ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением.

Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества— Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива;чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки;прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа;замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто;регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ;использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз.регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

Принцип работы инжекторного двигателя

Автор admin На чтение 6 мин. Просмотров 760

Принцип работы двигателя внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью. Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Все описанное выше можно увидеть на видео

О карбюраторе, его достоинствах и недостатках

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.


Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:
  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.


Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

Как это происходит, можно в деталях увидеть на видео

Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора. Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.


Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Мне нравится1Не нравится
Что еще стоит почитать

Принцип работы инжекторного двигателя автомобиля, сравнение с карбюраторным

Принцип работы инжекторного двигателя автомобиля, сравнение с карбюраторным

У этого поста — 1 комментарий.

Содержание статьи:

Современный ритм движения и растущие потребности в комфортном управление автомобилем на передовой рубеж вывели инжекторный (впрысковый) тип двигателя. Он практически вытеснил устаревшую систему карбюраторов. Инжекторный двигатель кардинальным образом улучшил не просто эксплуатационные качества автомобиля, но и изменил показатели мощности (расход топлива, динамику в отношении разгона, экологические характеристики).

Инжекторный двигатель – это двигатель, имеющий инжекторную подачу топлива. Система подобного типа полностью заменила карбюраторную систему и предназначена для всех современных двигателей, использующих бензин.

Инжекторный двигатель – принципы работы.

В сравнении с карбюраторным двигателем, было выявлено, что двигатель с инжектором способен продолжительное время поддерживать высочайшие экологические стандарты, причем без дополнительных ручных регулировок. Это стало возможно лишь из-за самонастройки кислородного датчика по поступающим к нему данным.

И все же, постараемся четко себе представить, как работает инжекторный двигатель. В двигатель инжекторного типа подача топливо в воздушный поток осуществляется с помощью специальных форсунок. Они могут располагаться на выпускном коллекторе, и в этом случае речь идет о системе «Моновпрыск». Если форсунки расположены либо непосредственно во впускном коллекторе каждого цилиндра либо неподалеку от него, принято вести речь о системе «распределенного впрыска». Синонимом этого названия стало «многоточечный коллекторный впрыск». Третий вариант, когда форсунки находятся в головке цилиндров. При подобном расположении впрыск происходит напрямую в камеру сгорания, соответственно система называется « прямой впрыск».

Подача топлива к форсункам в обязательном порядке осуществляется только под давлением. Бортовой компьютер автомобиля в определенный момент времени подает импульс тока, который служит сигналом для открытия форсунок. Объем впрыснутого тока определяет длительность импульса. В свою очередь параметры для длительности подачи тока берутся из данных, поступающих с датчиков, которые и отвечают за контроль над параметрами двигателя. К основным параметрам можно отнести температуру и обороты двигателя, информация о разрежении в задроссельном пространстве и об угле под которым открыта дроссельная заслонка. Не стоит забывать и о контроле над расходом воздуха.

Вот что получает автомобиль, если на нем установлен инжекторный двигатель (сравнение ведется с карбюратором).

1. Осуществляется точная дозировка топлива. Как следствие, расход топлива более экономный, что в свою очередь приводит к снижению токсичности у выхлопных газов.

2. Мощность двигателя возрастает в среднем на 7-10%. Это происходит из-за улучшения наполнения цилиндров. К тому же устанавливается оптимальный угол опережения зажигания, что полностью соответствует рабочему движению двигателя.

3. Динамические свойства автомобиля значительно улучшаются. Вкратце это выглядит так. Система впрыска практически моментально реагирует на малейшие изменения в нагрузке и корректирует параметры топливно–воздушной массы.

4. Автомобиль с легкостью заводится при любых погодных условиях.

Другие похожие статьи:

Инжекторная система питания

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Устройство ДВС

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Устройство системы питания инжекторного двигателя

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя и электронная система питания.

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Принцип работы инжекторного двигателя, что такое инжекторный двигатель

Что такое инжекторный двигатель? Это разновидность двигателя с инжекторной системой подачи топлива. Данный вид двигателя обеспечивает экономичный расход топлива и уменьшение выбросов продуктов его сгорания в атмосферный воздух.

Основное его отличие от других типов состоит в особенностях работы системы подачи топлива. А именно, впрыскивание топлива осуществляется принудительно при помощи специального элемента для его дозирования (форсунки) в цилиндр или систему трубок и заслонок (впускной коллектор).

Инжекторные двигатели начали устанавливать с 1930х годов, но популярность они смогли завоевать только в конце 90хх годов.

Рис.№ 1. Современный инжекторный двигатель.

Типы инжекторных систем

Различают несколько типов данных систем в зависимости от способа подачи топлива, а именно:

  • Инжекторная система с центральной подачей топлива. Одна форсунка поставляет смесь топлива и воздуха в коллектор¸ после чего происходит её распределение по всем цилиндрам;
  • С многоточечной подачей. В этом варианте на каждый цилиндр имеется своя форсунка. Этот тип наиболее распространен. Чаще подача смеси осуществляется напрямую по цилиндру с последовательным топливовспрыском.

Выделяют также двух- и четырехтактные системы.

Такт – это все процессы, которые происходят в цилиндре за время одного ходя поршня.

Принцип работы инжекторного двигателя основан на сборе и оценке информации о состоянии двигателя и его работы с помощью специальных датчиков:

  • Датчик оборотов. Производит передачу сигнала о скорости, на основании этих данных блок управления рассчитывает необходимый расход топлива;
  • Датчик массового расхода воздуха. Измеряет силу воздушного потока;
  • Температуры антифриза. Проводит замеры температурного режима системы охлаждения и активирует работу вентилятора при необходимости;
  • Дроссельной заслонки. Осуществляет контроль положения заслонки дросселя и регулирует распределение топлива, которое попадает в камеру сгорания;
  • Кислорода в выхлопных газах. Фиксирует концентрацию кислорода в выхлопных газах. А также обеспечивает необходимую концентрацию газов и топлива в камере сгорания;
  • Детонации. Определяет силу взрыва в камере сгорания;
  • Положения распределительного вала. Участвует в согласовании подачи топлива и работы двигателя;
  • Температуры воздуха. Определяет температуру, которая поступает в двигатель. Контролёр инжектора (его «мозги») в результате обработки полученной информации, собранной от всех перечисленных приборов и устройств, регулирует работу следующих систем:
  • Форсунок. Это электромагнитный клапан, который осуществляет распыление топлива за счёт давления;
  • Электронасоса подачи топлива. Он контролирует давление в системе;
  • Модуля зажигания. Соответствует количеству свечей зажигания. Управляет их работой;
  • Регулятор холостого хода. Корректирует подачу воздуха в обход дроссельной заслонки на нейтральной передаче;
  • Вентилятор, охлаждающий мотор.

Рис. №2. Форсунки — основной элемент инжекторного двигателя, отвечающий за распыление топлива (жидкости или газа).

Как работает инжектор

Каждый двигатель оснащен поршнями и цилиндрами. В них происходит преобразование тепловой энергии в механическую.

Рис. №3. Схема работы инжекторного двигателя и его устройство.

Для осуществления этого процесса в инжекторном двигателе существует несколько этапов:

1 этап – такт впуска. Поршень в начале этого этапа находится в верхней мертвой точке. С началом работы двигателя стартер проворачивает посредством маховиков коленчатый вал. Датчик коленвала посылает блоку управления инжектора информацию о положении конкретного цилиндра. Датчик фаз анализирует такты. Блок управления получив данную информацию, открывает в нужном цилиндре форсунку на строго определенное время.

А вы знаете, что у некоторых двигателей имеется несколько клапанов впуска? Они увеличивают мощность двигателя, а соответственно и скоростные характеристики автомобиля;

2 этап – сжатие топливовоздушной смеси. Когда поршень достигает нижней мертвой точки, он начинает снова подниматься. Что приводит к сжатию смеси топлива и газов до размеров камеры сгорания. Клапаны в этот момент закрыты;

3 — этап рабочего хода. На этом этапе происходит поджигание свечой зажигания сжатой смеси воздуха и топлива. Что провоцирует взрыв, посредством увеличения давления на дне поршня. Это приводит к тому, что поршень опускается вниз до уровня нижней мертвой точки.

Клапаны впуска и выпуска закрыты для того, чтобы сила давления на поршень была достаточной для проворачивания коленчатого вала.

После взрыва блок управления регулирует момент зажигания для последующего цилиндра. А так же нормирует газовый состав топливовоздушной смеси. Это позволяет предельно эффективно использовать топливо и его сгорание;

4 этап – такт выпуска. Предыдущий этап приводит к открытию выпускного клапана. Поршень начинает двигаться вверх, выбрасывая газы, образовавшиеся в результате взрыва и сгорания.

Важно! Прогрев двигателя не оказывает влияния на показания датчика массового расхода воздуха и датчика взрыва, так как блок управления работает по специальным запрограммированным таблицам.

Чем отличается инжекторный двигатель от карбюраторного

Рис. №4. Инжекторный и карбюраторный двигателя.

В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:

  • В инжекторном двигателе подача смеси газов и топлива осуществляется в специальную камеру, в карбюраторном двигателе образование топливовоздушной смеси происходит в самом карбюраторе;
  • Смесь в инжекторном двигателе подается форсунками в цилиндры и в впускной коллектор принудительно. В карбюраторе этот процесс происходит само по себе;
  • В инжекторном двигателе форсунки подают строго дозированное количество топлива;
  • Инжекторная система обеспечивает мощность двигателя на 15% больше, чем карбюратор;
  • Инжектор более экономичен и экологически безопасен, чем карбюратор.

Применение инжекторных двигателей

Изначально инжекторные двигатели устанавливали в авиации. Особую популярность получили во времена Второй Мировой войны. Авиамоторы тогда создавали именно с этой системой.

Затем инжекторы стали устанавливать в автомобили. В процессе ввода в широкие круги, инжекторы стали вытеснять карбюраторные варианты двигателей. И с 2005 года автомобильные двигателя оснащены именно инжекторной системой подачи топлива.

Достоинства и недостатки инжекторного двигателя

К его плюсам можно отнести:

  • Экономичное потребление топлива;
  • Большая динамика двигателя;
  • Отсутствуют проблемы с запуском двигателя в холодное время года;
  • Более надежный в эксплуатации, чем карбюраторный вариант;
  • Нет необходимости ручного регулирования режимов его работы.

К недостаткам относят:

  • Дороговизна запчастей;
  • Сложная диагностика неисправностей;
  • Некоторые детали не подлежат ремонту;
  • Дорогие обслуживание и регулировка работы инжектора, ремонт требуется проводить в автомастерских;
  • Чувствительны к топливу плохого качества.

Заключение

Не смотря на перечисленные недостатки, инжекторные двигатели представляют собой современный вариант топливной системы, обеспечивающий большую мощность и экономичное расходование топлива. А также более безопасную комплектацию двигателей в плане влияния на экологию.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 4 чел.
Средний рейтинг: 5 из 5.

виды, устройство, принцип работы, фото, промывка

Инжектор – это своеобразная система, которая предназначена для переправки топлива в цилиндры автомобиля. Для этого используются форсунки, которые получают электронный сигнал от блока управления автомобиля. Стоит отметить, что подача топлива осуществляется исключительно точечным методом. Инжекторная система на сегодняшний день считается достаточно распространенной. Подобные конструкции представляют собой значительно более модифицированные версии карбюратора.

Стоит отметить, что первая подобная система была разработана еще в конце 19 века. А вот внедрение в само автомобилестроение произошло только во второй половине 20 века. Дело в том, что специалисты считали данный механизм слишком сложным и неоправданно дорогим.

На сегодняшний день все современные двигатели, оснащённые инжекторными системами подачи топлива, работающие по точечной поточечной подачи топлива в цилиндры, производится со специальными электронными блоками управления. Альтернативой ему может быть контроллер или система управления двигателем. Но, в любом случае, все эти приборы относятся к компьютерным. Именно они обеспечивают инжекторную систему должной информацией, на основании которой она может работать, корректировать дозу подачи топлива, частоту впрыска и другое.

Когда появился инжектор

Карбюратор, судя по всему, уже смешал отведенное ему количество топлива с воздухом в XX веке и его время стремительно подходит к концу. Несмотря на то что инжекторная система подачи топлива появилась гораздо раньше, чем карбюратор, она только начинает обживаться под капотами автомобилей. Своим происхождением впрыск обязан итальянскому физику и изобретателю Джованни Вентури, который изобрел форсунку с переменным сечением и скромненько назвал ее Труба Вентури.

Использовать ее в автомобилях начали ребята из гаража Леона Левассора. Что-то наподобие современного впрыска они ставили на свои автомобили еще в 1902 году. После этого автомобильные системы питания метались в поисках лучшего устройства, а инжектор нашел себе применение в авиационных двигателях. К концу 40-х годов все военные истребители поголовно пользовались инжекторной системой питания до тех пор, пока военная авиация не перешла на реактивную тягу.

Основные преимущества инжекторной системы

Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:

  1. Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
  2. Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
  3. Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.

Разнообразие инжекторных систем

В современности существует два вида инжекторов. Первый относится к системам моновпрыска. В данном случае одна форсунка осуществляет подачу топлива в коллектор на все цилиндры. Среди автомобилистов подобная система более известна, как электронный карбюратор. Однако, современные производители уже отошли от данной технологии, и встретить подобную систему можно только в старых моделях.

Вторая система подразумевает распределённый впрыск, то есть многоточечный впрыск. В данном случае устанавливается отдельная форсунка во впускном тракте каждого цилиндра и каждая из них осуществляет подачу определённого объёма топлива в камеру сгорания.

По способу распределения впрыска подобные системы делятся на:

  1. Одновременную. Система встречается очень редко, но всё же имеет место быть. Ее особенностью является то, что всего за один оборот коленчатого вала абсолютно все форсунки отрабатывают в одно и тоже время.
  2. Попарную параллельную. В данном случае форсунки работают по парам. Другими словами, за один оборот коленчатого вала только одна пара форсунок работает.
  3. Последовательную. Данный вид распределения впрыска является самым распространенным. Особенностью является то, что за один оборот вала каждая форсунка по разу открывается перед тактом впуска. При этом регулировка происходит отдельно.

Отрицательные характеристики систем

Несмотря на огромный перечень положительных характеристик, данный механизм, как и многие другие, имеет и свою темную сторону. К минусам данной конструкции относятся:

  • довольно большая стоимость ремонта;
  • высокая стоимость комплектующих;
  • маленькая вероятность возможности ремонта;
  • большие требования к качеству топлива;
  • определить неисправность может только профессионал;
  • диагностика стоит достаточно дорого;
  • для ремонта нужно иметь специальное оборудование.

Стоит отметить, что инжекторный тип впрыска топлива со временем может приводить к тому, что впускной клапан закоксовывается. Это происходит из-за того, что он просто не омывается топливом, которое, в некотором роде, его очищает.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Почему инжектор лучше карбюратора?

Помнится, еще относительно недавно автомобили с инжекторной системой подачи топлива вызывали недоверие. Пожалуй, единственное логическое объяснение этому – сложность ее конструкции, из-за чего на первых порах возникали проблемы с ремонтом. В отличие от карбюратора, впрыск топлива в инжекторе не нужно регулировать, поскольку это возложено на электронную систему управления. Помимо этого, машина с инжекторным агрегатом потребляет меньше топлива, а мощность ее мотора значительно выше. Плюс ко всему — значительное снижение вредных соединение в выхлопе авто, ввиду лучшего сгорания топливной смеси, которое возможно благодаря ее правильной и дозированной подаче.

Типы инжекторов

 1. Система центральной подачи топлива (моновпрыск), представлен одной форсункой, через которую топливная смесь поступает в коллектор, а с него уже распределяется по всем цилиндрам. Самый простой тип, который сегодня уже практически не применяется.

 2. Система распределенной топливоподачи (многоточечный впрыск). Здесь уже через отдельные форсунки осуществляется впрыск топлива в цилиндры, то есть количество форсунок соответствует количеству цилиндров.

Многоточечная система впрыска бывает:

— Одновременного типа, когда все форсунки открываются, и впрыск топлива осуществляется в течение одного полного оборота коленвала. Практически не встречается.

— Попарно-параллельного типа, когда топливовпрыск ведется через парные форсунки, цикл работы которых определяется одним вращением коленвала. Также используется редко, однако, может быть встречаться из-за поломки датчика при последовательном типе топливоподачи.

— С последовательным (фазированным) впрыском топлива, в которой за одно вращение коленвала происходит открытие каждой из форсунок для впрыска топлива. Наиболее распространенная и совершенная система топливовпрыска, которая позволяет подать рабочую смесь непосредственной в цилиндр, при этом длительность ее подачи и дозировка рассчитываются максимально точно. Стоит отметить, что рабочее давление системы может возрастать до 200 атм.

Однако есть и ряд своих недостатков, к которым можно отнести наличие множества дорогостоящих элементов, причем некоторые из них, абсолютно неремонтопригодны. Также, в инжекторах с системой последовательного топливовпрыска очень часто закоксовываются клапана впуска, из-за того, что они практически не омываются, следовательно, и не очищаются топливной смесью.

Виды систем впрыска бензиновых двигателей

Впрыск может быть:

  • центральным (ДВС с карбюраторами, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в каждый цилиндр двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей.

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Решения с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И множество лет – единственно доступные. Карбюратор был неотъемлемой частью топливной системы на около сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах механизации, которые применяются для садовых, строительных работ.
Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.

Принцип их действия основан на принципе втягивания топлива в поток воздуха, проходящего через карбюратор. Всё это возможно за счет сужения воздушного канала и разрежения воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое соотношение топлива к воздуху.

Как работает устройство?

  1. Топливо из бака забирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?
Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, обусловленные низкими динамическими качествами.
  • Прямая зависимость от положения двигателя.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Особенности системы впрыска

Основным преимуществом системы впрыска считают точную дозировку топлива, необходимую для оптимальной работы двигателя в определенный момент и под определенной нагрузкой. Этого позволила добиться только электронная система управления. Старые инжекторные системы имели механическое управление и подавали бензин по средним потребностям мотора. Современный инжектор способен точно вычислить сколько топлива необходимо и в какой момент его нужно подать. Синхронизация системы питания с зажиганием позволяет оперативно менять как угол опережения подачи искры, так и момент подачи бензина, поэтому теоретически, инжекторные системы должны быть эффективнее и экономичнее карбюраторных.

Диагностика инжекторных систем

Действительно, с применением электроники и распределенной системы впрыска моторы стали немного экономичнее, но против физики не попрешь, и без нужного количества бензина камера сгорания просто не выдаст ту энергию, которая необходима. С усложнением систем впрыска стали появляться новые проблемы, особенно на дешевых машинах, поскольку система впрыска очень требовательна к материалам топливной аппаратуры и особенно, к качеству топлива. Это вообще больной вопрос для всех инжекторов. Количество серы в отечественном бензине не укладывается ни в какие нормы, поэтому даже на недорогих системах впрыска очень часто требуется вмешательство механика.

Неисправности системы впрыска проявляются по-разному, но методы диагностики на современных СТО позволяют довольно точно определить нерабочий элемент. Чаще всего, это страдают от топлива насосы и форсунки. Определить неисправность просто, для этого даже не нужно ехать в сервис:

  • тяжелый пуск;
  • высокий расход;
  • провалы в работе на средних оборотах и отсутствие холостых;
  • сбои в переходных режимах.

Все это свидетельствует о недостаточном количестве бензина в камере сгорания. Насосы, как правило, не ремонтируют, по крайней мере, на официальных сервисах, а форсунки приходится мыть и прочищать.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Промывка инжекторной системы

Есть несколько способов очистки инжекторной системы. Если двигатель находится еще не в критическом состоянии, тогда может помочь промывка при помощи топливных присадок. Они растворяют отложения в насосе, топливопроводе, а главное, в форсунках, и в некоторой степени чистят систему от грязи и шлаков. не всегда это удается и не всегда это безопасно для двигателя, поэтому наиболее эффективным способом прочистки форсунок считают ультразвуковые ванны. Это не механический способ очистки и процесс проходит довольно эффективно.

Инжекторная система подачи топлива продолжает совершенствоваться, полностью вытесняя карбюраторы. Системы вполне работоспособны, только для того, чтобы избежать лишних проблем с очисткой и регулировками, стоит следить за качеством топлива ровно настолько, насколько это позволяют наши нефтеперерабатывающие комбинаты. Чистого всем бензина, и удачи в дороге!

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

ПОХОЖИЕ СТАТЬИ:

  • Почему не стоит обгонять автомобиль ДПС
  • Бампер: описание,устройство,виды,назначение,ремонт,видео,фото,цены.
  • Mercedes-AMG GLE 2019 года: описание,обзор,фото,характеристики,комплектации
  • Типичные неисправности механических коробок передач
  • Как устранить нагар в цилиндрах?
  • Знаменитый итальянский музей Ferrari — Galleria Ferrari
  • Новый БМВ 8 серии Кабриолет Cabrio 2019 года.
  • Порше Макан 2019: обзор,фото,характеристики,цены,комплектации
  • Автосервис — что это такое?
  • Обзор самых ненадежных автомобилей на 2020 год
  • Новый Volkswagen Jetta GLI 2019 поступит в продажу уже весной
  • Cadillac XT4 -2020 г: обзор,фото,характеристики ,интерьер
  • Плохой холостой ход в инжекторных двигателях: проблемы и решения. часть 1
  • бмв х2: технические характеристики,дизайн,интерьер,фото,видео,описание.
  • PORSCHE Cayenne II,PORSCHE Cayenne I — Технические характеристики, отзывы, информация
  • 15 Самых недооцененных спортивных авто
  • Графитовая смазка: описание, характеристики, производители, маркировка, марки
  • Volkswagen corrado: обзор,описание,модификации,технические характеристики,фото,видео.
  • Турбокомпрессор: устройство,принцип работы,фото,видео.
  • Audi A7 Sportback 3.0 TFSI: тест драйв,двигатель,фото,описание.
  • 2019 toyota highlander: дата выхода,изменения
  • Проекционный дисплей HUD: виды и принцип работы,фото
  • Все системы полного привода
  • Новый Renault Duster замечен на дорожных испытаниях в России
  • Автомобильные аккумуляторы марки Topla: особенности, плюсы применения, серии
  • Ниссан двигатели: мотор 1.0-1.4 (CR),двигатели 1.2-1.6,двигатели 1.6-2.0 (MR).
  • Что такое датчик положения коленвала и какие функции он выполняет?
  • Какое моторное масло выбрать на лето?
СИСТЕМА ВПРЫСКА

: КОМПОНЕНТЫ, ВИДЫ И ПРИНЦИП ДЕЙСТВИЯ

«Топливная форсунка — это механическое устройство с электронным управлением, которое отвечает за распыление (впрыск) нужного количества топлива в двигатель, чтобы создать подходящую воздушно-топливную смесь для оптимального сгорания».

Технология была создана в начале 20 века и впервые реализована на дизельных двигателях. К последней трети 20-го века он также стал популярным среди обычных бензиновых двигателей.

Электронный блок управления (ЭБУ в системе управления двигателем) определяет точное количество и конкретное время требуемой дозы бензина (бензина) для каждого цикла, собирая информацию с различных датчиков двигателя. Таким образом, ЭБУ отправляет управляющий электрический сигнал правильной продолжительности и времени на катушку топливной форсунки. Таким образом открывается форсунка, через которую бензин проходит в двигатель.

На один вывод катушки форсунки напрямую подается напряжение 12 В, которое контролируется ЭБУ, а другой вывод катушки форсунки открыт.Когда ЭБУ определяет точное количество топлива и время его впрыска, активирует соответствующую форсунку, переключая другую клемму на массу (массу, т. Е. Отрицательный полюс).

КОМПОНЕНТЫ

Целью системы впрыска топлива является дозирование, распыление и распределение топлива по воздушной массе в цилиндре. В то же время он должен поддерживать требуемое соотношение воздух-топливо в соответствии с нагрузкой и скоростью двигателя.

* Насосные элементы:

Для перемещения топлива из топливного бака в цилиндр.

* Дозирующие элементы:

Для измерения подачи топлива со скоростью, требуемой для регулирования скорости и нагрузки на двигателе

* Контроль дозирования:

Для регулировки нормы дозирования элементов при изменении нагрузки и частоты вращения двигателя.

* Контроль смеси:

Для регулировки соотношения топлива и воздуха в зависимости от нагрузки и скорости.

* Раздаточные элементы:

Для равномерного распределения отмеренного топлива между цилиндрами.

* Контроль времени:

Для фиксации запуска и остановки процесса смешения топлива с воздухом.

ВИДЫ ТОПЛИВНЫХ ИНЖЕКТОРОВ

1. Верхняя подача — Топливо поступает сверху и выходит снизу.

2. Боковая подача — Топливо попадает сбоку на штуцере форсунки внутри топливной рампы.

3. Форсунки корпуса дроссельной заслонки — (TBI) Расположены непосредственно в корпусе дроссельной заслонки.

ВИДЫ СИСТЕМ ВПРЫСКА ТОПЛИВА

1.Одноточечный впрыск топлива или дроссельная заслонка

Также называемый одинарным портом, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который в двигатель сначала поступает чистый воздух. TBFI работает, добавляя правильное количество топлива в воздух перед его распределением по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнет проблема с инжектором, вам нужно заменить только один.Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.

Технически системы корпуса дроссельной заслонки очень прочные и требуют меньшего обслуживания. При этом впрыск дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно стары, поэтому обслуживание будет более серьезной проблемой, чем с более новым автомобилем с меньшим пробегом.

Еще один недостаток TBFI — неточность. Если вы отпустите педаль акселератора, в воздушной смеси, которая направляется в ваши цилиндры, все равно будет много топлива.Это может привести к небольшой задержке перед замедлением или, в некоторых автомобилях, к выбрасыванию несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI не так экономичны, как современные системы.

2. Многопортовый впрыск

Многоточечный впрыск просто перемещал форсунки дальше вниз по направлению к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется к каждому цилиндру. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.

Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свою собственную струю топлива. Каждая форсунка меньше и точнее, что позволяет снизить расход топлива. Обратной стороной является то, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаток топлива между периодами впуска или у вас может возникнуть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.

Многопортовые системы

отлично работают, когда вы путешествуете с постоянной скоростью.Но когда вы быстро ускоряетесь или убираете ногу с дроссельной заслонки, такая конструкция снижает либо экономию топлива, либо производительность.

3. Последовательный впрыск

Системы последовательной подачи топлива очень похожи на многопортовые системы. При этом есть одно ключевое отличие. Последовательная подача топлива — раз. Вместо того, чтобы все форсунки срабатывали одновременно, они подают топливо одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан открывается, чтобы всасывать его.Такая конструкция позволяет повысить экономию топлива и производительность.

Поскольку топливо остается в порту только на короткое время, последовательные форсунки имеют тенденцию служить дольше и оставаться более чистыми, чем другие системы. Благодаря этим преимуществам на сегодняшний день наиболее распространенным типом впрыска топлива в транспортных средствах являются последовательные системы.

Единственным небольшим недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через мгновение после открытия форсунки.Если он грязный, забитый или не реагирует, ваш двигатель будет испытывать нехватку топлива. Форсунки должны работать на максимальной мощности, иначе ваш автомобиль начнет работать с неровностями.

4. Прямой впрыск

Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямая инъекция. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят убедить вас, что прямой впрыск является новейшим и лучшим вариантом.Что касается характеристик бензиновых автомобилей, они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, и почти все дизельные автомобили имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.

В дизельных двигателях прямой впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с обслуживанием сведены к минимуму.

В бензиновых двигателях непосредственный впрыск применяется почти исключительно в транспортных средствах с высокими характеристиками.Поскольку эти автомобили работают с очень точными параметрами, особенно важно поддерживать в рабочем состоянии вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение долгого времени, если им пренебречь, его характеристики быстро снизятся.

СПОСОБЫ ВПРЫСКА ТОПЛИВА

Есть два способа впрыска топлива в системе воспламенения от сжатия

1. Впрыск дутья
2. Впрыск безвоздушного или твердого вещества

1. Нагнетание воздушным дутьем

Этот метод первоначально использовался в больших стационарных и судовых двигателях.Но сейчас он устарел. В этом методе воздух сначала сжимается до очень высокого давления. Затем впрыскивается струя этого воздуха, увлекая за собой топливо в цилиндры. Скорость впрыска топлива регулируется изменением давления воздуха. Воздух высокого давления требует многоступенчатого компрессора, чтобы баллоны с воздухом оставались заряженными. Топливо воспламеняется из-за высокой температуры воздуха, вызванной сильным сжатием. Компрессор потребляет около 10% мощности, развиваемой двигателем, что снижает полезную мощность двигателя.2. Этот метод используется для всех типов малых и больших дизельных двигателей. Его можно разделить на две системы

1. Индивидуальная насосная система: в этой системе каждый цилиндр имеет свой индивидуальный насос высокого давления и измерительный блок.

2. Система Common Rail: в этой системе топливо перекачивается многоцилиндровым насосом в Common Rail, давление в рампе регулируется предохранительным клапаном. Отмеренное количество топлива подается в каждый цилиндр от общей магистрали.

Это все о системе впрыска топлива.Если у вас есть какие-либо вопросы относительно этой статьи, задавайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт для получения более информативных статей. Спасибо, что прочитали.

ПРИНЦИПЫ РАБОТЫ

Форсунки управляются блоком управления двигателем (ЭБУ). Во-первых, ЭБУ получает информацию о состоянии двигателя и требованиях с помощью различных внутренних датчиков. После определения состояния и требований двигателя топливо забирается из топливного бака, транспортируется по топливопроводам и затем нагнетается топливными насосами.Правильное давление проверяется регулятором давления топлива. Во многих случаях топливо также разделяется с помощью топливной рампы, чтобы питать различные цилиндры двигателя. Наконец, инжекторам приказывают впрыснуть необходимое для сгорания топливо.

Точная требуемая топливно-воздушная смесь зависит от двигателя, используемого топлива и текущих требований двигателя (мощность, экономия топлива, уровень выбросов выхлопных газов и т. Д.).

(автомобильный мир)

Как работают системы впрыска топлива

Алгоритмы управления двигателем довольно сложны.Программное обеспечение должно позволять автомобилю соответствовать требованиям по выбросам на 100 000 миль, соответствовать требованиям EPA по экономии топлива и защищать двигатели от неправильного использования. И есть еще десятки других требований.

Блок управления двигателем использует формулу и большое количество справочных таблиц для определения ширины импульса для заданных условий эксплуатации. Уравнение будет представлять собой серию множества множителей, умноженных друг на друга. Многие из этих факторов будут взяты из справочных таблиц. Мы рассмотрим упрощенный расчет ширины импульса топливной форсунки .В этом примере в нашем уравнении будет только три фактора, тогда как в реальной системе управления их может быть сто или больше.

Ширина импульса = (Базовая ширина импульса) x (Фактор A) x (Фактор B)


Для вычисления ширины импульса ЭБУ сначала ищет базовую ширину импульса в справочной таблице. Базовая ширина импульса является функцией частоты вращения двигателя (об / мин) и нагрузки (которая может быть рассчитана по абсолютному давлению в коллекторе). Допустим, частота вращения двигателя составляет 2000 об / мин, а нагрузка — 4.Мы находим число на пересечении 2000 и 4, что составляет 8 миллисекунд.

9014 1
Об / мин Нагрузка
1 2 3 2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20


В следующих примерах A и B — это параметры, поступающие от датчиков.Допустим, A — температура охлаждающей жидкости, а B — уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, справочные таблицы говорят нам, что коэффициент A = 0,8 и коэффициент B = 1,0.

1,2
A Фактор A
B Фактор B
0
0 1.0
25 1,1
1 1,0
50 1,0
2 1,0
75 0,9
3 1,0
100 0,8
4 0.75


Итак, поскольку мы знаем, что ширина основного импульса является функцией нагрузки и числа оборотов в минуту, и что ширина импульса = (ширина основного импульса) x (коэффициент A) x (коэффициент B) , общая ширина импульса в нашем примере равна:

8 x 0,8 x 1,0 = 6,4 миллисекунды


Из этого примера вы можете увидеть, как система управления выполняет настройки. Если параметр B представляет собой уровень кислорода в выхлопе, справочная таблица для B — это точка, в которой (по мнению разработчиков двигателей) слишком много кислорода в выхлопе; и, соответственно, ЭБУ сокращает расход топлива.

Реальные системы управления могут иметь более 100 параметров, каждый со своей таблицей поиска. Некоторые параметры даже меняются со временем, чтобы компенсировать изменения в характеристиках компонентов двигателя, таких как каталитический нейтрализатор. И в зависимости от оборотов двигателя ЭБУ может выполнять эти вычисления более ста раз в секунду.

Чипы производительности
Это подводит нас к обсуждению чипов производительности. Теперь, когда мы немного понимаем, как работают алгоритмы управления в ЭБУ, мы можем понять, что делают производители микросхем производительности, чтобы получить больше мощности от двигателя.

Чипы Performance производятся компаниями вторичного рынка и используются для увеличения мощности двигателя. В ЭБУ есть микросхема, которая содержит все таблицы поиска; чип производительности заменяет этот чип. Таблицы в микросхеме производительности будут содержать значения, которые приводят к увеличению расхода топлива в определенных условиях движения. Например, они могут подавать больше топлива при полностью открытой дроссельной заслонке на каждой скорости двигателя. Они также могут изменить время зажигания (для этого тоже есть справочные таблицы). Поскольку производители чипов производительности не так озабочены такими проблемами, как надежность, пробег и контроль выбросов, как производители автомобилей, они используют более агрессивные настройки в топливных картах своих чипов производительности.

Для получения дополнительной информации о системах впрыска топлива и других автомобильных темах перейдите по ссылкам на следующей странице.

Система впрыска топлива: определение, функции, виды, работа

Вы знаете, как топливо поступает в камеру сгорания в автомобильных двигателях? Уверен, вы думаете не о карбюраторе, а о топливной форсунке . Сейчас они в основном ушли в прошлое, особенно в двигателях внутреннего сгорания. Используемый эффективный процесс известен как система впрыска топлива .

Впрыск топлива — это введение топлива в двигатели внутреннего сгорания, в основном автомобильные, с использованием инжектора. Этот процесс был введен в соответствие с законами о выбросах и топливной эффективности. За год производители автомобилей увидели большие преимущества топливных форсунок, и именно здесь начинается падение карбюраторов.

С 1980 года впрыск топлива стал альтернативой карбюраторам на бензиновых двигателях. Ну, разница между впрыском топлива и карбюрацией заключается в том, что впрыск топлива распыляет топливо через небольшое сопло под высоким давлением.В то время как карбюраторы полагаются на всасывание топлива в воздушный поток через трубку Вентури.

Исследования показали, что все дизельные двигатели конструктивно используют впрыск топлива. В газовых двигателях можно использовать непосредственный впрыск бензина, при котором топливо подается непосредственно в камеру внутреннего сгорания. Также можно использовать непрямой впрыск, когда топливо смешивается с воздухом перед тактом впуска.

Сегодня мы подробно рассмотрим определение, функции, детали, типы, принцип работы, проблемы, а также преимущества и недостатки системы топливных форсунок в автомобильных двигателях.

Прочтите: все, что вам нужно знать об автомобильном поршне

Что такое топливная форсунка?

Топливные форсунки представляют собой небольшие форсунки с электронным управлением для распыления топлива под высоким давлением в камеру сгорания двигателя. Он содержит клапаны, которые могут открываться и закрываться много раз в секунду.

До появления топливных форсунок карбюратор широко использовался в двигателях, и до настоящего времени этот двигатель все еще существует.Фактически, во многих других машинах, таких как газонокосилки и бензопилы, по-прежнему используются карбюраторы. Но поскольку компонент усложнился, пытаясь контролировать все требования к автомобилю, была выпущена лучшая альтернатива.

Карбюраторы, где сначала была заменена система впрыска топлива в корпус дроссельной заслонки. Эта система также известна как одноточечная или центральная система впрыска топлива. Это электрически управляемые топливные форсунки в корпусе дроссельной заслонки.

Это была почти лучшая альтернатива, которая позволяла производителям автомобилей не вносить радикальных изменений в конструкцию двигателей.

Постепенно, по мере разработки новых двигателей, многоточечный впрыск топлива заменил впрыск топлива в корпусе дроссельной заслонки. Этот многоточечный впрыск топлива также известен как портовый, многоточечный или последовательный впрыск топлива.

Система содержит топливные форсунки для каждого цилиндра, которые распыляются прямо на впускной клапан. Он обеспечивает более точный учет топлива и более быструю реакцию.

Функции топливной форсунки

Ниже приведены функции топливных форсунок в двигателе внутреннего сгорания:

  • Основное назначение системы впрыска топлива в дизельных двигателях состоит в том, что на их конструкцию сильно влияет компонент,
  • Топливная форсунка помогает подавать топливо в цилиндры.
  • Улучшает характеристики двигателя по характеристикам, выбросам и шуму.
  • Топливо подается под очень высоким давлением впрыска.
  • Его материалы спроектированы таким образом, чтобы выдерживать более высокие нагрузки и обеспечивать долговечность, соответствующую работе двигателя.
  • Еще одно предназначение системы впрыска — своевременный впрыск топлива. То есть регулируется момент впрыска.
  • Необходимо подать правильное количество топлива, чтобы обеспечить требуемую мощность двигателя.Вот почему контролируется дозирование впрыска.
  • Инжектор
  • изготовлен с большей точностью и допуском, чтобы обеспечить его эффективность работы. Это также предотвращает утечку.
  • Топливная форсунка распыляет топливо на очень мелкие частицы топлива, обеспечивая испарение каждой маленькой капельки топлива и ее сгорание.
  • Кислорода достаточно для смешивания с распыляемым топливом и обеспечения полного сгорания.

Прочтите: Общие сведения о системе смазки двигателя

Основные части системы впрыска топлива

Ниже приведены основные функциональные части, которые обеспечивают работу системы впрыска топлива в автомобильных двигателях, и названия компонентов топливной форсунки:

Основные части системы впрыска топлива разделены на две части: стороны низкого и высокого давления, части низкого давления — это топливный бак, топливный фильтр и топливный насос.При этом на стороне высокого давления находятся насос высокого давления, топливная форсунка, гидроаккумулятор, форсунка топливной форсунки. Форсунка имеет различную конструкцию срабатывания для различных типов систем впрыска топлива.

Поскольку топливо необходимо перекачивать из топливного бака в систему форсунок, роль играет топливная система низкого давления. При этом от топливной форсунки до камеры сгорания идет система высокого давления. Ниже представлена ​​роль следующих частей, указанных выше:

  • Топливный бак — часть, где хранится топливо.
  • Топливный насос — перекачивает топливо из топливного бака в систему впрыска топлива.
  • ТНВД — эта деталь является измерителем и нагнетает топливо для впрыска.
  • Губернатор — подача топлива в соответствии с нагрузкой.
  • Топливная форсунка — подает топливо от ТНВД в цилиндры.
  • Топливный фильтр — для фильтрации грязи, каналов и абразивных частиц от блокировки системы впрыска.
На рисунке ниже показаны основные части топливной форсунки:

Система впрыска топлива работает полностью точно, чтобы обеспечить правильное количество топлива для любых условий эксплуатации. Блок управления двигателем (ЭБУ) используется для контроля большинства входных датчиков. Ниже приведены несколько деталей, в которых датчик используется для точной работы:

  • Датчик кислорода — обратите внимание на количество кислорода в выхлопе, которое позволяет ЭБУ определять, является ли топливная смесь богатой или бедной.Соответственно, выполняется регулировка.
  • Датчик положения дроссельной заслонки — этот датчик контролирует положение дроссельной заслонки, чтобы узнать, сколько воздуха попадает в двигатель. ЭБУ быстро реагирует на изменения, увеличивая или уменьшая расход топлива по мере необходимости.
  • Датчик массового расхода воздуха — сообщите блоку управления двигателем количество топлива, поступающего в двигатель.
  • Датчик температуры охлаждающей жидкости — ЭБУ определяет, когда двигатель достигает надлежащей рабочей температуры.
  • Датчик абсолютного давления в коллекторе — определение давления воздуха во впускном коллекторе.
  • Датчик частоты вращения двигателя — контролирует частоту вращения двигателя, поэтому используется для расчета ширины импульса.
  • Датчик напряжения — определяет напряжение системы в автомобиле, чтобы узнать, когда ЭБУ поднимает обороты холостого хода. это может быть, когда напряжение падает, что указывает на высокую электрическую нагрузку.

Читайте: Обычные и нетрадиционные типы автомобильных шасси

Типы систем впрыска топлива

Ниже приведены распространенные типы системы впрыска топлива, встречающиеся в старых и современных автомобилях:

Одноточечный впрыск или впрыск дроссельной заслонки:

Одноточечная система впрыска — это самый ранний и простой впрыск топлива, пришедший на смену карбюраторам.Он содержит одну или две форсунки в корпусе дроссельной заслонки, который является горловиной впускного коллектора двигателя.

Эта система форсунок не точна, чем предыдущая, но по сравнению с карбюраторами она лучше управляема, дешевле и проще в обслуживании.

Портовый или многоточечный впрыск топлива:

В многоточечных топливных форсунках разделительные форсунки расположены в каждом цилиндре на его впускном канале. Вот почему систему иногда называют форсункой, которая выпускает пары топлива близко к месту впуска, обеспечивая их полное втягивание в цилиндр.

Одним из преимуществ этой форсунки является то, что расходомер топлива более точен по сравнению с одной точкой. Он также идеально подходит для достижения требуемого соотношения между топливом и воздухом и практически исключает возможность конденсации или накопления топлива во впускном коллекторе.

Последовательный впрыск топлива:

Этот тип топливной форсунки также известен как последовательный впрыск топлива через порт или впрыск по времени. Это тип многопортового впрыска, даже если базовый многопортовый использует несколько форсунок.Все они распыляют свое топливо в одно и то же время или последовательно, заставляя топливо оставаться в течение 150 миллисекунд, когда двигатель работает на холостом ходу.

Преимущества последовательного впрыска топлива заключаются в том, что система реагирует быстрее, если водитель делает резкое изменение. Это связано с тем, что клапану нужно только дождаться открытия следующего впускного клапана, а не полного оборота двигателя.

Прямой впрыск:

Прямой впрыск является обычным явлением в дизельных двигателях, хотя начинает применяться и в бензиновых двигателях.Его иногда называют DIG для бензина с прямым впрыском. При этом топливо впрыскивается прямо в камеру сгорания, мимо клапанов.

Дозирование топлива более точное, чем у других типов впрыска топлива. Прямой впрыск топлива дает инженерам еще одну возможность точно влиять на то, как происходит сгорание в цилиндрах. Наука о конструкции двигателя изучает, как воздушно-топливная смесь вращается в цилиндрах. А еще мотыга идет взрыв от точки возгорания.

Прямой впрыск в бензиновом двигателе может обрабатывать такие вещи, как форма цилиндров и поршней.А также расположение портов и свечей зажигания, время, продолжительность и интенсивность искры. Количество свечей зажигания на цилиндр. Все это влияет на то, насколько полно и равномерно сгорает топливо в бензиновом двигателе.

Принцип действия

Работа системы топливных форсунок довольно интересна и понятна. Основная работа идет от топливной форсунки до камеры сгорания после того, как топливо перекачивается в нее из топливного бака.

Как было сказано ранее, топливная форсунка — это механическое устройство с электронным управлением, которое отвечает за распыление топлива.На инжектор подается питание, и электромагнит перемещает плунжер, который открывает клапан. Этот клапан позволяет топливу под давлением выливаться через крошечное сопло. Форсунка предназначена для распыления топлива, что обеспечивает легкое горение топлива,

Время, в течение которого топливная форсунка остается открытой, определяет подачу топлива в двигатель. Это известно как «ширина импульса» и управляется устройством ECU. Система топливных форсунок устанавливается непосредственно на впускной коллектор, так что топливо может распыляться прямо на впускной клапан.

Внутри обычного инжектора есть пружина, которая удерживает игольчатый клапан в закрытом положении. Он удерживает этот игольчатый клапан до тех пор, пока линия высокого давления не достигнет определенного значения. Существует труба под названием «топливная рампа», по которой топливо под давлением подается к форсункам.

Правильное количество топлива, подаваемого на требуемые детали. Различные части двигателя оснащены датчиками, которые передают в ЭБУ информацию о количестве топлива и при необходимости производят регулировку. Различные датчики были перечислены и объяснены в приведенной выше части этой статьи.

Посмотрите видео ниже, чтобы лучше понять работу системы впрыска топлива:

Прочтите: Что нужно знать о двигателях с турбонаддувом

Признаки неисправности топливных форсунок и способы их предотвращения

Отказ топливной форсунки происходит после перегрузки, и если ее не обслуживать регулярно, это может привести к серьезным неисправностям или засорению. Ниже приведены симптомы неисправности топливных форсунок и способы их предотвращения:

  • Неровная работа двигателя
  • Осложнения при запуске автомобиля
  • Запах топлива
  • Разбавление маслом
  • Неудачная эмиссия
  • Двигатель не развивает полную частоту вращения
  • Низкая производительность автомобиля
  • Катастрофический отказ двигателя
  • Выделение дыма
  • Повышенный расход топлива
  • Загрязнение

Проблема часто возникает на топливной форсунке, когда есть грязь, частицы углерода, жидкое топливо или скопление остатков, приводящих к засорению топливных форсунок.Проблемы возникают после того, как корзина фильтра собирает мусор, который препятствует протеканию топлива через нее.

Правильный способ предотвратить отказ топливных форсунок — это регулярное техническое обслуживание. Детали автомобиля необходимо регулярно осматривать. Несмотря на то, что топливные форсунки имеют большие допуски, все же следует проводить проверку компонентов.

Для более надежного результата добавление влаги втягивание этанола или присадок, визуальный контроль, проведение ультразвуковой очистки. Кроме того, поможет фактическая картина потока для проверки объема и распыления.

Преимущества и недостатки системы впрыска топлива

Преимущества:

Ниже приведены преимущества системы впрыска топлива:

  • Точная топливная смесь топлива и воздуха обеспечивает максимально возможную топливную экономичность и выработку энергии.
  • Процесс сгорания значительно более эффективен в двигателе с впрыском топлива.
  • Двигатели с впрыском топлива более экономичны и позволяют максимально или минимизировать уровень выбросов.
  • В двигателе с впрыском топлива исключен холодный пуск, что устраняет необходимость в ручной блокировке.
  • Он также используется на современных мотоциклах.
  • Система впрыска топлива автоматически уравновешивает топливовоздушную смесь с учетом окружающей среды.
  • Уменьшается вибрация двигателя и сводится к минимуму проблема засорения свечей зажигания.

Прочтите: Двухтактный двигатель: все, что вам нужно знать

Недостатки

Несмотря на все преимущества системы впрыска, все же есть некоторые ограничения.Ниже приведены недостатки системы:

  • Это сложное устройство с электронным управлением, которое работает с несколькими электронными датчиками.
  • Обслуживание и ремонт системы очень ограничены. То есть не вся мастерская может делать свою работу.
  • Система впрыска топлива стоит довольно дорого.
  • Настоятельно рекомендуется использовать качественные материалы и топливо.
  • Нет решения из-за низкой стоимости и небольшой емкости.

В заключение, система впрыска топлива полностью заменила карбюраторы в автомобильном двигателе.мы обсудили его функции, одна из которых — подавать топливо под высоким давлением в цилиндр. Система впрыска топлива разных типов, включающая корпус дроссельной заслонки и многопортовый, также выявлена ​​ее составляющая со стороны низкого и высокого давления. он рабочий, симптомы и преимущества и недостатки системы впрыска топлива.

Вот и все для этой статьи. Надеюсь, вам понравилось чтение. Если да, то прокомментируйте, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей.Спасибо!

Принцип электронного впрыска топлива

Принцип, используемый большинством автомобилей для регулирования топливных форсунок, следующий:

Одноканальная многоточечная система или «одновременный впрыск»

Цель:

Только один драйвер / транзистор запускает все форсунки одновременно.

Это также означает: Все форсунки параллельно соединены друг с другом электроникой.

Форсунка впрыскивает относительно большое количество топлива.Поэтому время открытия короткие, но частота включения и выключения последовательностей высока. Частый Последовательность включения и выключения форсунки / форсунок вызывает турбулентность. Турбулентность вместе с высоким коэффициентом дезинтеграции / распыления топлива улучшит действие стадии газожидкостной смеси. Мы сейчас говорим о многоточечной системе! Тогда все форсунки открываются и закрываются одновременно. Нельзя синхронизировать каждый цилиндр, так что каждая форсунка распыляет впускное отверстие, когда оно открыто — для этого нужна последовательная система.

Каждая форсунка находится под давлением топлива, и время открытия очень короткое. Открытие время составляет от 1 до 10 мс в зависимости от производителя вашей системы и нагрузка на двигатель. Время закрытия форсунки составляет от 50 до 100 мс (на холостом ходу).

Термины «время открытия» и «время закрытия» находятся здесь (и в соответствующих документы с этого веб-сайта), эквивалентные характеристикам электрического сигнала, а не время открытия или закрытия клапана топливной форсунки.Собственно, можно рассматривать как ширина импульса и фактическое время открытия одинаковы, но позвольте мне объяснить проблему более подробно. деталь: эффективное время открытия топливной форсунки или интервал, в течение которого форсунка впрыскивает топливо, происходит через некоторое время после электрического импульса. Причина такого поведения зависит от от электрической индукции в катушке форсунки и механической инерции. Задержка составляет примерно 1 мс, а время, необходимое для начала движения клапана, называется мертвым временем или временем задержки.Когда электрический импульс закончится, клапан начнет закрываться, но, опять же, на это потребуется время. до закрытия клапана. Хотя у этого времени в основном такая же продолжительность, как у мертвых временной интервал, но имеет тенденцию быть короче. Производители топливных форсунок гарантируют однако эти задержки не влияют на линейность. Задержки (или время задержки) варьируются в зависимости от производителя, но масса топлива на единицу всегда соответствует электрическому вариации сигнала линейной функцией. Это только при очень коротком времени открытия в качестве инжектора. может быть нелинейным.Подробнее о линейности форсунок ниже.

Частота открытия форсунок зависит от оборотов двигателя. Так что если скорость / об / мин увеличивается, частота делать то же самое. Время работы также зависит от нагрузка на двигатель, как я уже сказал. Нет никакой связи между частотой и время открытия. Вместо этого они работают совершенно независимо друг от друга.

Когда топливо представляет собой этанол, каждую форсунку необходимо открывать дольше обычного.Этот вопрос быть легкой проблемой для топливного компьютера двигателя, но дополнительное количество топлива слишком далеко от обычных вариантов бензина различного качества, поэтому компьютер вскоре достигает предел, и этот предел также различается в зависимости от производителя топливного компьютера.

Это просто ограничение электроники, не более того, но есть объяснение таким образом, чтобы устроить здесь такую ​​систему, и это действительно для безопасности. Когда компьютер достигает предела того, что, по его мнению, является слишком большим количеством топлива, интерпретирует компьютер, что это, вероятно, утечка топлива.Это ненормально и, следовательно, также горит светодиод неисправности двигателя.

По идее, такая индикация может предотвратить аварию — пожар.

В Интернете ходили слухи, что продлевать открытие нельзя. время форсунки, потому что импульсы попадают друг в друга, когда двигатель достигает определенной скорости. Интерпретируйте рисунок ниже; вы легко можете это понять. Фактически, расстояния между каждым промежутком / интервалом больше.Если мы начнем с двигатель на холостом ходу и посмотрите, как долго впускной клапан может быть открыт, а затем холостой ход скорость около 800 об / мин — это будет около 13 об / сек. Впускной порт открывать половину оборота коленвала каждые два круга, 1 / (13×2) секунды — это 38 мс. Время закрытия или интервал до следующего импульса будет 38×3 = 114 мс. Было бы у нас есть последовательная система, если у каждого инжектора есть 38 мс для впрыска нужного количество топлива. Сравните затем с многоточечной системой, в которой время открытия на холостом ходу около 2 мс! Для последовательной системы все форсунки рассчитаны по времени, а открытие время немного больше, скажем 3 мс.Вместе со временем закрытия у нас есть 3 мс плюс время закрытия 114 мс. Таким образом, одна форсунка открыта на 2,5% от максимального времени, в течение которого может быть открытым.

Если выбрать скорость 10000 об / мин, то получится 167 об / сек. Время впускной клапан открыт, тогда становится 3 мСм, а интервал составляет 9 мСм. Инжектор может затем оставаться открытым 25% максимального времени только во время такта впуска. Было бы производитель двигателя не рассчитывает на определенные габариты, когда нагрузка на двигатель а скорость максимальная? Предположим, что форсунка открыта на 50% максимум. нагрузка.Тогда еще есть место, чтобы удвоить топливо, если вы захотите тюнингуйте двигатель! Вместо настройки мы увеличиваем длительность импульса на 40%. для инжектора, который открыт 50% от максимального времени, поэтому общее время будет 70%, а затем еще 30% времени, чтобы выжать из трима (при максимальной нагрузке). Я думаю, что есть место, как вы думаете?

Дело в том, что там недостаточно хороших с линейным изменением.

При использовании низкоэнергетического топлива возникает небольшая проблема.

Кривая, применимая к бензину, не применима ко всем низкоэнергетическим видам топлива. Если твой компьютер открывает дроссельную заслонку для нового топлива, как это было для бензина, будет ли двигатель либо разбогатеть, либо похудеть, по крайней мере, на короткое время, прежде чем компьютер дозировка. Лямбда-зонд знает, что двигатель получил неправильное количество топлива, и система перезагрузится.

Однако при использовании этанола или E85 можно считать с линейным изменением. В компьютер может открываться для топлива, как для бензина — тогда он работает нормально, таким образом, следуйте тому же графику (отображение), что и бензин.Некоторые проблемы остаются — и который применяет настройки, когда лямбда-контроль отключен.

Отображение обычно достаточно хорошее, если вы имеете дело с обычными грузовые автомобили, но насколько большим должно быть расширение импульса, намного больше сложно предсказать — это зависит от линейности топливной форсунки или вернее; наклон графика линейности. Если увеличить пульс длина на 30%, так что это не значит, что расход топлива увеличится на 30%.Может быть, количество увеличится только на 25%, а может быть, увеличение идет в сторону 40% …

Важно понимать, что топливная форсунка имеет запаздывание, мертвая время до его открытия. Синий инжектор имеет мертвое время 0,8 мс, но как только он открывается, действует линейно почти сразу. На нелинейной части обычно присутствуют время открытия двигателя на холостом ходу, поэтому на него можно не обращать внимания. Ширина импульса ниже 0,8 мс не повлияет на форсунки в приведенном выше примере.Линейность изменяется, если напряжение питания изменяется, но топливный компьютер может довольно легко это компенсировать. С моими схемами IPE можно решить, какие расширение импульса, которое наилучшим образом соответствует линейности форсунки, через один или два потенциометры. Хотя, импульсную линейность тоже можно изменить, но следует обычно держатся как можно выше.

На этом изображении показано нечто среднее между обычной многоточечной системой и последовательной система. Один канал — это два канала — два многоточечных канала… или вы можете также рассматривайте это как разделение на группы. Двигатель V8 может иметь такую ​​конфигурацию, в котором два водителя используют одну половину форсунок.

Однако это изображение не показывает принцип для V8.


РАЗЛИЧНЫЕ СИСТЕМЫ ВПРЫСКА ТОПЛИВА

Одноточечный впрыск или впрыск дроссельной заслонки (TBI)

Самый ранний и простой тип впрыска топлива, одноточечный, просто заменяет карбюратор с одной или двумя форсунками в корпусе дроссельной заслонки, который горловина впускного коллектора двигателя.Для некоторых автопроизводителей одноточечный инъекция была ступенькой к более сложной многоточечной системе. Хотя не такой же точный, как и последующие системы, TBI измеряет топливо лучше, чем карбюраторные, они дешевле и проще в обслуживании.


Канальный или многоточечный впрыск топлива (MPFI)

Многоточечный впрыск топлива предусматривает отдельную форсунку для каждого цилиндра, прямо за входным портом, поэтому систему иногда называют портовой инъекция.Стрельба паров топлива так близко к впускному отверстию почти гарантирует что он будет полностью втянут в цилиндр. Главное преимущество в том, что MPFI измеряет топливо более точно, чем конструкции TBI, что позволяет лучше достичь желаемого уровня воздуха / топлива соотношение и улучшение всех связанных аспектов. Кроме того, это практически исключает возможность это топливо будет конденсироваться или собираться во впускном коллекторе. С TBI и карбюраторами, впускной коллектор должен быть спроектирован так, чтобы отводить тепло от двигателя, чтобы испарить жидкое топливо.В этом нет необходимости для двигателей, оснащенных MPFI, поэтому Впускной коллектор может быть выполнен из более легкого материала, даже из пластика. Инкрементальный Результатом является улучшение экономии топлива. Также там, где обычные металлические впускные коллекторы должны быть расположены наверху двигателя для отвода тепла, те, что используются в MPFI, могут быть размещены более креативно, предоставляя инженерам гибкость при проектировании.


Последовательный впрыск топлива (SFI)

Последовательный впрыск топлива, также называемый последовательным впрыском топлива в порт (SPFI) или синхронизированный впрыск — это тип многопортового впрыска.Хотя в базовом MPFI используются несколько форсунок, все они распыляют топливо одновременно или группами. Как результат, топливо может «зависать» над портом до 150 миллисекунд, когда двигатель работает на холостом ходу. Это может показаться не таким уж большим, но этого недостатка достаточно, чтобы инженеры Решение этой проблемы: Последовательный впрыск топлива запускает каждую форсунку независимо. По времени, как свечи зажигания, они распыляют топливо непосредственно перед забором или по мере его поступления. клапан открывается.Это кажется незначительным шагом, но эффективность и выбросы улучшаются. в очень малых дозах.


Прямой впрыск

Прямой впрыск продвигает концепцию впрыска топлива настолько далеко, насколько это возможно, впрыскивая топливо прямо в камеры сгорания, мимо клапанов. Чаще встречается в дизельном топливе двигателей, непосредственный впрыск начинает появляться в конструкциях бензиновых двигателей и в наши дни широко распространены, иногда их называют DIG для бензина с непосредственным впрыском.Опять же, дозирование топлива даже более точное, чем в других схемах впрыска, а прямой впрыск дает инженерам еще одну возможность точно влиять на как происходит горение в цилиндрах. Наука о конструкции двигателя внимательно изучает как топливно-воздушная смесь вращается в цилиндрах и как распространяется взрыв от точки возгорания. Такие вещи, как форма цилиндров и поршней; порт и расположение свечей зажигания; время, продолжительность и интенсивность искры; и количество искр свечи на цилиндр (возможно несколько) влияют на равномерность и полноту топлива. воспламенения в бензиновом двигателе.Прямая инъекция — еще один инструмент в этой дисциплине, который может использоваться в двигателях, работающих на обедненной смеси с низким уровнем выбросов.


Источник: Cars.com

Функция впрыска дизельного топлива

Система впрыска топлива лежит в основе дизельного двигателя. Сжимая и впрыскивая топливо, система нагнетает его в воздух, который был сжат до высокого давления в камере сгорания.

В состав системы впрыска дизельного топлива входят:

  • ТНВД — нагнетает топливо до высокого давления
  • Трубка высокого давления — подает топливо в форсунку
  • форсунка — впрыскивает топливо в цилиндр
  • подкачивающий насос — всасывает топливо из топливного бака
  • фильтр топливный — фильтрует топливо

Некоторые типы топливных баков также имеют топливный отстойник на дне фильтра для отделения воды от топлива.

Функции системы

Система впрыска дизельного топлива выполняет четыре основные функции:

Подача топлива

Элементы насоса, такие как цилиндр и плунжер, встроены в корпус насоса высокого давления. Топливо сжимается до высокого давления, когда кулачок поднимает плунжер, а затем направляется к форсунке.

Регулировка количества топлива

В дизельных двигателях поступление воздуха практически постоянно, независимо от частоты вращения и нагрузки.Если количество впрыска изменяется в зависимости от частоты вращения двигателя и время впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.

Регулировка момента впрыска

Задержка зажигания — это период времени между моментом впрыска, воспламенения и сгорания топлива и достижением максимального давления сгорания. Поскольку этот период времени практически постоянен, независимо от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, позволяющий достичь оптимального сгорания.

Распылительное топливо

Когда топливо нагнетается впрыскивающим насосом и затем распыляется из форсунки, оно полностью смешивается с воздухом, улучшая тем самым воспламенение. Результат — полное сгорание.

Принцип работы дизельного топливного насоса

Топливный насос высокого давления бывает трех типов: рядный, распределительный и монококовый. Независимо от того, что это за продукция, самая важная часть — это насос.Количество, давление и время работы топливного насоса должны быть очень точными и автоматически регулироваться в зависимости от нагрузки. Топливный насос высокого давления — это разновидность деталей, требующих тонкого и сложного производственного процесса. В настоящее время топливные насосы для дизельных двигателей общего назначения в стране и за рубежом производятся на нескольких профессиональных заводах в мире.

Принцип работы

Ознакомиться с принципом работы насосов с корпусом рядного ТНВД.

Источник питания необходим при работе ТНВД.Кулачковые диски в нижних частях насосов приводятся в движение шестернями коленчатого вала двигателей.

Плунжер — ключевой компонент топливного насоса высокого давления. Если использовать метафору медицинских инжекторов, то съемная заглушка похожа на поршень, а цилиндр можно назвать втулкой поршня. Соберите пружину внутри цилиндра с одной стороны плунжера, поэтому другая сторона будет касаться распредвала. Плунжеры будут перемещаться вверх и вниз внутри плунжерных втулок каждый раз, когда распределительные валы поворачиваются на один оборот.Это основное движение плунжера топливного насоса высокого давления.

Плунжеры и втулки плунжера — очень точные детали. На корпусе плунжера имеется наклонный паз, а на втулке плунжера — присос. Всасывающий патрубок заполнен дизельным топливом. Дизельное топливо поступает в плунжерную втулку, когда наклонный паз плунжера находится на всасывании. Таким образом, распределительный вал толкает плунжер выше. Когда он достигнет определенной высоты, наклонная прорезь отклонится от всасывания, и последняя закроется.В этой ситуации дизельное топливо больше не может двигаться, пока плунжер поднимается выше и сжимает дизельное топливо. Когда давление топлива достигает определенного диапазона, открывается односторонний клапан. Таким образом, топливо будет проходить через форсунку для впрыска топлива и попадать в камеру сгорания цилиндра.

Следует отметить, что все дизельные двигатели оснащены впускными и обратными маслопроводами. Понять функцию впускного патрубка несложно, но как насчет возвратного маслопровода? Это связано с тем, что в цилиндр поступает только часть дизельного топлива, несмотря на то, что некоторое количество дизельного топлива выгружается плунжерами.Остаток сливается через отверстие для возврата масла. Более того, двигатель регулирует количество впрыскиваемого топлива путем регулирования количества сливаемого топлива.

Плунжер переместится вниз после достижения самой верхней точки. Затем наклонная прорезь снова встретится со всасывающим патрубком и дизельное топливо будет всасываться в плунжерную втулку. Начинается новый цикл. Каждая плунжерная система рядного ТНВД соответствует одному цилиндру. В рядном ТНВД имеется четыре цилиндра, для которых требуется всего четырехплунжерная система.Это позволяет предлагать товары большого размера. Обычно они используются в автомобилях среднего или большего размера. Например, в дизельных двигателях автобусов и грузовиков обычно используются рядные ТНВД.

Топливные насосы, применяемые в дизельных двигателях легковых и легких транспортных средств, в основном распределительного типа. Они отличаются небольшими размерами, малым весом, меньшим количеством компонентов и простой конструкцией. В этом типе насоса используется один или два набора плунжерных систем для сжатия дизельного топлива и его проталкивания в топливные форсунки.

На крыльчатке установлены две группы плунжеров. Плунжеры вращаются вместе с рабочими колесами при приводе от двигателей. Выпуклая часть кулачкового кольца прижимает плунжер и заставляет его играть роль насоса для подачи дизельного топлива в масляное отверстие в середине рабочего колеса. В это время дизельное топливо остается на входах распределителей и последовательно распыляется.

Поскольку обороты двух групп плунжерной системы (или одной группы плунжерной системы) пропорциональны увеличению количества цилиндров, ТНВД ограничивается количеством цилиндров и максимальной скоростью вращения.

С развитием технологии дизельных двигателей, теперь они популярны с одним из видов топливных насосов мономерного типа (называемых мономерными насосами или соплами насоса). Фактически, он объединяет вышеупомянутые два типа ТНВД в один тип. Впрыск топлива в каждый цилиндр завершается их соответствующим независимым узлом впрыска (мономерный насос или сопло насоса).

Как работают автомобили, работающие на природном газе?

Транспортные средства, работающие на сжатом природном газе (КПГ), работают во многом как автомобили с бензиновым двигателем и двигателями внутреннего сгорания с искровым зажиганием.Двигатель работает так же, как бензиновый двигатель. Природный газ хранится в топливном баке или цилиндре, обычно в задней части автомобиля. Топливная система КПГ передает газ под высоким давлением из топливного бака по топливопроводам, где регулятор давления снижает давление до уровня, совместимого с системой впрыска топлива двигателя. Наконец, топливо вводится во впускной коллектор или камеру сгорания, где оно смешивается с воздухом, а затем сжимается и воспламеняется свечой зажигания.Узнайте больше о транспортных средствах, работающих на природном газе.

Изображение в высоком разрешении

Ключевые компоненты автомобиля, работающего на природном газе

Батарея: Батарея обеспечивает электричеством для запуска двигателя и электроники / аксессуаров силового транспортного средства.

Электронный блок управления (ЕСМ): ЕСМ управляет топливной смесью, опережением зажигания и системой выбросов; следит за работой автомобиля; предохраняет двигатель от злоупотреблений; а также обнаруживает и устраняет проблемы.

Выхлопная система: Выхлопная система направляет выхлопные газы из двигателя через выхлопную трубу. Трехкомпонентный катализатор предназначен для уменьшения выбросов выхлопной системы при выходе из двигателя.

Заливная горловина: Форсунка топливораздаточной колонки присоединяется к резервуару на транспортном средстве для заправки топливного бака.

Система впрыска топлива: Эта система подает топливо в камеры сгорания двигателя для воспламенения.

Топливопровод: Металлическая трубка или гибкий шланг (или их комбинация) подает топливо из бака в систему впрыска топлива двигателя.

Топливный бак (сжатый природный газ): Хранит сжатый природный газ на борту транспортного средства до тех пор, пока он не понадобится двигателю.

Регулятор высокого давления: Снижает и регулирует давление топлива на выходе из бака, понижая его до приемлемого уровня, требуемого системой впрыска топлива двигателя.

Двигатель внутреннего сгорания (с искровым зажиганием): В этой конфигурации топливо впрыскивается либо во впускной коллектор, либо в камеру сгорания, где оно смешивается с воздухом, а топливно-воздушная смесь воспламеняется искрой от свечи зажигания. .

Ручное отключение: Позволяет оператору транспортного средства или механику вручную отключить подачу топлива.

Топливный фильтр для природного газа: Улавливает загрязнения и другие побочные продукты, предотвращая их засорение критически важных компонентов топливной системы, таких как топливные форсунки.

Трансмиссия: Трансмиссия передает механическую мощность от двигателя и / или электрического тягового двигателя для привода колес.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *