ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Вода льется—и мелет, толчет, пилит, кует и откачивает воду – Наука – Коммерсантъ

текст Владимир Алтунин, кандидат технических наук, доцент МАДИ-ГТУ

Валерий Волшаник, доктор технических наук, профессор, Московский государственный университет природообустройства

Сергей Пьявкин, руководитель сектора проектирования НКС «Волга»

Ольга Черных, кандидат технических наук, профессор, РГАУ-МСХА им. К.А. Тимирязева

Использование энергии речных потоков началось в России еще в глубокой древности. В весьма ранних памятниках русской письменности встречаются такие термины, как «мельник», «мельница». Водяные мельницы в России строили сначала для переработки продуктов сельского хозяйства, прежде всего для привода мукомольных поставов, а затем крупорушек и сукновален. В не столь давние времена практически весь урожай зерновых в России перерабатывался в муку исключительно на водяных и ветряных мельницах; одна мельница строилась на 15-20 сельских домов, а то и чаще.

Но уже в XVI в. водяной двигатель в России используется не только для переработки сельскохозяйственной продукции, но и в металлургии, добыче полезных ископаемых, обработке камня. Примерный перечень технологических операций, выполнявшихся в России в XVIII веке с помощью водяных двигателей, приведен в таблице 01 .

Наибольшее распространение получили именно мельницы. Внешний вид здания мельницы существенно зависел от места ее постройки и от компоновки основного оборудования и назначения мельницы, а также от строительных конструкций сооружения. Так, для северных земель, Карелии характерна простая деревянная конструкция, без каких-либо архитектурных изысков. Мельницы европейской части России имеют отличия в архитектуре от своих северных аналогов. Здание мельницы, построенное в черте города, могло быть выполнено из кирпича или камня, что свидетельствовало о состоятельности владельца.

Принципиальная схема работы водяной мельницы с верхней подачей воды показана на рисунке 01.

Вода, поступающая из лотка, падает на большое колесо [01], состоящее из двух ободов одинакового диаметра, соединенных перегородками «лопатками», образующими ковши. Вода, попавшая в верхний ковш, под действием силы тяжести толкает колесо и выливается по мере движения вниз. Отметим, что верхний способ подачи воды обеспечивает большую мощность на вале колеса, но требует строительства гидротехнических сооружений (плотина, запруда) для накопления и подъема воды на высоту колеса.

Вместе с колесом [01]на горизонтальном валу закреплено зубчатое колесо [02]меньшего диаметра, приводящее в движение шестерню [03]на вертикальном валу. На нижнем конце вертикального вала жестко крепился верхний, подвижный жернов (бегун), в то время как нижний (лежняк) оставался неподвижным. Зерно, попадая между камнями, перемалывалось в муку, а тонкость помола определялась зазором между камнями. Жерновые камни изготавливались из особых пород мелкозернистого кварцевого камня или песчаника или же из искусственной смеси.

На соприкасающихся поверхностях бегуна и лежняка создавались достаточно сложные по конфигурации системы бороздок, обеспечивавших перемещение зерна и муки от центра жернова к его периферии, а также вентиляцию и охлаждение жернова. Расстояние между камнями регулировалось специальным механизмом. Размеры камней и частота вращения бегуна выбирались в зависимости от требуемой производительности мельницы и вида размалываемого материала.

Работы по толчению органических и минеральных материалов на мельницах выполняются с помощью толчеи — измельчающей или шелушильной машины ударного действия. Рабочий орган толчеи — пест, совершающий прямолинейное возвратно-поступательное движение в ступе или, чаще на мельницах, системе ступ (как правило, бревен), линейно укрепленных на горизонтальном поворачивающемся валу и оканчивающихся внизу над деревянным слабо наклоненным лотком.

Устройство песта более жесткого и с большей скоростью удара позволяет создавать механизм для обработки металла ударным воздействием. Конструирование механизмов с формой движения рабочего органа, обеспечиваемой исполнительными органами водяной мельницы, — вращательной или возвратно-поступательной, позволяет обеспечить выполнение разнообразных операций.

На рисунке 02 показана простейшая схема преобразования вращательного движения в возвратно-поступательное. Такое преобразование требовалось, например, в пилорамах.

Общим для перечисленных в таблице 01 операций является наличие только механической энергии, которая и вырабатывается водяными колесами путем использования вечно возобновляющейся экологически чистой энергии водных потоков.

Использование энергии воды для совершения повторяющихся механических операций получило в России новое развитие во время промышленного подъема на Урале в начале XVIII века. Водяные двигатели на металлургических заводах, построенных по указу Петра I общим числом более двухсот, приводили в движение меха, подающие воздух в печь, и молоты. Для достижения требуемой мощности таких двигателей, существенно превосходящей мощность мельничного колеса, возникала необходимость в строительстве гидротехнических сооружений для повышения уровня воды, некоторые из которых — пруды, каналы, тоннели, каменные плотины — сохранились до сих пор и в настоящее время являются памятниками культуры, охраняемыми государством.

Вторая половина XVII века и XVIII век — золотое время водяных двигателей, в России и в мире. На Сене построили грандиозную установку для питания водой фонтанов Версаля, состоявшую из 14 колес диаметром 12 метров. От колес приводились в действие поршневые насосы, поднимавшие 3000 тонн воды в сутки на высоту около 200 метров. В Шотландии на бумагопрядильной фабрике работало колесо диаметром около 20 метров и шириной 4 метра. В России в конце XVIII века действовало несколько тысяч гидросиловых установок, главным образом на горных заводах. Самая известная из них — машина для откачки воды из шахт, построенная русским механиком Козьмой Фроловым в 1785 г. на Змеиногорском руднике на Алтае.

Поступление воды в шахты было одной из главных проблем, мешающей работе рудокопов. Без использования машин воду приходилось поднимать вручную; этим непрерывно занимались водоносы, передающие друг другу вверх полные ведра, вниз — пустые. Это была тяжелая и опасная работа, не связанная к тому же непосредственно с добычей руды. Кроме того, постоянно поступающая вода ограничивала глубину шахт. Необходимость в машине для откачки воды на Змеиногорском руднике возникла после истощения верхних слоев земли, ранее богатых золотой и серебряной рудой. Рудник был собственностью царской семьи, так что уменьшение притока в казну драгоценных металлов представляло собой государственную проблему.

Гидросиловая установка Фролова — одна из самых больших, когда-либо созданных в мире. Вода откачивалась отсасывающими насосами, каждый из которых мог поднимать воду не более чем на 10 метров — столб воды такой высоты создает давление, равное атмосферному. Соответственно, для откачки со дна шахты требовался целый каскад насосов — нижний насос откачивал воду в большое корыто, из которого верхний поднимал ее в корыто на следующем уровне. Поршни насосов приводились в движение водяными колесами, самое большое из которых достигало в диаметре 15 метров. Чтобы обеспечить необходимую мощность водяного потока для вращения колес, речку Змеевку перегородили плотиной длиной больше 100 метров и высотой около 25 метров.

Образовался пруд площадью несколько квадратных километров.

С запуском машины Фролова рудник в Змеиногорске получил вторую жизнь, добыча драгоценных металлов на нем велась еще около ста лет. Энергия падающей воды использовалась не только для осушения шахт, но и для подъема руды на поверхность и ее обогащения: такую машину Фролов построил на Преображенском руднике.

В XIX веке гидросиловые установки постепенно вытесняются паровыми двигателями. Их преимущества — отсутствие привязки к рекам, возможность обеспечить высокую скорость на валу двигателя, компактность, мобильность и более высокая мощность при сравнимых массе и размерах — оказались решающими. Однако и в начале XX века энергия воды еще использовалась достаточно широко: анкета русского технического общества, проведенная в 1912 г., зарегистрировала 45449 гидросиловых установок общей установленной мощностью 686856 л.с., из них 470962 л.с. вырабатывались водяными колесами.

В конце XIX века водяные двигатели неожиданно получили шанс на возрождение. 30 сентября 1882 г. в США заработала первая в мире гидроэлектростанция. Водяное колесо приводило в движение динамо-машину. Вырабатываемая ею электроэнергия использовалась для освещения жилых домов и производственных помещений на местной фабрике. Со временем водяные колеса заменили турбинами, обладающими более высоким коэффициентом полезного действия и позволяющими использовать не только потенциальную энергию воды, падающей с некоторой высоты, но и кинетическую энергию ее движения. Примечательно, что гидротурбины начали создавать задолго до первых электростанций. В России первые турбины строил в 30-40-х годах XIX века уральский крепостной мастер Игнатий Сафонов, их использовали на заводах. В настоящее время гидротурбины, имеющие размер, сравнимый с размером водяных колес, превосходят их по мощности в сотни раз.

Сегодня новую жизнь гидросиловым установкам дает малая гидроэнергетика. Микро- и мини-ГЭС постепенно получают распространение, особенно в труднодоступных районах, где затруднено централизованное электроснабжение. Конечно, энергию падающей воды используют уже не для помола зерна, а для выработки электричества. На смену деревянным водяным колесам пришли металлические турбины, гидросиловые установки стали более компактными, надежными и менее шумными. С учетом того, что альтернативная энергетика во многих странах поддерживается на государственном уровне, малая гидроэнергетика имеет неплохие перспективы.


Большое колесо маленького острова

Самое большое в мире действующее водяное колесо находится на одном из островов Ирландского моря в деревне Лакси. Его диаметр — 22 метра, а высота — 18 метров. Колесо было построено в середине XIX века для откачки грунтовых вод из рудников, где добывали свинец, цинк и другие металлы. К тому времени паровые двигатели уже потеснили водяные, однако на острове не было угля, а его доставка стоила довольно дорого.

Необходимую энергию для работы насосов, откачивающих воду, могли дать многочисленные горные речки острова. Идею построить водяной двигатель осуществил местный инженер Роберт Кэйсмент. Большие размеры колеса обусловлены тем, что из шахт требовалось поднимать около тонны воды за минуту с глубины в полтора километра. Мощность, развиваемая колесом, должна была составлять порядка мегаватта, или немногим больше тысячи лошадиных сил.

Сейчас колесо для откачки воды уже не используют, его запускают время от времени только для туристов.

Водяная мельница — принцип работы, устройство, история, фото: Самые красивые дома



Водяная мельница это гидротехническое сооружение, использующее энергию воды, поступающей на водяное колесо, движение которого выполняет полезную работу, обычно посредством зубчатой передачи, в отличие от ветряной мельницы, использующей энергию ветра.

Традиционно водяная мельница применялась как устройство, использующее водяное колесо или водяную турбину для осуществления таких механических процессов, как помол зерна, заточка, дубление, резка или ковка.

Использование водяной мельницы долгие годы оставалось незаменимым при производстве многих материальных благ, в том числе муки, пиломатериалов, бумаги, текстильной продукции и металлических изделий.

Виды водяных мельниц


Водяные мельницы делятся на виды по цели использования:

• Мукомольная мельница
• Лесопильная
• Для производства бумаги
• Для нужд текстильной промышленности
• Для заточки металла
• Для изготовления проволоки и др.

Одним из основных способов классификации водяных мельниц является классификация по типу ориентации колеса (вертикальная или горизонтальная). При вертикальной ориентации мельничный механизм приводится в движение от водяного колеса, расположенного в вертикальной плоскости через механизм зубчатой передачи, при горизонтальной ориентации механизм оснащен горизонтальным колесом без такого механизма.

Водяные мельницы могут быть поделены по признаку их расположения на:

• приливные мельницы, использующие движение воды при приливах и отливах;
• корабельные мельницы, расположенные на борту судна

История изобретения водяной мельницы


Водяная мельница в Древней Греции и Древнем Риме

В западном мире инженеры Эллады первыми изобрели два главных компонента, необходимых для создания водяной мельницы: водяное колесо и зубчатую передачу, вместе с продолжателями технологий Древней Греции — древними римлянами, они первыми использовали это изобретение в работе.

Самые ранние сведения о водяном колесе (в трактате греческого инженера Филона Византийского «PNEUMATICA»), дошедшие до наших дней, датируются 3-м веком до нашей эры, конструктором устройства считается греческий ученый Перахор.

Греческий географ Страбон сообщает в своей Географии о водяном колесе для переработки зерна, увидеть которое ему удалось в окрестностях дворца царя Митридата VI Евпатора, во время путешествия по Малой Азии в 71 году до н. э.

Римский инженер Витрувий создал первое техническое описание водяной мельницы, существование которой датируется приблизительно 40-10 годами до н.э.; устройство приводилось в движение водяным колесом через механизм зубчатой передачи. Он также указывал на существование водных месильных машин.

Греческий эпиграмм Антипатр Солунский говорил о существовании продвинутой водной мельничной системы около 20 г. до н.э. Он дал устройству высокую оценку за возможность продуктивно использовать конструкцию при размоле зерна и за снижение затрачиваемого человеческого труда.

Римский энциклопедист Плиний упоминал в своей Естественной истории, что около 70-го года до н.э. устройства, работающие за счет силы движения воды существовали на значительной части территории Италии.

Существует свидетельство о наличии водяной мельницы в 73 г. н.э. в Антиохии, на территории римской Сирии.

Вероятно, что водяные мельницы, используемые для дробления золотосодержащего кварца, существовали начиная с конца 1-го века до начала 2-го. Подобные конструкции были обнаружены в римских шахтах по всей Европе, особенно в Испании и Португалии.

В 1-м веке нашей эры водяной мельничный комплекс «Barbegal», расположенный на юге Франции, был описан как «самое большое из известных приспособлений для концентрации механической энергии в древнем мире». При его работе использовалось 16 водяных колес для питания соответствующего количества мукомольных мельниц. Производительность устройства оценивалась в 4,5 тонны муки в сутки, что было вполне достаточно для полного обеспечения хлебом 12500 жителей, населявших город Алерт в то время. Аналогичный мельничный комплекс существовал на холме Яникул. Обязанностью мельников, обслуживающих конструкцию, было выполнение поставок муки для населения Рима. Комплекс был признан императором Аврелианом достаточно важным, чтобы территория холма была включена в стены Аврелиана в конце 3-го века.

Мельничное колесо, происхождение которого датируется 2-м веком н.э., было обнаружено при раскопках на территории современной Франции.

Существовавшая в 3-м веке нашей эры на территории Иераполя лесопильная мельница является наиболее ранним примером механизма, в работе которого использовалось устройство, соединённое с коленчатым валом. Механизмы с подобным принципом работы были обнаружены при раскопках в Джераше и Эфесе и датируются 6-м веком н.э. В литературе отсылку на существование водяного колеса в современной Германии можно найти в стихотворении «Mosella» Децима Магна Авсония, датируемого 4 веком. Примерно в то же время христианский святой Григорий Нисский из Анатолии демонстрировал возможности использования энергии воды в различных частях Римской империи.

Самая ранняя водяная турбинная мельница была найдена в Чемтау на территории римской Северной Африки; ее возраст датируется концом 3-го — началом 4-го века нашей эры.

По сведениям Плиния Старшего водяные мельницы преимущественно использовались для измельчения зерна в муку, но применение устройства в промышленных целях также было достаточно распространённым.

Римляне использовали фиксированные и плавающие водяные колеса для получения энергии, они же ввели использование водяного колеса в других провинциях Римской империи. Так называемые «греческие мельницы» использовали водяные колеса с горизонтальным колесом (и вертикальным валом). В то время, как «римские мельницы» были оснащены вертикальным колесом (на горизонтальной оси). Греческие мельницы данного типа являются более ранним изобретением и намного проще в использовании, но их недостатком является работа лишь при наличии быстрого течения и жерновов малого диаметра. Римские мельницы, оснащенные вертикальным колесом, являются более сложным механизмом, поскольку для работы необходимо наличие шестерен для передачи мощности от вала с горизонтальной осью на вал с вертикальной осью.

Несмотря на то, что на сегодняшний день лишь несколько десятков римских мельниц удалось найти во время раскопок, широкое использование акведуков в римский период показывает, что основное количество водяных мельниц археологам еще предстоит найти. Например, во время недавних раскопок в римском Лондоне, обнаружилось, что приливные мельницы (Река Темза, на которой стоит Лондон, имеет одну очень характерную особенность. Это одна из немногочисленных в мире «приливных рек» (tidal river). Уровень воды в ней и направление ее течения меняются два раза в сутки.) использовались вместе с акведуками и располагались на всем протяжении Ривер Флит — шестикилометровой лондонской подземной реки.

В 537 г. н.э. судовые мельницы были изобретательно использованы генералом Восточной Римской Империи Велисарием. После того, как осаждающие готы перекрыли подачу воды к мельницам, лодки были пришвартованы в месте быстрого течения реки, и благодаря наличию водяных колес, прикрепленных к лодкам, удалось наладить работу мельниц.

Судовая (корабельная) мельница


Водяная мельница в Средние века

На момент составления «Книги Судного дня» в 1086 году на территории Англии насчитывалось около 5624 водяных мельниц. Согласно более поздним данным, в Англии в то время существовало по крайней мере 6082 мельниц, и следует отметить высокую вероятность того, что не все мельницы севера Англии были учтены. К 1300 году число водяных мельниц находящихся в использовании возросло до 10000 — 15000.

К началу 7-го века водяные мельницы были хорошо известны в Ирландии и сто лет спустя начали стремительно распространяться с территории бывшей империи на северные районы Германии.

Судовые и приливные мельницы стали использоваться в 6-ом столетии.

Приливная мельница
В последние годы целый ряд новых археологических находок сместил дату существования первых приливных мельниц существовавших на побережьях Ирландии. Вертикальная двухколесная приливная мельница, датируемая 6-м веком, была расположена около Вотерфорта. Схожая по устройству горизонтально-колесная приливная мельница была раскопана на Маленьком острове, считается, что она существовала в 630 году. Существование мельницы «Nendrum Monastery» датируется 787 годом, она была найдена на острове Странгфорд в Северной Ирландии. Она была оснащена жерновами диаметром 830 мм, горизонтальным колесом и обладала мощностью 7-8 лошадиных сил.
Промышленные водяные мельницы

В ходе исследования в 2005 году ученый Адам Лукас определил следующую последовательность появления различных типов промышленных мельниц в Западной Европе.
Заметна выдающаяся роль Франции во введении новых инновационных методов использования гидроэнергии. Вместе с тем, А.Лукас обратил внимание на недостаток объектов для исследований в ряде других стран.

Первое известное появление различных промышленных мельниц в средневековой Европе (770-1443 н.э.).

ГодТип мельницыСтрана
770Мельница для производства солодаФранция
1080Валяльная мельницаФранция
1134Кожевенная мельницаФранция
1200Кузнечная мельницаАнглия, Франция
1203Мельница для заточки инструментовФранция
1209Мельница для обработки коноплиФранция
1238, 1273Мельница для производства бумагиИспания
1269, 1283Воздуходувная мельницаВенгрия, Франция
1300Лесопильная мельницаФранция
1317Рудодробильная мельницаГермания
1384Мельница для доменной технологииФранция
1443Мельница для изготовления проволокиФранция

Водяная мельница в Древнем Китае

Водяные мельницы, найденные в Китае, относятся к 30-м годам н. э., их использовали при выплавке металла, для приведения в движение механизмов, и даже для астрономических наблюдений с помощью вращающейся армиллярной сферы. В 488 году математик и инженер Цзу Чунчжи имел водяную мельницу, возведение который инспектировалось императором Ву. Под началом у инженера Янг Су из династии Суй, было возведено сотни водяных мельниц к началу 6 века. В источниках датируемых 612 годом н.э. упоминаются буддийские монахи, спорящие о распределении доходов, полученных от работы мельницы. Во времена династии Тан (618-907 н.э.) было издано «Распоряжение Департамента о водных путях», в котором указывалось, что водяные мельницы не должны препятствовать движению речного транспорта, посему необходимо ограничить использование устройств в определенные сезоны года. Постановление было принято очень серьезно, правительством было снесено много водяных мельниц, принадлежащих великим семьям, купцам и буддийским монастырям, которые не признавали требования законодательства. К 610 — 670 годам н. э. технология водяной мельницы проникла в Японию через корейский полуостров. В 641 году нашей эры началось использование водяных мельниц в Тибете.
Водяная мельница в Древней Индии

Согласно греческой исторической традиции, Индия получила водяные мельницы из Римской империи в начале 4-го века нашей эры, когда некий Метродорос ввел «водяные мельницы и бани, неизвестные среди них [брахманов] до тех пор».
Водяная мельница в Исламскомй мире

Мусульманские инженеры переняли греческую технологию по изготовлению водяных мельниц из Византии, где она применялась в течение многих столетий в провинциях, завоеванных мусульманами, в том числе на территории современной Сирии, Иордании, Израиля, Алжира, Туниса, Марокко и Испании.

К 11-м веку, в каждой провинции по всему исламскому миру (от Аль-Андалус и Северной Африки до Ближнего Востока и Центральной Азии) в промышленности были введены в эксплуатацию водяные мельницы. Мусульманские и ближневосточные христианские инженеры использовали коленчатые валы, водяные турбины, водоподъёмные машины и плотины в качестве дополнительного источника воды и для обеспечения дополнительной мощности необходимой для работы водяных мельниц. Промышленные водяные мельницы использовались в работе крупных фабричных комплексов, построенных в Аль-Андалус между 11-м и 13-м веками.

Инженеры исламского мира пользовались несколькими путями, позволяющими достигать максимальной отдачи от водяной мельницы. Нередко мельницы монтировались на опорах мостов, что позволяло воспользоваться увеличением скорости потока в узких местах русла. Другим решением было оборудование корабельных мельниц, позволяющих получать питание от водяных колес, закрепленных на боковых сторонах судов, установленных в середине реки. Эта методика была использована вдоль рек Тигр и Евфрат в Ираке 10-го века, где наличие крупных корабельных мельниц из тикового дерева и железа позволяло производить до 10 тонн муки из кукурузы каждый день для транспортировки в зернохранилища Багдада.

Водяная мельница в Персии

Более 300 водяных мельниц функционировали в Иране до 1960 г. В настоящее время лишь немногие из них остаются в рабочем состоянии. Одной из самых известных является водяная мельница из Аскзара; не меньшей популярностью среди туристов пользуется мельница города Йезд находящаяся в рабочем состоянии (на ней до сих пор производят муку).

Водяная мельница — принцип работы


Как правило, вода для водяной мельницы поступает из реки, водоема, водохранилища или мельничного пруда к турбине или водяному колесу, по каналу или трубе. Поток воды приводит в движение лопасти колеса (или турбины), которое, в свою очередь, вращает ось, что приводит в движение другие механизмы.

Прохождение воды контролируется шлюзовыми воротами, что позволяет проводить техническое обслуживание мельницы и является действенным способом борьбы с наводнениями; крупные мельничные комплексы могут иметь десятки шлюзов, которые питают несколько конструкций и обеспечивают работу нескольких промышленных процессов.

Водяные мельницы, можно разделить на два вида:

• с горизонтальным водяным колесом на вертикальной оси
• с вертикальным колесом на горизонтальной оси

Первыми, согласно археологическим находкам и письменным сведениям, появились горизонтальные мельницы, в которых поток воды при ударе о водяное колесо, установленное в горизонтальной плоскости, приводил мельницу в движение путем вращения верхнего камня-жернова. Этот тип мельницы был не самым удобным в использовании из-за невозможности управления скоростью вращения. Движение воды приводило к тому, что жернова вращалась с соответствующей течению воды скоростью, без возможности регулирования процесса перемолки зерна. Большинство водяных мельниц в Великобритании и США имели вертикальное водяное колесо, производящее вращательные движения вокруг горизонтальной оси.

Водяная мельница в разных странах — фото


Водяные мельницы России



Водяная мельница в Коломенском – это одна из старинных мельниц Москвы, которая в древние времена являлась важным элементом русского хозяйства. Ранее мельницы располагались практически в каждом населенном пункте, однако сохранились не многие. Эта водяная мельница была построена из дерева, а элементы механизмов, валы и крепежные детали изготовлены из металла.

Для обеспечения работоспособности мельницы ее разместили вблизи пруда и возвели плотину. Вода из пруда попадала на мельничное колесо и приводила его в действие. Именно таким образом работала мельница в XIX веке. С течением времени мельница сильно пострадала и перестала работать, однако уже в 2007 году она была полностью отреставрирована и запущена. Теперь все желающие могут созерцать старинную мельницу, которая работает. 

Водяные мельницы Бельгии


Водяные мельницы Германии



Водяные мельницы Румынии


Водяные мельницы Голландии


Водяная мельница Хакфорт в Вордене, Голландия. Постройка датируется приблизительно 1700 годом.
Красивые водяные мельницы







Чертежи водяной мельницы. Конструирование водяной мельницы своими руками. Деревенское очарование сада

Мельницы.Конструкция водяной мельницы. — ч.3.

Louis Aston Knight (1873-1948) Водяная мельница

Хлеб — всему голова, гласит народная мудрость, но хлеб не испечешь без муки, а муку не сделаешь без мельницы. Конечно, можно обойтись и без них, как обходятся люди, проживающие в пустынных районах земного шара. Они размалывают зерно ручными жерновами, но это примитивный ручной труд и в развитии своем, эти народы не далеко ушли от первобытных племен. По мере развития промышленности, водяное колесо стали применять не только для переработки зерна, но и в других сооружениях, которые так же назывались мельницами.Так именовались железоделательные, лесопильные, бумагоделательные, текстильные и ряд других предприятий. Водяная мукомольная мельница была одним из первых технических устройств, жизненно необходимых для человека. Получается, что без мельницы не может быть и прогресса в технике и развития человечества. На рисунке изображена конструкция современной мельницы с приводом от подливного колеса 6 бункером 1 для зерна и желобом 2, по которому зерно подается к жерновам 3.Мука попадает в лоток 4 и оттуда ссыпается в мешок 5. Конструкция водяных мельниц за многие века особенно не изменилась. Основные механические элементы остались неизменны. Основным материалом для постройки служила древесина. Из нее строили и амбар и колеса, и валы, и всю прочую снасть По устройству водяные мельницы разделялись на мутовчатые и колесные. Мутовчатые представляли собой прообраз современной турбины. Колесные мельницы бывают двух типов: верхнего и нижнего боя. Устройство водяных мельниц всех типов во многом одинаково. Из бревен рубили амбар. В половине амбара, на высоте плеча, настилали массивный потолок. На нем помещали жернова: нижний — лежак и верхний — бегун. В середине его — отверстие (глазок). Жернова огораживались кожухом. Жерновые камни должны были быть особого свойства. От них требовалась прочность, вязкость и пористость. Часто жернова приходилось везти издалека. В зависимости от водных запасов и силы реки мельницы бывали и с несколькими поставами, то есть при одном амбаре имелось два водяных колеса и два мукомольных агрегата. Строили мельницы без каких-либо чертежей. Вся «техническая документация» находилась у мастеров в памяти. Конечно, за образец брались уже имеющиеся в округе мельницы, но приходилось что-то менять и добавлять новое в виду особенностей местности. Запруда делалась простейшими подручными средствами. Вспахивали участок целины и из дерна выкладывали плотину. Плотные, ровные пласты, которые тянулись на несколько сажень укладывали слой за слоем. Для крепления применяли жерди, колья, связки из хвороста. Зимой в сильные морозы некоторые мельницы временно останавливались. Иногда над колесом делалось укрытие-«тепляк» в виде соломенного шатра, но помогало это мало. Весной, во время половодья плотину могло прорвать и ее возводили заново. Чтобы этого не случилось, плотины снабжали подъемным щитом-затвором, через которую уходили излишки воды. Энергию падающей на колесо с лопастями воды россияне научились использовать в начале второго тысячелетия. Водяные мельницы всегда были окружены ореолом таинственности, овеяны поэтическими легендами, сказаниями и суевериями. Мельницы-колесухи с омутом и водоворотом сами по себе небезопасные конструкции, что отражено в русской пословице: «Со всякой новой мельницы водяной подать возьмет». Производительность мельницы зависела от размера камня и скорости его вращения. Жернова брали диаметром от 50 до 120 сантиметров. На маловодных речках ставился небольшой бегун, и вращался он в пределах 60 оборотов в минуту. Река полноводнее могла крутить камень побольше, и совершал он до 150 оборотов. В зависимости от этого один постав размалывал от одного пуда (16 кг) до четырех пудов (64 кг) в час. На некоторых водяных мельницах не только мололи зерно. Здесь работали и крупорушки. Эти машины обдирали просо, гречиху, овес и делали из них крупу. На них же можно было снимать лузгу с подсолнечных зерен, подготовляя их к выжимке масла. Кроме пшеницы, ржи, ячменя, полбы мололи и другие зерновые культуры: горох, просо, крупу гречневую, овсяную, пшено, рожь на солод. Делались и специальные приспособления для толчения кудели, сукновальню для валяния домотканого сукна, чесальный барабан для шерсти. водяная мельница — это один из ранних памятников человеческого знания. Она несет в себе и элементы техники и архитектуры, т.о. является «музеем под открытым небом» причем не в современном индустриальном пейзаже, а расположена в живописнейших уголках природы. И природу эту не загрязняет, являясь экологически чистым производством. Мельницы появились при римлянах. Они строили водяные мельницы с подливными и верхнебойными, или наливными, колесами. Первые приводились в действие импульсом падающей воды, вторые — ее весом. Самые древние приспособления для перемалывания зерна в муку и обдирания его в крупу сохранялись в России как семейные мельницы до начала ХХ в. и представляли собой ручные жернова из двух круглых в сечении камней из твердого кварцевого песчаника диаметром 40—60 см. Древнейшим типом мельниц считаются сооружения, где жернова вращались с помощью домашних животных. Последняя мельница такого типа прекратила свое существование в России в середине ХIХ в.


Самая существенная часть мукомольной мельницы —мельничный постав или снасть — состоит из двух жерновов: верхнего, или бегуна, А и — нижнего, или нижняка, В . Жернова представляют каменные круги значительной толщины, имеющие в средине сквозное отверстие, называемое очком, а на мелющей поверхности т. н. насечку (см. ниже). Нижний жернов лежит неподвижно; его очко плотно закрыто деревянною втулкою, кружловиною g , сквозь отверстие в центре которой проходитъ веретено С ; на вершине последнего насажен бегун посредством железного стержня CC , укрепленного концами в горизонтальном положении в очке бегуна и называемаго параплицею, или порхлицею. В средине параплицы (и, следовательно, в центре жернова) с нижней ее стороны проделано пирамидальное или коническое углубление, в которое и входитъ соответственно заостренный верхний конец веретена С . При таком соединении бегуна с веретеном, первый вращается при вращении последнего и, в случае надобности, легко снимается с веретена. Нижний конец веретена вставлен шипом в подшипник, укрепленный на балке D . Последнюю можно поднимать и опускать и таким образом увеличивать и уменьшать раcстояние между жерновами. Веретено С вращается помощью т. н. цевочной шестерни Е ; это — два диска, надетые на веретено в небольшом расстоянии друг от друга и скрепленные между собою, по окружности, вертикальными палочками.
Цевочная шестерня вращается помощью лобового колеса F , имеющего на правой стороне своего обода зубья, захватывающие за палочки цевочной шестерни и таким образом вращающие ее вместе с веретеном. На ось Z надето крыло, которое и приводится в движение ветром; или, в водяной мельнице, — водяное колесо, приводимое в движение водою. Зерно вводится через ковш а и очко бегуна в промежуток между жерновами. Ковш состоит из воронки а и корытца b , подвешенного под очком бегуна. Размол зерна происходит в промежутке между верхнею поверхностью нижняка и нижнею бегуна. Оба жернова одеты кожухом N , который препятствует разбрасыванию зерен. По мере размола, зерна подвигаются действием центробежной силы и напором вновь прибывающих зерен) от центра нижняка к окружности, падают с нижняка и идут, по наклонному желобу, в пеклевальный рукав R —для просеивания. Рукав Е сделан из шерстяной или шелковой ситяной ткани и помещен в закрытом ящике Q , из которого выставляется его нижележащий конец. Сначала просеивается тонкая мука и падает в задней части ящика; более грубая высевается в конце рукава; отруби задерживаются на ситке S , а самая грубая мука собирается в ящик T .

Поверхность жёрнова разделена глубокими желобами, называемыми бороздами , на отдельные плоские участки, называемые мелющими поверхностями . От борозд, расширяясь, отходят более мелкие желобки, называемые оперением . Борозды и плоские поверхности распределяются в виде повторяющегося рисунка, называемого гармошкой . У типичного мукомольного жёрнова имеется шесть, восемь или десять таких гармошек. Система желобов и желобков, во-первых, образует режущую кромку, а во-вторых, обеспечивает постепенное ссыпание готовой муки из-под жерновов. При постоянном использовании жернова́ требуют своевременного подтачивания , то есть подравнивание краев всех желобов для поддерживания остроты режущей кромки.

Жернова используются парно. Нижний жёрнов устанавливается стационарно. Верхний жёрнов, он же бегун, — подвижный, и именно он производит непосредственное перемалывание. Подвижный жернов приводится в движение крестообразным металлическим «штифтом», установленным на головке главного стержня или ведущего вала, вращающегося под действием основного механизма мельницы (использующего энергию ветра или воды). Рельефный рисунок повторяется на каждом из двух жерновов, таким образом обеспечивая эффект «ножниц» при размалывании зерен. Жернова должны быть одинаково сбалансированными. Правильное взаимное расположение камней критически важно для обеспечения помола муки высокого качества. Лучшим материалом для жерновов служит особенная каменная порода — вязкий, твердый и неспособный полироваться песчаник, называемый жерновым камнем. Так как каменные породы, в которых все эти свойства развиты достаточно и при том равномерно, встречаются редко, то хорошие жернова весьма дороги. На трущихся поверхностяхъ жернов делают
насечку , т. е. пробивают ряд углубленных бороздок, и промежутки между этими бороздками приводят в грубо-шероховатое состояние. Зерно попадает во время размола между бороздками верхнего и нижнего жернов и разрывается и разрезывается острыми режущими краями бороздок насечки на более или менее крупные частицы, которые размалываются окончательно по выходе из бороздок. Бороздки насечки служат также какъ бы путями, по которым размалываемое зерно подвигается от очка к окружности и сходить с жернова. Так как жернова, даже из лучшего материала, стираются, то насечка должна быть возобновляема время от времени.


John Constable (1776-1837). Мельница Флэтфорда. Вид со шлюза на Стуре

Древние водяные машины-двигатели развились, по-видимому, из поливальных машин чадуфонов, при помощи которых поднимали из реки воду для орошения берегов. За девять столетий до рождения Христа в Китае изобрели водяное колесо- деревянное колесо с лопастями, вращаемое потоком воды. Это была первая машина, работавшая без использования мускульной силы человека, и называлась она чадуфон. С помощью чадуфонов поднимали из реки воду для орошения. Чадуфон представлял собой ряд черпаков, насаженных на обод большого колеса с горизонтальной осью. При повороте колеса нижние черпаки погружались в воду реки, затем поднимались к верхней точке колеса и опрокидывались в желоб.

Сначала такие колеса вращались вручную, но там, где вода бежит по крутому руслу, колесо стали снабжать специальными лопатками. С изобретением водяного колеса человек впервые получил в свое распоряжение надежный, универсальный и очень простой двигатель. Оставался один шаг до водяной мельницы. Китайцы утверждают, что этот шаг они сделали первыми и изобрели сначала водяную мельницу с горизонтальным колесом, затем придумали колесную зубчатую передачу и повернули водяное колесо в вертикальную плоскость.Но первым водяную мукомольную мельницу с вертикальным колесом и зубчатой передачей описал римский архитектор и механик Витрувий, живший в 1 веке до РХ:
«… на реках ставят колеса… К их ободам прибивают лопасти, которые будучи толкаемы течением реки приводят своим движением колесо во вращение и таким образом, набирая воду черпаками и поднимая ее кверху, доставляют нужное количество воды без помощи топчака, вращаясь от самого напора реки. Таким же способом вертятся водяные мельницы, в которых все то же самое, кроме зубчатого барабана, насаженного на один конец оси. Вертикально поставленный на ребро, он вращается в одной плоскости с колесом. К этому большому барабану примыкает меньший, лежачий, тоже зубчатый с которым соединены жернова. Так зубцы барабана насаженного на ось, толкая зубцы лежачего, приводят жернова во вращение. Из висящего над этой машиной ковша на жернова сыплется зерно, из которого посредством того же вращения получается мука ».


Альбрехт Дюрер. Водяная мельница. 1489. Акварель и гуашь, бумага

Под напором течения колесо вращалось и само черпало воду. Получился простейший насос-автомат, не требующий для своей работы присутствия человека. Изобретение водяного колеса имело огромное значение для истории техники. Впервые человек получил в свое распоряжение надежный, универсальный и очень простой в своем изготовлении двигатель. Вскоре стало очевидным, что движение, создаваемое водяным колесом, можно использовать не только для качания воды, но и для других надобностей, например, для перемалывания зерна. В равнинных местностях скорость течения рек мала для того, чтобы вращать колесо силой удара струи. Для создания нужного напора стали запруживать реку, искусственно поднимать уровень воды и направлять струю по желобу на лопатки колеса.

Однако изобретение двигателя сразу породило другую задачу: каким образом передать движение от водяного колеса тому устройству, которое должно совершать полезную для человека работу? Для этих целей был необходим специальный передаточный механизм, который мог бы не только передавать, но и преобразовывать вращательное движение. Разрешая эту проблему, древние механики опять обратились к идее колеса. Простейшая колесная передача работает следующим образом. Представим себе два колеса с параллельными осями вращения, которые плотно соприкасаются своими ободьями. Если теперь одно из колес начинает вращаться (его называют ведущим), то благодаря трению между ободьями начнет вращаться и другое (ведомое). Причем пути, проходимые точками, лежащими на их ободьях, равны. Это справедливо при всех диаметрах колес.


François Boucher (1703— 1770) .Старая водяная мельница.

Стало быть, большее колесо будет делать по сравнению со связанным с ним меньшим во столько же раз меньше оборотов, во сколько раз его диаметр превышает диаметр последнего. Если мы разделим диаметр одного колеса на диаметр другого, то получим число, которое называется передаточным отношением данной колесной передачи. Представим себе передачу из двух колес, в которой диаметр одного колеса в два раза больше, чем диаметр второго. Если ведомым будет большее колесо, мы можем с помощью этой передачи в два раза увеличить скорость движения, но при этом в два раза уменьшится крутящий момент. Такое сочетание колес будет удобно в том случае, когда важно получить на выходе большую скорость, чем на входе. Если, напротив, ведомым будет меньшее колесо, мы потеряем на выходе в скорости, но зато крутящий момент этой передачи увеличится в два раза. Эта передача удобна там, где требуется «усилить движение» (например, при подъеме тяжестей). Таким образом, применяя систему из двух колес разного диаметра, можно не только передавать, но и преобразовывать движение. В реальной практике передаточные колеса с гладким ходом почти не используются, так как сцепления между ними недостаточно жесткие, и колеса проскальзывают. Этот недостаток можно устранить, если вместо гладких колес использовать зубчатые. Первые колесные зубчатые передачи появились около двух тысяч лет назад, однако широкое распространение они получили значительно позже. Дело в том, что нарезка зубьев требует большой точности. Для того чтобы при равномерном вращении одного колеса второе вращалось тоже равномерно, без рывков и остановок, зубцам необходимо придавать особое очертание, при котором взаимное движение колес совершалось бы так, как будто они перемещаются друг по другу без скольжения, тогда зубцы одного колеса будут попадать во впадины другого. Если зазор между зубьями
колес будет слишком велик, они станут ударяться друг о друга и быстро обломаются. Если же зазор слишком мал — зубья врезаются друг в друга и крошатся. Расчет и изготовление зубчатых передач представляли собой сложную задачу для древних механиков, но уже они оценили их удобство. Ведь различные комбинации зубчатых колес, а также их соединение с некоторыми другими передачами давали огромные возможности для преобразования движения. Например, после соединения зубчатого колеса с винтом, получалась червячная передача, передающая вращение из одной плоскости в другую. Применяя конические колеса, можно передать вращение под любым углом к плоскости ведущего колеса. Соединив колесо с зубчатой линейкой, можно преобразовать вращательное движение в поступательное, и наоборот, а присоединив к колесу шатун, получают возвратно-поступательное движение. Для расчета зубчатых передач обычно берут отношение не диаметров колес, а отношение числа зубьев ведущего и ведомого колес. Часто в передаче используется несколько колес. В таком случае передаточное отношение всей передачи будет равно произведению передаточных отношений отдельных пар. Когда все затруднения, связанные с получением и преобразованием движения, были благополучно преодолены, появилась водяная мельница. Впервые ее детальное устройство описано древнеримским механиком и архитектором Витрувием. Мельница в античную эпоху имела три основные составные части, соединенные между собой в единое устройство: 1) двигательный механизм в виде вертикального колеса с лопатками, вращаемого водой; 2) передаточный механизм или трансмиссию в виде второго вертикального зубчатого колеса; второе зубчатое колесо вращало третье горизонтальное зубчатое колесо — шестерню; 3) исполнительный механизм в виде жерновов, верхнего и нижнего, причем верхний жернов был насажен на вертикальный вал шестерни, при помощи которого и приводился в движение. Зерно сыпалось из воронкообразного ковша над верхним жерновом.


Плотина. С. Жуковский, 1909 г.

Создание водяной мельницы считается важной вехой в истории техники. Она стала первой машиной, получившей применение в производстве, своего рода вершиной, которую достигла античная механика, и исходной точкой для технических поисков механики Возрождения. Ее изобретение было первым робким шагом на пути к машинному производству.

***

Жди горя с моря, беды от воды. Вода и мельницу ломает.

Каждый мельник на свою мельницу воду льет.

Когда нет коня, поехать на мельницу на осле — не позор.

Без воды мельница не мелет.

Большая мельница малой водой не вертится.

Вода всю мельницу унесла, а ты спрашиваешь, где желобок.

Вода и мельницу ломает.

Водой мельница стоит, да от воды ж и погибает.

Голова без ума, что мельница без воды.

Денег много — мельницу заведи.

Не мельница, а мутовка. Молоть не мелет, а только воду мутит.

Работающей мельнице некогда замерзать.

Со всякой новой мельницы водяной подать возьмет (т. е. утопит человека).

Ум молодого, что мельница без воды.

Чем больше воды, тем лучше для мельницы.

Времена, когда на загородном участке можно было увидеть только ровный ряд грядок и пустой газон давно прошли. Все больше людей стали использовать дачу как место отдыха семьи. Декоративная мельница без труда задаст настроение всей придомовой территории. Эта статья расскажет какие разновидности можно построить в своем саду и как гармонично вписать постройку в окружающее пространство.

Деревенское очарование сада

Когда-то мельница была настоящим рабочим великаном. С помощью энергии от вращающихся лопастей мололи муку, обрабатывали дерево и качали воду. Сегодня величественные сооружения потеряли значимость, однако, у людей до сих пор сохранилось представление об этом элементе пейзажа как о чем-то притягательном и величественном.

Ниже речь пойдет о миниатюрной копии настоящей мельницы, которая послужит декоративным украшением приусадебного участка. Она создаст ощущение стиля и гармонии, а также вызовет приятные ассоциативные образы атмосферы прошлого века. Мельница придаст участку деревенское очарование и уют, которого так не хватает городскому жителю.

Разновидности:

    • деревянная;
    • каменная;
    • с водопадом.

Также она может быть ветряной или водяной.

Стандартная ветряная мельница имеет форму равнобедренной трапеции. К одной из стенок присоединены лопасти, которые, по желанию, могут вращаться. Это сделает сооружение более интересным и достоверным. Всю конструкцию можно разделить на четыре элемента:

  • фундамент и основание;
  • корпус;
  • крыша;
  • крылья-лопасти.

Дополнительно можно соорудить на крыше вертило, которое позволяет мельнице вращаться на ветру, однако, это не обязательно.

Где разместить и с чем сочетать

Мельница может стать центром композиции приусадебного участка. Поддержит заданную тему колодец в том же стиле, выполненный под старину или декоративный стог сена. Дополнят картину деревянные фигуры животных, кустарники и цветник.

Конструкцию можно разместить в любом месте. Одинаково гармонично она будет смотреться в саду среди деревьев, заросшая высокой травой и на открытом пространстве рядом с террасой в окружении клумб. Главное правило – материал изготовления и отделки должен вписываться в общий стиль построек на участке.

Мельница с водопадом идеально подойдет для зоны отдыха. Размещать ее лучше на берегу пруда или ручья. Это позволит теплыми летними вечерами наслаждаться умиротворяющим плеском воды.

Определение размера и функциональное назначение

Конструкция может быть не только украшением сада, но и функциональным сооружением. В виде декоративной мельницы можно оформить:

  • погреб или сарай для хранения инструментов;
  • дачный туалет или душ;
  • будку для собаки;
  • многоуровневую клумбу;
  • детский домик для игр;
  • беседку;
  • летнюю кухню.

Последние два варианта подойдут только для больших участков, в противном случае строение будет выглядеть громоздко.

Декоративная постройка поможет скрыть инженерные коммуникации, например, трубу для полива или люк от септика.

Размер будущей мельницы зависит от предполагаемых нужд, то есть будет ли она нести какое-либо функциональное назначение или окажется только декором и возможностями отведенного под строительство участка. Слишком большая конструкция на небольшой территории будет смотреться нелепо. Высота мельницы, служащей декоративным украшением сада, в среднем составляет 1-1,5 метра.

Пропеллер мельницы может быть вращающимся или нет. В первом случае надо делать колесо с лопастями подвижным и минимизировать силу трения, тогда оно закрутится даже от небольшого ветерка.

Строительство каменной мельницы

Неоспоримым плюсом каменной мельницы является ее долговечность. При минимальном уходе она простоит на участке не один десяток лет. К минусам относится сложность перемещения, а также демонтажа, поэтому к возведению следует отнестись капитально.

Строительство начинается с проекта. Определившись с размерами и внешним видом будущего сооружения надо нарисовать план. Это позволит рассчитать необходимое количество материалов.

Материалы:

  • кирпич или его битые осколки для основания;
  • цемент и песок;
  • природный камень или плитка для облицовки;
  • листовое железо или деревянные рейки для изготовления лопастей;
  • резьбовая шпилька;
    гвозди, болты, гайки, саморезы разных размеров.

Инструменты:

  • миксер и ведро для замешивания раствора;
  • шпатель;
  • мастерок;
  • рулетка;
  • уровень;
  • если лопасти изготавливаются из дерева, то понадобится пила, ножовка или электролобзик.

Фундамент

Каменной мельнице понадобится фундамент, только так можно гарантировать что постройка не поплывет вместе с грунтом весной или во время дождя.

Глубина закладки зависит от общих размеров. Для небольшой мельницы высотой 1-1,5 м выкапывается ямка 40 на 40 см, глубиной примерно 30 см, внутрь закладывается арматура и заливается цементно-песчаным раствором. Фундамент должен просохнуть в течение нескольких дней, после чего можно продолжать строительство.

Для приготовления раствора берется одна часть цемента и три части песка.

Возведение домика

Внутри готовый домик не будет пустым, поэтому надо подготовить основание. Удобнее всего использовать кирпич или его осколки. Необходимо сложить кладку нужной формы. Размер и пропорции могут быть любыми, однако лучше делать мельницу в виде трапеции или конуса. Для связки используется все тот же цементно-песчаный раствор. Конструкция должна быть ровной, поэтому, во время возведения, используется уровень.

В процессе укладки кирпича, в основание замуровывается резьбовая шпилька для дальнейшего крепления лопастей. Заранее на нее приваривается пластина или накручивается большая гайка, которой она зацепится за кирпичную кладку.

На этом же этапе предусматривают другие технические отверстия в основании мельницы, ведь когда раствор затвердеет, изменить конструкцию больше не получится. Конечно можно будет попробовать просверлить кладку, но в таком случае не исключен раскол всего основания.

Форма крыши зависит от формы домика. Для цилиндрического основания в виде башни подойдет традиционная кровля в виде конуса, покрытие которой делается из облицовочного материала, а для прямоугольника обычная двускатная крыша.

Чем декорировать

Декорировать мельницу можно природным или искусственным камнем. Лучше всего смотрится плитка, выполненная в виде небольших кирпичиков. Облицованная таким материалом постройка будет смотреться как уменьшенная копия настоящей старинной мельницы.
Укладывать наружный слой надо на влагостойкий клей, избегая пустот. Чем качественнее будет произведена работа, тем меньше влаги будет проникать внутрь, и мельница дольше сохранит хороший внешний вид.

Изготовление пропеллера

Вращающиеся под действием ветра лопасти – самая узнаваемая деталь мельницы, однако, при изготовлении декоративного варианта они могут быть неподвижны.

Существует несколько способов собрать пропеллер.

Первый вариант:

  1. Из фанеры вырезаются два круга диаметром 15-25 см, а по центру сверлом делается отверстие для шпильки.
  2. Отдельно из рейки собираются лопасти. Для того, чтобы ветер крутил пропеллер и вращал жернова, в настоящей мельнице они находятся слегка под углом, что позволяет захватывать потоки воздуха.
  3. Обе детали обрабатываются антисептиком и покрываются краской.
  4. Лопасти на одинаковом расстоянии друг от друга зажимаются между двумя кругами из фанеры с помощью клея или болтов.
  5. Готовый пропеллер надевается на шпильку, с обоих сторон закручивается гайка.

Второй вариант:

  1. Две длинных рейки, с помощью клея соединяются крест на крест.
  2. В центре пересечения делается отверстие для шпильки.
  3. На каждый край прибиваются рейки в виде лопасти.
  4. Готовый пропеллер надевается на шпильку и закрепляется гайками.

При желании лопасти можно вырезать из листового металла. В таком случае острые края необходимо обработать, а части сварить между собой. Декоративная каменная мельница с пропеллером из метала смотрится более гармонично, но железо обязательно надо покрасить чтобы избежать появления ржавчины.

Изготовление деревянной конструкции

Деревянная мельница не будет такой долговечной, как каменная, однако, смотрится изделие совершенно по-другому и создает иное настроение. Кому-то покажется что собрать конструкцию из дерева намного проще, но это не совсем так. Без плотнических навыков не обойтись.

Изделия из дерева плохо переносят повышенную влажность, поэтому на зиму мельницу надо заносить в помещение. Это поможет избежать гниения и потемнения массива.

Изготовить деревянную мельницу можно из остатков строительного материала либо купить все необходимое в магазине. Подойдут любые обрезки массива дерева и пиломатериалы.

Легче всего работать с сосной – она имеет мягкую пластичную структуру, к тому же это самое недорогое и доступное дерево в магазине.

Материалы:

  • деревянный брус;
  • влагостойкая фанера;
  • дерево для отделки;
  • рейка для лопастей;
  • кровельный материал
  • гвозди, болты, саморезы разных размеров;
  • резьбовая шпилька;
  • лак для дерева или олифа.

Инструменты:

Фундамент – нужен ли?

Небольшая деревянная мельница, несущая декоративную функцию, в фундаменте не нуждается. Мобильность конструкции позволит по желанию переставлять ее в любую часть сада.

В случае, когда устойчивость будущей постройки вызывает сомнение, в качестве фундамента используются четыре ножки из заостренного на концах бруса, которые с одной стороны крепятся к низу опорной платформы, а с другой втыкаются в землю.

Если планируется основательная постройка с бытовым помещением или детской игровой площадкой внутри, то без фундамента не обойтись. Это предотвратит переворачивание мельницы. В таком случае делается фундамент неглубокого заложения по периметру будущих стен.

Опорная платформа

Опорная платформа придаст мельнице устойчивости. Из бруса собирается квадрат необходимого размера. Для жесткости можно дополнительно соединить противоположные углы крест на крест.

При желании площадь опорной платформы может быть больше основания мельницы. Это убережет конструкцию от падения при сильном ветре и может служить дополнительной площадкой для размещения декора, например, деревянной ограды.

Изготовление корпуса

Самый простой корпус для мельницы – короб в виде трапеции. К опорной платформе, с помощью саморезов, вертикально присоединяются четыре бруска одинаковой длины. Сверху края дополнительно соединяются брусом по горизонтали. При сборке важно соблюдать симметрию.

Грани получившейся конструкции обшиваются деревом. Использовать можно практически любой материал. Хорошо смотрится евровагонка, блок хаус или имитация бруса.

Обустройство крыши и сборка лопастей

Крыша может быть, как двускатной, так и четырехскатной. Второй вариант лучше использовать для крупных конструкций, а для небольшой идеально подойдет двускатная крыша.

Из бруса сколачиваем два торца в виде треугольника. Когда-то большие мельницы для помола муки покрывались самой настоящей кровельной черепицей из обожженной глины. Декоративным аналогом может стать тот же материал, что использовался для основания, обрезки цветного профлиста, либо современная черепица, выполненная под старину. Под кровельный материал предварительно стелется скат из фанеры.

Стык ребер на крыше должен закрывать конек. Он может быть покупной либо собранный самостоятельно. Без конька крыша будет смотреться незаконченной, а внутрь конструкции попадать дождь.

Готовая крыша одевается на корпус мельницы и закрепляется изнутри длинными саморезами.

Пропеллер собирается точно так же, как и для каменной мельницы. В одну из граней основания устанавливается шпилька, только в случае с камнем она замуровывалась в кладку, а здесь закрепляется с помощью гаек. Аналогично предыдущему варианту лопасти надеваются на другую сторону шпильки и фиксируются.

Декоративная отделка

У деревянной мельницы масса вариантов декоративной отделки. Рядом с ней хорошо смотрятся цветы и зелень. Как вариант превратить постройку в цветник. Для этого ее основание должно содержать ящик для земли, куда весной высаживаются бархатцы, флоксы, петуния или любые другие однолетние садовые растения.

Готовую мельницу надо пропитать защитным раствором и покрасить, либо покрыть олифой или лаком. Если перед этим пройтись по дереву морилкой, то можно подчеркнуть структур дерева. Каждый дополнительный слой сделает поверхность мельницы темнее.

Декоративная мельница с водопадом

Журчание воды и шелест крутящихся лопастей в вечернем саду создают непередаваемые ощущения комфорта и спокойствия. Декоративная водяная мельница с водопадом станет прекрасным дополнением к оформлению садового участка.

Принцип работы водяной мельницы

Если в ветряной мельнице для того, чтобы сдвинуть лопасти с места используется сила ветра, то в водяной за это отвечает поток реки. Сердце такой мельницы – колесо, установленное на берегу водоема под желобом, по которому течет вода.

Идеально место для установки – проточный водоем. Бегущая естественным путем вода создаст постоянную крутящую силу. Если на садовом участке нет реки или ручья, а мельницу очень хочется, воссоздать силу потока можно искусственно.

Возможные варианты:

  • Установить колесо мельницы под водосточным желобом. В таком случае оно будет крутиться во время дождя.
  • Для создания потока использовать возвышенность на рельефе. В наивысшей точке участка создается место сбора воды, которая по желобу будет подаваться на лопасти колеса.
  • Запустить воду по кругу с помощью насоса. Создается искусственная возвышенность, например, из уплотненной земли ли камней. Внутрь закладывается шланг, по которому наверх будет подаваться вода.

Сегодня в магазинах встречаются установки, способные вырабатывать энергию от силы вращения колеса. Небольшая деревянная мельница сможет обеспечить электричеством работу собственного насоса и светодиодной подсветки.

Материалы и инструменты

Необходимые материалы:

  • деревянный брус, рейки, фанера;
  • резьбовая шпилька;
  • гвозди, саморезы, болты с гайками разных размеров;
  • труба для желоба;
  • влагостойкий клей;
  • защитная пропитка, лак или олифа.

Количество необходимых материалов определяется размерами будущей постройки.

Колесо мельницы имеет постоянный контакт с водой, поэтому все деревянные элементы необходимо пропитать защитным раствором, а применение металлических неокрашенных элементов свести к минимуму.

Для создания водяной мельницы понадобится стандартный набор инструментов:

  • пила, ножовка или электролобзик;
  • дрель или шуруповерт;
  • молоток:
  • рулетка;
  • уровень.

Пошаговая инструкция

Домик

Домик водяной мельницы может быть выполнен произвольной формы и из любого материала или же отсутствовать вообще. Конструкция у постройки стандартная: платформа, основание дома и крыша.
Возводить постройку лучше в том же порядке, что и в случае с ветряной мельницей. Сначала собирается платформа или, в случае необходимости, закладывается фундамент. Этим этапом лучше не пренебрегать, недостаточно зафиксированную конструкцию может снести поток воды.

На готовую платформу устанавливаем основание домика. Водяная мельница 18-го века выглядела как обычный прямоугольник с крышей, окнами и дверью. Основание можно собрать из бруса и отделать досками, либо сложить из камня или плитки.

Из бруса и фанеры собирается каркас крыши. Кладется кровельный материал, после чего все детали домика собираются вместе и скрепляются с помощью саморезов и клея.

В одну из стен домика устанавливается шпилька. Ее следует тщательно закрепить.

Колесо

Готовым колесом водяной мельницы может послужить: проволочная бухта, велосипедное колесо, соединенная кольцом пластиковая труба с приделанными лопастями и другие предметы обихода, имеющие ось вращения.

Самостоятельно колесо водяной мельницы можно изготовить из влагостойкой фанеры или дерева. Конструкция представляет из себя два диска, между которыми, с одинаковым интервалом, закреплены лопасти. В центре просверливается отверстие, через которое колесо одевается на шпильку. Когда вода будет попадать в карманы между лопастями, вся конструкция станет вращаться.

Ось можно закрепить двумя способами:

  • на одной опоре со стороны домика – в таком случае колесо должно хорошо держаться;
  • на двух опорах с обоих сторон – колесо крепится между ними.

От силы течения зависит интенсивность вращения колеса, а значит и его размеры, и конструкция. Быстрый поток в сочетании с небольшим диаметром даст высокую скорость вращения. Это хорошо, если мельница служит источником энергии, а не декоративным элементом. Для размеренного спокойного вращения понадобится увеличить или утяжелить колесо.

Важный этап строительства водяной мельницы – обработка дерева. Следует тщательно зашкурить каждую деталь наждачной бумагой и покрыть защитной пропиткой в несколько слоев. Со временем покрытие будет смываться, поэтому процедуру надо повторять каждые несколько лет.

Установка

После того, как все детали будут готовы, необходимо установить мельницу так, чтобы она работала. Домик помещается на берег водоема, а колесо под струей. Подача воды осуществляется на верхние лопасти через желоб. Сделать его можно разрезав пополам трубу подходящего диаметра. Если все сделано правильно, колесо начнет крутиться.

Декорирование

Простое деревянное колесо на берегу водоема выглядит скучновато, поэтому главным объектом для декора станет пристроенный к нему домик. Тут фантазии есть где разгуляться – резные окна со ставнями, дверки, цветные наличники. Отдельным элементом декора у водяной мельницы может оказаться крыша, покрытая камышом, тростником или соломой.

Естественность природного пейзажа поддержат дикие цветы и кустарники, а также камни, хаотично разложенные вокруг. В разбитый рядом с мельницей палисадник идеально впишутся хвойные культуры: туя, можжевельник, низкорослая ель и карликовая сосна. Водоем тоже представляет поле для деятельности – заросли папоротника и плавающие на поверхности листья кувшинки создадут ощущение первозданности.

Еще одна идея для декорирования водяной мельницы – светодиодная подсветка. Смонтировать освещение можно как снаружи, так и под водой. Переливающийся свет маленьких лампочек не даст мельнице потеряться в сумерках. Загадочности придадут светящиеся в ночное время окошки домика мельника.

Японский стиль

Главные составляющие – это вода, камни и растения. Ничего лишнего не должно быть, ведь стиль основан на элегантности и минимализме. В японском саду с водяной мельницей ничего не должно отвлекать от созерцания природной стихии.

Мельницу дополнит каменный замок и скамейка из того же материала. Берег водоема или его дно можно выложить белой галькой и ракушечником, а в палисадник высадить японский клен и низкорослую сакуру. Растения с яркими цветами нарушат нарочитую строгость, а вот использование в оформлении трубок бамбука придется очень кстати.

Кантри

Вариант оформления подойдет тем, у кого весь участок напоминает уютный домик в деревне. Водяная мельница с деревянным колесом и соломенной крышей отлично впишется среди деревянных скамеек, бревенчатого мостика и колодца. Подчеркнет атмосферу самый обыкновенный камыш.

Русский стиль

Оформление в этом стиле имеет схожие черты с кантри, однако, навевает всем знакомый шарм русской деревни. Домик мельницы должен выглядеть как классическая деревянная избушка, собранная из грубого бруса, а окошки закрываться на резные ставни. На крыше можно разместить традиционный флюгер в виде петуха. Атмосферы добавят детали: керамическая фигурка мельника, вывешенные на плетеной ограде глиняные горшки, выглядывающий из-за угла желтый подсолнух и грядка с ромашками. Подсмотреть другие идеи для оформления можно в русских народных сказках.

Голландский стиль

Этот стиль вызывает много интереса у ландшафтных дизайнеров, ведь он так удачно сочетает в себе яркие сочные краски и провинциальное обаяние. Водяная мельница может оказаться в центре композиции, для этого домик надо выполнить в традиционном голландском стиле фахверк, несущий каркас у которых расположен снаружи здания. Еще одна характерная черта – партерный газон. Пускай со всех сторон мельницу окружают тюльпаны, крокусы и гиацинты, а вокруг вьется живая изгородь.

Изобретение водяной мельницы имело большое значение для истории и развития техники. Первые такие конструкции использовались для перелива воды еще в Древнем Риме, позже их стали применять для получения муки и в других промышленных целях.

История изобретения

Водяное колесо было изобретено людьми еще в древние времена, благодаря чему человек получил надежный и простой двигатель, применение которого с каждым годом все расширялось. Еще в первом столетии до нашей эры римский ученый Витрувий описал такую конструкцию в своем трактате «10 книг об архитектуре». Действие ее было основано на вращении колеса от воздействия потока воды на его лопасти. И первым практическим применением этого открытия стала возможность перемалывания зерен.

История мельниц ведет свое начало от первых жерновов, которые использовали древние люди для получения муки. Такие устройства были вначале ручными, затем стали использовать физическую силу рабов или животных, которые вращали мукомольное колесо.

История водяной мельницы началась с использования конструкции колеса, двигающегося от силы речного потока, для осуществления процесса перемалывания зерна в муку, а основанием для этого послужило создание первого двигателя. Древние машины произошли от поливальных устройств, называемых чадуфонами, которые применялись для поднятия воды из реки для орошения земли и полей. Такие устройства представляли собой несколько черпаков, насаженных на обод: при вращении они погружались в воду, зачерпывали ее, а после поднятия вверх опрокидывали в желоб.

Устройство древних мельниц

Со временем люди стали строить водяные мельницы и использовать силу воды для получения муки. Причем на равнинных территориях при низкой скорости течения рек для увеличения напора устраивали запруды, обеспечивая тем самым повышение уровня воды. Для передачи движения к устройству мельницы были изобретены двигатели с зубчатой передачей, которые делались из двух колес, соприкасающихся ободами.

Используя систему из колес различного диаметра, у которых оси вращения были параллельными, древние изобретатели смогли осуществить передачу и преобразование движения, которое можно было направить на пользу людям. Причем большее колесо должно совершить меньшее количество оборотов во столько раз, во сколько его диаметр превышает второе, малое. Первые колесные зубчатые системы стали применять еще 2 тыс. лет назад. С тех пор изобретатели и механики смогли придумать множество вариантов зубчатых передач, использующих уже не только 2, но и большее количество колес.

Устройство водяной мельницы античной эпохи, описанное Витрувием, содержало 3 основных части:

  1. Двигатель, состоящий из вертикального колеса, имеющего лопатки, которые вращаются водой.
  2. Передаточный механизм — второе вертикальное колесо с зубцами (трансмиссия), которое вращает третье горизонтальное, называемое шестерней.
  3. состоящий из двух жерновов: верхний приводится в движение шестерней и насажен на ее вертикальный вал. Зерно для получения муки засыпалось в ковш-воронку, расположенную над верхним жерновом.

Водяные колеса устанавливали в нескольких положениях по отношению к потоку воды: нижнебойные — на реках с большой скоростью течения. Самыми распространенными были «висячие» конструкции, устанавливаемые на свободном течении, погруженные в воду нижними лопастями. Впоследствии стали использовать среднебойные и верхнебойные виды водяных колес.

Максимально возможный коэффициент полезного действия (КПД = 75%) давала работа верхнебойных или наливных видов, что широко применялось при устройстве «байдачных» плавучих мельниц, которые курсировали на больших реках: Днепре, Куре и др.

Значение открытия водяной мельницы состояло в том, что был изобретен первый античный механизм, который в дальнейшем мог быть использован для промышленного производства, что стало важным этапом в истории развития техники.

Средневековые гидроконструкции

Первые водяные мельницы в Европе, согласно историческим данным, появились в эпоху правления Карла Великого (340 г. н. э.) в Германии и были заимствованы у римлян. Одновременно были построены такие механизмы и на реках Франции, где к концу 11 в. уже насчитывалось около 20 тыс. мельниц. В это же время в Англии уже насчитывалось их более 5,5 тыс.

Водяные мельницы в Средневековье были широко распространены на всей территории Европы, использовались они для переработки сельскохозяйственной продукции (мукомольные, маслобойные, сукновальные), для подъема воды из шахты и в металлургическом производстве. К концу 16 в. их насчитывалось уже 300 тыс., а в 18 в. — 500 тыс. Одновременно происходило их техническое усовершенствование и увеличение роста мощности (с 600 до 2220 лошадиных сил).

Знаменитый художник и изобретатель Леонардо да Винчи в своих заметках также пытался придумать новые способы использования энергии и силы воды с помощью колес. Он предложил, например, конструкцию вертикальной пилы, которую приводил в движение поток воды, подающийся на колесо, т. е. процесс становился автоматизированным. Также Леонардо сделал чертежи нескольких вариантов использования гидроконструкций: фонтаны, способы осушения болот и т. д.

Ярким примером гидросиловой установки стал механизм подачи воды для устройства фонтанов и водоснабжения дворцов в Версале, Трианоне и Марли (Франция), для чего была специально возведена плотина на р. Сене. Из устроенного водохранилища вода под напором поступала на 14 нижнебойных колес размером 12 м. Они осуществляли ее подъем с помощью 221 насоса на высоту 162 м к акведуку, из которого она поступала во дворцы и фонтаны. Ежесуточно объем подаваемой воды составлял 5 тыс. м 3.

Как работает водяная мельница

Конструкция такой мельницы оставалась неизменной на протяжении многих веков. Основным материалом для постройки служило дерево, из которого складывали амбар, делали колеса и валы. Металл использовался только в некоторых деталях: оси, крепежные части, скобы. Изредка амбар возводили из камня.

Виды мельниц, которые использовали энергию воды:

  1. Мутовчатые — строились на горных реках с быстрым течением. По конструкции они похожи на современные турбины: на вертикальном колесе делали лопасти под углом к основанию, при падении потока воды происходило вращение, от которого шло движение жернова.
  2. Колесные, в которых вращалось само «водяное» колесо. Строились двух типов — с нижним и верхним боем.

На мельницу с верхним боем вода поступала от запруды, далее по желобу направлялась на колесо с кюветами, которое вращалось под его тяжестью. При использовании нижнего боя используется конструкция с лопастями, которые приводятся в движение при погружении в водный поток. Для повышения эффективности работы часто использовали плотину, перегораживающую только часть реки, называемую буном.

На рисунке ниже изображено устройство типичной деревянной водяной мельницы: вращательное движение идет от нижнего привода (колеса) , вверху расположен ковш (бункер) для зерна и желоба , подающие его на жернова . Полученная мука попала в лоток , а затем высыпалась в ларь или мешок .

Регулировка подачи зерна осуществлялась дозатором, специальным ящиком с отверстием, который влиял на крупность помола муки. После получения ее необходимо было просеять через специальное сито, установленное над ларем, которое совершало колебание при помощи небольшого механизма.

Некоторые водяные мельницы использовались не только для перемола зерна, но и для обдирания проса, гречихи или овса, из которых делалась крупа. Такие машины называли крупорушками. Предприимчивые хозяева использовали мельничные конструкции для толчения кудели, для валяния домотканого сукна, для чесания шерсти и т. д.

Строительство мельниц на Руси

В древнерусских летописях упоминание о водяных колесах и мельницах встречается с 9 в. Вначале они использовались исключительно для размалывания зерна, за что и были прозваны «мучными» и «хлебными». В 1375 г. князь Подольский Корпатович даровал грамотой Доминиканскому монастырю право на постройку хлебной мельницы. А в 1389 г. жене князя Дмитрия Донского такое сооружение отошло по завещанию.

В Великом Новгороде упоминание в берестяной грамоте о постройке мельницы датировано 14 в. Псковские летописи 16 в. рассказывают о строительстве такой конструкции на реке Волхов, к чему привлекли все местное население. Была устроена плотина, перекрывшая часть реки, однако она разрушилась из-за сильного паводка.

На равнинной местности водяные мельницы в России строились с наливным верхнебойным колесом. В 14-15 вв. стали появляться мутовчатые устройства, в которых колесо было расположено горизонтально на вертикальном валу.

Строили такие конструкции мастера-самоучки без каких-либо чертежей и схем. Причем они не только копировали уже возведенные сооружения, но каждый раз добавляли свои нововведения в их устройство. Еще во времена Петра Первого в Россию стали приезжать мастера из европейских стран, которые показывали свои навыки и знания в этой области.

Один из соратников Петра, известный инженер Вильям Генин, построивший на Урале 12 больших заводов, смог обеспечить их работу от гидросиловых установок. В последующем энергию воды повсеместно использовали специалисты при строительстве горнорудных и металлообрабатывающих предприятий по всей России.

В начале 18 века по всей территории действовало около 3 тыс. мануфактур, которые использовали гидроустановки для функционирования производства. Это были металлургические, лесопильные, бумажные, ткацкие и другие предприятия.

Самый знаменитый и уникальный комплекс для обеспечения энергией горнометаллургического комбината был построен в 1787 г. инженером К. Д. Фроловым на Змеиногорском руднике, который не имел аналогов в мире. Он включал плотину, от которых вода по подземным штольням проходила в открытый канал (535 м длиной) до мельницы, где вращалось колесо лесопильной конструкции. Далее вода поступала через следующий подземный канал к гидроколесу машины по подъему руды из шахты, далее — к третьему и четвертому. В конце она вытекала через штольню длиной более 1 км обратно в реку ниже плотины, общий путь ее составлял более 2 км, диаметр самого большого колеса — 17 м. Все сооружения были построены из местных материалов: глины, дерева, камня и железа. Комплекс успешно проработал более 100 лет, но до наших дней сохранилась только плотина Змеиногорского рудника.

Исследования в области гидравлики проводил также знаменитый ученый М. В. Ломоносов, который воплотил свои научные мысли на практике, участвуя в создании предприятия цветного стекла на основе работы гидроустановки с тремя колесами. Труды еще двух российских академиков — Д. Бернулли и Л. Эйлера — приобрели мировое значение в использовании законов гидродинамики и гидротехники и заложили теоретическую основу этих наук.

Использование энергии воды на Востоке

Применение водяных колес в Китае было впервые подробно описано в книге Сунн Инсина в 1637 г. В ней рассказывается подробно об использовании их для металлургического производства. Китайские конструкции были обычно горизонтальными, однако их мощность была достаточно высокой для производства муки и металла.

Использование энергии воды было впервые начато еще в 30-е гг. н. э., после изобретения китайским чиновником возвратно-поступательного механизма на основе водяных колес.

В Древнем Китае было построено несколько сотен мельниц, располагавшихся вдоль рек, однако в 10 в. правительство стало запрещать их из-за препятствования речному судоходству. Строительство мельниц постепенно расширялось и в соседних странах: Японии и Индии, на Тибете.

Колеса для подачи воды в странах ислама

Страны Востока, в которых люди исповедуют исламскую религию, являются в большинстве своем территорией с очень жарким климатом. С древних времен регулярное водоснабжение имело очень важное значение. Строились акведуки для подачи воды в города, а для поднятия ее из реки строили мельницы, которые называли «нориями».

По данным историков, первые такие сооружения возводились еще 5 тыс. лет назад на территории Сирии и других стран. На реке Оронт, одной из самых полноводных в стране, строительство норий было широко распространено в виде огромных колес водяных мельниц, которые многочисленными лопастями черпали воду и подавали ее на акведук.

Ярким примером такого сооружения являются сохранившиеся до наших времен нории города Хама, строительство которых датируется 13 в. Они продолжают работать и до настоящего времени, являясь одновременно украшением и достопримечательностью города.

Использование гидроэнергии в различных производствах

Кроме получения муки, область применения водяных мельниц распространялась на такие виды производств:

  • для мелиорации и обеспечения водой посевов на полях;
  • лесопильное, в котором энергия воды использовалась для обработки древесины;
  • металлургия и обработка металла;
  • в горных производствах для или другой породы;
  • в ткацкой и шерстяной мануфактурах;
  • для подъема воды из шахты и др.

Один из самых древних примеров использования силы воды — лесопильная мельница в Хиераполисе (Турция), механизмы ее были обнаружены во время раскопок и датированы 6 в. н. э.

В некоторых европейских странах археологами были обнаружены остатки старых мельниц эпохи Древнего Рима, которые использовали для дробления кварца с содержанием золота, добываемого в шахтах.

Самый большой комплекс, использующий силу воды, был построен, по историческим данным, в 1 в. на юге Франции под названием Barbegal, в котором было установлено 16 водяных колес, снабжавших энергией 16 мукомольных мельниц, обеспечивая, таким образом, хлебом близлежащий город Алерт. Ежесуточно здесь производилось 4,5 т муки.

Аналогичный мельничный комплекс на холме Яникул снабжал в 3 в. город Рим, что было оценено императором Аврелианом.

Создание водяной конструкции своими руками

Такой архитектурный элемент, как водяное колесо, приобрел популярность наравне с бассейнами, каскадами или фонтанчиками. Конечно, подобные сооружения выполняют скорее декоративную, нежели практическую функцию. Построить водяную мельницу своими руками сможет каждый хозяин, имеющий навыки работы с деревянными деталями.

Размер колеса рекомендуется выбирать минимум 1,5 м, но не более 10 м, что зависит от площади участка. Мельничный домик также выбирается по его будущему предназначению: строение для хранения инвентаря, игровая зона для детей, украшение территории.

Изготовление деталей:

  • в качестве основы для водяного колеса можно взять велосипедное или сбитое из дерева, к которому крепятся лопасти; в центре его должна быть труба, вокруг которое происходит вращение;
  • готовое изделие крепится на подшипники на 2 опоры, которые изготавливают их дубового бруса, металлического уголка, кирпича;
  • к верхней части колеса должен подходить желоб, по которому стекает вода на лопасти; ее подводят либо от шланга с насосом, либо она поступает после дождя;
  • все детали для увеличения срока работы рекомендуется обработать: деревянные — покрыть лаком, металлические — краской от коррозии;
  • для отведения воды прокладывают каналы в направлении грядок или к другой емкости;
  • на завершающем этапе сооружение украшают декоративными элементами.

Устройство на загородном участке декоративной водяной мельницы станет прекрасным эстетическим дополнением к ландшафту.

Знаменитые исторические мельницы

Самая большая действующая водяная мельница «Леди Изабелла» расположена около деревни Лекси на острове Мэн в Ирландском море. Это сооружение было возведено в 1854 г. инженером-самоучкой Робертом Казементом в честь жены местного генерал-губернатора, а целью его строительства было откачка грунтовых вод из местной шахты по добыче природных ископаемых (цинка, свинца и др.).

Специально были проложены каналы, по ним вода из горных рек проходила через мост и подавалась для вращения колеса диаметром 22 м, которое до сих пор считается самым огромным в мире, благодаря чему пользуется успехом у туристов уже много лет.

Одна из оригинальных достопримечательностей Франции — водяная старая мельница, расположенная около г. Вернона (Франция). Ее уникальность в том, что она опирается на 2 опоры старинного каменного моста, который соединял когда-то берега Сены. Точная дата ее сооружения неизвестна, однако, по некоторым данным, она возводилась в период противостояния Ричарду Львиное Сердце и имела стратегическое значение. В 1883 г. ее увековечил знаменитый художник Клод Моне на одном из своих полотен.

Создание водяной мельницы является важным этапом в истории развития техники, ведь она считается первой конструкцией, которую можно было использовать в различных целях для переработки сельскохозяйственной и другой продукции, что стало первым шагом к машинному производству в мире.

Изготовление мельницы своими руками в саду, на дачном участке кажется довольно неудачной идеей. Кому и зачем она нужна? Действительно, зачем полноценная работающая мельница на участке в шесть соток? Кто и что будет на ней молоть? А вот декоративная модель мельницы небольших размеров может стать достойным оригинальным украшением.

Хотя и в декоративных мельницах своими руками нет ничего плохого, выглядят они очень занимательно. Романтики и сказочных событий вокруг них хоть пруд пруди. Здесь русалки, водяные, мельники-колдуны и много других сказочных персонажей. Да и дети будут знать, что это такое и для чего оно использовалось. Если привлечь их к процессу строительства, они получат определенные навыки и умения в неформальной обстановке, от любимого человека. Такое запомнится надолго.

Основные требования при устройстве водяной мельницы

Даже декоративная мельница должна иметь вращающееся под потоком воды колесо. Иначе это будет расположенное в саду сооружение непонятного назначения.

При определенной доле везения иногда оптимальным решением может быть протекающий на участке ручей. Но это очень редкий случай. Создать водяной поток можно разными способами. Основное внимание нужно уделить следующим деталям:

  1. При использовании водопровода воду нужно куда-то отводить. Поскольку бесплатной воды не бывает, должна быть рациональная схема ее использования.
  2. При отсутствии или невозможности использования водопровода можно устроить замкнутый оборот воды, установив емкость определенного размера в качестве аккумулятора. Оптимальным решением будет небольшой пруд около мельницы.

Для нормального вращения мельничного колеса нужен перепад высоты около метра. Техническое решение этой проблемы довольно простое. Из пруда вода поднимается насосом на необходимую высоту и сливается на водяное колесо. Дизайнерских решений может быть великое множество. Из бросовых материалов можно соорудить горку с пещерой и вытекающим оттуда ручьем, небольшой водопад, озеро на вершине горы с ручьем и много других вариантов. Можно создать имитацию вечного двигателя. На колесе укрепить небольшие поворачивающиеся емкости, которые будут черпать воду, и выливать ее в специальный желоб. По желобу вода будет возвращаться в точку подачи. Для незнающих основ физики можно представить мельницу как действующую модель «перпетуум-мобиле», не признанную наукой.

Реальное решение проблемы вращения колеса под потоком воды при отсутствии водопровода следующее: можно использовать дренажный насос любого типа с необходимой производительностью и подъемом воды на высоту около метра. Погружной насос можно расположить непосредственно в водоеме, поверхностный — где-нибудь рядом. От выходного патрубка насоса нужно провести трубу к точке водосброса и закрепить ее. К насосу подвести кабель питания. На этом сложная техническая проблема решена. Дальше всю конструкцию желательно замаскировать под натуральный природный вид и переходить к устройству колеса.

Вернуться к оглавлению

Изготовление колеса и здания мельницы

Для изготовления колеса идеально подойдут ободья от старого детского велосипеда. Внешний вид не будет соответствовать старине, но особого внимания этому никто не уделит. Ободья нужно установить на одну ось, между ними расположить деревянные лопасти, закрепив их любым возможным способом. Ось нужно закрепить на стойки необходимой высоты. Всю конструкцию надо установить на место водостока и закрепить.

Макет мельницы можно соорудить из оставшихся после ремонта или строительства различных обрезков б/у материалов. Размеры и конструкция будут зависеть от имеющихся в наличии остатков. Форма и отделка по возможности должны соответствовать дизайну старинных строений. Лучше отделку использовать из дерева. Внутренний объем можно использовать для установки насоса, обеспечив определенную надежность крыши сооружения.

Декоративная водяная мельница может служить украшением не только садового участка на даче, но и самого дачного двора. При желании можно разработать и построить систему водоотводов дождевой воды, направленную в пруд. Собранную воду можно использовать для полива.

Устройство такой системы — довольно хлопотное занятие, перед началом работ желательно нарисовать чертежи водоотводов для сбора и перемещения воды с необходимыми уклонами. Изготовленная система создаст значительную экономию водопроводной воды. Многие садоводы предпочитают для полива сада использовать дождевую воду. Кроме полива, воду можно использовать в различных хозяйственных целях. Наверное, есть смысл сделать водяную мельницу, выполняющую не только роль декоративного украшения, но и несущую определенную полезную нагрузку.

Вернуться к оглавлению

Устройство каркаса декоративной ветряной мельницы

Схема устройства мельницы: 1 – крылья, 2 – жернова, 3 – система колес-шестеренок.

Ветряная мельница является одним из неодушевленных персонажей романа «Дон Кихот Ламанчский» Мигеля Сервантеса. Современному поколению сложно объяснить, что это такое и почему рыцарь принял ветряную мельницу за великана и бросился в атаку. Изготовление небольшой модели, возможно, окажет помощь в этой проблеме и сумеет хоть немного привлечь внимание подрастающего поколения к классической литературе. Ведь кроме романа Мигеля Сервантеса существует много других произведений с мельницами, мельниками, их дочками, колдовством, прочими мистическими и романтическими сюжетами.

Для работы будут нужны:

  • ножовка по дереву или электролобзик;
  • рулетка;
  • шуруповерт;
  • наждачная бумага.

Из материалов для изготовления можно использовать остатки от ремонта или стройки, старую мебель, различные обрезки.

Все дачные поделки в основном изготавливаются из таких материалов. Вначале нужно сделать основание для строения. При небольших размерах можно использовать отрезки ДСП, для основательной конструкции высотой более метра желательно использовать брусок. Приведенные в описании размеры не критичны, их можно менять на свое усмотрение.

Нужно вырезать два квадрата с длиной сторон 300 мм и 400 мм. В вырезанных деталях определить центры, просверлить отверстия. Вырезать брусок, длина детали должна быть равна высоте между основаниями. Закрепить основания на торцах бруска саморезами через отверстия по центру. Брусок является временным креплением для упрощения сборки. Измерить расстояние между соответствующими углами квадратов. Вырезать бруски по определенному размеру, закрепить их на углах. Ветряная мельница приобрела первые очертания. Центральный брусок, использованный в качестве временного крепления, можно удалить.

Устройство декоративной водяной мельницы: правила размещения на участке, изготовление основных элементов и сборка, популярные стили зон отдыха с подобной конструкцией.

Устройство и принцип работы водяной мельницы


Текущая вода всегда манила к себе людей, она успокаивает и вдохновляет, дает прохладу в летний период. Чтобы получить такие комфортные условия на своем участке, строят мельницу. Сооружение придает пейзажу привлекательность и романтичность, оно всегда считалось загадочным местом, где живут русалки.

Устройство водяной мельницы, которая используется как декор, достаточно простое. Она состоит из таких частей:

  • Колесо с лопастями, которое вращает течение.
  • Желоб для подачи воды к изделию. Идеальный вариант — мельница на берегу ручья, приводящего в движение основной элемент. При отсутствии таких условий вода подается в рабочую зону из вышестоящего озерца или с помощью насоса.
  • Ось и опора колеса. Штырь, продетый сквозь элемент, фиксируется к двум стойкам по обе стороны ручья. При наличии помещения ось можно закрепить к его стенке с одной стороны.
Рядом с колесом можно возвести домик. Это необязательный элемент для мельницы, многие люди обходятся без него. Помещение строят, если для него есть практическое применение.

Принцип работы водяной мельницы такой: поток попадает на колесо сверху и вращает его, вытекая с другой стороны. Если течение создается искусственно, жидкость с помощью насоса подается наверх и процесс повторяется вновь.

На даче строение может выполнять несколько функций:

  1. Украшение загородного участка;
  2. Маскировка других сооружения, имеющих неприглядный вид;
  3. Защита от атмосферных осадков элементов коммуникаций дачи;
  4. Хранение инструментов.
Водяные мельницы, построенные возле ручьев, часто приспосабливают для приведения в движение различных механизмов, их выбор зависит от мощности течения. Часто колесо применяют для выработки электроэнергии. Для этого к вращающемуся элементу подсоединяют генератор от автомобиля. Простейшая конструкция позволяет получить электрический ток с напряжением 12 В. Этого достаточно, чтобы осветить территорию дачного участка.

Чтобы производить электрический ток большой мощности, необходимо решить несколько проблем: построить прочную массивную конструкцию, которая способна вращаться длительное время без поломок, и получить разрешение от местных властей. Также возникнут сложности технического характера — как защитить механизм водяной мельницы от влаги и обеспечить легкость хода колеса. Таких проблем не возникнет, если заниматься только декоративными проектами.

Как сделать водяную мельницу на даче

Предварительно выберите место под строение и разработайте его чертеж. На основании проекта определите количество расходного материала и подготовьте рабочий инструмент. Оставшееся время уйдет на механическую работу. Рассмотрим каждый этап подробнее.

Подготовительные работы


Идеальным местом для мельницы является берег ручья, но не у всех он течет через участок. Отсутствие естественного потока не является причиной отказываться от декора.
  • Мельницу всегда устанавливают возле пруда. Если водоема еще нет, есть возможность сделать его с учетом ваших пожеланий.
  • Не обустраивайте озерцо близко к большим деревьям. Площадка должна хорошо проветриваться.
  • Лучшим местом для декора является участок с перепадом высот. Учтите, что возле мельницы всегда будет повышенная влажность.
Для работы понадобятся инструменты и принадлежности: карандаш, линейка, угольник, рулетка, циркуль — для проектных работ; шлифовальные инструменты или наждачная бумага средней зернистости; дрель со сверлами, шуруповерт и отвертки, молоток.

Подготовьте расходный материал. Его количество зависит от размеров мельницы:

  1. Вагонка — для обшивки каркаса.
  2. Деревянные рейки — для создания каркаса помещения. Основание можно изготовить из ящиков, досок и других ненужных материалов.
  3. Бухта от проволоки или кабеля — для изготовления колеса.
  4. Фанера — для создания лопастей. Вместо нее можно использовать любой листовой металлический материал.
  5. Ось, на которой будет вращаться движущийся элемент.
  6. Любой кровельный материал на крышу помещения. Ее также можно накрыть камышом или соломой.
  7. Желоб или шланг — для подачи жидкости к колесу.
  8. Лакокрасящие средства и пропитки — для защиты пиломатериалов от влаги.
На стадии подготовки чертежа водяной мельницы выберите стиль строения, который должен соответствовать окружающему ландшафту. Он него зависят используемые в конструкции материалы. Стилевые решения для водяной мельницы:
  • Деревенский стиль . Мельницу изготавливают массивной, из деревянных брусьев, с вращающимся колесом. Для создания домика можно использовать грубо обработанные бревна и натуральные камни. На участке устанавливают деревянные изделия — плетеную изгородь, скамейку и т.д. Хорошо смотрится состаренный мостик, который перекинут через водяной поток. Вокруг водяной мельницы для сада установите другие декоративные элементы в том же стиле: сруб колодца, клумба-тележка, деревянные фигурки. Все элементы дизайна искусственно состарьте, что увеличивает сходство с деревенским двором. Дополняют композицию растения — камыш, подсолнухи, ромашки.
  • Японский стиль . Отличается от других минимальным количеством предметов в зоне отдыха. Мельницу постройте из камня, в виде замка с бойницами и башнями. Вокруг нее расположите каменные элементы, например, скамейку или скульптуру. Растения также должны соответствовать выбранному стилю, рекомендуется посадить карликовый японский клен, сакуру, японскую айву. Вся обстановка настраивает на позитивный лад и философские размышления.
  • Голландский стиль . Мельница изготавливается в виде фахверкового домика, которые распространены в Голландии и Германии. На участке разместите гномов, флюгеры и высадите большое количество растений. Обязательно должны расти тюльпаны и розы.
Можно оформить зону отдыха в славянском стиле, на основе народных сказок. Участок будет выглядеть не менее привлекательно, чем перечисленные варианты.

Создание водного потока


Мельница смотрится очень красиво, если колесо вращается. Приводит его в движение течение ручья, но только в том случае, если он протекает через ваш участок. Если таких условий нет, поток придется организовать собственными силами.

Самая простая система состоит из двух маленьких прудов, один из которых находится выше. Поток самотеком стекает по желобу вниз, попутно вращая колесо. Из нижнего озерца вода насосом перекачивается в верхнее. В этом случае необходимо правильно рассчитать объемы вытекающей жидкости и вновь закачиваемой, иначе один из водоемов вскоре окажется пустым.

Насос может быть наземным или погружаемым. В первом случае его помещают в домик и подсоединяют к нему 2 шланга. Один протягивают к пруду, другой используют для создания потока. Во втором случае применяют погружной насос, с помощью которого вода по шлангу подается к желобу или непосредственно к колесу. При выборе насосов необходимо учитывать расстояние между прудом и мельницей — чем оно больше, тем мощнее должен быть аппарат.

Желоб должен заканчиваться точно над лопастями. Вместо озерца за колесом можно построить каналы, по которым вода будет поступать к растениям на огороде или в саду.

Рассмотрим другие варианты сооружений, обеспечивающих вращение колеса:

  • Если на участке есть возвышенность, сделайте в верхней части углубление и наполните его водой. Рядом соорудите мельницу и пустите к ней поток от верхнего пруда.
  • На ровной территории постройте альпийскую горку из камня и грунта высотой не менее 0,5 м. В середину установите шланг и подсоедините его к насосу. Второй шланг протяните на самый верх горки и замаскируйте. Соорудите желоб, одна сторона которого должна располагаться под шлангом, другая — над колесом. Проконтролируйте, чтобы вода точно падала на лопасти.
  • Можно собрать мельницу рядом с домом и расположить рабочий элемент под сточной трубой. В этом случае она будет работать только во время дождя. Чтобы не ждать подходящих природных условий, используйте насос, который подаст воду на крышу здания по шлангу.
В декоративной мельнице ничего не вращается, поэтому нет необходимости в создании водяного потока. Подобный декор применяется при наличии на участке сухого ручья, но выглядит строение нереалистично.

Изготовление колеса для мельницы


Основным элементом водяной мельницы является вращающееся колесо. От его размеров зависят габариты домика, ведь эти два узла должны хорошо смотреться друг с другом. Его рекомендуется изготавливать в пределах 1,5 м в диаметре.

Простейшая конструкция выглядит как два диска, соединенные лопастями. Удобно изготавливать элемент из бухты для кабеля. Можно использовать и другие заготовки круглой формы — диски от автомобилей, трубу с закрепленными лопастями и т.д.

Выполните такие операции:

  1. Измерьте расстояние между дисками и нарежьте заготовки по полученным размерам из фанеры или любого другого материала.
  2. Элементы установите равномерно между дисками и закрепите.
  3. Все пиломатериалы покрасьте или покройте средством для защиты от воды. Металлические части покрасьте.
  4. В центре элемента зафиксируйте металлическую трубку для установки оси, на которой будет держаться изделие. Подберите штырь диаметром чуть меньше диаметра трубки, а длина его должна позволять крепить конструкцию на опорах. Ось можно сделать из длинной шпильки, на которой по всей длине нарезана резьба.
  5. Хорошо смажьте штырь консистентной смазкой. Проденьте ось сквозь отверстие в колесе и расположите так, чтобы лопасти находились строго посредине.
  6. Наверните с обеих сторон шпильки гайки и зафиксируйте его в таком положении. Крепеж не зажимайте, чтобы колесо свободно вращалось.

Инструкция по сборке мельницы


После изготовления основного элемента декоративной водяной мельницы можно приступать к сборочным работам.

Операции выполняйте в такой последовательности:

  • Выровняйте площадку возле озерца под домик мельницы. Размеры ее должны соответствовать размерам строения. Если использовать помещение как игровую комнату для детей, габариты не могут быть маленькими. С другой стороны, большое строение из бревен не смотрится на участке в несколько соток. Для деревянной конструкции вымостите площадку брусчаткой или тротуарной плиткой.
  • Если строение будет каменным, выкопайте небольшой фундамент глубиной 50 см.
  • На подготовленной площадке соорудите каркас домика из реек. Оставьте место под дверь и окна.
  • Обшейте каркас вагонкой или другим облицовочным материалом.
  • Установите двери и окна.
  • Крышу накройте выбранным материалом.
  • Поместите внутрь оборудование — насос для подачи воды к лопастям или электрогенератор.
  • Сформируйте опоры для фиксации колеса в заданном положении. Их можно изготовить из различного материала — брусья из твердых пиломатериалов, швеллеров, уголков, камня и т.д. Допускается соорудить одну опору, а с другой стороны закрепить ее к стенам мельницы.
  • Установите элемент шпилькой на опоры и зафиксируйте любым способом.
  • Подайте воду в желоб и убедитесь, что она падает точно на лопасти, а колесо легко движется.
  • Выполните декорирование участка в соответствии с выбранным стилем.
Как сделать водяную мельницу — смотрите на видео:
Построить своими руками водяную мельницу с вращающимся колесом совсем нетрудно. Главное создать водяной поток, приводящий в движение лопасти. Правильно разработанная конструкция станет украшением участка и принесет море удовольствий.

2. Термины и определения / КонсультантПлюс

2. Термины и определения

2.1. Пожарный автомобиль (ПА) — автомобиль на колесном шасси, оборудованный техническими средствами и агрегатами для хранения и подачи огнетушащих средств, выполнения специальных работ на пожаре и предназначенный для доставки к месту пожара личного состава, пожарно-технического вооружения (ПТВ) и оборудования, проведения боевых действий по тушению пожаров в соответствии с его функциональным назначением.

2.2. Пожарная автоцистерна (АЦ) — по ГОСТ 12.2.047.

2.3. Пожарная автоцистерна с лестницей (АЦЛ) — пожарный автомобиль, оборудованный пожарным насосом, емкостями для хранения жидких огнетушащих веществ и средствами их подачи, стационарной механизированной выдвижной и поворотной лестницей и предназначенный для доставки к месту пожара личного состава, пожарно-технического вооружения и оборудования, проведения боевых действий по тушению пожара, использования при аварийно-спасательных работах и тушении на высоте.

2.4. Пожарная автоцистерна с коленчатым подъемником (АЦКП) — пожарный автомобиль, оборудованный пожарным насосом, емкостями для хранения жидких огнетушащих веществ и средствами их подачи, стационарной механизированной поворотной коленчатой или телескопической подъемной стрелой с люлькой (подъемной платформой) и предназначенный для доставки к месту пожара личного состава, пожарно-технического вооружения и оборудования, проведения боевых действий по тушению пожара, использования при аварийно-спасательных работах и тушении на высоте.

2.5. Пожарный автомобиль порошкового тушения (АП) — пожарный автомобиль, оборудованный сосудом для огнетушащего порошка, баллонов с газом или компрессорной установкой, лафетным и ручными стволами и предназначенный для доставки к месту пожара личного состава, пожарно-технического вооружения и оборудования и проведения боевых действий по тушению пожара.

2.6. Пожарный автомобиль пенного тушения (АПТ) — по ГОСТ 12.2.047.

2.7. Пожарный автомобиль комбинированного тушения (АКТ) — по ГОСТ 12.2.047.

2.8. Пожарный автомобиль газового тушения (АГТ) — пожарный автомобиль, оборудованный сосудами для хранения сжатых или сжиженных газов, устройствами их подачи и предназначенный для доставки к месту пожара личного состава, пожарно-технического вооружения и оборудования и проведения боевых действий по тушению пожаров.

2.9. Пожарный автомобиль газоводяного тушения (АГВТ) — пожарный автомобиль, оборудованный турбореактивным двигателем, системой подачи газовой и водяной струй и предназначенный для доставки к месту пожара (аварии) личного состава, пожарно-технического вооружения и оборудования, проведения боевых действий по его тушению.

2.10. Пожарный автомобиль первой помощи (АПП) — пожарный автомобиль, оборудованный пожарным насосом, емкостями для жидких огнетушащих веществ и предназначенный для доставки к месту пожара (аварии) личного состава, пожарно-технического вооружения и оборудования, проведения боевых действий по тушению пожаров в начальной стадии и проведения первоочередных аварийно-спасательных работ.

2.11. Пожарный автомобиль насосно-рукавный (АНР) — пожарный автомобиль, оборудованный насосом, комплектом пожарных рукавов и предназначенный для доставки к месту пожара (аварии) личного состава, пожарно-технического вооружения и оборудования, проведения действий по его тушению.

2.12. Пожарный автомобиль с насосом высокого давления (АВД) — пожарный автомобиль, оборудованный пожарным насосом высокого давления, емкостями для жидких огнетушащих веществ, комплектом пожарно-технического вооружения и предназначенный для проведения боевых действий при тушении пожаров в высотных зданиях и сооружениях.

2.13. Пожарная автонасосная станция (ПНС) — по ГОСТ 12.2.047.

2.14. Пожарный пеноподъемник (ППП) — пожарный автомобиль, оборудованный стационарной механизированной поворотной коленчатой или телескопической подъемной стрелой с пеногенераторами и предназначенный для доставки личного состава, пожарно-технического вооружения и оборудования к месту пожара и проведения боевых действий по тушению пожаров пеной на высоте.

2.15. Пожарная автолестница (АЛ) — по ГОСТ 12.2.047.

2.16. Пожарный автоподъемник (АПК) — пожарный автомобиль, оборудованный стационарной механизированной поворотной коленчатой и (или) телескопической подъемной стрелой, последнее звено которой заканчивается платформой или люлькой, предназначенный для проведения боевых действий по тушению пожаров и использования при аварийно-спасательных работах на высоте.

2.17. Пожарный аварийно-спасательный автомобиль (АСА) — пожарный автомобиль, оборудованный генератором, комплектом аварийно-спасательного инструмента и предназначенный для доставки личного состава, пожарно-технического вооружения и оборудования к месту пожара (аварии) и проведения боевых действий при аварийно-спасательных работах.

2.18. Пожарный водозащитный автомобиль (АВЗ) — по ГОСТ 12.2.047.

2.19. Пожарный автомобиль связи и освещения (АСО) — по ГОСТ 12.2.047.

2.20. Пожарный автомобиль газодымозащитной службы (АГ) — по ГОСТ 12.2.047.

2.21. Пожарный автомобиль дымоудаления (АД) — по ГОСТ 12.2.047.

2.22. Пожарный рукавный автомобиль (АР) — по ГОСТ 12.2.047.

2.23. Пожарный штабной автомобиль (АШ) — по ГОСТ 12.2.047.

2.24. Пожарная автолаборатория (АЛП) — по ГОСТ 12.2.047.

2.25. Пожарный автомобиль профилактики и ремонта средств связи (АПРСС) — пожарный автомобиль, оборудованный техническими средствами диагностики и ремонта средств связи и предназначенный для доставки личного состава и оборудования к месту проведения ремонтных работ.

2.26. Автомобиль диагностики пожарной техники (АДПТ) — пожарный автомобиль, оборудованный техническими средствами оценки технического состояния пожарной техники и предназначенный для доставки личного состава и оборудования к месту проведения диагностических (ремонтных) работ.

2.27. Пожарный автомобиль-база ГДЗС (АБГ) — пожарный автомобиль, оборудованный комплектом технического вооружения обслуживания и зарядки средств защиты органов дыхания и предназначенный для доставки личного состава и техники к месту работы газодымозащитной службы (ГДЗС).

2.28. Пожарный автомобиль технической службы (АПТС) — по ГОСТ 12.2.047.

2.29. Автомобиль отогрева пожарной техники (АОПТ) — пожарный автомобиль, оборудованный нагревательно-отопительными приборами и предназначенный для доставки личного состава и оборудования к месту пожара (аварии) и обеспечения функционирования пожарной техники при отрицательной температуре.

2.30. Пожарная компрессорная станция (ПКС) — пожарный автомобиль, оборудованный компрессором и предназначенный для доставки личного состава и оборудования, заправки кислородом (воздухом) баллонов СИЗОД на передвижных базах газодымозащитной службы.

2.31. Пожарный прицеп (ПП) — по ГОСТ 12.2.047.

2.32. Пожарный оперативно-служебный автомобиль (АОС) — пожарный автомобиль, оборудованный комплектом пожарно-технического вооружения и предназначенный для доставки к месту пожара (аварии) личного состава оперативной службы и комплекта техники для его работы.

2.33. Полная масса ПА — сумма снаряженной массы автомобиля и перевозимого им боевого расчета, включая водителя, огнетушащие вещества, пожарно-техническое вооружение, заявленная предприятием-изготовителем пожарного автомобиля в нормативно-технической документации.

2.34. Удельная мощность ПА — отношение номинальной мощности двигателя к полной массе автомобиля.

2.35. Дальность струи при подаче лафетным водяным (пенным) стволом ПА — расстояние от насадка до крайних капель водяной (пенной) струи.

2.36. Дальность струи при подаче лафетным (ручным) порошковым стволом ПА — максимальное расстояние от насадка до середины специального модельного очага пожара класса В, расположенного на оси струи и потушенного при подаче огнетушащего вещества. Расстояние между очагами не менее 1 м.

2.37. Тип кабины ПА — кабина с одинарным, двойным, тройным количеством рядов сидений.

2.38. Компоновочная схема шасси ПА — расположение кабины относительно двигателя автомобиля (перед двигателем, над двигателем, за двигателем).

2.39. Скорость (максимальная) ПА — максимальная скорость автомобиля при движении по горизонтальному участку шоссе с твердым покрытием.

2.40. Коэффициент поперечной статической устойчивости ПА — отношение высоты центра тяжести автомобиля в транспортном положении к ширине колеи.

2.41. Расход топлива при стационарной работе на привод спецагрегатов ПА — количество топлива, расходуемого в единицу времени при работе на привод спецагрегатов в номинальном режиме.

2.42. Способ прокладки рукавов ПА — механический или ручной.

2.43. Высота подъема (Н) АЛ, АПК, ППП — расстояние по вертикали от горизонтальной опорной поверхности до верхней ступени лестницы АЛ, до пола люльки АПК, до оси гребенки пеногенератора ППП.

2.44. Вылет (В) АЛ, АПК, ППП — расстояние по горизонтали от оси вращения подъемно-поворотного основания до верхней ступени лестницы АЛ, до внешнего края пола люльки АПК, до внешнего края пеногенератора ППП.

2.45. Время маневра АЛ, АПК, ППП — промежуток времени с момента перемещения тумблера (рычага), с помощью которого обеспечивается выполнение соответствующего маневра (движения), до момента, когда исполнительный механизм, обеспечивающий его, достиг своего предельного положения или соответствующий элемент изделия достиг требуемого положения.

2.46. Грузоподъемность АЛ, АПК, ППП — масса максимально допустимого груза, которым может быть нагружена стрела (люлька) АЛ, АПК, ППП для данного вылета.

2.47. Угол подъема стрелы АЛ, АПК, ППП — угол между горизонтальной опорной поверхностью и стрелой АЛ, АПК, ППП.

2.48. Люлька ПА — устройство, обеспечивающее удобство и безопасность эвакуации людей и работы пожарных при тушении пожара на высоте, устанавливаемое на вершине стрелы АЛ (подвешиваемое к тяговому канату лифтовой системы).

2.49. Выносные опоры ПА — устройства, обеспечивающие устойчивость АЛ, АПК, ППП, АСА, АЦЛ, АЦКП и АПТС при работе и предохраняющие рессоры и шины базового шасси от воздействия дополнительных нагрузок, возникающих при работе.

2.50. Длина лестницы (стрелы) АЛ — расстояние от нижней до верхней ступеньки лестницы (зависит от степени выдвигания лестницы).

2.51. Ширина минерализованной полосы — расстояние, измеренное перпендикулярно оси минерализованной полосы между крайними линиями смачивания поверхности земли.

Обеспечение более чистого воздуха По одному двигателю за раз

20 апреля, 2020

В ознаменование Всемирного дня интеллектуальной собственности 2020 Innovate for a Green Futur e WIPO GREEN представляет ряд экологически безопасных технологий, представленных в онлайн-базе данных WIPO GREEN.

По данным Всемирной организации здравоохранения (ВОЗ), 91 процент населения мира проживает в районах, где качество воздуха ниже стандартов, рекомендованных руководящими принципами ВОЗ по качеству воздуха 2005 года.

Ежегодно 4,2 миллиона смертей связаны с загрязнением воздуха. Выбросы выхлопных газов автотранспортных средств являются основным источником загрязнения атмосферного воздуха, что приводит к опасностям для здоровья и изменению климата.

ANTISMOG, экологически чистое процессное и технологическое решение с открытым исходным кодом, разработанное Net Sas, стартапом из Франции, решает эту проблему. Его решение позволяет снизить вредные выбросы от двигателей внутреннего сгорания до 80 процентов. Процесс ANTISMOG состоит из четырех этапов:

(Фото: ФОТО ПРЕДОСТАВЛЕНЫ Net Sas)
  • Шаг 1 : Спектрофотометрический анализ газа и измерения непрозрачности проводятся для регистрации исходных выбросов.Механик использует спектрофотометр или дымомер (небольшие устройства, которые анализируют молекулярный состав и твердые частицы, присутствующие в газе) для измерения исходных выбросов.
  • Этап 2 : Декарбонизация водорода.
    Газообразный кислород-водород, смесь водорода (H 2 ) и кислорода (O 2 ), также известный как газ HHO, используется для обезуглероживания внутренних механизмов двигателя и выхлопной системы. Газ в больших количествах закачивается в работающий двигатель, когда автомобиль неподвижен, с помощью газогенератора большого объема HHO.Этот процесс максимально «очищает» внутренние механизмы автомобиля, удаляя следы скопившегося нагара.
  • Шаг 3 : Улучшение водородного топлива.
    На этом ключевом этапе в моторном отсеке устанавливается компактный маломощный электролизер с низким объемом газа. Когда двигатель работает, устройство вырабатывает контролируемое количество газа HHO, который затем добавляется к топливовоздушной смеси перед сгоранием. Это обеспечивает более полное и однородное сгорание топлива, что, в свою очередь, обеспечивает значительное снижение содержания твердых частиц (ТЧ) и оксидов азота (NOx) в выбросах транспортного средства.Генератор HHO размером примерно 20 см x 15 см x 5 см может быть установлен на большинство транспортных средств, дизельных генераторов, а также на промышленное или сельскохозяйственное оборудование и особенно подходит для старых дизельных двигателей. Срок службы устройства оценивается в 20-40 лет, и большинство деталей подлежат переработке.
  • Шаг 4 : Проводятся заключительные испытания на выбросы, повторяя первый шаг, чтобы зафиксировать любое снижение уровней выбросов по сравнению с базовым уровнем.

В отличие от фильтров, клапанов рециркуляции выхлопных газов и селективных каталитических редукторов, — технологий дожигания, обычно используемых для снижения выбросов, — технология улучшения водородного топлива, используемая в процессе ANTISMOG, является решением перед сжиганием.Это позволяет более полно сгорать топлива, значительно уменьшая количество несгоревших частиц и повышая эффективность использования топлива.

Основные преимущества

(Фото: любезно предоставлено Net Sas)

Основным преимуществом ANTISMOG является снижение вредных выбросов выхлопных газов транспортных средств до 80 процентов (более конкретно, NOx снижается на 55 процентов, а содержание твердых частиц уменьшается на 95 процентов). Другие преимущества включают:

  • Меньше механических проблем, связанных с сажевыми фильтрами (DPF).Это особенно полезно для транспортных средств с большим пробегом, таких как такси и междугородние автобусы;
  • Снижение затрат на техническое обслуживание автомобилей. ANTISMOG обеспечивает экономию около 10 процентов;
  • Повышенная эффективность использования топлива более чем на 10 процентов;
  • Установка ANTISMOG в старые автомобили улучшает их показатели выбросов, приводя их в соответствие с характеристиками новых моделей.

ANTISMOG находится на ранней стадии коммерциализации и доступен для коммерческого и исследовательского сотрудничества.В настоящее время, проявляя особый интерес к увеличению воздействия своей технологии, Net Sas работает над заключением договорных соглашений с владельцами и операторами парка транспортных средств или промышленного оборудования.

(Фото: любезно предоставлено Net Sas)

Net Sas планирует сохранить ANTISMOG как решение с открытым исходным кодом, позволяющее любому государственному или частному субъекту — например, муниципалитету или владельцу автопарка — реализовать процесс независимо. Net Sas создает онлайн-библиотеку ресурсов с руководствами, шаблонами и протоколами, относящимися к инновациям ANTISMOG, которые будут доступны бесплатно для всеобщего использования.

Компания зарегистрировала ANTISMOG в качестве товарного знака во французском ведомстве интеллектуальной собственности (Национальный институт промышленной собственности (INPI)) и планирует подать заявки на патенты на все устройства ANTISMOG после завершения первого раунда сбора средств для проекта.

О WIPO GREEN

WIPO GREEN — это глобальный рынок устойчивых технологий, поддерживающий глобальные усилия по борьбе с изменением климата. Благодаря своей онлайновой базе данных и региональной деятельности WIPO GREEN объединяет искателей и поставщиков зеленых технологий, чтобы стимулировать экологические инновации и ускорить передачу и распространение зеленых технологий.

паровой двигатель | Encyclopedia.com

История

Принцип работы паровой машины

Ресурсы

Паровая машина — это машина, которая преобразует тепловую энергию пара в механическую энергию с помощью поршня, движущегося в цилиндре. Как двигатель внешнего сгорания — поскольку он сжигает свое топливо вне двигателя, паровой двигатель передает свой пар в цилиндр, где пар затем толкает поршень вперед и назад. Именно с этим движением поршня двигатель может выполнять механическую работу.Паровая машина была основным источником энергии в промышленной революции (которая началась в Англии в восемнадцатом веке) и доминировала в промышленности и транспорте в течение 150 лет. Это все еще полезно сегодня в определенных ситуациях и во многих развивающихся странах.

Самыми ранними известными паровыми двигателями были новинки, созданные греческим инженером и математиком Героем (Героном) Александрийским (ок. 10–70), жившим в первом веке нашей эры. Его самое известное изобретение было названо элиопилом. Это изобретение представляло собой небольшую полую сферу, к которой были прикреплены две изогнутые трубки.Сфера была прикреплена к котлу, производившему пар. Когда пар выходил из полых трубок сферы, сама сфера начинала кружиться и вращаться. Герой и несколько других греков разработали множество других паровых устройств, таких как паровой орган и автоматические двери, но всегда в контексте игривости и, по-видимому, без какого-либо интереса к использованию пара на практике. Тем не менее, их работа установила принцип силы пара, и их игровые устройства были реальной демонстрацией преобразования энергии пара в какое-то движение.

Хотя греки установили принцип паровой энергии, он игнорировался более 1500 лет до конца 1600-х годов в Европе. В течение этого длительного периода основными источниками энергии были, в первую очередь, сила мускулов человека или тягловые животные, а затем энергия ветра и воды. Ветряные мельницы и водяные колеса подходили для медленных повторяющихся работ, таких как измельчение кукурузы, при которой отключение электроэнергии не имело особых последствий. Однако для некоторых работ, таких как откачка воды из шахты, источник энергии, который мог отключиться в любой момент, не всегда был удовлетворительным.Фактически, сама глубина английских шахт подтолкнула инженеров к поиску насосов, которые были бы быстрее старых водяных насосов. К середине шестнадцатого века работа над воздушными насосами привела к появлению представления о поршне, работающем в цилиндре, и около 1680 года французский физик Дени Папен (1647–1712) налил немного воды на дно трубы, нагрел ее, преобразовал он превратился в пар, и увидел, что расширенный пар с силой толкает и перемещает поршень прямо перед ним. Когда трубка остыла, поршень вернулся в исходное положение.Хотя Папену было хорошо известно, что он создал двигатель, который в конечном итоге мог работать, его отпугнули вполне реальные механические трудности своего времени, и он решил работать в меньшем масштабе, создав первую в мире скороварку.

Вслед за Папином английский военный инженер Томас Савери (около 1650–1715 гг.) Построил то, что многие считают первым практическим паровым двигателем. В отличие от системы Папена, у этой машины не было поршня, поскольку Савери хотел только черпать воду из угольных шахт глубоко под землей.Зная, что он может использовать пар для создания вакуума в сосуде, он соединил такой сосуд с трубкой, ведущей в воду внизу. Затем вакуум всасывал воду в трубку и выдувал ее под давлением пара. Систему Savery назвали «Друг шахтера», поскольку она поднимала воду из шахт за счет всасывания, производимого конденсацией пара. Несколько лет спустя английский инженер и партнер Savery Томас Ньюкомен (1663–1729) улучшил паровой насос, повторно установив поршень. К 1712 году он построил двигатель, который использовал пар атмосферного давления (обычная кипящая вода), и его было довольно легко построить.Его поршневой двигатель был очень надежен и стал широко использоваться в Англии примерно в 1725 году. Его машина была названа балочным двигателем, потому что у него наверху был огромный качающийся рычаг, или поперечная балка, движение которого передавало мощность от единственного цилиндра двигателя к двигателю. Помпа.

Понимание того, как работает двигатель Ньюкомена, дает представление обо всех последующих паровых двигателях. Во-первых, вся машина находилась в машинном отделении высотой около трех этажей, из верхней стены которого торчала длинная дубовая балка, которая могла качаться вверх и вниз.Дом построен сбоку от шахты. Внизу вала находился водяной насос, который соединялся с двигателем длинной штангой насоса. Под балкой внутри дома находился длинный латунный цилиндр, который находился на кирпичном котле. Котел питался углем и подавал пар. Внутри цилиндра находился поршень, который мог скользить вверх и вниз и был соединен с балкой наверху. Двигатель всегда запускался с поршнем в верхнем положении. Затем пар заполнил цилиндр из открытого клапана.При заполнении цилиндр опрыскивался водой, в результате чего пар внутри конденсировался в воду и создавал частичный вакуум. В соответствии с этим изобретением давление наружного воздуха вынудило бы поршень опускаться, который раскачивал балку, поднимал штоки насоса и всасывал около 12 галлонов (45 л) воды. Затем поршень вернулся в исходное положение (вверх) в цилиндре, и процесс был повторен. Помимо того, что двигатель Ньюкомена назывался балочным двигателем, его также называли атмосферным двигателем, поскольку он использовал давление воздуха для перемещения поршня (вниз).

Наиболее важное усовершенствование в конструкции паровой машины было внесено шотландским инженером Джеймсом Ваттом (1736–1819). В 1763 году Ватта попросили отремонтировать двигатель Ньюкомена, и он был поражен тем, что он считал его неэффективным. Он намеревался улучшить его характеристики и к 1769 году пришел к выводу, что если пар конденсируется отдельно от цилиндра, последний всегда можно поддерживать горячим. В том же году он представил паровую машину с отдельным конденсатором. Поскольку это позволяло разделить процессы нагрева и охлаждения, его машина могла работать постоянно без длительных пауз в каждом цикле для повторного нагрева цилиндра.Ватт продолжал улучшать свой двигатель и сделал три очень важных дополнения. Во-первых, он сделал его двойным, позволив пару входить поочередно с обеих сторон поршня. Это позволяло двигателю работать быстро и передавать мощность как при нижнем, так и при восходящем ходе поршня. Во-вторых, он изобрел солнечно-планетарную передачу, которая могла переводить возвратно-поступательное движение луча во вращательное движение. В-третьих, он добавил центробежный регулятор, который поддерживал постоянную скорость двигателя, несмотря на меняющиеся нагрузки.Это в высшей степени инновационное устройство знаменует собой ранние истоки автоматизации, поскольку Ватт создал систему, которая, по сути, была саморегулирующейся. Ватт также изобрел манометр, который добавил к своему двигателю. К 1790 году усовершенствованные паровые машины Ватта стали мощным и надежным источником энергии, который можно было разместить практически где угодно. Это означало, что фабрики больше не нужно было располагать рядом с источниками воды, а можно было строить ближе как к их сырью, так и к транспортным системам. Больше всего на свете паровая машина Ватта ускорила промышленную революцию как в Англии, так и во всем мире.

Паровая машина Ватта, однако, не была идеальной и имела одно существенное ограничение; в нем использовался пар низкого давления. Пар высокого давления означал большую мощность для двигателей меньшего размера, но также означал крайнюю опасность, поскольку взрывы плохо сделанных котлов были обычным явлением. Первым, кто продемонстрировал реальный успех, был английский изобретатель Ричард Тревитик (1771–1833). К концу восемнадцатого века методы металлургии совершенствовались, и Тревитик считал, что сможет построить систему, которая будет обрабатывать пар под высоким давлением.К 1803 году Тревитик построил мощный двигатель высокого давления, который использовал для привода поезда. Его технические новшества были поистине замечательными, но двигатели высокого давления заработали в Англии такую ​​плохую репутацию, что пройдет двадцать лет, прежде чем английский изобретатель Джордж Стефенсон (1781–1848) подтвердит свою ценность с собственными локомотивами.

В Соединенных Штатах, однако, было мало предубеждений против мощности пара или почти ничего не знали о ней. К концу восемнадцатого века Эванс начал работу над паровой машиной высокого давления, которую он мог использовать в качестве стационарного двигателя для промышленных целей, а также для наземного и водного транспорта.К 1801 году он построил стационарный двигатель, который использовал для дробления известняка. Его главная инновация в области высокого давления разместила цилиндр и коленчатый вал на одном конце балки, а не на противоположных концах. Это позволило ему использовать гораздо более легкий луч.

За эти годы компания Evans построила около 50 паровых машин, которые использовались не только на заводах, но и для питания землеройных машин-амфибий. Пар под высоким давлением создавал эту странно выглядящую шалость, представлявшую собой земснаряд, который мог двигаться как по суше, так и по воде.Это был первый дорожный транспорт с двигателем, который работал в Соединенных Штатах.

Несмотря на упорный труд и настоящий гений Эванса, его новаторские усилия в области Steam при его жизни не увенчались успехом. Производители часто встречали его безразличие или простое нежелание менять свои старые методы и переходить на пар. Его использование пара для движения по суше сдерживалось плохими дорогами, личным интересом к лошадям и ужасно неадекватными материалами. После Эванса пар высокого давления стал широко использоваться в Америке, в отличие от Англии, где замена двигателей низкого давления Ватта потребовала много времени.Но, тем не менее, улучшения были внесены, и железо в конечном итоге заменило дерево в конструкции двигателей, а горизонтальные двигатели стали даже более эффективными, чем старые вертикальные.

На протяжении всего процесса разработки и усовершенствования паровой машины никто не знал, что за наука стоит за ней. Вся эта работа была выполнена на эмпирической основе без ссылки на какую-либо теорию. Лишь в 1824 году эта ситуация изменилась с публикацией книги « Reflexions sur La Puissance Motrice du Feu » французского физика Николя Леонарда Сади Карно (1796–1832).В своей книге « О движущей силе огня » Карно основал науку о термодинамике (или тепловом движении) и был первым, кто количественно рассмотрел способ взаимосвязи тепла и работы. Определяя работу как «подъем веса на высоту», он попытался определить, насколько эффективен или сколько работы может произвести двигатель Ватта. Карно смог доказать, что существует максимальный теоретический предел эффективности любого двигателя, и что это зависит от разницы температур в двигателе.Он показал, что для обеспечения высокого КПД пар должен проходить через широкий диапазон температур, поскольку он расширяется внутри двигателя. Наивысшая эффективность достигается за счет использования низкой температуры конденсатора и высокого давления в котле. Пар был успешно адаптирован для работы на лодках в 1802 году и на железных дорогах в 1829 году. Позже некоторые из первых автомобилей приводились в движение паром, а в 1880-х годах английский инженер Чарльз А. Парсонс (1854–1931) произвел первую паровую турбину. Эта мощная и высокоэффективная турбина могла вырабатывать не только механическую, но и электрическую энергию.К 1900 году паровая машина превратилась в сложный и мощный двигатель, который приводил в движение огромные корабли в океанах и приводил в действие турбогенераторы, снабжавшие электричеством.

Когда-то доминирующим источником энергии, паровые двигатели со временем потеряли свою популярность по мере того, как стали доступны другие источники энергии. Хотя с 1897 по 1927 год в Соединенных Штатах было произведено более 60 000 паровых машин, паровая машина в конечном итоге дала

КЛЮЧЕВЫЕ УСЛОВИЯ

Конденсатор — инструмент для сжатия воздуха или газов.

Цилиндр — камера двигателя, в которой движется поршень.

Регулятор — механическое регулирующее устройство, которое работает автоматически и позволяет саморегулировать скорость двигателя.

Поршень — скользящая деталь, которая перемещается или движется против давления жидкости внутри цилиндрического сосуда или камеры.

путь к двигателю внутреннего сгорания для приведения в движение автомобиля. Сегодня интерес к пару в некоторой степени возродился, поскольку усовершенствования делают его более эффективным, а низкий уровень загрязнения — более привлекательным.

См. Также Дизельный двигатель; Реактивный двигатель.

КНИГИ

Хиндл, Брук и Стивен Любар. Двигатели перемен. Вашингтон: Smithsonian Institution Press, 1986.

Lohani, Ashwani. Курящие красавицы: паровозы мира. Нью-Дели, Индия: Дерево мудрости, 2004.

Ратленд, Джонатан. Эпоха Steam. New York: Random House, 1987.

OTHER

History Resources, University of Rochester. «Рост парового двигателя». (по состоянию на 29 октября 2006 г.).

Леонард К. Бруно

Топливные элементы | Министерство энергетики

Топливный элемент использует химическую энергию водорода или другого топлива для экологически чистого и эффективного производства электроэнергии. Если водород является топливом, единственными продуктами являются электричество, вода и тепло. Топливные элементы уникальны с точки зрения разнообразия их потенциальных применений; они могут использовать широкий спектр видов топлива и сырья и могут обеспечивать электроэнергией системы величиной с коммунальная электростанция и такими маленькими, как портативный компьютер.

Зачем изучать топливные элементы

Топливные элементы могут использоваться в широком диапазоне приложений, обеспечивая электроэнергию для приложений в различных секторах, включая транспорт, промышленные / коммерческие / жилые здания и долгосрочное хранение энергии для сети в реверсивных системах.

Топливные элементы обладают рядом преимуществ по сравнению с традиционными технологиями сжигания, которые в настоящее время используются на многих электростанциях и транспортных средствах. Топливные элементы могут работать с более высокой эффективностью, чем двигатели внутреннего сгорания, и могут преобразовывать химическую энергию топлива непосредственно в электрическую энергию с эффективностью, превышающей 60%.Топливные элементы имеют более низкие или нулевые выбросы по сравнению с двигателями внутреннего сгорания. Водородные топливные элементы выделяют только воду, решая критические проблемы климата, поскольку нет выбросов углекислого газа. Также отсутствуют загрязнители воздуха, которые создают смог и вызывают проблемы со здоровьем во время работы. Топливные элементы работают бесшумно, поскольку в них мало движущихся частей.

Как работают топливные элементы

Топливные элементы работают как батареи, но они не разряжаются и не нуждаются в подзарядке. Пока есть топливо, они производят электроэнергию и тепло.Топливный элемент состоит из двух электродов — отрицательного электрода (или анода) и положительного электрода (или катода), расположенных вокруг электролита. На анод подается топливо, например водород, а на катод — воздух. В водородном топливном элементе катализатор на аноде разделяет молекулы водорода на протоны и электроны, которые идут к катоду разными путями. Электроны проходят через внешнюю цепь, создавая электрический ток. Протоны мигрируют через электролит к катоду, где они соединяются с кислородом и электронами, образуя воду и тепло.Узнать больше о:

Посмотрите анимацию топливных элементов Управления по технологиям производства водорода и топливных элементов, чтобы увидеть, как работает топливный элемент.

Цели исследований и разработок

Министерство энергетики США (DOE) тесно сотрудничает со своими национальными лабораториями, университетами и отраслевыми партнерами для преодоления критических технических препятствий на пути разработки топливных элементов. Стоимость, производительность и долговечность по-прежнему являются ключевыми проблемами в отрасли топливных элементов. Просмотрите ссылки по теме, которые предоставляют подробную информацию о деятельности по топливным элементам, финансируемой Министерством энергетики.

  • Стоимость —Исследования, разработка и демонстрация (НИОКР) сосредоточены на разработке недорогих батарей топливных элементов и баланса компонентов установки (BOP), а также передовых подходов к крупносерийному производству для снижения общей стоимости системы. Платина представляет собой один из самых дорогостоящих компонентов топливного элемента с мембраной из полимерного электролита, работающего на прямом водороде, поэтому особое внимание уделяется подходам, которые повысят активность и использование, а также уменьшат содержание нынешних катализаторов из металлов платиновой группы (МПГ) и сплавов МПГ, поскольку а также подходы к использованию катализаторов без МПГ для долгосрочного применения.
  • Производительность — Для повышения эффективности и производительности топливных элементов отдел НИОКР уделяет особое внимание инновационным материалам и стратегиям интеграции. Усилия включают разработку ионообменных мембранных электролитов с повышенной эффективностью и долговечностью при меньших затратах; улучшение мембранных электродных сборок (МЭБ) с высокой удельной мощностью за счет интеграции современных компонентов МЭБ; моделирование для понимания конструкции системы и условий эксплуатации; и разработка стеков с высокой эффективностью при номинальной мощности и высокопроизводительных компонентов противовыбросового превентора, таких как компоненты системы управления воздухом с низкими паразитными потерями.
  • Долговечность — Применения топливных элементов обычно требуют надлежащей работы для поддержания в течение длительного периода времени. Министерство энергетики поставило конечные цели по сроку службы топливных элементов в реальных условиях эксплуатации: 8 000 часов для легковых автомобилей, 30 000 часов для тяжелых грузовиков и 80 000 часов для распределенных энергосистем. В наиболее требовательных приложениях надежность и устойчивость системы требуются в динамических и суровых условиях эксплуатации. Реалистичные рабочие условия включают запуск и останов, замерзание и оттаивание, примеси в топливе и воздухе, а также влажность и циклы динамической нагрузки, которые приводят к нагрузкам на химическую и механическую стабильность материалов и компонентов системы топливных элементов.НИОКР сосредоточены на выявлении и понимании механизмов деградации топливных элементов, а также на разработке материалов и стратегий для смягчения их последствий.

Технические мишени

Загрузите раздел «Топливные элементы» Многолетнего плана исследований, разработок и демонстраций Управления технологий водородных и топливных элементов для получения полной информации о технических задачах. Основное обновление этого документа находится в стадии разработки.

Повышение детонационной стойкости двигателя за счет оптимизации водяной рубашки

Образец цитирования: Shih, S., Итано, Э., Синь, Дж., Кавамото, М. и др., «Повышение детонационной стойкости двигателя за счет оптимизации водяной рубашки», Технический документ SAE 2003-01-3259, 2003, https://doi.org/10.4271 / 2003-01-3259.
Загрузить Citation

Автор (ы): Стивен Ши, Эдвин Итано, Дзюн Синь, Мичио Кавамото, Ёсио Маэда

Филиал: Honda R&D Americas, Inc., Honda R&D Co., Ltd.

Страниц: 11

Событие: Конференция и выставка SAE Powertrain & Fluid Systems

ISSN: 0148-7191

e-ISSN: 2688-3627

Также в: Экспериментальное исследование двигателей с воспламенением от сжатия и искровым зажиганием-SP-1804, SAE 2003 Transactions Journal of Fuels and Lubricants-V112-4

Устройства отключения двигателя / силовой установки

В этом разделе представлена ​​информация о выключателях двигателя и безопасности гребного винта как для яхтсменов, так и для производителей.

1 апреля 2021 года вступает в силу новый федеральный закон, который требует от оператора лодки с установленным выключателем двигателя (ECOS) использовать связь ECOS. Связь обычно представляет собой спиральный шнур с эластичным шнуром, пристегиваемый к человеку оператора, персональному плавучему устройству (PFD) или одежде, а другой конец прикреплен к выключателю, но на рынке существует множество вариантов, включая электронные беспроводные устройства. Закон применяется ко всем «судоходным водам США».

Когда оператор надевает рычаг на ходу, двигатель отключается, если оператор отделен от рабочей зоны, что может произойти, если оператор катапультируется с судна или падает внутри судна.Выключение двигателя необходимо по соображениям безопасности. Если оператора катапультируют с судна, отключение может помешать оператору ударить вращающийся гребной винт судна и может помочь оператору безопасно вернуться на дрейфующее судно.

Закон применяется к «Крытым прогулочным судам», что означает любую моторную лодку мощностью 3 или более лошадиных сил, длина которой менее 26 футов, и вступает в силу 1 апреля 2021 года.

Требования к оператору: физическое лицо, управляющее крытым прогулочное судно должно использовать рычаг выключателя двигателя при движении на плоскости или на скорости выше водоизмещения.

Более ранний закон, принятый конгрессом в 2018 году, требовал от производителей устанавливать аварийный выключатель двигателя (ECOS). Закон был принят 4 декабря 2018 года и вступил в силу через год. Несмотря на то, что теперь это закон, большинство производителей лодок в США добровольно устанавливают ECOS на свои лодки на протяжении десятилетий.

Термины «выключатель двигателя» (ECOS) и «устройства отключения двигателя / силовой установки» взаимозаменяемы для обозначения системы, которая отключает пропульсивный двигатель, когда оператор неожиданно смещается с судна.

Для получения дополнительной информации о новом законе, который вступает в силу 1 апреля 2021 года, щелкните здесь, чтобы посетить раздел часто задаваемых вопросов ECOS

Зачем носить звено выключателя двигателя?

Типичный трехлопастной винт, работающий при 3200 об / мин, может нанести 160 ударов за одну секунду, поэтому очень важно, чтобы вы знали, что происходит вокруг вас. Имейте в виду:

  • Люди в воде могут быть не видны из-за руля
  • Счет для пассажиров перед запуском двигателя
  • Информировать пассажиров об опасной для винта зоне
  • Будьте начеку в густонаселенных районах и вблизи зон плавания
  • Соблюдайте особые меры предосторожности при использовании буксируемых водных видов спорта
  • Никогда не разрешайте кататься на носу, планшире, транце, спинках сидений или в других местах, где пассажиры могут упасть за борт
  • За детьми всегда следует внимательно следить — падение за борт занимает всего секунду
  • Если вы хотите защитить свой дом от детей, подумайте о защите вашей лодки от детей
  • Установить правила использования плавательной платформы, трапов и сидений
  • Если кто-то упадет за борт, ОСТАНОВИТЕ лодку; после очистки начать процедуры восстановления
  • Предупреждение. Никогда не переключайте лодку задним ходом, чтобы поднять кого-нибудь из воды, всегда кружите вперед, держа человека в воде на виду для водителя лодки.

Выключатель двигателя — FAQ

Список часто задаваемых вопросов о выключателях двигателя.

Протокол испытаний защиты гребного винта


Управление вспомогательной службы береговой охраны и безопасности судоходства США объявило о выпуске отчета о процедуре испытаний гребных винтов, разработанного для береговой охраны под эгидой Американского совета по лодкам и яхтам. Эта процедура предназначена для использования разработчиками устройств защиты воздушного винта и независимыми сторонними организациями, занимающимися тестированием, для последовательного и повторяемого тестирования продуктов защиты воздушного винта.

Безопасность пропеллера


Посмотреть БЕРЕГИСЬ Гребные винты … Скрытая опасность.
Также доступно на испанском языке


Новый двигатель внутреннего сгорания улавливает углекислый газ, устраняет оксиды азота.

Хотя правительства ужесточают стандарты выбросов, грузовики, поезда и корабли никуда не денутся.Они играют жизненно важную роль в цепочке поставок.

Признавая это, исследователи из Испанского политехнического университета Валенсии (VPU) разработали двигатель внутреннего сгорания, который не выделяет вредных газов или углекислого газа. Пока что двигатель кислородного сжигания также является высокоэффективным и соответствует будущим нормативам Европейского Союза по выбросам.

Двигатель появится в нужное время, поскольку правила строже, чем когда-либо.

В рамках Парижского соглашения Европейский союз стремится к 2040 году стать климатически нейтральным, исключив выбросы парниковых газов.В Соединенных Штатах также наблюдается стремление к нулевым выбросам. В августе Совет по воздушным ресурсам Калифорнии и основные автопроизводители заключили соглашение о сокращении выбросов от транспортных средств в штате. В соглашение с автопроизводителями входят Ford Motor Co, Volkswagen, Honda и BMW.

Из-за своего размера двигатель VPU может использоваться только для больших транспортных средств, используемых для перевозки грузов, в основном дизельных тягачей-прицепов, кораблей или поездов. Разработчики также считают, что могут быть приложения для самолетов и стационарных силовых установок, сказал Франсиско Хосе Арнау Мартинес, доцент университета и член команды, разрабатывающей двигатель кислородного сгорания.

Выбор редакции: Инфографика: В поисках улавливаемого углерода

Разработчики двигателя сравнивают его с двигателями электромобилей из-за его чистого сгорания. Они утверждают, что он может работать автономно и не будет выделять парниковые газы, в том числе углекислый газ и оксид азота, два из самых больших вкладчиков смога и изменения климата. Выхлоп — это просто водяной пар.

«Наша технология сочетает в себе лучшее от обоих типов двигателей, электрических и внутреннего сгорания», — сказал Луис Мигель Гарсия-Куэвас Гонсалес, исследователь из CMT-Thermal Motors, исследовательского центра VPU в Валенсии.Он и его коллеги сейчас создают прототипы двигателя.

Поскольку двигатель может работать на ископаемом топливе, биотопливе или синтетическом топливе, он не потребует кардинальных изменений в способе подачи топлива », — сказал Мартинес.

Многие компоненты недавно разработанного исследователем двигателя такие же, как и в традиционных двигателях внутреннего сгорания, включая турбокомпрессоры, охладители и клапаны. По словам Мартинеса, ключом к новой технологии является модуль керамической мембраны со смешанной ионно-электронной проводимостью (MIEC).

Конструкция двигателя ВПУ состоит из двух сосудов, между которыми расположена мембрана в качестве фильтра. «Внутри автомобиля у нас есть один бак для топлива, а другой — для углекислого газа, образующегося при сжигании топлива», — сказал Гарсиа-Куэвас. Углекислый газ отфильтровывается, конденсируется и хранится в одном из резервуаров.

«Мы могли извлечь выгоду из чистого высококачественного углекислого газа», — сказал Гарсиа-Куэвас. «Его можно было продать на СТО или для промышленного использования.”

Разделение происходит, когда ионы кислорода диффундируют через кристаллическую керамику при высокой температуре. По словам Мартинеса, это связано с разницей парциального давления кислорода на мембране.

Выбор читателя: Energy Blog: Обмен одного кризиса на другой

Другими словами, MIEC отделяет кислород от азота и других компонентов воздуха перед тем, как ввести его в цилиндры, создавая чистый газ сгорания. По словам Мартинеса, кислород сжигается, а технология улавливает и превращает в жидкость углекислый газ, производимый двигателем.Удаление азота перед сжиганием предотвращает образование оксида азота.

Предпочтительные рабочие температуры находятся между 1700 и 1800 градусами по Фаренгейту с высоким перепадом давления между исходным материалом и пермеатом при соотношении давлений от четырех до шести.

«С точки зрения архитектуры двигателя основным отличием является наличие мембраны MIEC», — сказал Мартинес. «Остальные используемые элементы, как правило, можно найти в традиционных двигателях.Кроме того, значительно снижается потребность в использовании устройств для последующей обработки. С эксплуатационной точки зрения разница только в выхлопных газах. Этот газ не содержит оксидов азота и состоит в основном из водяного пара и CO 2 . В случае улавливания СО2 в атмосферу попадает только вода ».

Больше для вас: Energy Blog: Time Is Energy

После того, как прототип будет построен, он будет испытан на испытательном стенде двигателя, чтобы продемонстрировать его производительность в различных рабочих точках.

После того, как они усовершенствовали большие двигатели, исследователи полагают, что они могут внести изменения, чтобы их можно было использовать в автомобилях.

«В случае небольших транспортных средств это также может быть применено путем изолирования только части углекислого газа в выхлопных газах», — сказал Франсиско Хосе Арнау, научный сотрудник CMT-Thermal Motors.

Представьте, что вы оказались в тихоходном транспортном потоке за тягачом с прицепом. А теперь представьте это без запаха дизельного выхлопа, пропитанного вашей машиной.Это то, к чему стремятся эти исследователи: мир, свободный от дизельного дыма.

Жан Тилмани (Jean Thilmany) — технический писатель из Сент-Пол, Миннесота.

Защита двигателя — Engineer-Educators.com

В дизельном двигателе предусмотрены системы защиты, предупреждающие операторов о ненормальных условиях и предотвращающие саморазрушение двигателя.

Устройство превышения скорости — Поскольку дизель не имеет автоматического ограничения скорости, отказ в регуляторе, системе впрыска или внезапная потеря нагрузки могут привести к превышению скорости дизеля.Состояние превышения скорости чрезвычайно опасно, потому что отказ двигателя обычно является катастрофическим и может привести к его разлету.
Устройство превышения скорости, обычно это какой-либо тип механического грузика, будет отключать подачу топлива в двигатель и подавать сигнал тревоги при определенных заданных оборотах. Обычно это достигается путем отключения регулятора от подачи масла, заставляя его перемещаться в положение без топлива, или он может блокировать регулятор и напрямую переводить топливную рейку в положение без топлива.

Водяная рубашка — Двигатели с водяным охлаждением могут перегреваться, если система охлаждающей воды не может отводить отработанное тепло.Удаление отработанного тепла предотвращает заклинивание двигателя из-за чрезмерного расширения компонентов в условиях высокой температуры. Рубашка охлаждающей воды обычно находится там, где расположен датчик системы охлаждающей воды.
Датчики температуры водяной рубашки обеспечивают раннее предупреждение о ненормальной температуре двигателя, обычно это только функция сигнализации. Уставка устанавливается таким образом, что при своевременном исправлении состояния можно избежать значительного повреждения двигателя. Но продолжение работы двигателя при аварийной температуре или более высоких температурах приведет к повреждению двигателя.

Температура выхлопных газов — В дизельном двигателе температура выхлопных газов очень важна и может предоставить огромное количество информации о работе двигателя. Высокая температура выхлопных газов может указывать на перегрузку двигателя или возможную низкую производительность из-за недостаточной продувки (охлаждающего эффекта) в двигателе. Продолжительная работа с высокими температурами выхлопных газов может привести к повреждению выпускных клапанов, поршня и цилиндров. Температура выхлопных газов обычно обеспечивает только функцию сигнализации.

Низкое давление смазочного масла — Низкое давление масла или потеря давления масла могут быстро вывести из строя двигатель. Следовательно, большинство двигателей среднего и большого размера останавливаются при понижении или падении давления масла. Падение давления масла может привести к заклиниванию двигателя из-за отсутствия смазки. Двигатели с механико-гидравлическими регуляторами также остановятся из-за отсутствия масла в регуляторе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *