ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Какие бывают топливные дизельные форсунки

Категория: Полезная информация.

Топливные форсунки - один из главных элементов системы питания дизельного двигателя. С течением времени, конструкция и принцип работы форсунок неоднократно менялись, у каждого нового поколения появлялись свои особенности. Рассмотрим основные типы форсунок, которые встречаются в топливной системе дизельных ДВС.

Зачем вообще нужны форсунки

Форсунки обеспечивают прямую подачу топлива в камеры сгорания и его равномерное распределение по стенкам. Распыление топлива происходит через специальные сопла (распылитель форсунки). Сопла формируют строго заданный топливный факел, в результате чего топливо и воздух смешиваются эффективнее, а смесь сгорает лучше.

Основное отличие форсунок для бензиновых и дизельных систем заключается в рабочем давлении топливной магистрали. Так, если бензонасос создает давление в 1-2 атмосферы в бензиновых двигателях, то топливный насос высокого давления (ТНВД) нагнетает дизтопливо до отметки в несколько сотен атмосфер.

Выделяют несколько типов дизельных форсунок, в зависимости от принципа их работы и особенностей конструкции:

  • механические
  • электромагнитные
  • пьезоэлектрические
  • насос-форсунки

Механические форсунки

Имеют самую простую и надежную конструкцию и длительный стаж применения в автомобилестроении (несколько десятилетий). Принцип работы механической форсунки: клапан ее открывается, как только достигнуто необходимое давление.

Корпус форсунки оканчивается соплом и подпружинной иглой. В опущенном состоянии игла закрывает доступ топлива к соплу. Как только давление поднимается благодаря работе ТНВД, игла приподнимается, топливо поступает на распылитель для последующего впрыска. С падением давления, игла снова опускается, перекрывая доступ топлива к распылителю форсунки.

Такое простое конструктивное решение: корпус, распылитель, игла плюс пружина -  позволяет применять механические форсунки на самых простых моделях дизельных ДВС.

Но вследствие ужесточающихся с каждым годом требований к экономичности и экологичности дизелей, производители были вынуждены искать новые решения, ведь механические форсунки не обеспечивают достаточно контроля над смешиванием топливной смеси.

Электромагнитные форсунки

Речь идет о форсунке, в которой солярка подается в цилиндры посредством опускания и поднимания иглы, но управляется она не пружиной, а с помощью специального элекромагнитного клапана, который регулируется электронным блоком управления двигателя. Следовательно, без соответствующего сигнала топливо не попадет в распылитель.

То есть дозирование топлива, начало его впрыска и длительность подачи определяется ЭБУ двигателя. Необходимые параметры определяются частотой вращения коленвала, режимом работы мотора, температурой ДВС и другими важными параметрами.

При этом в системе Common Rail за один цикл электромеханическая форсунка способна подавать топливо посредством нескольких впрысков (до 7 раз). Такая дозированная и точная подача горючего в цилиндр способствует его лучшему распределению по стенкам камеры сгорания и более полноценной переработке.

Таким образом, за счет управления процессом впрыска под контролем ЭБУ, конструкторам удалось существенно увеличить мощность дизельного двигателя, сделать его более экономичным и экологичным. С появлением электромагнитных форсунок связана и более культурная (не такая шумная, как раньше) работа дизеля, и даже повышение его общего ресурса. 

Пьезоэлектрические форсунки

Самое современное изобретение в категории современных дизельных моторов с системой прямого впрыска топлива в цилиндры. Принцип работы пьезоэлектрических форсунок фактически дублирует электромагнитные форсунки, но вместо электрического магнита клапан, регулирующий впрыск горючего, приводит пьезоэлектрический кристалл.

Дело в том, что отдельные кристаллы способны менять свою форму под действием электрического заряда. При конструировании пьезоэлектрических форсунок был учтен этот принцип. В результате появилось устройство, где кристалл удлинялся под действием электричества, что и приводит в действие запорные механизмы форсунки.

Основное преимущества пьезоэлектрических форсунок - скорость срабатывания клапана. Это позволило совершать многократный впрыск за один цикл подачи горючего в цилиндр (до девяти раз!). В результате качество смеси дизтоплива и воздуха улучшается, мощность и эффективность работы дизельного ДВС увеличиваются.

К основному недостатку относят высокую стоимость пьезоэлектрических форсунок. Они крайне чувствительны к качеству топлива, не поддаются ремонту и восстановлению, а их замена обходится владельцу в круглую сумму.

Насос - форсунки

Насос-форсунка это не отдельный вид форсунки, а целая отдельная система подачи топлива в дизельном ДВС. Особенность такой системы - отсутствие ТНВД. Высокое давление впрыска обеспечивают сами дизельные насос-форсунки.

Принцип их работы заключается в следующем: насос низкого давления подает горючее на форсунку, а затем собственная плунжерная пара форсунки от прямого воздействия кулачков распредвала нагнетает необходимое для впрыска давление. В итоге качество распыления топлива в камере улучшается.

Электрический клапан в устройстве насос-форсунки обеспечивает возможность дозированного впрыска, топливо можно подавать в цилиндр за два впрыска.

К другим преимуществам насос-форсунок можно отнести исключение из системы питания дизеля такого узла, как ТНВД, что облегчает конструкцию и уменьшает габариты самого двигателя. Мотор с насос-форсунками работает мягче и экономичнее, а содержание выхлопа максимально экологично.

Главным недостаткам системы насос-форсунок считается прямая зависимость давления впрыска от частоты вращения коленвала. Кроме того, насос-форсунки очень требовательны к качеству топлива и моторного масла. Ремонтировать и заменять их обходится очень дорого, поэтому на сегодняшний день многие автопроизводители отказываются от насос-форсунок в пользу классической схемы «ТНВД + форсунки».

  • Особенности и виды форсунок Bosch, Delphie, Denso мы рассматривали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

 

Форсунка дизельная - устройство и разновидности

Дизельная форсунка, которую нередко называют инжектором, является ключевой деталью дизельного двигателя. Ее основной задачей выступает подача топлива в камеру сгорания, а также его точная дозировка и распыление. Учитывая сложные условия эксплуатации, которые сопровождают эксплуатацию дизельного двигателя и выражаются в высокой температуре и серьезном давлении, от качества изготовления и эффективности выполнения форсункой своих функций зависит КПД всего агрегата.

Наличие в конструкции топливной форсунки выступает отличительной чертой не только дизельных, но и бензиновых инжекторных двигателей. Необходимость в этой детали возникает из принципа работы обоих типов силовых установок, который предусматривает использование системы прямого впрыска горючего в камеры сжигания. При этом воспламенение топлива происходит под воздействием высокого давления, достигаемого за счет ТНВД. Уровень этого показателя в дизельных агрегатах намного выше, чем в инжекторных бензиновых установках.

Как следствие, эффективная работа двигателя на дизельном топливе возможна только при наличии специальной детали, способной обеспечить своевременную подачу нужного количества горючего, его распыление внутри камеры и герметичность си

темы. Основные функции дизельной форсунки уже были перечислены выше. Они состоят в следующем:

· дозировка горючего, представляющая собой определение такого его количества, которое необходимо для достижения нужной мощности;

· распыление топлива внутри камеры сгорания, что обеспечивает более полное и эффективное сжигание;

· сохранение герметичности системы подачи топлива.

История изобретения и совершенствования

Первые модели дизельного двигателя, разработанные и изготовленные в конце позапрошлого века при непосредственном участии Рудольфа Дизеля, предусматривали наличие так называемой компрессорной форсунки и применение в качестве топлива керосина. Появление ТНВД позволило использовать намного более компактные и удобные бескомпрессорные форсунки.

Особенно удачной оказалась модель инжектора, созданная в 20-х годах прошлого века Робертом Бошем. Этот вариант дизельной форсунки с незначительными доработками и усовершенствованиями применяется до настоящего времени. Конечно же, эксплуатационные и технические параметры современных деталей, несмотря на общую схожесть конструкции, существенно превосходят разработки Боша, что объясняется значительным улучшением качества и точности изготовления, а также использованием в процессе производства новейших сталей и сплавов.

Ключевым усовершенствованием форсунки стало активное применение разнообразной электроники. Использование датчиков контроля и управления работой дизельного двигателя в целом и его отдельных узлов позволяет заметно повысить КПД и эффективность эксплуатации транспортного средства.

Устройство

В настоящее время продолжает активно использовать большое количество различных по конструкции и принципу действия типов дизельных форсунок. Несмотря на определенные особенности каждого из них, можно выделить несколько общих элементов или деталей, в том или ином виде присутствующих практически всегда. К ним относятся:

· корпус, в котором размещаются остальные детали и элементы дизельной форсунки;

· распылитель в виде иглы. Предназначение детали очевидно и заключается в распределении топлива в пространстве над поршнем;

· стержень или плунжер, который движется внутри корпуса форсунки, за счет чего нагнетается необходимый уровень давления;

· пружина запирания иглы. Используется для фиксации иглы в нужном положении;

· штуцер подвода топлива. Предназначен для подачи горючего в форсунку;

· управляющий клапан. Применяется для эффективного решения двух главных задач – дозировки топлива и определения регулярности его впрыскивания в камеру сжигания;

· фильтр очистки топлива. Один из элементов общей системы очистки используемого в дизельном двигателе горючего;

· штуцер обратного отвода излишков топлива. Назначение этого элемента форсунки также предельно очевидно – он применяется для того, чтобы отвести из форсунки топливо, не попавшее в камеру сжигания.

Устройство современных дизельных форсунок предусматривает обязательное наличие электронного блока управления. Входящие в него приборы и датчики в автоматическом режиме регулируют процессы, протекающие в рассматриваемом механизме, обеспечивая эффективную работу как инжектора, так и двигателя в целом.

Рабочие стадии

Эксплуатация дизельной форсунки предусматривает циклическое и последовательное повторение 4 рабочих стадий. В указанное число входят:

1. Закрытое положение форсунки. Начальный этап процесса. Предусматривает создание высокого давления одновременно со стороны плунжера и пружины, благодаря чему форсунка остается закрытой.

2. Начало впрыска. Автоматика подает сигнал, вследствие которого плунжер форсунки начинает двигаться вверх. В результате давление на иглу уменьшается, она также начинает подниматься, обеспечивая начало поступления топлива в камеру сгорания.

3. Полностью открытое положение форсунки. На этом этапе плунжер управления поднимается максимально, достигая верхнего упора. Это означает аналогичное перемещение иглы и режим полного открытия форсунки.

4. Конец впрыска. Завершающая стадия рабочего процесса. Она состоит в опускании управляющего плунжера и иглы форсунки, следствием чего становится перекрытие доступа горючего в камеру сжигания.

Приведенная выше схема с некоторыми корректировками достаточно точно описывает эксплуатацию дизельных форсунок любого типа. Важно понимать, что количество подобных рабочих циклов в период времени зависит от типа и мощности агрегата, вида самой форсунки и большого количества других факторов.

Разновидности и принцип работы

В сегодняшних условиях применяются самые разные виды дизельных форсунок. Их большое разнообразие объясняется как крайне широкой сферой применения, так и различиями в задачах, для решения которых они предназначаются.

Механическая форсунка

Традиционный вариант устройства, постепенно уступающий по популярности современным инженерным решениям. Именно его принцип действия был приведен выше при описании рабочего цикла дизельной форсунки. Он базируется на срабатывании клапана при достижении определенного уровня давления.

Механическая форсунка применяется в автомобилестроении в течение нескольких десятков лет. Однако, введение новых экологических стандартов и всеобщее стремление к повышению уровня экономичности дизельных двигателей привело к неуклонному вытеснению этого классического устройства более эффективным разработкам последних лет.

Главное направление совершенствования форсунки в частности и дизельного двигателя в целом – это передача контроля и управления большинством рабочих процессов электронным приборам и датчикам. Кроме того, отдельного упоминания заслуживает форсунка с двумя пружинами, разделяющая подъем иглы на две стадии. В результате обеспечивается гибкость в подаче горючего, более полное сгорание топлива и уменьшение шума при работе агрегата.

Электромеханическая форсунка

Главное отличие от механического варианта состоит в использовании для перемещения иглы форсунки вместо пружины электромагнитного клапана. Он управляется автоматикой, благодаря чему достигается точное определение количества необходимого топлива и оптимальная периодичность его впрыска.

Электромеханическая форсунка напоминает часто используемую в инжекторных бензиновых двигателях электромагнитную версию устройства. Она не используется в дизель-моторах, так как не способна выдерживать высокое давление.

Насос-форсунка

Еще одна вариация традиционного дизельного двигателя. Устройство агрегата не предполагает наличие обычного ТНВД. Вместо него для нагнетания необходимого уровня давления используются специальные насос-форсунки. Фактически, вместо одного топливного насоса высокого давления устанавливаются несколько более простых, каждый из которых обслуживает только одну форсунку.

Такое устройство двигателя позволяет подавать топливо в камеру сгорания под очень высоким давлением. Как следствие – обеспечивается уверенное самовоспламенение и более полное сжигание горючего. Отсутствие ТНВД позволяет сделать двигатель более компактным, что также выступает немаловажным достоинством.

Однако, использование системы насос-форсунка имеет и определенные недостатки. Главные из них – высокая требовательность к качеству применяемого дизельного топлива, а также более значительные расходы на изготовление двигателя в целом. Именно поэтому стремительно растет популярность еще одной разновидности дизельных форсунок и системы, предусматривающей их применение.

Пьезоэлектрическая форсунка

Устройство пьезофорсунки напоминает электромеханические или электромагнитные аналоги. Главное отличие заключается в использовании вместо электромагнитного клапана специального пьезоэлемента, часто называемого пьезоэлектрическим кристаллом. Его наличие обеспечивает крайне высокое быстродействие устройства. Благодаря этому клапан срабатывает в 4 раза чаще, чем в обычных электромагнитных форсунках.

Нет ничего удивительного, что пьезоэлектрические форсунки стали важным элементом системы впрыска Common Rail, которая используется сегодня практически повсеместно. Ее использование позволяет увеличить эффективность работы дизельного двигателя и повысить КПД при одновременном уменьшении расхода топлива и количества вредных выбросов.

Причины и способы устранения неисправностей

Главной проблемой при эксплуатации форсунок выступает низкое качество дизельного топлива. Оно может быть вызвано с продажей некачественного горючего на автозаправочных станциях, использованием различных красителей и присадок для дизтоплива, слишком большим количеством тяжелых фракций углеводородов или элементарным загрязнением топлива мелкими частицами различных веществ.

В любом из перечисленных случаев возникают крайне неприятные последствия в виде повышенного уровня износа и быстрой эрозии поверхности деталей и узлов дизельной форсунки. Следствием этого становятся очевидные проблемы в работе двигателя в целом, которые обычно выражаются в следующем:

· ослабление или перепады мощности в процессе эксплуатации автомобиля;

· трудности при запуске двигателя;

· порывистое движение при увеличении оборотов;

· заметный рост расхода дизельного топлива;

· увеличение количества выбросов или их качества (черный или сизый дым из выхлопной трубы) и т.д.

Современное диагностическое оборудование позволяет заблаговременно выявить возможные проблемы с форсунками двигателя. Поэтому для длительной и бесперебойной работы агрегата целесообразно регулярно проходить техническое обслуживание, причем в солидной специализированной организации.

Для устранения выявленных проблем применяются различные современные и весьма эффективные методы, требующие наличия соответствующего оборудования и навыков и обслуживающих его специалистов:

· чистка ультразвуком;

· промывка при помощи специальных присадок, добавляемых в дизельное топливо;

· промывка специальными техническими жидкостями на стенде;

· ручная промывка форсунок дизельного двигателя.

Своевременно проведенная диагностика и ремонт форсунок обеспечат длительную и беспроблемную эксплуатацию. В свою очередь, это гарантирует владельцу транспортного средства эффективную и экономную работу всего дизельного двигателя, установленного на автомобиле.

Форсунки двигателя - виды и принцип работы

Познавательная статья о форсунках автомобиля — какие их типы бывают и как они работают.

Содержание статьи:


Форсунка (второе название — «инжектор») представляет собой конструктивный элемент системы впрыска двигателя. Подобное устройство предназначено для подачи топлива в дозированном количестве, дальнейшего его распыления во впускном коллекторе (камере сгорания), т.е. создания топливно-воздушной смеси.

Оборудование такого рода используется во всех системах впрыска двигателей — и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

Конструкция и принцип функционирования электромагнитной форсунки


Фотография устройства электромагнитной форсунки

Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

Конструкция и принцип функционирования электрогидравлической форсунки


Фотография устройства электрогидравлической форсунки

Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу — в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


Схема устройства пьезоэлектрической форсунки

Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана — оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail — аккумуляторная топливная система.

Преимущество подобных устройств — это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу — всё это помещено в корпус устройства.

В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

Количество топлива, которое впрыскивается, определяется такими факторами, как:

  • длительность воздействия на пьезоэлемент;
  • давление топлива в топливной рампе.


Смотрите видео про принцип работы форсунки:

Назначение и типы форсунок дизельных двигателей

Форсунки дизелей предназначены для введения топлива в камеру сгорания и распиливания его в воздушном заряде. Форсунки вместе с топливными насосами высокого давления должны:

  • при объемном смесеобразовании обеспечивать хорошую дисперсность распыливания, характеризующуюся мелкими и одноразмерными каплями, и получение необходимой дальнобойности распыленной струи топлива;
  • при объемно-пленочном и пленочном смесеобразовании подавать топливо в пристеночный объем или на стенку камеры;
  • распределять вводимое топливо по всему объему камеры сгорания в соответствии с типом камеры сгорания и способом смесеобразования;
  • обеспечивать высокие давления впрыска топлива в начале и в конце подачи и средние давления впрыска;
  • иметь простую конструкцию и возможно меньше подвижных деталей;
  • создавать минимальное гидравлическое сопротивление движущемуся топливу;
  • иметь минимальные габаритные размеры с тем, чтобы занимать как можно меньше места в крышках цилиндров и головках дизеля;
  • предотвращать сильные нагревы движущегося по ним топлива;
  • иметь невысокую стоимость изготовления;
  • быть надежными в работе и простыми в обслуживании.

Создать форсунку, которая в одинаковой степени хорошо удовлетворяла бы всем этим требованиям, трудно. В настоящее время существует большое разнообразие форсунок, отличающихся как по принципу работы, так и по конструктивному оформлению. Привести достаточно обоснованную классификацию форсунок затруднительно.

В дизелях применяют следующие форсунки:

  • открытые
  • клапанно-сопловые
  • клапанные
  • мембранные
  • форсунки с запорной иглой: бесштифтовые и штифтовые
  • аккумулирующие форсунки
  • форсунки с гидравлическим нагружением
  • другие

В этих группах можно в свою очередь выделить подгруппы, в которых принадлежащие им форсунки имеют специфические особенности.

Система впрыска насос-форсунками дизельных двигателей

Из этой статьи можно узнать об истории появления и развития дизельных форсунок, их устройстве и особенностях функционирования, их плюсах и недостатках.

Насос-форсунка дизельных двигателей

Форсунку очень часто называют инжектором, предназначение которого состоит в подаче и дозировке горючего в камеры сгорания. Для систем подачи топлива автомобилей новых моделей использование форсунок является основой в их конструкции.

В наше время дизельные двигатели становятся все мощнее, экономичнее и их выбросы все более чистые. Чтобы держать эти показатели в норме, нужно чтобы в цилиндрах автомобиля образовывалась хорошая горючая смесь. Именно поэтому системы впрыска топлива должны иметь высокую эффективность.

Топливо должно быть точно дозировано, распылено до мельчайшей фракции и подано в рабочие цилиндры в определенное время. Насос-форсунка дизельных двигателей в состоянии удовлетворить такие большие требования. Даже Р. Дизелю в свое время хотелось в одном механизме соединить и насос для топлива, и форсунку.

Благодаря такому воссоединению можно было бы отказаться от использования топливопровода высокого давления. После этого давление впрыска значительно бы повысилось.

История развития

Применение технологии прямого впрыска впервые началось с авиационной индустрии в 3-ем десятилетии прошлого века. Где-то через 20 лет эти системы начали применяться в моторах спортивных машин. В 1954-м немецкий концерн Mercedes-Benz запустил серийный выпуск автомобилей, с механизированной системой прямого впрыска горючего. Создана она была другим немецким производителем электроники Bosch.

Приблизительно в то же время изобретатели из Америки опробовали систему прямой подачи топлива на некоторых автомобилях Pontiac, а также Chevrolet. Разработкой занималась Rochester в 1957 году. Попытка принесла не совсем удовлетворительные результаты. Система оказалась нестабильной и очень непростой. Через десяток лет получилось создать систему, управляемую электроникой.

На форсунки горючее подавалось с помощью электронасоса. Этот насос создавал стабильное давление спустя одинаковые временные интервалы. Год 1973-й был отмечен созданием системы прямой подачи горючего, в конструкцию которой входили электронасос и регулятор-распределитель. Тогда же получилось создать систему впрыска, контролируемой «умной» электроникой.

В начале второй половины XIX века угроза экологической катастрофы нарастала. В эти времена двигатели были большими и мощными. Об экономии задумывались мало. Для достижения большей резвости мотора очень часто аппаратура настраивалась на очень обогащенные смеси.

Это приводило к увеличению расхода топлива и выбросу в атмосферу очень вредных отработанных газов. Со временем, все чаще и все больше ученых и разработчиков начали обращать внимание на вопросы экологии и экономии. Одним из решений данных задач стало изобретение инжектора и целой системы подачи горючего в камеры сгорания.

Уже спустя десятилетие инжектор начал активно устанавливаться в системах подачи горючего. В эти годы начинался этап топливного дефицита. В 80-е продолжалось активное внедрение и эксплуатация инжекторов в связи с заострением экологической ситуации. К вопросу сохранности матушки природы подключались волонтеры и государственные программы.

Устройство форсунки и принцип действия

Принцип работы форсунки в дизелях состоит в топливоподаче и распылении его посредством высокого давления. Составляющие дизельной форсунки: управляющий клапан, запорный поршень, обратный клапан, плунжер, игла-распылитель. Топливное давление в форсунках дизельного двигателя создается благодаря плунжеру. Клапаны форсунок бывают:

  • пьезоэлектрические;
  • электромагнитные.

Главным компонентом клапана является игла. Пьезоэлектрический отличается от электромагнитного улучшенным быстродействием.

В строении инжектора пружина способствует четкому размещению иглы в седле. Запорный поршень, а также возвратный клапан способствуют регулировке давления горючего. В распылителе ответственность за впрыск горючего в рабочие камеры лежит на игле. Контроль функционирования форсунок происходит благодаря управляющей системе автомобиля.

Насос-форсунка — это управляемый насос, производящий впрыск распыление топлива. Система подачи топлива вместе с насос-форсунками создают высокое давление и производят впрыск необходимого количества горючего в нужный момент. При каждом цилиндре работает по одной такой форсунке, поэтому отпадает потребность в топливопроводах большого давления.

Насос-форсунки размещаются в головке блока двигателя. Кулачки распределительного вала приводят в действие плунжер форсунки с помощью коромысел. Форма кулачка выполнена таким образом, что достигается резкое опускание плунжера и его медленный подъем. Впрыск топлива возможен из-за подачи управляющего тока электронного блока управления.

Устройство форсунок дизельных двигателей в основном похожее для разных типов и видов форсунок. Незначительные отличия в конструкции лишь определяют их подвид, класс или специфическое использование.

На картинке ниже представлена схема устройства форсунки.

Горючая смесь

Хорошая смесь — залог полного и эффективного выгорания топлива. Если же будут отклонения в количестве топлива, давления и времени подачи, то в выхлопных газах увеличится содержание вредных элементов, шумность двигателя и перерасход топлива. Перед впрыском топлива производится предварительная подача небольшого количества горючего под невысоким давлением.

При этом предупреждающем сгорании в цилиндре поднимается температура и давление. Высокий уровень давления способствует мелкому распылению топлива и появлению хорошей горючей смеси. В работе форсунки дизельного двигателя может также быть дополнительный впрыск топлива для регенерации сажевого фильтра.

Для форсунок дизельных двигателей одним из весомых показателей в процессе работы двигателя есть время сдерживания самовоспламенения смеси.

Это время от впрыска до момента воспламенения. Если в этот временной отрезок идет подача большой дозы топлива, происходит резкое повышение давления и увеличивается шумность горения.

Наличие задержки между впрысками влияет на плавность повышения давления в цилиндрах. При окончании впрыска необходимо резкое падение давления и возвращение иглы распылителя обратно. Таким образом, в камеру не попадает топливо, плохо распыленное и с невысоким давлением. При этом наблюдается неполное сгорание смеси, и токсичность выхлопных газов повышается.

Виды форсунок

Электрогидравлическая дизельная форсунка имеет камеру управления, два дросселя (впускной и сливной) и электромагнитный клапан. Основой работы такой форсунки есть стабильное давление топлива при подаче и при завершении подачи горючего. В начале цикла работы электрический ток не подается на клапан, и он закрыт. Игла впрыска плотно прижата к седлу, поэтому впрыска не происходит.

При подаче электричества клапан срабатывает, подавая топливо. Дроссель для слива открывается, и топливо из камеры управления направляется в сливной трубопровод через сам дроссель. Дроссель впуска производит контроль над уравнением давления в камере и сливной магистрали. Давление форсунок понижается, и игла поднимается, производя впрыск топлива.

Пьезоэлектрическая форсунка

Сегодня такой тип форсунок считается наиболее эффективным механизмом впрыска топлива. В ее конструкцию входят: толкатель, клапан, пьезоэлемент и игла. В основе работы устройства лежит гидравлическое давление. Вначале высокое давление прижимает иглу плотно к седлу. При подаче электричества, пьезоэлемент растягивается, воздействуя на поршень.

Происходит открытие клапана, который направляет горючее на слив. Давление, которое действует на иглу, снижается и разница давлений на двух противоположных концах иглы поднимает ее, открывая отверстие и впрыскивая горючее.

Достоинства дизельных форсунок:

  • Подача точной дозы горючего способствует экономии топлива;
  • Количество вредных выхлопов в воздух значительно ниже за счет лучшего сгорания;
  • Повышается мощность двигателя;
  • Нечувствительность к плохой погоде при запуске мотора.

Недостатки дизельных форсунок:

  • Достаточно сложная и хрупкая конструкция самих форсунок;
  • Использование только качественного топлива;
  • Недешевый ремонт.

Как проверить форсунки дизельного двигателя

В сегодняшнее время проверка форсунок дизельного двигателя — это не только желательный процесс, но и необходимый, учитывая, что качество отечественного топлива на заправках может быть невысокого качества. Симптомы, которые указывают на то, что форсунки забиты следующие:

  • Увеличение расхода горючего;
  • Мощность автомобиля снизилась;
  • Трудности при запуске мотора.

Проверку форсунок можно проделать самому, но лучше довериться профессионалам, у которых есть соответствующее оборудование.

Форсунка дизельного двигателя.


Устройства и приборы высокого давления



Форсунки дизельного двигателя


Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.
Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.
В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания - Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции - с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.
Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.
Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.
Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.
Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Форсунки дизельного двигателя


Дизельные форсунки: особенности конструкции

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Как отремонтировать дизельные форсунки: виды и принципы

Двигатели внутреннего сгорания, построенные по схеме впрыска топлива в камеру сгорания с помощью форсунок, наиболее массово представлены на вторичном рынке автомобильной техники, а тенденция развития современного автопрома, вообще, придерживается концепции по комплектации систем топливоподачи всех новых автомобильных двигателей исключительно форсунками.

Технически сложное устройство называемое форсункой является одними из важнейших функциональных элементов систем подачи топлива непосредственно в камеру сгорания двигателя, делая это под большим давлением. А также форсунки отвечают за своевременное образование топливной смеси и за строгое дозирование порции топлива.

При этом они постоянно работают в интенсивном режиме с большими перегрузками и из-за этого со временем теряют часть своих технических характеристик, что как следствие приводит к сбоям в работе двигателя. Поэтому ремонт форсунок дизельных двигателей является одним из наиболее востребованных видов обслуживания автомобилей.

Причины ремонта форсунок дизельных двигателей

Основная проблема заключается в том, что любой мотор автомобиля осуществляет свою каждодневную работу в условиях далеких от идеальных. Поэтому можно определить ряд основных факторов, приводящих к отказу в работе форсунок систем топливоподачи дизельных двигателей, а именно:

  • возможное низкое качество дизтоплива на автозаправках, то есть отступление от заявленных отраслевых стандартов, которое будет способствовать неправильному образованию воздушно-топливной смеси в камере сгорания двигателя, что приедет к очень ранней или поздней фазе её воспламенения и как следствие это приведет к прогоранию деталей форсунки;
  • наличие присадок или красителей в дизельном топливе, которое будет способствовать загрязнению внутренних каналов форсунок при постоянной работе в режиме больших давлений и высоких температур;
  • присутствие в автомобильном топливе тяжелых фракций углеводородов, которые будут постоянно откладываться и постепенно накапливаться на корпусе форсунок при каждом запуске и останове двигателя, так как тяжёлые углеводороды неспособны полностью сгорать, или испаряться. При этом они образуют плохо смываемые смолистые отложения или частицы твердой сажи, таким образом, образовавшийся нарост в канале всего в 5 микрометров снижает пропускную возможность форсунку как минимум на 15%;
  • присутствие мелких фракций различных посторонних веществ, таких как металлические частицы, оторвавшиеся при работе от трущихся деталей топливных насосов, а также ржавчины, отделившейся от стенок топливных баков. Это во время прохождения под высоким давлением с большой скоростью через клапаны и сопла будут приводить к износу деталей и эрозии поверхности узлов топливных форсунок.

Признаки неисправности форсунок дизельного двигателя

В независимости от негативных факторов или различных причин, приводящих к неисправностям, в работе топливных форсунок необходимо четко знать и понимать к каким последствиям это может привести. Так, отказ в работе инжектора будет проявляться следующими внешними признаками при работе автомобиля:

  • хорошо ощутимое ослабление мощности, при нагретом двигателе;
  • различные трудности во время запуска мотора;
  • неравномерная работа двигателя на холостом ходу;
  • рывки при ускорении;
  • заметное увеличение расхода топлива,
  • наличие постоянной вибрации в районе двигателя,
  • возникновение своеобразных цокающих звуков;
  • появление дыма (черного или сизого) из выхлопной трубы,
  • медленное достижение высоких оборотов двигателя;
  • превышение допустимого уровня моторного масла в поддоне двигателя;
  • загорается значок «check engine» на панели приборов.

При появлении подобных симптомов необходимо незамедлительно сделать техническую диагностику в специализированной автомастерской для того, чтобы разобраться и выявить точные причины, которые привели к отказу в работе двигателя.

Неисправности форсунок дизельного двигателя

К основным неисправностям, возникающим при работе форсунок дизельного двигателя можно отнести:

  • деформация со временем уплотнительных колец;
  • наличие остатков продуктов сгорания на деталях распылителя;
  • существенный износ распылителя;
  • оплавление кончика распылителя;
  • наличие механических царапин на поверхности сопла;
  • значительное сужение диаметра сопла инжектора;
  • различные механические повреждения деталей форсунки;
  • односторонний механический износ иголки распылителя;
  • износ поверхности поршня по периферии клапана;
  • уменьшение хода поршня клапана или стержня распылителя;
  • наличие ржавчины в фильтре тонкой очистки;
  • наличие гранул ржавчины на игле и стержне распылителя;
  • эрозия уплотнителя высокого давления;
  • синее пятно на штифте распылителя из-за перегрева;
  • перегорание электрической катушки магнита.

Наличие одной или нескольких неисправностей в работе инжектора вовсе не обязательно потребует его дорогостоящей полной замены, так как даже устранение самой серьезной поломки будет стоить не более трети от цены новой форсунки.

Технология ремонта форсунок дизельных двигателей

Стоит знать, что если автомобилист самостоятельно не ремонтировал форсунки, то лучше обратиться в специализированный автосервис, а вот переоценка собственных сил, как правило, приводит в лучшем случае к потере времени и покупке новой форсунки. В худшем случае — это может стать следствием более серьезного повреждения двигателя.

В зависимости от рода и степени неисправности дизельного двигателя технология ремонта современных топливных систем осуществляется в следующей последовательности:

  1. Вначале работу двигателя проверяют на общем стенде диагностики автомобиля, что позволяет локализовать существующую неисправность и отбросить все ложные симптомы срабатывания на отказ, к примеру, из-за сбоев в работе бортовой электроники.
  2. При подтверждении того, что неисправность в работе возникла в контуре топливоподачи дизельного двигателя, автомобиль подключают к специализированному диагностическому стенду для топливных систем, где и происходит определение основных причин и выявление дефектов в работе инжектора.
  3. Если причины отказа в работе форсунки возникли из-за их несильного засорения, то тогда просто производят химическую промывку топливной системы двигателя без демонтажа и прямо на автомобиле при помощи специальных фирменных растворов. Хотя эта методика не даёт 100% результата при более сложном засорении, но она рекомендуется при проведении планового технического обслуживания автомобиля через каждые 30 000 км пробега в целях профилактики. При этом химическая промывка является самым недорогим способом обслуживания топливных систем дизельных двигателей.
  4. Наличие серьезных неисправностей требуют более основательного ремонта форсунок, чтобы устранить все причины, связанные с плохим впрыском дизельных двигателей. Для этого их полностью демонтируют с агрегата и при необходимости очищают от мазута и налетов грязи.
  5. Далее, форсунки полностью разбирают и при этом тщательно осматривают все детали, выявляя возможные механические повреждения и различные дефекты, которые могли стать причиной отказа.
  6. Для очистки от несмываемых налетов или различного вида нагаров детали инжектора помещают в специальную ванну, где производят полную очистку с помощью ультразвука. Время пребывания деталей и узлов в ультразвуковой ванне напрямую зависит от степени загрязнения и должно быть достаточно, чтобы полностью убрать налет смолистых отложений с узлов и корпуса форсунки.
  7. Перед сборкой производят замену всех деталей и узлов инжектора, у которых при осмотре были выявлены механические повреждения или другие дефекты.
  8. После проведения всех ремонтных работ, соблюдая технологическую последовательность, топливные форсунки аккуратно собирают, при этом обязательно комплектуют новыми резинотехническими уплотнителями.
  9. Перед установкой на двигатель, форсунки проверяют на работоспособность с помощью испытательных стендов, при необходимости производят регулировку и записывают выходные параметры для пьезоэлектрических типов форсунок.
  10. Отремонтированные форсунки устанавливают непосредственно на двигатель, при этом рекомендуется обязательно произвести замену на новые, уплотнительных медных шайб и болтов крепления. В заключение производят при необходимости наладку блоков управления двигателя.

Как правило, ремонт комплекта топливных форсунок дизельных двигателей на специализированом авторемонтном центре занимает не более двух дней, а общая стоимость ремонтных работ составит в районе 30% от цены нового комплекта инжектора.

Оборудование для ремонта форсунок дизельных двигателей

Существующее сегодня на рынке оборудование для ремонта форсунок дизельных двигателей можно разделить по технологической сложности и функциональным возможностям на несколько категорий, а именно:

  • профессиональные станции для проверки и диагностики всех видов неисправностей топливных систем, как правило, его могут позволить себе крупные сервисные центры;
  • специализированные стенды для испытания форсунок, которые вполне доступны по цене даже для небольших автосервисов;
  • индивидуальные тестеры для диагностики форсунок как минимум должны присутствовать в каждой автомастерской, специализирующейся на ремонте дизельных двигателей;
  • электронные приборы и измерительные инструменты для выполнения регулировок форсунок;
  • инструменты для разборки и сервиса форсунок
  • ультразвуковые ванны для очистки форсунок.

Только наличие в автосервисе оборудования для диагностики и специализированного инструмента будет, является необходимым условием для проведения качественных работ по ремонту форсунок дизельных двигателей.

Источник

Игорь созерцатель
  • Активность: 63k
  • Пол: Мужчина
Игорь созерцатель

Устройство автомобилей



Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые. Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.

В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой. Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин. В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания - Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции - с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями». В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В. Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа. Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами. Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.

Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания. Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло. Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса. Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Какие бывают топливные дизельные форсунки

06 июля 2018 Категория: Полезная информация.

Топливные форсунки - один из главных элементов системы питания дизельного двигателя. С течением времени, конструкция и принцип работы форсунок неоднократно менялись, у каждого нового поколения появлялись свои особенности. Рассмотрим основные типы форсунок, которые встречаются в топливной системе дизельных ДВС.

Зачем вообще нужны форсунки

Форсунки обеспечивают прямую подачу топлива в камеры сгорания и его равномерное распределение по стенкам. Распыление топлива происходит через специальные сопла (распылитель форсунки). Сопла формируют строго заданный топливный факел, в результате чего топливо и воздух смешиваются эффективнее, а смесь сгорает лучше.

Основное отличие форсунок для бензиновых и дизельных систем заключается в рабочем давлении топливной магистрали. Так, если бензонасос создает давление в 1-2 атмосферы в бензиновых двигателях, то топливный насос высокого давления (ТНВД) нагнетает дизтопливо до отметки в несколько сотен атмосфер.

Выделяют несколько типов дизельных форсунок, в зависимости от принципа их работы и особенностей конструкции:

  • механические
  • электромагнитные
  • пьезоэлектрические
  • насос-форсунки
Механические форсунки

Имеют самую простую и надежную конструкцию и длительный стаж применения в автомобилестроении (несколько десятилетий). Принцип работы механической форсунки: клапан ее открывается, как только достигнуто необходимое давление.

Корпус форсунки оканчивается соплом и подпружинной иглой. В опущенном состоянии игла закрывает доступ топлива к соплу. Как только давление поднимается благодаря работе ТНВД, игла приподнимается, топливо поступает на распылитель для последующего впрыска. С падением давления, игла снова опускается, перекрывая доступ топлива к распылителю форсунки.

Такое простое конструктивное решение: корпус, распылитель, игла плюс пружина -  позволяет применять механические форсунки на самых простых моделях дизельных ДВС.

Но вследствие ужесточающихся с каждым годом требований к экономичности и экологичности дизелей, производители были вынуждены искать новые решения, ведь механические форсунки не обеспечивают достаточно контроля над смешиванием топливной смеси.

Электромагнитные форсунки

Речь идет о форсунке, в которой солярка подается в цилиндры посредством опускания и поднимания иглы, но управляется она не пружиной, а с помощью специального элекромагнитного клапана, который регулируется электронным блоком управления двигателя. Следовательно, без соответствующего сигнала топливо не попадет в распылитель.

То есть дозирование топлива, начало его впрыска и длительность подачи определяется ЭБУ двигателя. Необходимые параметры определяются частотой вращения коленвала, режимом работы мотора, температурой ДВС и другими важными параметрами.

При этом в системе Common Rail за один цикл электромеханическая форсунка способна подавать топливо посредством нескольких впрысков (до 7 раз). Такая дозированная и точная подача горючего в цилиндр способствует его лучшему распределению по стенкам камеры сгорания и более полноценной переработке.

Таким образом, за счет управления процессом впрыска под контролем ЭБУ, конструкторам удалось существенно увеличить мощность дизельного двигателя, сделать его более экономичным и экологичным. С появлением электромагнитных форсунок связана и более культурная (не такая шумная, как раньше) работа дизеля, и даже повышение его общего ресурса. 

Пьезоэлектрические форсунки

Самое современное изобретение в категории современных дизельных моторов с системой прямого впрыска топлива в цилиндры. Принцип работы пьезоэлектрических форсунок фактически дублирует электромагнитные форсунки, но вместо электрического магнита клапан, регулирующий впрыск горючего, приводит пьезоэлектрический кристалл.

Дело в том, что отдельные кристаллы способны менять свою форму под действием электрического заряда. При конструировании пьезоэлектрических форсунок был учтен этот принцип. В результате появилось устройство, где кристалл удлинялся под действием электричества, что и приводит в действие запорные механизмы форсунки.

Основное преимущества пьезоэлектрических форсунок - скорость срабатывания клапана. Это позволило совершать многократный впрыск за один цикл подачи горючего в цилиндр (до девяти раз!). В результате качество смеси дизтоплива и воздуха улучшается, мощность и эффективность работы дизельного ДВС увеличиваются.

К основному недостатку относят высокую стоимость пьезоэлектрических форсунок. Они крайне чувствительны к качеству топлива, не поддаются ремонту и восстановлению, а их замена обходится владельцу в круглую сумму.

Насос - форсунки

Насос-форсунка это не отдельный вид форсунки, а целая отдельная система подачи топлива в дизельном ДВС. Особенность такой системы - отсутствие ТНВД. Высокое давление впрыска обеспечивают сами дизельные насос-форсунки.

Принцип их работы заключается в следующем: насос низкого давления подает горючее на форсунку, а затем собственная плунжерная пара форсунки от прямого воздействия кулачков распредвала нагнетает необходимое для впрыска давление. В итоге качество распыления топлива в камере улучшается.

Электрический клапан в устройстве насос-форсунки обеспечивает возможность дозированного впрыска, топливо можно подавать в цилиндр за два впрыска.

К другим преимуществам насос-форсунок можно отнести исключение из системы питания дизеля такого узла, как ТНВД, что облегчает конструкцию и уменьшает габариты самого двигателя. Мотор с насос-форсунками работает мягче и экономичнее, а содержание выхлопа максимально экологично.

Главным недостаткам системы насос-форсунок считается прямая зависимость давления впрыска от частоты вращения коленвала. Кроме того, насос-форсунки очень требовательны к качеству топлива и моторного масла. Ремонтировать и заменять их обходится очень дорого, поэтому на сегодняшний день многие автопроизводители отказываются от насос-форсунок в пользу классической схемы «ТНВД + форсунки».

  • Особенности и виды форсунок Bosch, Delphie, Denso мы рассматривали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ



Знай свой автомобиль: 4 типа дизельных топливных насосов

На каждые 100 автомобилей, проданных в США, продается один автомобиль с дизельным двигателем. Если вы относитесь к этой группе пользователей дизельных двигателей, убедитесь, что вы знаете, какой у вас тип дизельного топливного насоса.

    1. ТНВД Common Rail. Этот насос представляет собой систему подачи дизельного топлива с электронным управлением. Этот насос был разработан в соответствии со строгими требованиями к выхлопным газам 21 века.Он состоит из подающего насоса, Common Rail, форсунок с электронным управлением, различных датчиков для определения рабочего состояния двигателя и компьютера, который управляет всеми этими устройствами. Двигатель приводит в действие подающий насос, вырабатывающий топливо под высоким давлением. Common Rail распределяет топливо по форсункам, которые установлены на каждом цилиндре двигателя.
    2. Распределительный (роторный) ТНВД. Этот дизельный топливный насос также управляется электроникой с помощью различных датчиков, электронного блока управления и исполнительного механизма.Как и в насосе Common Rail, датчики определяют состояние работы двигателя и отправляют сигналы в блок управления. Привод регулирует количество впрыскиваемого топлива и его синхронизацию в соответствии с сигналами, которые он получает от блока управления. Блок управления определяет, какие сигналы он посылает, вычисляя оптимальные уровни для условий работы двигателя.
    3. ТНВД рядный. Одна из двух дизельных топливных систем с механическим управлением, рядный топливный насос высокого давления соответствует цилиндрам двигателя по количеству механизмов давления топлива.Этот насос в основном используется для средних и больших грузовиков и строительной техники. Распределительный вал приводит в действие механизмы регулирования давления топлива и количества впрыскиваемого топлива в корпусе насоса. Элементы в этом корпусе следуют порядку впрыска для подачи топлива в каждый цилиндр двигателя.
    4. ТНВД распределительный. Распределительный топливный насос, также являющийся дизельным топливным насосом с механическим управлением, имеет только один механизм давления топлива, несмотря на количество цилиндров двигателя, которое может иметь транспортное средство.Распределитель спроектирован так, чтобы следовать порядку впрыска для распределения топлива под давлением в каждый цилиндр. В корпусе насоса находятся все его компоненты, включая регулятор, таймер и подающий насос. Этот компактный насос легок и может работать на высоких скоростях, что делает его идеальным для небольших двигателей.

Знать точный тип дизельного топливного насоса вашего автомобиля важно, если он показывает признаки необходимости замены, которые могут включать резкие скачки скорости, повышение температуры автомобиля, уменьшение расхода бензина и многое другое.Если вы наблюдаете какой-либо из этих индикаторов, обратитесь к производителям дизельных насосов или производителей топливных насосов, чтобы узнать, нужна ли вам замена сегодня.

Как работают форсунки дизельного топлива

Рынок дизельных двигателей продолжает расти из года в год, поскольку потребность в надежных автомобилях малой и большой грузоподъемности возрастает в основном во второстепенных странах и странах третьего мира. По мере совершенствования инфраструктуры во всем мире растет и потребность в надежных рабочих тележках.JD Power and Associates прогнозирует, что продажи дизельного топлива увеличатся более чем в три раза в следующие 10 лет, что составит более 10% от всех продаж автомобилей по сравнению с 3,6% всего 10 лет назад в 2005 году. С 2000 по 2005 год регистрация дизельных двигателей увеличилась более чем на 80%. более 550 000 автомобилей. С 2005 по 2015 год это число увеличилось еще на 67%.

Как работают топливные форсунки

Топливные форсунки - это небольшие электрические компоненты, которые используются для подачи топлива через распылитель непосредственно во впускной коллектор перед впускным клапаном в дизельном двигателе.Форсунки дизельного топлива довольно сложны; инжектор имеет фильтр с высокими микронами на верхней стороне впуска, который соответствует небольшим отверстиям для подкожных инъекций внизу для распыления дизельного топлива. Дизельное топливо действует как источник смазки для внутренних частей форсунки. Основной источник выхода из строя форсунок - вода в топливе. Когда вода в топливе вытесняет смазочные свойства, внутренние детали быстро изнашиваются, и форсунка в целом может довольно быстро выйти из строя.

Форсунки - чрезвычайно важный компонент двигателя.Клапан форсунки открывается и закрывается с той же частотой вращения, что и дизельный двигатель. Типичная частота вращения дизельных двигателей в Северной Америке составляет около 1800. Это примерно 140 000 оборотов в час! Помимо воды в топливе, форсунки подвергаются воздействию частиц углерода и грязи, попадающих в агрегат через плохой элемент воздухоочистителя. Тип топлива, марка и используемые присадки также оказывают значительное влияние на ожидаемый срок службы топливной форсунки. ECM (модуль управления двигателем) управляет топливными форсунками в большинстве электрических дизельных двигателей.Дизельные форсунки постоянно находятся под напряжением при включении ключа независимо от того, включен ли двигатель. Контроллер ЭСУД заземляет форсунку, замыкая цепь и вызывая открытие форсунки. Контроллер ЭСУД после получения информации от различных управляющих датчиков определяет продолжительность времени, в течение которого форсунки должны быть заземлены, чтобы впрыснуть точное количество топлива с учетом требуемой выходной мощности двигателя.

Процесс открытия, закрытия дизельных форсунок и выдачи нужного количества топлива происходит за миллисекунды.Запуск цикла форсунки в среднем занимает от 1,5 до 5 миллисекунд. Форсунки дизельного топлива бывают разных форм и размеров в зависимости от марки и модели двигателя, а также потребляемой мощности. Автомобильные форсунки немного меньше тяжелых дизельных двигателей и измеряются в кубических дюймах. Существует два типа форсунок дизельного топлива: первый называется впрыском в корпус дроссельной заслонки, где 1-2 форсунки расположены в самом корпусе дроссельной заслонки в дизельном двигателе и подают отмеренное количество распыляемого тумана топлива во впускной коллектор.Эта система подачи по существу заряжает впускной канал, а впускной клапан втягивает топливо в цилиндр двигателя. Вторая система подачи, известная как топливная форсунка с отдельным портом, является более новой и более экономичной. Портовый впрыск более эффективен, чем карбюратор, поскольку он подстраивается под плотность воздуха и высоту и не зависит от вакуума в коллекторе.

При впрыскивании через дроссельную заслонку неэффективность достигается тогда, когда в цилиндрах, ближайших к форсункам, смесь лучше, чем в наиболее удаленных.При впрыске с портом этот недостаток устраняется путем впрыска одинакового количества топлива в каждый цилиндр двигателя.

Детали инжектора

Каждая топливная форсунка немного отличается, но все они состоят из 15 основных частей, включая фильтр, направляющее кольцо, пружину сердечника, пружину седла, седло, полюсный наконечник, упор, катушку соленоида, корпус соленоида, кольцо сердечника, сердечник, корпус распылительного наконечника, директор и распылительный наконечник. Контроллер ЭСУД регулирует подачу топлива, поднимая шар с седла.Это позволяет топливу течь через отверстие седла, а затем выходить через неподвижную направляющую пластину с несколькими отверстиями. Направляющая пластина служит для направления факела распыления топлива. Этот тип инжектора имеет форму распыления от 10 до 15 градусов. Распыление топлива этого типа форсунки аналогично форсунке дискового типа. Форсунки дискового и шарового типа по своей конструкции менее подвержены засорению.

Форсунки для дизельного топлива бывают разных форм и размеров, а также условий работы.В статье, размещенной здесь, объясняется разница между OEM, восстановленными, восстановленными и бывшими в употреблении форсунками. Capital Reman Exchange может помочь вам определить, какой тип топливной форсунки подходит для вашего дизельного двигателя.

Категории товаров
Без категории,

ZOIL | Основы дизельной топливной системы


Функция дизельной топливной системы состоит в том, чтобы впрыскивать точное количество распыленного топлива под давлением в каждый цилиндр двигателя в нужное время.Возгорание в дизельном двигателе происходит, когда поток топлива смешивается с горячим сжатым воздухом. (В бензиновом двигателе не используются электрические искры.)

Топливная система состоит из следующих компонентов.

Есть много разных типов и форм топливных баков. Каждый размер и форма предназначены для определенной цели. В топливном баке должно храниться достаточно топлива для работы двигателя в течение разумного периода времени. Бак должен быть закрыт, чтобы предотвратить попадание посторонних предметов.Он также должен быть провентилирован, чтобы позволить воздуху поступать, заменяя любое топливо, требуемое двигателем. Требуются еще три отверстия в баке: одно для заполнения, одно для слива и одно для слива.

Дизельные топливопроводы бывают трех типов. К ним относятся тяжелые трубопроводы для высоких давлений между ТНВД и форсунками, трубопроводы среднего веса для легких или средних давлений топлива между топливным баком и ТНВД, а также легкие трубопроводы с низким давлением или без него.

Дизельное топливо необходимо фильтровать не один раз, а несколько раз в большинстве систем. Типичная система может иметь три ступени прогрессивных фильтров - сетку фильтра в баке или перекачивающем насосе, первичный топливный фильтр и вторичный топливный фильтр. В последовательных фильтрах все топливо проходит через один фильтр, а затем через другой. В параллельных фильтрах часть топлива проходит через каждый фильтр.

Для получения дополнительной информации о топливных фильтрах см. Основные сведения о дизельных топливных фильтрах.

В простых топливных системах для подачи топлива из бака к ТНВД используется сила тяжести или давление воздуха.На современных быстроходных дизельных двигателях обычно используется топливоперекачивающий насос. Этот насос, приводимый в действие двигателем, автоматически подает топливо в систему впрыска дизельного топлива. Насос часто имеет ручной рычаг подкачки для удаления воздуха из системы. Современные ТНВД - это почти все толкательные насосы, которые используют плунжерный и кулачковый метод впрыска топлива.

Есть четыре основных системы впрыска топлива:

1. Отдельный насос и форсунка для каждого цилиндра

2.Комбинированный насос и форсунка для каждого цилиндра (насос-форсунка тип )

3. Один насос, обслуживающий форсунки на несколько цилиндров (распределитель типа )

4. Насосы в общем корпусе с форсунками на каждый цилиндр ( система common rail )

Система Common Rail быстро набирает популярность для применения на дорогах. Рядный и распределительный типы используются на внедорожниках и промышленных машинах.

Форсунки дизельного топлива, пожалуй, самый важный компонент топливной системы. Работа форсунок - подавать точное количество распыленного топлива под давлением в каждый цилиндр. Сильно распыленное топливо под давлением, равномерно распределенное по цилиндру, приводит к увеличению мощности и экономии топлива, снижению шума двигателя и более плавной работе.

В современных форсунках дизельного топлива, например, в топливных системах Common Rail, используется пьезоэлектричество.Пьезоэлектрические форсунки чрезвычайно точны и могут выдерживать очень высокое давление, характерное для систем Common Rail.

Топливо, используемое в современных высокоскоростных дизельных двигателях, производится из более тяжелых остатков сырой нефти, которые остаются после удаления более летучих видов топлива, таких как бензин, в процессе очистки. Наиболее распространенный сорт дизельного топлива - это 2-D, более известный как дизельное топливо со сверхнизким содержанием серы (ULSD).

Для получения дополнительной информации о дизельном топливе см. Основные сведения о дизельном топливе со сверхнизким содержанием серы.

Распространенный враг дизельных топливных систем - вода. К сожалению, вода чаще встречается в дизельном топливе, чем думает большинство людей. Если вода попадет в систему впрыска, она быстро окислит компоненты черных металлов (стали). Некоторые из наиболее распространенных отказов, связанных с водой, включают:
• Захват компонента впрыска
• Заедание компонентов дозатора как в насосе, так и в инжекторе
• Отказ регулятора / дозирующего компонента

Дизельная топливная система является важным компонентом любого дизельного двигателя, и ее оптимальная работа важна для максимальной производительности.E-ZOIL производит несколько присадок, разработанных для решения общих проблем, с которыми сталкивается система дизельного топлива. Присадки E-ZOIL повышают смазывающую способность топливной системы и предотвращают преждевременный выход из строя топливных насосов и форсунок. Ознакомьтесь с нашей линейкой присадок для защиты вашего топлива и оборудования!

типов топливных форсунок | | - Pro Flow

Типы топливных форсунок:

Верхняя подача - Топливо входит сверху и выходит снизу.

Боковая подача - Топливо попадает сбоку на штуцере форсунки внутри топливной рампы.

Форсунки корпуса дроссельной заслонки - (TBI) Расположены непосредственно в корпусе дроссельной заслонки.

Типы систем впрыска топлива:

Форсунки с дроссельной заслонкой или одноточечные форсунки (TBI)
Одноточечный впрыск был первым шагом до появления более сложных многоточечных систем. Не такой точный, как современные системы, TBI дозировал топливо лучше, чем карбюратор, был дешевле и проще в обслуживании.

Портовый или многоточечный впрыск топлива (MPFI)
Многоточечный впрыск топлива имеет отдельную форсунку для каждого цилиндра, сразу за его впускным отверстием, поэтому систему иногда называют впрыском через порт.Подача паров топлива так близко к впускному отверстию гарантирует, что они будут полностью втянуты в цилиндр. Основным преимуществом является то, что MPFI измеряет топливо более точно, чем TBI, обеспечивая желаемое соотношение воздух / топливо. MPFI снижает вероятность конденсации топлива во впускном коллекторе.

Последовательный впрыск топлива (SFI)
SFI, который иногда называют последовательным впрыском топлива в каналы (SPFI) или впрыском по времени, представляет собой тип многоточечного впрыска. Хотя в базовом MPFI используется несколько форсунок, которые распыляют топливо одновременно или группами.Последовательный впрыск топлива запускает каждую форсунку независимо и синхронизируется по времени, как свечи зажигания. SFI распыляет топливо непосредственно перед или после открытия впускного клапана.

Прямой впрыск
Прямой впрыск подает топливо непосредственно в камеры сгорания, минуя клапаны. Прямой впрыск, более распространенный в дизельных двигателях, набирает популярность в конструкциях бензиновых двигателей и иногда называется DIG или бензин с прямым впрыском. Как и в других системах, дозирование топлива является еще более точным, а прямой впрыск дает инженерам еще одну переменную, влияющую на то, как происходит сгорание в цилиндрах.

Профессиональные услуги по проверке и очистке системы впрыска топлива для:
В списке указаны не все, мы обслуживаем топливные форсунки и для других моделей. Звоните, если есть вопросы.

Топливные форсунки Acura
Топливные форсунки Alfa Romeo
American Motors
Топливные форсунки Audi
Топливные форсунки Bentley
Топливные форсунки BMW
Топливные форсунки Buick
Топливные форсунки Cadillac
Топливные форсунки Chevrolet
Топливные форсунки Chrysler
Топливные форсунки Dodge
Топливные форсунки
Топливные форсунки Ferrari
Топливные форсунки Fiat
Топливные форсунки Ford
Топливные форсунки Geo
Топливные форсунки GMC
Топливные форсунки Holden
Топливные форсунки Honda
Топливные форсунки Hyundai
Топливные форсунки Infiniti
Топливные форсунки Isuzu
Топливные форсунки Jaguep

Kia Топливные форсунки

Топливные форсунки Lancia
Топливные форсунки Lexus
Топливные форсунки Lincoln
Топливные форсунки Mazda
Топливные форсунки Mercedes Benz
Топливные форсунки Mercury
Топливные форсунки Merkur
Топливные форсунки Mitsubishi
Топливные форсунки Nissan
Топливные форсунки Oldsmobile
Топливные форсунки
Топливные форсунки Porsche
Топливные форсунки для Range Rover
Топливные форсунки Renault
Топливные форсунки Rolls Royce
Топливные форсунки Rover
Топливные форсунки Saab
Топливные форсунки Saturn
Топливные форсунки Seat
Топливные форсунки Subaru
Топливные форсунки Suzuki
Топливные форсунки
Toyota Tri ... Форсунки Volkswagen
Форсунки Volvo

Форсунки Yamaha

Какие существуют типы впрыска топлива? | Новости

АВТО.COM - Вы слышали этот термин раньше, но каковы фактические нюансы впрыска топлива? Какие типы впрыска топлива используются в вашем автомобиле? Для этого требуется немного базового понимания движка, но мы готовы помочь. Типы впрыска топлива, используемые в новых автомобилях, включают четыре основных типа:

  • Одноточечный впрыск или дроссельная заслонка
  • Портовый или многоточечный впрыск топлива
  • Последовательный впрыск топлива
  • Прямой впрыск

Связано: Нужна ли периодическая чистка топливных форсунок?

Одноточечный впрыск или дроссельная заслонка

Самый ранний и простой тип впрыска топлива, одноточечный, просто заменяет карбюратор с одной или двумя форсунками в корпусе дроссельной заслонки, который является горловиной впускного коллектора двигателя.Для некоторых автопроизводителей одноточечный впрыск был ступенькой к более сложной многоточечной системе. Хотя TBI и не так точен, как последующие системы, он измеряет топливо с лучшим контролем, чем карбюратор, он дешевле и проще в обслуживании.

Портовый или многоточечный впрыск топлива

Многоточечный впрыск топлива предусматривает выделение отдельной форсунки для каждого цилиндра, прямо за его впускным отверстием, поэтому систему иногда называют впрыском через порт. Стрельба паров топлива так близко к впускному отверстию почти гарантирует, что они будут полностью втянуты в цилиндр.Основным преимуществом является то, что MPFI измеряет топливо более точно, чем конструкции TBI, лучше обеспечивает желаемое соотношение воздух-топливо и улучшает все связанные аспекты. Кроме того, это практически исключает возможность конденсации или скопления топлива во впускном коллекторе. В случае TBI и карбюраторов впускной коллектор должен быть спроектирован так, чтобы отводить тепло от двигателя, что является мерой для испарения жидкого топлива.

В двигателях, оснащенных MPFI, в этом нет необходимости, поэтому впускной коллектор может быть выполнен из более легкого материала, даже из пластика.Результатом является постепенное повышение экономии топлива. Кроме того, там, где обычные металлические впускные коллекторы должны быть расположены наверху двигателя для отвода тепла, те, которые используются в MPFI, могут быть размещены более творчески, предоставляя инженерам гибкость при проектировании.

Последовательный впрыск топлива

Последовательный впрыск топлива, также называемый последовательным впрыском топлива в каналы (SPFI) или впрыском по времени, представляет собой тип многоточечного впрыска. Хотя в базовом MPFI используется несколько форсунок, все они распыляют топливо одновременно или группами.В результате топливо может «зависать» над портом до 150 миллисекунд, когда двигатель работает на холостом ходу. Это может показаться небольшим, но этого недостатка достаточно, чтобы инженеры устранили его: последовательный впрыск топлива запускает каждую форсунку независимо. Работая по времени, как свечи зажигания, они распыляют топливо непосредственно перед открытием впускного клапана или сразу после него. Это кажется незначительным шагом, но повышение эффективности и выбросов достигается в очень малых дозах.

Прямой впрыск

Прямой впрыск максимально расширяет концепцию впрыска топлива, впрыскивая топливо непосредственно в камеры сгорания, минуя клапаны.Прямой впрыск, более распространенный в дизельных двигателях, начинает появляться в конструкциях бензиновых двигателей, иногда называемых DIG для бензина с прямым впрыском. Опять же, дозирование топлива даже более точное, чем в других схемах впрыска, а прямой впрыск дает инженерам еще одну переменную, позволяющую точно влиять на то, как происходит сгорание в цилиндрах. Наука о конструкции двигателя изучает, как воздушно-топливная смесь вращается в цилиндрах и как взрыв распространяется от точки воспламенения.

Такие вещи, как форма цилиндров и поршней; расположение портов и свечей зажигания; время, продолжительность и интенсивность искры; и количество свечей зажигания на цилиндр (возможно более одной) - все это влияет на то, насколько равномерно и полно топливо сгорает в бензиновом двигателе. Прямой впрыск - еще один инструмент в этой области, который можно использовать в двигателях с низким уровнем выбросов.

Редакционный отдел Cars.com - ваш источник автомобильных новостей и обзоров. В соответствии с Cars.com, редакторы и рецензенты не принимают подарки или бесплатные поездки от автопроизводителей. Редакционный отдел не зависит от отделов рекламы, продаж и спонсируемого контента Cars.com.

2 основных типа топливных форсунок для судовых дизельных двигателей | автор: Мерсад Берберович

В судовых дизельных двигателях есть два типа топливных форсунок. Один тип - охлаждаемый инжектор, вокруг которого циркулирует масло или вода в системе с замкнутым контуром. Другой тип - это неохлаждаемый инжектор, который зависит от циркуляции жидкого топлива для поддержания желаемых температур на распылительных форсунках.Основное различие между охлаждаемой форсункой и неохлаждаемой форсункой можно резюмировать следующим образом:

  • Охлаждаемые форсунки, как следует из их названия, непосредственно служат для охлаждения двигателя.
  • Неохлаждаемые форсунки фактически не охлаждают двигатель. Вместо этого они зависят от циркуляции мазута. (Мы рассмотрим чуть более подробную информацию позже.)

Тип топлива, используемый в судовых дизельных двигателях

Судовые дизельные двигатели отличаются от своих не судовых аналогов несколькими ключевыми аспектами, одним из которых является тип используемого топлива в них.Наиболее распространенный вид топлива, используемого в судовых дизельных двигателях, называется мазутом (HFO). Это топливо почти похоже на смолу и является побочным продуктом переработки сырой нефти. Перед использованием HFO необходимо обработать, чтобы удалить воду и любые твердые частицы. После обработки он впрыскивается в камеру сгорания в виде распыленного тумана.

Охлаждаемые топливные форсунки

Топливные форсунки, охлаждаемые за счет рециркуляции, чаще всего используются в современных дизельных двигателях.Одна из причин популярности охлаждаемых топливных форсунок заключается в том, что они чрезвычайно эффективны, особенно в сочетании с системой подачи топлива Common Rail и системами управления двигателем.

Современный охлаждаемый инжектор не имеет каких-либо типичных каналов для охлаждающей воды для поддержания ее низкой температуры. Следовательно, он может поддерживать низкую температуру только за счет циркуляции HFO и охлаждающей воды головки цилиндров, когда она проходит рядом с карманом форсунки. Головка блока цилиндров сделана так, что в ней есть место для нескольких отверстий для воды в области кармана форсунки, которые помогают охлаждать корпус форсунки.

Циркуляция HFO и головка блока цилиндров обеспечивают охлаждение форсунки без помощи внешней системы охлаждения топливного клапана. Энергия, которая экономится за счет отсутствия необходимости в использовании внешней системы, повышает общую эффективность, особенно двигателя.

Форсунки охлаждаемого топлива состоят из стального корпуса и форсунки. В корпусе находится пружина и приводной стержень, а в сопле - игольчатый клапан, а также его седло и отверстия для распылителя. Существует верхняя камера, которая получает постоянную подачу HFO, когда кулачок топливного насоса находится в нижней части своего хода.Это стадия рециркуляции топлива в камере. Когда кулачок возвращается в верхнюю часть своего хода, повышенное давление топливного насоса активирует предохранительный клапан, который подает топливо под высоким давлением из верхней камеры в нижнюю камеру. Это топливо поднимает игольчатый клапан и вводит распыленное топливо через отверстия сопла в камеры сгорания.

Неохлаждаемые топливные форсунки

Неохлаждаемые дизельные топливные форсунки с гидравлическим приводом обычно используются в двухтактных судовых дизельных двигателях большего размера.Эти топливные форсунки называются неохлаждаемыми, потому что именно топливо, а не топливная форсунка, обеспечивает охлаждающий эффект.

Форсунки неохлаждаемого топлива имеют одинаковую конструкцию, независимо от типа двигателя, в котором они установлены. Они имеют подпружиненный игольчатый клапан, который управляется гидравлически для выпуска топлива под высоким давлением через форсунку распылителя.

Эти топливные форсунки имеют две камеры - верхнюю и нижнюю. Верхняя камера заправляется мазутом от топливного насоса, который перекрывается игольчатым клапаном.Нижняя камера имеет несколько небольших отверстий для распылителя определенного размера и закрыта угловым седлом игольчатого клапана. Эта камера отвечает за подачу топлива в камеру сгорания.

Клапан открывается, когда сжатие пружины преодолевается давлением топливного насоса. Когда игольчатый клапан поднимается, масло может течь в нижнюю камеру. Игла быстро поднимается и позволяет топливу под высоким давлением проходить через отверстия распылителя в камеру сгорания.Когда давление уменьшается, сжатие пружины вызывает закрытие клапана.

Какими бы надежными ни были эти топливные форсунки, время от времени, как и во всем остальном, могут возникать проблемы. Вот некоторые из наиболее часто встречающихся проблем, а также способы их решения:

Вывод клапана должен работать быстро и надежно, без утечки масла. Есть несколько мест, которые вы можете проверить, чтобы убедиться, что нет утечки и сохраняется быстрое движение.Сначала осмотрите пружину, чтобы убедиться, что она не повреждена и не деформирована. Вам также необходимо убедиться, что отверстия распылителя чистые и не демонстрируют чрезмерного износа. Наконец, убедитесь, что притертая поверхность не повреждена и правильно выровнена.

Негерметичный игольчатый клапан - распространенная проблема в системе впрыска топлива. Неисправный или поврежденный игольчатый клапан может привести к множеству проблем. Одна из проблем - чрезмерно высокая температура выхлопных газов, которая может привести к пожару.Несгоревшее топливо из-за протекающей иглы может привести к образованию нагара. Другой распространенной проблемой из-за протекающей иглы является снижение полноты сгорания. Протекающая игла может привести ко многим проблемам и, в худшем случае, может быть совершенно опасной. К счастью, при правильном тестировании и обслуживании вероятность возникновения этих проблем минимальна.

Заключение

Есть много способов обеспечить судовой двигатель топливом, и на данный момент впрыск топлива является лучшим и наиболее эффективным.Достижения, которые произошли с течением времени, только увеличили преимущества, которые системы впрыска топлива обеспечивают для морского транспорта, хотя не все системы впрыска топлива одинаковы. Имея лишь немного базовых знаний, вы сможете лучше воспользоваться этими преимуществами, зная, как избежать многих из наиболее потенциальных проблем с вашей судовой системой впрыска топлива.

Дизельные топливные насосы - Топливный насос

Топливный насос является сердцем дизельного двигателя.Точно поданное топливо поддерживает ритм или синхронизацию, которые обеспечивают бесперебойную работу двигателя. Одновременно насос также регулирует количество топлива, необходимое для получения желаемой мощности. ТНВД выполняет работу как дроссельной заслонки, так и системы зажигания, необходимых в бензиновых двигателях. При диагностике бензинового двигателя вы проверяете компрессию, топливо и искру. У дизеля нет системы зажигания, поэтому с ним на одну ошибку меньше. Основные успехи в разработке дизельного двигателя являются прямым результатом улучшенного впрыска топлива.Вот как работает ТНВД.

Насосы с линейным впрыском (рывками)
Первые насосы, в которых для подачи дозированного топлива в камеру сгорания использовались плунжеры, были разработаны еще в 1890-х годах. На это ушло почти сорок лет, но в 1927 году Bosch представила серийный линейный насос с спиральным управлением. Эти первые насосы очень похожи на Bosch P7100 (P-pump) на двигателях Dodge Ram 5.9L Cummins '94 - '98. Иногда их называют толчковыми насосами. Они состоят из отдельных насосов и плунжеров, соединенных в линию, по одному на цилиндр.Они активируются кулачком, который механически связан с двигателем. Тем не менее, насос может изменять время, хотя и не до такой степени, как система с электронным управлением. Рядные ТНВД похожи на рядные мини-двигатели. Первые рядные ТНВД обеспечивали давление впрыска от 3000 до 5000 фунтов на квадратный дюйм, в то время как более новый Bosch P7100, установленный на двигателях Cummins от '94 до '981/2, обеспечивает давление 18000 фунтов на квадратный дюйм.

Распределительные (роторные) впрыскивающие насосы
Эти типы насосов имеют только один дозатор топлива.Вращающийся ротор обеспечивает гидравлическое соединение с различными портами на распределительной головке, в некоторой степени аналогично тому, как распределитель работает на бензиновом двигателе. Преимущества роторного насоса только с одним плунжером в том, что все порции топлива абсолютно одинаковы, что позволяет уменьшить габаритные размеры. Кроме того, насосы распределительного типа имеют меньше движущихся частей по сравнению с линейными насосами. Двумя примерами механических ротационных насосов являются Stanadyne DB2 и Bosch VE. Stanadyne DB2 создает давление 6700 фунтов на квадратный дюйм, а Bosch VE - 17000 фунтов на квадратный дюйм.

Примером электронного роторного насоса является Bosch VP44, который способен создавать давление 23 000 фунтов на квадратный дюйм. Это самый умный насос с максимальной ответственностью - даже по сравнению с новыми насосами Common Rail CP3. Это так, потому что все, что нужно сделать CP3, - это создать давление. Помимо создания давления, VP44 необходимо электронно контролировать время и количество топлива, подаваемого в двигатель.

Просмотреть все 5 фотографийЭто блок-схема дизельного топлива для первого серийного ТНВД Bosch.

Система впрыска Common-Rail
При системе впрыска Common-Rail сам насос в значительной степени утратил свои полномочия решать, когда и в каком количестве подавать топливо под давлением. Например, насос CP3 получает топливо из топливного бака. Затем он использует радиально-поршневую конструкцию для значительного увеличения давления. Топливо под высоким давлением отправляется в общую топливную рампу, которая, по сути, является аккумулятором для форсунок. Форсунки вступают во владение оттуда.

Насосные форсунки
Линии, соединяющие ТНВД с топливной форсункой, вызвали проблемы у первых инженеров-дизелей.Поэтому в 1905 году Карл Вайдман избавился от них, соединив впрыскивающий насос и инжектор. Насос-форсунка представляет собой компактную конструкцию с впрыском топлива, в которой плунжер насоса создает высокое давление за счет механической силы, прилагаемой двигателем. Плунжер и форсунка сливаются в одно целое, задача которого - подавать топливную струю в камеру сгорания. Чаще всего насос-форсунки используются в двигателях Volkswagen и больших дизельных двигателях. DP

Интересные факты о впрыске топлива
* Первые дизельные двигатели использовали сжатый воздух для подачи топлива в камеру сгорания.Это была технология, оставшаяся после экспериментов с угольной пылью.

* Компания Atlas Imperial Diesel из Окленда, Калифорния, разработала свою первую топливную систему Common Rail еще в 1919 году.

* Основная проблема для систем впрыска топлива - отсутствие подтекания в конце впрыска. Даже небольшая дополнительная капля нарушит цикл сгорания.

* В современных дизельных двигателях топливо выходит из форсунки под давлением 30 000 фунтов на квадратный дюйм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *