на надстройке прикладных программ, добавленных поверх программного обеспечения математического моделирования [2]. Первоначальный набор прикладных программ был разработан в Национальной лаборатории возобновляемых источников энергии [3] и впоследствии дополнен модулями для конкретных исследований, проведенных здесь.Базовый подход к моделированию заключается в прогрессивном вычислении по времени в итеративных шагах вперед и назад, пытаясь соответствовать предписанию скорости движения для заданного временного ряда цикла движения.

Имитационное моделирование транспортного средства IC основано на данных для коммерческого автомобиля с четырьмя или пятью пассажирами, Volkswagen Lupo TDI-3L, который производился с 1999 по 2004 год 1 . Он принимает как минеральное дизельное топливо, так и биодизельное топливо в дизельном двигателе Common Rail мощностью 45 кВт и имеет топливную эффективность, обеспечивающую расход дизельного топлива 33 км / л (1.08 МДж / км или 3 л дизельного топлива на 100 км, что эквивалентно 3,4 л бензина на 100 км) для стандартного европейского ездового цикла [4]. Среди его функций повышения энергоэффективности - пятиступенчатая автоматическая коробка передач с компьютерным управлением, в результате чего средняя потеря энергии на 20% ниже, чем у типичной пятиступенчатой ​​механической коробки передач.

Дизельные двигатели с системой Common Rail, доминирующие сегодня на рынке, относятся к поколению усовершенствованных дизельных двигателей с воспламенением от сжатия, в которых воздух сжимается перед смешиванием с контролируемым количеством топлива.Это ключевая причина достижения более высокого КПД, чем у двигателей Otto. Высокая температура, связанная со сжатием, позволяет зажигать без образования искры. Принцип впрыска Common Rail под высоким давлением повысил энергоэффективность дизельных автомобилей примерно на 30% по сравнению с сопоставимыми двигателями Otto, использующими бензин в качестве топлива. Это интересно, потому что дизельное топливо традиционно считалось худшим топливом по сравнению с бензином, с более низкой эффективностью и более нежелательными выбросами.Однако введение прямого впрыска с турбонаддувом (TDI) и электронного управления изменило это в пользу работы дизельного двигателя. Принцип высокого давления (в настоящее время около 140 МПа) с общей топливораспределительной рампой решил проблему измельчения капель дизельного топлива до мелких частиц и, таким образом, уменьшения количества несгоревшего топлива. Компьютеризированное управление позволяет осуществлять быстрый впрыск, при этом основная ступень окружена двумя второстепенными ступенями, что способствует снижению шума и сокращению количества несгоревшего топлива при одновременном повышении температуры выходного потока, что снова снижает выбросы загрязняющих веществ.

Ездовой цикл, принятый для сравнения характеристик различных транспортных средств, представляет собой смесь ездовых циклов, используемых в Соединенных Штатах и ​​в Европе для предоставления объективной информации для потребителей и, в некоторых случаях, для целей налогообложения автомобилей. Трудно построить ездовой цикл, который не был бы немного «несправедливым» по отношению к некоторым моделям автомобилей, например, указав скорости движения, которые заставили бы одни автомобили менять уровень передачи чаще, чем другие. Цикл движения 89 км, использованный в моделировании, показан на рис.10.1, а частотное распределение скоростей движения - на рис. 10.2. Он чередуется между вождением по шоссе, пригородом с редкими остановками на красный свет и вождением в центре города с множеством остановок и холостым ходом. Европейский ездовой цикл (показанный как первые 2000 секунд на рис. 10.1) подвергался критике за то, что он не содержал реалистичной доли движения по автомагистралям. Это было исправлено за счет участка автомагистрали на рис. 10.1, который появляется от 5200 до 6000 с. Для Lupo моделирование, описанное ниже, дает средний коэффициент расхода топлива на колеса, равный 3 л дизельного топлива на 100 км, принятому для нормативных целей.В Дании ежегодное налогообложение автомобилей обратно пропорционально эффективности использования топлива. Цикл вождения, используемый для целей, упомянутых здесь, нереалистичен, поскольку в него не включены никакие оценки. Обоснование этого заключается в том, что наличие оценок при фактическом вождении по дорогам сильно различается от региона к региону и, следовательно, не способствует общему подходу, который, например, для Европейского Союза является политической целью. То же самое и с температурной зависимостью измеренных характеристик. В регионах с холодными зимами используется дополнительное топливо, частично в периоды после холодных запусков и частично из-за обогрева кабины на протяжении всей поездки.Официальные данные о производительности обычно получают при заданной температуре окружающей среды 20 ° C. В результате опыт большинства водителей показывает, что фактическая производительность ниже нормативных значений на величину порядка 10%. Плохое вождение с ненужными ускорениями и торможениями, ненужное нажатие на педаль газа во время движения и невыпускание ее при включении красного светофора могут снизить производительность еще на 10–20%. Интересно отметить, что существуют технические способы уменьшения этих негативных эффектов, например, путем тщательного выбора передаточных чисел многоуровневых трансмиссий, и поэтому зависимость энергетических характеристик водителя значительно варьируется от одной марки автомобиля к другой.

Рисунок 10.1. Цикл вождения, используемый в симуляциях.

Рисунок 10.2. Частотное распределение скоростей движения в смешанном цикле движения, используемое в моделировании.

На рис. 10.3 показан крутящий момент дизельного двигателя, передаваемый в течение ездового цикла, согласованный с изменением во времени достигнутой скорости транспортного средства, которая очень близка к предписанной скорости. Самые высокие требования к крутящему моменту связаны с ускорениями на автомагистралях. Моделирование двигателя основано на измерении расхода топлива в зависимости от оборотов вала («частота вращения двигателя») и выходного крутящего момента, но для двигателя мощностью 60 кВт, ранее использовавшегося Volkswagen и Mercedes, для которого были проведены полные измерения топливных и экологических характеристик [7 ].Изменяется только общий масштаб, чтобы соответствовать измеренному общему расходу топлива и общим выбросам Lupo [8, 9].

Рисунок 10.3. Моделирование дизельного автомобиля. Нижняя панель: передача крутящего момента двигателя во время ездового цикла, показанного на Рисунке 1. Верхняя панель: Выровненная по времени скорость движения транспортного средства, которая идентична предписанной ездовым циклом с точностью до 1%.

Смоделированные рабочие характеристики Lupo во время смешанного цикла движения представлены на рис. 10.4 в виде полной тепловой мощности, отдаваемой двигателем в течение цикла движения.Видно более низкое предельное значение мощности на холостом ходу. Настоящий Lupo имеет регулятор холостого хода, который останавливает двигатель примерно через 20 секунд холостого хода (при условии, что автомобиль не движется и нога сильно нажимает на тормоз) и запускает его снова, когда нога снимается с тормоза. Это не моделируется, но считается, что оно имеет второстепенное значение для предписанного цикла движения, потому что дополнительная энергия, используемая для перезапуска двигателя, съедает часть выигрыша, полученного за счет сокращения времени холостого хода до 20 с.Это не означает, что регулировка холостого хода излишняя, потому что она предотвращает длительную работу на холостом ходу, что является плохой привычкой некоторых водителей. В некоторых странах закон запрещает холостой ход более 1 минуты. В смешанном цикле движения есть несколько остановок на красный свет. Если продолжительность красного света составляет 1 минуту, гипотеза случайного прибытия дала бы среднее время ожидания 30 с, что всего на 10 с больше, чем предел Lupo, в соответствии с замечанием о том, что управление холостым ходом Lupo имеет второстепенное значение для смешанных моделирование ездового цикла.Управление светофором с помощью зеленой волны еще больше уменьшит проблему холостого хода, поэтому предотвращение продолжительного холостого хода по решению водителя действительно является главным преимуществом системы Lupo.

Рисунок 10.4. Моделирование дизельного автомобиля. Выходная тепловая мощность двигателя во время смоделированного цикла движения.

Зависимость КПД двигателя от времени движения в заданном цикле показана на рис. 10.5. Это раскрывает хорошо известный факт, что двигатели внутреннего сгорания не работают эффективно при частичной нагрузке. В частности, низкая эффективность, связанная с движением на самой низкой передаче, выделяется кластеризацией данных с максимальной эффективностью 15%.

Рисунок 10.5. Моделирование дизельного автомобиля. Эффективность преобразования двигателя во время смоделированного ездового цикла.

Рис. 10.6 показывает, что трансмиссия имеет КПД более 90% в течение большей части времени. Источники потерь энергии показаны на рис. 10.7.

Рисунок 10.6. Моделирование дизельного автомобиля. Энергоэффективность блока трансмиссии во время смоделированного ездового цикла.

Рисунок 10.7. Моделирование дизельного автомобиля. Распределение потерь энергии во время смоделированного ездового цикла.

Основная проблема транспортных средств, использующих ископаемое или биотопливо, - это загрязнение воздуха, связанное с циклом сгорания. Данные о выбросах, масштабированные по данным [7] для представления Lupo, работающего на минеральном дизельном топливе, были подвергнуты моделированию ездового цикла для обычного дизельного двигателя Lupo, что дало общие выбросы, в целом согласующиеся с другими исследованиями аналогичных автомобилей [8, 10, 11]. характеристики топлива были впоследствии изменены на характеристики биодизеля (с использованием текущих европейских нормативных требований к составу), которое по сравнению с дизельным топливом на ископаемом топливе, как предполагается, имеет на 25% меньше выбросов CO, на 10% больше выбросов NO x , На 40% меньше выбросов твердых частиц и на 80% меньше выноса углеводородов [12].Предполагается, что топливная эффективность не изменилась.

Выбросы двигателя во время смешанного цикла движения показаны на рис. 10.8, а на рис. 10.9 представлены выбросы из выхлопной трубы в конце пути регулирования выпуска, который включает действие катализатора и электростатические фильтры для уменьшения рассеивания твердых частиц, но не NO x Сокращение выбросов . Сравнивая рис. 10,8 и 10,9, наблюдается небольшое изменение выбросов NO x , но снижение на порядок других загрязняющих веществ.CO 2 здесь не упоминается, так как он прямо пропорционален содержанию углерода в сжигаемом топливе.

Рисунок 10.8. Моделирование дизельного автомобиля. Выбросы от двигателя во время смоделированного ездового цикла.

Рисунок 10.9. Моделирование дизельного автомобиля. Внешние выбросы из выхлопной трубы автомобиля во время смоделированного ездового цикла.

В отличие от некоторых более поздних дизельных автомобилей с системой Common Rail, нейтрализатор выхлопных газов Lupo имеет умеренную способность к сокращению выбросов твердых частиц и NO x .Тем не менее, он соответствует требованиям Европейского Союза по выбросам 2005 г. («Требования Euro4»). В современных пассажирских автомобилях с дизельным двигателем установлены фильтры твердых частиц. В настоящее время ведутся дискуссии об увеличении использования биодизеля и других видов биотоплива. Они в основном нейтральны по CO 2 , если рассматривать их с точки зрения жизненного цикла, и выбросы транспортных средств ниже, чем выбросы как бензина, так и минерального дизельного топлива, за исключением более высоких выбросов NO x , которые вскоре могут быть устранены с помощью технологий. уже используется на крупных электростанциях в странах-лидерах по охране окружающей среды.Отрицательные комментарии обычно направлены на доступность сырья биомассы и конкуренцию с производством продуктов питания. При оценке этих критических замечаний следует проводить различие между биотопливом, использующим зерно продовольственных культур в качестве основы для производства топлива, и биотопливом, в котором используются только остатки. Последний тип не только позволяет избежать продовольственной конкуренции, но и ресурсы остатков сырьевой биомассы для этого «биотоплива второго поколения» в десять раз больше, чем для биотоплива на основе зерна.

В глобальном сценарии использования возобновляемых источников энергии [1, 13] будущее производство биотоплива будет производиться из сельскохозяйственных и лесных отходов.Преимущество эффективности современных дизельных двигателей над двигателями Отто предполагает, что усилия будут направлены на биодизельное топливо.

Средние выбросы биодизельного топлива Lupo за всю поездку составляют 0,029 г / км несгоревших углеводородов, 0,075 г / км CO и 0,278 г / км NO x , а также незначительное количество твердых частиц. Соответствующие цифры для минерального дизельного топлива Lupo составляют 0,03, 0,10, 0,25 и 0,02 г / км твердых частиц [1, 14].

Краткая история двигателя внутреннего сгорания - _ памятует

18 апреля 2019 г.

Вы можете ходить пешком, верхом на лошади или путешествовать в экипаже - после изобретения колеса возможности для путешествий по суше стали доступны человечеству почти не эволюционировал в течение 4000 лет.Это не изменилось до появления новаторов и изобретателей в конце 19 века. После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания для удивления: трехколесная повозка, напоминавшая нечто среднее между конным экипажем и велосипедом, катилась по улицам их городов. . За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала.Женщину звали Берта Бенц, подростками - ее сыновья Ричард и Ойген, а транспортным средством - запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме. «Не может быть никаких сомнений в том, что этот моторизованный велосипед скоро обретет множество друзей», - таково было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года.И все же первоначальные попытки найти покупателей, готовых вложить деньги в этот «бензиновый вагон», не увенчались успехом, а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив своего колеблющегося мужа заранее. Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху. К 1893 году было продано 69 машин, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены.На рубеже веков Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

Двигатель внутреннего сгорания - Энциклопедия Нового Света

Четырехтактный цикл (или цикл Отто)
1. Впуск
2. Компрессия
3. Мощность
4. Выпуск

Двигатель внутреннего сгорания - это двигатель, в котором сгорание топлива происходит в замкнутом пространстве, называемом камерой сгорания.Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем нажатия и перемещения самого двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.

Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель.Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрогенератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.

Преимущество этого - портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством. Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить.Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток - размер. Очень непрактично иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.

История

Демонстрация непрямого или всасывающего принципа внутреннего сгорания.Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска. Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что эта идея была оригинальной или что она действительно была построена.)
  • 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
  • Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
  • 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
  • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
  • 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых двигателей. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться.Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
  • 1826 г., 1 апреля: американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
  • 1838: Патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о компрессии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
  • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый работающий эффективный двигатель внутреннего сгорания в Лондоне (pt.Num. 1072), но в производство не попал. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания.Его первый двигатель с компрессией шокировал сам себя.
  • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого получила поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на горючем газе.
  • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
  • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
  • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
  • 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
  • 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным запуском и воспламенением от сжатия. В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
  • 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
  • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
  • 1900: Вильгельм Майбах разработал двигатель, построенный в Daimler Motoren Gesellschaft - в соответствии со спецификациями Эмиля Еллинека - который требовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.

Приложения

Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией.Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках и в самых разных самолетах и ​​локомотивах. Там, где требуется очень высокая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.

Операция

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.

Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и, в основном, из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло.Некоторые также могут работать на водороде.

Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.

Процесс зажигания бензина

Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на сочетании свинцово-кислотной батареи и индукционной катушки для создания высоковольтной электрической искры для воспламенения топливовоздушной смеси в цилиндры двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.

Процесс зажигания дизельного двигателя

Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенный заряд и воспламенение от сжатия), для воспламенения полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия.Возникающая компрессия обычно более чем в три раза выше, чем в бензиновом двигателе. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и высокой температуры. Это также является причиной того, что дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они также будут работать в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для работы вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также управляют процессом сгорания, чтобы повысить эффективность и сократить выбросы.

Энергия

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка - ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит сразу после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск - все это происходит при каждом такте вилки.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от латинского мотор, «движитель») - это любая машина, производящая механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями."(Электродвигатель относится к локомотиву, работающему от электричества.)

С учетом сказанного, нужно понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют энергию изнутри, а двигатели - как требующие внешнего источника энергии для выполнения своей работы. Очевидно, корни слов действительно указывают на настоящую разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее употребление.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.

Принципы работы

Поршневой:

  • Двигатель на сырой нефти
  • Двухтактный цикл
  • Четырехтактный цикл
  • Двигатель с горячей лампой
  • Тарельчатые клапаны
  • Рукавный клапан
  • Цикл Аткинсона
  • Предлагаемый
  • Улучшения
  • Управляемый двигатель внутреннего сгорания

Поворотный:

  • Продемонстрировано:
  • Предложено:
    • Орбитальный двигатель
    • Квазитурбина
    • Роторный двигатель цикла Аткинсона
    • Тороидальный двигатель

Непрерывное сгорание:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и гораздо более загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, иногда может выходить из выхлопного канала вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими преобразователями.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.

Пятитактный

Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла - это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , - это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов эффективнее, чем эквивалентный четырехтактный двигатель.

Двигатель Бурка

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, проходящим через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработанные газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Механизм с кулисой также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Двигатель с регулируемым сгоранием

Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных двигателей.

Ванкель

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя.Этот двигатель обеспечивает три рабочих хода на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.

Газовая турбина

В газотурбинных циклах (особенно в реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.

Вышедшие из употребления методы

В некоторых старых двигателях внутреннего сгорания без компрессии: в первой части хода поршня вниз была засосана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

Виды топлива и окислителя

Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла. , биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, - масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность.Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

Водород

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, которое производит двуокись углерода, главную причину глобального потепления, окись углерода в результате неполного сгорания, а также другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди. , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода в первую очередь самым простым и распространенным методом - электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему переносимости и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность - в 14 раз меньше, чем вода, и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, такие как относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Это не может дать чистого прироста углекислого газа.

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя было использовано до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими отдельными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию к вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения например двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, у некоторых высокопроизводительных моделей их шесть (хотя существуют «новинки» с 8, 10 и 12).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени соприкасается с поршнем, это приводит к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей для зажигания используется электрическая или компрессионная система нагрева. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания - патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.

Топливные системы

Топливо сгорает быстрее и полнее, если большая площадь его поверхности контактирует с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.

Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы - это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.

Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.

Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

Рабочий объем двигателя - это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или куб. Дюймов) для двигателей большего размера и кубических сантиметрах (сокращенно куб. См) для двигателей меньшего размера.Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый - удлинить ход, второй - увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках транспортных средств объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Смазочные системы

Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в впускной поток в виде спрея.Ранние тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером для пополнения их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, потребность в высоком соотношении мощности к массе привела к увеличению скорости вращения, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна, при условии, что либо посредством прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что имело то преимущество, что при увеличении частоты вращения двигателя создавалось более высокое давление.

Загрязнение двигателя

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей, близких к стехиометрическому, для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.

  • Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для здоровья животных.
  • Чистое производство углекислого газа не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Водородные двигатели должны производить только воду, но когда в качестве окислителя используется воздух, также образуются оксиды азота.

КПД двигателя внутреннего сгорания

КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлопные газы. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потраченную впустую энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.

Впрыск водородного топлива, или HFI, представляет собой дополнительную систему двигателя, которая, как известно, улучшает экономию топлива в двигателях внутреннего сгорания за счет впрыска водорода для улучшения сгорания во впускной коллектор. Можно увидеть прирост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому воздушно-топливному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедным воздухом. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.

Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.

Банкноты

Список литературы

  • Харденберг, Хорст О. 1999. Средние века двигателей внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
  • Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
  • Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
  • Тейлор, Чарльз Фейет. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.

Внешние ссылки

Все ссылки получены 4 марта 2018 г.

  • Введение в автомобильные двигатели - изображения в разрезе и хороший обзор двигателя внутреннего сгорания
  • Библия по топливу и двигателям - хороший ресурс по различным типам двигателей и топливам
  • youtube - Анимация компонентов 4-цилиндрового двигателя
  • youtube - Анимация внутренних движущихся частей 4-цилиндрового двигателя

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский центр

В течение сорока лет после первый полет братьев Райт использовались самолеты Двигатели внутреннего сгорания повернуть пропеллеры чтобы генерировать толкать. Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель.На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные Работа. Базовая механическая конструкция двигателя Райта такова: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели. Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр .Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немецким доктором Н. А. Отто в 1876 г. и используется до сих пор.

Хотя есть некоторые важные различия между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете детально изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года путем нажатия кнопок для остановки, шага или поворота Изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на "Engine.html" для автономной работы программы.


Активности:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Peak Двигатель внутреннего сгорания может быть уже на годы впереди

В 2017 году мир достиг важной вехи в области транспорта, хотя большинство людей тогда не заметили бы этого.

В том году потребители купили более 85 миллионов автомобилей, объем продаж снизился в 2018 году и снова в 2019 году, а затем резко упал в 2020 году из-за Covid-19. Между тем продажи электромобилей росли и снова росли, что сделало электромобили единственным растущим рынком автомобильной промышленности, а это означает, что мы почти наверняка достигли пика продаж автомобилей с двигателями внутреннего сгорания четыре года назад.

Исследуйте динамические обновления ключевых точек данных Земли

Больше из

Согласно ежегодному отчету BloombergNEF по электромобилям, будущее выглядит еще более электрическим.(Мой коллега Колин МакКеррахер вчера написал свои основные моменты для Hyperdrive.) Отчет полон смелых выводов. Во-первых, к 2030-м годам будут продаваться в основном электромобили, а к 2040-м - в основном электромобили, и это просто обычный сценарий. В мире с нулевым уровнем выбросов электромобили будут составлять 100% продаж легковых автомобилей всего через 15 лет, а все другие классы дорожных транспортных средств - от двухколесных до тяжелых коммерческих грузовиков - будут либо полностью электрическими, либо работать на топливных элементах. начало 2040-х гг.

Создание такого рода сценария важно в наш текущий момент, когда все больше и больше предприятий стремятся к чистому нулевому пути. Также важно: описать, где мы сейчас находимся.

Электромобили привлекают много внимания, но это только один из видов электрифицированных дорожных транспортных средств. В прошлом году электромобили составляли более 4% от общего объема продаж легковых автомобилей и не более 1% рынка коммерческих автомобилей. Между тем, электрика составила , 44%, продаж двух- и трехколесных транспортных средств и 39% продаж автобусов.Какими бы эффективными ни были современные автомобильные заводы, они не смогут идти в ногу с заводом по производству электросамокатов, выпускающим 10 миллионов единиц в год.

Широкий спред

Доля автомобилей с нулевым уровнем выбросов в новых продажах по типам, 2020 г.

Источник: BloombergNEF Electric Vehicle Outlook 2021

Легковым автомобилям предстоит пройти долгий путь, чтобы наверстать упущенное.Тем не менее, я пока не хочу минимизировать скорость изменений. Общий объем продаж новых автомобилей в прошлом году превысил 2 триллиона долларов, даже с учетом значительного общего падения продаж. Бизнес электромобилей уже составляет более 100 миллиардов долларов в год с поразительными темпами роста.

В 2011 году электромобили составляли 0,1% от общего объема продаж легковых автомобилей, но BNEF считает, что к 2023 году они могут составить 10% от продаж, что означает 100-кратный рост за немногим более десяти лет. Мне нравится думать о быстрорастущих рынках в экспоненциальном, а не линейном выражении, и как только электромобили проходят 10% продаж, они оказываются в последнем показателе рынка легковых автомобилей.В этот момент они играют не за часть рынка, а за все.

Два порядка величины

Доля продаж легковых электромобилей в общем объеме продаж легковых автомобилей

Источник: Bloomberg, Bloomberg NEF Electric Vehicle Outlook 2021

Стоит задуматься о грядущем росте электромобилей для легковых автомобилей с точки зрения компании.Приходит множество новых моделей, многие из которых изготовлены столетними автопроизводителями. Некоторые из них представляют собой старые бренды на новых типах автомобилей, например, Mustang Mach-E Ford Motor Co, который уже производится в большем количестве, чем одноименное спортивное купе с ДВС.

Но большая часть зарождающихся электромобилей сопоставима с существующими моделями внутреннего сгорания. Я имею в виду, в частности, самый продаваемый автомобиль в США за последние четыре десятилетия, F-150, и его электрифицированный двойник, F-150 Lightning.Когда он появится на рынке следующей весной, может произойти несколько вещей: он может съесть обычные продажи F-150; это могло съесть продажи полноразмерных грузовиков других производителей; или он может поглотить продажи автомобилей других классов, скажем, внедорожников.

У нас уже есть данные о том, как сопоставимые модели одной компании с разными силовыми агрегатами могут развиваться на рынке продаж: Porsche. У Porsche не так много моделей - большинство из них было продано годами или десятилетиями, поэтому его новые предложения потенциально могут составить конкуренцию существующим предложениям.Porsche продает две модели внедорожников с двигателем внутреннего сгорания (одна из которых доступна как гибрид), а теперь и два седана: Panamera с двигателем внутреннего сгорания (и гибрид) и полностью электрический Taycan.

На момент своего появления на рынок Taycan составлял 7% ежеквартальных продаж седанов Porsche в Северной Америке. Двумя кварталами позже это было чуть меньше половины. В первом квартале 2021 года, через шесть кварталов после своего появления, на Taycan пришлось 82% продаж седанов, несмотря на то, что общий рынок седанов вырос.

Electric принимает более

Продажи седанов Porsche в Северной Америке

Источник: Porsche North America

Porsche удалось расширить свой рынок седанов с помощью новой модели, но конкуренция между его действующим лицом и новым участником также совершенно очевидна.Электрический Taycan может подтолкнуть своего брата с двигателем внутреннего сгорания к краю - рынок слишком мал, чтобы стоить обновления модели. Это соревнование в миниатюре, с которым вскоре столкнется глобальный автомобильный рынок. Весь его рост связан с электричеством, и в какой-то момент этот рост происходит за счет продаж двигателей внутреннего сгорания.

Натаниэль Буллард - директор по контенту BloombergNEF.

Прежде чем оказаться здесь, он находится на терминале Bloomberg.

УЧИТЬ БОЛЬШЕ

Как корпорации и правительства пристрастили мир к нефти и расстроили альтернативы: Блэк, Эдвин: 9780312359072: Amazon.com: Books

Глава первая
План против нефти

Тихий полдень в ресторане Томаса Эдисона внезапно нарушили взрывы и пламя. Вест-Ориндж, Нью-Джерси, лабораторный комплекс. Время и дата: 17:20, среда, 9 декабря 1914 года. Услышав взрыв, ошеломленный Эдисон выбежал из своей лаборатории во двор.Там знаменитый изобретатель с удивлением наблюдал, как его хранилище фильмов внезапно вспыхнуло пламенем. Мгновение спустя гонги пожарной сигнализации Эдисона начали яростно звенеть, эхом отражая тревогу по всему комплексу из восемнадцати строений. Десятки сотрудников спустились по лестнице своих офисов, пересекли территорию и вышли на улицу, когда сильное пламя пронеслось по «огнеупорным» зданиям. Взрыв за взрывом, вспышка пламени за взрывом, вспышка пламени за взрывом, словно огненный шквал изнутри, распространяющийся сзади, затем налево и направо, приближаясь спереди, и повсюду между ними, большая часть территории Эдисона вскоре превратилась в ад.Как будто во время зажигательной неистовства, пожары систематически пожирали все содержимое штаб-квартиры и помещений Эдисона.1

Быстро, осторожно, бесстрашно Эдисон и его жена вытащили из своих офисов самые важные бумаги и бросились в безопасное место. Казалось, что все вспыхнуло в мгновение ока. Записи фонографа и кинофильмы сгорели бесконтрольно. Ждать. Не батарейки. Сохраните батарейки. Эдисон бросился через улицу к зданию аккумуляторной батареи и приказал своей частной пожарной команде защитить ее первым.С бравадой Эдисон сам руководил тушением пожара2.

Лишь в полночь большая часть пожара была потушена. Некоторые здания продолжали гореть до 14:00. На следующий день. Пламя было настолько сильным, что один служащий, пытавшийся задействовать огнетушитель, был «сожжен дотла с огнетушителем рядом с ним». 3

Мало кто понимал необычайную скорость и разрушения сильного огня. Десять зданий полностью сгорели дотла. Все, кроме лаборатории Эдисона и здания аккумуляторной батареи, превратились в разоренные огнем развалины.Была выдвинута гипотеза, что случайная искра от переключателя в отделе кинематографии внезапно воспламенила все вокруг. И все же это выглядело так, как если бы огонь вспыхнул сразу отовсюду, через огнеупорный комплекс, здание за зданием, и даже через проходы. Конечно, комплекс Эдисона был наполнен всеми видами горючих химикатов и материалов. Но никто не мог объяснить некоторые «забавные каперсы», как их называли4.

В отчетах вскоре было зафиксировано, что по какой-то причине «в одном из маленьких невысоких красных зданий они обнаружили 2000 галлонов очень крепкого спирта, который не был поврежден. .Более того, следователи также обнаружили на некоторых этажах канистры с бензином, которые даже не загорелись. Пламя охватило их. Углы в бетонном здании даже не пострадали от огня ". Некоторые комнаты возникли без каких-либо повреждений от пожара.5

Как огонь перешел от одного огнестойкого бетонного здания к другому огнестойкому бетонному зданию? рамы и их разбитые от тепла стекла ... Но никто не мог объяснить массивное пламя, уничтожившее большую часть работы Эдисона.Большая часть ущерба собственности на сумму 5 миллионов долларов не была застрахована именно потому, что бетонные здания считались непроницаемыми для огня и потому что на территории всегда дежурила частная пожарная команда.6

Мечты Эдисона - прошлое, настоящее и будущее - теперь превратились в уголь и пепел. Жизнь изобретений угасла в мгновение ока. Стоя среди выжженных руин и тлеющих воспоминаний, из него вышел окутанный дымом, но все же сильный и непобедимый Эдисон, чтобы смело и смело объявить собравшимся репортерам: «Хотя мне больше 67 лет, завтра я начну все сначала.7

Но на самом деле катастрофа стала не только окончательным ударом для человека Эдисона, но и для смелого предприятия двух титанов американского изобретательства и предпринимательства - Томаса Эдисона и Генри Форда. Их план состоял в том, чтобы притупить неудержимый мир. и растущий аппетит к маслу и машинам внутреннего сгорания. В случае успеха Эдисон и Форд - в 1914 году - уведут общество от все более дорогостоящих, а затем и общеизвестных опасностей смерти бензиновых автомобилей: загрязнения воздуха и воды, шума и вредных воздействий , постоянный кашель и неоспоримый рост рака, вызванного частицами дыма.8

Таким образом, в 1914 году два великих человека американских инноваций объединили свои усилия, чтобы подарить миру мир с чистой и беспроводной энергией, в котором каждый дом и фабрика генерировали, а каждый городской квартал передавал электроэнергию. В конце концов они предвидели, что вся энергия будет поступать из чистых возобновляемых источников, таких как ветер, который будет незаметно производиться независимо от крупных энергетических компаний.9

Их целью было не что иное, как смерть машины внутреннего сгорания и рождение чистой , уполномоченная и независимая цивилизация.

Почему нет? В начале двадцатого века тысячи чистых, тихих и простых в эксплуатации электрических такси, легковых и грузовых автомобилей курсировали по городским улицам Америки - от Бостона до Сан-Франциско. Но электромобили и батареи, которые заставляли их работать, попали в ловушку корпоративных скандалов, мошенничества и монополистической коррупции, которые пошатнули доверие нации и вдохновили автомобильные выскочки. Эта коррупция заразила всех, кто вплотную подошел к концу после того, как велосипедная монополия девятнадцатого века объединилась с нарождающейся монополией на электрические батареи в двадцатом веке в союзе с самыми хищными манипуляторами с Уолл-стрит.Этот картель, получивший название Lead Trust, пытался контролировать все перевозки в Америке и, в конечном итоге, во всем мире - не для блага человечества, а для улучшения их личных банковских счетов.10

Авантюрные сторонники грохота, курения, бензина. горящие машины внутреннего сгорания возмутились и заявили, что они могут двигаться дальше и быстрее, чем большинство электромобилей. Они ошибочно утверждали, что шум и грохот, а также дым и ощущение горящих на масле автомобилей были доказательством врожденного превосходства внутреннего сгорания.Они настаивали, что чем шумнее, пахнет, дымнее, тем лучше. Более того, бензиновые и бензиновые автомобили в первые годы двадцатого века были намного дешевле тяжелых свинцовых аккумуляторов с фиксированной ценой и дорогих элитных электромобилей, производимых Lead Trust. В некоторых случаях бензин стоил дешевле воды. Добровольная публика, впечатленная мускулистой природой внутреннего сгорания в тандеме с афазированной государственной политикой, выбрала курение и подавление автомобильного популизма бензиновых автомобилей.11

Но затем молодая индустрия внутреннего сгорания присоединилась к своему заклятому врагу, мощному комбинату аккумуляторов, чтобы совместно уничтожить электромобили и создать новую монополию на автомобили, работающие на жидком топливе, которые дымятся, как драконы, чтобы управлять дорогами, исключая любые другие автомобили. спасти тех, у кого была лицензия. Более того, они сговорились, что ни один человек, малый или великий, богатый или бедный, не мог покупать, продавать или совершать сделки в автомобильной торговле без своей марки.12

С 1907 по 1911 год Генри Форд вел публичную судебную войну против новой вершины. -продолжительный автомобильный суперкартел с двигателем внутреннего сгорания.Он был полон решимости создать свою собственную простую и доступную версию автомобиля внутреннего сгорания. Форд победил. Его мучительная победа позволила Форду разместить дешевую, серийно производимую Model T за 600 долларов в сараях и гаражах по всей стране, что сделало его версию бензинового автомобиля предпочтительным автомобилем для всех. Это тоже ускорило исчезновение электромобилей13.

Но к 1912 году Форд изменил свое мнение о внутреннем сгорании. Он видел всю эту концепцию как устройство производителей-монополистов, зависящих от смертоносного и сильно загрязняющего источника энергии, подверженного постоянным финансовым манипуляциям и манипуляциям с поставками.

Эдисон согласился. Он всегда был очарован движущей силой и всегда знал, что электричество может преобладать над внутренним сгоранием. Эдисон считал, что только электричество - независимо генерируемое и беспроводное - может обеспечить независимость Америки. Он хотел буквально передать людям всю власть, будь они неподвижными или движущимися.

Была разработана система зарядки электромобилей дома, прямо от розетки, наряду с общественными заправочными станциями для аккумуляторов, и она должна быть дополнена повсюду электрическими подзарядными гидрантами у обочины, такими же обычными, как паркоматы.Разряженные батареи будут заменены на новые на станциях обслуживания менее чем за семьдесят пять секунд, что позволит путешествовать на большие расстояния14.

Страна была более чем готова. Правда, звук и ярость внутреннего сгорания издавна были гипнотическими. Но транс был грубо прерван стремительно растущей ценой на нефть. К осени 1912 года из-за нехватки нефтепродуктов цены на газ выросли примерно на 75 процентов по сравнению с предыдущим годом. Нефть больше не была «незначительным» расходом. В выпуске журнала Horseless Age от 18 сентября 1912 года была опубликована трехстраничная статья, в которой изучались альтернативные виды топлива ввиду его нехватки.В первом предложении излагается проблема: «Недавнее внезапное повышение цен на бензин после постепенного повышения в течение последних нескольких лет во всем мире вместе с огромным количеством автомобилей, коммерческих автомобилей и других потребителей этого топлива, вновь привлекла внимание к вопросу о топливе: в то время как предыдущая розничная цена в 16 центов за галлон казалась достаточно высокой, теперь он продается по всему Нью-Йорку по цене от 18 до 22 центов ... Год назад это было так. их можно было купить в розницу по 14 и оптом по цене 10 центов.Это представляет собой рост примерно на 75 процентов в течение года ». Галлон бензина, стоивший двадцать два цента, был равен галлону бензина двадцать первого века стоимостью 5 долларов. Один бак бензина 1912 года мог легко превысить двухдневную заработную плату средний заводской рабочий, который собирал такие автомобили.15

Рост производства автомобилей значительно опережал производство бензина.Количество автомобилей увеличилось с трехсот ...

Премия по двигателям внутреннего сгорания - ASME

Премия «Двигатель внутреннего сгорания» присуждается за выдающиеся достижения или выдающийся вклад за значительный период времени, который может быть результатом исследований, инноваций или образования в области развития инженерного искусства в области двигателей внутреннего сгорания; или в направлении усилий и достижений тех, кто занимается инженерной практикой, в проектировании, разработке, применении и эксплуатации двигателей внутреннего сгорания.

В 1966 году, по завещанию, Дивизион дизельных и газовых двигателей учредил эту награду.

Форма вознаграждения: 1000 $ и табличка
Ограничения: Нет
Административная ответственность: Подразделение двигателей внутреннего сгорания
Срок подачи заявок: 1 февраля
Назначение отправлено: Председатель комитета по двигателям внутреннего сгорания
Председатель комитета: Р.М. Вагнер
Телефон: 865-946-1239
Эл. Почта: [email protected]
Получил: Комитет почестей (COH)

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ ПОЛУЧАТЕЛИ НАГРАДЫ

1967 Фредерик П. Портер 1989 Ричард Д.Кизер 2007 Пол Р. Данилюк
1969 Лео Т. Бринсон младший 1990 Дэниел К. Гарви 2008 Дионисий Н. Ассанис
1971 Мелвин Дж. Гельмих 1991 Фред С. Шауб 2009 Рональд Д. Мэтьюз
1972 Р.Рекс Робинсон 1992 Джон А. Кимберли 2010 Джон Э. Дек
1973 Уоррен А. Роудс 1993 Эдвард Ф. Оберт 2011 Рольф Д. Рейц
1974 Уоррен Дж. Северин 1994 Отто А. Уехара 2012 Николас П.Чернанский
1975 Уильям Спелчер 1995 Джон К. Холлинан 2013 Джон Х. Джонсон
1979 Хельмут Г. Брендел 1997 Бенни Баллхаймер 2014 Роберт М. Вагнер
1981 Филип С.Майерс 1999 Серж Гратч 2015 Фолькер Больной
1982 Дэвид Б. Филд 2000 Чарльз А. Аманн 2016 Терренс Ф. Алджер II
1983 Джеймс Х. Гаррет 2002 Уоррен Э. Снайдер 2017 Пол Майлз
1984 Сэмюэл С.Lestz 2003 Родика А. Баранеску 2018 Деннис Л. Зиберс
1985 Джон М. Бейли 2004 Хамфри Нивен 2019 Питер К. Сенекал
1986 Хью А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *