ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Линейный электромагнитный соленоид: принцип работы и типы

В данной статье мы подробно поговорим про линейный соленоид, опишем принцип его работы, разберем конструкции линейного и вращательного соленоида, а так же вы узнаете как снизить энергопотребление соленоида.

Описание и принцип работы соленоида

Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.

Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку.

Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид .

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности.

Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода. Эта катушка проволоки становится « 

электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита.

Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.

Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.

Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.

Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.

Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.

Снижение энергопотребления соленоида

Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода.

Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.

При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее.

Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении. Одним из способов достижения этого является последовательное подключение подходящего «удерживающего» резистора с катушкой соленоида, например:

Здесь контакты переключателя замыкаются, замыкая сопротивление и передавая полный ток питания непосредственно на обмотки электромагнитных катушек. После подачи питания контакты, которые могут быть механически связаны с плунжером электромагнитного действия, размыкаются, соединяя удерживающий резистор R H последовательно с катушкой соленоида. Это эффективно соединяет резистор последовательно с катушкой.

Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 

2 R (закон Ома), и это также необходимо учитывать.

Рабочий цикл соленоида

Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.

Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.

Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения.

В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.

meanders.ru

Соленоиды. Виды и устройство. Работа и особенности

Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.

Устройство и принцип действия

Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется магнитное поле.

Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.

Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:

Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0 — вакуумная магнитная проницаемость.

На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.

По краям соленоида магнитная индукция равна:

Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.

Этот ток образует в соленоиде магнитное поле:

Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:

Индуктивность соленоида определяется:

Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 — вакуумная магнитная проницаемость.

При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: активной и реактивной. Они зависят от индуктивности и электрического сопротивления проводника катушки.

Виды соленоидов

По назначению соленоиды разделяют на два класса:

  1. Стационарные. То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
  2. Импульсные. Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.

Стационарные способны создать поля не более 2,5х105 Э. Соленоиды импульсного типа могут создать поля 5х106 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I, где k – постоянная величина соленоида, поддающаяся расчету.

Стационарные делятся:

  • Резистивные.
  • Сверхпроводящие.

Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.

Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.

Устройства для создания мощных магнитных полей включают в себя три главные части:

  1. Соленоид.
  2. Источник тока.
  3. Система охлаждения.

При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.

Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.

Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.

Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.

Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.

Критическое поле повышается при снижении температуры от 0 до наибольшего значения. Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.

Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.

Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.

Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.

Похожие темы:

electrosam.ru

Соленоиды: что это такое, и основные неисправности и их устранение

Приветствую вас, дорогие мои читатели. Не буду вас утомлять терминами из энциклопедии, благо таких хоть пруд пруди. Постараюсь доходчиво и популярно рассказать про соленоиды, которые повсеместно присутствуют в наших автомобилях.

Что такое соленоид

Все просто: металлический или магнитный стержень , который помещен внутрь обмотки (катушки индуктивности). Когда на обмотку (катушку индуктивности) подается напряжение, создается магнитное поле, которое притягивает или отталкивает тот самый стержень. На конец стержня (сердечника) прикрепляется элемент, который необходимо привести в движение.

Где применяются соленоиды

Говоря коротко — в тягах. Другими словами если что-то нужно толкнуть или подтянуть, применяется соленоид. Соленоиды вы встретите в простых электромагнитных клапанах, тягах центрального замка, воздушных заслонках в климат контроле, которые могут принимать положение «открыто» или «закрыто». Но есть два узла в автомобиле, которые чаще всего упоминаются: топливная форсунка в распределенном впрыске и втягивающее реле в стартере — эти детали являются соленоидами.

Насколько надежны соленоиды

Сложно представить условия, при которых может сломаться сам соленоид. Его как минимум необходимо перегреть, чтобы повредить изоляцию в обмотке или подать напряжение выше номинального. Обычно ломается не сам соленоид, а узел, который приводится им в действие. Не важно, будет это АКПП, внутри которой имеется множество соленоидных клапанов, или привод заслонки рециркуляции воздуха — скорее сломается тяга или мембрана, а не соленоид. Вспомните: топливные форсунки щелкают почти всегда, в вот игла, приводимая в движение соленоидом со временем обрастает налетом, который не позволяет ей двигаться или плотно прилегать, в итоге форсунка или перестает открываться или теряет герметичность.

Как устранить неисправность в соленоиде

Для начала стоит убедиться, что соленоид цел. Для этого его необходимо прозвонить, чтобы исключить обрыв, после чего замерить его сопротивление, сравнив его с паспортным. Если сопротивление в норме и обрыва нет, переходим к следующему пункту.

Если соленоид цел, значит что-то мешает передвигаться его стержню. В клапанах адсорбера может всосать уголь, в заслонках забиваются грязью и жиром шарниры заслонок, в форсунках образуется налет или выработка — в общем попробуйте пошевелить механизм рукой, пытаясь понять, что мешает двигаться. Если рукой не долезть, или придется разбирать узел на свой страх и риск или промывать его моющими жидкостями или заменять, так и не узнав, что же случилось.

Помните: топливные форсунки и клапаны АБС пытаться разобрать и починить очень опасно. Это хорошо, если вы их просто сломаете, но если вам удастся их собрать, то последствия установки «восстановленной» детали будут скорее всего плачевными.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

myautoexp.ru

назначение клапана в коробке передач

Соленоиды, не имеют ничего общего с обычной солью, хотя по звуку эти понятия несколько роднятся. На самом деле соленодоиды-это такие клапана в легковой машине.

Зачем они нужны?

Соленоиды, обеспечивают в машине открытие специального клапана, который в свою очередь нужен для смазки АКПП. Такие Соленоиды для АКПП, сами по-себе не работают. Их функционал зависит от работы электронного блока в авто.

Также стоит указать на то, что и сами АКПП, являются клапанами непростыми, а электромагнитными. С их помощью владелец авто может регулировать бесперебойную и надежную как смазку, так и охлаждение всех находящихся в трансмиссии частей.

Что собой представляет подобный клапан?

Строение соленоидов АКПП довольно простое. В обычный клапан такой конструкции входит магнитный стержень, имеющий обмотку из меди. Таким образом, когда авто готово к движению и все важные узлы уже находятся под напряжением, соленоид открывает и закрывает специальный канал в котором содержится смазочное масло для АКПП. Тем самым охлаждая важные узлы в работе авто.

В чем принцип действия?

Он до банальности простой. Когда напруги нет, то соленоид АКПП, притягивается к масляному каналу за счет пружин. Так происходит закрытие канала. Однако при поступлении тока, возникает магнитное поле за счет которого пружина как бы автоматически выталкивает клапан наружу, открывая доступ к маслу для смазки.

Разновидности клапанов

Современные соленоиды в отличие от устаревших классических устроены несколько сложнее и управляются за счет импульсной модуляции. Такое нововведение позволило клапану открываться намного плавнее чем обычно. В результате чего количество поступающего масла увеличивается, плавно растекаясь по деталям, обеспечивая более качественную смазку АКПП.

Преимуществом современных соленоидов можно назвать экономность последних при выходе из строя. Замены осуществляются по одному, а не комплектом как в классическом варианте.

Типы клапанов на сегодня

Среди нынешних деталей, как например, соленоид АКПП можно выделить несколько самых распространенных типов электроклапанов авто.

Итак:

1. 3, 4, 5-WAY электроклапана, они служат «переключателями». Бывают как шариковыми, так и золотниковыми.

2. EPC или LPC –эти модели осуществляют контролирующую функцию линейного давления.

3. ТСС больше служит для осуществления блокировки гидротрансформатора.

4. Shift solenoid — соленоид-переключатель, служащий для переключения скоростей, его еще называют «шифтовиком».

5. Современные клапана, так называемые функциональные, которые обеспечивают управление клапанами непосредственно самой плиты по типу транзистора в стандартной электросхеме.

6. Модель обеспечивающая качество переключения передач и работает она лишь для мягкого переключения со скольжением передач.

7. Соленоид управляющий охлаждением смазки. Его работа сродни термостату, который осуществляет открытие канала для понижения температуры масла через внешний радиатор, к примеру.

Как видите, на сегодня типов и видов соленоидов очень большое количество. Причем, их конструкции и возможности все время расширяются и усложняются одновременно, а диагностика и ремонт упрощается до банальной замены. Хотя еще недавно в большинстве случаев требовалась чистка соленоидов.

Как распознать поломку?

Соленоид АКПП при неисправности можно определить по некоторым признакам:

1. Ваша АКПП стала намного чаще перестраиваться в режим аварийности.

2. Если при стандартном переключении скоростного режима появились резкие толчки.

3. Если при плавном наборе оборотов отчетливо слышны удары в коробке.

Таким образом, заметив такие признаки в машине, владельцу нужно срочно провести глубокую сервисную диагностику и при обнаружении прибегнуть к ремонту АКПП. Поскольку в подобных случаях мастера сервисных центров чаще всего обнаруживают именно неисправности соленоидов.

Возможные причины выхода из строя клапанов

Современные соленоиды, способны выходить из рабочего строя, как и любой другой сложный компонент авто. Причем причины могут быть не только из-за износа последних, но и связанные с другими скорее внешними причинами.

1. Одной из причин неисправности АКПП и соленоидов в частности может стать применение владельцем автомобиля плохого, некачественного масла. Что же происходит в этом случае? На частях клапана начинает коксоваться масляный осадок, что в определенный момент заклинит в одном положении шток, а значит и сам канал и ни о каком нормальном функционале уже речь идти не может.

Ремонт соленоида в этом случае сложный и дорогостоящий, поскольку менять придется не один,а все сразу. Избежать этого поможет регулярная замена расходно-смазочных материалов.

2. К поломке электроклапанов может привести и неисправность блока управления авто. Но проверить так это или нет можно лишь путем компьютерной диагностики машины. Цена восстановления при этом будет высокой за счет стоимости самого блочка.

Характер езды

Как бы это удивительно не казалось, но от характера езды на вашем авто, во многом зависит и срок службы который сможет прослужить вам соленоид. Специалисты утверждают что более мягкая неторопливая езда на машине значительно продлевает срок службы соленоидов.

А вот если вы поклонник более агрессивной манеры ведения своего авто, то должны знать, что частое нажатие на педаль газа и частое переключение передачи, станет причиной отказа от работы, выхода из рабочего строя соленоида, износа в прямом смысле слова, буквально на первой сотне километров.

Износ плунжера также станет причиной отказа работы клапана, будет наблюдаться нерегулярная подача тока, затем вы заметите что плохо подается смазка в АКПП, дальше вы увидите плохой функционал гидроблока и коробки в целом и так далее. То есть банальное чрезмерное использование педали сцепления, может привести к автоматической неисправности и нарушению работы электроклапана-соленоида.

Чем чревато?

Многих автовладельцев часто волнует вопрос о том, можно ли игнорировать отработавший свой ресурс электроклапан и чем это чревато, если ли какая –то альтернатива или нужно срочно ехать в СТО.

Давайте по порядку. По сути электроклапана открывают канал, заблокированного сцепления фрикционов. Конечно скоростя можно переключать и с толчками, не страшно, тем более что вы знаете, что это неисправный клапан. Но при этом, нельзя также забывать и о том, что может быть не до конца открытым либо закрытым сам канал, что сродни недоотжатому в МКП сцеплению.

Это создаст недостачу давления и работу в сухом режиме, что станет причиной сжигания и масла и фрикционов, начнется выработка всего железа и втулки. В конечном итоге вы получите смерть соленоидов из-за их работы на полное сечение.

Что это значит?

Лишь то, что после выработки ресурса втулок вибрации, полетят все валы, а также и сочленения. Итог будет таковым, что ремонтировать вашу коробку уже не будет смысла, проще будет купить ее новую.

Поэтому любите свое авто, как себя, делайте все вовремя и машинка прослужит вам долгие годы. Ведь неверную работу клапанов-соленоидов можно сравнить с болезнью человека, такой как ангина или ГРИПП. Перенося которую на ногах, человек гробит свое сердце навсегда, так и тут.

Итоги

Давайте подведем итоги. Самыми распространенными причинами отказа электроклапанов в коробке, являются:

1. Засорение. Высочайший урон приносит клеевой слой на фрикционах. Все канальчики забиваются, а плунжеры при этом клинит. Нештатный функционал соленоидов-клапанов может нарушить работу всей АКПП. Значит гидравлический блок время от времени все-таки стоит чистить и желательно его менять по мере изнашивания фрикционов. Особого внимания заслуживает фрикцион гидротрансформатора.

2. Выработка самого клапана-соленоида и его частей. Смиритесь, они к сожалению, тоже не вечны и имеют свой разумный ресурс. Хорошо бы выполнять их замену по регламенту, не дожидаясь пока компьютер при диагностике станет показывать ошибку.

Помните даже максимально современным и надежным электроклапанам замена нужна уже на 200000 километрах пробега! Самые незначительные изменения характеристик в работе электроклапанов гидроблока коробки, повлекут за собой наличие в движении пробуксовок, толчков при смене передач.

При длительной ненормальной эксплуатации поломаются все железные детали коробки: корзина сцепления, лента торможения, планетарные механизмы и прочее. А восстановление с заменой последних в денежном плане выйдет гораздо дороже текущего периодического сервиса.

Поделитесь информацией с друзьями:



shokavto.ru

📌 Соленоид — это… 🎓 Что такое Соленоид?

Образование магнитного потока в соленоиде Схема полей в соленоиде при протекании по обмотке переменного тока

Солено́ид — разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.

Соленоид почти всегда снабжается внешним магнитопроводом. Внутренний магнитопровод может быть подвижным или отсутствовать вовсе.

Соленоид на постоянном токе

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно

(СИ),

(СГС),

где — магнитная проницаемость вакуума, — число витков N на единицу длины l (линейная плотность витков), — ток в обмотке.

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

Индуктивность соленоида

Индуктивность соленоида выражается следующим образом:

(СИ),
(СГС),

где  — объём соленоида,  — длина проводника, намотаннного на соленоид,  — длина соленоида,  — диаметр витка.

Без использования магнитного материала плотность магнитного потока в пределах катушки является фактически постоянной и равна

где − магнитная проницаемость вакуума, − число витков, — сила тока и — длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :

Отсюда следует формула для индуктивности соленоида

эквивалентная предыдущим двум формулам.

Соленоид на переменном токе

При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

Применение

Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.

Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч. Один из самых известных примеров — «тяговое реле» автомобильного стартёра.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

См. также

dic.academic.ru

Соленоид « Попаданцев.нет

Соленоид — штука простая. Это всего лишь катушка, по которой проходит электрический ток — и под действием этого тока вокруг нее возникает магнитное поле,  втягивающее в себя металлический стержень (плунжер).
Однако, некоторые тонкости в вопросе все же существуют…

Сейчас мы рассмотрим только соленоид на постоянном токе, соленоид же на переменном токе ближе к электромагниту. Хотя в любом случае грань между соленоидом и электромагнитом если и существует, то номинальная. Уж очень близкие принципы действия.

Следует помнить, что сила, с которой соленоид втягивает плунжер, зависит в основном от двух вещей — от количества и плотности витков и от силы тока, протекающей через соленоид. При этом втягивающая сила у него достаточно велика, у современных она легко может достигать килограмма, хотя я сомневаюсь, что попаданец сможет добиться такого результата именно с соленоидом.

Однако, ход плунжера у соленоида невелик — обычно в районе сантиметра.
Это обусловлено тем, что плунжер должен хотя бы на треть входить в катушку при не втянутом состоянии, иначе втягивающая сила будет очень слабой. И провод обязательно должен быть изолированный — во-первых для повышения плотности витков, а во-вторых потому, что магнитные силы, которые возникают в соленоиде, действуют также и на сами витки, и если ток большой — витки будут сжиматься и деформироваться, что даст межвитковые замыкания.
Поэтому надеяться на силовое его использование не следует (для этого нужно строить электромагнит с сердечником).

Для чего может соленоид пригодится попаданцу?
Сразу говорю — не следует делать электрический дверной замок. Это первое, что приходит в голову, но проблем с ним будет космическое количество. Самый примитивный замок — это запор, который вниз падает под силой тяжести и запирает дверь, а вверх поднимается соленоидом — без всяких пружин. Однако, втягивающая сила невелика, и если гальванический элемент разрядится, то соленоид просто не сможет поднять запор, у нас ведь эпоха древняя и запор должен быть массивным. Также он не сможет поднять запор при увеличении силы трения (например, дверь чуть-чуть прижали). Если же положить запор в горизонтальное положение, будут проблемы с калибровкой пружины, которая возвращает запор и со смазкой (нефть не сразу стали перерабатывать на солидол). Вообще пружин с примитивной металлургией желательно избегать — это будет еще одно слабое место конструкции.

Однако, соленоиду есть применение.

Например, для самого примитивного телеграфа, где соленоид показывает флажки — замкнута ли цепь.
То есть при замыкании цепи и втягивании плунжера (который падает вниз под силой тяжести), соленоид высовывает из катушки прикрепленный сверху плунжера яркий флажок. Замкнули цепь — флажок показался из катушки, разомкнули — упал внутрь.
Для такого телеграфа не нужно даже звонка или пружины — только достаточное количество медного провода и гальванический элемент. Я сомневаюсь, можно ли придумать конструкцию проще.

Так как втягивающая сила зависит от тока, то из соленоида и пружинки можно собрать примитивный амперметр. В качестве пружинки подойдет упругая пластинка, силу изгиба которой можно откалибровать гирькой. Такой амперметр все равно будет достаточно действенным на фоне отсутствия хоть каких-нибудь измерительных приборов.

www.popadancev.net

Соленоиды АКПП – принцип работы и назначение |

Что такое соленоиды в АКПП | Принцип работы

Соленоиды АКПП – это электромагнитные клапана, которые управляются электронным блоком и отвечают за открытие канала для смазки АКПП. Именно соленоиды обеспечивают качественную смазку и охлаждение внутренних элементов автоматической трансмиссии. Сам соленоид состоит из стержня из магнита с медной обмоткой. Под напряжением электромагнитный клапан открывает и закрывает масляный канал, через который происходит охлаждение и смазка узла.

Принцип работы соленоидов достаточно прост. Клапан при отсутствии напряжения втягивается пружинами, закрывая масляный канал. Как только на обмотку подается напряжение под действием электротока и возникающего магнитного поля пружина выталкивает клапан, открывая тем самым масляный канал. Необходимо сказать, что сегодня используются сложные по своей конструкции соленоиды, которые управляются широко-импульсной модуляцией. Использование подобной технологии управления позволяет обеспечить возможность плавного открытия клапана, что в свою очередь обеспечивает максимально качественную смазку АКПП. Необходимо сказать, что преимуществом использования таких соленоидов с управлением широко-импульсной модуляцией является возможность замены вышедших элементов из строя по одному. Тогда как обычные клапана меняются всем комплектом сразу.

Признаки неисправности соленоидов:

Определить поломку вы можете по косвенным признакам, к которым относятся:

  • Частый переход АКПП в аварийный режим.
  • Наличие резких толчков при переключении скоростей.
  • Удары в коробке во время плавного набора оборотов.

В том случае, если вы заметили у себя в автомобиле подобные симптомы, рекомендуется, как можно скорее обратиться в сервисный центр, где вам проведут глубокую проверку автомобиля и при необходимости выполнят ремонт автоматической коробки передач.

Типичные неисправности соленоидов

Как и любой иной сложный элемент, соленоиды могут выходить из строя. Все поломки могут быть вызваны как выработкой своего эксплуатационного срока, так и внешними факторами. Поговорим поподробнее о причинах поломок электрических клапанов. Основной причиной выхода из строя соленоидов является использование некачественного масла. На элементах клапана появляется осадок из коксующегося масла, что и приводит в конечном итоге к заклиниванию штока в одном положении. Сложность ремонта в данном случае состоит в том, что требуется производить замену всех соленоидов, что имеет высокую стоимость. Именно поэтому автопроизводители и специалисты из сервисных центров рекомендуют производить регулярную замену масла в АКПП и использовать качественные расходные материалы.

В ряде случаев причиной выхода из строя электроклапанов являются поломки блока управления, который отвечает за их работу. Определить такую проблему можно лишь выполнив компьютерную диагностику авто. Ремонт заключается в замене вышедшего из строя блока. Следует сказать, что, несмотря на свою относительную простоту, такой ремонт имеет существенную стоимость, что объясняется ценой самого электрического блока управления.

Агрессивная езда — двойная нагрузка на соленоиды

Также вам необходимо помнить о сроке службы соленоидов. Не следует думать, что такой клапан вечный и при соблюдении всех требований в части сервисного обслуживания авто, клапана никогда не будут ломаться. В среднем современные соленоиды имеют гарантированный срок эксплуатации в 300-400 тысяч циклов. Причем, их срок службы зависит не столько от пробега автомобиля, сколько от манеры езды автовладельца. Если вы практикуете агрессивную езду и часто нажимаете на педаль газа с активным переключением передач, то это вскоре выведет из строя электроклапана, которые буквально через 100-150 тысяч километров могут потребовать замены.

akpp-praktik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *