Устройство автомобиля: инжектор
Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?
История инжектора
Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).
К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.
Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора — легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.
Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.
Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.
В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.
Схема работы инжектора
Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.
Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.
В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.
Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:
- растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
- равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
- автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
- понижается уровень вредных выбросов в атмосферу,
- расширяются возможности для тюнинга двигателя
- облегчается диагностика двигателя (с учетом использования электронных технических средств)
- сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем
С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.
Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.
При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.
В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:
- при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском — дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
- при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
- при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.
Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.
Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.
Система управления инжектора
Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).
Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров — стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.
Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» — системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.
Промывка инжектора
Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России — сбои из-за засорения системы топливоподачи.
Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.
Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.
Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.
У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его — что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.
При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.
В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.
И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.
Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.
С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.
На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» — некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.
- Автор
- Дмитрий Лонь, корреспондент MotorPage.ru
- Издание
- MotorPage.Ru
его достоинства, виды, конструктивные особенности
Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.
Немного истории
Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.
Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора.
Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.
Что такое инжектор и чем он хорош
Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.
Достоинствами инжекторного двигателя, относительно карбюраторных, такие:
- Экономичность расхода;
- Лучший выход мощности;
- Меньшее количество вредных веществ в выхлопных газах;
- Легкость пуска мотора при любых условиях.
И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.
Видео: Принцип работы системы питания инжекторного двигателя
Виды инжекторов
Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.
Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.
Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:
- Центральная;
- Распределенная;
- Непосредственная.
1. Центральная
Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.
Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.
2. Распределенная
Распределенный впрыск топлива
Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.
Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.
К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.
3. Непосредственная
Система непосредственного впрыска топлива
Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной.
Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.Конструкция и принцип работы инжектора
Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.
Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.
Механическая составляющая инжектора
Система питания автомобилей ВАЗ 2108, 2109, 21099
К механической части инжектора относится:
- топливный бак;
- электрический бензонасос;
- фильтр очистки бензина;
- топливопроводы высокого давления;
- топливная рампа;
- форсунки;
- дроссельный узел;
- воздушный фильтр.
Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.
Видео: Инжектор
Принцип работы инжектора
Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.
Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.
Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.
Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.
Устройство электромагнитной форсунки
Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.
С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.
Электронная составляющая
Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.
Для своей работы ЭБУ использует показания датчиков:
- Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
- Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
- Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
- Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
- Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
- Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
- Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
- Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;
Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.
Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.
При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.
Инжекторный бензиновый двигатель
Инжекторный двигатель – это основной тип двигателя внутреннего сгорания, который используется в современных автомобилях.
По способу подачи топливной смеси все бензиновые двигатели делятся на карбюраторные и инжекторные. В карбюраторных моторах для подачи топлива и образования смеси происходит в механическом приспособлении под названием карбюратор, а в инжекторных двигателях смесь образуется непосредственно в приемном коллекторе, куда топливо впрыскивается при помощи электронно-управляемых форсунок.
История применения инжектора на бензиновых двигателях
Первую механическую систему впрыска, прообраз современного инжекторного двигателя, разработала фирма BOSCH. Система была установлена на серийном автомобиле Mercedes Benz 300SL в 1954 году. Изменения в системе подачи топлива не были кардинальными — вместо карбюратора использовался механизм дозирования с одной форсункой, который имел электронное управление. Позже такую конструкцию назовут «моновпрыск». Дозировка подачи происходила более точно по объему, но не в каждый цилиндр отдельно, а централизованно, как в карбюраторе.
Одну из первых систем электронного распределенного впрыска под названием Electrojector разработала американская фирма Bendix Corporation в 1957 году
После изобретения распределенного впрыска подача топлива к каждому цилиндру стала производится индивидуально. В этой системе впрыска образование топливной смеси происходит в непосредственной близости от впускных клапанов каждого цилиндра. Топливо поступает к форсункам по трубопроводу и распыляется ими в коллектор. Работа каждой форсунки регулируется. За счет этого контроль дозировки топлива и впрыска в каждый цилиндр удалось поднять на новый уровень.
Но конструкторы не остановились на этом и разработали систему с непосредственным впрыском топлива. Первый подобный серийный двигатель впервые продемонстрировал концерн Mitsubishi в 1996 году. В нем воздух подводится к границе камеры сгорания и впускного клапана, и только в самом цилиндре он встречается со струей бензина.
Устройство и принцип работы инжекторных двигателей
Мощность двигателя зависит от объема смеси воздуха и бензина, в единицу времени поступающего в камеру сгорания. Необходимость замены карбюратора на более совершенное устройство возникла из-за того, что в механическом устройстве (в данном случае, в карбюраторе) не удается реализовать достаточно быстрый отклик на изменение нагрузки на двигатель.
В Японии электронно-управляемый распределенный впрыск для серийного автомобиля предложила компания Toyota. Это была опция для модели Celica 1974 года
В инжекторной системе подача топлива производится впрыском во впускной коллектор с помощью форсунок. Эта система подачи топливо-воздушной смеси сложнее, но гибче и оперативнее карбюратора.
Схема работы системы впрыска инжекторного бензинового двигателя включает в себя сбор информации, ее обработку и подачу электронного сигнала на исполнительные устройства, в данном случае, на форсунки.
Механическая составляющая этой системы состоит из бензонасоса, перепускного клапана топливной магистрали (регулятора давления), устройства для поддержки холостого хода двигателя, и форсунок.
Форсунки бывают механическими и с электрическим приводом. В качестве привода используется электромагнит или пьезоэлемент.
ФорсункаБензин распыляется форсункой под давлением через очень маленькое отверстие. С одной стороны, это позволяет добиться высокой точности дозировки и отличного распыла, с другой, качество топлива для инжекторных двигателей имеет огромное значение. Забитое отверстие не сможет хорошо распылять топливо, а значит, и оптимальной горючей смеси не получится.
Ассоциация NASCAR запретила использование карбюраторов на гоночных автомобилях одноименной лиги только в 2012 году
Электронно-управляемая форсунка выполняет команды компьютера и подает необходимое количество топлива в изменяемые в соответствии с текущей нагрузкой, точно рассчитанные промежутки времени. В бензиновых двигателях с распределенным впрыском с форсунками взаимодействуют свечи, играющие роль исполнительного устройства. Получив электрический импульс, форсунка под давлением впрыскивает топливо в цилиндр или впускной коллектор и перекрывает подачу после срабатывания свечи.
Блок управления двигателемРоль компьютерного управления в работе системы впрыска
Самой сложной составляющей инжекторных бензиновых двигателей является электронный блок управления. В его схему входят ПЗУ — постоянное запоминающее устройство, ОЗУ — оперативное запоминающее устройство и микропроцессор. Он обрабатывает поступающие от датчиков электронные сигналы, анализирует информацию и сравнивает с данными, хранящимися в памяти компьютера. Встроенная программа учитывает особенности разнообразных режимов работы двигателя и внешние условия, в которых ему приходится работать. Если в информации обнаруживаются расхождения, компьютер выдает команды исполнительным механизмам для коррекции.
Применение распределенного впрыска сделало возможным появление системы отключения части цилиндров двигателей большого объема
Датчики, собирающие информацию о работе двигателя, действуют совместно с ЭБУ. Они расположены на разных узлах, входящих в конструкцию двигателя. Среди стандартных приборов сбора информации: датчик массового расхода воздуха; датчик положения дроссельной заслонки; датчик детонации; датчик температуры охлаждающей жидкости; датчик положения коленчатого вала и другие. На 16-клапанных двигателях дополнительно устанавливается датчик фаз.
Процесс работы инжекторной системы впрыска выглядит следующим образом: датчик расхода воздуха измеряет поступающую в двигатель массу газа и передает данные компьютеру. На основе этой информации и с учетом других текущих параметров — температуры воздуха и самого двигателя, скорости вращения коленчатого вала, степени и скорости открытия дроссельной заслонки — компьютер рассчитывает оптимальное количество топлива на данный объем воздуха и подает электрический импульс необходимой продолжительности на форсунки. Принимая этот импульс, они открываются и под давлением впрыскивают топливо во впускной коллектор.
Достоинства и недостатки инжекторных двигателей
Главное преимущество инжекторных бензиновых двигателей — экономичность. Она составляет 10-20% в сравнении с карбюраторными двигателями. Кроме того, в случае применения инжектора удается получить с того же рабочего объема двигателя большую мощность. Также, бесспорным преимуществом таких двигателей является меньшее содержание вредных веществ в выхлопных газах.
Минусом можно считать то, что в случае появления неисправности в системе инжекторного впрыска, диагностику и ремонт могут производить лишь квалифицированные специалисты. Сложность подобного профессионального обслуживания и является основным недостатком инжекторных бензиновых силовых установок.
Устройство системы впрыска топлива современного мотоцикла.
В настоящее время мотоциклы с впрыском топлива, постепенно вытесняют с наших дорог более простые карбюраторные аппараты, которые большинство людей в состоянии кое как настроить и обслужить. Но вот более современные инжекторные мотоциклы, для многих водителей очень сложны, и при возникновении какой либо неисправности, почти все байкеры разводят руками, и не знают с чего начать. И большинству мотоциклистов как то боязно отправляться на впрысковом аппарате в автономный дальнобой. Да и при поездках по родному городу если вдруг что случится, то грамотных мотосервисов по обслуживанию инжекторных мотоциклов, пока что очень мало, да и находятся они только в крупных городах. И вот для того, чтобы знать с чего начать устранять неисправность инжекторного двигателя, необходимо знать элементарное устройство системы впрыска топлива. Об этом мы и поговорим в этой статье.
Большое достоинство более древней карбюраторной системы питания двигателя, в простоте конструкции. И карбюраторные моторы не уступают по мощности инжекторным, такого же рабочего объёма, но вот бензина они потребляют гораздо больше, а состав выхлопных газов намного вреднее, чем у инжектора. Именно по этой причине в Европе и отказались от карбюраторов.
Об элементарном обслуживании системы впрыска топлива мотоциклов я уже писал, и почитать об этом можно здесь. В этой же статье мы подробно поговорим о компонентах системы впрыска, а так же о её неисправностях. Почему впрысковый мотор не заводится и как это устранить, можно узнать так же вот в этой полезной статье.
Основная задача топливной системы современных двигателей, это подача в камеры сгорания каждого цилиндра такое количество бензина, чтобы при любых погодных условиях и при любых эксплуатационных режимах работы, он смешивался с атмосферным воздухом в самом оптимальном для работы двигателя соотношении. Только в таком случае двигатель сможет выдать положенную ему мощность, при малом расходе топлива и низкой токсичности выхлопных газов.
Компоненты системы впрыска топлива.
Устройство системы впрыска топлива: 1 — катушка зажигания как одно целое с свечным колпачком, 2 — форсунка, 3 — датчик температуры всасываемого окружающего воздуха, 4 — датчик положения дроссельной заслонки, 5 — датчик давления всасываемого воздуха, 6 — датчик положения коленвала, 7 — датчик температуры охлаждающей жидкости, 8 — датчик положения распредвала, 9 — свеча зажигания, 10 — ECU, 11- блок управления зажиганием, 12 — датчик атмосферного давления, 13 — каталитический нейтрализатор.
Современная система впрыска топлива состоит из следующих частей: электронный блок управления двигателем (ECU electronic control unit), или бортовой компьютер, или говоря проще — мозги, система подачи топлива, несколько датчиков и каталитический нейтрализатор выхлопных газов.
Рассмотрим всё это подробнее. ECU блок управления чаще всего монтируется в самом сухом месте мотоцикла — под седлом. В обязанности бортового компьютера входит управление системой зажигания и форсунками, а также обеспечение электропитанием датчиков и узлов системы впрыска, ну и ещё одна важная его функция — это диагностика всей системы впрыска.
ECU блок состоит из четырёх основных компонентов
- Блок питания системы, который понижает бортовое напряжение 12,5 вольт в всего 5 вольт, так как большинство компонентов системы впрыска, рассчитано на напряжение в 5 вольт, а не 12.
- Входной интерфейс, который преобразует аналоговые сигналы от датчиков в цифровой код, который затем вводит в процессор.
- CPU — центральный процессор, который сравнивает показания от датчиков со своей основной программой, и затем отправляет соответствующие сигналы (команды) форсункам и системе зажигания.
- Выходной интерфейс, который преобразует команды центрального процессора в сигналы, которые приводят в действие индикаторы, реле, исполнительные механизмы.
Буквы на графике означают: t — продолжительность подачи топлива, Т — время работы двигателя, А — запуск мотора, В — прогрев мотора, С — холостой ход, D — ускорение, Е — постоянная скорость, F- торможение двигателем.
В память бортового компьютера записаны данные для неких средних условий эксплуатации впрыскового мотоцикла. И ECU постоянно считывает показания с датчиков двигателя, и сверяет их показания с значениями записанными в память, и уже корректирует продолжительность открытия форсунок в зависимости от показаний датчиков, которые создают общую картину режима работы двигателя. Это можно наглядно посмотреть на рисунке слева, где цифра 1 в красном столбике. означает подачу топлива при пуске двигателя, цифра 2 в жёлтом секторе показывает обогащение рабочей смеси после запуска, цифра три в голубом секторе означает обогащение смеси при прогреве мотора, 4 в оранжевом секторе — обогащение смеси при ускорении, 5 в белом секторе — отключение подачи топлива в цилиндры двигателя, если происходит торможение двигателем, 6 в синем секторе — это базовая продолжительность подачи топлива, которая записана в память процессора, 7 в нижней белой полосе — это постоянная компенсация изменения напряжения в бортовой сети мотоцикла.
Для определения угла опережения зажигания и энергии искры на свечах, блок управления руководствуется от сигналов, поступающих от датчика коленчатого вала и от датчика положения дроссельной заслонки. А нужный момент подачи топлива, блок управления определяет по сигналам с датчика положения распредвала, и с датчика положения коленвала. Так же по оборотам коленвала, блок управления распознаёт режим работы мотора : обычный или пусковой.
Устройство форсунки
Ну а форсунка впрыскового двигателя — это всё таки электро-механическое устройство, которое не в состоянии открыться мгновенно, а блок управления учитывает даже это, и компенсируя эту задержку, подаёт бензин чуть-чуть раньше. Так же в современной системе впрыска топлива, имеется двухступенчатый ограничитель оборотов. И если частота вращения коленчатого вала превысит допустимую для данного двигателя величину, блок управления тут же отключает подачу топлива к двум из четырёх цилиндров, и до тех пор, пока обороты не упадут до положенных. А в случае не сбавления оборотов, отключит и остальные два цилиндра.
Дополнительные функции ECU.
- При падении мотоцикла, когда приходит сигнал с датчика наклона, блок управления тут же отключает бензо-насос, форсунки, а так же отключает реле системы впрыска топлива, и тем самым двигатель моментально глохнет.
- Когда температура охлаждающей жидкости системы охлаждения повышается выше нормы, блок управления включает вентилятор радиатора.
- Так же блок управления приводит в действие (даёт команду) сервомотор, который открывает или закрывает заслонки в выхлопных партубках (на моторах с системой EXUP).
- Ну и ещё одна довольно редкая функция, которая применяется на немногих мотоциклах — включение или выелючение дополнительной фары, когда обороты коленвала значительно повышаются.
Система самодиагностики.
В блоке управления современного инжекторного двигателя имеется система самодиагностики, которая поможет вам определить неисправность. И если например при поездке произойдёт сбой системы, то блок управления тут же предупредит водителя включением соответствующей лампы на приборке мотоцикла, и двигатель может заглохнуть. Если компьютер решит, что дальше двигаться невозможно, то лампа на приборке заморгает, когда вы попытаетесь нажать кнопку старта двигателя.
Но советую повторить попытку, выключив, а затем включив замок зажигания, и затем опять попробовать запустить двигатель, нажав кнопку стартера. И если в мозгах был устранимый сбой, то такой перезапуск поможет. Ведь система самодиагностики обнаружив сбой, сама включит обходную программу, и тогда лампа на приборке будет гореть непрерывно, значит можно ехать в мастерскую своим ходом.
После того как вы заглушите двигатель, приехав в мастерскую, на жидкокристалическом мониторе приборки высветится код ошибки. И он будет оставаться в памяти бортового компьютера до тех пор, пока его не сотрут механики мото-сервиса. Отсюда следует сделать вывод: если у вас на приборной панели загорелась соответствуящая лампа диагностики, то советую не глушить двигатель, что бы узнать что произошло. Если например виноват вышедший из строя датчик положения распредвала, то после остановки двигателя, вы его уже не запустите, и придётся вызывать эвакуатор. (см. таблицу кодов неисправностей ниже в тексте, где показан номер кода, и написано, что двигаться можно, но если заглушить мотор, то он уже не запустится, пока вы не замените датчик распредвала). Поэтому при загорании лампы на панели, не глушите двигатель, а спокойно езжайте к себе в гараж. Ведь когда в гараже вы заглушите мотор, на панели высветится номер кода, по которому вы узнаете, что вышло из строя и что заменять в гаражных условиях, а не в дорожных. И именно для этого я и привожу в этой статье таблицу номеров кода и обнаружения неисправностей.
Многие могут задать вопрос: а что будет если лампочка диагностики сгорит. Ну я думаю, что этот факт трудно прозевать, так как лампа загорается каждый раз, когда вы включите зажигание, и затем через 1,4 секунды она гаснет. А если например вы нажмёте на кнопку старта раньше этой 1,4 секунды, то лампа гаснет раньше, как только вы нажимаете кнопку старта. И лампа не загорится при включении зажигания только в одном случае — если она перегорела. Поэтому прозевать этот момент практически невозможно, и если лампа когда нибудь перегорит, то срочно её замените новой. Эта лампа — ваша гарантия благополучного возвращения домой своим ходом.
Система подачи топлива.
Система подачи топлива состоит из бензонасоса, форсунок и регулятора давления топлива.
Бензонасос состоит из самого насоса роторного типа, который приводится во вращение от вала электродвигателя, а так же из фильтра и предохранительного клапана. Бензонасос и фильтр вмонтированы в бензобак (в отличии от большинства автомобилей). А предохранительный клапан нужен для того, чтобы спасти от разрыва трубопровод, в случае если этот трубопровод засорится. И когда давление превысит 4,5 -6,4 кг (например от засорения), то предохранительный клапан откроется, и лишний бензин стравливается по обратке в бензобак мотоцикла. Следует учесть, что бензонасос всегда подкачивает немного больше бензина, чем необходимо форсункам для нормальной подачи топлива в цилиндры.
Топливные форсунки, когда получают в нужный момент сигнал от блока управления, впрыскивают бензин в камеры сгорания двигателя, если этот двигатель с непосредственным впрыском, или во впускной канал — на обычном инжекторном моторе. Сечение всех форсунок одинаковое (и постоянное), и так же постоянна и разница между давлением впрыска бензина и давлением воздуха во впускном коллекторе (они постоянные), а это значит, что количество впрыснутого топлива, зависит только от величины сигнала от блока управления, (от длительности этого сигнала).
Регулятор давления. Вот именно он и следит, чтобы разница между давлением бензина в бензопроводе и давлением воздуха в впускном коллекторе была неизменной (постоянной) — это примерно около 3 кг/см², а если быть точным, то равно 2,84 кг/см², и эта величина практически одинакова на всех впрысковых мотоциклах. При поддержании постоянного давления в бензопроводе, регулятор давления постоянно стравливает лишний бензин обратно в бензобак, по обратному шлангу (обратке).
Датчики.
Датчики впрыскового двигателя помогают точно определить блоку управления, длительность открытия форсунок. Блок управления (ECU) современного инжекторного двигателя, получает и оценивает сигналы с таких датчиков: датчик положения коленчатого вала, датчик положения распределительного вала, датчик расхода воздуха (расходомер), датчик атмосферного давления, датчик давления воздуха во впускном коллекторе, датчик температуры системы охлаждения (антифриза), датчик температуры окружающего воздуха. И чтобы бензин подавался в каждый цилиндр двигателя в нужный и точный момент фазы впуска, блок управления сверяется с сигналами от датчиков коленчатого и распределительного валов.
Рассмотрим каждый датчик подробнее, это поможет вам точно уметь определять неисправность инжекторного двигателя, так как чаще всего проблемы возникают именно из-за выхода из строя какого либо датчика.
- Датчик положения распределительного вала. Этот датчик расположен в ценре крышки головки двигателя, точно над одним из распредвалов. Когда при работе двигателя распредвал вращается, то датчик положения распредвала, как и датчик положения коленвала, считывает сигналы и отправляет их на блок управления, а блок в этот момент определяет в каком из цилиндров начинается такт впуска и вовремя включает нужную форсунку цилиндра, в котором и происходит такт впуска.
- Датчик положения коленчатого вала. Этот датчик устанавливается в правой части коленвала двигателя. При работе мотора, коленвал естественно вращается, и когда выступы ротора, жёстко закреплённого на коленвалу проходят точно над сердечником катушки этого датчика, то возникают импульсы, которые поступают к блоку управления. По этим импульсам блок управления определяет точное положение коленвала, а так же частоту его вращения. Сверяясь с данными заложенными в память компьютера, и сопоставляя их с полученными импульсами (сигналами), процессор очень точно определяет нужный угол опережения зажигания и точный момент впрыска топлива.
- Датчик давления атмосферного воздуха необходим для того, чтобы компенсировать изменения в условиях окружающей среды. Например если вы заедете достаточно высоко над уровнем моря (в горах например), то атмосферное давление в таких местах ниже обычного, и если бы не корректировка датчика давления, то двигатель бы начал работать с перебоями (из за нехватки воздуха).
- Датчик положения дроссельной заслонки и датчик разряжения во впускном коллекторе помогают определить блоку управления каков расход воздуха, так как количество воздуха должно быть в определённой пропорции к количеству топлива.
- Датчик температуры жидкости (антифриза) в системе охлаждения необходим, чтобы от его показаний блок управления обогатил топливную смесь, которая впрыскивается во время запуска и работы холодного двигателя, пока он не прогреется.
- Датчик температуры окружающего воздуха. При изменении погодных условий и соответственно температуры окружающего воздуха, изменяется и плотность воздуха, а значит и его количество, которое поступает в двигатель. Это значит, что температура окружающего воздуха заметно влияет на состав бензовоздушной смеси. И считывая показания с датчика температуры окружающего воздуха, блок управления корректирует состав топливной смеси, и её подачу в двигатель.
- Датчик угла наклона байка. Этот датчик нужен для безопасности, так как предотвращает пожар при падении мотоцикла. Датчик «сообщает» блоку управления о критических углах наклона вашего байка. И если например этот наклон превысит 65°, то блок управления автоматически решит, что ваш мотоцикл упал, и моментально отключит бензонасос и форсунки двигателя, тем самым уберегая ваш аппарат и вас от возможного пожара. Чтобы датчик случайно не сработал например при прыжке или тряске, или если ваш байк наклонится и быстро вернётся в нормальное положение, вместе с датчиком работает реле времени, которое задерживает сигнал, и даёт возможность вам выпрямить положение вашего мотоцикла. Ну а если не дай Бог ваш аппарат наклонится более чем на 90°, то есть начнёт кувыркаться, то мотор мотоцикла в такой ситуации глушится моментально. И для того, чтобы после падения завести мотор вашего мотоцикла, кроме подъёма вашего байка в нормальное положение, требуется ещё и выключить зажигание, а затем заново его включить.
Таблица кодов неисправностей системы впрыска.
Неисправность датчиков поможет определить система самодиагностики мотоцикла, о которой я писал выше. Это легко сделать по номеру кода, который высвечивается на ЖК дисплее приборки мотоцикла, а затем посмотрев в таблице номер кода, прочитать точную неисправность (таблица поделена мной на три части, чтобы добиться более крупного шрифта). Ну а кому интересно как точно определить неисправность датчиков впрыскового мотора, с помощью обычного мультиметра (тестера), кликаем вот по этой ссылке и читаем (на примере автомобильных датчиков).
Ну и последняя, но очень важная деталь системы впрыска топлива только современных мотоциклов, это трёхкомпонентный каталитический нейтрализатор, который довольно эффективно дожигает углеводороды (СН) , оксид углерода или проще угарный газ (СО), а так же разлагает оксиды азота (NOx).
Вторая часть таблицы кодов неисправностей системы впрыска.
Лябда зонд, устанавливаемый в каталитический нейтрализатор, в несколько раз продлевает срок его службы. Лямбда зонд — это датчик кислорода, который начали устанавливать на большинство впрысковых мотоциклов только с 2005 года. Он очень важен, так как определяет точное количество кислорода в выхлопных газов, ведь в выхлопе присутствует строго определённое количество кислорода, при котором состав сгораемой бензовоздушной смеси оптимальный для нормальной работы мотора. И как только состав выхлопных газов выходит из нормы (это определяется лямбда зондом по количеству кислорода в выхлопе), то процессор блока управления, моментально корректирует подачу впрыскиваемого топлива.
Третья часть таблицы кодов неисправностей системы впрыска
Некоторые считают, что датчик кислорода является одной из заводских душилок двигателя. Да, это правда, он забирает небольшую часть мощности, но важнее потерять немного мощности, но зато благодаря этому датчику у вас всегда будет оптимальный для вашего двигателя состав топливной смеси. И пусть лямбда зонд не позволит обогатить смесь до такого значения, чтобы выжать из вашего двигателя дополнительные две-три лошади (на фоне табуна из 160 лошадей, эти две-три лошадки практически ничего не значат), зато экономичность вашего мотора не пострадает. К тому же датчик кислорода ещё и не позволит вашему мотору переобедниться, а значит уменьшит выброс окислов азота. Переобеднение к тому же вредно для любого двигателя.
Единственный минус, по моему мнению, в присутствии лямбда зонда в выхлопной системе вашего, да и любого байка, так это то, что он очень чувствителен к плохому бензину (как определить качество бензина без хим-лаборатории, узнаём здесь). При автономном путешествии по российской периферии, где качество бензина просто отвратительное, датчик кислорода может доставить хлопот водителю мотоцикла. Ведь лямбда зонд не терпит присутствия в составе бензина свинца, и как только хлебнёт такого пойла, то в считанные километры выходит из строя. Как его восстановить можно почитать вот в этой статье, там же вы узнаете об важности лямбда зонда более подробно. Стоит датчик кислорода не мало, поэтому имея современный впрысковый аппарат, повнимательней выбирайте заправки. К тому же очень плохой бензин как правило губит не только датчик кислорода, но и почти весь двигатель.
Вот вроде бы и все полезные знания по впрысковым мотоциклам, которые я хотел до вас донести. И я надеюсь, что многие водители прочитав эту статью, перестанут разводить руками, при возникновении какой либо неисправности системы впрыска топлива современного мотоцикла, и будут относиться к ним так же спокойно как и к неисправностям карбюраторного байка. Успехов всем!
Что такое форсунка — Статья
Форсунка-инжектор — устройство, предназначенные для подачи (впрыскивания) жидкостей и газов в двигателях различных механических устройств легкой и тяжелой промышленности. В более узком представлении форсунки – электромагнитные клапаны, обеспечивающие дозированную подачу топлива в цилиндры дизельного двигателя с системой непосредственного впрыска. Подача топлива осуществляется периодически через равные промежутки времени, и подобная система имеет
неоспоримые преимущества перед карбюраторной системой. Первое из них – точная дозировка топлива, которую осуществляют форсунки, и это важно, когда экономичный расход топлива играет одну из первостепенных ролей. Инжекторные двигатели позволяют использовать все топливо, в то время как карбюраторные «теряют» примерно 10 процентов его потенциала.
Второе преимущество – экологичность, поскольку инжекторные двигатели (работающие на системе непосредственного впрыска топлива при помощи форсунок) снабжены системой нейтрализации токсичных выхлопов. Дизельные двигатели современных автомобилей работают на принципе распределенного впрыска, когда каждый цилиндр двигателя получает топливо из отдельной форсунки. Впрочем, и владельцы автомобилей с карбюраторными двигателями не стоит отчаиваться, поскольку всегда есть возможность перейти на инжектор и, в зависимости от конструктивных особенностей автомобиля, установить инжекторную систему любого типа.
В последние годы отечественные автомобилисты все чаще стремятся оснастить свои устаревшие двигатели системой непосредственного впрыска и, соответственно, одна из главных ее деталей – форсунка – является одновременнои одной из наиболее востребованных деталей на рынке автозапчастей. Учитывая, что работают форсунки в достаточно жестких условиях, их обслуживание должно осуществляться максимально аккуратно и ответственно. То же самое следует сказать и о выборе форсунок для двигателя с инжекторной системой подачи топлива. Непременно основное внимание следует уделить качеству деталей (и готовых комплектов), которое наиболее часто подкреплено репутацией фирмы-производителя. Поэтому лучше всего не скупиться и приобретать у официальных дилеров новые автозапчасти проверенных торговых марок с гарантийным сроком службы.
Гидромеханические форсунки
Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС. Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.
По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.
Закрытые ГМ-форсунки в дозировании топлива участия не принимают. Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается. Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.
Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.
Для того чтобы клапан форсунки закрытого типа находился в состоянии «открыто», давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).
Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.
Основными параметрами закрытой форсунки являются пять показателей.
1. Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7. ..5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.
2. Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15…20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).
3. Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.
4. Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрытаиногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0…1,5 кг/см2, но несколько больше остаточного давления Рост в системе впрыска сразу после выключения двигателя.
5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе «K-Jetronic»).
Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть «промыты» в составе системы впрыска на работающем двигателе.
Электромагнитные форсунки
Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском). Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы «Mono».
Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S = 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2…2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200…250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.
При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8…5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.
При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.
Основными параметрами ЭМ-форсунки являются:
1. Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.
2. Производительность форсунки (пропускная СПОСОбнОСТЬ В ОТКРЫТОМ СОСТОЯНИИ — В СМ3/МИН или в г/с при заданном Ps РДС).
3. Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).
4. Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).
5. Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).
На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.
О внутреннем омическом сопротивлении Нф форсунки следует сказать отдельно. Если катушка соленоида намотана медным проводом, то получить величину Нф более 2…3 Ом невозможно (накладывается требование минимизации индуктивности Ls катушки). В таком случае для ограничения величины рабочего тока 1ф форсунки последовательно с катушкой соленоида включают дополнительный резистор. Применяют также обмоточный провод с высоким удельным сопротивлением (для катушки соленоида), что исключает необходимость установки дополнительных резисторов. Но в любом случае общий средний ток управления сразу всеми форсунками (или группой форсунок) впрыска на двигателе не должен превышать значения 3…5 А. В некоторых случаях на многоцилиндровых двигателях применяют «групповое» управление форсунками. Это когда форсунки объединены в группы, а каждая группа управляется от отдельного электронного блока. Но наиболее эффективной является система впрыска бензина, в которой каждая рабочая клапанная ЭМ-форсунка управляется независимо от других (последовательный синхронизированный распределенный по цилиндрам импульсный впрыск бензина с управлением от многоканального ЭБУ впрыском).
По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:
— форсунки со сферическим профилем запорного элемента:
— форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):
— форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).
Выпускаются форсунки с внутренним электрическим сопротивлением 2,4 Ом: 12,5 Ом; 16 Ом. Малое сопротивление связано с применением обмоточного провода из меди и с необходимостью иметь малую величину индуктивности L соленоида, которая прямо зависит от числа витков Wc обмотки соленоида.
Низкое сопротивление форсунки увеличивают дополнительным сопротивлением в 6…8 Ом, что уменьшает потрябляемый ток. Обмотки высокоомной форсунки выполнены из провода с большим удельным сопротивлением (например, из латуни), что позволяет иметь малое L и большое R.
По производительности П впрыска форсунки подбирают по типам и мощности тех двигателей, на которые эти форсунки устанавливаются. Производительность форсунки определяется под рабочим давлением системы, как количество Кв бензина, прошедшего через форсунку за единицу времени t, если она постоянно открыта.
Пусковые электромагнитные форсунки
К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.
Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы «L». В любом случае ПС-форсунка работает непосредственно от бортсети автомобиля, а в систему электронного управления двигателем включается опосредовано через специальное электронное реле управления.
К ПС-форсункам требования высокой скорости срабатывания не предъявляются, что значительно упрощает конструктивное исполнение ее составных компонентов. Так, масса якоря электромагнита, который (якорь) одновременно является и запирающим элементом клапана форсунки, число витков катушки электромагнита, сечение распылительного сопла, упругость возвратной пружины — все это заметно увеличено по сравнению с рабочей клапанной ЭМ-форсункой.
Форсунка закрытого типа с плунжерным насосом
Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с»1) переключением полярности магнитного поля в катушке соленоида.
Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).
В системах впрыска бензина группы «Д» (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.
Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый «послойный впрыск бензина» непосредственно в камеру сгорания ДВС. Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а = 2,0), а также повышает ряд его эксплуатационных показателей.
При послойном впрыске цикловая подача бензина непрерывно дифференцируется по времени посредством управления давлением в рабочей полости насос-форсунки (под плунжером). Давление регулируется электроуправляемым гидроклапаном в сливном канале. Суть послойного впрыска топлива состоит в его подаче отдельными, строго дозированными порциями. Получается так: за один цикл впрыска бензин подается прямо в цилиндр не сплошной однородной струей, а несколькими частями, каждая из которых образует «свой» коэффициент избытка воздуха а. В объеме цилиндра образуется «послойный пирог» из ТВ-смеси разной концентрации. Преимущество послойного впрыска бензина состоит в том, что в первый момент воспламенения в зону центрального электрода свечи зажигания подается нормальная (стехиометрическая) ТВ-смесь с а = 1, которая легко возгорается. Далее процесс горения топлива в очень бедной ТВ-смеси (а = 2.0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Однако система впрыска бензина с насос-форсунками обладает двумя существенными недостатками: она содержит дорогостоящие и очень сложные механические устройства, а также способствует появлению значительных количеств оксидов азота (N0X) в выхлопных отработавших газах двигателя, бороться с которыми крайне сложно. Тем не менее система выпускается фирмой TOYOTA для двигателей TD4 легковых автомобилей.
Обслуживание форсунок (инжектора) бензиновых двигателей
Многие современные автомобили оснащаются системами впрыска топлива. Состояние форсунок — неотъемлемой части системы впрыска — во многом определяет эффективность работы двигателя. Впрыск топлива имеет неоспоримые преимущества по сравнению с карбюраторным принципом смесеобразования. В первую очередь, это более точное дозирование топлива, а следовательно, большая экономичность и приемистость автомобиля и меньшая токсичность отработавших газов. Однако основная исполнительная деталь системы впрыска — форсунка — работает в тяжелых условиях и поэтому весьма требовательна к обслуживанию.
Общие понятия
Форсунка (инжектор) — управляемый электромагнитный клапан, обеспечивающий дозированную подачу топлива в цилиндры двигателя. Существуют форсунки для центрального (одноточечного, моно) и для распределённого (многоточечного) впрыска. Блок управления — электронный блок, управляющий системой впрыска, в частности работой форсунок.
Устройство и принцип работы
Топливо подаётся к форсунке под определённым (зависящим от режима работы двигателя) давлением. Электрические импульсы, поступающие на электромагнит форсунки от блока управления, приводят в действие игольчатый клапан, открывающий и закрывающий канал форсунки. Количество распыляемого топлива пропорционально длительности импульса, задаваемой блоком управления. Форма и направление распыляемого факела играют существенную роль в процессе смесеобразования и определяются количеством и расположением распылительных отверстий.
Расположение, классификация и маркировка форсунок
Центральный впрыск — В общий впускной трубопровод топливо впрыскивается одной форсункой (или двумя как на Хонде), которая устанавливается перед дроссельной заслонкой, в месте, где «должен стоять карбюратор», и характеризуется низким сопротивлением обмотки электромагнита (до 4-5 Ом).Распределённый впрыск — Отдельные форсунки осуществляют впрыск топлива во впускные трубопроводы каждого цилиндра. Они располагаются у основания впускных трубопроводов (у корпуса головки блока цилиндров) и отличаются относительно высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Или меньшим, но с дополнительным блоком сопротивлений. На некоторых автомобилях последнего поколения топливо подаётся непосредственно в камеру сгорания (непосредственный впрыск). Форсунки таких двигателей отличаются высоким рабочим напряжением электромагнита (до 100 В).В маркировке форсунок может отражаться фабричная (торговая) марка или название; каталожный номер или наименование; номер серии.
Основные признаки и причины неисправности форсунок
Состояние форсунок существенно влияет на работу двигателя. Основными признаками их неисправности бывают: недостаточная мощность, развиваемая двигателем; рывки и провалы при увеличении нагрузки на двигатель; неустойчивая работа на малых оборотах; повышенная токсичность отработавших газов. Наиболее распространенной неисправностью форсунок является их загрязнение. Они расположены в зоне воздействия высоких температур. Следствие этого — закоксовывание содержащимися в топливе (особенно низкокачественном) смолами, образование на форсунке твердых отложений, перекрывающих (частично или полностью) распылительные отверстия и нарушающих герметичность игольчатого клапана. Кроме того, общее загрязнение элементов топливной системы (бака, трубопроводов, фильтра и т.д.) приводит к засорению частичками шлама каналов и фильтра форсунки. Основным способом восстановления нормальной работоспособности форсунок является их промывка.
Промывка форсунок
Эта операция подразумевает удаление (вымывание) накопившихся загрязнений из системы. К основным способам промывки форсунок относятся: промывка специальными присадками к топливу; промывка без демонтажа форсунок с двигателя с помощью специальной установки; промывка на ультразвуковом стенде с демонтажом форсунок с двигателя. Промывка с помощью присадок к топливу отличается простотой и заключается в периодическом (каждые 2-3 тыс.км) добавлении в топливо специальных препаратов. Это позволяет промывать не только сами форсунки, но и всю топливную систему. Данный способ эффективен при регулярном удалении небольших загрязнений и носит, скорее, профилактический характер. Внимание! Удаление застарелых отложений подобным методом может привести к прямо противоположному результату: большое количество шлама, смытого моющей присадкой со стенок топливной системы, засоряет трубопровод, топливный фильтр, а иногда и сами форсунки, окончательно выводя их из строя. Промывка форсунок с помощью специальной установки без их демонтажа заключается в работе двигателя на специальном промывающем топливе (сольвенте). Для этого отключается штатный топливный насос автомобиля и магистраль слива топлива в бак (обратка), а топливопровод системы впрыска соединяется с установкой, имеющей резервуар с сольвентом, который под давлением подаётся на форсунки. Процесс делится на несколько этапов. Сначала двигатель работает в течении 15 минут в режиме холостого хода. Затем его останавливают на 15 минут для размягчения особо стойких отложений. Потом двигатель снова запускается и работает 15 минут в режиме периодического увеличения оборотов до их максимального числа. Заключительным этапом промывки является восстановление соединений штатных топливопроводов и работа двигателя на бензине в течении 30 минут. Подобную промывку рекомендуется проводить через каждые 15-20 тыс. км пробега. Промывка на ультразвуковом стенде с демонтажом форсунок применяется в качестве крайней меры для удаления больших затвердевших отложений, когда первые два способа не приводят к желаемым результатам. Принцип действия таких стендов основан на разрушении отложений погруженной в специальный моющий состав форсунки с помощью ультразвука. Кроме того, стенды, как правило, позволяют точно оценить производительность и качество распыла форсунки.
Типы систем питания инжекторных двигателей.
Классификация инжекторных двигателей
Типы систем питания с впрыском бензина
По конструктивным и функциональным признакам системы питания, использующие впрыск бензина вместо карбюрации могут существенно отличаться. Творчество конструкторов и инженеров в этом направлении привело к созданию широкого спектра систем впрыска, из которых можно выделить наиболее широко применяемые и используемые, объединяя их по основным признакам.
Впрыскивающие бензиновые системы, в первую очередь, подразделяют по месту подвода топлива – центральный одноточечный впрыск, распределенный впрыск и непосредственный впрыск в цилиндры двигателя.
При центральном впрыске (Рис. 1, а) используется одна форсунка, которая устанавливается на месте карбюратора и осуществляет впрыск во впускной трубопровод, обслуживая все цилиндры двигателя.
Такие конструкции являются «пионерами» в системах, использующих впрыск бензина, поэтому в свое время получило довольно широкое распространение. Принципиально система центрального впрыска простая: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор из воздушного фильтра подается и воздух, здесь образуется горючая смесь, которая через впускные клапаны поступает в цилиндры и воспламеняется.
Преимущества центрального впрыска (моновпрыска) очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.
Однако центральный впрыск имеет и недостатки, в частности, эта система не позволяет обеспечить выполнение все возрастающих требований экологической безопасности. Кроме того, отказ единственной форсунки фактически выводит двигатель из строя. Поэтому в настоящее время двигатели с центральным впрыском практически не выпускаются.
При распределенном впрыске (Рис. 1, б) отдельные форсунки устанавливаются в зоне впускных клапанов каждого цилиндра. Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:
- Одновременный впрыск;
- Попарно-параллельный впрыск;
- Фазированный спрыск.
Одновременный впрыск.
В этом случае форсунки, хоть и расположены во впускном коллекторе каждая у «своего» цилиндра, но открываются в одно время. Можно сказать, что это усовершенствованный вариант моновпрыска, так как здесь работает несколько форсунок, но электронный блок управляет ими, как одной. Однако одновременный впрыск дает возможность индивидуальной регулировки впрыска топлива для каждого цилиндра. В целом, системы с одновременным впрыском просты и надежны в работе, но по характеристикам уступают более современным системам.
Попарно-параллельный впрыск.
Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая — перед тактом выпуска.
На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распределительного вала), при котором невозможен фазированный впрыск.
Фазированный впрыск.
Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта, т. е. подача бензина в цилиндры осуществляется только на впуске каждой форсункой в строго определенный момент времени. При нефазированном впрыске подача осуществляется на каждом обороте коленчатого вала всеми форсунками синхронно.
Также к распределенному впрыску можно отнести системы с непосредственным впрыском, однако последние имеют кардинальные конструктивные отличия, поэтому непосредственный впрыск выделяют в отдельный тип.
При непосредственном впрыске (Рис. 1, в) форсунки устанавливают в головку блока цилиндров и осуществляют впрыск непосредственно в камеру сгорания.
Системы с непосредственным впрыском наиболее сложные и дорогие, однако, их применение позволяет обеспечить наилучшие показатели мощности и экономичности бензиновых двигателей. Непосредственный впрыск позволяет быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.
В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).
Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, определенные сложности возникают из-за тяжелых условий, в которых приходится работать форсунке, сообщающейся с камерой сгорания. Решение всех этих вопросов связано с повышением стоимости используемых в системах с непосредственным впрыском элементов конструкции. Поэтому непосредственный впрыск в настоящее время используется только на легковых автомобилях высокого класса.
Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают ощутимую экономию топлива и обеспечивают более надежную и качественную работу двигателя. Поэтому в ближайшем будущем они могут потеснить автомобили с инжекторными двигателями, использующими одноточечный и распределенный впрыск.
Кроме перечисленных выше разновидностей систем впрыска по месту подвода топлива их классифицируют, также по следующим признакам:
- по способу подачи топлива – непрерывный или прерывистый впрыск;
- по типу узлов, дозирующих топливо – плунжерные насосы, распределители, форсунки, регуляторы давления;
- по способу регулирования количества горючей смеси – пневматическое, механическое, электронное. Электронный способ регулирования количества подаваемого топлива является наиболее прогрессивным и в настоящее время вытесняет механический и пневматический способы.
- по основным параметрам регулирования состава горючей смеси – разрежению во впускном трубопроводе, углу поворота дроссельной заслонки, расходу воздуха и др.
Таким образом, смесеобразование в инжекторных двигателях в зависимости от применяемого способа подачи топлива происходит или в определенных зонах впускного трубопровода, или непосредственно в цилиндры двигателя, при этом могут использоваться различные устройства для впрыска и управления впрыском.
***
Системы с центральным впрыском топлива
Главная страница
Дистанционное образование
Специальности
Учебные дисциплины
Олимпиады и тесты
Цены — Система впрыска и зажигания
Система впрыска топлива — система подачи топлива, устанавливаемая на современных бензиновых двигателях. Основное отличие от карбюраторной системы — подача топлива осуществляется путем непосредственного впрыска топлива с помощью форсунок во впускной коллектор или в цилиндр. Автомобили с данной системой питания часто называют инжекторными.
В зависимости от способа образования топливно-воздушной смеси различают следующие системы впрыска бензиновых двигателей:
система центрального впрыска;
система распределенного впрыска;
система непосредственного впрыска.
Системы центрального и распределенного впрыска являются системами предварительного впрыска, т. е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе. Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой.
В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели. Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива. Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов.
С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы). Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов. Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы. В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix).
Согласованную работу систем обеспечивает система управления двигателем. В контактной системе зажигания управление накоплением и распределение электрической энергии по цилиндрам осуществляется механическим устройством — прерывателем-распределителем. Дальнейшим развитием контактной системы зажигания является контактная транзисторная система зажигания, в первичной цепи катушки зажигания которой применен транзисторный коммутатор. В отличие от контактной в бесконтактной системе зажигания для управления накоплением энергии используется транзисторный коммутатор, взаимодействующий с бесконтактным датчиком импульсов.
Транзисторный коммутатор в данной системе выполняет роль прерывателя. Распределение тока высокого напряжения осуществляется механическим распределителем. В микропроцессорной системе зажигания используется электронный блок управления, с помощью которого производится управление процессом накопления и распределения электрической энергии. В ранних конструкциях электронной системы зажигания электронный блок одновременно управлял системой зажигания и системой впрыска топлива (т. н. объединенная система впрыска и зажигания). В настоящее время управление зажиганием включено в систему управления двигателем.
Общие сведения о прямом впрыске топлива и принципах его работы
Прямой впрыск топлива — это технология подачи топлива, которая позволяет бензиновым двигателям сжигать топливо более эффективно, что приводит к большей мощности, более чистым выбросам и повышенной экономии топлива.
Как работает прямой впрыск топлива
Бензиновые двигатели работают, всасывая смесь бензина и воздуха в цилиндр, сжимая его поршнем и воспламеняя искрой. В результате взрыва поршень движется вниз, производя энергию.Традиционные системы непрямого впрыска топлива предварительно смешивают бензин и воздух в камере сразу за цилиндром, называемой впускным коллектором. В системе прямого впрыска воздух и бензин предварительно не смешиваются. Скорее, воздух поступает через впускной коллектор, а бензин впрыскивается непосредственно в цилиндр.
Преимущества прямого впрыска топлива
В сочетании с сверхточным компьютерным управлением прямой впрыск позволяет более точно контролировать дозирование топлива, то есть количество впрыскиваемого топлива и время впрыска, точную точку, когда топливо вводится в цилиндр. Расположение форсунки также обеспечивает более оптимальную схему распыления, при которой бензин разбивается на более мелкие капли. Результат — более полное сгорание. Другими словами, сжигается больше бензина, что означает большую мощность и меньшее загрязнение от каждой капли бензина.
Недостатки прямого впрыска топлива
Основные недостатки двигателей с прямым впрыском — сложность и стоимость. Системы прямого впрыска более дороги в изготовлении, поскольку их компоненты должны быть более прочными.Они работают с топливом при значительно более высоком давлении, чем системы непрямого впрыска, а сами форсунки должны выдерживать высокую температуру и давление сгорания внутри цилиндра.
Насколько мощнее и эффективнее эта технология?
Cadillac CTS продается с 3,6-литровым двигателем V6 как с прямым, так и с прямым впрыском. Непрямой двигатель выдает 263 лошадиных силы и 253 фунт-фут. крутящего момента, а прямая версия развивает 304 л.с. и 274 фунта. -фт. Несмотря на дополнительную мощность, оценки экономии топлива EPA для двигателя с прямым впрыском на 1 милю на галлон выше в городе (18 миль на галлон против 17 миль на галлон) и равны на шоссе. Еще одно преимущество заключается в том, что двигатель Cadillac с непосредственным впрыском работает на обычном 87-октановом бензине. Конкурирующие автомобили Infiniti и Lexus, использующие двигатели V6 мощностью 300 л.с. с непрямым впрыском, требуют топлива премиум-класса.
Возобновление интереса к непосредственному впрыску топлива
Технология прямого впрыска существует с середины 20 века.Однако немногие автопроизводители использовали его для автомобилей массового потребления. Непрямой впрыск топлива с электронным управлением выполнял эту работу почти так же хорошо, как и значительно более низкие производственные затраты, и предлагал огромные преимущества по сравнению с механическим карбюратором, который был доминирующей системой подачи топлива до 1980-х годов. Такие события, как рост цен на топливо и ужесточение законодательства об экономии топлива и выбросах, побудили многих автопроизводителей начать разработку систем прямого впрыска топлива. Вы можете ожидать, что в ближайшем будущем все больше и больше автомобилей будут использовать систему прямого впрыска.
Дизельные автомобили и прямой впрыск топлива
Практически во всех дизельных двигателях используется непосредственный впрыск топлива. Однако, поскольку дизельные двигатели используют другой процесс для сжигания своего топлива, когда традиционный бензиновый двигатель сжимает смесь бензина и воздуха и воспламеняет ее от искры, дизели сжимают только воздух, а затем распыляют топливо, которое воспламеняется от тепла и давления. , их системы впрыска отличаются по конструкции и принципу действия от систем непосредственного впрыска бензина.
Системы впрыска топлива — тогда и сейчас
Двигатель внутреннего сгорания существует уже более 150 лет, и за это время основные принципы остались прежними, но исполнение превратилось в прекрасно элегантную систему.
Для того, чтобы двигатель внутреннего сгорания мог выполнять свою работу, ему нужен способ подвода топлива для… сгорания. Однако, как мы уверены, многие из вас знают; это не так просто, как кажется.
Для правильной работы требуется правильная смесь топлива и воздуха.Раньше двигатели были невероятно неэффективными и неэффективными. Они создали власть. Вот и все.
Автомобили стали настолько неотъемлемой частью нашего образа жизни, что мы полностью на них полагаемся. Настолько, что существуют строгие правила, чтобы поддерживать их работу как можно более чистой и эффективной
Знакомьтесь, система впрыска топлива.
Что случилось с карбюратором?
Система впрыска топлива — одно из тех изобретений, которые вызывают вопрос — почему ее не изобрели раньше?
Современная система впрыска топлива работает путем распыления топлива под высоким давлением, смешивая его с чистым воздухом, когда он проходит через впускной коллектор, прежде чем попасть в камеру сгорания каждого цилиндра.
Ключевым элементом современной электронной системы впрыска топлива является слово «электронный».
В этих современных системах используются компьютер, кислородный датчик, форсунки, топливный насос и регуляторы давления для обеспечения точного смешивания и подачи топлива в камеру сгорания.
Слишком много топлива? Компьютер корректирует время, в течение которого форсунка остается открытой.
Карбюраторы старой закалки не могли этого сделать. Если не было микса — его не было. Это часто приводило к высоким выбросам, плохой экономии топлива, пропускам зажигания в двигателях, сгоревшим клапанам и сокращению срока службы двигателя.Теперь вы знаете, почему каждую весну выходит из строя ваша газонокосилка.
Если соотношение топлива и воздуха в системе впрыска неправильное, компьютер исправляет это. Что делать, если это нельзя исправить? Загорится индикатор проверки двигателя.
Системы впрыска топлива обеспечивают более низкий расход топлива, большую мощность, повышенную надежность и большие возможности в будущем по сравнению с карбюратором.
Итак, системы впрыска топлива идеальны?
Почти.
Уровень контроля, который системы впрыска топлива обеспечивают по сравнению с традиционным карбюратором, бесспорен.У большинства механиков мурашки по коже пробегают мысли о поломке системы впрыска топлива.
Карбюратор — прекрасное произведение инженерной мысли. Вы можете сравнить его с часовым механизмом или крупнокалиберной винтовкой. Система механических компонентов, работающих в гармонии.
Если он перестает работать, его нужно разобрать, очистить от грязи и починить. Идея этого, вероятно, вызывает мурашки по спине у многих из вас, но, по крайней мере, вы можете физически увидеть проблему.Даже если вы не можете ее исправить, вы можете определить, что проблема, а затем найти того, кто сможет.
Представьте, что ваш ноутбук полностью состоит из механических частей — что-то вроде разностной машины. Если он разбился — вы могли бы открыть его и увидеть застрявшую деталь. Если бы вы сейчас открыли свой собственный ноутбук, он, вероятно, выглядел бы одинаково внутри, независимо от того, работал он или нет.
Если перестала работать система впрыска топлива — вам повезет, если вы заметите какие-либо физические признаки поломки.Самым простым решением было бы заменить блок и надеяться, что это решит проблему.
Часто бывает дорого. Опять же, сколько денег вы сэкономили на топливе за эти годы?
Технологии будут только улучшаться. Наши требования становятся все более конкретными, а наши ожидания — выше.
Прекрасным примером является 4-летнее освобождение от обслуживания новых автомобилей.
Мы просто не ожидаем, что новые автомобили больше выходят из строя. Сегодня общая тенденция технологий заключается в том, что они все больше и больше выбрасываются.’
Когда-то все знали, как что-то исправить. Дети воспитывались на умении менять свечу зажигания.
Это уже не так.
По мере того, как технологии становятся все более сложными, растут и наши ожидания. Цены могут быть высокими, но надежность — тоже. Технология становится более модульной. Если что-то сломается — просто замените.
Возможно, дни «возиться» закончились.
MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ.ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ
Основы впрыска топлива — Помощь по ремонту автомобилей
ОСНОВЫ ВПРЫСКА ТОПЛИВА
Лэнс Райт
За последние двадцать пять лет автомобильные топливные и выхлопные системы
подвергались постоянным преобразованиям в соответствии с федеральными выбросами
стандарты и корпоративные требования к средней экономии топлива. Большинство
существенным изменением стало использование каталитических нейтрализаторов и топлива
инъекция.Во многом это было вызвано требованиями Калифорнии к чистоте
воздуха. Представьте, что Калифорния — самый густонаселенный штат и, следовательно,
крупнейший рынок автомобилей в США, наборы Калифорния
повестка дня Детройта и зарубежных автопроизводителей.
Каталитический преобразователи — фантастические устройства контроля выбросов, потому что они имеют возможность превратить вредные выбросы автомобиля в углерод диоксид и водяной пар.Для эффективной работы каталитические нейтрализаторы требуется точная воздушно-топливная смесь. Соотношение четырнадцати частей воздуха на одну часть топлива, как было установлено, обеспечивает наиболее эффективный каталитический работа конвертера. Любые изменения в топливно-воздушной смеси, слишком много или слишком мало топлива, повлияет на работу каталитического нейтрализатора, в результате дорогостоящий ремонт авто. Из-за этого инженерам пришлось спроектировать топливную систему, которая способна поддерживать постоянный воздух / топливо соотношение во всем диапазоне работы двигателей и условиях.Компьютер впервые были использованы регулируемые карбюраторы, но их способность обеспечивать был ограничен контроль топлива для соответствия всем условиям эксплуатации автомобиля. Электронный системы впрыска топлива обеспечивают более широкий диапазон регулирования подачи топлива и дополнительное преимущество в виде лучшей экономии топлива и повышенной производительности над карбюраторными системами.
Есть два основных типа систем впрыска топлива, используемых на легковых автомобилях и легкие грузовики, распределенный впрыск топлива и впрыск топлива через корпус дроссельной заслонки.Поскольку они обеспечивают более низкий уровень выбросов и более эффективную работу, большинство автомобили сегодня оснащены системами многоточечного впрыска топлива.
В системах многоточечного впрыска топлива используется одна форсунка на цилиндр. В форсунки установлены во впускном коллекторе и расположены так, чтобы направлять мелкая струя топлива прямо на впускной клапан. Напряжение зажигания подается на каждую форсунку, а цепь заземления подключается к модуль управления двигателем. Требования к подаче топлива для двигателя удовлетворяются путем контроля количества времени, в течение которого инжектор включен. Управление топливными форсунками является функцией модуля управления и осуществляется водителями топливных форсунок. Драйверы топливных форсунок расположены внутри модуль управления двигателем и используются как крошечные переключатели для завершения цепь массы к форсункам. Количество доставленного топлива к двигателю определяется количеством времени, в течение которого топливная форсунка приказано.Этот период времени называется шириной импульса форсунки. и измеряется в миллисекундах. Некоторые конструкции с впрыском топлива изменяйте давление топлива вместо ширины импульса для управления подачей топлива.
Дроссель
системы впрыска тела используют инжектор или пару инжекторов, размещенных
в корпусе дроссельной заслонки для подачи топлива в двигатель. Топливо распыляется
во впускной воздух двигателя и распределяется между отдельными
цилиндры у впускного коллектора.Как и при многоточечном впрыске топлива
системы форсунки работают в импульсном режиме, чтобы поддерживать надлежащий воздух / топливо
соотношение. Эта система использовалась как менее дорогая альтернатива многопортовой
впрыск топлива, но был не таким эффективным. Контроль автомобильных выбросов
правила, которые вступили в силу для модели 1996 года, почти отменены
использование системы впрыска дроссельной заслонки на легковых и легких грузовиках.
(Копье 30 лет владел собственной автомастерской, а в 2006 году ушел на пенсию.)
ZOIL | Основы дизельной топливной системы
Функция дизельной топливной системы заключается в том, чтобы впрыскивать точное количество распыленного топлива под давлением в каждый цилиндр двигателя в нужное время. Возгорание в дизельном двигателе происходит, когда поток топлива смешивается с горячим сжатым воздухом. (В бензиновых двигателях не используются электрические искры.)
Топливная система состоит из следующих компонентов.
Есть много разных типов и форм топливных баков.Каждый размер и форма предназначены для определенной цели. Топливный бак должен вмещать достаточно топлива для работы двигателя в течение разумного периода времени. Бак должен быть закрыт, чтобы предотвратить попадание посторонних предметов. Он также должен быть вентилирован, чтобы позволить воздуху поступать, заменяя любое топливо, требуемое двигателем. Требуются еще три отверстия в баке: одно для заполнения, одно для слива и одно для слива.
Есть три типа дизельных топливопроводов. К ним относятся тяжелые трубопроводы для высоких давлений между ТНВД и форсунками, трубопроводы среднего веса для легких или средних давлений топлива между топливным баком и ТНВД, а также легкие трубопроводы с низким давлением или без него.
Дизельное топливо необходимо фильтровать не один раз, а несколько раз в большинстве систем. Типичная система может иметь три ступени прогрессивных фильтров — сетку фильтра в баке или перекачивающем насосе, первичный топливный фильтр и вторичный топливный фильтр. В последовательных фильтрах все топливо проходит через один фильтр, а затем через другой. В параллельных фильтрах часть топлива проходит через каждый фильтр.
Для получения дополнительной информации о топливных фильтрах см. Основы работы с дизельным топливным фильтром.
В простых топливных системах для подачи топлива из бака в топливный насос используется сила тяжести или давление воздуха.На современных быстроходных дизельных двигателях обычно используется топливный насос. Этот насос, приводимый в действие двигателем, автоматически подает топливо в систему впрыска дизельного топлива. Насос часто имеет ручной рычаг подкачки для удаления воздуха из системы. Современные ТНВД — это почти все толкательные насосы, в которых используется плунжерный и кулачковый метод впрыска топлива.
Есть четыре основных системы впрыска топлива:
1. Отдельный насос и форсунка для каждого цилиндра
2.Комбинированный насос и форсунка для каждого цилиндра ( насос-форсунка тип )
3. Один насос, обслуживающий форсунки на несколько цилиндров (распределитель тип )
4. Насосы в общем корпусе с форсунками на каждый цилиндр ( система common rail )
Система Common Rail быстро набирает популярность для применения на дорогах. Рядный и распределительный типы используются на внедорожниках и промышленных машинах.
Форсунки для дизельного топлива, пожалуй, самый важный компонент топливной системы. Работа форсунок — подавать точное количество распыленного топлива под давлением в каждый цилиндр. Сильно распыленное топливо под давлением, равномерно распределенное по цилиндру, приводит к увеличению мощности и экономии топлива, снижению шума двигателя и более плавной работе.
В современных форсунках дизельного топлива, например, в топливных системах Common Rail, используется пьезоэлектричество.Пьезоэлектрические форсунки чрезвычайно точны и могут выдерживать очень высокие давления, характерные для систем Common Rail.
Топливо, используемое в современных высокоскоростных дизельных двигателях, производится из более тяжелых остатков сырой нефти, которые остаются после удаления более летучих видов топлива, таких как бензин, в процессе очистки. Наиболее распространенный сорт дизельного топлива — это 2-D, более известный как дизельное топливо со сверхнизким содержанием серы (ULSD).
Для получения дополнительной информации о дизельном топливе см. Основные сведения о дизельном топливе со сверхнизким содержанием серы.
Распространенный враг дизельных топливных систем — вода. К сожалению, вода встречается в дизельном топливе чаще, чем думает большинство людей. Если вода попадет в систему впрыска, она быстро окислит компоненты черных металлов (стали). Некоторые из наиболее распространенных отказов, связанных с водой, включают:
• Захват компонента впрыска
• Заедание компонентов дозатора как в насосе, так и в инжекторе
• Отказ регулятора / компонента дозирования
Дизельная топливная система является критическим компонентом любого дизельного двигателя, и ее оптимальная работа важна для максимальной производительности.E-ZOIL производит несколько присадок, разработанных для решения общих проблем, с которыми сталкивается система дизельного топлива. Присадки E-ZOIL повышают смазывающую способность топливной системы и предотвращают преждевременный выход из строя топливных насосов и форсунок. Ознакомьтесь с нашей линейкой присадок для защиты вашего топлива и оборудования!
Как работает система впрыска Common Rail?
Индивидуальные решения для гибкого использования топлива
С повышением уровня технических характеристик систем впрыска возрастают и требования к чистоте и качеству топлива. Таким образом, топливо должно соответствовать заранее определенным значениям вязкости и смазывающей способности, поскольку компоненты насосов высокого давления
и форсунок смазываются топливом. Он также не должен иметь каких-либо загрязнений, которые могут привести к абразивному повреждению при применяемом высоком давлении. Поэтому для обеспечения правильной работы двигателя можно использовать только дизельное топливо, которое одобрено для данного применения и соответствует применимым стандартам. По запросу клиента mtu проводит анализы для получения одобрения других видов топлива в конкретных областях применения в тесном сотрудничестве с компанией Rolls-Royce Power Systems, брендом L’Orange или альтернативными поставщиками.В некоторых случаях, например, отсутствие смазывающих свойств
у топлива может быть компенсировано специальными покрытиями на системе впрыска. Кроме того, mtu помогает клиентам при проектировании бака и топливной системы на объекте. Это представляет большой интерес, например, для горнодобывающих машин, которые подвергаются высокому уровню запыленности.
Резюме
MTU постоянно совершенствует свои двигатели, чтобы гарантировать, что они будут соответствовать жестким будущим стандартам выбросов, при этом потребляя при этом как можно меньше топлива.С этой целью mtu оптимизирует сгорание топлива в цилиндре с помощью своей системы впрыска Common Rail с электронным управлением в сочетании с другими технологиями, такими как рециркуляция выхлопных газов. За счет достижения чистого и эффективного сгорания расходы на системы нейтрализации выхлопных газов можно минимизировать, а в некоторых случаях полностью исключить. Компания mtu успешно использовала системы Common Rail еще в 1996 году и постоянно совершенствовала эту технологию в сотрудничестве с брендом Rolls-Royce Power Systems L’Orange и другими поставщиками.Благодаря своему обширному опыту в области систем впрыска Common Rail, mtu может оптимально использовать потенциал технологии, чтобы сделать двигатели чрезвычайно экономичными и чистыми. Система впрыска топлива
и преимущества для авиационных двигателей
Этот веб-сайт стал возможным благодаря отображению онлайн-рекламы для наших посетителей.
Мы уважаем ваше решение использовать блокировщик рекламы, но помните: реклама освобождает сайт от каких-либо платных решений.
Пожалуйста, подумайте о поддержке нас, добавив наш сайт в белый список в вашем блокировщике рекламы или сделав пожертвование.
см. Нашу страницу спонсора для получения дополнительной информации.👍
Прежде чем бензин сможет сгореть в поршневом двигателе, его необходимо испарить и смешать с кислородом в нужных количествах. Этот процесс выполняется либо карбюратором, либо системой впрыска под высоким давлением. Чтобы этот процесс был как можно более совершенным, система должна учитывать настройки мощности, контроль смеси и т. Д.
В авиационных двигателяхс поршневым приводом может использоваться карбюратор или современная система впрыска. На предыдущей странице говорилось о базовом поплавковом карбюраторе, здесь мы подробно рассмотрим систему впрыска топлива, используемую в высокопроизводительных авиационных двигателях, как газовых, так и дизельных; хотя эти системы не похожи.
Эти системы впрыска не подвержены образованию льда на дроссельной заслонке и имеют ряд других преимуществ, гарантирующих более высокую стоимость их установки.
Принципы работы
При использовании системы впрыска топливо сжимается и вводится непосредственно перед впускными отверстиями, непосредственно в камеру сгорания (GDI, прямой впрыск бензина) или на крыльчатку супер / турбонагнетателя. Обычная карбюрация использует перепад давления для испарения топлива перед его поступлением в цилиндры.
Используются два типа систем впрыска топлива: непрерывный поток и прямой впрыск. Мы опишем их обоих здесь.
Непрерывный поток
Эта система обеспечивает непрерывный поток топлива под давлением через каждое впускное отверстие цилиндров и в основном использует следующие детали:
- Топливный насос , это поршневой насос лопастного типа, приводимый в действие двигателем. Подает излишки топлива, которое возвращается в используемый бак для поддержания положительного давления при любых обстоятельствах. Топливо подается в жидком виде, пар отделяется и имеет перепускной обратный клапан, чтобы электрический насос мог подавать топливо для запуска двигателя.
- Блок дозирования топлива , Фильтрует топливо и устанавливает соотношение смеси. К этому блоку подсоединяется ручка смеси в кабине, которая сжимает топливо. Дроссельная заслонка кабины также подключена и регулирует дроссельную заслонку, регулирующую поток воздуха в коллектор.
- Клапан коллектора , распределяет топливо по всем цилиндрам, и вы увидите его на верхней части двигателя с трубкой из нержавеющей стали, идущей к впускным отверстиям цилиндров.Он напоминает паука, закинувшего ноги над двигателем.
- Форсунки для впрыска отмеренного топлива под давлением точного нужного количества и соотношения с воздухом. Конструкция такова, что она способствует улучшенному распылению топлива для хорошего сгорания и мощности, развиваемой двигателем.
Двигатели с наддувом и с турбонаддувом также могут использовать систему впрыска топлива, но им потребуются модификации для регулировки расхода топлива с быстрым открытием дроссельной заслонки в сочетании с датчиками давления воздуха в коллекторе. Подача большего количества воздуха должна означать больше топлива (и мощности), если двигатель должен работать плавно, без сбоев при открытии дроссельной заслонки.
Прямой впрыск
В этой системе топливо сжимается и впрыскивается непосредственно в камеру сгорания, минуя впускной клапан, как в дизельном двигателе, но с двумя свечами зажигания. Он используется в основном на более мощных двигателях.
В этой системе используются почти те же детали, что и описанные выше для топливной системы с непрерывным потоком, с единственной разницей в точке впрыска топлива.
Впрыск топлива Dis / Преимущества
Как и в любой системе, у картины всегда две стороны. Впрыск топлива может обеспечить каждый цилиндр правильной топливно-воздушной смесью для рабочих условий в то конкретное время, когда карбюраторы подают одну и ту же топливно-воздушную смесь во все цилиндры одновременно. Это может означать, что один цилиндр может работать холодно, тогда как другие могут быть горячими. Вот почему вам нужны датчики CHT на всех цилиндрах.
Обобщая преимущества:
- Холодного льда больше нет
- Более высокий КПД двигателя, меньшее потребление
- Улучшенная топливно-воздушная смесь / соотношение
- Равномерная доставка по всем цилиндрам
- Двигатели с более плавным ходом
- Более легкий запуск
Некоторые недостатки:
- Возможная паровая пробка в стальных топливопроводах над двигателем, затрудняющая запуск горячего двигателя
- Топливо должно быть чище, так как детали похожи на прекрасный часовой механизм
- Необходимость возврата топлива линий в бак в использовании, или резервуар отдельно заголовка
- Системы впрыска топлива немного дороже карбюраторных двигателей
В заключение: системы впрыска топлива могут быть на начальном этапе более дорогими, но они позволят сэкономить топливо и продлить срок службы двигателя, тем самым сэкономив на затратах на техническое обслуживание и повысив надежность и безопасность двигателя для тех, кто участвует в полете. Таким образом, о преимуществах стоит задуматься!
, написанный EAI.
Впрыск дизельного топлива — Журнал Diesel Power
Фото 2/12 | поломка Diesel Fuel Injection TechКлючевым ингредиентом для достижения максимальной максимальной производительности дизельного двигателя является увеличение количества сжигаемого дизельного топлива. На старых двигателях с механическим впрыском единственным способом сделать это было изменить форсунки и / или топливный насос. Новые системы электронного впрыска имеют несколько способов увеличить количество топлива, поступающего в цилиндры, но в конечном итоге пиковая выработка мощности по-прежнему сводится к механическим ограничениям компонентов впрыска, которые создают давление топлива и впрыскивают дизельное топливо в камеры сгорания.
Топливная система большинства дизельных двигателей состоит из трех основных частей: инжектора, впрыскивающего насоса и, в некоторых случаях, блока управления двигателем (ЭБУ). В большинстве дизельных двигателей топливные форсунки устанавливаются в головках цилиндров двигателя, а наконечник или сопло форсунки распыляет непосредственно в камеру сгорания. Во многих случаях инжектор устанавливается так же, как свеча зажигания в газовом двигателе. Но в отличие от газовых двигателей с впрыском топлива, которые впрыскивают топливо под давлением 10-60 фунтов на квадратный дюйм, системы впрыска дизельного топлива работают в диапазоне от 10 000 до 30 000 фунтов на квадратный дюйм.
Фото 3/12 | ТНВД для дизельного топлива Насос VE представляет собой аксиально-поршневой насос распределительного типа с механическим управлением. Его входной вал приводится в движение двигателем, а давление топлива осуществляется аксиальными поршнями. Топливо подается в форсунки через распределитель, управляемый портом; это механическое устройство контролирует время и количество топлива, поступающего в каждую форсунку. Фото 4/12 | Дизельный топливный инжекторный насос bosch Cp3 Common RailCP3 — это радиально-поршневой насос для систем впрыска Common Rail высокого давления. Производители, похоже, используют все дизели в пользу системы впрыска Common Rail. С переходом нового 6,4-литрового двигателя Ford Power Stroke на систему Common Rail от Siemens все отечественные грузовики с дизельным двигателем 3/4 и 1 тонны теперь будут использовать технологию Common Rail. В системе Common Rail используется (и) аккумуляторная рейка (и) для поддержания высокого давления топлива; эта рейка (и) подает топливо к форсункам. Насос CP3 функционирует аналогично VP44, но главное отличие состоит в том, что в CP3 нет соленоида для подачи топлива к форсункам.В системе Common-Rail используются либо электромагнитный клапан, либо пьезоэлектрические форсунки для управления количеством топлива и синхронизацией. CP3, используемые в двигателях Cummins и Duramax, очень похожи. Единственное отличие состоит в том, что Duramax CP3 использует разные фитинги для питания двух направляющих (по одной для каждого ряда цилиндров), тогда как Cummins CP3 питает только одну направляющую для всех шести цилиндров.
Модифицированные насосы CP3 доступны для увеличения расхода топлива на 30 процентов, и, в зависимости от других модификаций двигателя, это добавит 60-100 л.с.Также существуют комплекты для работы с двумя CP3 на Duramax или Cummins. В этот комплект добавляется второй CP3, приводимый в движение ременным шкивом. Благодаря вдвое большей производительности насоса хорошее давление топлива может поддерживаться при использовании агрессивных форсунок и электроники.
Фото 5/12 | технология впрыска дизельного топлива bosch P7100P7100, или P-насос, представляет собой насос с прямым впрыском, который использует кулачок для приведения в действие плунжеров для повышения давления топлива. По мнению некоторых фанатиков дизельного топлива, это мать всех ТНВД из-за своих исключительных возможностей.Хотя на 24-клапанном Cummins он был заменен электронным насосом VP44, некоторые сильно модифицированные грузовики сделали шаг назад и заменили VP44 насосом P из-за его способности перекачивать большое количество топлива.
Рынок запасных частей предлагает десятки улучшений производительности для насоса P, что делает его дизельным двигателем Holley на 4 барреля. Только Industrial Injection имеет три уровня модифицированных P7100: Dragon Fly имеет небольшие модификации и использует стандартные 12-миллиметровые насосы, способные подавать 550 куб.см топлива, Dragon Flow использует 13-миллиметровые насосы для подачи 800 куб.см топлива, а Super Dragon Flow использует 14-миллиметровые насосы. за 1400 куб. см подачи топлива.Все эти насосы могут быть изменены по времени.
Фото 6/12 | Дизельное топливо Injection Tech cps Dual Feed Fuel LineЭта деталь от Industrial Injection увеличивает объем топлива, подаваемого в топливную систему Common Rail, за счет добавления дополнительной линии подачи топлива между насосом и Common Rail. Недостаток системы common-rail состоит в том, что после полного открытия дроссельной заслонки рельс требует времени, чтобы восстановиться до максимального давления топлива. Линии двойной подачи спроектированы таким образом, чтобы вдвое сократить время восстановления рельсов.Также используются менее ограничительные фитинги для увеличения расхода топлива. Industrial Injection утверждает, что эта простая модификация может добавить до 50-70 л.с.
Фото 7/12 | инжектор дизельного топлива Tech 59l CumminsЭтот инжектор Bosch использовался в 12-клапанных двигателях Cummins первого и второго поколения. Единственное отличие состоит в том, что размер впускного отверстия в двух моделях Cummins был немного изменен. Эти гидравлические форсунки срабатывают или лопаются, когда они получают от насоса необходимое количество и давление топлива.Самая распространенная и простая модификация любого инжектора — удалить сопло и либо увеличить размер отверстий, либо добавить больше отверстий, либо сделать и то, и другое (в некоторых случаях). На вторичном рынке имеется ряд форсунок, соответствующих потребностям клиентов. Как правило, форсунки с высокой мощностью имеют внутреннюю модификацию, поэтому форсунка и штифт питаются от второго впускного отверстия для топлива. Также могут быть внесены изменения в большинство внутренних компонентов инжектора.
Фото 8/12 | Diesel Fuel Injection Tech bosch Vp44 Впрыскивающий насосVP44 — это радиально-поршневой насос распределительного типа с электромагнитным клапаном и электронным управлением.Bosch VP44 приводится в движение двигателем, а давление топлива осуществляется несколькими радиальными поршнями. Внутренний радиальный поршень нагнетает топливо, и электромагнитный клапан высокого давления открывает и закрывает выпускное отверстие камеры, которое распределяет определенное количество топлива на каждый из шести форсунок. VP44 имеет встроенный блок управления двигателем, который обменивается данными по шине CAN с главным блоком управления двигателем и требует электрического подъемного насоса для подачи дизельного топлива из топливного бака. Насосы VP44 с горячими стержнями могут добавить до 100 л.с. благодаря другому программному обеспечению. на ЭБУ насоса, а также внутренние механические модификации для регулировки времени и производительности.
Фото 9/12 | Дизельное топливо Injection Tech 24 Valve Cummins Injector24-клапанный инжектор очень похож на инжектор, используемый в более старых 12-клапанных двигателях. Он выглядит иначе, потому что в нем используется ступенчатый держатель сопла, но внутри он работает аналогичным образом. Форсунки инжектора модифицируются с использованием электроэрозионной машины (EDM) или процесса экструдирования-хонингования, а иногда и того и другого. В процессе электроэрозионной обработки используются электрод и раствор электролита, тогда как в процессе экструдирования-хонингования используется абразивная жидкость для увеличения размера отверстия.
Фото 10/12 | технология впрыска дизельного топлива heuiHEUI был разработан Caterpillar и используется в 7.3L Power Stroke V-8. Этот инжектор значительно отличается от инжекторов Bosch, потому что он использует масляный насос с приводом от двигателя для подачи масла под высоким давлением в инжектор для повышения давления топлива. Поскольку давление масла используется для повышения давления топлива внутри форсунки, топливный насос высокого давления не нужен. Топливо подается в форсунку при относительно низком давлении (50-70 фунтов на квадратный дюйм), и соленоид управляет потоком масла под высоким давлением, поступающим в поршневой механизм, для увеличения давления впрыска до 21000 фунтов на квадратный дюйм.Чтобы увеличить поток форсунки, на вторичном рынке либо экструдируют, либо EDM форсунки форсунки, в зависимости от требований заказчика. Также внесены изменения во внутренний насосный механизм форсунки; используются плунжеры большего размера, а внутренние детали обрабатываются иначе. Когда используются сильно модифицированные форсунки, Industrial Injection рекомендует использовать сдвоенные масляные насосы высокого давления, чтобы форсунка не испытывала недостатка масла.
В двигателях Duramax и Cummins используется один и тот же насос Bosch CP3, поэтому логично, что форсунки также очень похожи.
Хотя внешний вид форсунок выглядит по-другому, внутреннее устройство и функции этих форсунок очень похожи.