ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Дифференциал автомобиля - предназначение, устройство, как работает

Дифференциал – один из важнейших элементов трансмиссии автомобиля. Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

  • Привод ведущих мостов в полноприводном автомобиле – в раздаточной коробке
  • Привод ведущих колес в полноприводном автомобиле – в картере заднего и переднего моста
  • Привод ведущих колес в переднеприводном автомобиле — в коробке передач
  • Привод ведущих колес в заднеприводном автомобиле – картер заднего моста

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в полноприводных автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой блокировкой. Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.

Загрузка...

Что такое дифференциал. Виды и схема работы

Автор Авто Эксперт На чтение 14 мин. Просмотров 3.6k. Опубликовано

Интересное механическое устройство, известное человечеству с давних времен. Несколько лет назад ученые считали, что первый механизм, работающий по типу дифференциала, был использован в антикитерском механизме – удивительной находке, поднятой со дна моря, и оказавшейся самым настоящим древним калькулятором для астрономических вычислений. Так что сама идея дифференциала не нова, однако настоящее признание она получила только с появлением первых автомобилей.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле  —  это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.


Ведуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения – механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) – нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними  в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы.  Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к  авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

Устройство и принцип работы

С технической точки зрения дифференциал устроен достаточно просто, но при этом он способен выдерживать огромные нагрузки. Что внутри этого узла и как он работает?



Устройство типового дифференциала

По своему типу это планетарный редуктор со всеми необходимыми элементами.

  1. Шестерня главной передачи – подает вращение от КПП на дифференциал.
  2. Ведомая шестерня связана и с главной передачей, и с шестернями-сателлитами.
  3. Сателлиты – закреплены в «чашке» ведомой шестерни, так что вращаются вместе с ней.
  4. Шестерни полуосей – соединены с сателлитами и не контактируют с остальными элементами дифференциала.

Как это работает?

Детально показано на видео-ролике, ниже.

  1. От КПП выходит вал главной передачи, от которого вращение передается на ведомую шестерню.
  2. Ведомая шестерня и скрепленная с ней «чашка» (водило) принимают крутящий момент.
  3. Вращаясь, ведомая шестерня и чашка приводят в движение шестерни-сателлиты.
  4. Сателлиты, в свою очередь, передают вращение на полуоси.
  5. При равной нагрузке на полуоси (когда автомобиль движется по прямой дороге с равномерным покрытием) сателлиты не вращаются. Работает только ведомая шестерня, в чашке которой закреплены сателлиты, и они описывают обороты вместе с ней, при этом не совершая вращения вокруг своей оси. Таким образом, момент вращения распределяется на полуоси поровну, 50:50.
  6. Когда автомобиль поворачивает и одно из колес должно замедлить, а второе – ускорить движение, сателлиты приходят в движение. За счет конической зубчатой передачи они, вращаясь, замедляют одну полуось и ускоряют вторую. Другими словами, перераспределяют момент вращения в нужной пропорции, вплоть до 0:100 без потери усилия.
  7. При пробуксовке одного колеса включается механизм блокировки, без которого на то колесо, которое вращается быстрее, ушел бы весь момент вращения. Без блокировки автомобиль останавливается при попадании хотя бы одного колеса на скользкую поверхность.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят.

То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Преимущества и недостатки

Основное преимущество дифференциала – это то, что он дал возможность выполнять повороты. Скорость движения каждого колеса на ведущей оси подстраивается под дорожную ситуацию совершенно автоматически, без участия водителя, так что безопасность и маневренность транспортного средства выросли в десятки раз после внедрения этого механизма. Сегодня дифференциал той или иной конструкции используется во всех видах автомобильного транспорта.

Еще одно преимущество – довольно высокая надежность узла. Планетарная передача выдерживает большие нагрузки, а особенности некоторых типов дифференциала еще дополнительно повышают его мощность и стойкость к износу

Основным недостатком можно назвать необходимость использовать механизм блокировки, чтобы автомобиль мог двигаться и по льду, и по сложным дорогам. Ручная, автоматическая или электронная – любой тип блокировки должен применяться обязательно, а это означает, что появляется дополнительный механизм, который может выйти из строя.

И, конечно, нельзя забывать о контроле за техническим состоянием узла. Это еще один узел, в котором нужно менять масло, хоть и не часто, и отслеживать износ деталей. И, кстати, о необходимости этой процедуры многие автовладельцы забывают.

Разновидности автомобильных дифференциалов

Помимо конического, цилиндрического и червячного, существуют и успешно используются следующие разновидности дифференциалов: дифференциал с полной блокировкой, дифференциал Торсен, дифференциал Квайф, вискомуфта.

Дифференциал с полной блокировкой

Дифференциалы этого типа чаще всего используются на грузовиках и внедорожниках. Их блокировка включается и отключается непосредственно из салона с помощью специальной клавиши водителем. Они используются для повышения проходимости автомобилей.

Межосевой дифференциал с блокировкой типа Torsen

Конструкция рабочего привода данной системы состоит из следующих единиц:

  1. корпус;
  2. правая полуосевая шестерня;
  3. левая полуосевая шестерня;
  4. сателлиты правой и левой полуосевых шестерен;
  5. выходные валы.

Стоит отметить, что дифференциал Torsen имеет наиболее совершенную конструкцию.

Принцип работы:

Межосевой блокируемый дифференциал Torsen состоит из ведомых и ведущих червячных колес, иначе называемых полуосевыми и саттелитами. В такой системе блокировка случается вследствие особенностей функционирования шестерен данного типа. В нормальном состоянии им задается определенное передаточное число. Если колеса имеют хорошее сцепление с поверхностью и движутся плавно, работа дифференциала происходит точно так же, как и у симметричного. Но как только происходит резкое увеличение момента, саттелит пытается начать движение в обратную сторону. Полуосевая червячная шестерня перегружается, и происходит блокировка выходных валов. При этом лишний крутящий момент двигателя переходит на другую ось. Максимальная степень перераспределения момента для дифференциалов Torsen – 75 на 25.

Наиболее известной разновидностью данной системы является Torsen Audi Quattro. Это один из самых популярных механизмов в конструкциях современных полноприводных автомобилей. Его неоспоримыми преимуществами являются широкий спектр переброса вращающего момента, мгновенная скорость срабатывания и отсутствие негативного влияния на тормозную систему. А вот к недостаткам можно отнести сложность конструкции со всеми сопутствующими последствиями.

Преимущества дифференциалов этой конструкции

Преимуществ у данной конструкции достаточно много. Данный механизм устанавливают за то, что точность его работы чрезвычайно высокая, при этом работает устройство очень плавно и тихо. Мощность распределяется между колесами и мостами автоматически – какое-либо вмешательство водителя не нужно. Перераспределение момента никак не влияет на торможение. Если дифференциал эксплуатируется корректно, то обслуживать его не нужно – от водителя требуется только проверять и периодически менять масло.

Именно поэтому многие водители ставят дифференциал “Торсен” на “Ниву”. Там также применена система постоянного полного привода и никакой электроники, поэтому нередко любители экстрима меняют штатный дифференциал на данный узел.

Недостатки

Есть и минусы. Это высокая цена, ведь внутри конструкция устроена достаточно сложно. Так как дифференциал работает на принципе терния, из-за этого повышается расход топлива. При всех преимуществах КПД довольно низкий, если сравнивать с похожими системами другого типа. Механизм имеет высокую предрасположенность к заклиниванию, а износ внутренних элементов довольно интенсивный. Для смазки нужны специальные продукты, так как при работе узла выделяется много тепла. Если на одной оси установлены разные колеса, то детали изнашиваются еще более интенсивно.

Дифференциалы Квайф

Отличительной особенностью дифференциалов этого типа является то, что сателлиты в них располагаются параллельно оси вращения корпуса (чаши), причем в два ряда. Кроме того, при функционировании этих агрегатов образуются силы трения, которые при необходимости автоматически осуществляют блокировку, повышают проходимость и силу тяги автомобиля. Чаще всего дифференциалы Квайф используются для тюнинга легковых автомобилей и внедорожников.

Вискомуфта

Функционирование этот типа дифференциала основано на том же принципе, что и работа гидротрансформатора. Чаще всего вискомуфты используются в автомобилях с полным приводом и используются для того, чтобы обеспечивать связь передних колес с задними по следующему принципу: если одни из них проскальзывают, то крутящий момент транслируется на другие, за счет чего и решается проблема пробуксовки. Конструктивно вискомуфта представляет собой цилиндр, в которой находится погруженный в вязкую жидкость пакет металлических дисков, имеющих перфорацию, и соединенных с валами (как ведущим, так и ведомым). В зависимости от температуры вязкость жидкости меняется, на чем и основывается принцип работы этого агрегата.

Видео на тему

Виды блокировок дифференциала

Есть несколько видов блокировки:

  • Полная. Напрямую подсоединить корпус к полуоси, которая получает основную нагрузку и жестко его закрепить. Т.е. передать крутящий момент, как он есть, на колеса.
  • Частичная. Ограничить в планетарном механизме вращение сателлитов. При этом заблокировать дифференциал получиться частично, а значит и крутящий момент перераспределить также частично, но большую его часть перенаправить на колесо со сцеплением.

По способу включения бывают:

  • ручной блокировки;
  • автоматической (самоблокирующей).

Привод ручной блокировки может быть:

  • механический;
  • электрический;
  • гидравлический;
  • пневматический.

Как правило ручная блокировка происходит за счет кулачкового механизма. Он приводит в действие принудительную блокировку дифференциала, с помощью переключателя на приборной панели или рычажного механизма. Т.е. водитель вручную должен активировать блок. Никаких датчиков и напоминаний. Механизм универсален для применения.  Водитель, включая специальную муфту, соединяет полуось с корпусом дифференциала, и момент передается на прямую без участия сателлитов.


Если Вы купили автомобиль со значком «полный привод», это еще вовсе не значит, что на нем установлена блокировка дифференциала. К сожалению, не все любители 4Х4 об этом знают. Поэтому внедорожник, повисший в диагональном вывешивание в колее грунтовой дороги, совсем не редкость. В этой ситуации колеса, находящие в воздухе, энергично крутятся, а те, что плотно прижаты к земле, стоят без участия. Почему же так происходит?

Для городских автомобилей, вполне достаточно штатного дифференциала. Если на заснеженной трассе встретился участок со льдом, они передадут большую часть крутящего момента колесу, оставшемуся на твердой поверхности. Но для поездок по сложному бездорожью, или размытой грунтовке, этого мало.

Поэтому изобрели механизмы, которые по ситуации, или по желанию водителя, могут осуществить блокировку, у полноприводных монстров даже на выбор, заднего или переднего дифференциала и блокировку межосевого дифференциала.

Как работает самоблокирующийся дифференциал

Самоблокирующийся дифференциал, по сути, представляет собой компромисс между полным блоком и свободным диффом и позволяет снизить пробуксовку колес машины в случае возникновения между ними разницы в коэффициенте сцепления с грунтом. Таким образом, значительно повышается проходимость, управляемость на бездорожье, а также динамика разгона автомобиля, причем независимо от качества дороги.

Самоблок исключает полную блокировку колес, что защищает полуоси от критических нагрузок, которые могут возникнуть на дифференциалах с принудительным выключением.

Блокировка с полуосей снимается автоматически, если при прямолинейном движении скорости вращения колес выравнивается.

Самые распространенные типы самоблоков

Дисковый самоблок – это набор фрикционных (трущихся) дисков, установленных между корпусом диффа и шестерней полуоси.

Понять, как работает дифференциал с таким блоком, несложно: пока машина едет по прямой, корпус диффа и обе полуоси крутятся вместе, как только в скоростях вращения появляется разница (колесо попало на скользкий участок), между дисками возникает трение, снижающее ее. То есть колесо, оставшееся на твердом грунте, продолжит вращаться, а не остановится, как в случае свободного дифференциала.

Вискомуфта, или иначе вязкостная муфта, так же как и предыдущий дифф, содержит два пакета дисков, только на этот раз перфорированных, установленных между собой с небольшим зазором. Одна часть дисков имеет сцепление с корпусом, другая – с валом привода.

Диски, помещены в емкость, заполненную кремнийорганической жидкостью, которая при равномерном их вращении остается в неизменном состоянии. Как только между пакетами появляется отличие в скорости, жидкость начинает быстро и сильно густеть. Между перфорированными поверхностями возникает сопротивление. Чересчур раскрутившийся пакет таким образом притормаживается, и скорость вращения выравнивается.

Зубчатый (винтовой, червячный) самоблок. Его работа базируется на способности червячной пары расклиниваться и тем самым блокировать полуоси при возникновении на них разницы в крутящих моментах.

Кулачковый самоблок. Чтобы понять, как работает дифференциал такого типа, достаточно представить открытый дифф, в котором вместо планетарного шестеренчатого механизма установлены зубчатые (кулачковые) пары. Кулачки проворачиваются (перескакивают), когда скорости вращения колес практически одинаковы, и жестко блокируются (заклиниваются), как только какое-то из них начинает пробуксовывать.

Разницы в том, как работает блокировка межосевого дифференциала и межколесного, нет – принцип действия одинаков, отличия только в конечных точках: в первом случае – два моста, во втором – два колеса, установленных на одной оси.

Источники

  • https://VazNeTaz.ru/differencial
  • https://TechAutoPort.ru/transmissiya/differentsial-i-glavnaya-peredacha/differentsial.html
  • https://AutoVogdenie.ru/chto-takoe-differencial-v-avtomobile.html
  • https://AvtoNov.com/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB-%D0%B2-%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB%D0%B5/
  • https://ijeep.ru/raznoe/kak_rabotaet_mezhosevoy_differencial_ustroystvo_i_princip_raboti
  • https://FB.ru/article/460593/differentsial-torsen-printsip-rabotyi
  • https://AvtoNov.com/%D0%B1%D0%BB%D0%BE%D0%BA%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BC%D0%B5%D0%B6%D0%BE%D1%81%D0%B5%D0%B2%D0%BE%D0%B3%D0%BE-%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B0/
  • https://VazNeTaz.ru/blokirovka-differenciala
  • https://FB.ru/article/321970/samoblokiruyuschiysya-differentsial-kak-rabotaet

Принцип работы дифференциала и его устройство

Автоликбез28 января 2018

Крутящий момент, создаваемый двигателем внутреннего сгорания, передается колесам с помощью различных механизмов – валов, шлицевых и шестеренчатых передач, дифференциалов. Последние вызывают наибольший интерес у любителей экстремальной езды по бездорожью, поскольку принимают участие в распределении мощности. Многие автолюбители слабо представляют работу данного узла, поэтому стоит рассмотреть вопрос, что такое дифференциал в автомобиле, объяснить его устройство и принцип действия.

Назначение механизма

Чтобы понять роль дифференциала, применяющегося в транспортных средствах всех типов, нужно рассмотреть конструкцию обычного планетарного редуктора, передающего усилие от карданного вала двум полуосям. Алгоритм работы агрегата прост:

  1. Кардан вращает хвостовик с косозубой шестеренкой на конце.
  2. От хвостовика крутится большая планетарная шестерня, соединенная с двумя полуосями.
  3. Крутящий момент передается от планетарной шестерни полуосям и закрепленным на концах колесам.

Без дифференциала редуктор поровну распределяет крутящий момент на 2 оси, в результате колеса вертятся с одинаковой скоростью. Такое разделение вполне годится для прямолинейного движения, которое в реальности встречается довольно редко – даже при езде по ровным участкам трассы автомобиль отклоняется от прямой линии.

Чтобы машина идеально прошла поворот, колеса одного моста должны вращаться с разными скоростями, поскольку внешнее катится по более широкой дуге. Простой редуктор, обеспечивающий одинаковое вращение обеих полуосей, на повороте заставит одну шину скользить, вторую – буксовать, что заметно ухудшает маневренность авто.

Справка. Проблема весьма актуальна для внедорожников с постоянным полным приводом. В данном случае крутящий момент делится не только между колесами, но и между осями, вращающими редукторы переднего и заднего моста.

Совмещенный с планетарным редуктором дифференциал нужен для изменения угловых скоростей правого и левого колеса в зависимости от крутизны поворота. Механизм автоматически распределяет крутящий момент на полуоси, позволяя колесным покрышкам совершать разное число оборотов при движении автомобиля по дуге. Без дифференциала нормальная эксплуатация транспортного средства невозможна по таким причинам:

  • недостаточная управляемость;
  • быстрое истирание шин;
  • ускоренный износ деталей редуктора, валов и полуосей.

Как работает свободный дифференциал?

Механизмами данного типа оснащается подавляющее большинство машин с приводом на переднюю либо заднюю ось. В первом случае узел размещается внутри коробки передач, во втором является частью планетарного редуктора заднего моста.

Конструкция планетарной передачи подразумевает использование шестеренок конической формы. Существуют и другие разновидности автомобильных редукторов – цилиндрические, конусно-цилиндрические и червячные.

Устройство дифференциала свободного типа предусматривает совмещение с главной передачей. Механизм заднего моста включает следующие детали:

  • хвостовик с конической ведущей шестерней, соединенный с карданным валом;
  • ведомая планетарная шестеренка;
  • корпус ведомой шестерни оборудован двумя проушинами, куда вставляются оси сателлитов;
  • сателлитные шестеренки конической формы;
  • ведомые шестерни полуосей;
  • подшипники;
  • корпус редуктора.

В легковых авто устанавливается 2 сателлита, на грузовиках – четыре.

Изучить принцип работы свободного дифференциала предлагается на примере:

  1. Пока машина едет прямо, колеса крутятся с одинаковой скоростью. Хвостовик вращает «планетарку» вместе с закрепленными на ней сателлитами, причем последние остаются неподвижными и передают равный крутящий момент обеим осям за счет давления на зубья.
  2. Автомобиль входит в поворот. Крутящиеся вместе с большой шестерней сателлиты начинают вращаться вокруг собственной оси, причем в разные стороны.
  3. Мощность на валу делится не пополам, а в зависимости от крутизны дуги. Благодаря комбинированному вращению сателлитов полуоси и колеса совершают разное число оборотов, машина успешно преодолевает поворот без проскальзывания и пробуксовки резины.

Дифференциал получил название свободного, поскольку передает больший крутящий момент на колесо, которое вращается легче. Понятно, что на повороте шина внутри дуги сопротивляется вращению, поэтому дифференциал отдает больше мощности другой оси – противоположное колесо крутится быстрее.

Примечание. Полноприводные авто и внедорожники оснащаются тремя дифференциальными разделителями мощности – межосевым (ставится в раздаточной коробке) и двумя межколесными.

Свободный механизм решает главную проблему, но создает побочную. Когда одна покрышка начинает контактировать со скользким покрытием – льдом, укатанным снегом, грязью, начинается пробуксовка. Причина – дифференциальный механизм, отдающий максимум мощности в сторону наименьшего сопротивления. Для предотвращения подобных ситуаций на многих автомобилях задействована временная блокировка дифференциала.

Разновидности механизмов

Чтобы избавиться от пробуксовок на скользком дорожном покрытии либо в условиях бездорожья, производители комплектуют транспортные средства дифференциальными устройствами следующих конструкций:

  • механизм свободного типа с принудительной блокировкой от привода;
  • частично блокирующийся дифференциал повышенного сопротивления;
  • самоблокирующаяся червячная передача типа Torsen.

В первом варианте применяется рассмотренный выше шестеренчатый узел, дополнительно оснащенный блокировочным устройством. Система функционирует просто: в случае необходимости водитель активирует привод, фиксирующий сателлиты в неподвижном состоянии. Крутящий момент начинает делиться ровно пополам, оси вращаются с одинаковой скоростью и транспортное средство успешно преодолевает проблемное место.

Принудительная блокировка межосевого дифференциала включается с помощью различных приводов:

  • механический – от рычага раздаточной коробки;
  • электрический;
  • пневматический;
  • гидравлический.

Аналогичные приводные элементы применяются для остановки и удержания сателлитов переднего либо заднего моста.

Автомобили дорогой комплектации производители оснащают антипробуксовочной системой. Она «обманывает» дифференциальное устройство другим способом: по сигналу датчика, фиксирующего быстрое вращение одного колеса, электроника отдает команду его притормозить. Тогда сателлитные шестеренки начинают передавать больше мощности на другую ось и авто прекращает «грестись» на месте.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Стальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Самоблокирующиеся передачи Torsen

Принцип работы данных механизмов базируется на одной особенности червячной пары: шестеренка способна передавать вращение сателлиту, но обратное действие невозможно. Все шестерни, включая сателлитные, сделаны в виде цилиндров с косыми дугообразными зубьями. Всего в механизме применяется 3 пары червячных сателлитов, установленных вокруг шестеренок полуосей.

Самоблокирующийся дифференциал работает так:

  1. Во время прямолинейного движения червячные сателлиты ведут себя аналогично конусным – не крутятся сами, но вращают оси от главной передачи.
  2. На повороте число оборотов одной полуоси вырастет и она придаст вращение парам сателлитов – мощность начнет распределяться по-разному.
  3. Поскольку каждая пара сателлитов связана между собой прямозубой передачей, пробуксовка одного колеса исключается. Ось способна крутить свой сателлит, тот вращает соседний, который уже не может поворачивать вторую полуось. Механизм блокируется автоматически.

Устройство Torsen – самое надежное и передовое, но слишком дорогое, поэтому ставится на машины максимальной комплектации. В остальных применяются более доступные механизмы повышенного трения.

В среде любителей экстремальной езды по бездорожью известен простейший способ избежать пробуксовок – блокировка заднего дифференциала с помощью сварки. Сателлиты намертво привариваются к осям и всегда находятся в неподвижном состоянии. Правда, подобные автомобили предназначены только для езды по грунту и снегу – эксплуатировать их на твердом покрытии чересчур неудобно и дорого.

Дифференциал. Устройство и виды дифференциала. -

Что такое дифференциал автомобиля?

Дифференциал предназначен для передачи, изменения и распределения крутящего момента между двумя потребителями и обеспечения, при необходимости, их вращения с разными угловыми скоростями.

Дифференциал является одним из основных конструктивных элементов трансмиссии. Расположение дифференциала в трансмиссии автомобиля:

  1. в заднеприводном автомобиле для привода ведущих колес – в картере заднего моста;
  2. в переднеприводном автомобиле для привода ведущих колес – в коробке передач;
  3. в полноприводном автомобиле для привода ведущих колес – в картере переднего и заднего мостов;
  4. в полноприводном автомобиле для привода ведущих мостов – в раздаточной коробке.

Произведение силы тяги на радиус колеса даёт тот крутящий момент, который дифференциал должен передать на колёса. Когда сцепление с дорогой слабое или одно колесо вывешено, крутящий момент и сила тяги на колесе очень малы или отсутствуют, автомобиль не сможет продолжить движение. Это особенность дифференциала с коническими шестернями, получившего широкое распространение. Этот вид дифференциала называют симметричным, так как он поровну распределяет крутящий момент между колёсами. 

Это происходит потому, что сателлит работает как равноплечий рычаг и передаёт только равные усилия к шестерням полуоси, а соответственно и к ведущим колёсам. Если одно из колёс имеет малое сцепление с дорожным покрытием, то эффективный крутящий момент на нём небольшой, соответственно симметричный дифференциал подведёт такое же усилие к другому колесу. То есть, если одно колесо буксует, сила тяги на втором равна нулю, что отрицательно сказывается на проходимости. 

Для её улучшения на автомобилях применяют полную или частичную блокировку дифференциалов, степень которой оценивают коэффициентом блокировки.

Коэффициент блокировки (Кб) — соотношение крутящего момента на отстающем колесе к моменту на забегающем колесе. Его величина для симметричного дифференциала всегда равна 1, для дифференциалов повышенного трения от 1 до 5. Чем больше Кб, тем лучше проходимость автомобиля. То есть, при Кб = 3 момент на отстающем колесе будет в три раза больше, чем на буксующем. Но момент на колесе в эту секунду будет возможным от 20 до 70%, в зависимости от возможности блокирующего механизма.

Существует несколько видов дифференциалов.

Дифференциал с полной блокировкой

Принудительная блокировка дифференциала используется в основном на внедорожниках и грузовых машинах, для улучшения проходимости на бездорожье. Включается с помощью клавиши в салоне, по мере необходимости. Очень важно отключить блокировку при выезде на сухой грунт, во избежании поломки полуосей. Приводится в действие водителем принудительно. Угловые скорости колёс здесь всегда равны, что противоречит условиям движения автомобиля по кривой, приводит к износу резины и ухудшению управляемости по твёрдому покрытию.

Вискомуфта

Вискомуфта – многодисковая муфта, в которой передаваемый момент возрастает с увеличением разности скоростей ведущего и ведомого валов. Используется в упрощенных системах постоянного полного привода, а также в качестве блокирующего механизма дифференциалов.

Принцип работы вискомуфты основан на особых свойствах специальной силиконовой жидкости: при повышении температуры ее вязкость не понижается, как, например, у масла, а повышается. Вискомуфта представляет собой цилиндр, заполненный силиконовой жидкостью. Внутри его находится пакет из перфорированных дисков, соединенных через один соответственно с ведущим и ведомым валами.

В полноприводной трансмиссии при нормальных условиях движения валы вращаются примерно с одинаковой скоростью: входной – под действием крутящего момента от основного ведущего моста, а выходной вращают колеса, с которыми он соединен. При буксовании колес основного ведущего моста входной вал вращается быстрее выходного (машина практически стоит), жидкость нагревается от трения о диски, и муфта начинает передавать больший момент на выходной вал.

Существенный недостаток вискомуфты: на срабатывание муфты требуется время, а оптимальную ее характеристику трудно подобрать. Поэтому многие производители отказываются от применения вискомуфты в пользу управляемых электроникой многодисковых сцеплений.

Дифференциалы Торсен

От англ. TORQUE - крутящий момент и «SENSING» - чувствительный, то есть чувствительный к крутящему моменту. Сателлиты расположены в корпусе перпендикулярно его оси, объединены между собой попарно с помощью прямозубого зацепления, а с полуосевыми шестернями связаны червячным зацеплением. В повороте полуосевая шестерня, связанная с отстающим колесом, поворачивает входящий с ней в зацепление сателлит, он, в свою очередь, вращает второй сателлит и шестерню полуоси.

Такой жесткой кинематической связью колёсам автомобиля обеспечивается возможность вращаться с разной скоростью. Силы трения, возникающие в червячном зацеплении от разности моментов на колёсах, осуществляют блокировку дифференциала. Недостаток конструкции – сложность изготовления, сборки агрегата в целом и ремонта.

Дифференциалы Квайф

Сателлиты расположены в два ряда параллельно оси вращения корпуса. Причём они крепятся не на осях, а находятся в закрытых с обеих сторон отверстиях корпуса. Правый ряд сателлитов (их может быть от 3 до 5) входит в зацепление с правой шестерней полуоси, левый — с левой. Кроме того, сателлиты из разных рядов зацепляются между собой через один. 

Когда одно из колёс начинает отставать, связанная с ним полуосевая шестерня начинает вращаться медленнее корпуса дифференциала и поворачивать входящий с ней в зацепление сателлит. Он передаёт движение связанному с ним сателлиту, а тот в свою очередь, на полуосевую шестерню. Так обеспечиваются разные обороты колёс в повороте.

Благодаря разности крутящих моментов на колёсах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни и сателлиты торцами к корпусу или крышкам и разделителю. За счёт этого возникают силы трения, осуществляющие блокировку, что увеличивает силу тяги автомобиля, повышая его проходимость. Дифференциалы такого типа получили наибольшее распространение в тюнинге.

Главная передача и дифференциал - назначение, устройство и типы

Главная передача

 Назначение главной передачи

Основное назначение главной передачи в трансмиссии — передача тяги двигателя к, так сказать, «конечному потребителю» – колесам. Если автомобиль заднеприводный, то тяга от коробки передач через карданный вал передается на главную передачу, а та, в свою очередь, перенаправляет поток мощности на колеса через полуоси (если задняя подвеска зависимая и имеет мост) или приводные валы с шарнирами равных угловых скоростей (об этом пойдет речь дальше). Если автомобиль переднеприводный, то главная передача через шестерню связана непосредственно с коробкой передач.

Есть такое понятие, как неразрезной мост. Означает оно то, что главная передача вместе с дифференциалом находятся в корпусе, к которому подсоединены или отлиты вместе с ним изначально два кожуха полуосей. Полуоси — это валы, соединяющие дифференциал и главную передачу с колесами. Данная конструкция является частью зависимой подвески автомобиля, так как жестко связывает правое и левое ведущие колеса. Полуось жестко связывает колесо и главную передачу, то есть при преодолении какоголибо препятствия весь мост перемещается вместе с колесами и всем содержимым. Убираем кожух полуосей, корпус главной передачи устанавливаем на кузов или подрамник, колеса с главной передачей соединяем с помощью приводных валов через шарниры равных угловых скоростей и получаем разрезной мост и независимую подвеску колес. Все это подробнее описано ниже в разделе «Устройство главной передачи» и представлено на рисунке 5.32.

Примечание
Главная передача служит для понижения числа оборотов, передаваемых от двигателя к колесам, и увеличения тягового усилия. Она обеспечивает передачу вращения с карданного вала на полуоси под углом 90° при классической компоновке автомобиля (о которой подробно рассказывается в главе 3). В главной передаче применяют шестеренчатые передачи, одинарные или двойные.

 Устройство главной передачи

Главная передача состоит из двух шестерен, а точнее, из конической шестерни (на рисунке 5.33 — ведущая шестерня) и конического колеса (на рисунке 5.33 — ведомое колесо).


Рисунок 5.33 Главная передача заднего неразрезного моста.

Шестерня является ведущим элементом (к ней подводится тяга от коробки передач и двигателя), а колесо —ведомым (принимает тягу от шестерни и перенаправляет под углом 90 градусов).

Шестерни изготавливают со спиральными зубьями, благодаря чему повышается прочность зубьев, увеличивается число зубьев, одновременно находящихся в зацеплении, и шестерни работают более плавно и бесшумно.

Кроме конической простой шестеренчатой передачи, у которой оси взаимно пересекаются, в легковых автомобилях применяют гипоидную передачу (показана на рисунке 5.34). В этой передаче зубья имеют специальный профиль и ось малой конической шестерни смещена вниз относительно центра большой шестерни на некоторое расстояние «S». Это дает возможность расположить карданный вал ниже и уменьшить высоту выпуклой верхней части туннеля для размещения вала в полу кузова, вследствие чего достигается более удобное размещение пассажиров в кузове. Кроме того, имеется возможность несколько снизить центр тяжести автомобиля и повысить его устойчивость при движении. Гипоидная передача обладает большей плавностью работы, более высокой прочностью зубьев и износоустойчивостью.

Примечание
Однако у гипоидной передачи есть одна неприятная особенность: порог заклинивания при обратном ходе. Расчеты данной передачи, конечно, исключают такую возможность, но всегда стоит помнить, что данную главную передачу может заклинить при превышении расчетных оборотов (при вращении в обратную сторону). Так что будьте осторожны с выбором скорости движения задним ходом.

Для гипоидной передачи необходимо применение смазки специальных сортов из-за большого давления между зубьями при работе и больших скоростей относительного скольжения между зубьями. Кроме того, требуется более высокая точность монтажа передачи.


Рисунок 5.34 Элементы главной передачи. Гипоидная передача.

Дифференциал

 Назначение дифференциала

Дифференциал позволяет катиться правому и левому ведущим колесам с различным числом оборотов при поворотах автомобиля и при движении по неровностям дороги.

При движении автомобиля на повороте (как показано на рисунке 5.35) внутреннее ведущее колесо его проходит меньший путь, чем наружное, и, для того чтобы обеспечить качение без буксования, оно должно вращаться медленнее, чем наружное колесо. Для того чтобы колеса могли вращаться с разным числом оборотов, их подсоединяют через приводные валы к дифференциалу, а уже дифференциал жестко связан с ведомым колесом главной передачи.

 Принцип работы дифференциала

Дифференциал состоит из (смотрите рисунок 5.33) полуосевых шестерен, сателлитов, оси сателлитов (которая может быть крестовидной, если сателлитов четыре) и корпуса. Полуосевые конические шестерни закреплены на внутренних концах полуосей, на наружных концах которых крепятся ведущие колеса. Сателлиты, представляющие собой малые конические шестерни, посажены свободно на оси.


Рисунок 5.x Схема работы дифференциала.

При движении автомобиля на повороте, внутреннее колесо проходит меньший путь и вследствие сцепления с дорогой начинает вращаться медленнее. При этом сателлиты, вращаясь, начинают перекатываться по замедлившей свое вращение полуосевой шестерне внутреннего колеса. В результате сателлиты начинают вращаться около своих осей, увеличивая число оборотов второй полуосевой шестерни и наружного колеса соответственно.

Примечание
При наличии дифференциала между количеством оборотов колес существует определенная зависимость, при которой сумма чисел оборотов колес всегда равна удвоенному числу оборотов коробки дифференциала, т. е. при уменьшении числа оборотов одного из колес число оборотов другого колеса на столько же увеличивается. При неподвижной коробке дифференциала, если вращается одно из колес, другое колесо будет вращаться в обратную сторону.

Однако работа дифференциала и результат положителен только в случае сухой дороги. В определенных условиях дифференциал может отрицательно повлиять на движение автомобиля.

Так, при попадании одного из колес на скользкое место (лед, грязь) колесо из-за недостаточного сцепления с дорогой начинает буксовать. При значительном ухудшении сцепления буксующего колеса с дорогой тяговое усилие на нем становится очень низким. При этом второе колесо, имеющее достаточное сцепление с дорогой, останавливается, так как вследствие свойства дифференциала распределять усилие между колесами поровну тяговое усилие на втором колесе также становится очень малым и недостаточным для движения автомобиля. Буксующее колесо вращается при этом с удвоенным числом оборотов, и автомобиль полностью останавливается.

Разновидности дифференциалов

Дифференциалы могут быть симметричными и не симметричными, а так же свободными или с возможностью блокировки.

Примечание
Дифференциал, распределяющий тягу от двигателя поровну между колесами или между осями, называется симметричным. Если же дифференциал межосевой (делит тягу от двигателя в полноприводном автомобиле между передней и задней осью), он может быть несимметричным, то есть на одну из осей передавать меньше тяги, чем на другую.

Если симметричное распределение не всегда играет на руку управляемости или проходимости автомобиля, значит эту проблему необходимо решить. Есть два пути:

1. Установить в главную передачу дифференциал с возможностью его блокировки.

Так появились дифференциалы с блокировкой. Процесс блокировки может быть отдан на откуп механическому приводу с выведением рычага управления в салон автомобиля или же передан в ведение электроники и может быть автоматическим полностью или же с управлением при помощи контроллеров в салоне автомобиля.

2. Установить дифференциал повышенного трения, который при усложнившихся дорожных ситуациях просто-напросто не позволит всей тяге «уйти» на колесо, потерявшее сцепление с поверхностью.

Дифференциал: распределяем крутящий момент

В конструкции трансмиссии любого автомобиля обязательно присутствует такой составной узел как дифференциал авто. Этот элемент очень важен и выполняет ряд функций, без которых передвижение на авто и его управление было бы очень затруднительным.

Трансмиссия обеспечивает передачу крутящего момента от ДВС на колеса ведущей оси. Но поскольку условия передвижения могут быть самыми различными, необходимо обеспечить распределение подающегося вращения по колесным осям. То есть, нужно сделать так, чтобы колеса приводной оси могли крутиться с разными скоростями.

Если бы приводные колеса были связаны между собой жестко (объединены одной осью), то при определенных условиях возникала бы пробуксовка. Так, при вхождении в поворот колеса перемещаются по разным радиусам, что сказывается на пути, который каждое из них должно пройти. Колесо, перемещающееся по внутреннему радиусу, должно преодолеть значительно меньшее расстояние, чем-то, что идет по внешнему. Жесткая связка колес приведет к тому, что внутреннее колесо будет просто пробуксовывать, поскольку его скорость вращения больше, чем нужна для преодоления пути. А это в свою очередь обеспечивает повышение нагрузки на элементы трансмиссии, ухудшает управляемость, приводит к интенсивному износу шин.

Устранить этот негативный фактор и позволяет дифференциал. Этот узел обеспечивает передачу момента по полуосям, а также крутиться им с различной угловой скоростью.

Принцип работы

Для примера рассмотрим принцип работы самого распространенного типа дифференциала – конического. Состоит такой узел из корпуса, шестеренок, закрепленных на полуосях, а также сателлитов.

Устройство симметричного конического дифференциала

Компоновка дифференциала такая – корпус зафиксирован на ведомом шестеренчатом колесе главной передачи. Внутри него на жестко закрепленных осях расположены сателлиты. Полуоси, передающие вращение на колеса, своими концами заходят в корпус. Полуосевые шестеренки имеют постоянное зацепление с шестернями-сателлитами. В общем, все достаточно просто.

Сателлиты имеют две степени движения. Они зафиксированы на осях в корпусе, поэтому и вращаются вместе с ведомым шестеренчатым колесом главной передачи. Также они могут крутиться и вокруг своей оси.

При прямолинейном передвижении колеса ведущей оси испытывают одинаковое сопротивление, поэтому момент делится по полуосям равномерно. Сателлиты в этом случае вращаются лишь с корпусом, а относительно своих осей они неподвижны.

При вхождении в поворот, колесо, движущееся по внутренней стороне, испытывает повышенное сопротивление, по сравнению с внешним. Поскольку жесткой связи между ними нет, то из-за возникшего сопротивления внутреннее колесо замедляется и возникает разница в угловых скоростях на полуосях. Это приводит к тому, что сателлиты начинают крутиться на осях, передавая больший момент на полуось колеса, движущегося по внешней стороне. То есть, благодаря дифференциалу замедление одного колеса приводит к ускорению второго.

Но в функционировании дифференциала есть один существенный недостаток – при потере сопротивления на одном колесе узел весь крутящий момент подаст на него. В результате, при вывешивании одного из ведущих колес или его попадании на скользкий участок, все вращение пойдет на него, второе же колесо остановиться – автомобиль окажется обездвиженным. Для борьбы с этим негативным качеством используются блокировки, которые предотвращают подачу всего крутящего момента только на одну полуось.

Виды узлов

Выше описан принцип работы дифференциала на примере только одного типа узла. На авто же применяются различные варианты этой составляющей трансмиссии. Все существующие виды дифференциалов можно разделить по ряду категорий:

  1. Место расположения
  2. Соотношение моментов при распределении
  3. Конструкция
  4. Наличие блокировки

Помимо этого, вместо дифференциалов в конструкции авто могут применяться различные муфты, выполняющие ту же функцию, что и дифференциал. Также современные технологии позволяют полностью отказаться от использования дифференциалов, а их роль выполняют системы безопасности.

Места установки

На легковых авто с одной ведущей осью применяется только один дифференциал. В заднеприводных моделях он располагается в ведущем мосту (там, где установлена главная передача). В переднеприводных же моделях этот узел входит в конструкцию КПП.

Пример компоновки дифференциала в МКПП переднего привода

Поскольку дифференциалы на легковых авто обеспечивают распределение крутящего момента между колесами, то они получили название межколесных.

В полноприводных моделях, в которых ведущими являются обе оси, используется два межколесных дифференциала, по одному на каждый ведущий мост.

Отметим, что в полноприводных моделях есть еще одно место распределения крутящего момента – раздаточная коробка, которая подает вращение на обе оси. И здесь также требуется разделение момента, но в этом случае – между мостами, поэтому в конструкции раздатки также применяется дифференциал, называющийся межосевым.

Виды и расположение дифференциалов в зависимости от привода

На многоосных грузовиках с несколькими ведущими осями есть еще одно место установки дифференциала – между группой приводных мостов. Этот узел носит название центрального.

Распределение моментов

Соотношение моментов при распределении бывает разным – симметричным и несимметричным. Первый вариант описан выше – такой узел при движении на ровном участке дороги распределяет момент одинаково на обе полуоси, а его изменение происходи только при изменении условий движения.

Все межколесные дифференциалы являются симметричными

Несимметричные дифференциалы отличаются тем, что передача вращения между двумя осями осуществляется в определенной пропорции, причем неравной. К примеру, на многих кроссоверах используется межосевой дифференциал с соотношением 40/60. Это означает, что крутящий момент, поступающий на раздаточную коробку, делится и на передний ведущий мост поступает 40% вращения, а на задний – 60%. В этом случае передняя ось является больше вспомогательной, позволяющей повысить проходимость, основным же выступает задний мост.

Несимметричное распределение вращения обеспечивают и муфты, которые устанавливаются вместо межосевого дифференциала. При этом муфты позволяют обеспечивать распределение вращения не в строго заданной пропорции, а в целом диапазоне. То есть, на ряде авто с постоянным полным приводом, в зависимости от условий движения, муфта может менять соотношение от 40/60 до 0/100.

Конструктивное исполнение

Все дифференциалы, используемые на авто, построены по единому принципу – на основе планетарной передачи. Но конструктивных исполнений узла – несколько:

  1. Конический
  2. Цилиндрический
  3. Червячный
  4. Кулачковый

Виды конструкций дифференциалов

Во всех их, кроме кулачкового, разница сводится только к форме и конструктивному исполнению шестерен.

В конических и цилиндрических дифференциалах используются шестеренки соответствующей формы.

Более интересны в плане конструкции червячный и кулачковый узлы. В первом варианте используется червячное зацепление между сателлитами и полуосевыми шестеренками. Такие дифференциалы получили общее название Torsen. Примечательно, что разработано несколько видов конструкции Torsen. Вариант Т1 отличается тем, что сателлиты в нем располагаются перпендикулярно оси вращения. Во втором варианте – Т2, сателлиты располагаются уже параллельно полуосям. Существует еще один тип червячного дифференциала – Quaife. В нем, как и Torsen Т2, сателлиты расположены параллельно, а отличие сводится к форме самих шестеренок.

В кулачковом узле шестеренок вообще нет. В них основными рабочими элементами выступают специальные сухари, установленные между двумя звездочками (кулачковыми шайбами) – внутренней и наружной. Из-за особенностей функционирования этот узел является – дифференциалом повышенного трения.

Виды блокировки

Как уже отмечено, в дифференциалах есть один серьезный недостаток. И решается он использованием специального механизма – блокировки.

По этому критерию узлы делятся на свободные, самоблокирующиеся и с принудительной блокировкой. Узлы свободного типа не имеют в конструкции какой-либо блокировки, поэтому при создании условий негативное качество сразу же проявляется. Такие узлы обычно используются на легковых авто, предназначенных для использования в городских условиях.

В самоблокирующихся узлах дополнительные элементы в конструкции дифференциала при возникновении ситуации, когда весь момент перебрасывается на одно колесо, замедляют вращение полуоси, тем самым направляя часть вращения на другое колесо. Самым распространенным способом обеспечить самоблокировку, является установка фрикционов. Отметим, что червячные дифференциалы не требуют установки дополнительных узлов, поскольку в червячной передаче присутствует эффект самоторможения, поэтому узлы этого типа сами по себе являются самоблокирующимся.

При принудительной блокировке осуществляется жесткое соединение одной из полуосей с корпусом дифференциала, поэтому при задействовании механизма дифференциал полностью прекращает свою работу, и функционирование ведущего моста осуществляется так, как будто колеса соединены между собой жестко одной осью.

Активный дифференциал

Все перечисленные виды дифференциалов работают полностью самостоятельно и вполне справляются с поставленной задачей. Но конструкторам показалось этого мало, поэтому ими был придуман и создан так называемый активный дифференциал.

В обычных узлах распределение вращения делается пропорционально. То есть, замедление одного колеса приводит к пропорциональному возрастанию вращения на втором. Активный же дифференциал позволяет подкорректировать эти пропорции.

Суть его такова – если при прохождении поворота на наружном колесе сделать скорость вращения больше, чем это обеспечивает дифференциал, то возникает эффект подруливания. За счет этого колесо, идущее по внешнему радиусу, «доворачивает» авто, позволяя ему лучше войти в поворот.

А реализовано это путем установки дополнительных планетарных редукторов на полуоси. Причем эти редукторы срабатывают только в определенные моменты, и для этого дополнительные узлы оснастили муфтами с электроприводом.

Принцип работы активного дифференциала

Суть работы активного дифференциала такова – при вхождении в поворот, на полуоси внешнего колеса срабатывает муфта, включая редуктор. Дополнительная передача обеспечивает повышение скорости вращения полуоси, а соответственно и колеса, и оно начинает «подруливать».

Как видно дифференциалы очень разнообразны, и автопроизводители не останавливаются на достигнутом. От модели к модели повышаются их возможности и пределы, скорость работы постоянно возрастает. В конечном счете это может отразиться на надежности в любую из сторон, но безусловно наш комфорт и безопасность возрастает.

принцип работы блокировки механизма трансмиссии

Привод на одно колесо в автомобилях не применяется, минимум на два, расположенные на одной оси. Таким образом, возникает необходимость в механизме, распределяющем крутящий момент между ними. Та же задача появляется при попытке организовать полный привод, то есть связь между осями.

Содержание статьи:

Зачем в машине нужен дифференциал

Назначение дифференциала – передать вращение на оба колеса или обе оси, при этом позволить им вращаться с разной скоростью.

Если между колёсами обеспечить жёсткую связь, то в поворотах возникнут проблемы. Каждое колесо движется по своей дуге окружности с разными радиусами. Соответственно, путь они проходят различный, и скорость вращения будет отличаться.

При жёсткой посадке на единую ось резина начнёт пробуксовывать, машина крайне неохотно входить в повороты, а все механизмы трансмиссии будут испытывать запредельные перегрузки.

Это интересно: Карбюратор Солекс 21083 устройство и регулировка

Дифференциал развязывает ведущие колёса, позволяя им свободно менять скорость, при этом сохраняет передачу на них крутящего момента, разделив его в определяемом конструкцией соотношении.

Где находится

Межколёсные дифференциалы располагаются в одном картере с редуктором ведущего моста, а межосевые обычно внутри раздаточной коробки.

Смазываются они из единой с редуктором масляной ванны, иногда довольствуясь тем же маслом, что и гипоидная пара шестерён, но часто требуя дополнительных свойств от присадок, если конструкция подразумевает повышенное трение.

Из чего состоит

В состав самых распространённых дифференциалов входят:

  • корпус (коробка) дифференциала, к которой прикладывается входящий момент через ведомую шестерню главной пары;
  • шестерни полуосей, надеты на шлицы выходных валов, через них вращение передаётся на колёса;
  • сателлиты, это небольшие шестерни, вращающиеся на осях, связанных с коробкой и входящие в зацепление с полуосевыми шестернями.

В коробке может быть два и более сателлитов, их количество зависит от величины нагрузки, передаваемой через редуктор. В самых распространённых случаях конических сателлитов легковых автомобилей их обычно два, для тяжёлых машин повышенной проходимости (джипов) количество возрастает до четырёх.

Принцип работы

Крутящий момент от двигателя через коробку передач передаётся на корпус дифференциала. У заднеприводных автомобилей посредством карданного вала, при переднем приводе дифференциал обычно устанавливается внутри КПП, образующей в таком случае моноблок трансмиссии, из которого наружу выходят уже шарнирные полуоси к колёсным ступицам.

Далее характер работы зависит от траектории движения и наличия достаточных сцепных свойств дорожного покрытия.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят. То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

Это надо знать: Что означает маркировка фар автомобиля

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Виды дифференциалов

Конкретных реализаций дифференциалов много, если не говорить только о самом распространённом – коническом свободном. И классифицировать их можно по разным признакам.

Место установки

Для развязки колёс одной ведущей оси используется межколёсный дифференциал в редукторе ведущего моста. Если этот редуктор установлен в коробке передач переднеприводной машины – значит там и смонтирован дифференциал.

Некоторые машины оснащены постоянным полным приводом. Это означает, что он включён всегда. Но при этом оси могут иметь разную скорость, например, в том же повороте. И тогда в элемент трансмиссии, называемый раздаточной коробкой, внедряется межосевой дифференциал, работающий так же, как было рассмотрено в случае межколёсного.

Вид зубчатой передачи

По типу применяемых зацеплений дифференциалы подразделяются на:

  • самый распространённый – конический, по форме полуосевых шестерён и сателлитов;
  • цилиндрический, применяется значительно реже, но иногда по компоновочным и функциональным соображениям незаменим, напоминает планетарную передачу;
  • червячный, бывает построен разными способами, чаще всего этот тип зацепления используется в самоблокирующихся дифференциалах, червячные пары могут создавать значительное внутреннее трение.

От размеров и организации зубчатых пар зависит также и симметрия дифференциала. Иногда важно отправлять на одну ось больший момент, чем на вторую. Например, в некоторых версиях 4-matic от Mercedes 65% момента идёт на заднюю ось, 35 – на переднюю.

По принципу блокировки

Блокируемые дифференциалы лишены упомянутого выше главного недостатка по части проходимости и динамичного разгона при недостаточном сцеплении с дорогой.

Достигается это разными способами:

  • Дисковые блокировки и их менее эффективные разновидности LSD работают по принципу поджатия пакета фрикционных дисков по мере увеличения разности в скоростях между колёсами оси, в результате часть момента всё же поступает на ту сторону, где есть зацеп;
  • Червячные работают примерно так же, но несколько мягче, за счёт дополнительного проворота сателлитов червячного типа перед их упором торцами в корпус с последующей блокировкой относительного смещения полуосей, это самые распространённые типы самоблоков, различаются ориентацией сателлитов относительно оси;
  • Электронной блокировкой принято называть её имитацию, когда вывешенное колесо зажимается тормозными колодками и момент перебрасывается на загруженное, чем эта схема работает эффективней, тем больше потери, перегрузки и износ тормозов, тем не менее она часто спасает легковые машины и кроссоверы в трудной ситуации;
  • Вискомуфты могут выполнять роль как дифференциалов, так и их блокировок, в первом случае они включаются последовательно в линию передачи момента и могут её прерывать, а во втором – блокируют входной и выходной валы, препятствуя работе свободного дифференциала.

Самой эффективной блокировкой будет жёсткая механическая с электрическим или пневмоприводом. Именно так и сделано на лучших внедорожниках, там блокируются все три дифференциала, межосевой и два межколёсных.

Неисправности

Свободный дифференциал достаточно надёжен и сам не сломается. Но его очень часто ломает водитель своими паническими действиями при буксовании автомобиля.

Дело в том, что шестерёнки дифференциала работают на подшипниках скольжения, причём самых простейших. Они не рассчитаны на долгое и тяжёлое вращение под нагрузкой, когда крутится только одно колесо.

Антифрикционные шайбы перегреваются, зубья изнашиваются, появляются люфты и стуки, а при резкой остановке колеса, внезапно попавшего на асфальт после раскрутки, ломаются оси сателлитов и шлицевые соединения.

Ремонт чаще всего заключается в замене коробки дифференциала в сборе. Иногда можно поставить ремкомплект из шестерён и пальца с новыми регулировочными шайбами. Совсем редко обходятся только регулировкой подбором шайб.

Обслуживание

ТО исправного дифференциала сводится к замене масла в редукторе или раздатке. Никаких регулировочных или иных сервисных операций не предусмотрено, только ремонт при износе и поломках. На самоблоках иногда потребуется восстановить величину предварительного натяга подбором пакета пружинных шайб.

Обычно все дифференциалы повышенного трения требуют применения специального масла типа LSD (Limited Slip), но сейчас лучшие универсальные масла уже обладают подобными свойствами, о чём указано на этикетке.

В любом случае, лучше руководствоваться инструкцией изготовителя конкретного изделия.

Дифференциал (механическое устройство) - Простая английская Википедия, бесплатная энциклопедия

Дифференциал - это механическое устройство, состоящее из нескольких шестерен. Применяется практически во всех механизированных четырехколесных автомобилях. Он используется для передачи мощности от карданного вала на ведущие колеса. Его основная функция заключается в том, чтобы позволить ведущим колесам вращаться с разной скоростью, позволяя колесам проходить повороты, получая при этом мощность от двигателя. [1]

  • Открытый дифференциал (OD) является наиболее распространенным типом.К тому же это самый дешевый. Открытый дифференциал позволяет автомобилю проходить повороты, не таща за собой внешнее колесо. Однако мощность передается на колесо с наименьшим тяговым усилием (сцепление с дорогой). Если это колесо находится на льду или другой скользкой поверхности, транспортное средство не будет двигаться вперед, а колесо с приводом будет просто вращаться. В автомобилях с приводом на два колеса, если они имеют открытый дифференциал, они имеют только одно ведущее колесо. В полноприводных автомобилях с открытыми дифференциалами (обычно заводскими) только одно колесо на каждой оси приводит в движение автомобиль.Преимущества включают в себя редкую поломку оси, меньший износ шин и бесплатность, так как большинство новых автомобилей поставляются с открытыми дифференциалами. [2]
  • Дифференциал повышенного трения (LSD) решает эту проблему. Используя серию сцеплений (называемых пакетом сцепления), LSD позволяет ограничить пробуксовку колес, сохраняя мощность на обоих ведущих колесах. [3] LSD популярны в гоночных автомобилях, так как часто бывают ситуации, когда они выходят из поворота и им нужно разогнаться, не теряя мощности на одном ведущем колесе. [3]
  • Блокировка дифференциала (шкафчик) позволяет заблокировать два ведущих колеса на оси. Преимущество в том, что оба колеса всегда имеют мощность. Недостатком является то, что поворот намного сложнее, поскольку оба колеса должны вращаться с одинаковой частотой вращения. Поэтому при резких поворотах большинство рундуков необходимо отключать. Шкафчики также могут поставить водителя в опасную ситуацию. Например, при движении по склону (перекрестку), если одно ведущее колесо теряет сцепление с дорогой, теряется сцепление с дорогой, и автомобиль может скользить вбок вниз по склону.Водителей часто предупреждают не пересекать склон, если поверхность рыхлая или скользкая. [4] Шкафчики могут включаться и выключаться механически, электронным способом (электронный шкафчик) или сжатым воздухом (воздушный шкафчик). Шкафчики желательны на внедорожниках, но обычно бесполезны на улицах и шоссе.
  • Золотник - открытый дифференциал, оси которого механически скреплены между собой. [2] Это не позволяет колесам двигаться быстрее или медленнее на поворотах.Это дешево и почти не добавляет веса автомобилю, но обычно ограничивается соревнованиями по бездорожью и вождением по пересеченной местности. [2] Они не подходят для движения по улице, так как они будут «чирикать» при движении по поворотам. [2]

Torsen - тот же торцевой эффект, что и ограниченное скольжение, но не использует сцепления или колеблется, чтобы это сделать.

2.972 Как работает дифференциал


ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ: Распределите мощность от вала трансмиссии автомобиля на пару левых и правых колес (1-е ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ), позволяя колеса вращаются с разной скоростью (ВТОРОЙ ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ).

ДИЗАЙН ПАРАМЕТР: Дифференциал


ИСТОРИЯ: Дифференциал был впервые изобретен в Китае, в третий век,

г. н.э.

ГЕОМЕТРИЯ / СТРУКТУРА:

Компоненты дифференциала Система

Зубья шестерни : Ведущее колесо и Зубья ведущей шестерни имеют спиральную форму, что позволяет перемещаться вверх и вниз по неровной или неровной дороге условия.


ОБЪЯСНЕНИЕ, КАК ЭТО РАБОТАЕТ / ИСПОЛЬЗУЕТСЯ:

Зачем нужен дифференциал? : Когда автомобиль поворачивает, одно колесо на «внутренней» дуге поворота, а другое колесо - на "за пределами." Следовательно, внешнее колесо должно вращаться быстрее, чем внутреннее. один, чтобы преодолеть большее расстояние за то же время. Таким образом, поскольку два колеса не двигаются с одинаковой скоростью, необходим дифференциал.Машина дифференциал расположен посередине между ведущими колесами либо спереди, либо сзади, либо обе оси (в зависимости от того, передний, задний или полноприводный автомобиль). В автомобили заднеприводные, дифференциал преобразует вращательное движение трансмиссии вал, расположенный параллельно движению кабины, до вращательного движения полуосей (на концах которых расположены колеса), которые лежат перпендикулярно движению автомобиля.

Обороты, колеса разные Скорости Расположение дифференциала в автомобиле

Как это работает: Предполагая, что колеса не проскальзывают и не выкручиваются управления, следующие два примера движения автомобиля описывают, как работает дифференциал, когда автомобиль движется вперед и при повороте.(см. раздел Дифференциал повышенного трения для колесных скольжение).

Дифференциал при въезде автомобиля Прямая линия (колеса с одинаковой скоростью)

Когда автомобиль едет прямо, оба колеса едут одновременно скорость. Таким образом, шестерни планетарной передачи с обгонной муфтой вообще не вращаются. Вместо этого, как вал трансмиссии вращает коронное колесо, вращательное движение передается непосредственно на полуоси, причем оба колеса вращаются с угловой скоростью коронного колеса (у них такая же скорость).

Дифференциал, когда автомобиль поворачивает А Угол (колеса 2 вне поворота)

При повороте автомобиля колеса должны двигаться с разной скоростью. В В этой ситуации шестерни планетарной передачи вращаются относительно зубчатого колеса, когда они вращаются. вокруг солнечных шестерен. Это позволяет неравномерно передавать скорость коронной шестерни на два колеса.


ДОМИНАНТНАЯ ФИЗИКА:

Переменная

Описание

Метрическая система Единицы

Английский Единицы

в

Скорость при точка контакта между шестернями

м / сек

дюйм / сек

выиграть

Угловая скорость коронной шестерни

рад / с

об / мин

Вт1

Угловая скорость одной шестерни / колеса

рад / с

об / мин

Вт2

Угловая скорость другой шестерни / колеса

рад / с

об / мин

r1

Радиус шага одна передача

м

дюйм

R2

Радиус шага другая передача

м

В

Штифт

Входная мощность, от трансмиссия

Вт

Мощность

Pout1

Выход на Левый полуоси

Вт

Мощность

Pout2

Выход на Полуось правый

Вт

Мощность

Т1

Крутящий момент передается на левое колесо

Н-м

фут-фунт

T2

Крутящий момент передается на правое колесо

Н-м

фут-фунт

У1

Количество зубьев на одной передаче

N2

Количество зубьев на другой передаче

Иллюстрация для объяснения Передаточное число

Передаточные числа: Передаточное отношение скоростей между шестернями в зависимости от соотношения зубьев между двумя соседними шестернями, так что

w 1 x N 1 = w 2 x N 2 ,

, где w - соответствующая угловая скорость, а N = количество зубьев. на шестерне.


Скорость : Когда две шестерни находятся в контакте и нет проскальзывания, v = w 1 x r 1 = w 2 x r 2 , где v - тангенциальная скорость в точке контакта между шестернями, а r - соответствующее продольный радиус шестерни. В дифференциале, поскольку скорость, передаваемая коронной шестерней используется обоими колесами (не обязательно с одинаковой скоростью),

w дюйм = (w 1 + w 2 ) / 2


Мощность:
Обычно каждое зубчатое зацепление имеет потерю эффективности на 1-2%, поэтому с три разных сетки от вала трансмиссии до каждого полуоси, система фактически будет с КПД от 94% до 97%.Для упрощения предположим, что система на 100% эффективна; затем

P вход = P выход1 + P выход2 , или P дюйм = (T 1 x ширина 1 ) + (T 2 x ширина 2 ),

, где P в - потребляемая мощность от передачи на дифференциал, а P out - выходная мощность от дифференциал к колесам.T - крутящий момент, приложенный к каждой полуоси соответственно.


ОГРАНИЧИТЕЛЬНАЯ ФИЗИКА:

Вещи, которые могут ограничивать или нарушать поведение дифференциала включают контактные напряжения между шестернями, что также ограничивает передачу крутящего момента как усталость, так и потери из-за трения между шестернями.


LIMITED SLIP ДИФФЕРЕНЦИАЛ:

Если одно из колес, прикрепленных к дифференциалу, решает удариться о лед, например, он проскальзывает и вращается со всей скоростью, которую должен распределять дифференциал.Таким образом, механизм блокировки или «дифференциал повышенного трения» позволяет одному колесу свободно проскальзывает или вращается, в то время как некоторый крутящий момент передается на другое колесо (надеюсь, на сухом земля!).


УЧАСТКИ / ГРАФИКИ / ТАБЛИЦЫ:

Не отправлено


ГДЕ НАЙТИ ДИФФЕРЕНЦИАЛЫ:

В задних мостах большинства легковых и грузовых автомобилей.


ССЫЛКИ / ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:

http: // www.srl.gatech.edu/education/ME3110/design-reports/RSVP/DR4/catalog/gearbas.htm

http://www.ul.ie/~gordons/lavelles/diflimed.html

Маколей, Дэвид. Как все устроено , стр. 49

Конспект лекций, курс 2.72


Объяснение каждого типа автомобильного дифференциала - Характеристика - Автомобиль и водитель

Роберт Кериан

Из октябрьского номера 2015 г.

Открытый дифференциал

Что он делает
Разделяет крутящий момент двигателя на два выхода, каждый из которых может вращаться с разной скоростью.

Недостатки
Когда одна шина теряет сцепление с дорогой, противоположная шина также испытывает снижение крутящего момента. В худшем случае ваша машина застрянет, и одно колесо будет свободно вращаться, а шина с лучшим сцеплением не сможет обеспечить достаточный крутящий момент для трогания с места. Современные противобуксовочные системы компенсируют проскальзывание колеса тормозами (и, следовательно, противодействующим крутящим моментом). Тем не менее, более сложный дифференциал обычно более быстрый и эффективный, чем этот тип.

Найдено в
Все, что не претендует на характеристики или внедорожные способности - семейные седаны, кроссоверы, минивэны, автомобили эконом-класса и т. Д.

Блокировка дифференциала

Что он делает
Когда дифференциал заблокирован, подключенные колеса всегда вращаются с одинаковой скоростью. На песке, грязи и снегу заблокированный дифференциал гарантирует, что крутящий момент продолжает поступать на колесо с более высоким тяговым усилием.

Недостатки
В незаблокированном состоянии ведет себя как открытый дифференциал.Блокировка дифференциала на поверхности с высоким сцеплением, например на сухом асфальте, затрудняет поворот автомобиля и может привести к взрыву трансмиссии.

найдено в
Jeep Wrangler, Mercedes-Benz G-class, Ram 2500 Power Wagon; опция на большинстве полноразмерных грузовиков.

Дифференциал повышенного трения

Что он делает
Дифференциал повышенного трения сочетает в себе концепции открытого и заблокированного дифференциалов, большую часть времени работает как открытый дифференциал, а затем автоматически начинает блокироваться при возникновении пробуксовки.Блокировка может быть достигнута с помощью вязкой жидкости, пакета сцепления или сложной зубчатой ​​передачи.

Недостатки
Механические дифференциалы повышенного трения являются реактивными. То есть они не начинают блокироваться до тех пор, пока не произойдет проскальзывание колес.

Найдено в
Nissan 370Z со Спорт-пакетом (вязкостный), Mazda MX-5 Miata (сцепление), Scion FR-S / Subaru BRZ (косозубые шестерни).



    Дифференциал повышенного трения с электронным управлением

    Что он делает
    Блок сцепления с электронным управлением предлагает реостатный контроль между открытием и полностью заблокированным поведением, с регулировками, производимыми сотни раз в секунду.Например, если компьютер определяет слишком большую избыточную поворачиваемость во время поворота, он может увеличить блокировку, чтобы стабилизировать автомобиль.

    Недостатки
    Как и в случае обычного дифференциала повышенного трения, крутящий момент смещен в сторону более медленного колеса.

    Найдено в
    BMW M3 и M4, Cadillac ATS-V и CTS-V, Chevrolet Corvette с пакетом Z51, Ferrari 488GTB.

    Дифференциал с вектором крутящего момента

    Что он делает
    Используя дополнительные зубчатые передачи для разгона полуосей, дифференциалы с векторизацией крутящего момента точно регулируют крутящий момент, передаваемый на каждое ведущее колесо.Это создает момент рыскания, который может замедлить или ускорить поворот автомобиля в повороте. Все еще не понимаете? Прочтите эту проклятую историю.

    Недостатки
    Дифференциалы с вектором крутящего момента тяжелые, сложные и дорогие, а также вызывают небольшое снижение расхода топлива.

    Найдено в
    Audi S4, S5 и S6; BMW X5 M и X6 M; Лексус RC F.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Дифференциал

    : почему ваша машина может поворачивать? | Автомобильная техника

    Дифференциал почти такой же старый, как сам автомобиль, а вполне возможно, даже старше. Без него практически невозможно приручить двухгусеничный транспорт, поэтому вы можете найти его в любой машине. Или два… а может, даже три. Без «дифференциала» мы, по сути, ехали бы прямо независимо от того, где мы поворачиваем колесо.И, как вы, наверное, согласитесь, это было бы не очень практично.

    Неизвестно, когда именно был спроектирован и построен первый дифференциал. Некоторые источники говорят, что это было уже в 100 г. до н.э., когда древние римляне использовали аналогичный механизм в морских навигационных устройствах. Однако первое полностью задокументированное механическое устройство с функцией дифференциала было найдено в Китае около 1100 г. н.э., и оно также использовалось в целях навигации. Эти устройства были встроены в искусно изготовленные и довольно причудливые двухколесные экипажи, в которых использовались невероятно продвинутые и сложные механизмы внутри, чтобы их луч всегда был направлен на юг.

    Так или иначе, и без всяких сомнений, первый современный «автомобильный» дифференциал был запатентован французским часовым мастером Onésiphore Pecqueur в 1827 году как часть «парового вагона» - предшественника сегодняшних грузовиков и одной из первых машин, которые могли считаться моторным автомобилем.

    И в малоизвестных вагонах компаса Китая и в паровозе Пеккёра дифференциал служил тем же двум целям, что и в современных автомобилях. Этот принцип легче всего понять на автомобиле с продольно установленным двигателем с передним и задним приводом, который использовался для первых «настоящих» автомобилей около века назад и до сих пор широко популярен в автомобильной промышленности.

    Первая задача дифференциала - разделить мощность между колесами и, в случае нашей модели, повернуть ее на 90 °. Это можно было сделать с помощью простого набора конических зубчатых колес, но тогда машина будет двигаться только по прямой - как по рельсам. Кстати, на железных дорогах традиционно отказываются от дифференциалов, поскольку повороты обычно имеют большой радиус, а трение достаточно низкое, поэтому не стоит прилагать усилия со сложными передачами.

    Вторая задача дифференциала - позволить автомобилю поворачиваться.Как следует из названия, дифференциал решает проблему разницы между расстоянием, пройденным внутренним и внешним колесом. Очевидно, что при повороте внутреннее колесо проходит меньшее расстояние, чем внешнее, а это значит, что оно должно делать меньше оборотов.

    Если бы на оси не было дифференциала, оба колеса вращались бы с одинаковой скоростью. Следовательно, они будут иметь тенденцию преодолевать одинаковое расстояние друг с другом, что приводит к тенденции двигаться по прямой.Автомобиль с задним приводом толкал передние колеса, и их шины беспомощно буксовали. Вот что происходит с внедорожниками, если их водители забывают выключить блокировку заднего дифференциала (подробнее об этом позже).

    Есть несколько возможных решений этой проблемы. Один из них - сузить заднюю колею (расстояние между колесами на задней оси), что уменьшит разницу между расстояниями, пройденными отдельными колесами. Чем уже колея, тем меньше проблема.Однако при таком подходе мы в конечном итоге получим что-то вроде Velorex или Morgan Three-Wheeler - уменьшив заднюю ось до одного колеса. Это приводит к непредсказуемому обращению и довольно неприятной тенденции переворачиваться вверх ногами.

    Еще одно решение - оставить два колеса так, чтобы приводилось только одно из них. Это использовалось на первых гоночных автомобилях с цепным приводом снаружи кузова. Это простой дизайн с двумя существенными недостатками. Во-первых, мы теряем 50% тяги, во-вторых, машина медленнее в правом повороте и быстрее в левом (или наоборот, в зависимости от того, какое из колес находится в движении.Мы, вероятно, можем согласиться с тем, что это тоже нежелательное решение, когда речь идет о безопасности и обращении - по крайней мере, по современным стандартам. На рубеже 19-го -го -го и 20-го -го века многие гоночные автомобили даже не имели надлежащих тормозов (хотя некоторые из них достигали скорости до 150 км / ч), так зачем беспокоиться о таких деталях, как неравномерное ускорение? в поворотах. Третье и наиболее элегантное решение - использовать дифференциал, который позволит колесам на одной оси вращаться с разной скоростью, позволяя передавать крутящий момент на них обоих и продвигать автомобиль вперед.Умный! Но как это сделать?

    Внутри простейшего дифференциала находится набор конических шестерен с карданным валом с шестерней, соединенной с коронной шестерней под углом 90 °, причем коронная шестерня несет кожух дифференциала. Вращающийся сепаратор снабжен двумя сателлитными шестернями, опять же под прямым углом, которые соединяются с планетарными шестернями, прикрепленными к полуосям, приводя в движение колеса. Поскольку все устройство включает в себя ряд передач, очевидно, что передаточные числа можно изменять различными способами.

    Это также используется в автоспорте - замена дифференциала - довольно простая задача для раллийных механиков и позволяет им модифицировать автомобиль для различных условий. На гравийном участке с большим количеством поворотов и шпилек они будут использовать «короткие» дифференциалы для лучшего ускорения, на асфальтовом ралли с длинными прямыми участками они пожертвуют частью динамики, чтобы увеличить максимальную скорость и установить «длинные» дифференциалы, которые позволяют автомобиль для достижения более высокой скорости при тех же максимальных оборотах двигателя.

    Калле Рованпере / Йонне Халттунен, ŠKODA FABIA R5, ŠKODA Motorsport. Ралли Аргентина 2018

    Звучит сложно? Может быть, но это все же простейший возможный дифференциал. Блокировка дифференциалов, дифференциалы повышенного трения или дифференциалы с векторизацией крутящего момента на порядки сложнее. Причина их существования в том, что у основного «открытого» дифференциала есть два существенных недостатка. Во-первых, есть значительные механические потери, но они случаются в любом механическом устройстве.Их можно свести к минимуму, но от них никогда не избавиться.

    На двоих есть «открытость» дифференциала. В принципе, дифференциал передает больший крутящий момент на колесо с меньшим трением (в свою очередь, внешнее). Представьте, что вы останавливаете автомобиль одним из ведущих колес на идеально гладком льду, а другим - на сухом, липком асфальте. Вы не сможете двинуться с места. В этой ситуации одно колесо будет беспомощно крутиться, а другое даже не двинется с места.

    При повседневном использовании обычного автомобиля такой сценарий встречается редко, и вы всегда можете как-то с ним справиться или спланировать его. Однако на пересеченной местности приоритетом является не скорость или точность управления, а способность преодолевать бездорожье и бездорожье. Вот почему настоящие внедорожники оснащены блокируемыми дифференциалами, которые, как следует из названия, могут блокироваться и превращаться в простой конический редуктор, упомянутый в начале.

    Калле Рованпере / Йонне Халттунен, ŠKODA FABIA R5, ŠKODA Motorsport.Ралли Аргентина 2018

    Гоночные или раллийные автомобили, с другой стороны, должны иметь дело с низким сцеплением с внутренним колесом, не говоря уже о ситуациях, когда колеса находятся в воздухе. Когда вы сражаетесь в течение нескольких секунд, вы не можете позволить себе потерять сцепление с собой. А поскольку управляемость - это все для гоночного автомобиля, используются дифференциалы повышенного трения. В них используются различные инженерные принципы для предотвращения проскальзывания внутри дифференциала, таким образом передавая некоторый крутящий момент на колесо с меньшим тяговым усилием, плавно реагируя на условия.

    Степень блокировки дифференциала повышенного трения измеряется в процентах. 0% LSD - это открытый дифференциал для вашего сада, 100% - полностью заблокированный или ось без дифференциала. Дифференциал повышенного трения на 50% означает, что крутящий момент делится в соотношении 25% на колесо с меньшей тягой и 75% на колесо под нагрузкой.

    Существуют также системы, использующие современные технологии для имитации эффекта дифференциала повышенного трения. Например, автомобили ŠKODA оснащены XDS + - системой, в которой тормоза автомобиля замедляют вращающееся колесо.Тогда даже открытый дифференциал «думает», что у него есть тяга, и передает крутящий момент на это колесо. Однако для энергичного вождения более сложное решение с механическим дифференциалом повышенного трения по-прежнему является лучшим вариантом. Вот почему самая быстрая OCTAVIA, RS245, использует усовершенствованный дифференциал повышенного трения VAQ на передней оси.

    Вначале мы упоминали, что в автомобиле может быть не один дифференциал, а два или даже три. Это случай с раллийным автомобилем FABIA R5, в котором используется два.Раллийная FABIA, конечно же, полноприводная и, следовательно, требует дифференциалов на обеих ведущих осях, потому что обе они должны решать проблему с разными радиусами, даже несмотря на то, что водители ŠKODA Motorsport принимают многие из них с педалью до металла и все четыре колеса крутятся.

    Понтус Тидеманд / Йонас Андерссон, ŠKODA FABIA R5, ŠKODA Motorsport. Ралли Аргентина 2018

    Что касается конкретного использования в ралли, то лучшим решением для FABIA R5 является использование двух дифференциалов и жесткого карданного вала между осями.Однако есть некоторые автомобили, которые используют третий дифференциал для разделения крутящего момента между отдельными осями. В прошлом большинство полноприводных автомобилей имели эти центральные дифференциалы, но с развитием материаловедения и электроники решение с фрикционной муфтой стало более популярным, поскольку оно не только имитирует функцию дифференциала, но и может также при необходимости отсоедините одну ось. Это снижает потери в трансмиссии и снижает расход топлива. Последние такие системы с муфтой Haldex 7 -го поколения используются также на автомобилях ŠKODA, таких как OCTAVIA 4X4 и SUPERB 4X4 или внедорожники KAROQ и KODIAQ.

    Крутящий момент и частота вращения колес в автомобилях с колесными двигателями

    Для полной статьи щелкните здесь.

    Транспортные средства с приводом от колесных электродвигателей не имеют дифференциала, а передают крутящий момент напрямую и независимо на колеса.

    Большинство дорожных транспортных средств приводится в действие одним двигателем или мотором с трансмиссией, передающей эту мощность на колеса, создавая крутящий момент на ступицах колес. Колеса должны свободно двигаться с разной скоростью относительно друг друга, чтобы обеспечить возможность поворота и изменения дорожного покрытия.

    Это достигается с помощью дифференциала, механического устройства, которое в своей простейшей форме передает равный крутящий момент на оба колеса на оси, позволяя им вращаться с разной скоростью. Тогда колеса могут вращаться с естественной скоростью, определяемой кинематикой транспортного средства.

    Так называемый «открытый дифференциал» допускает любую разницу в скорости вращения колес по оси. Если сила трения между шиной и дорогой сильно отличается на одном колесе от другого, колесо с меньшим трением может потерять сцепление с дорогой и быстро раскрутиться.Это может произойти во время поворота, когда вес транспортного средства смещается на внешние колеса, так что внутренние колеса имеют слабое сцепление с поверхностью дороги, или когда одно колесо находится на поверхности с плохим сцеплением, например, на льду или рыхлых камнях.

    Эта ситуация явно нежелательна, и поэтому было разработано несколько систем для противодействия потере тяги, при этом позволяя приложить крутящий момент к колесу с хорошим сцеплением с дорогой. Чаще всего используется «дифференциал повышенного трения» или система контроля тяги (TCS) для предотвращения раскрутки колес.Первый представляет собой более сложный механический эквивалент открытого дифференциала, который ограничивает дифференциал скорости колес, в то время как последний применяет тормоз к колесу, которое теряет сцепление с дорогой, чтобы предотвратить его раскручивание.

    Рис. 1. Колесный электродвигатель Protean Electric, объединяющий электронику и тормоз.

    Более сложные системы «векторизации крутящего момента» обеспечивают дальнейшее улучшение управляемости автомобиля, но редко из-за своей сложности и стоимости.

    Транспортные средства с приводом от колесных двигателей не имеют дифференциала, поэтому возникает вопрос о том, как транспортное средство будет вести себя с точки зрения скорости вращения колес и как можно решить проблемы, связанные с отсутствием тяги.Ответы довольно просты.

    Если колесные двигатели управляются, создавая одинаковый крутящий момент для каждого из двигателей, транспортное средство будет вести себя точно так же, как если бы был открытый дифференциал. Система контроля тяги может использоваться для контроля потери тяги, как в обычном автомобиле. С другой стороны, улучшенная езда и управляемость транспортного средства могут быть достигнуты путем динамического изменения распределения крутящего момента между колесными двигателями.

    Колесная моторная система

    Для целей данной статьи система колесного двигателя считается состоящей из двух блоков, установленных на противоположных сторонах транспортного средства, по одному на каждом переднем колесе или по одному на каждом заднем колесе.Каждый блок состоит из электрической машины, инвертора с микропроцессорным управлением и фрикционного тормоза. В случае продуктов Protean Electric они объединены в единый пакет, который полностью размещен внутри обода колеса (см. Рис. 1), но также можно было бы разместить инвертор в другом месте транспортного средства.

    Двигатель может обеспечивать как положительный (ускоряющий), так и отрицательный (тормозной) крутящий момент, но фрикционные тормоза сохраняются, поскольку требования к торможению обычно превышают возможности двигателя и в случаях, когда электрическая система транспортного средства не может принять регенерированный ток. при торможении.

    Рис. 2: Схема управления в колесных электродвигателях.

    Колесный двигатель - это устройство, создающее крутящий момент. В примере с двигателем Protean Electric блок управления автомобилем (VCU) связывается с системой двигателя через шину сети контроллеров (CAN), отправляя данные о крутящем моменте каждые несколько миллисекунд (см. Рис. 2). В ответ моторная система развивает требуемый крутящий момент на ступице колеса. При возврате двигатель сообщает о своем состоянии и максимальном доступном крутящем моменте.Он также может сообщать свою скорость, которую VCU может использовать для расширенных функций контроля тяги.

    В отличие от двигателей внутреннего сгорания, электродвигатели могут создавать положительный и отрицательный крутящий момент в обоих направлениях. Это называется четырехквадрантным режимом работы и позволяет трансмиссиям с электродвигателями улучшать функции контроля тяги и устойчивости транспортного средства. Кроме того, системы электродвигателей имеют очень быстрое время отклика. Обычно они способны переключаться с максимального положительного момента на максимальный отрицательный или наоборот менее чем за 10 мс.Возможно высокочастотное управление, которое может повысить безопасность и управляемость транспортного средства, особенно с помощью колесных двигателей с прямым приводом, которые обеспечивают крутящий момент непосредственно на ступицах колес без каких-либо промежуточных валов, осей или шестерен.

    Обратите внимание, что двигатель не является устройством с регулируемой скоростью. VCU не может требовать скорости от моторной системы. Как и в случае обычных трансмиссий, скорости вращения колес являются следствием крутящего момента, приложенного к ступице колеса, в сочетании с сопротивлением вращению, в котором преобладает инерция транспортного средства.

    Дифференциальные и связанные с ними функции

    Дифференциал необходим, если один силовой агрегат, двигатель внутреннего сгорания или электродвигатель, используется для привода двух колес на оси. Без него два колеса на оси были бы вынуждены вращаться с одинаковой скоростью, что привело бы к неприемлемой управляемости транспортного средства и износу шин. Дифференциал также является конечным передаточным числом, усиливая крутящий момент от ведущего вала к полуосям (см. Рис. 3).

    Рис.3: Обычный заднеприводный автомобиль с дифференциалом.

    Для неведущих колес дифференциал не требуется, поскольку они физически не связаны и поэтому могут свободно вращаться с разными скоростями.

    Открытый дифференциал

    Открытый дифференциал - это самый простой и наиболее распространенный тип дифференциала на дорожных транспортных средствах. Скорость вращения колес определяется кинематикой автомобиля, немного измененной динамикой шин.

    Игнорируя пробуксовку колеса, во время поворота внешнее колесо будет вращаться быстрее, чем внутреннее колесо.В транспортном средстве с шириной колеи t и радиусом качения r , движущемся со скоростью v вокруг поворота с радиусом R , приблизительные угловые скорости внутреннего и внешнего колес задаются формулой. 1

    (1)

    Обратите внимание, что это является исключительно результатом геометрии ситуации и того факта, что колеса могут свободно вращаться независимо; здесь нет зависимости от крутящего момента, передаваемого на колеса (см. рис.4).

    Учет динамики шин изменяет уравнение. 1 немного. Приложение крутящего момента к колесу приводит к так называемому проскальзыванию колеса [1]. Это не означает, что между шиной и дорогой теряется сцепление с дорогой; скорее, это особенность динамики шины. В результате соотношение между скоростью вращения колеса и скоростью транспортного средства изменяется в соответствии с:

    , где с - коэффициент скольжения.Коэффициент скольжения является функцией приложенного крутящего момента, а также свойств шины и поверхности раздела шины с дорогой [2]. Коэффициент скольжения может превышать 0,1, при этом сохраняется хорошее сцепление с дорогой на хорошей дороге и с высоким крутящим моментом. Принимая во внимание пробуксовку, которая может быть разной для внутренних и внешних колес из-за различий в дорожном покрытии, мы получаем скорости вращения колес в уравнении. 2.

    (2)

    Поскольку скольжение является функцией крутящего момента, теперь существует некоторая зависимость от крутящего момента на каждом из колес.

    Есть дальнейшие незначительные изменения в уравнении. 1, которые являются результатом недостаточной или избыточной поворачиваемости транспортного средства и неровностей дорожного покрытия, но они не имеют отношения к данному обсуждению.

    Важными выводами, касающимися поведения ведомых колес с открытым дифференциалом, являются:

    • Скорости колес полностью определяются после предположения, что на каждое колесо подается равный крутящий момент и что два колеса на оси могут свободно вращаться с разными скоростями.
    • Колеса обретают «естественную» скорость, что обеспечивает хорошую управляемость и поведение шин при прохождении поворотов.

    Пока эти два предположения верны, не имеет значения, как они достигаются.

    Колесные моторы и открытый дифференциал

    Самый простой способ управлять парой электродвигателей в колесах на оси - требовать равного крутящего момента от обоих двигателей.

    Оба колеса будут приводиться в движение с одинаковым крутящим моментом независимо от разницы скоростей, если VCU требует одинакового крутящего момента от обоих двигателей.

    В автомобиле с колесными двигателями ведомые колеса физически не соединены полуосями, поэтому они не обязаны вращаться с одинаковой скоростью. Как и в случае с открытым дифференциалом, они могут свободно вращаться с разными скоростями без ограничений.

    Следовательно, два допущения верны для транспортного средства, приводимого в движение колесными двигателями, и поэтому уравнение 1 также применимо: поведение колес в транспортном средстве, приводимом в движение колесными электродвигателями, точно такое же, как поведение в транспортном средстве. с центральным силовым агрегатом, приводимым в действие через открытый дифференциал, если блок VCU требует равного крутящего момента от каждого двигателя в колесе.

    Рис. 4: Геометрия Акермана поворачивающейся машины.

    Хотя здесь нет физико-механического дифференциала, мы будем называть этот режим управления колесными двигателями «электронным открытым дифференциалом».

    Ограничения открытого дифференциала

    Открытый дифференциал и электронный открытый дифференциал страдают теми же ограничениями, которые возникают, когда одно колесо на оси имеет значительно лучшее сцепление с дорогой, чем другое, и в этом случае:

    • Максимальный крутящий момент, который может быть передан на любое колесо, ограничен колесом с нижним пределом тяги.
    • Нет ничего, что могло бы помешать колесу с более низким сцеплением с дорогой раскручиваться, если приложен больший крутящий момент, чем может выдержать интерфейс шины с дорогой.

    Есть несколько обстоятельств, которые могут привести к асимметричным ограничениям тягового усилия на оси:

    • Прохождение поворотов, при котором вес переносится на внешние колеса, снижая предел сцепления с внутренними колесами.
    • «Split- μ » дорожное покрытие, когда одно колесо находится на хорошем дорожном покрытии, а другое - на рыхлых камнях, льду или воде.
    • Вождение по бездорожью.

    В обычных транспортных средствах используется ряд технологий, предотвращающих раскручивание колеса и потерю крутящего момента в этих условиях. Некоторые из них и их эквиваленты для колесных двигателей обсуждаются в этой статье.

    Противобуксовочная система

    Противобуксовочная система предназначена для предотвращения раскручивания колеса из-за отсутствия сцепления с дорожным покрытием. Он реализован как часть системы электронного контроля устойчивости (ESC), которая может применять тормоза индивидуально к колесу с помощью блока антиблокировочной тормозной системы (ABS).ESC становится все более распространенным явлением и теперь обязательна в Европе и США для легковых автомобилей.

    Система контроля тяги определяет, что колесо раскручивается, и применяет тормоз для этого колеса. Помимо контроля потери тяги, это позволяет приложить крутящий момент к противоположному колесу, даже с открытым дифференциалом или электронным открытым дифференциалом, поскольку тормоз противодействует крутящему моменту, прилагаемому трансмиссией к вращающемуся колесу.

    TCS может использоваться с колесными двигателями точно так же, как и в обычных транспортных средствах, с теми же результатами.От VCU не требуется никаких специальных действий.

    С другой стороны, сцепление с рукой можно контролировать без использования тормозной системы ESC в транспортном средстве с приводом от колеса. VCU использует информацию о скорости вращения колес, передаваемую двигателями в колесах, для определения момента потери тяги и уменьшения требуемого крутящего момента на этом колесе. Это можно сделать, не уменьшая требования к крутящему моменту на другое колесо. Результат может превзойти действие обычного TCS из-за быстрого времени отклика системы двигателя в колесе и способности двигателей создавать как положительный, так и отрицательный крутящий момент.Мы можем назвать это электронной системой контроля тяги (eTCS).

    Система eTCS в чем-то похожа на системы Antriebsshlupfregelung (ASR), которые являются частью системы контроля тяги в некоторых традиционных транспортных средствах и включают модуляцию крутящего момента двигателя.

    Дифференциал повышенного трения

    Дифференциал повышенного трения представляет собой более сложную форму механического дифференциала. В производстве имеется ряд различных реализаций, в том числе с элементом электронного управления.Они обсуждаются здесь отдельно как «активные дифференциалы».

    В отличие от открытого дифференциала, который всегда равномерно распределяет крутящий момент между двумя колесами на оси, дифференциал повышенного трения распределяет крутящий момент в соответствии с относительными скоростями двух колес, что достигается за счет добавления механизма, который сопротивляется относительной разнице скоростей. между двумя выходными валами. Крутящий момент уменьшается на более быстром колесе и увеличивается на более медленном колесе, что предотвращает раскручивание колеса, не уменьшая при этом общий крутящий момент.Хотя это преодолевает основные ограничения открытого дифференциала, это также приводит к большему крутящему моменту, передаваемому внутренним колесам во время поворота, что вызывает недостаточную поворачиваемость.

    В автомобилях с приводом от колесных двигателей блок VCU может требовать от двух двигателей неравный крутящий момент в ответ на скорости, сообщаемые двигателями, точно так же, как и для дифференциала повышенного трения. Однако на практике это не дает оптимального распределения крутящего момента при отсутствии потери тяги. Система eTCS с векторизацией крутящего момента обеспечит превосходную управляемость и контроль тяги.

    В обычном транспортном средстве с дифференциалом повышенного трения можно обеспечить асимметричный крутящий момент по оси без значительного снижения максимального общего крутящего момента оси. С другой стороны, в колесных двигателях уменьшение крутящего момента на одном колесе не позволяет увеличить крутящий момент противоположного колеса сверх его максимального крутящего момента. Это неизбежно означает, что общий крутящий момент оси, доступный от двух колесных двигателей, уменьшается из-за асимметрии крутящего момента.

    Заблокированный дифференциал

    Блокировка дифференциала может быть эффективна для внедорожников, у которых тяговое усилие на колесах плохое и очень непостоянное.Заблокированный дифференциал заставляет два колеса на оси вращаться с одинаковой скоростью. Затем крутящий момент естественным образом передается туда, где есть тяга.

    В колесных двигателях блок VCU может реализовать контуры управления скоростью на каждом из ведомых колес для достижения того же эффекта. Как описано здесь, сами двигатели не включают в себя управление скоростью, но связь между двигателями и VCU имеет достаточную полосу пропускания, чтобы позволить блоку управления транспортным средством (VCU) запускать контуры управления для регулирования скорости вращения колес.

    Активный дифференциал

    Активный дифференциал - это современная система, применяемая на некоторых транспортных средствах с высокими характеристиками, которая улучшает управляемость и управляемость за счет активного управления распределением крутящего момента. Система реагирует на различные датчики вокруг транспортного средства, которые отслеживают намерения водителя и реакцию транспортного средства, которые интерпретируются электронным блоком управления (ЭБУ). Затем ЭБУ выдает команду на дифференциал с электронным управлением, который может распределять крутящий момент по требованию.Помимо контроля тяги, такая система может улучшить управляемость и устойчивость. Механически активный дифференциал реализован как дифференциал повышенного трения с электронным управлением. Два пакета сцепления обычно могут управляться электроникой для передачи крутящего момента от одного полуоси к другому, таким образом изменяя поведение нижележащего открытого дифференциала под управлением систем управления динамикой транспортного средства в транспортном средстве. Примером такой системы является электронный модуль вектора крутящего момента GKN, реализованный в BMW X63.

    Дифференциал с электронным управлением - сложный и дорогой компонент. Подобная функциональность может быть достигнута без добавления механических компонентов в транспортном средстве с приводом от электродвигателя. В этом случае VCU выполняет вычисления, аналогичные тем, которые ECU будет выполнять для активного дифференциала, и соответственно предъявляет асимметричные требования к крутящему моменту для двух колесных двигателей. Иногда это называется векторизацией крутящего момента и может использоваться для:

    • Повышение устойчивости автомобиля на высоких скоростях.
    • Повышает устойчивость автомобиля при наличии таких помех, как боковой ветер или колеи на дороге.
    • Повышение маневренности автомобиля на низких скоростях.
    • Улучшение управляемости и управляемости на поворотах.

    Векторное управление крутящим моментом с помощью колесных двигателей выгодно перед активным дифференциалом в обычном транспортном средстве не только с точки зрения стоимости компонентов и массы, но и потому, что система более отзывчива и может лучше реагировать на переходные ситуации. Он также может плавно вводить тормозной момент без использования тормозной системы, что расширяет возможности системы по поддержанию контроля над автомобилем.

    Эквивалентность обычных транспортных средств и колесных транспортных средств

    Таблица 1 обобщает различные дифференциальные и связанные системы, встречающиеся в обычных транспортных средствах с центральным двигателем внутреннего сгорания или электродвигателем, и описывает реализацию на транспортном средстве с приводом от колеса, которое приводит к тому же поведению.

    В общем, управление скоростью вращения колес и, следовательно, управление транспортным средством в колесном механическом транспортном средстве может быть лучше, чем в обычном транспортном средстве, и реализовано с меньшей сложностью и стоимостью.

    Полный привод

    Это обсуждение рассматривало пару ведущих передних колес или пару ведущих задних колес транспортного средства. Все выводы в равной степени применимы к автомобилю с колесными двигателями на всех четырех колесах.

    Например, отправка одинакового крутящего момента на все четыре приводных двигателя дает точно такое же поведение, как у обычного полноприводного автомобиля с открытыми дифференциалами спереди и сзади и открытым межосевым дифференциалом. Все четыре колеса могут вращаться независимо, и к каждой ступице колеса прилагается равный крутящий момент.

    Заключение

    Электродвигатели, устанавливаемые на колеса, предлагают возможность улучшенного управления динамикой транспортного средства при меньших затратах и ​​сложности по сравнению с обычными транспортными средствами, которые передают мощность на колеса через дифференциал.

    Таблица 1: Эквивалентность обычного автомобиля и автомобиля IWM.
    Обычная автомобильная система Эквивалент для колесных моторных транспортных средств
    Открытый дифференциал Равный крутящий момент для обоих двигателей
    Противобуксовочная система на базе ESC Контроль тяги на основе ESC, как в обычном автомобиле, или уменьшение требуемого крутящего момента при пробуксовке колеса
    Дифференциал повышенного трения Уменьшить долю крутящего момента для более быстрого колеса в соответствии с дифференциальной скоростью
    Заблокированный дифференциал Реализовать контуры управления скоростью для каждого двигателя в VCU
    Активный дифференциал Функция векторизации крутящего момента в VCU

    Простейшая реализация управления транспортным средством для колесных двигателей, всегда требующая равного крутящего момента от всех двигателей, приведет к поведению точно так же, как и в транспортном средстве с открытым дифференциалом, но без необходимости в механическом дифференциале или полуосях.На это поведение можно наложить те же самые тормозные системы контроля тяги и / или устойчивости, которые используются в обычных транспортных средствах, чтобы предотвратить раскручивание колес при прохождении поворотов или на поверхностях с низким сцеплением. С другой стороны, улучшенные функции контроля тяги и вектора крутящего момента могут быть достигнуты без дополнительных затрат за счет регулирования крутящего момента, требуемого от электродвигателей, в отличие от обычных транспортных средств, которые требуют сложных, тяжелых и дорогих механических систем, таких как активный дифференциал для достижения аналогичного результата.

    Список литературы

    [1] М. Бланделл и Д. Харти: Многотельный системный подход к динамике транспортных средств, Оксфорд, Великобритания: Butterworth-Heinemann, 2004.
    [2] HB Пацейка: Динамика шин и транспортных средств, Оксфорд, Великобритания: Butterworth-Heinemann, 2002.
    [3] GKN plc. (2016, 10 марта): «Электронное векторизация крутящего момента» (онлайн), доступно: www.gkn.com/driveline/our-solutions/trans-axle-solutions/limited-slip-and-locking-differentials/Pages/electronic Torque -vectoring.aspx

    Свяжитесь с Габриэлем Дональдсоном, Protean Electric, Габриэль[email protected]

    Что такое дифференциал автомобиля и почему он важен?

    Добавлено 27 Февраля, 2018 Колесо новостей автомобильная терминология, определение словаря, определения, дифференциал, трансмиссия, Quaife Limited Slip Differential

    Комментариев нет

    Существует целый словарь технической лексики, относящейся к машине, на которой вы ездите ежедневно, - термины, которые большинство людей слышат, но не понимают, что они означают.Одним из этих важных, но упускаемых из виду условий является дифференциал автомобиля. Давайте разберемся, что означает этот термин и как он работает.


    Ответы на дополнительные вопросы по обслуживанию : От масла до тормозов, в этом справочнике часто задаваемых вопросов рассматриваются все вопросы


    Понимание функции и важности дифференциала

    Согласно Merriam-Webster, дифференциал определяется как «узел шестерни трансмиссии, соединяющий два коллинеарных вала или оси (например, задних колес автомобиля) и позволяющий одному валу вращаться быстрее, чем другому.Проще говоря, это означает, что дифференциал - это устройство, которое снимает мощность двигателя и разделяет ее, позволяя противоположным колесам вращаться с разной скоростью. Механически дифференциал состоит из ведущего вала и двух выводов колес.

    Существует три основных типа дифференциалов:

    • Открытый дифференциал: разделяет крутящий момент на разные скорости (наиболее распространенный тип)
    • Блокировка дифференциала: позволяет колесам вращаться с одинаковой скоростью при блокировке (в основном в грузовиках)
    • Дифференциал повышенного трения: блокируется при пробуксовке колеса (в некоторых спортивных автомобилях)

    Причина, по которой дифференциал имеет значение, заключается в том, что он необходим для обеспечения возможности поворота вашего автомобиля: внешние колеса должны вращаться быстрее, чем внутренние.Эта концепция существует на протяжении тысячелетий, задолго до изобретения автомобилей, и ее можно было увидеть в вагонах и повозках на протяжении многих лет.

    Чтобы убедиться, что дифференциал вашего автомобиля работает правильно, убедитесь, что масло дифференциала заменяется каждые 30 000–50 000 миль.


    Цены на газ растут: Получите максимальную отдачу от своих денег, следуя этим советам по экономии топлива


    Источники: Автомобиль и водитель , Popular Mechanics

    The News Wheel - это цифровой автомобильный журнал, предлагающий читателям свежий взгляд на последние автомобильные новости.Мы находимся в самом сердце Америки (Дейтон, штат Огайо), и наша цель - предоставить интересную и информативную картину тенденций в автомобильном мире. Смотрите другие статьи в «Колесе новостей».

    4WD против AWD: в чем разница?

    Почему Subaru работает лучше, чем Jeep в некоторых условиях и наоборот? Ответ в том, как они приводят в движение свои колеса. Даже если все четыре приводятся в движение, то, как к ним поступает мощность - и как это влияет на ваше вождение - сильно различается.В других случаях он может вообще не отличаться. Смущенный? Давайте объясним, как все это работает.

    Начинается с дифференциала

    Когда вы поворачиваете на своем автомобиле, грузовике или полноприводном универсале-внедорожнике, внешние колеса перемещаются дальше, чем внутренние, поэтому им нужно вращаться быстрее. Чтобы обеспечить такую ​​разность скоростей, существует устройство, называемое дифференциалом между колесами на оси. Ваши передние колеса также перемещаются дальше, чем ваши задние колеса, поэтому в автомобиле с полным или полным приводом также требуется дифференциал между передней и задней осями.

    Эта система отлично подходит для дороги с хорошим сцеплением. Но вся эта причудливая безаварийная маневренность в дорожных условиях с высоким сцеплением мешает, когда вы сталкиваетесь с ситуациями с низким сцеплением, которые вы найдете на бездорожье или в плохую погоду. Видите ли, природа дифференциала состоит в том, чтобы направлять весь крутящий момент двигателя по пути наименьшего сопротивления - шине с наименьшим сцеплением.

    Если вы когда-нибудь пробовали проехать по снежному склону, то наверняка замечали это. Когда вы нажимаете на педаль газа, одно колесо вращается свободно, а другое ничего не делает.Чтобы обрести сцепление с дорогой в этих условиях, вам нужно заблокировать колеса вместе. И то, как автомобиль это делает, определяет его возможности.


    Зачем ездить на всех четырех колесах?

    Давайте остановимся на кратком ответе: тяга. При прочих равных четыре колеса имеют вдвое большую тягу, чем два. Конечно, когда мы начали вдаваться в вышесказанное, передать мощность на все четыре колеса довольно сложно.


    Как работает полный привод

    Благодаря такому дифференциалу между осями автомобиль с полным приводом направит мощность вашего двигателя по пути наименьшего сопротивления - колесу с наименьшим сцеплением.В то время как полноприводный автомобиль может выбирать только между двумя колесами, система полного привода ищет наименьшее сопротивление на всех четырех колесах.

    Чтобы противодействовать этому, лучшие автомобили с полным приводом оснащаются межосевым дифференциалом, который содержит сцепление или вязкостный привод. Это распределяет крутящий момент спереди назад, направляя его от вращающегося колеса. Благодаря тому, что хорошие автомобили с полным приводом делают это на лету, автоматически, без какого-либо вмешательства водителя, они могут помочь водителю поддерживать сцепление с дорогой в различных условиях.Полный привод может перейти от сцепления с дорогой (где дифференциалы должны обеспечивать разные скорости движения из стороны в сторону и спереди назад) на скользкий снег, дождь или грязь (где крутящий момент также необходимо распределить между колесами с сцеплением) практически мгновенно. Вот почему полный привод - лучший выбор для большинства водителей и помогает безопасно перемещаться как в ненастную погоду, так и при легком бездорожье. Важным отличием систем полного привода является то, какой крутящий момент они способны распределять - чем больше, тем лучше. Обязательно ищите этот номер при поиске следующей покупки автомобиля.


    Как работает полный привод

    4WD работает, блокируя переднюю и заднюю оси вместе, распределяя крутящий момент между ними 50:50. Это обеспечивает отличное тяговое усилие, но автомобиль, заблокированный в режиме полного привода, не может безопасно эксплуатироваться на сухом асфальте, поскольку его передняя и задняя оси вынуждены вращаться с одинаковой скоростью. Помимо того, что автомобиль может выйти из-под контроля, это также вызывает большую нагрузку на трансмиссию и может привести к ее повреждению. При заблокированном режиме 4WD транспортному средству требуется пробуксовка колес, чтобы компенсировать разную скорость осей - в режиме 4WD грузовик может найти сцепление с дорогой на рыхлых поверхностях, но для работы также требуются рыхлые поверхности.Таким образом, вы действительно когда-либо используете 4WD только по бездорожью или по глубокому снегу.

    Чтобы максимально усложнить ситуацию, некоторые автомобили с полным приводом также могут работать с полным приводом. Land Rover Discovery Уэса - отличный тому пример. Во время езды по Голливуду по асфальтированным дорогам у него не будет блокироваться передняя и задняя оси. Если повторить нашу предыдущую тему, это означает, что крутящий момент передается на все четыре колеса, но не распределяется между передней и задней частью. Крутящий момент передается на то из четырех колес, которое имеет наименьшее сцепление с дорогой. Затем, когда он едет по бездорожью в Baja, он блокирует этот межосевой дифференциал, включает 4WD, и мощность равномерно распределяется между передней и задней частями, удваивая тяговое усилие.Благодаря такому расположению автомобиль с постоянным полным приводом может безопасно двигаться по дороге с разблокированным межосевым дифференциалом, а затем перемещаться по рыхлой местности, блокируя этот дифференциал.

    В то время как 4WD может равномерно распределять мощность спереди назад, он не может распределять ее из стороны в сторону по оси. Это означает, что в режиме полного привода крутящий момент по-прежнему передается на колесо с наименьшим сцеплением с дорогой на каждой оси. Чтобы исправить это, вам понадобится блокируемый дифференциал, который заставляет оба колеса на оси вращаться с одинаковой скоростью.Это последний кусочек головоломки, позволяющий добиться максимального сцепления с дорогой на бездорожье. При заблокированном межосевом дифференциале и заблокированных дифференциалах на обеих осях крутящий момент распределяется поровну на все четыре колеса.

    «Шкафчики» могут работать механическими, электронными или пневматическими средствами. Усовершенствованные внедорожники, такие как Jeep Wrangler Rubicon или Mercedes G-Wagon, в стандартной комплектации оснащены передними и задними шкафчиками, что означает, что они единственные автомобили, действительно способные одновременно управлять всеми четырьмя колесами в условиях низкой тяги.Если в вашем автомобиле нет передних и задних запирающихся шкафчиков, это лучшее вложение, которое вы можете сделать, чтобы добиться большей проходимости по бездорожью. Камеры ARB полностью невидимы для вашего автомобиля, пока вы не нажмете переключатель, не включите их и не получите мгновенный захват.


    Низкий диапазон увеличивает крутящий момент

    Если вы когда-нибудь пробовали проехать на машине по бордюру, вы заметили, сколько газа нужно, чтобы перебраться через это простое препятствие. И твоей машине это, наверное, не понравилось.Хотите знать, как внедорожники ползут по гигантским крутым скалам? Это не с большей мощностью, а с пониженной передачей. Передача пониженного диапазона увеличивает крутящий момент двигателя (обычно в два-четыре раза). Это похоже на включение бабушкиной передачи на горном велосипеде: внезапно подъемы требуют гораздо меньше усилий. Это также увеличивает эффект торможения двигателем; Низкочастотная передача позволяет спускаться по очень крутой местности без использования тормозов.

    Позволяя преодолевать сложную местность на более низких скоростях, передача пониженного диапазона также облегчает преодоление препятствий на передаче, позволяя подвеске поглощать неровности и повышая безопасность.Всегда оставайтесь на малой дальности, если вы едете по крутому бездорожью.


    Технология заменяет механические возможности

    Внедорожник: возможности вашего автомобиля зависели от полного привода, блокировки дифференциалов и других специальных компонентов. Технологии меняют это. В наши дни люди хотят, чтобы автомобили могли преодолевать Рубиконовую трассу и Нюрбургринг. Контроль тяги делает это возможным.

    Кому нужен дорогой, редко используемый блокируемый дифференциал, если можно просто обманом заставить свою систему ABS выполнять ту же работу? Благодаря выборочному срабатыванию тормоза на прялке эта технология имитирует эффект запирающего устройства, направляя крутящий момент на колесо вместе с тягой.В наши дни антипробуксовочная система стала настолько эффективной, что может ловить прялку за 1/100 оборота. Он автоматически предоставляет преимущества шкафчика, и вам не нужно знать, когда его использовать. Единственный недостаток заключается в том, что вы отбираете крутящий момент двигателя, чтобы получить тягу - хорошо, если у вас более чем достаточно крутящего момента, но плохо, если у вас нет передачи, чтобы его найти.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *