ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Принцип работы роторного двигателя - особенности работы

Роторный двигатель довольно редкая вещь, о которой некоторые люди даже не подозревают. Кто-то что-то слышал, но никто толком не может объяснить хотя бы то, как он выглядит. По мощности роторный двигатель не уступает двигателю с поршнями.

Где можно встретить

Двигатель Мазда

Для начала немного истории. Роторный двигатель был изобретен уже давно, аж в 1957 году. И с тех пор его активно начали устанавливать на автомобили, но на рынке автомобилей их доля ничтожно мала. Через семь лет после выпуска первого роторного двигателя его начали устанавливать на такие автомобили, как Мерседес-Бенц, Ситроен и другие известные марки. Но эти самые фирмы вскоре начали отказываться от роторных двигателей. Такие двигатели, а называются они, кстати, двигатели Ванкеля, устанавливали долгие годы даже на ВАЗ небольшими партиями. Но со временем его заменили и сейчас даже старожилы волжского автозавода не могут вспомнить то время. Единственная марка, которая с 1967 года и до сих пор выпускает двигатели с роторным двигателем в немалых партиях, – это Мазда. До сих пор роторный двигатель устанавливают на Мазду RX-8 – это двигатель модели 13B-MSP. Про этот автомобиль можно не стесняясь сказать, что он легенда. И стал он легендой именно благодаря своему роторному двигателю.

Мазда RX-8

Принципы работы ДВС и роторного двигателя

Принцип работы двигателя внутреннего сгорания (ДВС) с поршнями, который еще называют поршневым, сильно отличается от роторного и не только по принципу работы, но и по принципу передачи момента и потерям энергии. Энергия, выделяемая при сгорании топлива в поршневом двигателе, сначала приводит в движение поршневую группу, которая, в свою очередь, приводит в движение коленчатый вал. То есть передача момента энергии происходит в два этапа.

Принцип работы ДВС

Принцип работы роторного двигателя намного проще, он выполняет всю работу в один этап. Если объяснять простым языком, то в таком двигателей в центре находится эксцентриковый вал, который вращает сам ротор. Вращается ротор внутри двигателя и выполняет те же функции, что и четырехтактный поршневой агрегат: впуск, сжатие, рабочий такт, выпуск. Но при этом нет сложных механизмов, таких как газораспределительный механизм (ГРМ), распределительные валы, клапаны, поршни. Здесь все эти функции выполняет сам ротор. Полость внутри двигателя, в которой вращается ротор, сама в себе несет все эти функции, но работают они как бы по очереди. Электронные «мозги» управляют «окнами» – это прорези в стенках двигателя – и открывают их по очереди так, что ротор, прокатываясь по шестерне вала, выполняет сразу четыре функции. Легендарный двигатель Мазды RX-8 13B-MPS представлял собой бутерброд из пяти таких двигателей, соединенных двумя герметичными камерами.

Фазы работы роторного двигателя

Достоинства и недостатки

Главное отличие роторного двигателя от поршневого – это то, что вал всегда движется в одну сторону, вращающихся масс в несколько раз меньше и, в отличие от поршневого, роторный двигатель не тратит мощность на газораспределительный механизм. Именно поэтому с атмосферного двигателя 13B-MPS, объемом 1300 кубических сантиметров сняли 192 лошадиные силы. А с форсированного 231 лошадиную силу. Для сравнения, такую мощность у поршневого двигателя снимают с объема 2600 кубических сантиметров.

Мощность двигателя больше

К сожалению, у такого уникального мотора есть свои минусы, и они перевешивают большинство плюсов данной модели двигателя. Первый минус – это небольшой ресурс двигателя всего 100 тысяч километров. По современным меркам это совсем мало, особенно это заметно на фоне самого народного двигателя Тойоты Короллы, ресурс двигателя которого 1 миллион километров. Второй и самый основной минус – это то, что двигатель не поддается капитальному ремонту. Не существует запчастей на замену увеличенных размеров, и расточить детали двигателя тоже не получится, так как очень сложно найти такое оборудование в нашей стране. К тому же в нашей стране сложно найти настоящий 98-й бензин, а использование некачественного топлива приближает кончину роторного мотора. Стоимость нового двигателя на Мазду RX-8 настолько огромна, что ставит под сомнение практичность покупки.

Малый ресурс

Вот в основном и все, что нужно знать о роторном двигателе. Он необычен по конструкции и интересен в работе, но обладает двумя большими минусами, из-за которых использовать данный автомобиль с практической точки зрения невыгодно.

Видео

Устройство роторного двигателя в следующем видео рассмотрено на примере движка Mazda RX-8:

Читайте также:

Роторный двигатель видео смотреть | Assa59.ru

Видео, в котором показано, как работает роторный двигатель изнутри

Посмотрите, как работает роторный двигатель Ванкеля в замедленной съемке

Редчайшее видео, которое мы никогда не увидели бы, если бы не рукастость владельца и по совместительству ведущего YouTube канала «Warp Perception».

Этот технически подкованный гражданин, похоже, самостоятельно сделал работающий мини-роторный двигатель внутреннего сгорания, поместил вместо крышки прозрачный пластиковый колпак и, подсоединив шланг с бензином и свечу накаливания, принялся за дело.

Отснятый материал просто не описать словами. Это настолько завораживающее зрелище! Работа миниатюрного роторного двигателя видна изнутри, в замедленной съемке! Вы когда-нибудь сталкивались с чем-то подобным? Вряд ли.

Создатель по ходу съемок рассказывает о своем творении. Он называет крошечный мотор «авиадвигателем Ванкеля». То есть этот нестандартный двигатель, похоже, будет установлен на радиоуправляемую модель самолета. Но как игрушку такой шедевр просто невозможно воспринимать. Вот как он выглядит и самое главное – как работает:

В видео ясно показано, как ротор, вращающийся на эксцентриковом валу, втягивает внутрь воздух через впускное отверстие, увеличивает давление в камере сгорания перед воспламенением воздушно-топливной смеси*, с одной стороны, и, напротив, создавая разряженное давление на такте выпуска, с другой.

*В отличие от реальных двигателей Ванкеля, смесь поджигается свечой накаливания.

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

На этот работающий шедевр можно смотреть вечно!

Роторный двигатель Ахриевых

Просмотров: 186 013
Влад Кайтмазов

Гладко было на бумаге, да забыли про овраги. Где прототип? Хоть какой нибудь? Покажите рабочую модель установленную хоть на запорожце. Пять лет прошло. Нету? Тогда это просто туфта. Реклама несуществующего товара. По моему здесь реклама РИ и конкретных людей а не самой разработки.

lion Sova

Соберите сночало а потом демонстрируйте

Volodymyr Kushnir

Росіяни звісно молодці, – придумали ідею і зразу кричать що в нас геніальне відкриття. А як доходить до справи то підрахунків немає, прототипу немає а якщо і є то він не має якихось видатних показників.

p.s. захід цей етап пройшов вже так років 50-70 тому.

Anton Sydorenko

Жаль, что я не вижу сейчас, как он ревёт, работая на безотходном водороде и развивая десятки тысяч оборотов в минуту. Может попробуете на английском видео сделать: у иностранцев с инвесторами должно быть поинтересней

Елена Горлатова

Это не Роторный двигатель, да и не Двигатель вообще, так как у Роторного вал смещён относительно центра, за счёт чего при возникшем давлении в камере сгорания давление на вал с одной стороны больше в эту сторону и начинается вращение !

в представленной зарисовки вал по центру, при возникновении давления в камере на вал будет равномерное давление не приводящее к вращению не в одну сторону ! ))))

Иван Иванов

Проф а концепт есть? Явите видос плиз.

Алексей Доброхот
Сергей Толстошеев

почему бы 4 этих херни не сделать для экономии места внутри

Дмитрий Кислицын

А как же не рабочие камеры, как в них будет циркулировать “газ”? Они же будут либо засасывать и сжимать топливовоздушную смесь с последующим выпуском ее в выхлопной коллектор, либо создавать вакуум.. В общем механизм не работоспособный, либо что-то не рассказали в видео..

Amon Ra

экологичность можете вычеркнуть из своего списка.

baklazan ivanovich

жаль что нерабочая версия – тот же шибер, а как многим известно шибер можно юзать только под масло+пар+замкнутый контур. Данная схема очень неэффективна хотябы из свойств всех шиберов – “боковой поверхности”. Ребят не забываем про силу трения ))))

Forever

да вы просто завистники

Алексей Бизяев

проблемы те же что и у ванкеля- перегрев и недостаточная смазка компрессионных элементов, “поршневых колец”. и ничего с этим не поделаешь. и ни о какой экологичности и речи быть не может, через уплотнители масло будет лезть только в лёт. ну и сама механика процесса вызывает сомнение, рабочего образца, я так понимаю, нет.

lera koroleva

вопрос как решили проблему неравномерного износа уплотнителей, которые выполняют роль поршневых колец? в мазде над этим очень долго бились и назвали их полосами дьявола, потому, что при износе появляются продолные полосы канавки из за неравномерного износа. второе достаточно ли одной свечи? и третья- я считаю что данный мотор очень будет требователен к качеству топлива.

pavelmyp pavelmyp

Сомневаюсь, что оно вообще заработает, и что тут с системой смазки Оо то что остаётся в камере сгорания летит в масло или картер ? и что с выпуском ? масло туда вылетает ? вообще бред какой то лохов по разводить. а раз уж трение используется, то тут без масла в двойне никак, да и ресурс ? хоть до 5000 моточасов имеет шансы дотянуть ? ибо то, что тут выполняет роль колец поршневых, жить вообще врятли будет.

mimi mimi

Это карбюраторный двигатель? Или откуда воздух туда идёт?

Евгений Рычков

Ну всё, луздец теперь, скоро на воздухе будем летать. Пойду тарелки переплавлю в блок, движок из фарфора конечно легче!

Владимир Феникс

Опытный образец в студию. И не надо говорить мол- “это невозможно сделать в гаражных условиях”- время не то, чтоб говорить так.

Константин Ладушкин

Вот мазда ездит на роторном двигателе. А у этих кто на нем ездит?

Vitiok Tara

ia dumuiu cito svecia pre pervom zapuske vilitit kak propka ot shampanskogo tam vsei etoi inerghii ne kuda detsea

Принцип работы роторного двигателя

Роторный двигатель (РД) считается двигателем внутреннего сгорания, который практически полностью отличается от привычного поршневого агрегата. Как известно, в цилиндре поршневого двигателя выполняется несколько тактов: впуск, сжатие, затем рабочий ход и в заключении – выпуск.

Что касается РД, то он осуществляет все те же такты, при этом они осуществляются в разных частях камеры. Сравнить их можно было бы лишь в том случае, если в поршневом агрегате присутствовал отдельный цилиндр для каждого из тактов и поршень постепенно перемещался бы от цилиндра к цилиндру.

Принцип работы

Роторный двигатель использует давление, возникающее во время сгорания топливовоздушной смеси. Такое давление в поршневых двигателях создается в цилиндрах, что привод в движение поршни.

Коленчатый вал и шатуны приводят поршень во вращательное движение и благодаря этому колеса автомобиля начинают вращаться. В данном двигателе, давление при сгорании возникает в камере, которая сформирована частью самого корпуса и закрыта одной из сторон треугольного ротора, выполняющего роль поршней.

В данном видео, вам покажут, как работает роторный двигатель для Mazda RX-8. Приятного просмотра!

Вращения ротора напоминают линию, которая нарисована спирографом. Такая траектория позволяет вершинам ротора контактировать с корпусом движка, что образует при этом три разделенных между собой объема газа.

Когда ротор вращается, эти объемы поочередно расширяются и сжимаются.Именно это обеспечивает поступление в движок топливовоздушной смеси, а также сжатие и выпуск выхлопа. Он обладает системой зажигания и впрыска топлива, которые похожи на используемые системы в поршневых агрегатах.

Его конструкция полностью отличается от поршневого движка. Ротор обладает тремя выпуклыми сторонами, которые исполняют роль поршней. На каждой стороне устройства, присутствует специальное углубление, увеличивающее скорость вращения самого ротора.

Это оставляет для топливовоздушной смеси больше свободного места. На вершине всех граней расположены металлические пластины, которые разделяют все свободное место на камеры. На каждой из сторон ротора присутствуют два кольца из металла, формирующие стенки камер.

В центральной части устройства, находится зубчатое колесо, зубья которого смотрят внутрь. Это колесо сопрягается с шестерней, которая закреплена на корпусе двигателя. Данное сопряжение задает направление и траекторию вращения в корпусе движка.

Особенности роторного двигателя

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют. Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

Достоинства и недостатки

На роторный двигатель в свое время обратило внимание множество ведущих производителей авто.

Благодаря своей конструкции и принципу работы, он обладал весомыми преимуществами перед поршневыми движками. В первую очередь, роторный агрегат отличается лучшей сбалансированностью и подвергается минимальной вибрации.

Помимо этого, такой двигатель отличается превосходными динамическими характеристиками (на низкой передаче автомобиль с таким движком можно без особых усилий разогнать более чем на 100 км/ч при высоких оборотах).

Данный агрегат гораздо легче и компактнее поршневого движка. В данном двигателе используется меньше узлов, и он отличается высокой мощностью по сравнению с поршневым агрегатом.

Среди недостатков роторного движка следует выделить:

  • повышенный расход топлива при низких оборотах;
  • сложность производства отдельных деталей, которое требует использования дорогостоящего высокоточного оборудования;
  • склонность к перегреву из-за особенной формы камеры сгорания;
  • износ уплотнителей, которые расположены между форсунками из-за частых перепадов давления;
  • потребность в своевременной и частой смене моторного масла (замена должна производиться каждые 5000 километров).

К эксплуатации роторных агрегатов нужно подходить ответственнее, чем к обслуживанию поршневых агрегатов.

Стоянка запрещена знак. Более детальную информацию, ищите на нашем сайте.

Здесь, вы найдёте много картинок с предупреждающими знаками дорожного движения.

При помощи данной статьи, вы сможете ознакомится с рейтингом видеорегистраторов 2015 года.

Их капитальный ремонт и техобслуживание важно проводить вовремя.

Особенность двигателей автомобилей Mazda

Компания Mazda начала производство моделей с роторными движками еще в далеком 1963-ом году.

Наиболее успешным авто компании оснащенным роторным агрегатом стала модель RX-7, выпущенная в 1978-ом году. Правда, до нее было выпущено множество машин, автобусов и грузовиков с роторными двигателями. После модели RX-7, производство которой было остановлено в 1995-ом году, роторным двигателем начали снабжать модель RX-8.

Данный двигатель считался лучшим агрегатом в 2003-ом году. Данный движок с двумя роторами производил 250 лошадиных сил. Однако в 2008-ом году компания прекратила продажу Mazda RX-8 в Европе из-за выбросов ее движка, которые не соответствовали европейским стандартам.

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам.

Помимо этого, корпус движка изготовлен из современного алюминиевого сплава. Компания также выпустила роторный агрегат, который может работать на водороде. Последней разработкой производителя с роторным двигателем на данный момент является модель Premacy Hydrogen RE Hybrid.

Роторный двигатель: принцип работы и наглядное видео

Роторный двигатель (РД) считается двигателем внутреннего сгорания, который практически полностью отличается от привычного поршневого агрегата. Как известно, в цилиндре поршневого двигателя выполняется несколько тактов: впуск, сжатие, затем рабочий ход и в заключении – выпуск.

Что касается РД, то он осуществляет все те же такты, при этом они осуществляются в разных частях камеры. Сравнить их можно было бы лишь в том случае, если в поршневом агрегате присутствовал отдельный цилиндр для каждого из тактов и поршень постепенно перемещался бы от цилиндра к цилиндру.

Роторный двигатель использует давление, возникающее во время сгорания топливовоздушной смеси. Такое давление в поршневых двигателях создается в цилиндрах, что привод в движение поршни.

Коленчатый вал и шатуны приводят поршень во вращательное движение и благодаря этому колеса автомобиля начинают вращаться. В данном двигателе, давление при сгорании возникает в камере, которая сформирована частью самого корпуса и закрыта одной из сторон треугольного ротора, выполняющего роль поршней.

В данном видео, вам покажут, как работает роторный двигатель для Mazda RX-8. Приятного просмотра!

Вращения ротора напоминают линию, которая нарисована спирографом. Такая траектория позволяет вершинам ротора контактировать с корпусом движка, что образует при этом три разделенных между собой объема газа.

Когда ротор вращается, эти объемы поочередно расширяются и сжимаются.Именно это обеспечивает поступление в движок топливовоздушной смеси, а также сжатие и выпуск выхлопа. Он обладает системой зажигания и впрыска топлива, которые похожи на используемые системы в поршневых агрегатах.

Его конструкция полностью отличается от поршневого движка. Ротор обладает тремя выпуклыми сторонами, которые исполняют роль поршней. На каждой стороне устройства, присутствует специальное углубление, увеличивающее скорость вращения самого ротора.

Это оставляет для топливовоздушной смеси больше свободного места. На вершине всех граней расположены металлические пластины, которые разделяют все свободное место на камеры. На каждой из сторон ротора присутствуют два кольца из металла, формирующие стенки камер.

В центральной части устройства, находится зубчатое колесо, зубья которого смотрят внутрь. Это колесо сопрягается с шестерней, которая закреплена на корпусе двигателя. Данное сопряжение задает направление и траекторию вращения в корпусе движка.

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют. Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

На роторный двигатель в свое время обратило внимание множество ведущих производителей авто.

Благодаря своей конструкции и принципу работы, он обладал весомыми преимуществами перед поршневыми движками. В первую очередь, роторный агрегат отличается лучшей сбалансированностью и подвергается минимальной вибрации.

Помимо этого, такой двигатель отличается превосходными динамическими характеристиками (на низкой передаче автомобиль с таким движком можно без особых усилий разогнать более чем на 100 км/ч при высоких оборотах).

Данный агрегат гораздо легче и компактнее поршневого движка. В данном двигателе используется меньше узлов, и он отличается высокой мощностью по сравнению с поршневым агрегатом.

Среди недостатков роторного движка следует выделить:

  • повышенный расход топлива при низких оборотах;
  • сложность производства отдельных деталей, которое требует использования дорогостоящего высокоточного оборудования;
  • склонность к перегреву из-за особенной формы камеры сгорания;
  • износ уплотнителей, которые расположены между форсунками из-за частых перепадов давления;
  • потребность в своевременной и частой смене моторного масла (замена должна производиться каждые 5000 километров).

К эксплуатации роторных агрегатов нужно подходить ответственнее, чем к обслуживанию поршневых агрегатов.

Стоянка запрещена знак. Более детальную информацию, ищите на нашем сайте.

Здесь, вы найдёте много картинок с предупреждающими знаками дорожного движения.

При помощи данной статьи, вы сможете ознакомится с рейтингом видеорегистраторов 2015 года.

Их капитальный ремонт и техобслуживание важно проводить вовремя.

Компания Mazda начала производство моделей с роторными движками еще в далеком 1963-ом году.

Наиболее успешным авто компании оснащенным роторным агрегатом стала модель RX-7, выпущенная в 1978-ом году. Правда, до нее было выпущено множество машин, автобусов и грузовиков с роторными двигателями. После модели RX-7, производство которой было остановлено в 1995-ом году, роторным двигателем начали снабжать модель RX-8.

Данный двигатель считался лучшим агрегатом в 2003-ом году. Данный движок с двумя роторами производил 250 лошадиных сил. Однако в 2008-ом году компания прекратила продажу Mazda RX-8 в Европе из-за выбросов ее движка, которые не соответствовали европейским стандартам.

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам.

Помимо этого, корпус движка изготовлен из современного алюминиевого сплава. Компания также выпустила роторный агрегат, который может работать на водороде. Последней разработкой производителя с роторным двигателем на данный момент является модель Premacy Hydrogen RE Hybrid.

Принцип работы роторного двигателя.

Роторный двигатель – представитель класса двигателей внутреннего сгорания, где энергия сгорания топлива превращается в движущую силу, заставляя чувствовать свободу сидя за рулем автомобиля. Кроме названия роторный можно встретить второе название данного силового агрегата – двигатель Ванкеля, по имени его создателя Феликса Ванкеля.

Познакомимся с принципом работы роторного двигателя.

И начнем с того, что роторный мотор имеет те же фазы работы, что и поршневой: впуск, сжатие, поджигание смеси (зажигание) и выпуск. В остальном же такой двигатель неповторим.

Итак, в основе роторного двигателя Ванкеля лежит ротор, имеющий форму в поперечном сечении близкую к треугольнику с выпуклыми сторонами. Каждая из таких сторон ротора, по сути, является поршнем.

Вторым значимым элементом роторного двигателя является корпус, внутри которого вращается ротор. Сам корпус имеет эпитрохоидальную форму (форму близкую к овалу). Ротор вращается в корпусе по эксцентричной оси, образуя тем самым между стенками корпуса и сторонами ротора три замкнутые камеры, объем которых при вращении ротора меняется.

Именно изменение объема камер при вращении ротора и создает в различных точках вращения необходимое всасывание воздушно топливной смеси:

  • объем камеры увеличивается, смесь затягивается через впускное отверстие;
  • далее идет уменьшение камеры, тем самым провоцируя наступление второй фазы — сжатия, где при прохождении точки максимального сжатия возникает воспламенение воздушно-топливной смеси;
  • далее расширение газов толкает ротор в дальнейшем направлении (тем самым и создается движущая сила), вызывая выпуск отработанных газов;
  • в дальнейшем цикл повторяется.

Таким образом, ротор, вращаясь, имеет три камеры, где поочередно происходят этапы всасывания, сжатия, зажигания и выпуска. При этом возвратно-поступательное движения в таком двигателе отсутствуют (не то что в поршневом), а значит — нет необходимости в газораспределительной системе, так как эту роль выполняет сам ротор, открывая и закрывая собой при вращении впускной и выпускной каналы.

Вся эта магия при меньших размерах двигателя и отсутствии возвратно-поступательных движений (меньше количество деталей) придает авто большую мощность, динамику, надежность и небольшой вес. Отсюда вывод, что такой двигатель идеален для спортивных автомобилей.

В заключении, хотелось бы назвать ключевые недостатки двигателя Ванкеля, которые не дали этому силовому агрегату сыскать ту же популярность, какую обрели поршневые движки. Конечно, со многими из них уже довольно успешно борются автопроизводители, но знать их все же стоит.

Недостатки роторного двигателя.

  1. Большой расход топлива, а значит – и низкая экологичность по сравнению с поршневыми собратьями. Причина этого – неидеальная для таких целей форма камеры сгорания (она имеет форму молодой Луны).
  2. Высокая теплопротводность рабочих элементов (вытекает из предыдущего недостатка), что создает дополнительную нагрузку на элементы мотора и требует применения более теплостойких материалов.
  3. Непосредственно сам ротор, а точнее его грани: вращаясь, каждая грань должна идеально плотно скользить в теле корпуса, что требует идеальной точности изготовления и прочности самих граней ротора (ведь небольшие пропуски снизят давление при сжатии, как итог, уменьшив мощность), что весьма трудноосуществимо и накладно.

Видео, в котором показано как работает роторный двигатель изнутри

Посмотрите, как работает роторный двигатель Ванкеля в замедленной съемке

Редчайшее видео, которое мы никогда не увидели бы, если бы не рукастость владельца и по совместительству ведущего YouTube канала «Warp Perception».

 

Смотрите также: Самый необычный двигатель, созданный Роллс-Ройс

 

Этот технически подкованный гражданин, похоже, самостоятельно сделал работающий мини-роторный двигатель внутреннего сгорания, поместил вместо крышки прозрачный пластиковый колпак и, подсоединив шланг с бензином и свечу накаливания, принялся за дело.

 

Отснятый материал просто не описать словами. Это настолько завораживающее зрелище! Работа миниатюрного роторного двигателя видна изнутри, в замедленной съемке! Вы когда-нибудь сталкивались с чем-то подобным? Вряд ли.

 

Создатель по ходу съемок рассказывает о своем творении. Он называет крошечный мотор «авиадвигателем Ванкеля». То есть этот нестандартный двигатель, похоже, будет установлен на радиоуправляемую модель самолета. Но как игрушку такой шедевр просто невозможно воспринимать. Вот как он выглядит и самое главное – как работает:

 

В видео ясно показано, как ротор, вращающийся на эксцентриковом валу, втягивает внутрь воздух через впускное отверстие, увеличивает давление в камере сгорания перед воспламенением воздушно-топливной смеси*, с одной стороны, и, напротив, создавая разряженное давление на такте выпуска, с другой.

 

*В отличие от реальных двигателей Ванкеля, смесь поджигается свечой накаливания.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

На этот работающий шедевр можно смотреть вечно!

Устройство роторного двигателя. Принцип работы роторного двигателя — видео

Автор Master OffRoad На чтение 13 мин. Просмотров 357 Опубликовано

История создания роторного двигателя


Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.


Как самому полировать фары автомобиля? Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.





Как самостоятельно полировать автомобиль? Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Плюсы и минусы

Есть ряд преимуществ:

  • меньшее количество деталей, как минимум на 35% меньше относительно поршневого. Меньше деталей — меньше поломок;
  • если сопоставить с конкурентом такой же мощности, то РПД будет в 2 раза меньше по размеру;
  • отсутствие высокой нагрузки даже на больших оборотах и если на низких передачах разогнаться сильнее сотни километров в час;
  • меньше весит, поэтому машину проще уравновесить, она становится более устойчивой;
  • нет проблемы вибрации даже у самых легких авто. Поршневой вибрирует гораздо сильнее, ввиду чего роторный лучше сбалансирован.

Но есть и недостатки:

  • главный минус — небольшой ресурс, это издержка простой конструкции. Рабочий угол уплотнителей постоянно меняется, из-за чего они быстро изнашиваются. Износ усиливается и от того, что через каждый такт меняется температура. Вдобавок давление, оказываемое на трущиеся поверхности, от этого есть только одно средство — впрыскивание масла в коллектор;
  • при износе уплотнителей образуются утечки между камерами. Разница в давлении очень большая, от этого страдает КПД. Вред для экологии усиливается;
  • из-за серповидной конфигурации камер топливо сгорает не полностью. Из-за небольшой длины рабочего хода и скорости вращения ротора выталкиваются несгоревшие газы высокой температуры. Выделяются не только продукты сгорания бензина, но и масло, ввиду чего окружающая среда подвергается крайне негативному влиянию. Поршневые двигатели не настолько вредные для экологии;
  • про высокий расход топлива уже было сказано, но это касается не только бензина, но и масла. Такой двигатель съедает до литра на тысячу километров. Если забыть про масло, то можно столкнуться с необходимостью дорогого ремонта или вовсе замены мотора;
  • высокая себестоимость. Требуются качественные дорогие материалы и высокотехнологичное оборудование.

У роторного двигателя достаточно недостатков, но и его конкурент не совершенный. Поэтому соревнование между ними длилось достаточно долго. Сейчас гонка окончена, но никто не может сказать, навсегда или нет.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.


В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.


После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

Видео: как устроен и работает роторный двигатель

Подведем итоги

Моторы роторно-поршневого типа превосходно показывают себя в гонках. У них есть для этого высокая мощность, большое количество оборотов. Немаловажно, что машины на нем очень легкие относительно других, так как двигатель меньше и легче. Ресурс двигателя для гонок — не самый важный показатель, как и прожорливость. Но в обычной жизни нельзя этого не учитывать.

Вне недостатки обусловлены строением и принципом работы роторно-поршневого двигателя. Их нельзя отнести к недоработкам, скорее, это особенности. Но в теории есть способ вновь начать пользоваться РПД. Для этого нужно сделать его более экологичным, повысить ресурс и сделать его более экономичным.

Источники

  • https://dolauto.ru/informations/articles/chto-takoe-rotornyy-dvigatel/
  • https://krossovery.info/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy-sistemy/
  • https://www.syl.ru/article/158520/new_rotornyiy-dvigatel-printsip-rabotyi-plyusyi-i-minusyi-rotornogo-dvigatelya
  • https://geekometr.ru/statji/kak-rabotaet-rotorno-porshnevoy-dvigatel-v-mashine.html
  • https://zewerok.ru/dvigatel-vankelya/
  • https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html

принцип работы и наглядное видео

Роторный двигатель (РД) считается двигателем внутреннего сгорания, который практически полностью отличается от привычного поршневого агрегата. Как известно, в цилиндре поршневого двигателя выполняется несколько тактов: впуск, сжатие, затем рабочий ход и в заключении – выпуск.

Что касается РД, то он осуществляет все те же такты, при этом они осуществляются в разных частях камеры. Сравнить их можно было бы лишь в том случае, если в поршневом агрегате присутствовал отдельный цилиндр для каждого из тактов и поршень постепенно перемещался бы от цилиндра к цилиндру.

Роторный движок изобрел и сконструировал доктор Феликс Ванкель, поэтому его часто называют двигателем Ванкеля.

Принцип работы

Роторный двигатель использует давление, возникающее во время сгорания топливовоздушной смеси. Такое давление в поршневых двигателях создается в цилиндрах, что привод в движение поршни.

Коленчатый вал и шатуны приводят поршень во вращательное движение и благодаря этому колеса автомобиля начинают вращаться. В данном двигателе, давление при сгорании возникает в камере, которая сформирована частью самого корпуса и закрыта одной из сторон треугольного ротора, выполняющего роль поршней.

В данном видео, вам покажут, как работает роторный двигатель для Mazda RX-8. Приятного просмотра!

Вращения ротора напоминают линию, которая нарисована спирографом. Такая траектория позволяет вершинам ротора контактировать с корпусом движка, что образует при этом три разделенных между собой объема газа.

Когда ротор вращается, эти объемы поочередно расширяются и сжимаются.Именно это обеспечивает поступление в движок топливовоздушной смеси, а также сжатие и выпуск выхлопа. Он обладает системой зажигания и впрыска топлива, которые похожи на используемые системы в поршневых агрегатах.

Его конструкция полностью отличается от поршневого движка. Ротор обладает тремя выпуклыми сторонами, которые исполняют роль поршней. На каждой стороне устройства, присутствует специальное углубление, увеличивающее скорость вращения самого ротора.

Это оставляет для топливовоздушной смеси больше свободного места. На вершине всех граней расположены металлические пластины, которые разделяют все свободное место на камеры. На каждой из сторон ротора присутствуют два кольца из металла, формирующие стенки камер.

В центральной части устройства, находится зубчатое колесо, зубья которого смотрят внутрь. Это колесо сопрягается с шестерней, которая закреплена на корпусе двигателя. Данное сопряжение задает направление и траекторию вращения в корпусе движка.

Особенности роторного двигателя

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют. Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

Достоинства и недостатки

На роторный двигатель в свое время обратило внимание множество ведущих производителей авто.

Благодаря своей конструкции и принципу работы, он обладал весомыми преимуществами перед поршневыми движками. В первую очередь, роторный агрегат отличается лучшей сбалансированностью и подвергается минимальной вибрации.

Помимо этого, такой двигатель отличается превосходными динамическими характеристиками (на низкой передаче автомобиль с таким движком можно без особых усилий разогнать более чем на 100 км/ч при высоких оборотах).

Данный агрегат гораздо легче и компактнее поршневого движка. В данном двигателе используется меньше узлов, и он отличается высокой мощностью по сравнению с поршневым агрегатом.

Среди недостатков роторного движка следует выделить:

  • повышенный расход топлива при низких оборотах;
  • сложность производства отдельных деталей, которое требует использования дорогостоящего высокоточного оборудования;
  • склонность к перегреву из-за особенной формы камеры сгорания;
  • износ уплотнителей, которые расположены между форсунками из-за частых перепадов давления;
  • потребность в своевременной и частой смене моторного масла (замена должна производиться каждые 5000 километров).

К эксплуатации роторных агрегатов нужно подходить ответственнее, чем к обслуживанию поршневых агрегатов.

Стоянка запрещена знак. Более детальную информацию, ищите на нашем сайте.

Здесь, вы найдёте много картинок с предупреждающими знаками дорожного движения.

При помощи данной статьи, вы сможете ознакомится с рейтингом видеорегистраторов 2015 года.

Их капитальный ремонт и техобслуживание важно проводить вовремя.

Особенность двигателей автомобилей Mazda

Компания Mazda начала производство моделей с роторными движками еще в далеком 1963-ом году.

Наиболее успешным авто компании оснащенным роторным агрегатом стала модель RX-7, выпущенная в 1978-ом году. Правда, до нее было выпущено множество машин, автобусов и грузовиков с роторными двигателями. После модели RX-7, производство которой было остановлено в 1995-ом году, роторным двигателем начали снабжать модель RX-8.

Данный двигатель считался лучшим агрегатом в 2003-ом году. Данный движок с двумя роторами производил 250 лошадиных сил. Однако в 2008-ом году компания прекратила продажу Mazda RX-8 в Европе из-за выбросов ее движка, которые не соответствовали европейским стандартам.

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам.

Система впрыска была значительно переработана, благодаря чему топливо расходуется гораздо экономнее.

Помимо этого, корпус движка изготовлен из современного алюминиевого сплава. Компания также выпустила роторный агрегат, который может работать на водороде. Последней разработкой производителя с роторным двигателем на данный момент является модель Premacy Hydrogen RE Hybrid.

принцип работы с видео, устройство

Роторный двигатель является одной из разновидностей тепловых ДВС. Первый роторный двигатель, принцип работы которого кардинально отличается от традиционного двигателя внутреннего сгорания, появился в 19 веке.

Его особенностью было использование не возвратно поступательных движений, как в классическом ДВС, а вращение в специальном овальном корпусе трехгранного ротора. Такая схема применялась в первых поршневых паровых машинах и дала толчок к активному проектированию и созданию роторных паровых двигателей. С роторного парового двигателя и начиналась история двигателя внутреннего сгорания роторного типа. Впервые схему классического роторно-поршневого (двигателя Ванкеля) разработали в конце 1950-х годов в немецкой фирме NSU, авторами стали Феликс Ванкель и Вальтер Фройде.

Конструкция

Давайте рассмотрим основные части РПД:

  • корпус двигателя;
  • ротор;
  • выходной вал.

Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.

Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:

  • впуск;
  • сжатие;
  • воспламенение;
  • выпуск.

Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.

Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.

Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.

Рабочие такты РПД

Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.

Начало такта впуска происходит в момент прохода одной из вершин ротора впускного канала корпуса мотора. В этот момент в постепенно расширяющуюся камеру сгорания всасывается топливно-воздушная смесь либо просто воздух, в зависимости от компоновки системы подачи топлива. При дальнейшем вращении ротора к точке, когда вторая вершина проходит впускной канал, начинается такт сжатия топливно-воздушной смеси. Давление смеси вместе с движением ротора постепенно нарастает и достигает своего пика в момент прохождения зоны свечей зажигания. В момент воспламенения начинается такт рабочего хода ротора.

В связи с особой формой камеры сгорания, вытянутой вдоль стенки корпуса, целесообразно использовать две свечи зажигания. Использование двух свечей позволяет быстро и равномерно произвести поджиг топливно-воздушной смеси, что гарантирует быстрое, плавное и равномерное распространение фронта пламени.

Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.

Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала,  начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.

Система питания и смазка

Роторный мотор не имеет принципиальных отличий от классического ДВС в системах зажигания, топливоподачи и охлаждения. Однако система смазки имеет свои особенности. Для смазывания движущихся частей масло подается прямо в камеру сгорания через специальное отверстие, поэтому сгорает вместе с топливно-воздушной смесью как в двухтактном двигателе.
Как и любая техническая конструкция, роторный мотор обладает своими преимуществами и недостатками.

 Достоинствами роторно-поршневого двигателя

  1. Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;
  2. более высокая удельная мощность по сравнению с классическими моторами;
  3. более ровная и широкая полка крутящего момента;
  4. отсутствие кривошипно-шатунного механизма, клапанов, пружин, газораспределительного механизма, а вместе с ним и распредвалов, ремня грм или цепи;
  5. хорошая сбалансированность и плавность работы РПД, которую можно сравнить с работой рядной «шестерки»;
  6. меньшая склонность к детонации;
  7. отсутствие кривошипно-шатунного механизма, а вследствие этого отсутствие необходимости преобразования возвратно-поступательного движения поршней во вращение коленчатого вала, делает РПД более оборотистым нежели обычный мотор;

Недостатки

  1. Необходимость применения эксцентрикового механизма для соединения ротора и вала увеличивает давление между трущимися деталями, что вместе с высокой температурой повышает износ двигателя. Именно поэтому выдвигаются повышенные требованию к качеству масла и периодичности его смены;
  2. быстрый износ уплотнителей ротора вследствие малой площади пятна контакта и высокому перепаду давлений. Таким образом, роторный мотор быстро теряет свой КПД, экологические показатели ухудшаются;
  3. линзовидная форма камеры сгорания гораздо хуже отдает тепло, нежели сферическая камера сгорания, что обуславливает склонность к перегреву;
  4. низкие показатели экономичности на малых и средних оборотах, по сравнению с обычным двигателем внутреннего сгорания;
  5. роторный мотор имеет очень высокие требования к обработке деталей и квалификации персонала при производстве данного типа двигателя;
  6. необходимость добавления масла во время рабочих тактов РПД обуславливает плохие экологические характеристики;

Современные реалии

В настоящее время наибольших успехов в производстве роторных двигателей добились инженеры корпорации Mazda. Последняя генерация их двигателя Ванкеля, под названием «Renesis», совершила настоящий прорыв. Им удалось не только решить главные проблемы данного типа ДВС, такие как повышенный расход топлива и токсичность, но и снизить потребление масла на 50%, тем самым доведя экологические показатели до норм Euro 4. Новое поколение РПД Mazda могут использовать в качестве топлива как бензин, так и водород, что делает этот мотор интересными и перспективными для использования в будущем.

Принцип работы роторного двигателя ваз. Принцип работы роторного двигателя Ахриевых на видео. Перегревы и высокие нагрузки

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая - регулирующая движение ротора и состоящая из пары шестерен; и вторая - преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 - впускное окно; 2 выпускное окно; 3 - корпус; 4 - камера сгорания; 5 – неподвижная шестерня; 6 - ротор; 7 – зубчатое колесо; 8 - вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо - как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД - высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя - невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности - две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики - избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей - ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла - поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего - во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область - камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80 . Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» - пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen , Mazda , ВАЗ . Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов - Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 - спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Не многие знают, что наряду с классическими поршневыми двигателями, в автомобилестроении применяются роторные агрегаты, называемые по фамилии изобретателя моторами Ванкеля. Они являются двигателями с внутренним принципом сгорания топлива, однако, его устройство и принципы работы совершенно иные. Сегодня мы поговорим роторных моторах более подробно.

Конструктивное устройство роторного двигателя

Основные части двигателя Ванкеля по своему устройству не имеют ничего общего с классическими ДВС.

Его главные части следующие:

1. Основная рабочая камера

Корпус любого роторного агрегата представляет собой овальную металлическую камеру, в которой происходят основные рабочие процессы – режим впуска, такт сжатия, процесс сгорания горючего и выпуск отработанных газов. Форма камеры неслучайна. Она выполнена таким образом, чтобы при взаимодействии с ротором, её стенки осуществляли соприкосновение со всеми его вершинами, образуя несколько закрытых контуров. Впускные и выпускные отверстия таких моторов не имеют клапанов. Они находятся непосредственно на боковых частях рабочей камеры и подключаются напрямую к выхлопной трубе и системе питания.

2. Ротор

Форма ротора чем-то напоминает треугольник, грани которого имеют выпуклое наружу закругление. Помимо этого, каждая его сторона изготовлена с небольшой выборкой, увеличивающей объем образовывающейся замкнутой камеры сгорания и повышающей скоростные показатели вращения ротора. Назначение этого компонента аналогично функциям поршней в обычном ДВС. Возникновение тактов работы происходит методом создания уже упомянутых выше трех дочерних камер. Центральная часть ротора наделена зубчатым отверстием, соединяющим ротор с приводом, закрепленным в свою очередь с выходным валом. Это звено и определяет, в каком направлении и по какой траектории будет двигаться ротор внутри основной рабочей камеры.

3. Выходной вал

Функции выходного вала роторного двигателя аналогичны функциям коленвала классических силовых агрегатов. Он наделен полукруглыми выступами-кулачками, имеющими несимметричное выстраивание с явным смещением от центральной рабочей оси. На валу размещается несколько роторов, надеваемых на свой рабочий кулачок. Их несимметричное расположение создает предпосылки для образования крутящего момента, происходящего в результате силового давления каждого из роторов.

Думаем, вы уже догадались, что роторные двигатели имеют многослойное строение, подразумевающее создание несколько рабочих камер, в которых вращаются несколько роторов. Единственным объединяющим звеном этой работы служит выходной вал, вращающийся в результате этого синхронного взаимодействия. «Слои» надежно скрепляются между собой множеством болтов, расположенных по краям. Охлаждение таких двигателей проточное. Оно подразумевает нахождение антифриза не только вокруг общего блока, но и в каждой из его частей.

В двигателе Ванкеля вся работа выстраивается тем же методом сгорания топливной смеси, что и у поршневых движков. Однако никаких статических камер сгорания у них не предусматривается. Давление, возникающее при сгорании горючего, создается в отдельно образуемых камерах, которые отделяются от общей рабочей камеры роторными гранями.

Сам ротор постоянно контактирует своими вершинами со стенками камеры, в каждый момент времени создавая очередной замкнутый контур. При его вращении контуры попеременно то расширяются, то осуществляет сжатие. Во время этих циклов внутрь камеры попадает воздух и топливо, которое в результате силового воздействия ротора сжимается и воспламеняется, своим расширением придавая ротору очередной вращательный импульс. Отработанные газы сквозь отверстия выбрасываются в выхлопную систему, после чего камера снова заполняется топливно-воздушным составом.

Преимущества и недостатки роторных моторов

Применение роторных моторов имеет ряд неоспоримых преимуществ.

  • Меньшее количество внутренних компонентов . Аналогичный четырехцилиндровому поршневому двигателю роторный «собрат» наделен всего четырьмя основными частями: общая камера, пара роторов и кулачковый вал. Классический ДВС со схожими тактами работы состоит минимум из сорока подвижных частей, каждая из которых подвержена износу.
  • Мягкость работы . При функционировании роторных агрегатов практически не возникает вибраций, благодаря тому, что все подвижные части осуществляют вращение лишь в одном направлении. Думаем, вы знаете, что работа поршней в обычном двигателе разнонаправленная. Она чередует поступательное движение с реверсивным ходом.
  • Невысокий ритм . Ввиду того, что каждый ротор ответственен за вращение лишь одной трети полного круга выходного вала, движение, необходимое для этого, происходит заметно медленнее, чем существенно повышает надежность мотора Ванкеля.

Отрицательные факторы применения роторных двигателей исключать, разумеется, нельзя.

  • Ни один роторный двигатель не может четко подстроиться под регламенты экологических норм различных стран . Его никак нельзя назвать экологичным из-за серьезного количества выбросов углекислого газа, снизить которые нереально.
  • Дороговизна изготовления . Производство роторных движков весьма затратно, главным образом, в силу малых серийных партий. Концерны выпускают их совсем немного, что не требует особенной оптимизации затрат при изготовлении.
  • Ограниченность ресурса . Функциональный запас роторных моторов Ванкеля весьма ограничен. Редко когда он превышает 100-150 тысяч километров, по достижении которого им требуется полная переборка (капитальный ремонт) или замена.
  • Повышенное топливное потребление . Главной причиной увеличенной «прожорливости» является их низкая степень сжатия. Двигатель, удерживая необходимую мощность, компенсирует её за счет большего количество подаваемого внутрь замкнутых камер горючего.

Итог

Подводя итоги, скажем, что роторные силовые агрегаты, конечно, имеют право на существование. Они обладают рядом неоспоримых «плюсов», которые делают возможным их, пусть и небольшое, применение в автомобильном производстве. С другой стороны, тяжесть «минусов» весьма ощутима. Во многих странах мира они попросту не могут применяться из-за существующих экологических стандартов, а серьезное топливное потребление и ограниченный рабочий ресурс делает приобретение автомобилей с роторными двигателями совершенно нерентабельным. Прогнозируем, что какое-то время они еще будут на рынке, но достаточно скоро их вытеснят гибридные силовые системы, развитие которых осуществляется совершенно грандиозными темпами.

Паровые машины и двигатели внутреннего сгорания обладают одним общим недостатком - возвратно-поступательное движение поршня должно быть преобразовано во вращательное движение колёс. Отсюда и заведомо низкий КПД, и высокая изнашиваемость элементов механизма. Многим хотелось построить двигатель внутреннего сгорания так, чтобы все подвижные части в нём только вращались - как это происходит в электромоторах.

Однако задача оказалась не простой, успешно решить её удалось только механику-самоучке, который за всю свою жизнь так и не получил ни высшего образования, ни даже рабочей специальности.

Феликс Генрих Ванкель (Felix Heinrich Wankel, 1902–1988) родился 13 августа 1902 года в небольшом немецком городке Лар. Во время Первой мировой войны погиб отец Феликса, из-за чего будущему изобретателю пришлось бросить гимназию и пойти работать учеником продавца в книжной лавке при издательстве. Благодаря этой работе Ванкель пристрастился к чтению книг, по которым он самостоятельно изучал технические дисциплины, механику и автомобилестроение.
Существует легенда, что решение задачи пришло семнадцатилетнему Феликсу во сне. Правда это или нет - неизвестно. Зато очевидно, что Феликс обладал весьма незаурядными способностями к механике и «незамыленным» взглядом на вещи. Он понял, как все четыре цикла работы обычного двигателя внутреннего сгорания (впрыск, сжатие, сгорание, выхлоп) можно осуществить при вращении.
Довольно быстро Ванкель пришёл к первой конструкции двигателя, и в 1924 году он организовал небольшую мастерскую, которая также служила и импровизированной «лабораторией». Здесь Феликс и начал проводить первые серьёзные исследования в области роторно-поршневых ДВС.
С 1921 года Ванкель был активным членом НСДАП. Он выступал за партийные идеалы, был основателем всегерманского военного юношеского объединения и юнгфюрером различных организаций. В 1932 году он вышел из партии, обвинив одного из своих бывших коллег в политической коррупции. Однако по встречному обвинению ему самому пришлось провести в тюрьме шесть месяцев. Освободившись из заключения благодаря заступничеству Вильгельма Кепплера (Wilhelm Keppler), он продолжил работы над двигателем. В 1934 он создал первый опытный образец и получил на него патент. Он сконструировал новые клапаны и камеры сгорания для своего мотора, создал несколько различных его вариантов, разработал классификацию кинематических схем различных роторно-поршневых машин.

В 1936 году прототип двигателя Ванкеля заинтересовал BMW - Феликс получил деньги и собственную лабораторию в Линдау для разработки опытных авиадвигателей.
Впрочем, до самого разгрома фашистской Германии ни один двигатель Ванкеля в серию не пошёл. Возможно, на доведение конструкции до ума и создания массового производства требовалось слишком много времени.
После войны лаборатория была закрыта, оборудование вывезено во Францию, а Феликс остался без работы (сказалось былое членство в национал-социалистической партии). Однако вскоре Ванкель всё же получил должность инженера-конструктора в компании NSU Motorenwerke AG, являющейся одним из старейших производителей мотоциклов и автомобилей.
В 1957 году совместными усилиями Феликса Ванкеля и ведущего инженера NSU Вальтера Фрёде (Walter Froede) роторно-поршневой двигатель впервые был установлен на автомобиль NSU Prinz. Первоначальная конструкция оказалась далека от совершенства: даже для замены свечей требовалось разбирать почти весь «движок», надёжность оставляла желать лучшего, а про экономичность на данном этапе разработки и вовсе говорить было грешно. В результате испытаний в серию пошёл всё же автомобиль с традиционным ДВС. Тем не менее первый роторно-поршневой двигатель DKM-54 доказал свою принципиальную работоспособность, открыл направления для дальнейшей доводки и продемонстрировал колоссальный потенциал «роторников».
Таким образом, новый тип ДВС получил, наконец, свою путёвку в жизнь. В дальнейшем его ждёт ещё немало усовершенствований и доработок. Но перспективы роторно-поршневого двигателя настолько привлекательны, что инженеров уже ничто не могло остановить в деле доведения конструкции до эксплуатационного совершенства.

Прежде чем разбирать достоинства и недостатки роторно-поршневых ДВС, стоит всё-таки подробней рассмотреть их конструкцию.
В центре ротора проделано круглое отверстие, изнутри покрытое зубцами как у шестерёнки. В это отверстие вставлен вращающийся вал меньшего диаметра, также с зубцами, что обеспечивает отсутствие проскальзывания между ним и ротором. Отношения диаметров отверстия и вала подобраны так, чтобы вершины треугольника двигались по одной и той же замкнутой кривой, которая называется «эпитрохоида», - искусство Ванкеля как инженера заключалось в том, чтобы сначала понять, что это возможно, а потом всё точно рассчитать. В итоге, поршень, имеющий форму треугольника Рело, отсекает в камере, повторяющей форму найденной Ванкелем кривой, три камеры переменного объёма и положения.
Конструкция роторно-поршневого ДВС позволяет реализовать любой четырехтактный цикл без применения специального механизма газораспределения. Благодаря этому факту «роторник» оказывается значительно проще обычного четырёхтактного поршневого двигателя, в котором в среднем почти на тысячу деталей больше.
Герметизация рабочих камер в роторно-поршневом ДВС обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к «цилиндру» ленточными пружинами, а также центробежными силами и давлением газа.
Ещё одна его техническая особенность - это высокая «производительность труда». За один полный оборот ротора (то есть за цикл «впрыск, сжатие, воспламенение, выхлоп»), выходной вал совершает три полных оборота. В обычном поршневом двигателе таких результатов можно добиться только используя шестицилиндровый ДВС.

После первой же успешной демонстрации роторного ДВС в 1957 году крупнейшие автогиганты стали проявлять к разработке повышенный интерес. Сначала лицензию на двигатель, получивший неформальное название «ванкель», купила корпорация Curtiss-Wright, через год, Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего за весьма короткий промежуток времени лицензии на новую технологию приобрели около ста компаний во всём мире, включая таких монстров как Rolls-Royce, Porsche, BMW и Ford.Такой интерес к «ванкелю» столь крупных игроков автомобильного рынка объясняется его большим потенциалом и значительными достоинствами - в роторно-поршневом двигателе на 40% меньше деталей, он проще в ремонте и производстве.

К тому же «ванкель» почти в два раза компактней и легче традиционного поршневого ДВС, что в свою очередь улучшает управляемость автомобиля, облегчает оптимальное расположение трансмиссии и позволяет сделать более просторный и удобный салон.


Картинка кликабельна:

Роторно-поршневой двигатель развивает высокую мощность при довольно скромном расходе топлива. Например, современный «ванкель» объёмом всего 1300 смі развивает мощность в 220 л.с., а с турбокомпрессором - все 350. Ещё один пример - миниатюрный двигатель OSMG 1400 весом 335 г (рабочий объем 5 смі) развивает мощность в 1,27 л.с. Фактически, эта кроха на 27% сильнее лошади.
Ещё одно важное преимущество - низкий уровень шумов и вибраций. Роторно-поршневой двигатель отлично уравновешен механически, кроме того масса движущихся частей (и их количество) в нём значительно меньше, благодаря чему «ванкель» работает гораздо тише и не вибрирует.
И, наконец, роторно-поршневой двигатель отличается великолепными динамическими характеристиками. На низкой передаче можно без особой нагрузки на движок разогнать автомобиль до 100 км/ч на высоких оборотах двигателя. Кроме того, сама конструкция «ванкеля» за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционный ДВС.

После вышедшего в 1964 году NSU Spyder последовали легендарная модель NSU Ro 80 (в мире до сих пор существует множество клубов владельцев этих машин), Citroen M35 (1970), Mercedes C-111 (1969), Corvette XP (1973). Но единственным массовым производителем стала японская Mazda, выпускавшая с 1967 года порой по 2-3 новые модели с РПД. Роторные двигатели ставили на катера, снегоходы и легкие самолеты. Конец эйфории пришел в 1973 году, в разгар нефтяного кризиса. Тут-то и проявился основной недостаток роторных двигателей - неэкономичность. За исключением Mazda, все автопроизводители свернули роторные программы, а у японской компании продажи по Америке сократились со 104960 проданных машин в 1973 году до 61192 - в 1974-м. Наряду с неоспоримыми достоинствами, «ванкель» также обладал и целым рядом очень серьёзных недостатков. Во-первых, долговечность. Один из первых прототипов роторно-поршневых двигателей на испытаниях выработал свой ресурс всего за два часа. Следующий, более успешный DKM-54 уже выдержал сто часов, но этого для нормальной эксплуатации автомобиля всё равно было недостаточно. Основная проблема крылась в неравномерном износе внутренней поверхности рабочей камеры. На ней в процессе эксплуатации появлялись поперечные борозды, которые получили говорящее имя «метки дьявола».

В компании Mazda после приобретения лицензии на «ванкель» был сформирован целый отдел, занимавшийся усовершенствованием роторно-поршневого двигателя. Довольно скоро выяснилось, что при вращении треугольного ротора, заглушки на его вершинах начинают вибрировать, в результате чего и образуются «метки дьявола».
В настоящее время проблему надежности и долговечности окончательно решили, применив высококачественные износостойкие покрытия, в том числе керамические.
Другая серьезная проблема - повышенная токсичность выхлопа «ванкеля». По сравнению с обычным поршневым ДВС «роторник» выделяет в атмосферу меньше окислов азота, но гораздо больше углеводородов, за счёт неполного сгорания топлива. Довольно быстро инженеры Mazda, уверовавшие в блестящее будущее «ванкеля», нашли простое и эффективное решение и этой проблемы. Они создали так называемый термальный реактор, в котором остатки углеводородов в выхлопных газах просто «дожигались». Первым автомобилем, реализовавшим такую схему, стал Mazda R100, также называемый Familia Presto Rotary, выпущенный в 1968 году. Эта машина, одна из немногих, сразу прошла весьма жёсткие экологические требования, выдвинутые США в 1970 году для импортируемых авто.
Следующая проблема роторно-поршневых двигателей частично вытекает из предыдущей. Это экономичность. Расход топлива стандартного «ванкеля» из-за неполного сгорания смеси существенно выше, чем у стандартного ДВС. И снова инженеры Mazda принялись за работу. При помощи целого комплекса мер, включающих переработку термореактора и карбюратора, добавление теплообменника в выхлопную систему, разработку каталитического конвертера и внедрение новой системы зажигания, компания добилась снижения потребления топлива на 40%. В результате этого несомненного успеха в 1978 году был выпущен спортивный автомобиль Mazda RX-7.

Стоит отметить, что в это время во всём мире машины с роторно-поршневыми двигателями выпускала только Mazda и… АвтоВАЗ.
Именно в провальном 1974 году советское правительство создает на Волжском автозаводе специальное конструкторское бюро РПД (СКБ РПД) - социалистическая экономика непредсказуема. В Тольятти начались работы по строительству цехов для серийного производства «ванкелей». Поскольку ВАЗ изначально планировался как простой копировальщик западных технологий (в частности, фиатовских), заводскими специалистами было принято решение воспроизводить двигатель Mazda, напрочь откинув все десятилетние наработки отечественных двигателестроительных институтов.
Советские чиновники довольно долго вели переговоры с Феликсом Ванкелем на предмет покупки лицензий, причем некоторые из них проходили прямо в Москве. Денег, правда, не нашли, и поэтому воспользоваться некоторыми фирменными технологиями не удалось. В 1976 году заработал первый волжский односекционный двигатель ВАЗ-311 мощностью 65 л.с., еще пять лет ушло на доводку конструкции, после чего была выпущена опытная партия в 50 штук роторных «единичек» ВАЗ-21018, мгновенно разошедшихся среди работников ВАЗа. Тут же выяснилось, что двигатель только внешне напоминал японский - сыпаться он стал очень даже по-советски. Руководство завода было вынуждено за полгода заменить все двигатели на серийные поршневые, сократить на половину штат СКБ РПД и приостановить строительство цехов. Спасение отечественного роторного двигателестроения пришло от спецслужб: их не очень интересовал расход топлива и ресурс двигателя, зато сильно - динамические характеристики. Тут же из двух двигателей ВАЗ-311 был сделан двухсекционный РПД мощностью 120 л.с., который стал устанавливаться на «спецединичку» - ВАЗ-21019. Именно этой модели, получившей неофициальное название «Аркан», мы обязаны бесчисленным количеством баек про милицейские «Запорожцы», догоняющие навороченные «Мерседесы», а многие стражи порядка - орденами и медалями. До 90-х годов внешне непритязательный «Аркан» действительно легко догонял все машины. Помимо ВАЗ-21019 на АвтоВАЗе также выпускаются малые партии автомобилей ВАЗ-2105, -2107, -2108, -2109, -21099. Максимальная скорость роторной «восьмерки» составляет около 210 км/ч, а до сотни она разгоняется всего за 8 секунд.
Оживший на спецзаказах СКБ РПД стал делать двигатели для водного и автоспорта, где машины с роторными двигателями стали настолько часто завоевывать призовые места, что спортивные чиновники были вынуждены запретить применение РПД.
В 1987 году умер руководитель СКБ РПД Борис Поспелов и на общем собрании был выбран Владимир Шнякин - человек, пришедший в автомобилестроение из авиации и недолюбливающий наземный транспорт. Главным направлением СКБ РПД становится создание двигателей для авиации. Это была первая стратегическая ошибка: самолетов у нас выпускается несоизмеримо меньше автомобилей, а завод живет с проданных двигателей.
Второй ошибкой стала ориентация в сохранившемся производстве автомобильных РПД на маломощные двигатели ВАЗ-1185 в 42 л.с. для «Оки», хотя более прожорливые, но более динамичные роторные двигатели так и просятся на самые быстроходные отечественные машины - например, на «восьмерки». Те же японцы устанавливают «ванкели» только на спортивные модели. В итоге на российских дорогах оказалось всего несколько роторных микролитражек «Ока». В 1998 году был наконец-то подготовлен гражданский вариант двухцилиндрового роторного 1,3-литрового двигателя ВАЗ-415, который стали устанавливать на ВАЗ-2105, 2107, 2108 и 2109.

В мае 1998 г был омологирован кольцевой ВАЗ-110 «РПД-спорт» (190 л. с., 8500 об/мин, 960 кг, 240 км/ч). Увы, дальше одного-единственного образца, чаще демонстрируемого на выставках, чем стартующего в гонках, дело не пошло. 110-я была самой мощной в пелотоне, но откровенно сырая конструкция всякий раз не давала ей продемонстрировать весь свой потенциал. Однако обидней всего то, что на «ВАЗе» быстро охладели к роторному направлению, а уникальную «Ладу» переделали в ралли-кар с обычным ДВС.

Так почему же все ведущие производители автомобилей ещё не пересели на «ванкели»? Дело в том, что для производства роторно-поршневых двигателей требуется, во-первых, отточенная технология со множеством самых разнообразных нюансов и далеко не каждая компания готова пройти путь той же Mazda, попутно наступая на многочисленные «грабли». А во-вторых, нужны специальные высокоточные станки, способные вытачивать поверхности, описанные такой хитрой кривой как эпитрохоида.

Mazda RX-7 - это один из первых автомобилей, на котором ставился роторно-поршневой двигатель Ванкеля. За всю историю Mazda RX-7 было четыре поколения. Первое поколение с 1978 по 1985 год. Второе поколение - с 1985 по 1991. Третье поколение - с 1992 по 1999. Последнее, четвёртое поколение - с 1999 по 2002 год. Первое поколение RX-7 появилось в 1978 году. Оно имело среднемоторную компоновку и оснащалось роторным двигателем мощностью всего 130 л. с.

В настоящее время только Mazda занимается серьёзными исследованиями в области роторно-поршневых двигателей, постепенно совершенствуя их конструкцию, и большая часть подводных камней в этой области уже пройдена. «Ванкели» вполне соответствуют мировым стандартам по уровню токсичности выхлопа, потреблению топлива и надёжности. Для современных станков поверхности описанные эпитрохоидой не являются проблемой (как не являются проблемой и куда более сложные кривые), новые конструкционные материалы позволяют увеличить срок службы роторно-поршневого двигателя, а его стоимость уже сейчас оказывается ниже, чем у стандартного ДВС за счёт меньшего количества используемых деталей.
Как и NSU, Mazda в 60-е гг. была небольшой компанией с ограниченными техническими и финансовыми ресурсами. Основу ее модельного ряда составляли развозные грузовички да семейные малолитражки. Поэтому нет ничего удивительного, что спорт-купеMazda 110S Cosmo (982 см куб., 110 л. с., 185 км/ч) создавалось более 6 лет и оказалось весьма капризным и дорогим. Да и подпорченная NSU Ro80 репутация не способствовала ажиотажу (в 1967–1972 гг. нашли своих владельцев только 1175 «космосов»), но мировой интерес к 110S способствовал увеличению продаж всей остальной продукции фирмы!
Чтобы доказать, что РПД столь же надежен (его превосходство в мощности уже стало для всех очевидным), Mazda чуть ли не впервые в жизни приняла участие в соревнованиях, причем выбрала самую трудную и продолжительную гонку – 84-часовой Marathon De La Route, проходивший на Нюрбургринге. Как экипажу из Бельгии удалось занять 4-е место (вторая машина сошла с дистанции за три часа до финиша из-за заклинивших тормозов), уступив только «выросшим» на «Нордшляйфе» Porsche 911, похоже, так и останется загадкой.

Мастерская Ванкеля в Линдау

Хотя с тех пор японские «роторники» стали завсегдатаями гоночных трасс, крупного успеха в Европе им пришлось ждать 16 лет. В 1984-м британцы на RX-7 выиграли престижную суточную гонку в Спа-Франкошамп. А вот в США, на главном рынке «семерки», ее гоночная карьера складывалась куда успешнее: с момента дебюта в чемпионате IMSA GT в 1978 году и по 1992-й она выиграла в своем классе более сотни этапов, причем с 1982 по 1992 гг. первенствовала в главной гонке серии – 24 hours of Daytona.
В ралли у «Мазд» все шло не так гладко. Как это часто бывало с японскими командами (Toyota, Datsun, Mitsubishi), они выступали только на отдельных этапах раллийного чемпионата мира (Новая Зеландия, Великобритания, Греция, Швеция), интересующих в первую очередь маркетинговые отделы концернов. Национальных титулов хватало: так, в 1975–1980 гг. Род Миллен выиграл целых пять в Новой Зеландии и США. А вот в WRC успехи были исключительно локальными: лучшее, что показали RX-7, – 3-е и 6-е места в греческом «Акрополисе» 1985 года.
Ну а самым громким успехом Mazda вообще и РПД в частности стала победа ее спортпрототипа 787B (2612 см куб., 700 л. с., 607 Нм, 377 км/ч) в Ле Мане в 1991 году. Причем одолеть заводскиеPorsche, Peugeot и Jaguar помогли не только быстрые пилоты и конкурентоспособная техника: свою роль сыграла и настойчивость японских менеджеров, регулярно «выбивавших» для роторников всевозможные послабления в регламенте. Так, накануне победы 787-го организаторы гонки согласились компенсировать прожорливость «роторников» 170-килограммовым (830 против 1000) снижением массы. Парадокс заключался в том, что, в отличие от бензиновых моторов, «аппетит» РПД при дальнейшей форсировке рос куда более скромными темпами, чем у обычных поршневых моторов, и 787-й оказался экономичней своих основных конкурентов!

Это был шок. Mercedes, который журнал Stern за консерватизм называл не иначе как «производитель авто для 50-летних господ в шляпах», в 1969 году презентовал супер-кар, поражавший воображение даже цветом. Вызывающая ярко-оранжевая окраска, подчеркнуто клиновидная форма, среднемоторная компоновка, двери «крыло чайки» и сверхмощный трехсекционный РПД (3600 см куб., 280 л. с., 260 км/час) – для консервативного Mercedes это было нечто!

А поскольку в компании не строили концептов, все считали, что у С111 только один путь: мелкосерийная (омологационная) сборка и большое гоночное будущее, ведь с 1966 года ФИА допустила РПД к официальным соревнованиям. И в штаб-квартиру Mercedes посыпались чеки с просьбой вписать нужную сумму за право обладать С111. Штутгартцы же еще больше подогрели интерес к «эске», в 1970 г. представив вторую генерацию купе с еще более фантастическим дизайном, 4-секционным ротором и умопомрачительными характеристиками (4800 см куб., 350 л. с., 300 км/час). Для доводки Mercedes построил пять макетов, которые дневали и ночевали на Хокенхаймринге и Нюрбургринге, готовясь установить серию рекордов скорости. Пресса смаковала предстоящую «битву титанов» между роторным Mercedes, атмосферным Ferrari и наддувным Porsche в чемпионате мира по гонкам на выносливость. Увы, возвращение в большой спорт не состоялось. Во-первых, С111 был очень дорогим даже для Mercedes, во- вторых, немцы не могли пустить в продажу столь сырую конструкцию. А после карибского нефтяного кризиса они вообще прикрыли проект, сосредоточившись на дизельных двигателях. Ими и оборудовали последние версии C111, установившие несколько мировых рекордов.

Не имеющий законченного технического образования, под конец жизни Феликс Ванкель достиг мирового признания в области двигателестроения и уплотнительной техники, завоевав массу наград и титулов. Его именем названы улицы и площади немецких городов (Felix-Wankel-Strasse, Felix-Wankel-Ring). Помимо двигателей, Ванкель разработал новую концепцию скоростных судов и самостоятельно построил несколько лодок.

Самое интересное, что роторный двигатель, который сделал его миллионером и принес ему всемирную славу, Ванкель не любил, считая его «гадким утенком». Реальные работающие РПД были сделаны по так называемой «концепции ККМ», предусматривающей планетарное вращение ротора и требующей введения внешних противовесов. Немалую роль сыграл и тот факт, что эту схему предложил не Ванкель, а инженер NSU Вальтер Фройде. Сам же Ванкель до последних дней считал идеальной схему двигателя «с вращающимися поршнями без неравномерно вращающихся частей» (Drehkolbenmasine - DKM), концептуально гораздо более красивую, но технически сложную, требующую, в частности, установки свечей зажигания на вращающемся роторе. Тем не менее, роторные двигатели во всем мире связывают именно с именем Ванкеля, поскольку все, кто близко знал изобрателя, в один голос утверждают, что что без неуемной энергии немецкого инженера мир так и не увидел бы этого удивительного устройства. Фелик Ванкель ушел из жизни в 1988 году.
Любопытна история с Mercedes 350 SL. Ванкель очень хотел иметь роторный Mercedes С-111. Но фирма Mercedes не пошла ему навстречу. Тогда изобретатель взял серийный 350 SL, выкинул оттуда «родной» двигатель и установил ротор от С-111, который был легче прежнего 8-цилиндрового на 60 кг, но развивал существенно большую мощность (320 л.с. при 6500 об/мин). В 1972 году, когда инженерный гений закончил работу над своим очередным чудом, он мог бы сидеть за рулем самого быстрого на тот момент «Мерседеса» SL-класса. Ирония заключалась в том, что водительские права Ванкель до конца жизни так и не получил.

Возрождением интереса к РПД мы обязаны новому двигателю Mazda Renesis (от RE - Rotary Engine - и Genesis). За прошедшее десятилетие японским инженерам удалось решить все основные проблемы РПД - токсичность выхлопа и неэкономичность. По сравнению с предшественником, удалось сократить потребление масла на 50%, бензина на 40% и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель объемом всего 1,3 л выдает мощность в 250 л.с. и занимает гораздо меньше места в двигательном отсеке.
Специально под новый двигатель был разработан автомобиль Mazda RX-8, который, по словам брэнд-менеджера Mazda Motor Europe Мартина Бринка, создавался по новой концепции - автомобиль «строился» вокруг двигателя. В итоге развесовка по осям RX-8 идеальна - 50 на 50. Использование уникальной формы и маленьких размеров двигателя позволило поместить центр тяжести очень низко. «RX-8 не явяляется гоночным монстром, но это лучшая в управлении машина, которую я когда-либо водил», - с восторгом рассказывал Popular Mechanics Мартин Бринк.
Бочка меда…
Вне всяких сомнений, с первого взгляда роторно-поршневой двигатель имеет массу преимуществ перед традиционными двигателями внутреннего сгорания:
- Меньшим на 30-40% количеством деталей;
- Меньшими в 2-3 раза габаритами и массой, по сравнению с соответствующим по мощности стандартным ДВС;
- Плавная характеристика крутящего момента во всем диапазоне оборотов;
- Отсутствие кривошипно-шатунного механизма, а, следовательно, гораздо меньший уровень вибрации и шума;
- Высокий уровень оборотов (до 15000 об/мин!).
Ложка дегтя…
Казалось бы, если «Ванкель» имеет такие превосходства над поршневым двигателем, то кому нужны эти громоздкие, тяжелые, гремящие и вибрирующие поршневые двигатели? Но, как это часто бывает, на практике все далеко не так шоколадно. Ни одно гениальное изобретение, выйдя за порог лаборатории, отправлялось в корзину с пометкой «для мусора». Серийное производство нашло не на один камень, а на целую россыпь гранита:
- Отработка процесса сгорания в камере неблагоприятной формы;
- Обеспечение герметичности уплотнений;
- Обеспечение работы без коробления корпуса в условиях неравномерного нагрева;
- Низкий термический КПД ввиду того, что камера сгорания РПД намного больше, чем у традиционного ДВС;
- Высокий расход топлива;
- Высокая токсичность газообразных продуктов сгорания;
- Узкая зона температур для работы РПД: при низких температурах мощность двигателя резко падает, при высоких - быстрый износ уплотнений ротора.

Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.

Общий принцип устройства роторного двигателя

РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.

Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.

Почему роторные двигатели не пользуются спросом?

Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.

Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.

Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.

Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.

Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.

Роторный двигатель Желтышева — принцип работы:

Преимущества роторного двигателя

При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км. Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.

Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.

Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.

Принцип работы роторного двигателя Ахриевых на видео:

Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.

В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.

Как работает роторный мотор Ванкеля на видео

Принцип работы роторного двигателя

РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.

Механизм работы роторного-поршневого двигателя:

  • сжатие горючего;
  • впрыск топлива;
  • обогащение кислородом;
  • горение смеси;
  • выпуск продуктов сгорания топлива.

Как работает роторный двигатель показано на видео:

Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.

Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.

Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.

Принцип работы роторного двигателя Зуева:

На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.

Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.

Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.
По роду топлива ДВС разделяются на двигатели:
жидкого топлива;
газовые.

По способу заполнения цилиндра свежим зарядом:
четырехтактные;
двухтактные.

По способу приготовления горючей смеси из топлива и воздуха двигатели с:
внешним смесеобразованием;
внутренним смесеобразованием.

К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе.
В ДВС с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой.

В двигателях с внутренним смесеобразованием (дизелях) топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.

Рабочий цикл 4-тактного карбюраторного ДВС совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала.

При 1-м такте - впуске - поршень движется от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.). Впускной клапан при этом открыт и горючая смесь из карбюратора поступает в цилиндр.

В течение 2-го такта - сжатия, - когда поршень движется от н. м. т. к в. м. т., впускной и выпускной клапаны закрыты и смесь сжимается до давления 0,8-2 Мн/м2 (8-20 кгс/см2). Температура смеси в конце сжатия составляет 200-400°C. В конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива. Сгорание имеет место при положении поршня, близком к в. м. т. В конце сгорания давление в цилиндре составляет 3-6 Мн/м2 (30-60 кгс/1см2), а температура 1600-2200°C.

3-й такт цикла - расширение - называется рабочим ходом; в течение этого такта происходит преобразование тепла, полученного от сгорания топлива, в механическую работу.

4-й такт - выпуск - происходит при движении поршня от н. м. т. к в. м. т. при открытом выпускном клапане. Отработавшие газы вытесняются поршнем.

Рабочий цикл 2-тактного карбюраторного ДВС осуществляется за 2 хода поршня или за 1 оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам 4-тактного ДВС. При прочих равных условиях 2-тактный двигатель должен быть в 2 раза более мощным, чем 4-тактный, т. к. рабочий ход в 2-тактном двигателе происходит в 2 раза чаще, однако на практике мощность 2-тактного карбюраторного ДВС часто не только не превышает мощность 4-тактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже.

Это обусловлено тем, что значительную часть хода (20-35%) поршень совершает при открытых окнах, когда давление в цилиндре невелико и двигатель практически не производит работы; продувка цилиндра требует затрат мощности на сжатие воздуха в продувочном насосе; очистка пространства цилиндра от продуктов сгорания газов и наполнение его свежим зарядом значительно хуже, чем в 4-тактном ДВС.

Рабочий цикл карбюраторного ДВС может быть осуществлен при очень большой частоте вращения вала (3000-7000 об/мин). Двигатели гоночных автомобилей и мотоциклов могут развивать 15 000 об/мин и более.

Нормальная горючая смесь состоит примерно из 15 частей воздуха (по массе) и 1 части паров бензина. Двигатель может работать на обеднённой смеси (18: 1) или обогащенной смеси (12: 1). Слишком богатая или слишком бедная смесь вызывает сильное уменьшение скорости сгорания и не может обеспечить нормального протекания процесса сгорания.

Регулирование мощности карбюраторного ДВС осуществляется изменением количества смеси, подаваемой в цилиндр (количественное регулирование). Большая частота вращения и выгодные соотношения топлива и воздуха в смеси обеспечивают получение большой мощности в единице объёма цилиндра карбюраторного двигателя, поэтому эти двигатели имеют сравнительно небольшие габариты и массу [ 1-4 кг/квт (0,75-3 кг/л. с.)].

Применение низких степеней сжатия обусловливает умеренные давления в конце сгорания, вследствие чего детали можно делать менее массивными, чем, например, в дизелях.

При увеличении диаметра цилиндра карбюраторного ДВС возрастает склонность двигателя к детонации,

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Роторная и поршневая

PROS
• Характер двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера - Mazda RX-8 технически имеет объем 1,3 литра, но выдает около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы - роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга.Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин отнюдь не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее экономичны, чем их аналоги с поршневыми двигателями, поскольку они менее эффективны с точки зрения теплового воздействия.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя - это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda была крупнейшим производителем роторных двигателей и единственным производителем, который использовал их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства.NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида из-за их компактных размеров и плавности хода.Считается, что, работая на постоянной скорости для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

Роторный двигатель Mazda Wankel

| Как работает роторный двигатель

Мы не видели последнего вращающегося треугольника.

Еще в марте Мартин тен Бринк, вице-президент Mazda Motor Europe по продажам и обслуживанию клиентов, повсюду зажигал редукторы, когда он сказал голландскому изданию автомобильных новостей ZERauto, что роторный двигатель Ванкеля вернется в производство.

В частности, тен Бринк сказал, что роторный двигатель может стать расширителем запаса хода для электромобиля в 2019 году, и пока это всего лишь слухи. Mazda Motor of America не будет обсуждать и подтверждать комментарии десяти Бринка, сообщая нам только, что «Mazda не объявила о каких-либо конкретных продуктах с роторным двигателем в настоящее время. Однако Mazda продолжает работать над технологиями роторных двигателей ».

Так что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть иначе?

Как это работает

Getty Images

Роторный двигатель - это бочкообразный двигатель внутреннего сгорания, в котором отсутствуют многие основные детали, которые можно найти в обычном поршневом двигателе.Во-первых, нет поршней, которые поднимаются и опускаются. Скорее округло-треугольные роторы - чаще всего два, но иногда один или три - вращаются вокруг вала через полый цилиндр.

Топливо и воздух закачиваются в пространства между сторонами роторов и внутренними стенками ствола, где они воспламеняются. Быстрое расширение взрывающихся газов вращает роторы, генерируя таким образом энергию. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель легче и меньше, чем поршневой двигатель эквивалентного рабочего объема.

Базовая конструкция - вековая. Сам Феликс Ванкель был немецким инженером, который в 1920-х годах придумал свою версию роторного двигателя. Однако, будучи занятым разжиганием войны от имени нацистской партии, у него не было возможности развить свое видение слишком далеко до 1951 года, когда немецкий автопроизводитель NSU пригласил его разработать прототип.

Сложная конструкция Ванкеля фактически проиграла более простому прототипу, разработанному инженером Хансом Дитером Пашке, которого NSU также пригласило, чтобы попытаться раскрыть оригинальную концепцию Ванкеля.Двигатель Пашке - это двигатель, которым Mazda станет обладать и станет лидером в 21 веке. Таким образом, современный Ванкель - это не совсем Ванкель.

Getty Images

Не говоря уже о проблемах, Ванкель является наиболее распространенной и успешной конструкцией роторного двигателя, и единственной, которая была запущена в серийное производство. Еще в начале 60-х у NSU и Mazda было дружеское совместное соревнование по продаже первого автомобиля с двигателем Ванкеля, поскольку они исправляли недостатки незрелого дизайна.NSU первым вышел на рынок в 1964 году, но в течение следующего десятилетия он разрушил свою репутацию, поскольку частые отказы двигателей снова и снова отправляли владельцев в магазин. Вскоре нередко можно было найти NSU Spider или Ro 80 с тремя или более двигателями.

Проблема заключалась в уплотнениях на вершине - тонких полосах металла между концами вращающихся роторов и корпусами ротора. НСУ сделало их из трех слоев, что привело к неравномерному износу, из-за которого они стали гранатометами. Mazda придумала уплотнения вершины, сделав их из одного слоя, и представила свой Wankel в роскошном спортивном автомобиле Cosmo 1967 года.

В начале 70-х Mazda представила себе целую линейку автомобилей с двигателями Ванкеля, мечту, разбитую нефтяным кризисом 1973 года. Но роторный двигатель стал единственной силовой установкой для трех поколений спортивных Mazda RX-7 с 1978 по 2002 год, когда двигатель Ванкеля почитали и осуждали.

Любил и ненавидел

Популярная механика

Редукторы

любят ротор отчасти потому, что он другой.Автолюбители всегда питали слабость к двигателю, который, если не считать внутреннего сжигания бензина, едва ли похож на обычный поршневой двигатель. Роторный двигатель выдает мощность линейно до 7000 или 8000 об / мин, в зависимости от характеристик двигателя, и этот ровный диапазон мощности отличает его от поршневых двигателей с оптимальным числом оборотов, которые слишком часто расходуют мощность на высоких оборотах, чувствуя себя безжалостно на низких оборотах.

Автопроизводителям также понравился поворотный механизм за его плавность. Роторы, вращающиеся вокруг центральной оси, обеспечивают незначительное отсутствие вибрации по сравнению с поршневым двигателем, у которого движение поршня вверх-вниз более резкое.Но необычный двигатель - это незнакомое животное, поэтому поляризующий Ванкель также вызывает свою долю ненависти среди автолюбителей и механиков. Это простой дизайн - без ремня ГРМ, без распределительного вала, без коромысел - но незнакомость порождает недоверие, а у Ванкеля есть причуды, требующие внимания.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Роторный двигатель сжигает масло по своей конструкции, закачивая небольшое количество моторного масла в камеры сгорания для смазки роторов, создавая обычный поток синего дыма, вырывающийся из выхлопной трубы, когда вы заводите автомобиль.Честно говоря, людей это пугает - синий дым выхлопных газов является сигналом бедствия, когда исходит от поршневого двигателя.

Роторы также предпочитают минеральное масло синтетическому, и их конструкция означает, что вам необходимо периодически доливать масло, потому что двигатель постоянно его потребляет. Эти верхние уплотнения, как правило, не прослужат долго, прежде чем их потребуется заменить. Восстановление Ванкеля на пробеге 80 000–100 000 миль является обычным делом, и раньше, чем большинство поршневых двигателей требует такой кропотливой работы.

Современные водители также наиболее чувствительны к другим недостаткам роторного двигателя, более низким выбросам и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед ее выпуском.В модели RX-8 Mazda решила эти проблемы, разместив выхлопные отверстия по бокам камер сгорания. Выбросы топлива также стали строже с годами. Это одна из причин, по которой RX-8, последний автомобиль с двигателем Ванкеля, поступил в продажу в 2002 году и был снят с производства в 2012 году.

Время для второго поворота

Вернемся к слухам вице-президента Mazda Мартина тен Бринка о том, что Mazda может использовать какой-нибудь роторный двигатель в качестве расширителя диапазона для электромобиля. В этом есть смысл. Еще в 2012 году Mazda арендовала 100 электромобилей Demio EV в Японии, но небольшой запас хода в 124 мили был болезненным моментом.Итак, в 2013 году Mazda создала прототип, который включал в себя поворотный расширитель диапазона, чтобы почти удвоить этот диапазон, и назвала его Mazda2 RE Range Extender (Mazda2 - это то, что Demio называют за пределами Японии). Колеса прототипа приводились в движение электродвигателем, а 0,33-литровый 38-сильный роторный двигатель раскручивался для подзарядки аккумуляторных батарей электродвигателя, если они разряжались, а поблизости негде было подзарядить.

Поскольку роторный двигатель не мог приводить в движение колеса, Mazda2 RE не была гибридом, как Volt или Prius.Ванкель был скорее бортовым генератором, который увеличивал дальность действия автомобиля. Та же компактность и легкий вес, которые сделали Wankel отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в качестве генератора с увеличенным запасом хода на автомобиле, особенно на том, у которого уже есть электродвигатели и батареи, конкурирующие за пространство и могут Не позволяйте себе набирать лишний вес. Но концепция расширителя запаса хода не попала в производство, а Mazda не продала электромобили после тех 100 электромобилей Demio.

Тем не менее, роторный двигатель заработал свою репутацию в основном как двигатель спортивного автомобиля, а не как генератор, приводимый в движение электродвигателями. Пока ходят слухи о возрождении роторного двигателя, автолюбители будут мечтать об этом суетливом, причудливом двигателе, который снова будет приводить в движение колеса во время динамичной и веселой езды.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Что такое роторные двигатели и в каких автомобилях они есть?

Роторные двигатели могут звучать как что-то из ушедшей эпохи, и это потому, что обычно так и есть. Когда-то считавшиеся самыми эффективными и элегантными двигателями, они были заменены поршневыми двигателями несколько десятилетий назад, главным образом по экономическим и экологическим причинам. Но с новостями о том, что Mazda разрабатывает новый роторный двигатель для своих гибридных моделей, может ли этот тип двигателя вернуться?

Чтобы выяснить это, мы подробно рассмотрим роторные двигатели, включая то, как они работают, каковы их преимущества и какие автомобили работают с этим типом двигателей.Используйте приведенные ниже ссылки для навигации по руководству.

Быстрые ссылки

Что такое роторный двигатель?

Роторный двигатель - это тип двигателя внутреннего сгорания, который используется для питания всех видов транспортных средств, от легковых и грузовых автомобилей до лодок и самолетов. Роторные двигатели существуют уже несколько десятилетий и были одним из наиболее широко используемых типов двигателей примерно до 1920-х годов.

Как и обычный поршневой двигатель, роторные двигатели выполняют четыре функции для привода транспортного средства: впуск, сжатие, сгорание и выпуск.Однако они работают совершенно иначе, чем стандартные движки, к которым мы привыкли.

Итак, как же работают роторные двигатели? Вот пошаговый взгляд на то, как выглядит цикл сгорания в роторном двигателе:

  • Впуск - как и в стандартном поршневом двигателе, воздух втягивается в двигатель через впускной клапан, прежде чем попасть в салон. камеру через впускной канал.
  • Компрессия - ротор треугольной формы внутри камеры создает три газонепроницаемых уплотнения; они эффективно выполняют ту же работу, что и поршни в обычном двигателе.Когда ротор вращается, его уникальная форма означает, что эти три объема газа расширяются и сжимаются, втягивая в систему больше воздуха и топлива.
  • Горение - при пике давления внутри каждой из трех газовых камер смесь топлива и воздуха воспламеняется, производя мощность, которая передается на трансмиссию через выходной вал.
  • Выхлоп - выхлопное отверстие в корпусе двигателя отводит газы, где они выходят через стандартную выхлопную трубу.

Как и в стандартном поршневом двигателе, температура роторных двигателей поддерживается системой охлаждения с проходами для охлаждающей жидкости, выстилающими внешнюю оболочку картера сгорания.Масло также циркулирует по аналогичным каналам, смазывая движущиеся части ротора, выходного вала и клапанов.

Компоненты роторного двигателя

Роторные двигатели могут показаться сложными, но на самом деле у них не так много движущихся частей и компонентов, как у поршневого двигателя. Ниже мы рассмотрим основные компоненты роторного двигателя, чтобы вы лучше поняли, как все работает.

Ротор

Ротор представляет собой трехсторонний компонент с вогнутыми сторонами, которые обеспечивают газонепроницаемое уплотнение при нажатии на боковую часть корпуса.На каждой стороне ротора есть впускное отверстие или карман, который позволяет большему объему газа внутри корпуса, эффективно увеличивая скорость рабочего объема двигателя.

Ротор вращается на паре шестерен, которые прикреплены к валу в центре корпуса. Эти шестерни позволяют ему вращаться таким образом, что край каждой стороны ротора всегда находится в контакте с корпусом, сохраняя три отдельных кармана сгорания. Думайте об этом как о спирографе с ротором, вращающимся с небольшим смещением.

Корпус

Корпус является основным корпусом роторного двигателя. Его овальная форма предназначена для максимального увеличения рабочего объема двигателя, позволяя ротору вращаться так, чтобы его края находились в постоянном контакте с внутренней стенкой корпуса.

Когда ротор вращается внутри корпуса, каждый из газовых карманов проходит через четыре части цикла сгорания: от впуска до сжатия, от сгорания до выпуска. Свечи зажигания и топливные форсунки вставляются непосредственно через стенку корпуса, в то время как внешние каналы пропускают масло и охлаждающую жидкость через систему, сохраняя ее целостность и температуру.

Выходной вал

Выходной вал передает энергию, генерируемую сжатием и сгоранием, трансмиссии, передавая мощность на колеса. Сам вал снабжен круглыми выступами, которые контактируют с ротором, заставляя вал вращаться.

Есть ли преимущества роторных двигателей в автомобилях?

Роторные двигатели встречаются редко, большинство производителей автомобилей используют обычные поршневые двигатели с 1920-х годов. Это потому, что они считаются менее экономичными, чем их поршневые аналоги, в основном потому, что они предлагают более низкий термодинамический КПД из-за размера камеры сгорания и низкой степени сжатия.

Тем не менее, роторный двигатель предлагает некоторые преимущества по сравнению с поршневым двигателем, в том числе:

  • Плавный и тихий - роторный двигатель работает более плавно, чем движение поршней, что приводит к более тихой и четкой работе. почувствовать себя на дороге. Противовесы на внешней стороне поворотного корпуса предназначены для гашения вибрации и обеспечения плавной работы.
  • Меньше движущихся частей - роторные двигатели имеют меньше движущихся частей, чем обычные двигатели.Это не только повышает надежность, но и делает техническое обслуживание более доступным в долгосрочной перспективе.
  • Более медленное внутреннее движение - поршневые двигатели требуют быстрого и интенсивного движения вверх и вниз для создания необходимой степени сжатия для привода автомобиля. Это означает, что их внутренние части подвергаются чрезмерной нагрузке, что может привести к преждевременной деградации без регулярного обслуживания. Роторные двигатели работают медленнее, с одним движением в одном направлении, что означает, что их части испытывают меньшую нагрузку, и это улучшает долгосрочную надежность.

Какие автомобили имеют роторный двигатель?

Очень немногие современные автомобили имеют роторный двигатель. Из-за недостатков, связанных с их экономичностью, а также относительной дороговизной их производства, большинство автопроизводителей придерживаются поршневых двигателей. Но не каждый из них.

Японская автомобильная марка Mazda экспериментирует с роторными двигателями с 1960-х годов. Его первым успехом стало Cosmo Coupé 1967 года, которое прославилось своим эффективным и сверхгладким роторным двигателем.С тех пор было разработано несколько других моделей с роторным двигателем, включая RX-7, RX-8 и роторную версию Mazda 2, выпущенную еще в 2013 году.

И теперь Mazda объявила о планах построить Совершенно новый роторный двигатель, который будет использоваться вместе с электродвигателем в качестве расширителя диапазона его гибридно-электрических транспортных средств. Бренд считает, что роторный агрегат идеально подходит для гибридного автомобиля, обеспечивая надежную работу с гораздо большим совершенством, чем стандартный поршневой двигатель.

Не только это, но и роторные двигатели, как считается, очень хорошо работают с топливом следующего поколения, особенно с водородом. Более длительный период впуска воздуха, предлагаемый роторным двигателем, очень эффективен при смешивании воздуха и топлива, поэтому можно впрыскивать большее количество водорода для правильного смешивания топлива с воздухом, повышая эффективность и производительность.

С новой инновацией Mazda, возможно, последуют и другие марки автомобилей, чтобы помочь в соблюдении законодательства о стандартах выбросов. Ожидается, что роторный двигатель получит новый облик 21 века.

Мы надеемся, что вам понравилась эта статья, в которой подробно рассказывается о роторных двигателях. Хотели бы вы, чтобы на дорогах было больше автомобилей с роторными двигателями? Присоединяйтесь к разговору в Redex Club и дайте нам знать. Или же, чтобы узнать о наших инновационных топливных присадках и очистителях системы, посетите домашнюю страницу сегодня .

Вот как работает роторный двигатель

Mazda представила концептуальный автомобиль RX Vision с роторным двигателем на Токийском автосалоне в этом году, что стало неожиданностью по ряду причин, главной из которых было то, что концепт появился через два года после того, как генеральный директор Mazda Масамичи Когай заявил, что автопроизводитель имел нет планов по его повторному введению.И что, если Mazda действительно представит , продажи должны составить около 100000 единиц в год - крупная цель продаж для любого автопроизводителя и примерно треть от общего объема Mazda в США.

Но, о чудо, роторный вернулся на рынок и мог приземлиться на полки магазинов как раз к 40-летию RX-7 в 2018 году. Снова возникают вопросы о вещах, которые десятилетиями держали роторные вне мейнстрима. , а именно экономию топлива, производительность, уровни выбросов, износ двигателя и, в первую очередь, решение проблем, связанных с проектированием нового роторного двигателя.

Прежде чем кто-то из ваших родственников, пытаясь показаться с ним, попытается рассказать всем за обеденным столом на День Благодарения об этом действительно крутом новом «роторном» двигателе, который разрабатывает японская фирма Miata, внутри которого есть роторы, которые вращаются, мы хотели напомнить всем как обществу о различных частях, из которых состоит двигатель Ванкеля, и о том, как все они работают.

Разобрать один и запустить его без одного из корпусов, вероятно, плохая идея, но с помощью магии объединения некоторых негативов и некоторой покадровой анимации разработчик трехмерного моделирования Мэтт Риттман устранил необходимость в создании модели со стеклянными стенами. движок, производящий это элегантное видео.

Что касается таких проблем, как производительность, экономичность и выбросы, мы ожидаем, что Mazda получит ответы на эти вопросы в виде серийной версии концепции RX Vision, которая, по ее мнению, так же важна для ее бренда, как и MX-5. Miata. Если кто и может отбросить сомнения насчет роторного, так это Mazda.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Mazda подтверждает, что Rotary вернется к 2022 году, но не в RX-9

Mazda прекратила выпуск спортивного автомобиля RX-8 в 2012 году, и с тех пор энтузиасты ждали возвращения культового роторного двигателя марки. Теперь генеральный директор Mazda Акира Марумото подтвердил сообщения о том, что роторный двигатель вернется в линейку Mazda, но не в сверхвысокоскоростном RX-9. (Посмотрите видео ниже и прочтите субтитры около 7:30.)

Этот контент импортирован с YouTube.Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Mazda планирует использовать роторный двигатель в качестве расширителя запаса хода для нового электромобиля марки MX-30. Mazda намерена начать испытания прототипов в следующем году, чтобы к 2022 году получить серийную версию на дорогах Японии, но пока не предложила никаких технических характеристик.

Роторный двигатель теоретически мог бы хорошо работать в качестве расширителя диапазона для электромобиля, поскольку он способен вместить много энергии на крошечной площади.Последний RX-8 выдавал 232 л.с. с 1,3-литровым двигателем. Таким образом, они должны иметь возможность получить поворотный расширитель диапазона, который поместится на крошечной площади.

В прошлом Mazda играла с водородными роторными двигателями, поэтому роторные двигатели в качестве расширителя запаса хода или гибрида могут оказаться полезными в будущем без выбросов углекислого газа.

Неясно, получит ли рынок США чистый электромобиль MX-30 или версию с расширителем запаса хода, но это не значит, что мы не увидим эту технологию в другом автомобиле.Держать свечу перед традиционным RX-9 с роторным двигателем, который выглядит как RX-Vision, может быть глупо; Вложение НИОКР в двигатель для малолитражного спортивного автомобиля - это последнее, что автопроизводитель сделает в 2020 году. Но Mazda, разрабатывающая технологию роторного двигателя для других целей, может снизить стоимость возможного применения в спортивном автомобиле.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Роторный двигатель (двигатель Ванкеля) - скачать онлайн-видео на ppt

Презентация на тему: «Роторный двигатель Ванкеля» - стенограмма презентации:

ins [data-ad-slot = "4502451947"] {display: none! important;}} @media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = "4502451947"]) {display: none! important;}} @media (max-width: 800px) {# place_14 {width: 250px;}} @media (max-width: 500 пикселей) {# place_14 {width: 120px;}} ]]>

1 Роторный двигатель (Ванкеля)
Бен Ларсон Питер Шреффлер Скотт Штайнмец

2 История Идеи существуют с 16 века
Немецкий ученый Феликс Ванкель был первым, кто воплотил эту идею в рабочий проект. Финансировалось министерством авиации Германии во время Второй мировой войны. Германия верила, что роторный двигатель приведет их промышленность к возможному величию. разработка и продажа прав на проектирование нескольким автомобильным компаниям. Mazda произвела свой первый роторный силовой автомобиль в 1961 году и создала свое подразделение роторных двигателей в 1963 году.

3 История Популярность роторных транспортных средств быстро росла до газового кризиса середины 70-х годов. Роторные двигатели были не очень экономичными по сравнению с поршневыми двигателями. Строгие стандарты выбросов не могли быть соблюдены при современной роторной технологии. Эти два фактора серьезно повредили продаже и развитию роторных двигатели Mazda была единственной автомобильной компанией, которая продолжала выпускать автомобили с роторными двигателями в течение 90-х годов.

4 История Этот график демонстрирует рост и падение популярности роторных двигателей с середины до конца 90-х годов.

5 Успех в автомобилестроении с роторными двигателями
В 1991 году Mazda 787B выиграла 24-часовую гонку на выносливость в Ле-Мане. Роторные двигатели были исключены из трассы C2. RX-8 может производить 238 л.с.Двигатель 3L с хорошим расходом топлива и благоприятными выбросами

6 Впуск Начинается, когда вершина проходит через впускное отверстие. Увеличение объема камеры
Создает зону низкого давления. Втягивание топливно-воздушной смеси. Завершается, когда следующая вершина проходит через впускное отверстие.

7 Сжатие Начинается после всасывания Объем камеры уменьшается
Сжатая топливно-воздушная смесь Камера сжимается до минимального размера

8 Сжигание Свечи зажигания воспламеняют смесь
Две свечи зажигания для максимального увеличения количества воспламеняемого топлива Вызывает быстрое расширение камеры Вращает ротор, который производит рабочую мощность на валу. Рабочий ход продолжается до тех пор, пока вершина не пройдет выхлопное отверстие.

9 Выхлопная камера уменьшается в размере
Вытесняет побочные продукты сгорания через выхлопное отверстие. Продолжается до тех пор, пока следующая вершина не пройдет через выхлопное отверстие. Весь цикл повторяется

10 Циклический ротор, эксцентрично установленный на валу
Одно вращение ротора обеспечивает три оборота вала Свечи зажигания зажигаются 3 раза за один оборот ротора Одно вращение вала при каждом зажигании свечей зажигания

11 Время работы порта Форму и размер впускных портов можно изменить, чтобы изменить синхронизацию двигателя. Ограничено дорожкой для масла и охлаждающей жидкости. Перекрытие - это когда впускное отверстие открывается до закрытия выпускного порта. Поддерживает не менее 50% уплотнения вершины. Уличные порты Подняты вверх для задержки закрытия впуска. забирать раньше Ограниченное перекрытие и разумные пределы масляных дорожек Гоночные порты Очень близко к масляным дорожкам Уменьшение срока службы двигателя Иногда большое перекрытие Повышенная мощность при высоких оборотах Снижение мощности при низких оборотах

12 Преимущества Вибрация Мощность / Вес Простота
Отсутствие неуравновешенных возвратно-поступательных масс Мощность / Вес Для аналогичных перемещений роторы, как правило, на 30% легче и производят вдвое больше энергии. Простота. Содержит вдвое меньше движущихся частей.

13 Недостатки Топливная эффективность и стоимость выбросов
Форма камеры сгорания, которая длинная, а не маленькая и концентрированная, делает путь сгорания длиннее, чем в поршневом двигателе. попадание в окружающую среду Стоимость Из-за отсутствия инфраструктуры и разработки роторных двигателей затраты на их производство и техническое обслуживание в целом увеличились.

14 Тенденции на будущее: водород
Производство легковоспламеняющихся материалов из сырой нефти, угля, природного газа и ядерного сгорания приводит к получению воды и NOx Плотность энергии Высокая на единицу массы Низкая на единицу объема

15 Проблемы с водородом
Для хранения требуется большой резервуар для сгорания Высокие температуры Предварительное зажигание вызывает обратное пламя, чрезмерный износ Образование NOx Компоненты впрыска Резиновые уплотнения при низких температурах

16 Rotary Hydrogen Solutions
Низкая рабочая температура Отсутствие обратного горения Очень низкие уровни NOx Отдельные впускные камеры и камеры сгорания Резиновые уплотнения форсунок, открытые только для впуска

17 Hydrogen Rotary Timeline
1991 HR-X 1993 HR-X2 1997 Demio FC-EV 2001 Premacy FC-EV 2004 RX-8 RE 2006 Mazda5 RE

18 RENESIS Hydrogen Rotary
Переключение двух видов топлива с водорода на бензин Прямой впрыск с электронным управлением Увеличенный срок службы двойных форсунок Клапан управления увеличенным объемом впрыска Регулирует давление впрыскиваемого водорода

19 Водородный очиститель, сжигающий Роторный двигатель
с водой, минимальным выбросом NOx решает проблемы сгорания Низкотемпературные раздельные индукционные камеры и камеры сгорания Двухтопливные Mazda5 RE Практичны при переходе от газа к водороду


Ротари 50 лет | Внутри Mazda

В последнее время главной проблемой роторного двигателя была его относительно низкая топливная экономичность и более высокий уровень выбросов по сравнению с лучшими современными бензиновыми или дизельными двигателями, включая собственные силовые установки Mazda SKYACTIV.Но когда его потенциальные преимущества настолько поразительны - легкий, компактный, плавный, тихий, свободно развивающийся - несомненно, у роторного двигателя есть будущее?

Роторный двигатель действительно может быть на грани возвращения. В качестве основного источника энергии он может быть сравнительно более голодным, поскольку обороты повышаются и падают, а нагрузки меняются. Но при постоянных и оптимальных оборотах, таких как у генератора, он идеален. Неудивительно, что Mazda экспериментировала с использованием этих восхитительно маленьких двигателей - треть размера обычного бензинового или дизельного двигателя - в качестве бортовых генераторов энергии или «расширителей запаса хода».«В 2013 году Mazda продемонстрировала крошечный однороторный агрегат объемом 330 куб. См, генерирующий бортовую мощность для электрической Mazda2. Развитие продолжается.

Есть и другие возможности в будущем. Роторные двигатели могут превосходно работать на водороде, самом распространенном элементе во Вселенной. Кроме того, он очень чистый: при сжигании водорода образуется только водяной пар. Mazda построила ряд экспериментальных роторных двигателей с водородным двигателем, в том числе арендованный на коммерческой основе парк RX-8 для экологического исследования, проведенного с правительством Норвегии.

Вне зависимости от технического направления, которое роторный двигатель примет в будущем, одно более чем вероятно: он будет прекрасным. На Токийском автосалоне 2015 года Mazda продемонстрировала впечатляющий концепт спортивного автомобиля RX-Vision (вверху). Буквы RX, которые традиционно предшествуют моделям Mazda с роторным двигателем, заставили RX-Vision ускорить импульсы энтузиастов роторных двигателей во всем мире. Mazda просто заявила в то время, что роторные двигатели остаются символом неустанного духа компании, и что исследования и разработки роторных двигателей продолжаются.Но кто из компании, которая обнаружила печально известные следы когтей дьявола и нанесла роторы на автомобильную карту мира, кто что-то исключит?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *