ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Компрессия и степень сжатия двигателя автомобиля

Кто изучает устройство автомобиля, встречает непонятные термины из области работы двигателя. Расскажем что такое компрессия и степень сжатия мотора, их определения. Рассмотрим работу мотора с изменяемой степенью сжатия.

Что такое степень сжатия

Это отношение полного объема цилиндра к объему камеры сгорания. На бензиновом моторе, в зависимости от конкретной задачи, степень сжатия может серьезно варьироваться, достигая величин в 8 до 12. На дизельных двигателях из-за их конструктивных особенностей она намного больше и оставляет от 14 до 18 единиц. Для бензиновых двигателей, чем выше степень сжатия — тем выше удельная мощность. Но если её сильно увеличить, то может снизится ресурс и возрастает риск проблем с мотором при заправке некачественным топливом.

Что такое компрессия двигателя

Это максимальное давление воздуха в камере сгорания в конце такта сжатия.

Компрессия это давление в цилиндре. Поэтому она зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.

е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии.

При снижении уровня компрессии необходимо выяснить причину. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 грамм моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршневых кольцах, если остались на прежнем уровне — в клапанах.

Двигатели с изменяемой степенью сжатия

Японские производители улучшили эффективность традиционного двигателя за счет поднятия степени сжатия до 14:1, что ранее было просто невозможно. Они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это возможно? Один из недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия.
Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет процентов на шесть. Но чем сильнее сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец.

Не зря степень сжатия бензиновых агрегатов редко поднимается выше 11:1.

На самом деле все дело в снижении средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, они занялись системой выпуска.


Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия.
Как уверяют, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding. Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — это дает эффект по части снижения расхода бензина и выбросов СО2 по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

Почему для двигателей так важна степень сжатия, и на что она влияет.

 

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок. 

 

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители. 

 

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

 

Двигатель Toyota «Dynamic Force»

 

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом.

К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран. 

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей. 

 

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение. 

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).  

 

Теперь представьте цилиндр двигателя.

Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

 

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя.

Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах). 

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия. 

 

 

А теперь математический пример соотношения степени сжатия в ДВС. 

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1. 

 

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений. 

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

 

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

 

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень. 

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

 

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

 

 

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

 

Более высокое сжатие в двигателе означает больше мощности, но больше давления

 

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород). 

На приведенном выше графике кривая 1-2 показывает ход сжатия. 

Линия 2-3 показывает сгорание топлива. 

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.  

 

Если описать все более техническим языком, то эту диаграмму следует понимать так:

 

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке. 

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива. 

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения). 

 

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.  

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла. 

 

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия. 

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.  

 

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность

 

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия. 

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

 

 

Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql). 

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

 

 Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

 

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше. 

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

 

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы. 

 

Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1. 

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности. 

 

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

 

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине. 

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

 

Какой бензин лучше?

 

Почему премиум бензин является пустой тратой денег для большинства автомобилей

 

Сколько энергии в различных видах топлива

 

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля. 

 

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине. 

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя. 

 

Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

 

 

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

 

Существуют ли ограничения по увеличению степени сжатия в двигателях

 

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

 

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире.  

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур). 

 

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия. 

 

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях. 

Степень сжатия двигателя

Категория: Полезная информация.

Степенью сжатия называется одна из основных характеристик двигателя внутреннего сгорания (ДВС). От нее напрямую зависит мощность мотора, топливная экономичность, а также динамика автомобиля.

В статье:

Воздушно-топливная смесь поступает в цилиндр, когда соответствующий поршень находится в самом нижнем положении (нижняя мертвая точка). В это время она занимает максимально возможный объем, который уменьшается по мере движения поршня в верхнем направлении, и становится минимальным после достижения им крайней верхней позиции. В этот момент объем цилиндра ограничен камерой сгорания, и находящаяся в ней смесь воспламеняется. Создавшееся мощное давление оказывает воздействие на поршень, отталкивая его в нижнем направлении и, тем самым, заставляя вращаться коленвал, на котором он установлен.

Степенью сжатия называется показатель, который характеризует, во сколько раз уменьшается объем воздушно-топливной смеси при движении поршня от крайнего нижнего к крайнему верхнему положению. Говоря более простым языком, это отношение максимального объема цилиндра к объему камеры сгорания.

Чем сильнее сжимается рабочая смесь, тем более высокое давление образуется в камере сгорания. Следовательно, поршень получает значительно больше энергии, которая естественным образом переходит на коленвал.

Вывод очевиден: чем выше степень сжатия — тем мощнее мотор. Но данный показатель не может увеличиваться бесконечно: при создании чрезмерно высокого давления может происходить крайне нежелательное явление — преждевременное воспламенение, называемое детонацией. Из-за него давление на поршень начинает создаваться еще до того, как он достигнет верхней позиции. Это становится причиной:

  • мощных и резких ударных нагрузок;
  • постоянного перегрева даже после непродолжительной работы;
  • разрушения поршневых пальцев и колец;
  • ощутимой потери динамики и мощности.

Поэтому степень сжатия должна определяться с учетом других рабочих характеристик и конструктивных особенностей конкретного двигателя.

Возможность увеличения степени сжатия без риска преждевременной детонации предусмотрена во многих двигателях. Это делается через уменьшение объема камеры сгорания (чем он меньше, тем сильнее будет сжиматься находящаяся в ней рабочая смесь). Существует три способа:

  • Расточка цилиндров. При этом увеличивается объем двигателя. Поскольку объем камеры сгорания не меняется, это повышает степень сжатия. Однако расточка цилиндров подразумевает обязательную замену поршней, что обусловлено увеличением диаметра.
  • Фрезерная обработка нижней части ГБЦ, в результате чего она укорачивается. Объем двигателя остается прежним, а у камеры сгорания — уменьшается, соответственно — повышается степень сжатия.
  • Установка более тонкой прокладки ГБЦ по сравнению с имеющейся. Это также приведет к уменьшению объема камеры сгорания при неизменном объеме двигателя.

Подробнее о том, как увеличить мощность дизельного двигателя читайте в нашем материале.

В двух последних случаях следует учитывать вероятность столкновения поршней с клапанами. Поэтому перед модернизацией двигателя следует провести точные расчеты. Одним из вариантов решения проблемы является установка поршней, имеющих увеличенные выемки под клапана (они предназначены, в том числе, для подобных операций).

Процедура приводит к снижению мощности двигателя, но позволяет перевести двигатель на более дешевый низкооктановый бензин. Чтобы уменьшить степень сжатия, следует увеличить объем камеры сгорания. Это делается через повышение высоты прокладки под головкой блока цилиндров. Алгоритм прост: между двумя стандартными прокладками подкладывается третья, сделанная из алюминия.

Технология была широко распространена в советские времена, когда владельцы карбюраторных «Жигулей» и «Москвичей» массово переводили свои машины с 92-го на более дешевый 76-й бензин. На современных автомобилях, оснащенных электронными системами управления двигателем, проводить данную процедуру крайне не рекомендуется: с экономической точки зрения это бессмысленно, а с технической — может привести к серьезным неполадкам.

Иногда проще купить новый элемент двигателя, чем производить ремонт. Найти нужные запчасти вы можете у нас!

Посмотреть запчасти в наличии

Метки: Дизель, сжатие двигателя

Что такое степень сжатия

Степень сжатия является величиной, которая характерна для двигателей внутреннего сгорания. Степень сжатия двигателя является отношением полного объема цилиндра к объему камеры сгорания. Другими словами, это отношение объема пространства над поршнем во время его нахождения в НМТ (нижняя мертвая точка) к объему такого же пространства над поршнем при его нахождении в ВМТ (верхняя мертвая точка).

Стоит отметить, что понятие степени сжатия двигателя зачастую ошибочно принимается за показатель компрессии.  Компрессия представляет собой максимальный уровень давления в цилиндре, которое создается в результате движения поршня из НМТ в ВМТ. Показатель компрессии принято измерять в атмосферах, тогда как степень сжатия выражается математически в виде определенного отношения. В качестве примера можно указать степень сжатия 11:1.

На самом деле показатель степени сжатия условно является разницей давлений в камере сгорания между моментом подачи  топливно-воздушной смеси (или только дизтоплива для дизельных ДВС) в цилиндр и тем моментом, когда происходит воспламенение топливного заряда. Различные двигатели могут иметь разный параметр  степени сжатия, что зависит от типа мотора и его конструктивных особенностей.  Принято выделять низкую или высокую степень сжатия.

Содержание статьи

Увеличение степени сжатия: плюсы и минусы

Любой ДВС в основе имеет принцип воспламенения смеси воздуха и распыленного топлива в камере сгорания. Результатом сгорания смеси становится тепловое расширение газов, которые толкают поршень. Такая энергия толчка от поршня передается на коленчатый вал двигателя посредством работы КШМ, что означает преобразование сгорания топлива в полезную механическую работу.

Чем большим оказывается показатель степени сжатия двигателя, тем сильнее итоговое давление газов на поршень. Увеличение давления будет означать, что за один такт силовая установка способна выполнить больше механической работы. Если проще, то мощность и отдача от двигателей с большей степенью сжатия выше сравнительно с аналогами, которые имеют меньший показатель. Также необходимо добавить, что количество самого подаваемого топлива в моторах с большей степенью сжатия не увеличивается, при этом такой двигатель имеет больший КПД. Бензиновые двигатели могут демонстрировать показатель степени сжатия от 8 до 12. Что касается дизельных моторов и особенностей воспламенения смеси в таких агрегатах, степень сжатия дизеля выше и находится в рамках от 14 до 18 единиц.

При всех положительных аспектах сильно увеличить степень сжатия не представляется возможным, так как значительное уменьшение объема камеры сгорания приводит к детонации топлива. Детонация в результате увеличения степени сжатия свойственна бензиновым ДВС. Дизельный двигатель, в котором воздух подается и сжимается отдельно, также может детонировать после впрыска дизтоплива. Детонация в дизеле связана с неисправностями топливной аппаратуры, неправильно установленным моментом впрыска, закоксовкой и сильным нагаром в цилиндрах двигателя и т.п.

Большинство современных моторов легковых автомобилей имеют высокую степень сжатия, так как двигатель становится мощнее и экономичнее. Топливно-воздушная смесь в таких ДВС сгорает более полноценно и равномерно, позволяя улучшить ряд характеристик двигателя во всем диапазоне оборотов. Главной особенностью моторов с высокой степенью сжатия является повышенная требовательность к качеству топлива. Для таких силовых агрегатов обязательно использование дорогих марок бензина с высоким октановым числом и солярки с необходимым цетановым числом. Большинство современных бензиновых ДВС предполагают использование топлива с октановым числом не ниже АИ-95 или АИ-98.

Доработка двигателя: изменение степени сжатия

Среди распространенных решений для форсирования двигателя или езды на более дешевом бензине является самостоятельное изменение объема камеры сгорания. Далее мы рассмотрим, как увеличить или уменьшить степень сжатия своими руками.

Если вы планируете форсировать двигатель, тогда степень сжатия нужно увеличить. Следует помнить, что увеличение закономерно приводит к тому, что детонационный порог будет снижен. Слишком высокая степень сжатия для двигателя будет означать, что устранить детонацию при помощи высокооктанового бензина, настройки УОЗ и других манипуляций не получится.

Стоит добавить, что более ощутимый прирост мощности способен обеспечить такой двигатель, который изначально был рассчитан на меньшую степень сжатия. Другими словами, больше мощности после тюнинга выдаст агрегат, штатно имеющий показатель 9:1 и доработанный до 10:1 сравнительно с мотором, который в стоке имел 12:1 и был форсирован путем увеличения показателя степени сжатия до 13:1.

Для прибавки мощности существуют такие способы:

  • доработка ГБЦ и/или установка тонкой прокладки ГБЦ;
  • расточка цилиндров и общее увеличение объема ДВС;

Под тюнингом головки блока в этом случае стоит понимать фрезеровку нижней части, которая стыкуется с блоком цилиндров. ГБЦ таким образом укорачивается, что и приводит к уменьшению камеры сгорания двигателя, а также увеличению степени сжатия. Аналогичную задачу преследует и установка более тонкой прокладки ГБЦ.

Необходимо учитывать, что при таком тюнинге существует риск встречи клапанов с поршнем. Перед началом работ необходимы детальные расчеты. В ряде случаев требуется замена поршней на такие, которые имеют увеличенные выемки под клапан. Фазы газораспределения также сбиваются, что потребует их последующей настройки.

Что касается расточки блока цилиндров, данный способ также требует замены поршней. Результатом становится увеличение рабочего объема ДВС и более высокая степень сжатия, так как объем камеры сгорания по отношению к увеличенному объему цилиндра не меняется.

Дефорсирование ДВС

Вполне очевидно, что после понижения степени сжатия двигатель будет дефорсирован. Делается такая доработка в том случае, если мощность двигателя отодвигается на второй план. Уменьшение степени сжатия позволяет эксплуатировать мотор на низкооктановом бензине без риска появления детонации, что и обеспечивает определенную экономию на разнице стоимости горючего.

Необходимо добавить, что подобное решение зачастую применяется на старых карбюраторных автомобилях. Что касается инжекторных авто с электронным блоком управления, в этом случае данный способ доработки настоятельно не рекомендуется.

Для уменьшения степени сжатия двигателя нужно реализовать увеличение высоты прокладки под ГБЦ. Для этого используются две обычные прокладки, между которыми укладывается третья, изготовленная из алюминия. Результатом станет увеличение высоты ГБЦ и объема камеры сгорания, что позволит в итоге перейти на более дешевый бензин.

Читайте также

Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Разбираемся, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней.

Компоненты / Новости

Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23.

Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии.

При малых нагрузках, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально.

Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга. 

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Степень сжатия

04.13
09

Устройство АКПП

На сайте выложены схемы внутреннего устройства АКПП Toyota

03.12
06

Обновлен прайс-лист.

Свежий прайс можно взять здесь — price_2012_07_03

12.11
15

Появился новый раздел — «Доска объявлений».

Теперь, если у Вас есть автозапчасти, вы сможете разместить объявление о продаже на нашем сайте.

 

01.11
15

Совет № 132

Гидроусилитель будет жить дольше ,если …

12.10
02

Особенности запуска двигателя в зимний период

Добавлена новая статья в разделе «Личный опыт»

Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.

Эффективность

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.


Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).


Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.


Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.


Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.

 

Пример

Воспользуемся воображаемым примером для уяснения деталей.


Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.


Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце [Четырёхтактный двигатель|такта впуска]] и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

 

Обобщение

Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.


Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

 

Для общего развития

 

===============================

===============================

 

 

 

 

===============================

 

Наши посетители:

неактивные точки — прошлые визиты.

активные точки — сейчас на сайте.

=============================

 

Наши цены

 

 

 

=============================

=============================

Голая правда о технологии Mazda SkyActive :: Autonews

Компания Мазда не так давно действительно сделала бензиновый атмосферный двигатель с рекордной степенью сжатия — 14:1, достигнутой в том числе и за счет «улучшения вентиляции цилиндров» — оригинальной доработки системы выпуска. Снижение «средней температуры цикла» позволило вроде бы бороться и даже победить «неизбежную детонацию».

Степени сжатия практически всех современных атмосферных моторов (которых уже скоро и вовсе не останется) достигли критических величин в 10,5-11* единиц еще лет 20 назад и остаются практически неизменны с того момента (хороший пример —  моторы BMW M50 и BMW S50). Рекордные же показатели, находящиеся в общем-то на грани теоретической детонации, чаще всего демонстрируют немногочисленные «докрученные» моторы спортивных автомобилей. Так или иначе, в мировом двигателестроении до недавнего времени существовали единицы моторов с СЖ около 12.

Зачем же, почему и чем именно важен этот показатель? Зачем стране такие рекорды?

*Здесь и далее говорим только про атмосферные моторы.

Важность степени сжатия можно оценить рассмотрев прямой показатель эффективности двигателя — крутящий момент приведенный к объему. Понятно, что на деле это может быть лишь точка, или же довольно узкий участок на моментной характеристике — нам важна лишь максимально достигнутая цифра. Около 20 лет назад, BMW одной из первых добилась соотношения 1 Нм на 10 кубиков рабочего объема. И прогресс в эффективности на этом фактически остановился. Компании начали больше заниматься экологией и интегральной характеристикой момента — работать с фазами газораспределения и их эффективностью. Фазовращателями  просто «раскатали» моментную характеристику влево и вправо. Про все это я уже говорил.

На момент 2012 года, не существует атмосферного гражданского мотора с характеристиками существенно превышающими «золотое» соотношение эффективности — 1 Нм на 10 куб.см. рабочего объема. Моторы получающие хотя бы на 7-10% больше — дожаты до предела — это привелегия спортивных двигателей Ferrari, Porsche, BMW Motorsport. Тут чаще всего или помудрили с фазами, или выставили критические углы зажигания ну и степень сжатия, разумеется, по верхней возможной границе сделали.

Массовый же потребитель в основном ориентируется на гонку лошадиных сил и фактически не замечает, что продают-то ему почти тот же самый мотор, если не хуже. Разумеется, он стал ЕВРО4, старт-стоп и чего-то там еще, но эффективность осталась такая же, если не ниже…

Лишние 10-20 лошадиных сил, по сравнению с предыдущей моделью, подняты заменой прошивки с сопутствующим добавлением оборотов. Также, возможно, конструкторы чуть поиграли с фазами — приподняли холостые — сдвинули всю характеристику вправо. По такому пути идут все производители: так или иначе, именно такова главная тенденция в ретроспективе развития мирового моторостроения за последние 20-30 лет.

Вернемся к понятию «степень сжатия» и вспомним волговский «ЗМЗ-21», мотор американской технологии 50-х годов: СЖ 6,7:1, фактически — обычный распространенный в то время «американец» советского изготовления. Переваривал бензины от А-66 до А76 (современный — АИ-80). На нем был достигнут момент около 167 Нм при рабочем объеме около 2,44 л. BMW в 1991 году примерно с такого же объема двигателя M50B25 снимали привычные сейчас 250 Нм. Прогресс по степени сжатия — примерно полуторакратный. Прогресс по моменту… практически те же 1,5 раза! Линейная зависимость. Ну так давайте увеличим СЖ еще в 1,5 раза, примерно до 15 единиц и мы получим что-нибудь около 375 Нм?!

Ничего подобного: на самом деле, эффективность двигателя зависит от степени сжатия нелинейно. К 10-11 единицам теоретическая кривая эффективности входит в зону насыщения и к условным 12,5 единицам на графике наступает перегиб — дальнейший рост происходит крайне неохотно. Об этом же говорит и сама Мазда:

К чему я все это? Мазда обещает СЖ 14:1? Рекорд? Разберемся, по сравнению с чем?

Практически все современные моторы оснащены непосредственным вспрыском. Послойное смесеобразование, использование дополнительной «обычной» форсунки, оптимизация камеры сгорания — все это пути для понижения температуры смеси — снижения склонности к детонации. Один и тот же двигатель с СЖ 11-12 может быть более, или напротив — менее склонен к детонации, в зависимости от режима его питания.

Так что берем обычный современный двигатель, редактируем его в сторону снижения детонации и получаем 12:1 с допустимой эксплуатацией на АИ-95… И не детонирует. Думаю, с обязательным ограничением на 98-й, получим и беспроблемные 12,5:1 при использовании, повторюсь, совершенно доступных технологий. То есть, если и сравниваем, при прочих равных, то сравниваем не с мотором 80-х, а с мотором 2012 года — со всеми возможными современными ухищрениями. Если сравниваем «маздовские» 14:1, то примерно с 12:1, что сегодня вполне себе норма, как видите.

Одна из ключевых технологий при этом — непосредственный впрыск и оптимизация формы камеры сгорания.

Кроме того, стоит рассматривать каждый случай в отдельности — декларируемая цифра может несколько отличаться от реалий — идеально точно геометрию камеры сгорания редко кто высчитывает. Чаще всего, указанные производителем данные о степени сжатия довольно условны, отображают, так сказать, общую тенденцию, или «среднетехнологическое» значение. Компрессия двигателей M54B22 и M54B30, или же M50B20 и M50B25, например, отличается заметно больше, чем того стоит ожидать зная указанные степени сжатия этих моторов. В Сети хватает и практических расчетов для конкретного мотора… Реальные цифры могут варьироваться в довольно широком диапазоне. Разумеется, всему есть предел и двигатель с заявленной степенью сжатия 10:1 на деле вряд ли окажется дожатым до 12:1. Учитывая естественный технологический разброс и, например, возможный нагар в камере сгорания, вы никогда не сможете точно предсказать фактическую склонность двигателя к детонации на основе одной только паспортной степени сжатия.

К чему я все это пишу: даже указанная производителем степень сжатия требует фактической проверки. Самая простая из которых — точное измерение компрессии. И вот тут, при прочих равных, можно пытаться строить теорию склонности этого ДВС к детонации. Одна-две «лишних» атмосферы и стоит выбирать следующий сорт бензина…

Хорошо, представим, что «честные» 12:1 сопоставляются с технологическим совершенством — честными и рекордными 14:1. Сравнение, допустим, полностью корректное. Что нам дадут «рекордные» дополнительные 2 единицы? Хотя бы +10% к эффективности? Ничуть не бывало: перед нами, как видно, все те же 200-205 Нм которые показывают в паспортных данных на Skyactive-G. Кстати, почему, интересно, для канадского рынка указана степень сжатия 13:1? Дефорсировали мотор? Отнюдь: показатели момента и мощности те же самые. А теперь сюрприз. Что случилось с Mazda3 с таким же мотором? Нам говорят, что «охладительный» волшебный коллектор не поместился, там стоит обычный и заявленная степень сжатия уже не 14 и даже не 13…  12:1! Все характеристики прежние, заявленная разница в моменте — 3 Нм. Полагаю, даже одинаковые двигатели могут давать такой разброс на практике. Оставили бы все как есть — чем было бы оправдать отсутствие оригинального коллектора? Если эти 3 Нм действительно соответствуют разнице «технического» прорыва по сравнению с обычным двигателем с СЖ 12:1, то оно того стоит вообще? Ради чего городили весь этот огород? 3 Нм? Что-то около 1% на моментной характеристике?

Суровая действительно такова: двигатели MAZDA SKYACTIV-G в вариантах степеней сжатия 14:1, 13:1 и 12:1 фактически ничем друг от друга не отличаются. Да, это один и тот же мотор. Вот такой вот извращенный изощренный маркетинг. Mazda сделала совершенно обычный современный двигатель (ничем не лучше и не хуже аналогов) и завернула его в блестящую маркетинговую шелуху. Продавать же как-то надо…

P.S.Распространенный двигатель BMW N46B20 (в общем-то, аналогичный более раннему N42B20 аж 2001 года выпуска) при равном рабочем объеме, имеет примерно аналогичные характеристики эффективности, но при действительной степени сжатия… всего 10,5:1. Вот только рабочий момент у него доступен уже с 1200 оборотов! Двигатель Мазды «оживает» едва после 2000 об/мин… Почти 1000 оборотов — это пропасть. Делать надо было «момент», а не степень сжатия. Но момент сложнее «продать».

Подготовлено в сотрудничестве с bmwservice.livejournal.com

Вот что на самом деле означает «степень сжатия» и почему это имеет значение

Новый двигатель Toyota с высокой степенью сжатия «Dynamic Force». Графика: Toyota / Raphael Orlove

Вы слышали термин «степень сжатия» раньше, но задумывались ли вы, что именно он средства? Что ж, пора объяснить, что такое степень сжатия и почему каждый автопроизводитель сейчас одержим ею, как Святым Граалем.

Степень сжатия, надо признать, сложнее, чем кажется на первый взгляд. Не помогает то, что это один из тех терминов, которые вы слышите на автосалонах и в пресс-релизах без серьезных объяснений.Это одна из тех вещей, которые вы в большинстве своем пытаетесь понять, пытаясь произвести впечатление на артиста-трапеции, которого вы встретили в цирке на прошлых выходных.

Мы знаем, что высокая степень сжатия — это хорошо, а низкая — плохо. Мы знаем, что новый двигатель Mazda Skyactiv-X «Holy Grail» отличается высокой степенью сжатия, наряду с «дизельным убийцей» Infiniti и серией Toyota «Dynamic Force», которые рекламируют большую мощность при большей эффективности.

Мы живем в эпоху, когда инженеры не могут просто увеличить мощность двигателя, сделав его больше.Изменение степени сжатия двигателя становится обычным делом.

G / O Media может получить комиссию

(Кстати, если вы читаете это и фыркаете, потому что уже знаете, что такое степень сжатия, хорошо для вас! Не все остальные.)

What Defines Степень сжатия невероятно проста

Степень сжатия — это именно то, на что она похожа — степень, при которой вы сжимаете максимальный объем цилиндра в минимальный объем цилиндра. Это объем цилиндра, когда поршень полностью опущен по сравнению с полностью вверху.Написано и сказано в виде отношения. Например, для двигателя со степенью сжатия 9: 1 вы бы сказали, что это «девять к одному».

Скриншот: ВСЕ О ДВИГАТЕЛЯХ (YouTube)

А теперь представьте себе цилиндр в своей голове. Поршень движется вверх и вниз внутри этого цилиндра. Когда поршень находится в самой нижней точке, это называется нижней мертвой точкой. Вот где объем цилиндра наибольший. Когда поршень находится в самой высокой точке цилиндра, это называется верхней мертвой точкой, и именно здесь объем цилиндра наименьший.Из сравнения этих двух объемов и берется ваше соотношение.

Если вы такой же наглядный ученик, как я, вам понравится этот созданный мной GIF, показывающий, как работает четырехтактный двигатель. Видите, как поршень движется вверх во время такта сжатия? Это весь воздух и топливо сжимаются в цилиндре. Если двигатель имеет высокую степень сжатия, это означает, что данный объем воздуха и топлива в цилиндре сжимается в гораздо меньшее пространство, чем двигатель с более низкой степенью сжатия.

А теперь пример с простой математикой, мой любимый вид.

Представьте, что у вас есть двигатель, объем цилиндра и камеры сгорания которого составляет 10 куб. См, когда поршень находится в нижней мертвой точке. После того, как впускной клапан закрывается и поршень поднимается вверх во время такта сжатия, он сжимает топливно-воздушную смесь в объеме одного кубического сантиметра. Этот двигатель имеет степень сжатия 10: 1.

Вот и все! Это степень сжатия. Общий рабочий объем плюс сжатый объем (включая объем головки блока цилиндров и все, что находится выше, где поршень «движется») в только сжатый объем .

Почему лучше — это сложно

Но понимание , что такое степень сжатия , менее важно, чем понимание , почему нам это важно, или почему высокая степень сжатия является такой важной задачей.

Лучшее объяснение, которое я получил в этом, было от моего коллеги и инженера Дэвида Трейси, который затем обратился за помощью к другим инженерам и профессорам. Лучший ответ из них дал доктор Энди Рэндольф, технический директор ECR Engines. Он проводит исследования трансмиссии для NASCAR, и его объяснение предельно ясно:

С точки зрения непрофессионала, мощность двигателя генерируется, когда сгорание воздействует на поршень и толкает поршень вниз по цилиндру во время такта расширения.

Чем выше поршень находится в канале ствола в момент начала сгорания, тем большее усилие будет приложено.

По мере увеличения степени сжатия поршень перемещается выше в отверстии в верхней мертвой точке, следовательно, появляется дополнительная сила для хода расширения (дополнительная сила для того же количества топлива равняется более высокой эффективности).

Теперь мы на самом деле нужно больше понимать о , почему в дополнение к , как , а это означает, что нам придется рискнуть в области термодинамики.

Суть всего этого в том, что более высокая степень сжатия означает, что двигатель получает больше работы от того же количества топлива. Это хорошо для мощности, а также миль на галлон.

Чтобы объяснить, почему более высокая степень сжатия дает лучшую эффективность, мы не собираемся слишком углубляться в термодинамику, но, черт возьми, давайте просто окунем кончики пальцев ног. Это здорово и полезно для души.

Более высокое сжатие означает больше работы, но больше давления

На изображении выше показана диаграмма «давление-объем» для идеального и типичного бензинового двигателя.Он визуально показывает, что происходит в вашем двигателе, когда он сжигает бензин.

На диаграмме выше нижняя кривая 1-2 показывает ход сжатия.

Строка 2-3 показывает горение.

Верхняя кривая 3-4 показывает ход расширения.

А линия 4-1 показывает отвод тепла при открытии выпускного клапана.

Чтобы быть более техническим, на диаграмме кривая 1-2 показывает такт сжатия, в котором давление (ось y) возрастает, а объем (ось x) падает, когда поршень действительно воздействует на газ, сжимая его.Строка 2-3 показывает тепло, выделяющееся при сгорании, быстро увеличивая давление и температуру газа. Кривая 3-4 показывает увеличение объема и падение давления, когда газ действует на поршень во время такта расширения. Линия 4-1 показывает отвод тепла от газа в окружающую среду по мере того, как давление возвращается к окружающему при открытии выпускного клапана. Наконец, плоская линия 1-5 внизу представляет такт выпуска и возврат поршня в верхнюю мертвую точку в конце.

Область внутри этих 1-2-3-4 строк показывает, сколько работы проделано двигателем.Более высокая степень сжатия означает, что две вертикальные линии на графике будут перемещаться влево и вверх, оставляя больше области в пределах, чем при более низкой степени сжатия, и, таким образом, работа выполняется. Но, как вы можете видеть на этой диаграмме, вы столкнетесь с более высоким давлением. Иными словами, вы получите больше механической работы от двигателя с высокой степенью сжатия. Вы будете получать большее давление в цилиндре и на поршне из-за подводимого тепла от сгорания.

Более высокое сжатие также означает больший тепловой КПД.

Иллюстрация: MIT

Также важно отметить, что подвод тепла и тепловые потери во время цикла вашего двигателя связаны с КПД как функцией степени сжатия.Все это работает по двум идеям. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована либо в механическую работу, либо в отходящее тепло. Во-вторых, термический КПД — это просто выходная работа, деленная на погонную энергию. Итак, вы можете вывести взаимосвязь между термической эффективностью и степенью сжатия, как MIT, построенная на его веб-странице и показанная выше. Уравнение здесь (nu — термический КПД, r — степень сжатия, а гамма — свойство жидкости) :

Когда вы даете двигателю определенного рабочего объема более высокую степень сжатия, вы эффективно сдвигаете PV диаграмму вверх и влево, и увеличивают тепловложение (Qh на диаграмме) в большей степени, чем тепловые потери (Ql).Другими словами, вы превращаете больше входящей энергии в работу. Вот Джейсон Фенске из Engineering Explained , разбирающий взаимосвязь между степенью сжатия, теплопередачей и эффективностью:

В любом случае, дело в том, что термодинамика диктует, что термический КПД возрастает с увеличением степени сжатия, как вы можете видеть из этого графика и уравнения. над. А это означает больше лошадиных сил, лучшую экономию топлива, более тяжелые кошельки и более широкие улыбки. Управляйте любым вялым, хрипящим, всасывающим газ, старым американским V8 с низкой степенью сжатия, и вы поймете, о чем я.

Степень сжатия также делает такие двигатели, как двигатель Mazda Skyactiv-G, такими эффективными. Mazda, первая из серии новых двигателей с высоким и переменным сжатием от Mazda, Nissan / Infiniti и Toyota, на данный момент имеет самую высокую степень сжатия в отрасли — 14: 1, поэтому она может справляться с высоким расходом топлива. показатели экономичности и мощности даже без турбонагнетателя.

Почему более высокое сжатие означает более высокое октановое число

Почему не все просто используют высокие степени сжатия? Что ж, высокая степень сжатия — вот почему многим двигателям требуется топливо премиум-класса или высокооктановый бензин.Октановое число, как указывается в статье How Stuff Works , является мерой способности бензина сопротивляться детонации.

По сравнению с газом с высоким октановым числом бензин с низким октановым числом более склонен к самовоспламенению из-за высоких температур и давления наддува. По сути, вам нужен газ, который воспламеняется, когда вы этого хотите, а не тот, который воспламеняется, когда вы, , этого не хотите, . Такое неконтролируемое горение называется детонацией.Стук — это плохо; он снижает крутящий момент и может нанести непоправимый ущерб вашему двигателю.

Высокая степень сжатия увеличивает риск детонации, поэтому в двигателях с очень высокой степенью сжатия используется высокооктановый гоночный газ или (что сейчас чаще) E85. При сжатии газы склонны нагреваться, поэтому повышенная плотность тепла может привести к преждевременному сгоранию топлива до того, как свеча зажигания воспламенит его. Повторяю: это плохо.

Mazda пришлось проделать большую работу с поршнем и конструкцией выхлопной системы, чтобы уменьшить детонацию в двигателе 14: 1, работающем на газовом насосе.Поршни в двигателе Skyactiv-X, например, имеют полость посередине, чтобы Mazda могла выстрелить потоком богатого топлива вокруг свечи зажигания в обедненной смеси, и, да, есть причина, по которой это не было Технология не проста в разработке.

Что еще интересно, так это то, что вы не можете просто сделать двигатель с такой высокой степенью сжатия, как вы хотите. Я обратился к Джону Хойенге, владельцу магазина производительности и ралли Nameless Performance, чтобы поговорить о рисках и преимуществах высокой компрессии.

Джон строит раллийный автомобиль Nissan 240SX, на который он меняет четырехцилиндровый SR20VE, который в настоящее время развивает около 250 лошадиных сил на колесах всего из 2,0 литров. Как ни странно, это без турбо. Все, что Джон должен поблагодарить, — это очень высокая степень сжатия 14,5: 1. «Сжатие выполняет больше работы, — пояснил он, — поэтому тем больше мощности [двигатель] будет производить без наддува».

При этом, поскольку это гоночный двигатель, он использует гоночный бензин или E85 с очень высоким октановым числом.Джон сказал, что при степени сжатия выше 14,5: 1 возникает риск самовоспламенения, а также может вылететь шток или вращаться подшипник. Это то, что небрежно называют «взрывом».

Есть предел тому, насколько высоко вы можете подняться

Я спросил, почему мы не видим, что люди не бегают с двигателями, которые имеют значительно более высокую степень сжатия, чем все, что мы видим сегодня. Неприлично завышенные соотношения, вроде 60: 1. Джон рассмеялся. Он объяснил, что металл просто не может выдерживать такие высокие уровни напряжения, а такая степень сжатия приведет к тому, что вещи будут настолько горячими, что они взорвут любой двигатель.

Конечно, не все из нас строят гоночные автомобили с гоночными двигателями, поэтому об изменении степени сжатия нам не о чем беспокоиться. Но мы случайные владельцы автомобилей и энтузиасты квазидвигателей, поэтому это было объяснением того, что означает степень сжатия и почему это важно. Вам больше не нужно подделывать это, теперь вы знаете, что это такое.

А теперь иди, найди того художника по трапеции и расскажи ему, что ты чувствуешь!

Как рассчитать степень сжатия и рабочий объем двигателя

При создании двигателя с нуля расчет степени сжатия (CR) является необходимым шагом по любому количеству причин, начиная от соблюдения правил гонок и заканчивая получением форы на старте. тюнинг.

По определению, степень сжатия — это общий рабочий объем цилиндра с поршнем в нижней мертвой точке (НМТ), деленный на общий сжатый объем с поршнем в верхней мертвой точке (ВМТ). Вскоре мы обсудим процедуры и формулы для определения рабочего объема и объема сжатия; но сначала давайте рассмотрим последствия незнания CR двигателя. На степень сжатия существенно влияет объем зазора деки, расстояние между головкой поршня в ВМТ и высотой поверхности деки.Сначала установите поршень в ВМТ, затем обнулите циферблатный индикатор на поверхности деки блока цилиндров. Переместите индикатор в плоскость деки поршня, чтобы определить, насколько поршень находится ниже или выше деки блока. В этом примере это 0,005 дюйма. напишите номер на поршне в качестве проверки для облегчения сравнения.

«Слишком слабое сжатие обычно приводит к неудовлетворенным ожиданиям производительности. На стороне высокого давления [слишком сильное сжатие] возникает больший риск при настройке и потенциальный отказ компонентов, если не используется должным образом лучшее топливо », — говорит Алан Стивенсон из JE Pistons.«В приложениях с принудительной индукцией (FI) ошибиться на низкой стороне намного безопаснее, чем испытать удачу на высокой стороне. Окно настройки расширяется и обеспечивает большую безопасность в случае возникновения проблем с давлением или доставкой топлива, или даже в случае плохой партии газа. И, если мощности недостаточно, еще один-два фунта наддува легко восполнит разницу ».

На объем зазора деки влияют высота деки блока, ход коленчатого вала, длина штока и высота сжатия поршней.Обратите внимание на то, как отверстие под палец находится дальше от головки поршня слева. Поршень с меньшей высотой сжатия справа позволяет использовать более длинные штоки, больший ход или меньшую высоту деки. Производитель поршня предоставит вам высоту сжатия для ваших расчетов.

Ряд санкционирующих органов ограничивают степень сжатия двигателя в зависимости от класса или области применения. Если CR рассчитывается неправильно, гонщик может быть оштрафован за обман, если судьи обнаружат, что он слишком высок.С другой стороны, если CR ниже допустимого максимума, гонщик теряет мощность. Даже если нет правил для CR, гонщик может быть ограничен определенным видом топлива. Знание CR обеспечит прочную основу для стратегии настройки.

Для измерения объема камеры сгорания необходимы бюретка и специальные приспособления. Как и при измерении объема купола поршня, ключом является герметизация камеры прозрачной пластиной и измерение количества жидкости, необходимой для заполнения камеры.

Для тех, кто не занимается гонками, неплохо знать и понимать данные, необходимые для расчета CR, особенно при создании двигателя с нуля. При заказе поршней, например, техническим представителям компании необходимо знать ряд факторов, чтобы обеспечить желаемую или, по крайней мере, безопасную степень сжатия. Если у вас есть использованный блок и вы не знаете высоту платформы, или вы приобрели набор головок и не знаете объем камеры сгорания, то вероятность возникновения проблем, упомянутых Стивенсоном, вполне вероятна.

Чтобы рассчитать объем купола: сначала поместите поршень на измеренное расстояние в цилиндр, убедившись, что купол находится ниже деки. В этом примере поршень находится на 0,150 дюйма в отверстии. Рассчитайте выставленный объем цилиндра. Объем = (π) x (квадрат радиуса отверстия) x (открытая высота цилиндра). В этом примере диаметр отверстия (4,600 дюйма) и открытого цилиндра 1,5 дюйма равен 40,9 куб. Используя бюретку и прозрачную пластину настила, заполните цилиндр жидкостью и отметьте, сколько было необходимо.Здесь было около 35,8 куб. Вычтите количество использованной жидкости из рассчитанного объема цилиндра. Разница в объеме купола.

Делаем математику

В старые времена вычисление CR означало использование логарифмической линейки (очень давно) или работу с набором формул на портативном калькуляторе. Сегодня поиск онлайн-калькуляторов, которые быстро выдадут результаты, находится на расстоянии одного клика от Google. Но, как говорится в старой поговорке, компьютер хорош ровно настолько, насколько хорошо он получает информацию.

Измерения, необходимые для определения CR:

  • Диаметр цилиндра
  • Длина хода коленчатого вала
  • Диаметр отверстия прокладки головки
  • Толщина уплотненной прокладки головки
  • Объем камеры сгорания
  • Объем поршневого купола
  • Объем поршневого купола

В Интернете есть пара высокотехнологичных калькуляторов, которые запрашивают даже больше, например длину штока и расстояние от первого компрессионного кольца до верха поршня.Последнее поможет обеспечить объем над верхним кольцом, но это измерение обычно не оказывает значительного влияния на окончательный расчет и используется только в очень важных приложениях.

Большинство прокладок, таких как этот блок JE Pro Seal, предоставляют значения объема прокладки и толщины в сжатом состоянии, чтобы помочь вычислить CR.

Онлайн-калькуляторы обычно предлагают выбор ввода всех измерений в дюймах или метрических единицах, за исключением объемов камеры сгорания и купола поршня, которые всегда вводятся в кубических сантиметрах или кубических сантиметрах.

Многие из сегодняшних поставщиков послепродажного обслуживания предоставляют свои соответствующие размеры для стандартных деталей, что является более чем половиной успеха в быстром определении CR вашего двигателя с разумной точностью.

«Слишком много людей зацикливаются на десятых долях балла в CR, но не понимают влияния гидродинамики, например, из-за правильного выбора кулачка и фазировки», — говорит Стивенсон. «Если все остальное хорошо согласовано, разница в 0,1 коэффициента будет незначительной для всего, что не касается профессиональных гонок с максимальными усилиями.”

Это декорировано?

Высота настила — это единственное измерение, которое производитель двигателя должен будет сделать для точного расчета. Даже с новым блоком цилиндров, новыми шатунами и новыми поршнями может быть значительная разница, если сложить высоту платформы и попытаться вычесть половину хода, длины штока и высоты сжатия. И если блок используется, и вы не уверены в его истории, есть вероятность, что он мог иметь фрезерованную поверхность, что изменило бы высоту настила.

Для расчета CC головки блока цилиндров используйте кусок прозрачного акрила с отверстием. Слегка наклоните голову так, чтобы отверстие оказалось в самой высокой точке. Используйте бюретку и измерьте, сколько жидкости нужно для заполнения камеры сгорания.

«Самый упускаемый из виду размер — высота блока. Это критически важно для точности степени сжатия, поскольку разница в зазоре деки в 0,020 дюйма приводит к значительному изменению CR », — предупреждает Стивенсон.

Опять же, CR рассчитывается путем деления общего рабочего объема на общий сжатый объем.Вот что необходимо для определения каждой из этих сумм:

Рабочий объем равен объему цилиндра + объем зазора + объем поршня + объем прокладки + объем камеры. Сжатый объем равен зазору + объем прокладки + объем поршня + объем камеры.

Все коэффициенты должны иметь одно и то же числовое значение. При ручном вычислении это обычно кубические сантиметры или CC. Большинство онлайн-калькуляторов автоматически конвертируют стандартные измерения в метрические и вычисляют такие значения, как объем зазора, если вы правильно ввели диаметр цилиндра и зазор по высоте платформы.Онлайн-калькуляторы также могут определить объем прокладки с правильной толщиной и диаметром отверстия, но многие производители прокладок предоставляют эту информацию в своих каталогах или на упаковке.

Используйте циферблатный индикатор для определения верхней мертвой точки. Магнитное основание делает эту работу быстрой и точной.

Определение объемов говорящих

Опять же, производственные компании послепродажного обслуживания обычно поставляют необходимое количество новых деталей. Производители поршней будут указывать объем купола / тарелки в + или — CC, а производители головок цилиндров предлагают свои продукты с разными объемами, чтобы помочь достичь желаемой степени сжатия.Однако никогда не помешает подтвердить собственными измерениями.

«По необходимости, двигатели внутреннего сгорания требуют достаточно жесткого контроля размеров для надежной работы, поэтому отклонения размеров должны находиться в пределах допустимых допусков. Контроль качества на уровне производства предотвращает выпуск несоответствующей продукции в эксплуатацию », — поясняет Стивенсон. «Конечно, ничто не может быть стопроцентным, поэтому тщательные измерения являются стандартной практикой для механических цехов и производителей двигателей. Предполагать, а не измерять, почти гарантирует дорогостоящий и неприятный результат.”

Опытные производители двигателей имеют все необходимые инструменты для выполнения всех необходимых измерений, такие как измеритель внутреннего диаметра и индикатор часового типа. Самые утомительные измерения — это объем поршня и объем камеры сгорания. Требуются бюретка, цветная жидкость и приспособления для решения конкретных задач, как указано на прилагаемых фотографиях.

Варианты обработки могут повлиять на зазор деки поршня. По этой причине важно проверить каждый поршень и записать измеренный зазор на заводной головке.

Пример большого блока Chevy

В качестве примера давайте вычислим CR для популярного приложения Chevy с большими блоками. Начиная с внутреннего диаметра 0,060 дюйма (4,130 дюйма) и хода 4,250 дюйма, рабочий объем каждого цилиндра составляет 62,006 куб. См, что соответствует 496 куб. Дюйм V8.

Завершают вращающийся узел штоки и поршни диаметром 6,385 дюйма с высотой сжатия 1,270 дюйма и куполом объемом 18 см3. Мы используем закаленный блок, который требует небольшой отделки поверхности, поэтому итоговая высота настила составляет 9.780. Выбранные головки цилиндров имеют камеры сгорания объемом 118 куб. См, а прокладка головки цилиндров имеет диаметр отверстия 4,375 и толщину в сжатом состоянии 0,040. Производитель заявляет, что объем прокладки составляет 9,854 куб. См.

При такой высоте деки и вращающемся узле зазор деки составляет 0,000. Вставив все эти числа в онлайн-калькулятор, мы получим 10,25: 1. Если бы у двигателя был новый блок со стандартной высотой деки 9,800 дюйма, CR упал бы до 9,86: 1, потому что был бы зазор деки 0,020 дюйма.

Если рассчитывать вручную, вот как формула будет работать с моделью настила на поверхности:

  • Объем цилиндра = 1016.094cc [(отверстие ÷ 2) 2 x 3,1416 x ход x 16,387]
  • Зазорный объем = 0,000cc [(отверстие ÷ 2) 2 x 3,1416 x высота платформы x 16,387]
  • Объем прокладки = 9,9854cc [от производитель, но формула (диаметр отверстия ÷ 2) 2 x 3,1416 x толщина прокладки x 16,387]
  • Объем камеры = 118 см3 [Значение от производителя, но может быть определено и / или подтверждено путем измерения]
  • Объем поршня = -18 см3 [Значение от производителя, но может быть определено и / или подтверждено путем измерения.Выражается как отрицательный объем, потому что форма поршня имеет куполообразную форму. Если бы поршень был выпуклым или плоским верхом с предохранительными клапанами, это было бы положительно.]

С этими числами мы складываем рабочий объем как 1016,094 + 0,000 + 9,985 + 118 — 18 = 1126,079. Сжатый объем 0,000 + 9,985 + 118 — 18 = 109,985. Разделив развернутый объем на сжатый, мы получим 10,24: 1. Небольшая разница между ручным вычислением и онлайн-калькулятором, вероятно, объясняется тем, что последний использует больше десятичных знаков в уравнении.

После расчета CR у производителя двигателя есть несколько вариантов его изменения без использования других деталей или дополнительной обработки. Более толстая прокладка немного снизит сжатие, а более тонкая прокладка немного повысит сжатие. В противном случае придется заказывать другие поршни или головку блока цилиндров придется фрезеровать для уменьшения объема камеры сгорания и повышения CR.

Изменение толщины прокладки головки помогает точно настроить степень сжатия.

Статическое и динамическое сжатие

В заключение, эти расчеты будут вычислять степень сжатия статического двигателя. Также следует учитывать динамическую степень сжатия , которая имеет отношение к фазе газораспределения. Двигатель с высоким CR потеряет часть этого давления сжатия, если впускной клапан останется открытым t после того, как поршень начнет такт сжатия. Это называется точкой закрытия впускного клапана.

«Физика диктует формулу, используемую для вычисления CR, и ни одна из констант, вводимых в эту формулу, не изменяется с RPM», — объясняет Стивенсон. «Единственным исключением является изменение зазора деки из-за растяжения стержня, особенно с алюминиевыми стержнями, и отклонения компонентов, таких как изгиб кривошипа».

Знаете ли вы ?: Степень сжатия | Car News

Что такое степень сжатия?

Каждый двигатель имеет определенную степень сжатия. Топливно-воздушная смесь сжимается в цилиндре для создания воспламенения, сила которого зависит от степени сжатия: объема цилиндра, когда поршень находится в нижней части своего хода по сравнению с объем цилиндра, когда поршень находится в верхней части своего хода.Кстати, вы должны знать, что под рабочим объемом двигателя понимается полная мощность всех поршней в течение полного цикла.

Воспламенение происходит, когда поршень находится в верхней части своего хода, то есть в верхней части цилиндра (также известной как головка цилиндра), который образует камеру сгорания. Оставшийся объем топливовоздушной смеси внутри камеры сгорания позволяет пропорционально определять степень сжатия.

Степень сжатия обычно составляет от 8: 1 до 10: 1.Более высокая степень сжатия — скажем, от 12: 1 до 14: 1 — означает более высокую эффективность сгорания.

Фото: Себастьян Д’Амур

Преимущества
Более высокие степени сжатия и эффективность сгорания означают большую мощность при меньшем количестве топлива и меньшем количестве выхлопных газов. С другой стороны, более сильные воспламенения усиливают нагрев, трение и износ, что затрудняет работу внутренних компонентов двигателя. Автопроизводителям необходимо найти правильный компромисс.

Рассмотрим, например, технологию Mazda SKYACTIV. Инженеры переработали внутренние компоненты, чтобы увеличить ход поршня, чтобы обеспечить более высокую степень сжатия. При этом водителям, которые хотят воспользоваться этим, абсолютно необходимо использовать бензин премиум-класса (бензин с более высоким октановым числом).

Двигатели с наддувом и дизельные двигатели
Двигатели без наддува могут иметь более высокую степень сжатия, чем двигатели с наддувом (с наддувом или с турбонаддувом). Например, в двигателе с турбонаддувом воздух, поступающий в камеру сгорания, уже находится под давлением, поэтому степень сжатия должна быть немного ниже, чтобы избежать чрезмерной нагрузки на компоненты.Двигатели с наддувом обычно имеют степень сжатия от 8: 1 до 8,5: 1.

Однако, что касается дизельных двигателей, отсутствие свечей зажигания требует более высокой степени сжатия — примерно от 14: 1 до 22: 1. Они используют горячий воздух для испарения, а затем воспламенения топлива.

Марки топлива
Чем больше сжатие и тепло может выдержать топливо перед воспламенением, тем выше октановое число (87, 91, 94 и т. Д.) И выше сорт топлива (обычное, премиум и т. Д.)).

Как я уже сказал; более высокая степень сжатия означает больше тепла внутри двигателя. Топливо с более высоким октановым числом может выдерживать большее повышение температуры и менее подвержено преждевременному воспламенению или преждевременному воспламенению, также известному как детонация двигателя. Это явление изменяет ход поршня и может привести к серьезному повреждению двигателя.

Степень сжатия>

Степень сжатия двигателя — это мера того, насколько сильно он сжимает топливно-воздушную смесь перед сгоранием.

Коэффициент сжатия = объем цилиндра, деленный на объем камеры

Объем цилиндра можно определить, измерив диаметр цилиндра и ход двигателя, а затем проведя сопоставление для расчета объема цилиндра. Его можно измерять в кубических дюймах или кубических сантиметрах.

Объем цилиндра = 3,14 x ((диаметр отверстия / 2) x (диаметр отверстия / 2)) x ход


Измерение объема камеры сгорания путем заполнения ее жидкостью.

Объем камеры сгорания трудно измерить напрямую из-за сложной формы большинства камер сгорания. Таким образом, объем камеры необходимо измерить, заполнив камеру жидкостью (водой или легким маслом) и измерив количество кубических сантиметров жидкости, необходимое для заполнения камеры. Пластиковая пластина закрывает камеру, а жидкость заливается через небольшое вентиляционное отверстие. ПРИМЕЧАНИЕ. Клапаны и свеча зажигания должны быть установлены таким образом, чтобы удерживать жидкость.

1 кубический сантиметр = 0.0610237 Кубические дюймы

Просто помните, что при расчете степени сжатия вы должны использовать одни и те же единицы измерения (кубические дюймы или кубические сантиметры для обоих чисел).


Сжатие происходит, когда поршень движется вверх на такте сжатия.

Что делает сжатие со смесью воздух / топливо

Когда поршень движется вверх по цилиндру во время такта сжатия, он сжимает и нагревает воздушно-топливную смесь в цилиндре. Это помогает распылить крошечные капельки топлива, чтобы оно лучше смешивалось с воздухом, и повышает температуру топливно-воздушной смеси, поэтому она легче воспламеняется.

Причина увеличения степени сжатия заключается в том, что это увеличивает тепловой КПД и мощность двигателя внутреннего сгорания. Чем выше степень сжатия, тем больше тепловой энергии сохраняется в камере сгорания и тем больше мощности вырабатывает двигатель.

Большинство последних моделей бензиновых двигателей легковых автомобилей и легких грузовиков имеют степень сжатия от 9: 1 до 11: 1. Некоторые двигатели с прямым впрыском бензина имеют более высокую степень сжатия до 14: 1.

Дизельные двигатели обычно имеют степень сжатия, которая даже выше, чем у бензиновых двигателей, в диапазоне от 15: 1 до 23: 1.

ПРИМЕЧАНИЕ: Изношенные поршневые кольца, негерметичные впускные или выпускные клапаны или протекающая прокладка головки блока цилиндров снизят компрессию, мощность и эффективность двигателя. Это также может снизить фактическую степень статического сжатия, позволяя некоторой части воздушно-топливной смеси вытекать из цилиндра и камеры сгорания до того, как она сможет полностью сжаться.


Двигатель Infiniti VC_Turbo изменяет степень сжатия, изменяя относительное положение промежуточного вала, который управляет соединением шатуна.Увеличение или уменьшение относительного положения рычажного механизма изменяет ход двигателя, который, в свою очередь, изменяет степень сжатия.

Некоторые двигатели даже имеют переменную степень сжатия, например двигатель Infiniti 2.0L VC_Turbo. Двигатель имеет промежуточный вал, который изменяет тягово-сцепное устройство для изменения степени сжатия. Более высокая степень сжатия используется для максимальной экономии топлива. Затем степень сжатия уменьшается, когда турбокомпрессор обеспечивает наддув для оптимизации мощности.

Степень сжатия и детонация

Хотя увеличение степени сжатия увеличивает тепловой КПД и мощность, оно также увеличивает давление и температуру топливовоздушной смеси внутри камеры сгорания. Если степень сжатия слишком высока для октанового числа топлива в бензиновом двигателе, в двигателе может возникнуть детонация (детонация искры). Детонация наиболее вероятна, когда двигатель сильно тянет под нагрузкой.

Детонация — это беспорядочная форма горения с несколькими фронтами пламени вместо одного расширяющегося фронта пламени.Это вызывает резкое повышение давления в цилиндре, которое вызывает удары по поршням и вызывает дребезжание или стук в двигателе. Детонация — это плохо, потому что она может сломать поршневые кольца, повредить поршни и / или подшипники штока.

Двигатели с высокой степенью сжатия обычно требуют топлива с более высоким октановым числом, чтобы снизить риск детонации.

Двигатели

с турбонаддувом и наддувом также требуют топлива с более высоким октановым числом, поскольку давление наддува от этих устройств нагнетает больше воздуха в цилиндры двигателя, увеличивая его эффективную степень сжатия .Статическая или механическая степень сжатия не изменяются, но давление наддува увеличивает объем топливовоздушной смеси в цилиндрах. По этой причине некоторые двигатели с турбонаддувом и наддувом фактически имеют несколько более низкую степень статического сжатия, чем аналогичный двигатель без наддува, чтобы снизить риск детонации.

Большинство двигателей последних моделей также имеют датчик детонации для обнаружения вибрации, вызванной детонацией.

Если датчик детонации обнаруживает детонацию, компьютер двигателя на мгновение замедляет угол опережения зажигания, чтобы уменьшить или устранить детонацию.Компьютер двигателя может также обогатить топливную смесь, чтобы охладить ее и уменьшить детонацию, а если двигатель имеет турбонаддув, он может открыть перепускной клапан турбонаддува, чтобы снизить давление наддува до тех пор, пока детонация не исчезнет.

Изменение степени сжатия

Для увеличения (или уменьшения) степени сжатия можно изменить множество параметров:

Увеличение диаметра отверстия и установка поршней увеличенного размера приведет к увеличению степени сжатия.

Уменьшение объема камер сгорания за счет использования небольших головок камер или фрезерования поверхности головок увеличивает степень сжатия.

Установка более тонкой прокладки головки увеличивает степень сжатия.

Установка более толстой прокладки головки блока цилиндров снизит степень сжатия.

Замена поршней с плоским верхом или выпуклой формы на поршни с куполообразной формой увеличивает степень сжатия.

Замена смещенных поршней на поршни с плоским верхом увеличит степень сжатия.

Замена куполообразных поршней на поршни с плоским верхом или выпуклые поршни приведет к уменьшению степени сжатия.

Замена поршней с плоской верхней частью на поршни с тарельчатой ​​головкой снижает степень сжатия.

Увеличение степени сжатия полезно, если вы строите двигатель с высокими характеристиками и хотите максимизировать мощность двигателя. Более высокая степень сжатия также позволяет двигателю использовать топливо с более высоким октановым числом, такое как гоночный газ, а также метанол и этанол.

Если вы строите двигатель с турбонаддувом или прикручиваете нагнетатель и хотите использовать насосный газ, а не бензин для гонок с более высоким октановым числом, обычно рекомендуется ограничить степень статического сжатия до 8: 1 или 9: 1, чтобы снизить риск возникновения двигателя. повреждающая детонация.

При замене поршней должен быть достаточный зазор между верхней частью и куполом поршня с высокой степенью сжатия, камерой сгорания и клапанами. Зазор будет варьироваться в зависимости от степени сжатия и от того, насколько «плотный» двигатель построен. Несколько тысячных обычно необходимы для предотвращения проблем с натягом на высоких оборотах двигателя и для компенсации роста поршня и удлинения штока, когда двигатель горячий.

Зазор поршня можно проверить, нанеся небольшое количество пластилина на поршень, установив прокладку головки и головку, а затем повернув кривошип, пока поршень не достигнет верхней мертвой точки.Поршень раздавит глину и покажет, какой зазор остается между поршнем, клапанами и камерой.


НАЖМИТЕ ЗДЕСЬ, чтобы просмотреть или загрузить эту статью в виде файла PDF






Связанные статьи о двигателях:


Испытание компрессии двигателя

Испытание утечки двигателя

Измерение прорывов

Искровые детонации (и датчики детонации)

Рабочий объем двигателя

Наддув

Турбонаддув

Нажмите здесь, чтобы увидеть больше Carley Automotive Technical Science of Compression

Ratios Двигатели с высокими характеристиками

Степень сжатия двигателя имеет большое значение.Вы никогда не увидите гоночный двигатель с низкой степенью сжатия, если он не будет произвольно ограничен каким-либо ограничением класса. Более высокая степень сжатия увеличивает мощность гоночных и уличных двигателей. Все помнят анемичные 1970-е с низкой компрессией, и никто не хочет их повторять. Когда производители оригинального оборудования получили больший контроль над топливом и искрой с помощью EFI и электронного управления двигателем, степень сжатия снова выросла, потому что автопроизводители знают, что это дает больше мощности и дает более высокую эффективность использования топлива. Более высокая степень сжатия — основная причина, по которой дизельные двигатели неизменно обеспечивают лучшую экономию топлива, чем бензиновые.


Этот технический совет взят из полной книги PERFORMANCE AUTOMOTIVE ENGINE MATH. Подробное руководство по этой теме вы можете найти по этой ссылке:
УЗНАТЬ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ ЗДЕСЬ

ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ: Не стесняйтесь поделиться этой статьей на Facebook, на форумах или в любых клубах, в которых вы участвуете. Вы можете скопировать и вставить эту ссылку, чтобы поделиться: https://musclecardiy.com/performance/science -двигатели-коэффициенты сжатия /


Высокопроизводительные приложения должны тщательно учитывать степени сжатия независимо от того, являются ли они без наддува или сильно нагнетаются за счет наддува.Нам нужна максимальная мощность и эффективность, которые мы можем получить, но плохая комбинация деталей может чрезмерно повлиять на допуск двигателя к октановому числу топлива с потенциально катастрофическими результатами.


Конфигурация верхней части поршня является одним из многих факторов, влияющих на степень сжатия двигателя и допуск на октановое число топлива.

Очень важно знать или прогнозировать степень сжатия с высокой степенью уверенности, чтобы можно было сделать правильный выбор топлива. Теперь, когда у нас есть низко- и среднеоктановый бензин, высокооктановый этанол E85 и гоночное топливо, как никогда важно, чтобы степень сжатия соответствовала предполагаемому применению и топливу, которое будет сжигаться.В случае новых сборок двигателя подходящая смесь компонентов может быть адаптирована для достижения целевой степени сжатия, которая является либо октановой, либо, в некоторых случаях, предписанной органом.

Двигатели с ограничением по октановому числу

всегда могут привести к летальному исходу. Вот почему в 80-х годах в двигателях появились датчики детонации, которые сигнализировали бортовому компьютеру о задержке искры при обнаружении начала детонации. Сегодня у нас есть роскошные средства управления двигателем, которые позволяют нам работать с более высокими степенями сжатия, но нам все равно приходится рассчитывать их в соответствии с конкретными требованиями.

Степень сжатия — эффективное средство ограничения мощности в некоторых гоночных сериях. Он также используется для снижения стоимости многих гоночных площадок. Обычно это влияет на выбор поршня и головки блока цилиндров, где конкретная головка блока цилиндров также может быть указана уполномоченным органом. Когда размер головки цилиндров и камеры диктуется, конфигурация поршня, высота деки и толщина прокладки должны быть изменены, чтобы соответствовать требованиям степени сжатия. На коротких трассах часто применяется правило 9: 1, в то время как двигатели NASCAR ограничены до 12: 1.Безлимитные дрэг-рейсинги и двигатели Bonneville часто превышают 14: 1, в то время как дрэг-рейсеры стандартного класса ограничены исходной заводской степенью сжатия их конкретного автомобиля.

Пределы степени сжатия могут быть полезны до некоторой степени, поскольку они обычно диктуют наличие поршней с плоским верхом, которые способствуют эффективному сгоранию при сохранении желаемого гашения, чтобы способствовать турбулентности заряда и поддерживать качество смеси. Часто указываются заэвтектические поршни, хотя в некоторых сериях допускается поковка.Без более высоких степеней сжатия, конечно, меньше отдачи, но, учитывая конкретные параметры, опытные производители двигателей настраивают компоненты, которые лучше всего подходят для любой фиксированной степени сжатия, особенно с прицелом на увеличение эффективной степени сжатия за счет соответствующей синхронизации распределительного вала и эффективной настройки впускных клапанов. .

Факторы, влияющие на степень сжатия

Быстро назовите десять или более вещей, которые влияют или зависят от степени сжатия.Если не можете, примите во внимание следующее:

  • Октановое число топлива
  • Качество топливной смеси (размер капли)
  • Объем цилиндра
  • Объем камеры сгорания
  • Высота деки
  • Толщина сжатой прокладки
  • Форма прокладки
  • Зазор между поршнем и головкой
  • Зона закалки
  • Купол или объем купола
  • Объем посуды
  • Опережение зажигания
  • Клапан разгрузки объема
  • Объем щели
  • Фаска отверстия

Формула для расчета степени сжатия довольно проста.Мы поработаем с некоторыми примерами через мгновение, но сначала давайте исследуем влияние элементов в нашем списке, особенно тех, которые находятся под нашим контролем во время процесса сборки двигателя. Конечно, толерантность к октановому числу топлива является первоочередной задачей, поэтому нам нужно знать, какое топливо мы будем использовать. Качество смеси этого топлива в значительной степени определяется температурой воздуха, топливной смесью и компонентами всасывания, которые дозируют топливо, поступающее в двигатель. К ним относятся карбюратор или топливные форсунки, впускной коллектор, головки цилиндров и клапаны.Даже синхронизация фаз газораспределения может влиять на динамическое сжатие или давление в цилиндре. Это все, что мы можем контролировать, как и элементы в нашем списке, все они находятся прямо внутри цилиндра, оказывая свое влияние на степень сжатия. Рассмотрим основную формулу.

Степень сжатия (CR) = (V1 + V2) ÷ V2
Где:
V1 = объем цилиндра
V2 = объем камеры сгорания


Калькулятор коэффициента сжатия Performance Trends — это надежный инструмент, который объединяет все измеренные и рассчитанные компоненты формулы степени сжатия для обеспечения точных расчетов степени сжатия.

Циферблатный индикатор с мостовой стойкой используется для измерения высоты настила. Поместите циферблатный индикатор на поверхность деки и обнулите циферблат. Затем поверните поршень до ВМТ и измерьте разницу до верха поршня. Измерьте по оси поршневого пальца, чтобы получить среднюю высоту деки.

Большинство прокладок головки имеют многослойную конструкцию, и все лучшие из них обеспечивают заявленную толщину и объем в сжатом состоянии. Если объем вашей прокладки неизвестен, вы все равно можете измерить его, как указано в сопроводительном тексте.

На практике V2 фактически называется зазором или объемом сжатия, потому что он включает в себя все элементы из нашего списка и фактически представляет собой общее пространство сгорания над поршнем. Это пространство, в которое вжимается объем цилиндра при сжатии. Я назову это объемом сжатия для нашего обсуждения. Таким образом, формула фактически устанавливает соотношение между общим объемом цилиндра с поршнем в нижней части его хода к объему цилиндра с поршнем в верхней части его хода.Каждый пункт в нашем списке в той или иной степени изменяет значение V2, и это оказывает сильное влияние на фактическую рабочую степень сжатия.

Высота палубы

Существует два типа высоты колоды: положительная и отрицательная. На большинстве двигателей поршень останавливается немного ниже поверхности деки блока, когда он находится в ВМТ, иногда 0,020 дюйма или более. Это называется положительной высотой деки, потому что блочная дека все еще находится выше верхней части поршня. Каким бы малым оно ни было, это расстояние увеличивает объем пространства сгорания V2 над поршнем.Этот объем необходимо рассчитать и добавить к V2. В некоторых случаях поршень немного выступает из отверстия. Это называется отрицательной высотой деки, и ее объем необходимо вычесть из V2, потому что он вычитает объем из пространства сгорания.

Толщина сжатой прокладки

Объем прокладки головки также увеличивает объем сжатия. Это определяется толщиной сжатой прокладки, диаметром отверстия прокладки и формой прокладки. Многие прокладки головки цилиндров немного больше диаметра отверстия цилиндра и часто имеют неправильную форму.Высота деки и толщина прокладки также влияют на зазор между поршнем и головкой, который необходимо учитывать, особенно при высоких оборотах. Стальные шатуны на самом деле не растягиваются, поэтому поршень можно поднести вплотную к головке блока цилиндров (без последствий для улучшения закалки). Закалка — это место, где плоская верхняя часть поршня поднимается очень близко к головке, что имеет тенденцию выталкивать или разбрызгивать заряд в сторону свечи зажигания с высокой турбулентностью камеры для улучшения горения.

Алюминиевые шатуны обладают некоторой степенью эластичности, поэтому для них требуется увеличенный зазор между поршнем и головкой, чтобы избежать физического контакта и последующего повреждения при высоких оборотах двигателя.


Куполообразные поршни повышают степень сжатия за счет смещения объема в пространстве сгорания над поршневой декой, но неглубокие камеры сгорания являются современной тенденцией для повышения степени сжатия. За счет устранения или уменьшения купола эффективность сгорания повышается, поскольку купол не блокирует ядро ​​пламени, которое возникает на свече зажигания.

Плоские верхние части являются наиболее распространенной конфигурацией поршней. В некоторой степени они упрощают расчет степени сжатия, но вам все равно придется иметь дело с предохранительными клапанами.Они способствуют превосходному сгоранию с хорошими характеристиками закалки и турбулентности.

Дизельные поршни предназначены для уменьшения степени сжатия за счет увеличения объема сжатия над поршнем. Многие из них не имеют предохранительных клапанов, потому что тарелка уже достаточно глубока. Вы можете использовать опубликованный объем тарелки для расчетов степени сжатия или куб поршня, чтобы проверить его.

Эти требования могут повлиять на ваш выбор толщины прокладки и, следовательно, степени сжатия.Часто вам приходится жонглировать комбинацией, чтобы получить то, что вы хотите. Предварительный расчет поможет вам сделать правильный выбор.

Объем купола и тарелка

Объем Если поршень имеет приподнятый купол для увеличения сжатия, объем купола необходимо учитывать при расчете степени сжатия. Объем купола необходимо вычесть из V2, так как это уменьшает объем сжатия. Объем блюда добавлен к V2, поскольку он добавляет объем. И пока вы рассчитываете объемы купола и тарелки, вы также должны учитывать объем любых сбросов клапана в верхней части поршня.

И если вы действительно хотите выбрать гниды, вы можете включить объем щели над верхним поршневым кольцом и объем фаски в верхней части отверстия цилиндра. Хотя они бесконечно малы, они все же вносят вклад в общий объем V2 в уравнении. Объем щели — это крошечное пространство между поршнем и стенкой цилиндра над верхним кольцом. Обычно это всего лишь несколько тысячных долей дюйма, но она все равно умножается на длину окружности отверстия и имеет объемное значение. И если отверстие цилиндра также имеет большую фаску для облегчения установки поршня, это также увеличивает объем пространства сгорания.Сумасшедший, да?


Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания для увеличения сжатия за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем пространства сгорания для уменьшения степени сжатия.

Определите объем камеры сгорания, заполнив камеру водой или спиртом из градуированной бюретки, калиброванной в кубических сантиметрах (кубических сантиметрах). Затяните свечу зажигания в камере с обоими установленными клапанами.Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.

Некоторые из этих томов в большинстве случаев несущественны, но вы должны знать о них, чтобы решить, включать ли их в свои расчеты. Если вы создаете высокопроизводительный движок, вам придется многократно измерять и изменять многие из этих объемов во время предварительной сборки макетов.Правильный зазор между быстро движущимися частями важен и неумолим, поэтому вам нужно сначала установить их. Осведомленность об их влиянии на степень сжатия поможет вам соответствующим образом рассмотреть свои изменения и выбор деталей.

В поисках V2

Степень сжатия — вещь непростая, особенно если разбить ее на все факторы, влияющие на нее. Тем не менее, это управляемо, и на это можно взглянуть по-разному. Хотя это в первую очередь учебник по математике двигателя, все же важно понимать все факторы и то, как они влияют на работу двигателя.Степень сжатия — это просто мера того, насколько сильно поступающий заряд сжимается до того, как свеча зажигания его воспламенит. Он создается объединенным объемом цилиндра и объемом сжатия, когда поршень достигает ВМТ. В действительности он регулируется рабочим объемом цилиндра и любой комбинацией различных объемов пространства сгорания, составляющих объем сжатия V2. Поскольку именно здесь находятся все переменные, именно здесь вы должны сконцентрировать свои усилия для достижения желаемой степени сжатия.

Чтобы увидеть, насколько сильно влияют эти факторы, давайте сравним базовую формулу с той же формулой, в которой учтены все факторы. Как обсуждалось ранее, различные способствующие факторы являются либо суммирующими, либо вычитающими из общего объема сжатия. Камера сгорания — это первостепенная ценность. Все остальные объемы либо добавляются к нему, либо вычитаются из него до работы с основным уравнением.

CR = V1 + V2 ÷ V2

Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания для увеличения сжатия за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем камеры сгорания для уменьшения степени сжатия.Определите объем камеры сгорания, заполнив камеру водой или спиртом из градуированной бюретки, калиброванной в кубических сантиметрах (куб. См). Затяните свечу зажигания в камере с обоими установленными клапанами. Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.

Обратите внимание, что V1 является постоянным, но V2 может в значительной степени изменяться, когда вы начинаете складывать и вычитать различные значения, которые влияют на него.В простой формуле V2 называется объемом камеры, но мы знаем, что на самом деле это объем сжатия, потому что он включает в себя другие факторы. Если сложить все остальные факторы, получится очень длинное уравнение. Вы можете разбить его, вычислив абсолютное значение V2, прежде чем вводить его в уравнение. Это требует точных измерений, хотя на практике часто заменяются опубликованные значения объема прокладки, объема купола и тарелки, а также объемов сброса клапана. Объем щели и объем фаски обычно игнорируются, потому что они очень малы.Следующий список называется стеком V2.

Чтобы найти абсолютное V2, начните с измеренного объема камеры с кубическими сантиметрами, преобразованными в кубические дюймы, затем:

добавить объем деки (или вычесть, если дека отрицательный)
добавить сжатый объем прокладки
добавить объем тарелки (или вычесть, если купол)
вычесть объем купола (или добавить, если тарелка)
добавить объем сброса клапана
добавить объем щели (при желании)
добавить объем фаски (при желании)

Это просто, но несколько утомительно для измерения и расчета, поэтому многие производители двигателей предпочитают измерять все сразу, сравнивая цилиндр с поршнем в нем.Я объясню, как это сделать чуть позже, но сначала давайте обсудим, как определить все отдельные тома, составляющие V2.

Объем деки

Рассчитайте объем деки, как если бы это был очень короткий цилиндр. Положительное или отрицательное измерение настила представляет собой размер высоты в формуле, в которой используется константа смещения 0,7854.

Пример: для положительной высоты деки 0,020 дюйма на 4-дюймовом отверстии

42 х 0.020 x 0,7854 = 0,251328 ci

Он будет добавлен в стек V2, поскольку увеличивает объем сжатия. Если бы размер деки был отрицательным (поршень над декой), результат вычли бы из стопки V2, потому что это уменьшает объем сжатия. Интересным фактом является то, что все малоблочные Chevys имеют двигатели с положительной декой, но все новые двигатели Gen III имеют отрицательную деку.


Объем камеры

Объем камеры сгорания измеряется непосредственно путем измерения камеры градуированной бюреткой.Обратите внимание, что размер камеры в кубических сантиметрах необходимо преобразовать в кубические дюймы. Разделите на 16,4, чтобы произвести преобразование. Это будет ваш базовый объем для расчета степени сжатия. Все остальные соответствующие объемы либо добавляются, либо вычитаются из объема камеры для определения объема сжатия.


Чтобы смазать цилиндр, смажьте стенку цилиндра легкой смазкой или маслом, чтобы закрыть правый зазор. Вращайте двигатель, пока верхняя часть поршня не войдет в отверстие достаточно глубоко, чтобы очистить купол.Измерьте глубину с помощью циферблатного индикатора и вычислите пустой объем, используя формулу объема цилиндра. Затем скопируйте цилиндр, чтобы узнать, какой объем смещается куполом. Вычтите это значение из объема сжатия.

Объем прокладки

В большинстве случаев объем прокладки публикуется производителем прокладки, и можно безопасно добавить (+) к стеку V2. Когда опубликованное число недоступно, строители часто ошибаются, вычисляя объем на основе идеального круга (точно так же, как объем высоты колоды).Проблема в том, что диаметр отверстия прокладки часто больше диаметра отверстия цилиндра и часто имеет неправильную форму. Если он идеально круглый, вы можете рассчитать его по формуле объема цилиндра с соответствующим диаметром и толщиной в сжатом состоянии.

Если форма неправильная, вы можете подделать ее или использовать метод ленты и ленты, чтобы найти истинную длину окружности отверстия под прокладку, а затем рассматривать ее как идеальный круг для расчета. Приклейте прокладку скотчем к плоской поверхности и с помощью небольших кусочков ленты закрепите тонкую ленту по периметру отверстия для прокладки.Добравшись до начальной точки, осторожно обрежьте веревку и измерьте ее длину.


Это пример прокладки головки неправильной формы с диаметром, превышающим диаметр отверстия. Обычно такая бровь находится рядом с обоими клапанами. Это должно быть включено в ваш расчет степени сжатия. Вы можете натянуть периметр нестандартной прокладки и использовать длину струны для вычисления объема прокладки на основе измеренной толщины (см. Текст).

Используя формулу для длины окружности круга, вы можете найти соответствующий диаметр, который будет использоваться при расчете объема прокладки.Предположим, у вас диаметр цилиндра 4 дюйма, а отверстие прокладки заметно больше и имеет неправильную D-образную форму вокруг клапанов (что типично для многих прокладок головки блока цилиндров). Вы аккуратно натягиваете периметр и получаете длину 131⁄16 дюйма. Преобразуйте в десятичные дроби, и у вас будет 13,0625 дюймов. Теперь подставьте это измерение в формулу.

Окружность = 2 π r или C = π d
Где:
r = радиус
d = диаметр
d = C ÷ π
13,0625 ÷ 3,14 = 4,16 дюйма

Это ваш истинный диаметр отверстия под прокладку, и теперь его можно вставить в формулу объема прокладки:

Истинный объем прокладки = 4.162 x толщина прокладки x 0,7854

Объем тарелки

Тома

Dish обычно публикуются, поэтому вы можете подключить их прямо к стеку V2. Но предположим, что ваш блок уже пару раз был декорирован, и он немного короче, чем обычно, поэтому поршень имеет отрицательную деку на некоторую величину, которая больше, чем вам удобнее для зазора между поршнем и головкой.

Большинство поршней допускают некоторую стружку деки поршня (до 0.100 дюймов или даже больше во многих случаях), поэтому вы решаете обрезать их, чтобы достичь нулевой деки (поршень заподлицо с поверхностью блочной деки). Это легко сделать с помощью поршней с плоской вершиной и выпуклой формы; С куполообразными поршнями дело обстоит немного сложнее (редко).

Если ваш поршень выпуклый, и вы уменьшили его на некоторую величину, вы можете скопировать тарелку и добавить новый объем в свой стек V2. Или вы можете использовать формулу объема цилиндра для вычисления разницы, если у вас есть точное измерение глубины и диаметра.На практике это никогда не бывает легко, потому что блюдо не всегда идеально круглое и часто имеет D-образную форму и изогнутую снизу.

Объем купола Объемы купола также публикуются производителями поршней. Они довольно точны, поэтому вы можете безопасно вычесть этот объем из своего стека V2, если вы не изменили купол, подогнав его по форме камеры, вырезав более глубокие клапанные сбросы или вырезав отверстие для пламени для свечи зажигания. Иногда во время сборки макета вы обнаруживаете небольшое пятно, где купол поршня соприкасается с крышей камеры во время вращения.Эти пятна обычно вырезаются для достижения минимального зазора, что изменяет объем купола, что затем требует его измерения. Морозо продает простой инструмент для измерения объемов купола, и он пригодится в этой ситуации. Помните, объем купола вычитается из окончательного стека V2.


Предохранительные клапаны

Клапанные сбросы достаточно легко смонтировать на поршне с плоским верхом, и большинство производителей уже публикуют объемы для всех своих поршней.Здесь, опять же, вам нужно измерить только то, если вы значительно врезались в предохранительные приспособления, чтобы получить соответствующий зазор между поршнем и клапаном. Независимо от объема, это добавочное значение для вашего стека V2.


Объем щелей

Объемы щелей минимальны и не часто учитываются при расчетах степени сжатия, но некоторые строители находят причины для этого. Некоторые просто помешаны на деталях. Давно известно, что объемы щелей влияют на выбросы, потому что они служат укрытием для небольших количеств топливной смеси, которые не совсем участвуют в процессе сгорания.Это в основном важно для химиков и инженеров по горению, но если вы хотите включить это, вот как.

CV = (d1 — d2) x c x r
Где:
d1 = диаметр отверстия
d2 = диаметр поршня на поверхности верхнего кольца
c = окружность отверстия
r = глубина верхнего кольца от деки поршня

Итак, с отверстием 4,00 дюйма, зазором поршня до стенки 0,010 дюйма над верхним кольцом и кольцом 0,125 дюйма вниз по отверстию мы вычисляем:

CV = (4,00 — 3,990) x 12,56 x 0,125 = 0,0157 ci

12.56 — это длина окружности отверстия, полученная путем умножения диаметра отверстия на пи. Если вы хотите быть точным, добавьте результат вашего окончательного расчета в стек V2.


Объем фаски

Большинство механиков делают фаску в верхней части отверстия, чтобы помочь направить кольца в отверстие во время сборки. Иногда это довольно много, поэтому вы можете включить его в свои расчеты. Фаски обычно составляют от 40 до 60 градусов, и даже при таких небольших размерах вы можете рассматривать их как квадраты или прямоугольники, если смотреть на них с торца.Используйте ту же формулу, что и для объема щели, но начните с большего внешнего размера, где начинается фаска (см. Рис. 1, стр. 35)

Если он примерно на 0,060 больше диаметра цилиндра:

CV = [(4,060 — 4,000) x 12,748 x 0,060] ÷ 2 = 0,022 ci

Обратите внимание, что размер «c» изменился, потому что теперь у нас есть внешний диаметр 4,06 дюйма (4,06 x 3,14 = 12,748). Глубина составляет всего 0,060 дюйма, и мы должны разделить результат на 2, чтобы завершить формулу для площади треугольника и, следовательно, объема при добавлении длины.


Суммарный объем щели и фаски — это пространство между стенкой цилиндра и поршнем над верхним поршневым кольцом. Здесь это показано темной заштрихованной областью над кольцом.

Большая фаска в верхней части отверстия также в некоторой степени способствует увеличению объема сжатия, но этого недостаточно, чтобы беспокоить большинство строителей. Если объем сжатия определяется путем смещения цилиндра, в измерение включаются объем щели и объем фаски.

Результат — больше, чем объем щели, но все равно ничего существенного, поэтому большинство производителей двигателей исключают объем щели и объем фаски из своих расчетов. Если вы их используете, помните, что они являются аддитивными и поэтому добавляются в ваш стек V2. Объем щели и объем камеры частично занимают одно и то же пространство, но их удобнее рассчитывать по отдельности.

Теперь давайте рассмотрим наш стек V2 с рассчитанными значениями на основе следующих измерений:

V1
Диаметр цилиндра / ход поршня, 4.00 x 3,00 дюйма ……………… 37,699 куб. Дюйм
V2 Объем камеры, 64 куб. См ………………………… 3,902 куб. Дюйм
Высота деки, 0,020 положительного положения …………………… 0,251 куб. Дюйм
V2 + Толщина прокладки, 0,015 (опубликовано) ……… .0,194 ci
V2 + Плоский верх (или тарелка / купол) ………………………… 0,000 (плоский) ±
Разгрузка клапана, 4 см3 (опубликовано) …… …………… .0,243 ci
V2 + Объем щели, рассчитанный …………………… 0,015 ci
V2 + Объем фаски, рассчитанный ………………… .0,022 ci
V2 + Итого 4,627 ci = V2
V1 + V2 ÷ V2 = CR
(37,699 + 4,627) ÷ 4,627 = 9.14 CR

Достаточно, но, возможно, немного мало для уличных выступлений. Если вы обнуляете блок и убираете высоту деки из V2, вы можете поднять степень сжатия до 9,61: 1, что почти идеально для уличного двигателя. Это небольшое изменение показывает, насколько сильно все небольшие объемы, составляющие V2, влияют на окончательную степень сжатия.

Коэффициент вытеснения

Концепция степени вытеснения не часто используется, но ее следует понимать, потому что она иногда может помочь нам оценить объем измельчения в камере сгорания, который позволит достичь желаемой степени сжатия.Как мы видели, степень сжатия — это объединенный объем рабочего объема цилиндра и объема сжатия, деленный на объем сжатия (см. Врезку, стр. 37). Коэффициент вытеснения — это просто рабочий объем цилиндра, деленный на объем сжатия:

Степень сжатия = V1 + V2 ÷ V2

Коэффициент рабочего объема = V1 ÷ V2

Обратите внимание, что степень сжатия всегда на 1 больше степени вытеснения. Изменяя формулу степени сжатия, мы можем рассчитать новый объем сжатия V2, который даст желаемую степень сжатия.

Новый V2 = V1 ÷ коэффициент смещения
Теперь мы можем вывести формулу для фрезерования головки блока цилиндров:
Mill Cut = [(новый коэффициент смещения — старый коэффициент смещения) ÷ (новый коэффициент смещения x старый коэффициент смещения)] x ход

Напомним, что ранее мы рассчитали степень сжатия 9,14: 1 для диаметра отверстия 4,00 дюйма и хода поршня 3 дюйма. Так как степень вытеснения всегда на 1 меньше степени сжатия, мы используем 8,14 для степени вытеснения в нашей формуле. Мы уже видели, что устранение 0.Высота деки 020 дюймов увеличила сжатие до 9,61: 1. Теперь посмотрим, что дает уменьшение объема сгорания. Поскольку мы хотим поднять степень сжатия до 9,61: 1, наш коэффициент смещения равен 8,61.

Фрезерование = [(8,61 — 8,14) ÷ (8,61 x 8,14)] x 3 = 0,0201 дюйма

Это почти то же самое, что и высота колоды, которую мы исключили в наших предыдущих расчетах, но правильно ли это? Не совсем. При удалении высоты деки мы учли весь диаметр отверстия цилиндра.Но D-образная камера сгорания на нашем малоблочном Chevy составляет лишь половину диаметра канала ствола. Чтобы получить тот же результат, нужно сделать более глубокий надрез. В этом случае около 0,040 дюйма дает желаемый результат. Мы должны вдвое сократить разрез, потому что мы имеем дело только с половиной площади. Это относительно простые процедуры, но вы должны тщательно обдумать их, чтобы избежать дорогостоящих ошибок.

Сжатие коленчатого вала

Компрессию при проворачивании коленчатого вала часто путают со степенью сжатия.В то время как степень сжатия — это соотношение объемов внутри цилиндра, сжатие при запуске — это фактически измеренное давление в цилиндре, измеренное в отверстии для свечи зажигания, когда двигатель запускается с коленчатым валом с открытыми дроссельными заслонками. Во время этой операции провод катушки снимается, чтобы предотвратить срабатывание других цилиндров. Сжатие при запуске — это пиковое давление, достигаемое в цилиндре во время запуска. Более высокие степени сжатия могут повлиять на сжатие коленчатого вала, но они не связаны.

Сжатие при проворачивании коленчатого вала используется как индикатор состояния двигателя, а также взаимосвязи точек открытия и закрытия впускных и выпускных клапанов.В зависимости от состояния поршневых колец и клапанов исправный двигатель обычно имеет сжатие при запуске от 150 до 180 фунтов на квадратный дюйм. Двигатель с хорошими характеристиками может легко иметь сжатие при запуске более 200 фунтов на квадратный дюйм. Некоторые из них немного выше, а некоторые намного ниже. Важно, чтобы показания всех цилиндров были одинаковыми во время теста на сжатие. Низкое значение любого цилиндра обычно указывает на негерметичность клапанов или поршневых колец. Большие распредвалы с большим перекрытием клапанов также могут влиять на сжатие при запуске, но не в значительной степени.Пока все цилиндры соответствуют в пределах 5 или 10 фунтов на квадратный дюйм, у вас, вероятно, есть исправный двигатель. Недорогие манометры есть в любом магазине автозапчастей.

Написано Джоном Бэктелом и опубликовано с разрешения CarTechBooks

ПОЛУЧИТЕ СДЕЛКУ НА ЭТУ КНИГУ!

Если вам понравилась эта статья, вам понравится вся книга. Нажмите кнопку ниже, и мы отправим вам эксклюзивное предложение на эту книгу.

Значение степени сжатия двигателя

Что такое степень сжатия:

  • Степень сжатия двигателя — это отношение объема газа в цилиндре, когда поршень находится в верхней части своего хода (верхняя мертвая точка, или ВМТ), к объему газа, когда поршень находится в нижней части своего хода. (нижняя мертвая точка или BDC).Другими словами, это соотношение сжатого и несжатого газа или насколько плотно поступающая топливно-воздушная смесь сжимается в камере сгорания перед воспламенением. Чем сильнее он сжимается, тем эффективнее горит и вырабатывается больше энергии. Примечание: если вы хотите узнать, как появляются цифры, перейдите по этой ссылке

    Как рассчитать степень сжатия

Как это влияет на экономию топлива:

  • Чем выше передаточное число, тем больше сжатый воздух в цилиндре.Когда воздух сжимается, происходит более мощный взрыв топливовоздушной смеси, и расходуется больше топлива. Подумайте об этом так: если бы вам пришлось быть рядом со взрывом, вы, вероятно, предпочли бы быть рядом с ним где-то снаружи, потому что сила взрыва рассеется, и он не будет казаться таким мощным. Однако в маленькой комнате сила будет сдерживаться, что сделает ее намного более мощной. То же самое и с степенями сжатия. Удерживая взрыв в меньшем пространстве, можно использовать больше его мощности.Например, увеличив степень сжатия с 8: 1 до 9: 1, можно повысить экономию топлива примерно на 5–6 процентов.

Как это влияет на загрязнение или выбросы:

  • Высокая степень сжатия обеспечивает лучшее сгорание топлива, что снижает количество отработанного газа, производимого двигателем. Любая величина, превышающая 16: 1, может вызвать детонацию. Более низкие степени сжатия позволяют сжигать некачественное топливо или топливо с более низким октановым числом, что увеличивает количество выхлопных газов.

Как это влияет на характеристики холодного пуска двигателя:

  • Двигатели с высокой степенью сжатия выделяют чрезмерное тепло по сравнению с автомобилями с более низкой степенью сжатия, поэтому холодный запуск не должен быть проблемой для этих типов транспортных средств, в большинстве мотоциклов (с высокой степенью сжатия) не касаться дроссельной заслонки во время холодного запуска. очень эффективный. Что касается двигателя с более низкой степенью сжатия, ситуация такая же, как и для любого обычного двигателя, вам нужно, чтобы он нагрелся для лучшего запуска.

Как это влияет на производительность:

  • Это и ежу понятно, более высокая степень сжатия обеспечит гораздо большую мощность, чем более низкая, поэтому автомобили F1 имеют чрезвычайно высокую степень сжатия. Это также позволяет двигателю быть более эффективным на более высоких оборотах. Более низкие степени сжатия дают более низкую производительность, но их легче строить, обслуживать и, в целом, они имеют более длительный срок службы.

Зачем мне использовать более высокое сжатие:

  • Намного лучшая производительность.
  • Более высокая «относительная» экономия топлива.
  • более высокая полезная мощность на всех оборотах в минуту.
  • Улучшенные выбросы.

Зачем мне использовать более низкую степень сжатия:

  • Намного дешевле строить, эксплуатировать и ремонтировать.
  • Работает намного дольше аналога.
  • Может иметь воздушное охлаждение.
  • Меньше шума, вибрации.
  • Лучшая экономия топлива в реальном мире.
  • Работает на хреновом топливе.
  • Не выделяет столько тепла.

Последний пункт очень важен для мотоциклов, так как двигатель находится очень близко к ногам пользователя, голый байк с высокой степенью сжатия либо невозможно будет ехать в городе, либо потребуется надлежащее жидкостное охлаждение.

Надеюсь, это поможет.

Как определить степень сжатия

Если вы создаете новый двигатель и вам нужна метрика, или вам интересно узнать, насколько эффективно ваш автомобиль расходует топливо, вы должны уметь рассчитать степень сжатия двигателя.Есть несколько уравнений, необходимых для расчета степени сжатия, если вы делаете это вручную. Сначала они могут показаться сложными, но на самом деле это всего лишь базовая геометрия.

Степень сжатия двигателя измеряет две вещи: соотношение объема газа в цилиндре, когда поршень находится в верхней части хода (верхняя мертвая точка, или ВМТ), по сравнению с объемом газа, когда поршень находится в верхней мертвой точке. нижняя часть хода (нижняя мертвая точка или BDC). Проще говоря, степень сжатия — это измерение от сжатого газа до несжатого газа, или насколько плотно смесь воздуха и газа помещается в камеру сгорания до того, как она воспламенится свечой зажигания.Чем плотнее прилегает эта смесь, тем лучше она горит и тем больше энергии преобразуется в мощность для двигателя.

Есть два метода, которые можно использовать для расчета степени сжатия двигателя. Первая — это ручная версия, которая требует от вас как можно точнее выполнять все вычисления, а вторая — и, вероятно, самая распространенная — требует манометра, установленного в пустое гнездо свечи зажигания.

Метод 1 из 2: Измерьте степень сжатия вручную

Этот метод требует очень точных измерений, поэтому важно иметь очень точные инструменты, чистый двигатель и дважды или трижды проверять свою работу.Этот метод идеален для тех, кто либо строит двигатель и имеет под рукой инструменты, либо для тех, у кого двигатель уже разобран. Разборка двигателя для использования этого метода займет очень много времени. Если у вас собран двигатель, прокрутите вниз и используйте метод 2 из 2.

Необходимые материалы

  • Калибр
  • Калькулятор
  • Обезжириватель и чистые тряпки (при необходимости)
  • Инструкция производителя (или инструкция по эксплуатации автомобиля)
  • Микрометр
  • Блокнот, ручка и бумага
  • Линейка или рулетка (должна быть с точностью до миллиметра)

Шаг 1. Очистите двигатель Тщательно очистите цилиндры и поршни двигателя с помощью обезжиривателя и чистой тряпки.

Шаг 2: Найдите размер отверстия . Циферблатный калибр используется для измерения диаметра отверстия или, в данном случае, цилиндра. Сначала определите приблизительный диаметр цилиндра и откалибруйте индикатор внутреннего диаметра с помощью микрометра. Вставьте калибр в цилиндр и несколько раз измерьте отверстие в разных местах цилиндра и запишите измерения. Сложите свои измерения и разделите на то, сколько вы взяли (обычно трех или четырех достаточно), чтобы получить средний диаметр.Разделите это измерение на 2, чтобы получить средний радиус отверстия.

Шаг 3: Рассчитайте размер цилиндра . Используя точную линейку или рулетку, измерьте высоту цилиндра. Измерьте расстояние от самого низа до самого верха, убедившись, что линейка выровнена. Это число рассчитывает ход или площадь, которую поршень перемещает при однократном перемещении вверх или вниз по цилиндру. Для расчета объема цилиндра используйте эту формулу: V = π r 2 h

Шаг 4: Определите объем камеры сгорания .Найдите объем камеры сгорания в руководстве по эксплуатации вашего автомобиля. Объем камеры сгорания измеряется в кубических сантиметрах (CCs) и определяет, сколько вещества требуется для заполнения отверстия камеры сгорания. Если вы собираете двигатель, обратитесь к руководству производителя. В противном случае обратитесь к руководству по эксплуатации автомобиля.

Шаг 5: Найдите высоту сжатия поршня . В мануале найдите высоту сжатия поршня. Это измерение представляет собой расстояние между центральной линией отверстия под палец и верхом поршня.

Шаг 6: Измерьте объем поршня . Снова в руководстве найдите объем купола или тарелки поршня, также измеренный в кубических сантиметрах. Поршень с положительным значением CC всегда называется «куполом», который выступает над высотой сжатия поршня, в то время как «тарелка» — это отрицательное значение, которое учитывает карманы клапана. Обычно поршень имеет как купол, так и тарелку, а окончательный объем представляет собой сумму обеих характеристик (купол минус тарелка).

Шаг 7: Найдите зазор между поршнем и декой .Рассчитайте зазор между поршнем и декой с помощью следующего расчета: (Диаметр цилиндра [измерение из шага 2] + Диаметр цилиндра × 0,7854 [константа, которая преобразует все в кубические дюймы] × расстояние между поршнем и платформой в верхней мертвой точке [ВМТ]).

Шаг 8: Определите объем прокладки . Измерьте толщину прокладки головки и диаметр отверстия, чтобы определить объем прокладки. Сделайте это почти так же, как и зазор деки (шаг 7): (Диаметр отверстия [измерение из шага 8] + отверстие × 0,7854 × толщина прокладки).

Шаг 9: Рассчитайте степень сжатия . Рассчитайте степень сжатия, решив это уравнение:

Если вы получите число, скажем, 8,75, степень сжатия будет 8,75: 1.

  • Подсказка : Если вы не хотите вычислять числа самостоятельно, есть несколько онлайн-калькуляторов степени сжатия, которые решат это за вас; кликните сюда.

Метод 2 из 2: Используйте манометр

Этот метод идеален для тех, у кого двигатель собран, и кто хочет проверить степень сжатия автомобиля через гнезда свечей зажигания.Вам понадобится помощь друга.

Необходимые материалы

  • Манометр
  • Ключ для свечей зажигания
  • Рабочие перчатки

Шаг 1. Прогрейте двигатель . Дайте двигателю поработать, пока он не прогреется до нормальной температуры. Вы не хотите пробовать это, когда двигатель холодный, потому что вы не получите точных показаний.

Шаг 2: Снимите свечи зажигания . Полностью выключите зажигание и отсоедините одну из свечей зажигания от кабеля, соединяющего ее с распределителем.Откручиваем свечу зажигания.

  • Tip Если ваши свечи зажигания грязные, вы можете использовать это как возможность их почистить.

Шаг 3. Вставьте манометр . Вставьте патрубок манометра в отверстие, где крепилась свеча зажигания. Важно, чтобы сопло было полностью вставлено в камеру.

Шаг 4: Проверить цилиндр . Пока вы держите манометр, попросите друга запустить двигатель и разогнать автомобиль примерно на пять секунд, чтобы вы могли получить правильные показания.Заглушите двигатель, выньте сопло манометра и установите свечу зажигания с надлежащим крутящим моментом, указанным в руководстве.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *