ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Принцип работы системы газораспределения двигателя внутреннего сгорания (ГРМ)

Система ГРМ служит для обеспечения своевременного открытия или закрытия клапанов головки блока цилиндров.

При открытии впускного клапана в камеру сгорания двигателя поступает топливно-воздушная смесь, которая воспламеняется при сжатии поршня. При открытии выпускного клапана из камеры сгорания выходят отработанные газы.

 

Вовремя открывать необходимые клапана и предназначен весь газораспределительный механизм. В механизм ГРМ можно отнести: распредвал, клапана (впускные, выпускные), приводной ремень или цепь, натяжители, направляюшие, успокоители, шестерни и т.д.

Распределительный вал (он же распредвал) представляет собой металлический вал с кулачками разной формы, который при вращение нажимает кулачками на клапана,  тем самым открывая или закрывая их.

Распредвал приводится в действие от вращения коленчатого вала (коленвала) посредством привода. Распределительный вал вращается со скоростью в два раза меньшей, чем коленчатый вал.

 В современных двигателях используются ременные или цепные приводные механизмы. Все они обеспечивают передачу крутящего момента от коленвала к распределительному валу. Каждый из перечисленных приводов ГРМ имеют свои положительные и отрицательные качества.

Ременный привод менее долговечный, но более дешев в обслуживании и установки. В среднем срок службы оригинального ремня или качественного не оригинального ремня около 80 000 км. пробега. И как правило не возникает особых трудностей заменить “уставший” ремень на новый.

Цепной привод ГРМ гораздо долговечнее, в среднем срок службы цепи около 200 000 км. (у разных производителей данные рознятся, некоторые говорят от 300 тыс.км, а некоторые рекомендует менять уже на пробеге в 150 тыс.км). Не редки случаи, когда цепные системы газораспределения “переживают” другие детали двигателя, такие как поршня, вкладыши, гильзы. И при разборе “стукнувшего” мотора можно увидеть цепи и шестерни в отличном состоянии и при пробеге за 250 тыс. км. Но в связи с более высоким весом цепи по сравнению с ремнем, требуются дополнительные устройства натяжения (успокоительные, натяжители, балансиры, башмаки, направляющие и т.д.) и смазки. Как следствие замена цепи представляет собой достаточно дорогостоящее занятие

Как определить, что пора поменять привод ГРМ?

У ремня все просто! Желательно осматривать (при возможности) ремень  на наличие трещин в процессе эксплуатации и менять его согласно нормативным срокам замены! При замене ремня ГРМ желательно сразу поменять ролики и водяную помпу на новые.

В интернет-магазине запчастей на иномарки Arparts.ru вы найдете широкий ассортимент комплектов для замены ремней ГРМ с роликами и помпами!

С цепью все немного сложнее

Ремкомплекты цепей ГРМ представленные в интернет-магазине автозапчастей ARparts.ru

Устройство, Принцип Работы и Назначении, Основные Неисправности, Способы Диагностики и Ремонта

Основой любых силовых агрегатов и главной составляющей двигателей внутреннего сгорания является сложный газораспределительный механизм (ГРМ). Назначение газораспределительного механизма состоит в управлении впускными и выпускными клапанами двигателя. На такте впуска он открывает впускной клапан, смесь, состоящая из воздуха и топлива или воздуха (для дизельных двигателей), попадает в камеру сгорания. На такте выпуска — открытием выпускного клапана из камеры сгорания ГРМ удаляет отработанные газы.

Устройство газораспределительного механизма

Газораспределительный механизм состоит из следующих элементов:

  1. Распределительный вал — изготовляется из чугуна или стали — в задачу которого входит открывание/закрывание клапанов газораспределительного механизма при работе цилиндров. Он монтируется в картере, который перекрывает крышка газораспределительного механизма, или в головке блока цилиндра. При вращении вала на цилиндрических шейках происходит воздействие на клапан. На него воздействуют кулачки, расположенные на распределительном валу. На каждый клапан воздействует свой кулачек.
  2. Толкатели, изготовленные также из чугуна или стали. В их задачу входит передача усилия от кулачков на клапаны.
  3. Клапаны впускные и выпускные. В их задачу входит подача топливно-воздушное смеси в камеру сгорания и удаления отработочных газов. Клапан представляет из себя стержень с плоской головкой. Основным отличием впускных и выпускных клапанов является диаметр головки. Впускной состоит из стали с хромированным покрытием, а выпускной — из жаропрочной стали. Клапанный стержень изготавливается в виде цилиндра с канавкой, необходимой для фиксирования пружины. Клапана двигаются только по направлению ко втулкам. Чтоб масло не попадало в камеру сгорания цилиндра, производят установку уплотнительного колпачка. Его изготавливают из маслостойкой резины. На каждый клапан крепятся внутренняя и наружная пружина, для крепления используют шайбы, тарелки.
  4. Штанги. Они необходимы для передачи усилия от толкателей к коромыслу.
  5. Привод газораспределительного механизма. Он передает вращение коленвала на распредвал и тем самым приводит его в движения, причем движется он со скоростью в 2 раза меньше, чем скорость коленвала. На 2 вращения коленвала распредвал делает 1 вращение — это и называется рабочим циклом, при котором происходит 1 открытие клапанов.

Схема устройства ГРМ

Таково устройство ГРМ и общая схема газораспределительного механизма. Теперь следует разобраться, каков принцип работы газораспределительного механизма.

Работа газораспределительного механизма

Работа системы газораспределения поделена на четыре фазы:

  1. Впрыск топлива в камеру сгорания цилиндра.
  2. Сжатие.
  3. Рабочий ход.
  4. Удаления газов из камеры сгорания цилиндра.

Рассмотрим подробнее принцип действия газораспределительного механизма.

  1. Подача топлива в камеру сгорания цилиндра происходит за счет движения коленвала, который передает свое усилие на поршень и он начинает движения из так называемой ВМТ (это точка, выше которой поршень не поднимается) в НМТ (это точка, соответственно, ниже которой поршень не опускается). При этом движении поршня одновременно открывается впускной клапан и топливно-воздушная смесь заполняет камеру сгорания цилиндра. Впрыснув положенное количество топливно-воздушной смеси клапан закрывается. При этом коленвал поворачивается на 180 градусов от своего начального положения.
  2. Сжатие. Дойдя до НМТ поршень продолжает свое движение. Меняя свое направление в ВМТ, в этот момент в цилиндре и происходит сжатие топливно-воздушной смеси. При подходе поршня к высшей точке фаза сжатия заканчивается. Коленчатый вал продолжает свое движения и поворачивается на 360 градусов. И на этом фаза сжатия закончена.
  3. Рабочий ход. Воздушно-топливная смесь воспламеняется свечей зажигания, когда поршень находится в высшей точке цилиндра. При этом достигается максимальный момент сжатия. Затем поршень начинает двигаться к нижней точке цилиндра, так как на поршень оказывают огромное давление газы, образовавшиеся при горении воздушно-топливной смеси. Это движение и есть рабочий ход. При опускании поршня до НМТ фаза рабочего хода считается завершенной.
  4. Удаления газов из камеры сгорания цилиндра. Поршень движется к высшей точке цилиндра, все это происходит при усилии, которое оказывает коленчатый вал газораспределительного механизма двигателя. При этом открывается выпускной клапан и поршень начинает избавлять камеру сгорания цилиндра от газов, которые образовались после сгорания топливно-воздушной смеси в камере сгорания цилиндра. После достижения высшей точки и освобождения ее от газов. Поршень начинает свое движение в низ. Когда поршень доходит да НМТ, то рабочая фаза удаления газов из камеры сгорания цилиндра считается законченной, а коленчатый вал совершает оборот на 720 градусов от своего начального положения.

Для точной работы клапанов газораспределительной системы происходит синхронизация с работой коленчатого вала двигателя.

Неисправности ГРМ

Основные неисправности газораспределительного механизма:

  • Уменьшение компрессии и хлопки в трубопроводах. Как правило, происходит после появления нагара, раковин на поверхности клапана, их прогорания, причиной чего является не плотное прилегания впускных и выпускных клапанов к седлам. Также оказывают влияние такие факторы, как деформации ГБЦ, поломка или износ пружин, заедание клапанного стержня во втулке, полное отсутствие промежутка между коромыслом и клапанами.
  • Уменьшение мощности, троение мотора, а также металлические стуки. Появляются эти признаки, потому что впускные и выпускные клапана не полностью открываются, и часть воздушно-топливной смеси не попадает в камеру сгорания цилиндра. Следствием этого является большой тепловой зазор или поломка гидрокомпенсатора, что и становится причиной неполадки и не штатной работы клапанов.
  • Механический износ деталей, таких как: направляющих втулок коленвала, шестерни распредвала, а также смещение распредвала. Механический износ деталей, как правило, происходи при достаточном сроке работы мотора и работы двигателя в критических пределах.
  • Так же происходит выход из строя двигателя по причине износа зубчатого ремня, который имеет свой гарантийный срок службы, цепи, которая при длительном сроке работы и постоянном на нее воздействии становится менее работоспособной, успокоителя цепи и натяжителя зубчатого ремня.

В данных случаях не редко заменяют газораспределительный механизм, однако возможен и ремонт поврежденной детали газораспределительного механизма.

Диагностика ГРМ

Газораспределительный механизм имеет 2 свойственные неполадки — неплотное примыкание клапанов к гнездам и невозможность полностью открыть клапаны.

Неплотное примыкание клапанов к гнездам обнаруживается по таким показателям: хлопки, возникающие иногда во впускной либо выпускной трубе, уменьшение мощности мотора. Факторами неплотного закрытия клапанов могут быть:

  • возникновение нагара на поверхности клапанов и гнезд;
  • формирование раковин на рабочих фасках и искривление головки клапана;
  • неисправность пружин клапанов.

Неполное открытие клапанов сопровождается стуком в троящем моторе и уменьшением его мощности. Данная поломка возникает в следствии значительного промежутка меж стержнем клапана и носком коромысла. К характерным поломкам для ГРМ нужно причислить кроме того изнашивание шестерен распредвала, толкателей, направляющих клапана, смещение распредвала и изнашивание втулок и осей коромысел.

Практика демонстрирует, что на газораспределительный механизм приходится примерно четвертая часть всех отказов мотора, а уже на предотвращение этих отказов и восстановление ГРМ уходит 50% трудоёмкости обслуживания и ремонтных работ. Для диагностирования поломок применяют следующие параметры:

  1. определяют фазы газораспределительного механизма автомобиля;
  2. измеряют тепловой зазор между клапаном и коромыслом;
  3. измеряют промежуток между клапаном и седлом.

Измерение фаз газораспределения

Подобное диагностирование ГРМ двигателя выполняется на заглушенном моторе с помощью особого набора устройств, среди которых имеются указатель, моментоскоп, малка-угломер и прочие дополнительные приборы. Для того, чтобы фиксировать период раскрытия впускного клапана на 1-ом цилиндре, необходимо покачивать вокруг своей оси коромысло, а далее направить коленвал мотора до момента появления зазора меж клапаном и коромыслом. Малка-угломер для замера разыскиваемого зазора ставится прямо на шкив коленвала.

Измерение теплового промежутка между клапаном и коромыслом

Тепловой зазор измеряют при помощи набора щупов либо иного особого устройства. Это набор из металлических пластинок длиной в 100мм, толщина которых обязана быть не больше 0,5мм. Коленвал мотора поворачивают вплоть до верхней предельной точки, в период такта сжатия подобранного для контроля цилиндра. Непосредственно благодаря щупам разной толщины, поочередно вставляемым в сформировавшееся отверстие, и измеряется зазор.

Данный метод не может дать результата при диагностировании ГРМ, когда неравномерен износ торца штока и бойка коромысла, а трудоемкость этого метода весьма значительная. Увеличить точность замеров позволяет особое устройство, которое состоит из корпуса и индикатора по типу часов. Подпружиненная подвижная рама содержит персональное соединение с ножкой этого индикатора. Раму фиксируют между коромыслом и клапанной пружиной. Когда открывается клапан, в период поворота коленвала, на индикаторе ставят 0. Распознает тепловой зазор последующее показание прибора, снимаемое в период поворота коленвала.

Определение промежутка между клапаном и седлом

Его можно оценить по объему воздуха, который будет выходить через уплотнитель перекрытых клапанов. Эта процедура прекрасно объединяется с чисткой форсунок. Когда они уже сняты, убирают валики коромысел и прикрывают все клапаны. Затем в камеру сгорания под большим давлением происходит подача сжатого воздуха. Поочередно на любом из контролируемых клапанов ставят устройство, которое позволяет измерить расход воздуха. Если потеря воздуха превысит разрешенную, выполняется ремонт газораспределительного механизма.

Процесс ремонта ГРМ

Частенько необходимо производить техническое обслуживание газораспределительного механизма. Основной проблемой являются износ шеек, кулачков вала и увеличение зазоров в подшипниках. Для того, чтобы устранить зазор в подшипниках коленчатого вала, производят его ремонт путем шлифовки опорных шеек и углубления канавок для подачи масла. Шейки нужно отшлифовать под ремонтный размер. После завершения ремонтных работ по восстановлению коленвала, нужно произвести проверку высоты кулачков.

На опорных поверхностях под шейки коленвала не должно быть никаких даже самых незначительных повреждений, а корпуса подшипников обязаны быть без трещин. После чистки и промывки распредвала обязательно нужно проверить зазор между его шейками и отверстием опоры головки цилиндра.

Для определения точного зазора требуется знать диаметр шейки распредвала, это позволит произвести установку соответствующего ей подшипника. Установив его на корпус, замерьте внутренний диаметр подшипника, затем отнимите его от диаметра шейки и таким образом найдете величину зазора. Он не может превышать 0,2мм.

Цепь не должна иметь никаких механических повреждений, быть растянутой более чем на 4мм. Цепь газораспределительного механизма можно регулировать: отверните стопорный болт на пол оборота, поверните коленвал на 2 оборота, затем стопорный болт нужно повернуть до упора.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Устройство ГРМ и принцип работы

Автор admin На чтение 7 мин. Просмотров 1.5k.

Устройство ГРМ

Четырехтактный двигатель внутреннего сгорания – наиболее распространенный силовой агрегат, использующийся в современном автомобилестроении. Свое название он получил по количеству фаз, необходимых для осуществления одного цикла работы, или поворота коленчатого вала на 720 градусов.

Фаза впрыска топлива или топливно-воздушной смеси, сжатие рабочего тела поршнем, рабочий ход и выпуск отработанных газов. В модели идеального двигателя все фазы разнесены во времени, перекрытие между ними отсутствует, что, в свою очередь, обеспечивает получение максимально возможных рабочих значений мощности, крутящего момента и оборотов двигателя.

На практике, к сожалению, дела обстоят несколько хуже. Устройство газораспределительного механизма, отвечающего за исполнение фазы впрыска топлива и удаление выхлопных газов, его схема и принцип работы – основная тема данной статьи.

Общая схема и взаимодействие частей

Своевременное открытие впускных и выхлопных клапанов в цилиндрах двигателя внутреннего сгорания обеспечивается работой газораспределительного механизма или ГРМ.

Данное устройство состоит из распределительного вала с кулачками, необходимого количества коромысел или толкателей клапанов, пружин и собственно клапанов. Шестерня распредвала, ремень или цепь, используемые для передачи вращения от коленвала, и механизм натяжения цепи так же являются частью ГРМ.

  1. Фаза впрыска топлива. Поршень начинает движение от верхней мертвой точки к нижней. Открывается клапан подачи горючего, и топливно-воздушная смесь заполняет разреженное пространство цилиндра. Отмерив необходимую дозу ТВС, клапан закрывается. Коленчатый вал повернулся на 180 градусов от начального положения.
  2. Фаза сжатия. Достигнув нижней мертвой точки, поршень меняет направление движения к ВМТ, осуществляя сжатие топливно-воздушной смеси. При достижении верхней мертвой точки фаза сжатия рабочего тела оканчивается. Коленчатый вал совершил поворот на 360 градусов.
  3. Фаза рабочего хода. В момент нахождения поршня в ВМТ и достижения максимальной расчетной степени сжатия, происходит воспламенение топливно-воздушной смеси. Под действием стремительно расширяющихся газов поршень движется к нижней мертвой точке, совершая рабочий ход. При достижении НМТ третья фаза работы четырехтактного двигателя внутреннего сгорания считается оконченной. Коленчатый вал совершил поворот 540 градусов.
  4. Фаза удаления отработанных газов. Под действием коленчатого вала поршень начинает движение к верхней мертвой точке, вытесняя из объема цилиндра продукты сгорания топливно-воздушной смеси через открывшийся выхлопной клапан. По достижении поршнем ВМТ, фаза выхлопа считается завершенной, коленчатый вал совершил оборот на 720 градусов.

Для достижения такой точности по времени открытия впускных и выхлопных клапанов, газораспределительный механизм синхронизирован с оборотами коленчатого вала двигателя. Ремень или цепь передает вращение распределительному валу, кулачки которого, нажимая на коромысла, открывают поочередно впускные и выпускные клапаны ГРМ.

Классификация ГРМ

Нижнеклапанные двигатели

Газораспределительный механизм двигателя внутреннего сгорания прошел долгий путь от 1900-х годов до наших дней.

Нижнеклапанные двигатели с распредвалом в блоке цилиндров, использовались повсеместно, вплоть до середины двадцатого века. Схема и устройство впускных и выпускных клапанов, расположенных в ряд тарелками вверх, обеспечивала простоту изготовления и малошумность двигателя. Основным минусом подобной конструкции был сложный путь топливно-воздушной смеси, неоптимальный режим наполнения цилиндров, и, как следствие, меньшая мощность силового агрегата.

Газораспределительный механизм такого вида использовался вплоть до 90-х годов двадцатого столетия в грузовых автомобилях. Пример тому – ГАЗ 52, выпуск которого закончился в 1991 году.

Смешанное расположение клапанов

Попытки повысить мощностные характеристики ДВС привели к созданию двигателя со смешанным расположением клапанов. Впускные находились в головке блока цилиндров, а выпускные – в блоке, как у обычного «нижнеклапанника».

Распределительный вал один, так же расположенный в блоке цилиндров. Клапана, отвечающие за впуск топливно-воздушной смеси управлялись посредством штанг – толкателей, через которые передавалось усилие с распредвала, выхлопные – с помощью привычного коромысла.

Такая компоновочная схема обеспечивала более низкую температуру ТВС, и, как следствие, более высокую мощность, по сравнению с нижнеклапанными двигателями внутреннего сгорания.

Верхнеклапанные двигатели

Газораспределительный механизм, клапаны впускной и выхлопной системы которого находятся в головке блока цилиндров, а распредвал – в самом блоке, был сконструирован Дэвидом Бьюиком в самом начале двадцатого столетия. Управление клапанами осуществлялось посредством штанг – толкателей, воздействовавших на коромысла.

Подобная компоновочная схема обладает высокой надежностью, за счет передачи вращения от коленчатого вала к распределительному, с помощью шестерни. Зубчатый ремень, изношенный в процессе эксплуатации, может оборваться, нанеся серьезные повреждения клапанному механизму ГРМ, изношенная же передаточная шестерня лишь немного сдвинет фазы газораспределения, что опытный водитель заметит по изменениям в работе двигателя.

Минусом является некоторая инерционность подобной конструкции, что накладывает ограничения на обороты двигателя, а, следовательно, на крутящий момент и степень форсирования. Использование более чем двух клапанов на цилиндр приводит к усложнению газораспределительного механизма и увеличению габаритных размеров двигателя. Четырехклапанные двигатели такой компоновки используются в грузовых автомобилях КамАЗ, дизельных тепловозных двигателях.

Газораспределительный механизм автомобиля «Волга» двадцать первой модели был устроен именно по верхнеклапанной схеме.

  • Двигатели, в которых распредвал и клапаны газораспределительного механизма располагаются в головке блока цилиндров, обозначаются аббревиатурой SOHC. Принцип действия и устройство механизма управления клапанами ГРМ отличается большим разнообразием. Существует схема открытия клапанов при помощи коромысел, рычагов и толкателей. Наибольшее распространение подобное устройство двигателей получило в период с середины 60-х до конца 80-х годов двадцатого столетия. В данный момент такие двигатели устанавливаются на недорогие легковые автомобили.
  • Двигатели, газораспределительный механизм которых включает в себя два распредвала, обозначается аббревиатурой DOHC. При использовании двух клапанов на цилиндр, каждый распределительный вал открывает свой ряд клапанов. Такое устройство ГРМ позволяет уменьшить инерцию коленчатого вала, и тем самым значительно увеличивает обороты и мощность ДВС. Принцип работы двигателя, использующего четыре и более клапана на цилиндр, ничем не отличается от вышеописанного. Подобные силовые агрегаты демонстрируют большую, чем у двухклапанных аналогов, мощность и устанавливаются на большинство современных автомобилей.


В двигателях с подобным типом газораспределительного механизма важную роль играет устройство привода распредвалов. В качестве передаточного элемента используется цепь, находящаяся в герметично закрытом объеме, и омывающаяся маслом, или зубчатый ремень, находящийся на внешней стороне двигателя.

Поломка привода ГРМ зачастую приводит к печальным последствиям. Оборвавшийся ремень, износившийся в процессе эксплуатации, вызывает мгновенную остановку распределительного вала, вследствие чего некоторые клапаны остаются в открытом состоянии. Удар поршня по выступающей тарелке наносит серьезные повреждения головке блока цилиндров. В особо тяжелых случаях ремонт невозможен и требуется замена данного элемента двигателя.

Устройство десмодромного газораспределительного механизма

Для двигателей, конструкция ГРМ которых допускает использование пружин для закрывания клапанов, существует ограничение по максимальному количеству оборотов в минуту. При достижении значения в 9000 об/мин пружины не смогут обеспечить нужную скорость срабатывания, что неизбежно приведет к поломке двигателя.

Принцип десмодромного ГРМ заключается в использовании двух распределительных валов, один из которых производит открытие, а второй, закрытие клапанов. В таком двигателе нет ограничения на развиваемые обороты, ведь скорость срабатывания механизма напрямую зависит от скорости вращения коленвала.

Создание газораспределительного механизма с изменяемыми фазами стало возможным относительно недавно, с началом использования в двигателестроении бортовых компьютеров и электронных управляющих блоков. Система электромагнитных клапанов, меняющая режим работы согласно команд микропроцессора, позволяет снимать с двигателя мощность, приближающуюся к расчетной, при минимальном расходе топлива.

Замена ремня ГРМ своими руками

Снимая изношенный ремень, и устанавливая на его место новый, легко изменить взаимное расположение коленчатого и распределительного валов. В этом случае сместятся фазы газораспределения двигателя, что приведет к нарушениям в работе, вплоть до поломки. Метки на шестернях приводного механизма служат для визуального контроля настройки ГРМ.


Сняв непригодный ремень, необходимо совместить метки шестерней коленчатого и распределительного валов с прорезями в кожухе приводного механизма. Назначение этой операции – установка условного «нуля», с которого и начнется работа двигателя. Далее следует аккуратно установить запасной ремень, стараясь не сместить метки на шестернях.

Следующий шаг – осмотр и регулировка усилия натяжного ролика. Назначение этого узла в удержании ремня на шестернях приводного механизма. Правильность регулировки ролика можно проверить, повернув натянутый ремень пальцами. Если удастся провернуть на девяносто градусов – натяжной механизм отрегулирован хорошо. Если ремень повернется на угол меньший, чем 90 градусов, то он перетянут, если на больший, то недотянут.


Очень важно при монтаже не брать ремень ГРМ промасленными руками. Это может привести к проскакиванию на шестернях приводного механизма.

Купленный на придорожной АЗС ремень следует тщательно осмотреть. При нарушении условий хранения, даже новый ремень привода ГРМ пойдет трещинами и не сможет быть использован по назначению.

Видео, иллюстрирующее работу ГРМ

Мне нравится3Не нравится
Что еще стоит почитать

Газораспределительный механизм (ГРМ) — назначение, конструкция и устройство, принцип работы, типы газораспределительных механизмов

Назначение и характеристика

Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.

Газораспределительный механизм (ГРМ) служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним расположением клапанов. Верхнее расположение клапанов позволяет увеличить степень сжатия двигателя, улучшить наполнение цилиндров горючей смесью или воздухом и упростить техническое обслуживание двигателя в эксплуатации. Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1), что зависит от компоновки двигателя и, главным образом, от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.

Рисунок 1 – Типы газораспределительных механизмов, классифицированных по различным признакам

При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны. Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или рычаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.

Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы про большой частоте вращения коленчатого вала двигателя.

Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.

При нижнем расположении распределительный вал устанавливается в блоке цилиндров рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала. При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма. Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр зависят от типа двигателя. Так, при большем числе впускных и выпускных клапанов обеспечивается лучшие наполнение цилиндров горючей смесью и их очистка от отработавших газов. В результате двигатель может развивать большие мощность и крутящий момент. При нечетном числе клапанов на цилиндр число впускных клапанов на один клапан больше, чем выпускных.

Конструкция и работа газораспределительного механизма

Газораспределительные механизмы независимо от расположения распределительных валов в двигателе включают в себя клапанную группу, передаточные детали и распределительные валы с приводом.

В клапанную группу входят впускные и выпускные клапаны, направляющие втулки клапанов и пружины клапанов с деталями крепления.

Передаточными деталями являются толкатели, направляющие втулки толкателей, штанги толкателей, коромысла, ось коромысел, рычаги привода клапанов, регулировочные шайбы и регулировочные болты. Однако при верхнем расположении распределительного вала толкатели, направляющие втулки и штанги толкателей, коромысла и ось коромысел обычно отсутствуют.

На рисунке 2 представлен газораспределительный механизм двигателя с верхним расположением клапанов, с верхним расположением распределительного вала с цепным приводом и с двумя клапанами на цилиндр. Он состоит из распределительного вала 14 с корпусом 13 подшипников, привода распределительного вала, рычагов 11 привода клапанов, опорных регулировочных болтов 18 клапанов 1 и 22, направляющих втулок 4, пружин 7 и 8 клапанов с деталями крепления.

Рисунок 2 – Газораспределительный механизм легкового автомобиля с цепным приводом

1, 22 – клапаны; 2 – головка; 3 – стержень; 4, 20 – втулки; 5 – колпачок; 6 – шайбы; 7, 8, 17 – пружины; 9 – тарелка; 10 – сухарь; 11 – рычаг; 12 – фланец; 13 – корпус; 14 – распределительный вал; 15 – шейка; 16 – кулачок; 18 – болт; 19 – гайка; 21 – пластина; 23 – кольцо; 24, 27, 28 – звездочки; 25 – цепь; 26 – успокоитель; 29 – палец; 30 – башмак; 31 – натяжное устройство

Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Распределительный вал – пятиопорный, отлит из чугуна. Он имеет опорные шейки 15 и кулачки 16 (впускные и выпускные). Внутри вала проходит канал, через который подводится масло от средней опорной шейки к другим шейкам и кулачкам. К переднему торцу вала крепится ведомая звездочка 24 цепного привода. Вал устанавливается в специальном корпусе 13 подшипников, отлитом из алюминиевого сплава, который закреплен на верхней плоскости головки блока цилиндров. От осевых перемещений распределительный вал фиксируется упорным фланцем 12, который входит в канавку передней опорной шейки вала и прикрепляется к торцу корпуса подшипников.

Привод распределительного вала осуществляется через установленную на нем ведомую звездочку 24 двухрядной роликовой цепью 25 от ведущей звездочки 28 коленчатого вала. Этой цепью также вращается звездочка 27 вала привода масляного насоса. Привод распределительного вала имеет полуавтоматический натяжной механизм, состоящий из башмака и натяжного устройства. Цепь натягивается башмаком 30, на который воздействуют пружины натяжного устройства 31. Для гашения колебаний ведущей ветви цепи служит успокоитель 26. Башмак и успокоитель имеют стальной каркас с привулканизированным слоем резины. Ограничительный палец 29 предотвращает спадание цепи при снятии на автомобиле ведомой звездочки распределительного вала.

Клапаны открывают и закрывают впускные и выпускные каналы. Клапаны установлены в головке блока цилиндров в один ряд под углом к вертикальной оси цилиндров двигателя. Впускной клапан 1 для лучшего наполнения цилиндров горючей смесью имеет головку большего диаметра, чем выпускной клапан. Он изготовлен из специальной хромистой стали, обладающей высокой износостойкостью и теплопроводностью. Выпускной клапан 22 работает в более тяжелых температурных условиях, чем впускной. Он выполнен составным. Его головку делают из жаропрочной хромистой стали, а стержень – из специальной хромистой стали.

Каждый клапан состоит из головки 2 и стержня 3. Головка имеет конусную поверхность (фаску), которой клапан при закрытии плотно прилегает к седлу из специального чугуна, установленному в головке блока цилиндров и имеющему также конусную поверхность.

Стержень клапана перемещается в чугунной направляющей втулке 4, запрессованной и фиксируемой стопорным кольцом 23 в головке блока цилиндров, обеспечивающей точную посадку клапана. На втулку надевается маслоотражательный колпачок 5 из маслостойкой резины. Клапан имеет две цилиндрические пружины: наружную 8 и внутреннюю 7. Пружины крепятся на стержне клапана с помощью шайб 6, тарелки 9 и разрезного сухаря 10. Клапан приводится в действие от кулачка распределительного вала стальным кованным рычагом 11, который опирается одним концом на регулировочный болт 18, а другим – на стержень клапана. Регулировочный болт имеет сферическую головку. Он ввертывается в резьбовую втулку 20, закрепленную в головке блока цилиндров и застопоренную пластиной 21, и фиксируется гайкой 19. Регулировочным болтом устанавливается необходимый зазор между кулачком распределительного вала и рычагом привода клапана, равный 0,15 мм на холодном двигателе и 0,2 мм на горячем двигателе (прогретом до 75…85 °C). Пружина 17 создает постоянный контакт между концом рычага привода и стержнем клапана.

Принцип работы

Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки в соответствии с порядком работы цилиндров двигателя поочередно набегают на рычаги 11. Рычаги, поворачиваясь одним концом на сферических головках регулировочных болтов 18, другим концом воздействуют на стержни клапанов, преодолевают сопротивление пружин 7, 8 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с рычагов, которые возвращаются в исходное положение под действием пружин 17, а клапаны закрываются под действием пружин 7 и 8.

При работе двигателя распределительный вал вращается в два раза медленнее, чем коленчатый вал. Это связано с тем, что за период рабочего цикла двигателя, протекающего за два оборота коленчатого вала, впускной и выпускной клапаны каждого цилиндра должны открываться по одному разу.

Нормальная работа газораспределительного механизма (ГРМ) во многом зависит от теплового зазора между кулачками распределительного вала и рычагами привода клапанов. Этот зазор обеспечивает плотное закрытие клапанов при их удлинении в результате нагрева во время работы. При недостаточном тепловом зазоре или его отсутствии происходит неполное закрытие клапанов, что приводит к утечке газов, быстрому обгоранию фасок головок клапанов и снижению мощности двигателя.

Привод распределительного вала

Особенностью привода распределительного вала (рисунок 3) является применение ременной передачи. Привод распределительного вала осуществляется через установленный на нем зубчатый шкив 4 ремнем 5 от зубчатого шкива 1 коленчатого вала. С помощью этого ремня также вращается зубчатый шкив 8 вала привода масляного насоса.

Рисунок 3 – Ременный привод распределительного вала

1, 4, 8 – шкивы; 2 – болты; 3 – ролик; 5 – ремень; 6 – кронштейн; 7 – пружина

Ремень – зубчатый, изготовлен из резины, армированной стекловолокном. Зубья ремня имеют трапециевидную форму. Ремень натягивается с помощью натяжного ролика 3, закрепленного на кронштейне 6. Натяжение ремня регулируют пружиной 7 на неработающем двигателе при ослабленных болтах 2 крепления кронштейна натяжного ролика. Привод распределительного вала работает без смазки и снаружи закрыт тремя пластмассовыми крышками.

Газораспределительный механизм двигателя, представленный на рисунке 4, состоит из распределительного вала 2 с двумя корпусами 1 подшипников, привода распределительного вала, толкателей 4, регулировочных шайб 3, направляющих втулок 6, клапанов 7, пружин 5 клапанов с деталями крепления.

Рисунок 4 – Газораспределительный механизм (а) с верхним расположением распределительного вала и его привод (б):

1 – корпус; 2 – распределительный вал; 3 – шайба; 4 – толкатель; 5 – пружина; 6 – втулка; 7 – клапан; 8, 9, 11 – шкивы; 10 – ролик; 12 – ремень; 13 – ось

Распределительный вал чугунный, литой, пятиопорный. В задней части вала 2 находится эксцентрик для привода топливного насоса. Корпуса 1 подшипников распределительного вала отлиты из алюминиевого сплава. В них находятся верхние половины опор под шейки распределительного вала: две в переднем корпусе и три в заднем. Толкатели 4 клапанов – стальные, цилиндрические, передают усилия от кулачков распределительного вала на клапаны. В верхней части толкателей имеется гнездо для установки регулировочной шайбы. Регулировочные шайбы 3 – плоские, стальные, толщиной 3,00…4,25 мм с интервалом через каждые 0,05 мм. Подбором толщины этих шайб регулируется тепловой зазор между шайбой и кулачком распределительного вала. Клапаны 7 (впускной, выпускной) отличаются по конструкции и изготовлены из разных сталей. Впускной клапан имеет головку большего диаметра, чем выпускной. Он выполнен из хромоникельмолибденовой стали. Выпускной клапан – составной, сварен из двух частей. Головка клапана изготавливается из жаропрочной хромоникельмарганцовистой стали, а стержень – из хромоникельмолибденовой стали. Направляющие втулки 6 клапанов – чугунные, запрессовываются и фиксируются стопорными кольцами в головке блока цилиндров.

Пружины 5 (наружная, внутренняя) прижимают клапан к седлу и не дают ему отрываться от толкателя. Они также исключают возникновение резонансных колебаний деталей.

Привод распределительного вала производится через установленный на нем зубчатый шкив 11 ремнем 12 от зубчатого шкива 8 коленчатого вала. Этим же ремнем вращается зубчатый шкив 9 насоса охлаждающей жидкости. Ремень – зубчатый, резиновый, армирован стекловолокном. Зубья ремня имеют полукруглую форму. Ремень натягивается роликом 10, который вращается на эксцентриковой оси 13, установленной на шпильке, закрепленной в головке блока цилиндров. При повороте эксцентриковой оси относительно шпильки изменяется натяжение ремня. Привод распределительного вала работает без смазочного материала. Он закрыт двумя крышками – передней пластмассовой и задней стальной.

При вращении распределительного вала его кулачок набегает на шайбу 3 и толкатель 4. Толкатель действует на стержень клапана 7, преодолевает сопротивление пружин 5 и открывает клапан. При дальнейшем повороте кулачок сходит с толкателя, который возвращается в исходное положение под действием пружин 5, закрывающих клапан.

Газораспределительный механизм с нижним расположением распределительного вала

На рисунке 5 показан газораспределительный механизм двигателя с нижним расположением распределительного вала. Газораспределительный механизм верхнеклапанный, с шестеренным приводом и двумя клапанами на цилиндр.

Рисунок 5 – Газораспределительный механизм с нижним расположением распределительного вала

1 – распределительный вал; 2 – клапан; 3, 20 – втулки; 4 – пружина; 5 – коромысло; 6 – ось; 7 – винт; 8 – штанга; 9 – толкатель; 10, 11, 12 – шестерни; 13 – шейка; 14 – эксцентрик; 15 – кулачок; 16 – сухарь; 17, 19 – шайбы; 18 – колпачок

Механизм включает в себя распределительный вал 1, привод распределительного вала, толкатели 9, штанги 8 толкателей, регулировочные винты 7, ось 6 коромысел, коромысла 5, клапаны 2, направляющие втулки 3 клапанов и пружины 4 с деталями крепления.

Распределительный вал – стальной, кованый, имеет пять опорных шеек 13, кулачки 15 (впускные и выпускные), шестерню 12 привода масляного насоса и распределители зажигания, а также эксцентрик 14 привода топливного насоса. Вал установлен в блоке цилиндров двигателя на запрессованных биметаллических втулках, изготовленных из стали и покрытых изнутри слоем свинцовистого баббита.

Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню 10, изготовленную из текстолита. Она находится в зацеплении с ведущей стальной шестерней 11, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и обеспечения плавной работы. Передаточное отношение шестеренного привода – отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни – равно 1:2, т.е. ведомая шестерня 10 имеет в два раза больше зубьев, чем ведущая шестерня 11. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.

Толкатели 9 служат для передачи усилия от кулачков распределительного вала к штангам 8. Они изготовлены из стали, и их торцы, соприкасающиеся с кулачками, выполнены сферическими и наплавлены отбеленным чугуном для уменьшения изнашивания. Внутри толкатели имеют сферические углубления для установки штанг. Толкатели перемещаются в направляющих отверстиях блока цилиндров.

Штанги 8 передают усилие от толкателей к коромыслам 5. Они изготовлены из алюминиевого сплава, и на их концы напрессованы стальные наконечники.

Коромысла 5 предназначены для передачи усилия от штанг к клапанам. Коромысла стальные, имеют неравные плечи для уменьшения высоты подъема толкателей и штанг, в их короткие плечи ввернуты винты 7 для регулирования теплового зазора. Коромысла установлены на втулках на полой оси 6, закрепленной в головке цилиндров.

Клапаны 2 изготовлены из легированных жаропрочных сталей. Для лучшего наполнения цилиндров двигателя горючей смесью диаметр головки у впускного клапана больше, чем у выпускного.

Пружины 4 изготовлены из рессорно-пружинной стали. Деталями их крепления являются шайбы 17 и 19, сухари 16 и втулки 20. Резиновые маслоотражательные колпачки 18, установленные на впускных клапанах, исключают проникновение масла через зазоры между направляющими втулками и стержнями впускных клапанов.

Работа механизма

Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки поочередно набегают на толкатели 9 в соответствии с порядком работы цилиндров двигателя. Усилие от толкателей 9 через штанги 8 передается к коромыслам 5, которые, поворачиваясь на оси 6, воздействуют на стержни клапанов 2, преодолевают сопротивление пружин 4 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с толкателей, которые вместе со штангами и коромыслами возвращаются в исходное положение под действием пружин, закрывающих также клапаны.

Другие статьи по двигателю

Газораспределительный механизм: принцип работы

Газораспределительный механизм (ГРМ) — механизм для своевременной подачи воздуха или топливно-воздушной рабочей смеси в цилиндры ДВС и последующего выпуска из цилиндров отработавших газов. Главной функцией ГРМ на четырехтактных поршневых моторах, которые имеют сегодня наибольшее распространение, становится открытие и закрытие впускных и выпускных клапанов. Другими словами, ГРМ осуществляет управление фазами газораспределения.

ГРМ устанавливается в головке бока цилиндров. Механизм состоит из одного распределительного вала или нескольких таких валов. Также имеются приводы к распредвалу и клапаны, которые открывают и закрывают впускные и выпускные отверстия в камерах сгорания (впускные и выпускные клапаны). Дополнительно имеется целый ряд передаточных элементов в устройстве ГРМ: толкатели, штанги, коромысла, а также вспомогательные решения в виде регулировочных элементов, пружин клапанов, систем поворота клапанов и т.д. Получается, что газораспределительный механизм представляет собой клапаны с приводом и распределительный вал с приводом.

Конструкции газораспределительного механизма могут отличаться. Главной особенностью выступает расположение клапанов и распределительного вала. 

Среди существующих ДВС выделяют нижнеклапанные и верхнеклапанные двигатели, а также моторы со смешанным расположением клапанов. Нижнеклапанные агрегаты имеют боковое расположение клапанов, а для верхнеклапанных существует определение «подвесных клапанов».

По расположению распределительного вала встречаются двигатели с распредвалом в блоке цилиндров, с распредвалом в головке блока цилиндров, а также ДВС, где распределительный вал отсутствует. С учетом таких конструктивных особенностей клапанный механизм четырёхтактных ДВС получил целый ряд самостоятельных типов и разновидностей.

Читайте также

Зачем менять фазы газораспределения — ДРАЙВ

Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.

В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.

В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.

Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.

Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.

При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.

Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).

Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!

Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.

Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.

А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.

Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.

Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.

Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).

Аналогичная система от немецкой компании Mahle.

Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.

Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.

Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.

Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.

Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.

Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.

В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?

А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.

Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.

Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.

Механизм газораспределения

_____________________________________________________________________________

_____________________________________________________________________________

____________________________________________________________________________________________

Назначение и схемы действия ГРМ

Механизм газораспределения (ГРМ) открывает и закрывает в определенные моменты впускные и выпускные клапаны для впуска в цилиндры свежего воздуха и выпуска из них отработавших газов.

В зависимости от расположения клапанов механизмы различают:

— с нижним (боковым) расположением клапанов в блоке цилиндров; используется только у карбюраторных двигателей;
— с верхним подвесным расположением клапанов — в головке цилиндров.

Техобслуживание и ремонт тракторов

При расположении клапанов в головке цилиндров обеспечиваются компактность камеры сгорания, высокая степень сжатия, лучшее наполнение цилиндров воздухом, меньшие потери тепла через стенки вследствие компактности камеры. Механизм газораспределения с верхним расположением клапанов может быть однорядным и двухрядным. Двухрядное расположение клапанов используется на V-образных двигателях.

Механизм газораспределения включает следующие части. Распределительный вал, преобразующий вращательное движение вала в поступательное движение толкателей. Механизм привода распределительного вала, включающий набор распределительных шестерен, передающих движение от
коленчатого вала на распредвал.

Клапанный механизм, открывающий и закрывающий впускные и выпускные клапаны в строго определенный момент и с заданным порядком последовательности. Клапанный механизм включает впускные и выпускные клапаны, направляющие втулки, возвратные пружины и детали крепления клапанов.

Передающий механизм, осуществляющий передачу возвратно-поступательного движения от распределительного вала на клапаны. Сюда входят толкатели, штанги, коромысла с регулировочными винтами, оси и стойки коромысел. У механизма с боковым расположением клапанов штанги и коромысла с осями и стойками отсутствуют.

Работа ГРМ

Вращение от коленвала передается через зубчатую или цепочную передачу на распредвал. При повороте распредвала его кулачок своим выступом поднимает толкатель и штангу, которая упирается нижним концом в толкатель, а верхним — в регулировочный винт коромысла. При подъеме штанга давит на регулировочный винт и коромысло, поворачиваясь вокруг оси, своим вторым плечом нажимает на стержень клапана и,
преодолевая силу пружины, открывает клапан.

При дальнейшем повороте распредвала выступ кулачка выходит из под толкателя и толкатель, штанга и коромысло возвращаются в исходное положение, а клапан под действием пружины закрывается.

Во время работы клапаны нагреваются, а стержень клапана удлиняется, что может привести к открытию клапана и нарушению работы двигателя. Чтобы дать возможность стержню клапана удлиниться, и чтобы клапан в то же время был закрыт, между торцами клапана и бойком коромысла оставляют зазор, называемый тепловым.

У двигателей с боковым расположением клапанов этот зазор делается между клапаном и регулировочным винтом толкателя. Зазор должен быть в пределах: для двигателей СМД-60 в холодном состоянии — 0,48-0,50; АМ-41, Д-21А, ЯМЗ-240Б — 0,25-0,30; Д-65Н, Д-240 — 0,25 мм (на прогретом двигателе).

Фазы газораспределения

Начало подачи топлива насосом по мениску д.м.т не точно в мертвых точках, а с некоторым опережением при открытии и запаздыванием при закрытии. Периоды от момента открытия клапанов до момента закрытия, выраженные в градусах поворота коленчатого вала, называются фазами газораспределения. Диаграмма фаз газораспределения: начало открытия впускного клапана; начало закрытия впускного клапана; начало открытия выпускного клапана; конец закрытия выпускного клапана.

Фазы газораспределения, выраженные в виде круговой диаграммы, называют диаграммой газораспределения. На рис. представлена диаграмма газораспределения дизельного двигателя Д-240. Впускной клапан открывается с некоторым опережением (16°) до прихода поршня в верхнюю мертвую
точку, а закрывается с запаздыванием (в 46°) после того, как поршень уже пройдет нижнюю мертвую точку и пойдет вверх.

Это позволяет увеличить продолжительность впуска до 242° и улучшить наполнение цилиндра свежим воздухом, вначале за счет уменьшения сопротивления проходу воздуха и ускорения поступления свежего заряда воздуха (опережение открытия), а затем за счет инерции поступающего в цилиндр воздуха (запаздывание закрытия клапанов).

После сжатия и рабочего хода начинается выпуск отработавших газов. Опережение открытия выпускного клапана (56°) позволяет газам выходить из цилиндра под собственным давлением, что уменьшает затраты мощности на выталкивание газов при движении поршня вверх. Закрываются выпускные клапаны с запаздыванием, что улучшает очистку цилиндра от отработавших газов.

У всех двигателей есть периоды, когда одновременно впускной и выпускной клапаны открыты. Такое положение называют перекрытием клапанов. Чтобы правильно установить фазы газораспределения двигателя при сборке, необходимо совместить метки на шестернях газораспределения.

В течение одного рабочего цикла у четырехтактного двигателя впускной и выпускной клапаны должны открываться по одному разу. Поэтому распределительный вал вращается в 2 раза медленнее коленчатого вала и делает за цикл один оборот, а коленчатый вал — два.

Устройство ГРМ

Принцип действия механизма газораспределения изучаемых двигателей и взаимное расположение деталей одинаковые, однако устройство отдельных деталей, их размеры и крепления различны.

В конструкции распределительного вала различают опорные шейки, в которых вал вращается в блоке, и кулачки (по два на каждый цилиндр). Распределительный вал штампуют из стали, а его опорные шейки и рабочие поверхности кулачков закалены токами высокой частоты. Вращается вал в бронзовых или чугунных втулках, запрессованных в гнезда блок-картера.

Осевые перемещения распредвала во втулках ограничиваются различными способами. На двигателе СМД-14 осевое перемещение устраняется упорным регулировочным винтом. Винт заворачивают до отказа, затем отворачивают и затягивают контргайкой.

У двигателя СМД-60 осевое перемещение распределительного вала ограничивает упорная шайба, а необходимый зазор между упорной шайбой и торцом опорной шейки в пределах 0,16-0,28 мм обеспечивается при сборке двигателя. Упорная шайба ограничивает осевое перемещение распределительного вала и у дизелей АМ-41 и А-01М.

От продольного перемещения распределительный вал двигателей Д-240 и Д-65Н удерживается опорным кольцом, привернутым к блоку двумя винтами. Клапанный механизм включает впускной и выпускной клапаны, направляющие втулки, клапанные пружины, опорные шайбы (тарелки) и сухарики. Клапаны подвергаются воздействию высоких давлений и температур, поэтому они изготовляются из особо прочных сталей: впускной — из хромоникелевой, выпускной — из жаростойкой стали.

В клапанах различают тарелку клапана и стержень. В верхней части стержня имеется выточка под выступы сухариков; на некоторых двигателях делаются выточки под стопорное кольцо, которое удерживает клапан от падения в цилиндр при поломке пружины или выпадении сухариков.

Боковые поверхности тарелки (фаски) и гнезда клапанов в головке выполнены под углом 45°. Чтобы эти поверхности плотно прилегали, их шлифуют и притирают. Передающий механизм включает толкатели, штанги, коромысла с регулировочными винтами, валики коромысел, стойки коромысел и распорные пружины коромысел.

Толкатель передает движение от кулачков распредвала штангам. Толкатели могут быть выполнены в виде стакана (СМД-14, СМД-60, Д-65Н) или грибовидной формы (Д-240, Д-37). На двигателях АМ-41, А-01М, ЯМЗ-240Б применяют качающие роликовые толкатели. На этом рисунке представлен механизм газораспределения двс ЯМЗ-240 Б.

Роликовый толкатель качается относительно оси. При набегании кулачка распределительного вала на ролик толкателя толкатель поворачивается вокруг оси и поднимает штангу. Штанги передают возвратно-поступательное движение от толкателя к коромыслу. Они могут быть изготовлены из стального прутка или пустотелой трубки.

Коромысло представляет собой стальной двуплечий рычаг. В коротком плече в резьбовое отверстие устанавливается регулировочный винт. Боек коромысла, давящего на клапан, подвергается закалке. В отверстие средней части коромысла запрессовывается бронзовая втулка для установки коромысла на валик.

Валики коромысел, на которых устанавливаются коромысла, закреплены в стоиках, размещенных на верхней плоскости головки цилиндров. Продольное перемещение коромысел по валику предотвращается распорными пружинами. Валики стальные, пустотелые, внутренняя полость их используется для подвода масла к коромыслам, для чего против каждого коромысла в валике просверлены отверстия.

Декомпрессионный механизм предназначен для облегчения прокручивания коленчатого вала в первый момент запуска двигателя, путем открытия впускных, а у некоторых двигателей и всех клапанов. При открытых клапанах воздух в цилиндре не сжимается при такте сжатия, чем и облегчается прокручивание коленчатого вала. Когда же коленчатый вал разовьет 250-300 об/мин, декомпрессионный механизм выключают, подают топливо и двигатель заводится.

Этим механизмом пользуются и для экстренной остановки двигателя. Декомпрессионный механизм устанавливается на двигателях А-01М, АМ-41, СМД-14, Д-37М, Д-21Д. На моторах Д-240, ЯМЗ-240 Б, СМД-60 его нет.

Декомпрессионный механизм двигателя СМД-14 состоит из валиков, установленных над бойками коромысел в стойках. С нижней стороны под коромыслами валики имеют лыски, и когда механизм выключен, валики декомпрессионного механизма не касаются коромысел и не действуют на клапаны.

При включении механизма рычагом 25 валик поворачивается и своей несрезанной частью нажимает на коромысла и открывает клапаны. При выключении механизма валики поворачиваются своими лысками к коромыслам и не воздействуют на них.

На двигателях АМ-41 и А-01М в валиках против каждого коромысла ввернуты болты, которые при повороте валика своими головками давят на коромысла и открывают клапаны. Этими же болтами регулируют и величину открытия клапанов. На двигателях Д-37М, Д-21А декомпрессионный механизм воздействует не на коромысла, а на толкатели.

Обслуживание механизмов газораспределения

Обслуживание ГРМ сводится к периодическому осмотру наружных деталей, их креплений, проверке и установлению нормальных зазоров и обеспечению плотности прилегания клапанов к гнездам. Осмотры и регулировку газораспределительного механизма проводят при техническом обслуживании № 2 (ТО-2).

Перед началом регулировки клапанов подтягивают крепления головки цилиндров и стоек валиков коромысел. Затяжку гаек крепления головки цилиндров ведут динамометрическим ключом по определенной для каждого двигателя схеме в следующей последовательности: сначала затягивают гайки, расположенные в центре головки, затем производят поочередную подтяжку гаек, расположенных по обе стороны от центра головки цилиндров.

Для регулировки клапанов выполняют следующие операции: ставят поршень первого цилиндра на такт сжатия, в верхнюю мертвую точку. В этом положении поршня, когда клапаны закрыты, проверяют и регулируют зазоры. Чтобы выполнить это условие, наблюдая за коромыслами клапанов первого цилиндра, вращают коленчатый вал до тех пор, пока оба клапана (сначала выпускной, а затем впускной) откроются и закроются и после впуска начнется сжатие.

После этого вывинчивают установочный винт из картера маховика и вставляют его в то же отверстие не нарезанной частью и, нажимая на винт, продолжают вращать коленчатый вал до тех пор, пока винт не войдет в углубление на маховике.

При этом поршень будет в ВМТ на такте сжатия. Такая установка применяется на двигателях СМД-14, АМ-41, Д-240, Д-65 Н, Д-50. На последних трех двигателях это будет не точно ВМТ, а положение поршня в момент впрыска топлива.

Для регулировки зазора отвертывают контргайку регулировочного винта и, удерживая ее гаечным ключом, заворачивают или отворачивают регулировочный винт отверткой до получения необходимого зазора. Например, при зазоре 0,25-0,30 мм щуп толщиной 0,25 мм должен свободно входить между бойком коромысла и торцом клапана, а толщиной 0,30 мм — с усилием.

Затем регулируют (если он есть и регулируется) механизм декомпрессии в первом цилиндре (АМ-41, А-01М, Д-65Н). Для этого валик декомпрессора устанавливают так, чтобы ось регулировочных винтов была вертикальной. Заворачивают винт до соприкосновения с коромыслом и еще на один оборот и затягивают контргайку.

После регулировки клапанов и декомпрессионного механизма в первом цилиндре приступают к регулировке их в следующем цилиндре в соответствии с порядком работы двигателя (например, в третьем цилиндре при порядке 1-3-4-2), для чего коленчатый вал проворачивают на пол-оборота (для четырехцилиндровых, указанных выше).

У шестицилиндрового V-образного двигателя СМД-60 после установки первого цилиндра в ВМТ описанным выше способом открывают люк на картере маховика и поворачивают коленчатый вал по часовой стрелке еще на 45° так, чтобы метка на маховике с цилиндрами «1» и «4» стала против стрелки. В этом положении регулируют клапаны первого и четвертого цилиндров.

Затем поворачивают коленчатый вал в том же направлении на 240°, до совпадения меток «2» и «5», регулируют клапаны второго и пятого цилиндров и, провернув коленчатый вал еще на 240° до совмещения со стрелкой меток «3» и «6», регулируют зазоры клапанов в третьем и шестом цилиндрах.

Аналогичные метки имеются на двс ЯМЗ-240Б (на шестерне привода топливного насоса), причем одновременно регулируются клапаны в трех цилиндрах в соответствии с порядком работы двигателя.

_____________________________________________________________________________

_____________________________________________________________________________

__________________________________________________________________________

Сервис и регулировки МТЗ-82
__________________________________________________________________________

Эксплуатация и сервис МТЗ-82.1, 80.1, 80.2, 82.2

Ремонт МТЗ-80 Обслуживание и эксплуатация МТЗ-1221 Техобслуживание и эксплуатация МТЗ-320 Эксплуатация и сервис тракторов

Как работает синхронизация двигателя | Как работает автомобиль

Дистрибьютор

Распределитель направляет ток HT к правильной свече зажигания и обеспечивает его поступление в наилучшее время для максимальной эффективности.

Для двигатель работать в лучшем виде, топливо / воздушная смесь в каждом цилиндр должен стрелять так же, как поршень достигает верхней мертвой точки ( ВМТ ).

Требуется определенное время для свеча зажигания для зажигания смеси и для горение построить.На этот раз примерно то же самое, нет. иметь значение как быстро двигатель бежит.

Механизм синхронизации настроен на срабатывание свечи незадолго до ВМТ. Но поскольку механизм приводится в действие движением двигателя, это время обычно уменьшается по мере того, как двигатель работает быстрее, и свеча срабатывает слишком поздно.

Итак, механическое устройство установлено на продвигать стрельба — сделать это раньше — с увеличением оборотов двигателя.

Нагрузка на двигатель — будь то сильная тяга или крейсерская — также влияет на синхронизацию.

Легконагруженный двигатель лучше всего работает, если зажигание авансируется дополнительная сумма. Второе устройство с вакуумным приводом управляет этим независимо от первого.

Центробежный механизм продвижения

Принцип работы центробежных грузов

центробежный механизм продвижения реагирует на обороты двигателя. Обычно он находится внизу распределитель корпус под опорной пластиной контактного выключателя.

Два стальных груза прикреплены к вращающемуся тарелка на валу распределителя шарнирами и удерживается в закрытом положении прочными пружинами.

Когда двигатель набирает обороты, центробежная сила выбрасывает гири наружу.

Они поворачивают свои оси, поворачивая кулачок выключателя контактов вперед, так что точки открываются раньше, а свеча зажигания срабатывает раньше при увеличении скорости.

Механизм подачи вакуума

Два типа спускового механизма

вакуумное продвижение механизм реагирует на вакуум на входе в двигатель многообразие , что вызвано всасыванием движущихся поршней.Когда двигатель слегка нагружен, разрежение увеличивается.

От коллектора до вакуумной камеры на распределителе проходит узкая труба, внутри которой находится гибкий диафрагма .

При увеличении вакуума диафрагма изгибается, перемещая стержень, соединенный с ее центром, что приводит к небольшому повороту опорной плиты контактного выключателя. Это перемещает контакт-выключатель пятка относительно кулачка распределителя и опережает зажигание.

Когда двигатель находится под нагрузкой, разрежение уменьшается, диафрагма возвращается в исходное состояние и зажигание замедляется в соответствии с изменившимися условиями.

Регулировка времени

Обычный способ регулировки фаз газораспределения — ослабить зажимной болт распределителя и слегка повернуть весь блок.

Величина, на которую два механизма подачи изменяют синхронизацию, не регулируется.

Некоторые более ранние распределители имеют гайку с накаткой на механизме подачи вакуума, с помощью которой вы можете изменять синхронизацию в целом (а не только действие механизма).

Как работает электронное зажигание

Многие новые автомобили оснащены электронным система зажигания который раз Искра точнее, чем механическая система.

Кроме того, он меньше изнашивается, поэтому он всегда работает с максимальной эффективностью, и преодолевает одну проблему механической системы: при высоких оборотах двигателя механическая система не работает с максимальной эффективностью.

Электронные системы могут быть индуктивными. увольнять или емкостного типа.

Индуктивная разрядная система обычно устанавливается в качестве оригинального оборудования на автомобилях с электронным зажиганием. Он производит высоковольтные (HT) Текущий обычным способом: путем выключения и включения тока низкого напряжения (НН) в катушка .

В простейшей системе индукционного разряда, типа транзисторных контактов (TAC), есть также нормальный контактный выключатель.

Он пропускает только очень небольшой ток, который подается на источник питания. транзистор который переключатели включение и выключение более тяжелого тока LT на катушке.

Контакты размыкателя не подвергаются эрозии под действием небольшого тока, поэтому они дольше остаются чистыми, а зазор редко требует сброса.

Более совершенные, полностью электронные системы могут не иметь очков.Вместо этого распределитель содержит другой вид пускового устройства для силового транзистора, который основан на электрических импульсах, а не на механическом методе включения и выключения.

В одном типе есть электромагнитная катушка и вращающийся зубчатый ротор с одним стальным стержнем для каждого цилиндра.

Каждый раз, когда пик проходит мимо катушки, создается небольшое напряжение, которое запускает транзистор.

Некоторые другие типы могут иметь оптические или магнитные триггеры — все они выполняют одну и ту же функцию.

Система емкостного разряда (CD) — используется в некоторых наборах для самостоятельного изготовления, вырабатывает ток высокой температуры в катушке, посылая большой импульс от конденсатора через первичная обмотка .

Конденсатор — это электрическое накопительное устройство, которое может очень быстро заряжаться и разряжаться.

вторичные обмотки катушки создают ток НТ как в момент включения тока НТ в первичных обмотках, так и в момент его выключения.

Поскольку конденсатор может очень быстро давать очень большой импульс, всегда есть сильная искра, независимо от скорости двигателя.

Что такое угол опережения зажигания?

Время зажигания (или время зажигания) контролирует, когда свеча зажигания зажигается во время такта сжатия. Время зажигания измеряется в градусах вращения коленчатого вала до верхней мертвой точки (ВМТ).

В идеальном мире

  1. Свеча зажигания загорается.
  2. Пламя проходит через камеру сгорания, воспламеняя топливно-воздушную смесь.
  3. Горящие газы расширяются, создавая давление в цилиндре.
  4. Давление увеличивается до максимума, когда поршень достигает верхней мертвой точки (ВМТ).
  5. Давление максимально давит на поршень, создавая максимальную мощность.

Однако условия внутри двигателя постоянно меняются. Различные конструкции головки блока цилиндров и поршня изменяют скорость распространения пламени. Итак, искра должна гореть в разное время, чтобы создать максимальное давление в нужное время. Решение состоит в том, чтобы ускорить или замедлить отсчет времени.

Опережение зажигания

Опережение времени означает, что свеча срабатывает раньше в такте сжатия (дальше от ВМТ). Требуется продвижение вперед, потому что топливно-воздушная смесь не сгорает мгновенно. Требуется время, чтобы пламя воспламенило всю смесь.

Однако, если синхронизация слишком велика, это вызовет детонацию двигателя. Частота вращения двигателя (об / мин) и нагрузка определяют, сколько требуется общего продвижения.

Замедление зажигания

Задержка синхронизации означает, что свеча срабатывает позже на такте сжатия (ближе к ВМТ).Задержка времени может помочь уменьшить Детонацию.

Однако, если искра произойдет слишком поздно, вы потеряете мощность. Это связано с тем, что давление в цилиндре не достигнет своего максимального значения, пока поршень уже не опустится вниз на Power Stroke. Повреждение двигателя и перегрев также могут быть проблемой.

Как это контролируется?

В большинстве современных двигателей угол опережения зажигания контролируется компьютером двигателя. В двигателях с распределителем синхронизацией можно управлять разными способами.Для получения дополнительной информации перейдите по ссылкам ниже.

ID ответа 5121 | Опубликовано 28.11.2018 13:03 | Обновлено 12.11.2019 14:46

WTATWTA: ГРМ — RevZilla

«Ага, этот двигатель не вовремя».

Звучит хорошо, не правда ли? Когда кто-то упоминает, что двигатель вышел из строя, вы не можете не думать, что он много знает о том, что происходит внутри двигателя. Но что такое время? Забавно, как часто я спрашиваю об этом и получаю далеко не соответствующий ответ.Для наших целей предположим, что мы работаем с довольно простым и стандартным движком — ничего экзотического — и точно объясним, что такое тайминг на самом деле.

Два типа времени

Нет, не до полудня, а после полудня. На самом деле существует два разных типа синхронизации, которые должны быть правильными в каждом четырехтактном двигателе, и они на самом деле не связаны. Оба важны и способствуют повышению производительности двигателя, но совершенно по-разному. За прошедшие годы люди и компании разработали ряд творческих способов управления обоими типами таймингов для повышения эффективности и мощности.Поскольку они часто путают (и сбивают с толку!), Мы рассмотрим оба. Вы, наверное, не ожидали сегодня сделки «два к одному» на Common Tread, не так ли?

ГРМ

Первый — это фаза газораспределения. Чтобы четырехтактный двигатель работал правильно, клапаны должны открываться и закрываться в довольно точное время.

Здесь вы можете увидеть вал-шестерню с плоской головкой, который контролирует последующую синхронизацию кулачков. (Это самый нижний вал на изображении.) Если вы внимательно посмотрите на кулачковые шестерни, вы должны увидеть несколько меток синхронизации. Фото Лемми.

В «свободно вращающемся» двигателе или двигателе с боковым расположением клапанов, которые обычно являются агрегатами с довольно низкой производительностью, при неправильной установке фаз газораспределения двигатель не будет работать. В «интерференционном двигателе» клапаны и поршни занимают часть одного и того же пространства в разные моменты времени, поэтому правильная синхронизация еще более важна. Большинство современных мотоциклов имеют такую ​​конструкцию. Если фазы газораспределения неправильные, двигатель не только не запустится, но и поршень может врезаться в клапаны, что приведет к катастрофическим повреждениям.Обычно в результате гнутые клапаны и поврежденные поршни.

Ремни ГРМ Ducati, открытые для всеобщего обозрения. (Да, это выглядит круто, но если туда попадет камешек, все вырвется наружу.) В двигателе с верхним расположением вала, где кулачок, как правило, слишком далеко, чтобы использовать зубчатую передачу, ремни или цепи являются наиболее типичным способом кулачок и кривошип удерживаются во времени. Обратите внимание на натяжители, которые удерживают ремень «провисшим», чтобы синхронизация не была «неаккуратной». Фото Тило Парга.

Если вы слышите, как кто-то говорит о своей цепи ГРМ или ремне ГРМ, это время, которое контролируют эти части.Производители высокопроизводительных двигателей иногда меняют фазы газораспределения для сильно модифицированных заводов, но по большей части время клапана должно быть установлено в соответствии со спецификациями производителя. Из-за того, что штраф за засорение фаз газораспределения — например, во время замены ремня ГРМ — довольно высок (восстановление двигателя), многие гонщики предпочитают оставить соответствующую работу профессионалам.

Если синхронизация между поршнем и клапаном отключена, это результат. Понимание того, насколько важен интерфейс компонентов, и многие механики (в том числе и автор) выступают за плавное вращение двигателя вручную после того, как каким-либо образом обезопасили себя с фазами газораспределения.Связки из-за неправильного выбора времени легко обнаружить и исправить. Проверка таким образом избавила бы от неизбежной перестройки двигателя, из которого сделаны эти клапаны. Фото Эндрю Фогга.

Момент зажигания

Хорошо, пока отложим все это в сторону. Мы переходим к другому типу хронометража. Время зажигания связано с возникновением искры относительно хода коленчатого вала и поршня. Теоретически двигатель может произвести самый большой «взрыв», когда топливовоздушная смесь сжимается в минимальном пространстве, что происходит в верхней мертвой точке поршня (ВМТ).На практике это не работает, потому что топливно-воздушная смесь не загорается мгновенно; ему нужно время, чтобы сгореть. Из-за этого в большинстве двигателей указывается, что искра возникает при определенном количестве градусов до ВМТ или до верхней мертвой точки. Этот промежуток времени между выключением свечи зажигания и ВМТ, выраженный в градусах угла поворота коленчатого вала, называется опережением.

В идеале, после того как смесь начнет гореть, максимальное давление в цилиндре будет возникать вскоре после ВМТ, когда взрыв может сдвинуть поршень с максимальной силой.(Для сравнения, для традиционной конструкции двигателя характерно отклонение от 10 до 40 градусов.) Опережение помогает двигателю полностью сжечь топливовоздушную смесь. Правильная установка угла опережения зажигания помогает вашему двигателю максимально использовать мощность во всем диапазоне оборотов, а также исключает детонацию и пропуски зажигания, что способствует не только производительности, но и долговечности двигателя.

Теперь вот усложняющий фактор. Время, необходимое для горения топливовоздушной смеси, относительно постоянно.Однако время, необходимое двигателю, чтобы покрыть угол поворота коленчатого вала на 36 градусов, будет варьироваться в зависимости от частоты вращения двигателя. Это означает, что величина опережения зажигания — на сколько градусов должна образоваться искра до ВМТ — должна варьироваться в зависимости от частоты вращения двигателя, чтобы обеспечить максимальную мощность. (В реальном мире играют роль и другие факторы, и мы кратко их коснемся, но пока мы сохраняем простоту.) Как правило, по мере увеличения скорости двигателя продвижение должно увеличиваться, потому что поршень движется быстрее, но время, необходимое для сгорания топлива, остается относительно постоянным.

Вы когда-нибудь слышали о «кривой опережения»? Он назван так в честь построенного графика, который показывает опережение зажигания относительно оборотов двигателя. Если, скажем, теоретическому двигателю требуется только 12 градусов начального опережения (на холостом ходу), но, возможно, 36 градусов на красной линии, должен быть способ плавного опережения момента зажигания вверх и вниз по диапазону оборотов. Как этого добиться? Что ж, с первых дней мотоциклетного спорта потребность в улучшении зажигания решалась множеством творческих подходов.

Вот внутренности носовой части лопаты, в которой находится модуль управления зажиганием, своего рода гибрид. Время электронное, отправляется через датчик Холла, который вы можете видеть, но за монтажной пластиной находятся простые старые механические грузы. Посмотрите, как крепится пластина. Обратите внимание, что области крепления представляют собой не отверстия, а изогнутые прорези. Это сделано для того, чтобы можно было отрегулировать угол опережения зажигания. Поворот пластины по часовой стрелке увеличивает угол опережения зажигания, а поворот против часовой стрелки — замедляет. Фото Лемми.В современных двигателях момент зажигания контролируется компьютером двигателя. В большинстве двигателей датчик Холла (датчик, который реагирует на изменения магнитного поля) обычно прикреплен к коленчатому валу. Датчик позволяет компьютеру «видеть» положение кривошипа относительно ВМТ, и компьютер запускает срабатывание катушки зажигания в зависимости от того, как это было запрограммировано. Обратите внимание, что некоторые системы очень просты и используют только угол поворота коленвала, а другие довольно сложны с учетом нагрузки, угла дроссельной заслонки, оборотов в минуту и ​​других факторов.Интересно, что из-за высокой вероятности поломки (а также юридических и экологических проблем) большинство электронных систем зажигания OEM не оставляют места для регулировки. Замена зажигания на устройство вторичного рынка или перепрограммирование ECM часто является единственным способом получить контроль над событиями зажигания на современном мотоцикле.

Это набор предварительных гирь. По мере того, как двигатель вращается быстрее, грузы преодолевают пружины и вылетают наружу, изменяя синхронизацию искры относительно кулачка (и, следовательно, кривошипа).Фото любезно предоставлено Rivera-Primo. До электронного зажигания управление продвижением осуществлялось механически. Обычно к распределительному валу прикрепляют набор стальных грузов, которые выбрасываются наружу, когда кулачок вращается быстрее. Прерыватель острия также будет прикреплен к механизму противовесов, поэтому зажигание будет продвигаться или замедляться автоматически, синхронно с частотой вращения двигателя. Поскольку гири двигались по дуге, кривая продвижения была непрерывной.

Еще раньше, когда-то таймер зажигания подключался к кабелю.Этот трос шел к рукоятке, которая не управляла дроссельной заслонкой. (Итак, это левая ручка на Harley, а правая на Indian. У других ранних мотоциклов были рычаги, установленные на баке.) Когда гонщик хотел завести мотоцикл или перейти на холостой ход, обе ручки поворачивались вперед, чтобы закрыть дросселировать и задерживать искру. (Это было до того, как появились возвратные пружины дроссельной заслонки, поэтому приходилось вручную перемещать их вперед, а не просто отпускать рукоятки.) Затем гонщик повернул обе рукоятки назад, чтобы поднять обороты двигателя, одновременно продвигая зажигание вручную.Отлично, а?

Управление временем

Как и в случае с большинством механических концепций в мотоциклах, после того, как принципы поняты, будут найдены творческие способы их использования. И фазы газораспределения, и момент зажигания изменяются несколькими способами в попытке произвести мощность.

Необходимость увеличения опережения зажигания относительно частоты вращения двигателя была осознана довольно рано при разработке мотоцикла, о чем свидетельствует упомянутая ранее система контроля искры.Прогрессирование с отягощениями обеспечило гораздо более последовательное применение продвижения. Вскоре стало понятно, что «кривую» хода можно изменять с помощью более легких или тяжелых грузов и пружин разной силы.

Точно так же, как уже упоминалось, электронное управление искрой развивалось от простого контроля угла поворота коленчатого вала до учета ряда входных сигналов и включения сложных алгоритмов для определения времени возникновения события возгорания, чтобы получить максимальную мощность.Хорошим примером этого является новый двигатель Harley Milwaukee-Eight. Двигатели оснащены отдельными датчиками детонации на каждом цилиндре, чтобы передавать в компьютер информацию о детонации в цилиндре, что позволяет компьютеру регулировать время зажигания для каждого цилиндра независимо с учетом изменений температуры, качества топлива и других параметров.

Конечно, мощность также можно получить, обезопасив себя с фазами газораспределения. Обычно это достигается с помощью системы изменения фаз газораспределения.(Регулировка фаз газораспределения немного отличается от чего-то вроде системы VTEC Honda, которая включает в себя изменения подъемной силы системы VVT, на случай, если вам интересно, почему мы не рассматриваем это здесь.) Наиболее распространенной формой изменения фаз газораспределения является известен как фазировка кулачка. Вместо того, чтобы кулачок соединялся с кривошипом непосредственно через цепь кулачка, цепь привода ГРМ жестко приводит в движение внешнюю часть фазовращателя кулачка, который, в свою очередь, вращает внутреннюю часть фазовращателя кулачка, которая, в свою очередь, жестко прикреплена к кулачку.«Наклон» или натяжение между внутренней и внешней частями фазовращателя позволяет изменять синхронизацию событий клапана (открытие и закрытие).

Таким образом, фазовращатель распредвала способен открывать или закрывать впускные или выпускные клапаны раньше или позже, эффективно позволяя одному профилю распределительного вала обеспечивать не только хорошие характеристики на низких или высоких оборотах, но и на обоих. Примечательно, что такая система используется на Ducati DVT или Desmodromic Variable Timing. Движение фазера контролируется потоком масла, проходящим через камеры фазера.

Некоторые из вас, возможно, помнят, что в этом году Suzuki представила свою собственную систему изменения фаз газораспределения, которая приводилась в действие механически. Конструкция была использована специально, чтобы обойти правила гонок, запрещающие гидравлические или электронные фазовращатели. Несмотря на то, что это доминирующая технология в автомобильной промышленности (исследования которой часто являются неожиданной удачей для мира мотоциклов), механический привод может оказаться победителем в мире мотоциклов просто потому, что гоночные исследования и разработки часто становятся тем, что доходит до мотоциклов для смертных. .

Будущее

Ожидайте, что эта технология будет прогрессировать не только в переменном времени, но и в конечном итоге в переменной продолжительности, что обеспечит огромное количество настраиваемого управления характером двигателя. В настоящее время в автомобильном мире регулируемая продолжительность действия достигается с помощью гидравлических подъемников переменной продолжительности. Горячий кулачок в приложениях OHV немного снижается на холостом ходу с помощью подъемников, которые быстро сбрасывают давление, эффективно уменьшая одновременно подъемную силу и продолжительность.Ограничения здесь, очевидно, заключаются в конструкции OHV, которая почти продиктована гидравлическим подъемником.

Окончательным решением, вероятно, будут двигатели без кулачкового механизма, которые будут принудительно открывать и закрывать клапаны (возможно, гидравлически или с помощью электромагнита). Они будут намного более точными (и, вероятно, намного быстрее) с точки зрения открытия и закрытия, а в теории будут гораздо более вариативными с точки зрения подъемной силы и продолжительности.

Надеюсь, это означает, что мы все сможем перестать проверять люфт клапана.Это достаточная причина для того, чтобы я желал велосипеды без кулачков. Принесите технологию!

Момент зажигания для повышения экономии топлива — стратегии и методы

Повышение топливной экономичности или увеличение мощности означает повышение эффективности двигателя. Экономия топлива или максимальная мощность достигаются только тогда, когда правильная топливно-воздушная смесь или соотношение (более богатая смесь для мощности и более бедная смесь для экономии) воспламеняются системой зажигания в нужное время.Таким образом, вся энергия более богатой топливно-воздушной смеси преобразуется в энергию; Точно так же более бедная смесь получает экономию топлива, потому что ее заряд полностью сгорает. Высокопроизводительный двигатель будет работать наилучшим образом только тогда, когда начальная синхронизация и кривая опережения зажигания адаптированы к двигателю, топливу, стилю вождения владельца, использование и т. д. Высокопроизводительные карбюраторы, впускные коллекторы, головки цилиндров, распределительные валы и другие компоненты настройки зависят от правильного момента зажигания; если искра не попадает в камеру сгорания в нужное время, поиск мощности или экономии напрасен.

СООТНОШЕНИЯ ВОЗДУХ / ТОПЛИВО Оптимальные соотношения воздух / топливо обычно рассчитываются на динамометрическом стенде двигателя. Эти соотношения меняются не только при настройке на мощность или экономичность, но и от двигателя к двигателю, условий нагрузки, высоты и т. Д. Для неэтилированного топлива на уровне моря стехиометрическое значение (идеальное соотношение воздуха и топлива, которое требуется для обеспечения полное горение) составляет 14,7: 1; то есть 14,7 фунта воздуха на 1 фунт топлива. Однако из-за эксплуатационных потерь в системе впуска из-за смачивания впускных каналов и стенок цилиндра более реалистичное соотношение воздух / топливо для максимальной мощности будет более высоким 12.От 2: 1 до 13,5: 1 и меньше для максимальной экономии. Богатые смеси более безопасны из-за их более прохладного заряда и немного большего времени горения. После установки измеритель соотношения воздух / топливо, такой как измеритель соотношения воздух / топливо Innovate Motorsports LM1, может помочь контролировать эти цифры.

Просмотреть все 6 фотографий

ВРЕМЯ ЗАЖИГАНИЯ За правильное соотношение воздух / топливо в нужное время отвечает система зажигания. Момент зажигания состоит в основном из трех частей: начальной синхронизации, опережения или кривой синхронизации и общей синхронизации.Проверка и регулировка этих элементов синхронизации для обеспечения максимальной мощности и эффективности довольно просты и недороги. Также приятно раскрыть неиспользованную мощность в движке производительности, зная, что этот выигрыш может улучшить производительность других компонентов. Конечно, карбюратор не может работать до оптимального уровня, если не выбрана правильная установка угла опережения зажигания. Основное правило настройки карбюратора — сначала зажигание. Как только механизм опережения зажигания исправен, можно настроить топливно-воздушную смесь для повышения мощности или эффективности использования топлива.

ПЕРВОНАЧАЛЬНОЕ ЗАДЕРЖАНИЕ Основная функция начального отсчета времени — обеспечить чистый холостой ход и четкую реакцию дроссельной заслонки. Одно из лучших руководств по определению начального момента зажигания двигателей V-8 можно найти в каталоге Barry Grant Inc. или на их веб-сайте в разделе Demon Carburetor Guide. Как правило, они рекомендуют от 10 до 12 градусов начальной синхронизации, когда продолжительность поворота распределительного вала составляет менее 220 градусов при подъеме клапана на 0,050 дюйма; От 14 до 16 градусов начальной синхронизации при продолжительности поворота распределительного вала менее 240 градусов при 0.050 дюймов; и от 18 до 20 градусов начальной синхронизации, когда продолжительность работы распределительного вала составляет менее 260 градусов при 0,050-дюймовом подъеме клапана. Чтобы проверить начальную синхронизацию, очистите линию ВМТ (верхняя мертвая точка) или углубление на гармоническом балансировщике в передней части двигателя и, при необходимости, обозначьте его мелом или мелком, чтобы сделать его более заметным. Запустите двигатель на холостом ходу, направьте индикатор времени на гармонический балансир и отметьте начальное время зажигания на свече зажигания номер один. Чтобы отрегулировать начальную синхронизацию, слегка ослабьте болт, которым распределитель крепится к двигателю, и медленно вращайте корпус распределителя до тех пор, пока начальная синхронизация не согласуется с соответствующими цифрами, указанными выше.Снова затяните распределитель к двигателю. Чтобы убедиться, что гармонический балансир и указатель правильно выровнены на новом или восстановленном двигателе, переведите поршень номер один в ВМТ на такте сжатия и убедитесь, что углубление на гармоническом балансировщике и указатель совмещены с нулевым градусом.

Просмотреть все 6 фотографий

TIMING ADVANCE По мере увеличения оборотов двигателя необходимо увеличить угол опережения зажигания. В противном случае процесс горения в камере сгорания займет больше времени, чем позволяет ускоряющийся поршень, что приведет к неполному горению.Для ускорения процесса горения в распределителе предусмотрен механизм опережения зажигания. Он приводится в действие оборотами двигателя и центробежной силой, создаваемой весами и пружинами внутри распределителя. Следовательно, с увеличением числа оборотов двигателя также происходит продвижение зажигания. Механизм опережения зажигания работает либо как механическое / центробежное, либо как механическое / центробежное продвижение с помощью вакуума. Распределители с механическим приводом обычно ассоциируются с высокопроизводительными и гоночными двигателями; Распределители с вакуумным усилителем выбраны из-за их улучшенной экономии топлива и выбросов выхлопных газов.Время вакуума регулируется разрежением или разрежением во впускном коллекторе и процветает при небольших нагрузках. Однако при ускорении разрежение в коллекторе ослабевает, поскольку дроссельные заслонки карбюратора открываются и опережение зажигания возвращается к управлению механическим / центробежным механизмом. В любой конструкции механизм опережения синхронизации не должен начинать продвижение до 1000 об / мин, и, как правило, полное опережение происходит до 3500 об / мин. Слишком большое продвижение вперед при низких оборотах двигателя может вызвать опасный звук или детонацию; слишком малое продвижение по мере увеличения оборотов двигателя продемонстрирует недостаток мощности.Скорость, с которой происходит опережение по времени, называется кривой опережения.

Кривая опережения, используемая на большинстве серийных двигателей и у дистрибьюторов послепродажного обслуживания, предназначена для того, чтобы двигатель мог работать в широком диапазоне условий (равнинная местность, холмистая местность, буксировка, колебания качества топлива и т. Д.). Как следствие, кривые опережения зажигания обычно консервативны. Но для хот-родов и других специализированных применений кривую опережения можно легко изменить и настроить такими специалистами, как John Bishop’s Hot Rod Tuning из Берлингейма, Калифорния.По словам Бишопа, лучший способ проверить кривую опережения вакуумного или механического распределителя — использовать тестер распределителя. Эти испытательные машины сегодня не так популярны в тюнинговых мастерских, как раньше, но, тем не менее, они все еще используются и оказывают неоценимую услугу владельцам хот-родов. В 1960-х годах, когда в большинстве тюнинговых мастерских имелся тестер-дистрибьютор, хот-роддеры получили большую часть своих преимуществ в мощности за счет изменения кривых опережения зажигания. Сегодня кривые опережения зажигания на большинстве хот-родов не контролируются и считаются само собой разумеющимся; они могут функционировать близко к своему оптимальному, но, опять же, нет.Очевидно, что проверка кривой опережения на тестере распределителя намного менее напряжена, чем на двигателе. Тестер может проверить распределитель при 6000 об / мин двигателя и более, не задействуя двигатель. Примечание. Предварительные показания, предоставленные тестером распределителя, должны быть удвоены, поскольку распределитель вращается на половине скорости двигателя; таким образом, значение 12 градусов при 1750 оборотах распределителя соответствует 24 градусам при 3500 оборотах двигателя.

Просмотреть все 6 фотографий

Альтернативный метод проверки механической кривой и кривой опережения вакуума, согласно Bishop’s Tuning Shop, заключается в установке распределителя в двигатель.Если двигатель имеет пониженный гармонический балансир, величину опережения синхронизации можно наблюдать с помощью стандартной лампы синхронизации. Если нет, используйте индикатор синхронизации с обратным набором номера или магнитную ленту MSD. Ленты синхронизации MSD прикреплены к гармоническим балансирам и доступны в диаметрах от 5,250 до 8,00 дюймов. Начните процедуру с отсоединения вакуумного шланга распределителя от карбюратора и закрытия открытого порта. Затем наблюдайте, насколько продвигается механический механизм продвижения с шагом 250 об / мин от холостого хода до тех пор, пока он не перестанет двигаться.Для изменения вакуума, подаваемого в механизм подачи вакуума, Bishop’s использует ручной вакуумный насос и индикатор времени OTC / SPX Advance. Это позволяет им считывать величину продвижения, создаваемого разным вакуумом от 1 до 23 дюймов. При выборе кривой опережения зажигания специалист учитывает такие факторы, как октановое число топлива, степень сжатия, конструкцию камеры сгорания, частоту вращения двигателя, нагрузку на двигатель, температуру двигателя, температуру воздуха, вес автомобиля и ходовые качества. стиль оператора.Когда количество опережения как механического, так и вакуумного механизма опережения добавляется к начальному отсчету времени, мы получаем общий отсчет времени.

ОБЩАЯ ЗАГРУЗКА По мере развития конструкции головки блока цилиндров необходимая величина общего угла опережения зажигания уменьшалась. Например, более ранний вариант малоблочного двигателя Chevrolet требовал от 36 до 40 градусов полного угла опережения зажигания; Напротив, современные малоблочные двигатели Chevrolet работают при температуре от 28 до 32 градусов. Конечно, зажигание искры при 28 или 30 градусах до того, как поршень достигнет верхней мертвой точки, тратит намного меньше энергии, чем зажигание заряда при 40 градусах до ВМТ.Тем не менее, во время крейсерского движения при небольших нагрузках на дроссель раннее зажигание заряда — это именно то, что происходит на экономичном хот-роде с опережением опережения зажигания в вакууме. Более бедные топливно-воздушные смеси, образующиеся на холостом ходу и при небольшой нагрузке на дроссель, имеют более короткое время горения, чем богатые топливно-воздушные смеси. наполнение баллона). Кроме того, эффект продувки в выпускном отверстии, необходимый для удаления отработавших отработавших газов из камеры сгорания, снижает уровень кислорода несгоревшим топливом и снижает скорость горения.Чтобы использовать это более бедное состояние, механизм подачи вакуума «добавляет время». Как правило, ранние малоблочные двигатели Chevy и большинство малоблочных двигателей Ford со степенью сжатия 9,5: 1 в большинстве случаев хорошо реагируют на угол опережения зажигания 36 градусов (начальная синхронизация плюс механическое опережение) плюс еще 10 градусов. от механизма подачи вакуума, делая общую синхронизацию 46 градусов.

Просмотреть все 6 фотографий

Добавление тайминга с опережением вакуума также используется для устранения неисправности в двигателях с подогревом и уличных двигателях, оснащенных индукционным оборудованием, разработанным для гонок, и головками блока цилиндров с высокими характеристиками.Впускные коллекторы с воздушным зазором не предназначены для отвода тепла от головок цилиндров, но вместо этого их высотные полозья питаются и хорошо работают на высокооборотистых гоночных двигателях. Естественно, что при использовании в несовместимых настройках отсутствие тепла и, как следствие, плохое испарение топливовоздушной смеси вызывают колебания и плохую управляемость на более низких оборотах двигателя. Один из способов решения этих проблем — использовать кривую опережения зажигания, которая позволяет начальная синхронизация от 16 до 18 градусов в сочетании с хорошо настраиваемым карбюратором, вдохновленным гонками, таким как Mighty Demon.Этот карбюратор подает более мелкую распыленную воздушно-топливную смесь при частичном открытии дроссельной заслонки и позволяет двигателю с впускным коллектором или распределительным валом работать должным образом. Двигатель с рабочим распределительным валом также будет хорошо реагировать на большее количество начальных моментов времени, потому что при более низких оборотах двигателя скорости воздуха снижаются из-за перекрытия клапанов и плохая топливно-воздушная смесь. Следовательно, увеличение начального момента времени обеспечивает более длительное сгорание этой более бедной смеси в цилиндре; то же самое относится к приложениям с наддувом.При изменении начального момента зажигания необходимо проверить и отрегулировать общее опережение зажигания как на механических, так и на вакуумных распределителях, чтобы гарантировать, что максимальное значение не будет превышено. В противном случае произойдет повреждение двигателя, если общий подъем будет чрезмерным для двигателя.

ИСПОЛЬЗОВАНИЕ НОМЕРОВ «Кривая опережения горячего стержня», используемая в основном на двигателях 9: 1 с мягким распределительным валом (продолжительность менее 220 градусов при 0,050-дюймовом подъеме клапана), составляет от 10 до 12 градусов по начальной фазе плюс 22 до 24 градуса дополнительного продвижения от механического механизма подачи.В большинстве случаев полное ускорение (от 32 до 36 градусов) происходит до 3500 об / мин. Двигатель с длительностью поворота распределительного вала более 240 градусов, но менее 260 градусов при подъеме клапана 0,050 дюйма, будет хорошо реагировать на 18 градусов начальной синхронизации; однако общее время останется прежним (от 32 до 36 градусов). Идеальное время зажигания для мощности происходит непосредственно перед точкой, в которой происходит детонация или свист. Правильно рассчитанное зажигание приведет к возникновению пикового давления в цилиндрах примерно через 12–15 градусов после ВМТ.Если пиковое давление в цилиндре достигается слишком рано, мощность будет потеряна, поскольку поршень будет бороться за сжатие горящей воздушно-топливной смеси. Также может произойти детонация, что может привести к отказу двигателя. И наоборот, если пиковое давление достигается после диапазона от 12 до 15 градусов, энергия тратится впустую и рассеивается через выхлопную систему в виде тепла.

Просмотреть все 6 фотографий

ЧТО СЛЕДУЕТ ЗАПОМНИТЬ Задержка или недостаточное опережение времени приведет к снижению мощности двигателя. И наоборот, чрезмерное опережение времени также может вызвать недостаток мощности двигателя, но, что еще хуже, это может привести к перегреву и дорогостоящему ущербу от детонации.Во многих случаях кривая опережения дистрибьютора может не подходить для сегодняшнего топлива или используемой комбинации двигателей. Многие дистрибьюторы с заменой производительности демонстрируют очень медленные кривые роста; однако они обычно поставляются с набором втулок и пружин для облегчения более быстрого поворота. Втулки регулируют величину опережения времени; пружины регулируют скорость опережения ГРМ. В заключение, независимо от того, является ли дистрибьютор оригинальным или заменяющим его устройством, целесообразно провести его проверку, чтобы убедиться в его правильной работе и пригодности для автомобиля.Богатая топливно-воздушная смесь, развивающая максимальную мощность при 12,5: 1, требует меньшего времени опережения, чем обедненная топливно-воздушная смесь 14,0: 1 (типичный хотрод AFR на крейсерских скоростях). В первом примере дополнительная мощность достигается за счет более богатой топливовоздушной смеси; в последнем случае экономия достигается за счет действия механизма опережения вакуума. Причина, по которой двигатель может использовать дополнительное опережение искры, обеспечиваемое механизмом опережения вакуума, заключается в том, что более бедная воздушно-топливная смесь, возникающая при малых крейсерских скоростях дроссельной заслонки, занимает больше времени. гореть, чем более богатая топливно-воздушная смесь.В большинстве случаев при использовании «кривой механического продвижения горячего стержня» желаемая величина дополнительного продвижения, создаваемого вакуумным механизмом продвижения, составляет около 10 градусов. Согласно Bishop’s Tuning Shop, эти дополнительные 10 градусов опережения должны происходить при 10 дюймах вакуума или более. При настройке на экономию или мощность, вот некоторые из рекомендуемых деталей и справочных инструментов:

Карбюратор Mighty Demon с обратным отсчетом времени с подсветкой от OTC Ignition scope (OTC Solarity) LM-1 Air / Fuel Ratio Meter от Innovate r XD -1 встроенный в приборную панель датчик воздуха / топливной смеси Анализатор выхлопных газов OTC Solarity Gas

Что такое синхронизация клапанов и как это влияет на производительность двигателя? -CarBikeTech

Время работы клапана двигателя объяснено

Во-первых, прочтите здесь о том, как открываются и закрываются клапаны двигателя.Клапаны двигателя похожи на человеческий нос. В автомобильном двигателе для «дыхания» (вдоха / выдоха) используются клапаны. Распределительный вал двигателя открывает и закрывает клапаны с определенным интервалом. Время открытия и закрытия клапанов указывается в градусах, соответствующих положению поршней двигателя. Выбор фаз газораспределения двигателя — наиболее важный процесс для двигателей внутреннего сгорания.

Диаграмма синхронизации клапанов двигателя

Впускной клапан обычно открывается на несколько градусов до того, как поршень достигнет ВМТ на такте выпуска.Он закрывается после того, как поршень на несколько градусов достигает НМТ, то есть когда поршень начинает двигаться вверх по цилиндру в такте сжатия. Во время такта всасывания топливно-воздушная смесь или заряд очень быстро всасываются в цилиндр. Это связано с тем, что движение поршня вниз создает разрежение (или отрицательное давление) в цилиндре, и воздушно-топливной смесью заполняется пустое пространство.

Как помогает синхронизация клапанов двигателя?

Эта топливовоздушная смесь (также известная как заряд) имеет массу и движение.Весь заряд не может попасть в цилиндр, даже когда поршень достигает конца своего хода вниз, потому что отверстие впускного клапана мало. Следовательно, давление в камере сгорания остается ниже атмосферного, а заряд все еще движется в направлении движения поршня с большой скоростью.

Если впускной клапан закроется в этот момент, баллон получит меньше заряда, чем требуется. Следовательно, впускной клапан остается открытым до тех пор, пока поршень не войдет в свой следующий ход вверх i.е такт сжатия. В этот момент давление в цилиндре становится почти равным атмосферному. Инженеры точно калибруют фактическую точку закрытия впускного клапана таким образом, чтобы она совпадала с точкой, в которой движение входящего заряда начинает обратное.

Клапан перекрытия:

В такте выпуска поршень снова движется вверх; выталкивание выхлопных газов через открытый выпускной клапан. Выпускной клапан открывается до того, как поршень достигнет НМТ во время рабочего хода.Поскольку выпускной клапан открывается непосредственно перед НМТ, это заставляет часть выхлопных газов под давлением выходить еще до того, как поршень начинает свой ход вверх.

Перекрытие клапанов двигателя

Сбрасывает избыточное давление и помогает снизить насосные потери поршня при его движении вверх. Выпускной клапан закрывается после того, как поршень на несколько градусов достигает ВМТ, то есть когда поршень начинает двигаться вниз по цилиндру на такте всасывания. В этот момент как впускной, так и выпускной клапаны остаются открытыми в течение очень короткого периода времени; вызывая «перекрытие».Это «перекрытие» помогает лучше «продувать» или удалять оставшиеся выхлопные газы из цилиндра двигателя.

Что такое переменная синхронизация клапана (VVT)? >> Продолжить чтение здесь

О компании CarBikeTech

CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Исследование влияния момента зажигания на характеристики бензинового двигателя и выбросы | European Transport Research Review

Первая корректировка рабочих характеристик производилась при изменении положения дроссельной заслонки.Путем изменения положения дроссельной заслонки давление во впускном коллекторе было изменено до 100 кПа в положении полностью открытой дроссельной заслонки. Скорость поддерживалась на уровне 3400 об / мин, а коэффициент эквивалентности был равен единице.

Результаты показывают, что среднее эффективное давление тормоза (BMEP) имеет тенденцию увеличиваться с увеличением угла опережения зажигания до 31 ° перед верхней мертвой точкой (BTDC), а затем снижается. Наилучшие характеристики будут достигнуты при максимальном воспламенении 31 ° до ВМТ. Если опережение зажигания недостаточно опережение, исходная часть максимального давления будет проявляться в ходе расширения, и в этом случае мы потеряем полезную эффективность и снизим производительность.

Максимальное значение BMEP соответствует моменту зажигания. 31 ° BTDC. Минимальное опережение для максимального тормозного момента (MBT) определяется как наименьшее опережение, при котором достигается 99% максимальной мощности.

Следует отметить, что MBT будет меняться как в зависимости от положения дроссельной заслонки, так и в зависимости от частоты вращения двигателя при увеличении дроссельной заслонки; плотности заряда в цилиндре в менее плотных смесях потребуется не очень большое опережение опережения зажигания. В этом случае происходит возгорание, которое дает подходящие характеристики (рис.2).

Рис. 2

Связь между IMEP и BMEP и опережением зажигания — Широко открытая дроссельная заслонка; Коэффициент эквивалентности одного

На приведенном выше рисунке показано, что указанное среднее эффективное давление (IMEP) имеет тенденцию к увеличению с опережением угла опережения зажигания между 21 и 41 ° до ВМТ. Ожидается, что IMEP должен увеличиваться с увеличением угла синхронизации до точки, а затем снижаться. Наилучшие характеристики будут достигнуты, когда большая часть сгорания происходит около верхней мертвой точки.Если угол опережения зажигания установлен недостаточно сильно, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем возможность расширять эту часть газа во всем диапазоне, снижая производительность. Если момент зажигания слишком опережает время, слишком много газа будет гореть, пока поршень все еще поднимается. Работа, которая должна быть проделана для сжатия этого газа, уменьшит производимую чистую работу. Эти конкурирующие эффекты приводят к максимуму IMEP как функции опережения угла опережения зажигания.

Как видно на рис. 3, пиковое давление увеличивается с увеличением угла опережения зажигания перед верхней мертвой точкой. Максимальное давление было бы достигнуто, если бы весь газ был сожжен к моменту достижения поршнем ВМТ. Но давление снижается с менее точным опережением зажигания, потому что: газ не сгорает полностью, пока поршень не будет опускаться на такте расширения.

Рис. 3

Зависимость между температурой выхлопных газов и пиковым давлением в цилиндре в зависимости от времени зажигания при открытой дроссельной заслонке; коэффициент эквивалентности одного

На приведенном выше рисунке также показано, что температура выхлопных газов снижается при приближении к ВМТ и ВМТ.IMEP представляет собой работу, проделанную с поршнем. Температура выхлопных газов представляет собой энтальпию выхлопных газов для идеальных газов. Энтальпия является функцией только температуры, а энергия, выделяемая при сгорании топлива, должна идти на работу по расширению. Температуры выхлопных газов также снижаются, если требуется сохранить энергию (рис. 4).

Рис. 4

Взаимосвязь между BMEP и опережением зажигания. Частота вращения двигателя 3400 об / мин, давление во впускном коллекторе 100 кПа

Результаты показывают, что BMEP увеличивается с опережением угла опережения зажигания.Это ожидало, что BMEP уменьшится с приближением времени воспламенения до верхней мертвой точки. Если зажигание недостаточно развито, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем возможность расходовать эту порцию газа и снижаем производительность. Если зажигание слишком опережающее, большая часть газа будет гореть, пока поршень все еще поднимается; работа, которая должна быть проделана для сжатия этого газа, уменьшит произведенную чистую работу. Кроме того, результаты показывают, что максимальное BMEP находится в пределах от -21 ° до 41 °, а дата имеет максимальное BMEP при опережения зажигания при 31 ° BTDC.

Рисунок 5 показывает, что удельный расход топлива при торможении (BSFC) имеет тенденцию улучшаться с увеличением угла опережения зажигания до достижения верхней мертвой точки. Следует отметить, что при увеличении BMEP BSFC изменяется в обратном направлении.

Рис. 5

Взаимосвязь между BSFC и моментом зажигания при 3400 об / мин и коэффициентом эквивалентности, равным единице

На рисунке 6 показаны O 2 и концентрация HC как функция угла синхронизации. Угол опережения опережения приводит к более высокому пиковому давлению в цилиндре. Это более высокое давление выталкивает больше топливно-воздушной смеси в щели (наиболее важно в пространство между днищем поршня и стенками цилиндра), где пламя гасится, а смесь остается несгоревшей.Кроме того, температура в конце цикла, когда смесь выходит из этих щелей, ниже при более опережающем моменте зажигания. Более поздняя температура означает, что углеводороды и кислород не вступают в реакцию. Это увеличивает концентрацию кислорода в выхлопных газах и несгоревших углеводородах.

Рис. 6

Зависимость между концентрацией O 2 и HC от момента зажигания при 3400 об / мин и давлением во впускном коллекторе 100 кПа

Рис. 7

Связь между O 2 , концентрацией CO и HC в зависимости от Время зажигания, давление во впускном коллекторе 100 кПа и коэффициент эквивалентности, равный единице

На приведенном выше рисунке концентрация окиси углерода, кислорода и углекислого газа изменяется очень мало в зависимости от момента зажигания в исследованном диапазоне (рис.7).

Здесь отношение эквивалентности поддерживалось постоянным и равным единице, поэтому кислорода было достаточно для реакции большей части углерода с CO 2 . Концентрация CO увеличивалась, а концентрация CO 2 уменьшалась, когда не хватало кислорода. Некоторое количество окиси углерода действительно появляется в выхлопных газах из-за замороженной равновесной концентрации CO, O 2 и CO 2 .

Рис. 8

Зависимость концентрации NO от момента зажигания.Частота вращения двигателя при 3400 об / мин и давление во впускном коллекторе 100 кПа

На рисунке показана зависимость концентрации NO в выхлопных газах от момента зажигания. Образование NO зависит от температуры. При увеличении угла опережения зажигания пиковое давление в цилиндре увеличивается. Закон идеального газа гласит, что увеличение пикового давления должно соответствовать увеличению максимальной температуры, а более высокая температура вызывает повышение концентрации NO (рис. 8).

Рис. 9

Зависимость мощности и крутящего момента от момента зажигания

Результаты показывают, что мощность имеет тенденцию к увеличению с опережением искры между 17 и 35 ° CA BTDC.Ожидается, что мощность должна увеличиваться с опережением искры до точки, а затем снижаться. Наилучшие характеристики будут достигнуты, когда большая часть сгорания происходит около верхней мертвой точки. Если искра недостаточно развита, поршень уже будет двигаться вниз, когда происходит большая часть сгорания. В этом случае мы теряем возможность расширять эту часть газа во всем диапазоне, снижая производительность. Если зажигание слишком опережающее, слишком много газа будет гореть, пока поршень все еще поднимается.В результате работа, которая должна быть выполнена для сжатия этого газа, уменьшит производимую чистую работу. Эти конкурирующие эффекты приводят к максимальной мощности в зависимости от опережения зажигания.

Также он показывает, что крутящий момент увеличивается с увеличением опережения зажигания. Это происходит из-за увеличения давления в такте сжатия, и, следовательно, создается больше чистой работы. Необходимо отметить, что при дальнейшем увеличении опережения зажигания крутящий момент не будет увеличиваться в значительной степени из-за пикового давления в цилиндре во время периода сжатия и уменьшения давления в ходе такта расширения.По этой причине определение оптимальной угла опережения зажигания является одной из наиболее важных характеристик для двигателя SI (рис. 9).

На рисунке 10 представлены результаты расчетов теплового КПД в сравнении с экспериментальными данными. Тепловой КПД делится на полученную энергию. Можно видеть, что чистая работа увеличивается с увеличением опережения зажигания до точки, а затем немного уменьшается. Это происходит из-за увеличения трения при высоких значениях опережения зажигания и, следовательно, уменьшения чистой работы.Согласно рис. 6, наибольший объем сети приходится на 31 ° CA BTDC.

Рис. 10

Зависимость КПД от угла опережения зажигания

Авиационный поршневой двигатель Магнитное устройство синхронизации зажигания

Контрольные метки синхронизации встроенного двигателя

Большинство поршневых двигателей имеют метки синхронизации, встроенные в двигатель. Метки синхронизации зависят от производителя. [Рис. 1] Если ступица шестерни стартера установлена ​​правильно, на ней нанесены метки синхронизации, которые совпадают с меткой на стартере.На двигателе, не имеющем ступицы стартера, метка синхронизации обычно находится на краю фланца гребного винта. [Рис. 2] Верхняя центральная метка (TC), нанесенная на край, совпадает с линией разделения картера под коленчатым валом, когда поршень № 1 находится в верхней мертвой точке. Другие отметки на фланцах указывают на градусы перед центром вверху.

Рисунок 1. Временные метки Lycoming

Рисунок 2.Метки синхронизации фланца гребного винта

Некоторые двигатели имеют маркировку степени на редукторе гребного винта. Чтобы синхронизировать эти двигатели, необходимо снять заглушку на внешней стороне корпуса редуктора, чтобы увидеть метки синхронизации. На других двигателях метки ГРМ находятся на фланце коленчатого вала, и их можно увидеть, сняв заглушку с картера. В любом случае в инструкциях производителя двигателя указано расположение встроенных контрольных меток синхронизации.
При использовании встроенных установочных меток для позиционирования коленчатого вала убедитесь, что смотрите прямо через неподвижный указатель или метку на носовой части, гребном валу, фланце коленчатого вала или зубчатой ​​передаче. [Рис. 3] Прицеливание под углом приводит к ошибке позиционирования коленчатого вала. Обычно цилиндр № 1 используется для хронометража или проверки тайминга магнето. При установке магнето метки газораспределения должны быть совмещены, а цилиндр № 1 должен находиться на такте сжатия.
Рисунок 3.Типовая встроенная метка ГРМ на редукторе гребного винта

Величина люфта шестерни в любой системе шестерен варьируется в зависимости от установки, поскольку между зубьями шестерни имеется зазор. Всегда измеряйте время при считывании или останавливайте движение двигателя для настройки времени в направлении вращения. Еще одним неблагоприятным аспектом использования установочных меток на редукторе является небольшая ошибка, которая возникает при наведении референтной метки на временную метку внутри корпуса редуктора.Это может произойти из-за того, что между двумя референтными метками есть глубина.

Диски ГРМ

Большинство устройств с синхронизирующими дисками устанавливаются на фланец коленчатого вала и используют пластину газораспределительного механизма. [Рис. 4-] Маркировка зависит от характеристик двигателя. Эта пластина временно устанавливается на фланец коленчатого вала со шкалой, пронумерованной в градусах коленчатого вала, и стрелкой, прикрепленной к синхронизирующему диску.

Рисунок 4.Пластина ГРМ и указатель

Индикаторы положения поршня

Любое заданное положение поршня, независимо от того, будет ли оно использоваться для зажигания, клапана или синхронизации впрыскивающего насоса, относится к положению поршня, называемому верхней мертвой точкой. Это положение поршня не следует путать с положением поршня, называемым верхним центром. Поршень в верхнем центре имеет небольшую ценность с точки зрения синхронизации, поскольку соответствующее положение коленчатого вала может варьироваться от 1 ° до 5 ° для этого положения поршня.Это проиллюстрировано на Рисунке 5, который преувеличен, чтобы подчеркнуть зону отсутствия движения поршня. Обратите внимание, что поршень не движется, пока коленчатый вал описывает небольшую дугу из положения A в положение B.

Рисунок 5. Разница между верхней центральной и верхней мертвой точкой

Эта зона отсутствия хода возникает между моментом, когда коленчатый вал и шатун перестают толкать поршень вверх, и продолжается до тех пор, пока коленчатый вал не повернет нижний конец шатуна в положение, при котором коленчатый вал может начать тянуть поршень вниз.Верхняя мертвая точка — это положение поршня и коленчатого вала, от которого отсчитываются все остальные положения поршня и коленчатого вала. Когда поршень находится в положении верхней мертвой точки коленчатого вала, он также находится в центре зоны отсутствия хода. Поршень находится в положении, при котором прямая линия может быть проведена через центр шейки коленчатого вала, шатунной шейки и поршневого пальца. Это показано справа на рис. 5. При таком выравнивании сила, приложенная к поршню, не может сдвинуть коленчатый вал.


Фары времени

Индикаторы времени используются, чтобы помочь определить точный момент открытия магнето. Обычно используются два основных типа таймерных огней. Оба имеют два фонаря и три внешних проводных соединения. Хотя оба имеют несколько разные внутренние схемы, их функции очень похожи. [Рисунок 6]

Рисунок 6. Световой индикатор времени
Три провода подключаются к световому коробу.[Рис. 6] На передней панели устройства есть два индикатора, зеленый и красный, а также переключатель для включения и выключения устройства. Чтобы использовать индикатор времени, центральный провод черного цвета с пометкой «заземляющий провод» подключается к корпусу проверяемого магнето. Другие выводы подключены к первичным выводам узла точки прерывания синхронизируемого магнето. Цвет провода соответствует цвету индикатора хронометража.

При таком подключении проводов можно легко определить, открыты или закрыты точки, путем включения переключателя и наблюдения за двумя лампочками.Если точки замкнуты, большая часть тока проходит через точки прерывания, а не через трансформаторы, и свет не загорается. Если точки разомкнуты, через трансформатор протекает ток и светятся лампочки.

Некоторые модели таймеров работают в обратном порядке (т. Е. Свет гаснет при открытии точек). Каждый из двух фонарей управляется отдельно от набора прерывателей, к которым он подключен. Это позволяет наблюдать время или точку относительно вращения ротора магнето, когда открывается каждый набор точек.

В большинстве индикаторов времени используются батарейки, которые необходимо заменять после длительного использования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *