ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

виды, устройство и принцип работы

Использование форсунок (инжекторов) позволило сделать работу автомобильного двигателя более экономичной и контролируемой в сравнении с карбюраторными системами. Их главная задача – обеспечение точной дозировки топлива, подаваемого в камеру сгорания, в определенный момент времени и образование оптимальной топливовоздушной смеси. Применяются форсунки и на бензиновых, и на дизельных моторах. Конструктивно они представляют собой сложные устройства высокой точности обработки.

Функции и виды форсунок

Топливная форсунка, или инжектор, представляет собой своеобразный клапан, работа которого контролируется блоком управления (ЭБУ) двигателя. Это позволяет подавать топливо, находящееся под высоким давлением, строго ограниченными порциями и в заданный момент времени. В зависимости от типа системы впрыска форсунка может устанавливаться в различных местах. Так, при моновпрыске она располагается перед дросселем во впускном трубопроводе. В системе с распределенным впрыском форсунки устанавливаются в ГБЦ перед клапанами. При этом для каждого цилиндра предусматривается свой отдельный инжектор. В двигателях с непосредственным впрыском форсунки находятся в верхней части цилиндра, подавая топливо сразу в камеру сгорания.

По способу управления (типу привода) инжекторы разделяют на следующие типы:

  • механические;
  • электромагнитные;
  • электрогидравлические;
  • пьезоэлектрические.
Как работает механическая форсунка двигателяКак работает механическая форсунка двигателяУстройство механической форсунки

Механические форсунки применяются на дизелях. Принцип их работы основан в воздействии усилия давления топлива на запорную пружину. Когда давление в системе выше сопротивления пружины, игла поднимается и происходит впрыск. После того как давление падает, игла возвращается в исходное положение. Стоит отметить, что давление таких форсунок дизельных двигателей очень низкое, а потому они редко применяются в современном автомобилестроении.

Электромагнитные и гидромеханические инжекторы могут иметь:

  • клапан форсунки со сферическим профилем;
  • штифтовой клапан;
  • дисковый клапан.

Как устроена электромагнитная форсунка двигателя

Такой тип инжекторов используется преимущественно в бензиновых системах, включая двигатели с непосредственным впрыском. По функциональному назначению электромагнитные форсунки разделяются на пусковые (например, в системе “K-Jetronic”) и рабочие. Последние могут быть центральными (выполняют точечный впрыск) и индивидуальными (распределяют топливо по цилиндрам).

Конструкция электромагнитного инжектораКонструкция электромагнитного инжектораУстройство электромагнитной форсунки

Конструктивно электромагнитная форсунка самая простая. Ее основными элементами являются:

  • герметичный корпус;
  • разъем для подключения к электрической цепи;
  • запирающая пружина;
  • обмотка возбуждения клапана;
  • якорь электромагнита;
  • игла;
  • уплотнители;
  • сопло;
  • фильтр-сеточка форсунки;
  • распылитель.

В заданный момент времени ЭБУ двигателя подает напряжение на обмотку возбуждения, что обеспечивает формирование электромагнитного поля, воздействующего на якорь с иглой. В этот момент усилие сжатия пружины становится меньше магнитной силы, якорь втягивается, игла поднимается и освобождает сопло инжектора. Управляющий клапан форсунки двигателя открывается, и происходит впрыск топлива под высоким давлением. Когда блок управления прекращает подачу энергии на обмотку, пружина возвращает иглу в исходное положение.

Вопреки расхожему заблуждению, сама электромагнитная форсунка бензинового двигателя не создает давление. Давление в системе создается топливным насосом.

Электромагнитные инжекторы подбираются в зависимости от мощности двигателя. Прежде всего, необходимо знать, какое сопротивление у форсунок. В заводском исполнении они бывают низкоомные (2-6 Ом) и высокоомные 12-16 Ом.  При низком сопротивлении может быть установлен дополнительный резистор в 6-8 Ом, который снизит потребление тока.

Принцип действия электрогидравлической форсунки

Механические, Инжекторные и Электромагнитные, Принцип Работы и Управление, Для Низкого и Высокого Давления, Какие Характеристики и Устройство

Топливная система претерпела значительные изменения со времён создания первого автомобиля. Такие преобразования коснулись и механизма впрыска, который стал более совершенным. Дозированная подача топливной смеси позволяет плавно регулировать обороты, что приводит к меньшему расходу горючего. Для решения таких задач используются форсунки двигателя, которые и составляют инжекторную систему. Эта технология давно пришла на смену карбюратору и превосходит его по всем параметрам.

Форсунки инжекторной системы

Назначение форсунок в работе двигателя

Дозированная подача обеспечивает лёгкость в управлении машиной благодаря детально рассчитанным порциям топлива. Назначение подобной системы позволяет не только уменьшить выброс вредных веществ, но и сделать вождение безопасным. Заложенная в управляющий блок микропрограмма делает автомобиль отзывчивым на малейшие изменения в движении. Набор мощности двигателем в этом случае происходит более динамично, что позволяет учесть малейшие особенности дороги.

Форсунки

Каждая форсунка высокого давления является важным механизмом топливной системы. Точно рассчитанная подача горючего имеет огромное значение для силовой установки машины и позволяет увеличить срок её службы. В современных автомобилях инжектор (форсунка) управляется электроникой и бывает нескольких видов. Подобное оснащение успешно используется на бензиновых и дизельных двс, что делает такую технологию наиболее перспективной. В зависимости от вида и характеристик двигателя, форсунки различаются по методу впрыска, каждый из которых имеет свои особенности.

Электромагнитная форсунка

Такой тип инжектора использует бензиновые форсунки и получил широкое распространение. Простая конструкция этого оборудования показывает отличные результаты в автомобильной технике, оснащённой системой непосредственного впрыска. Любая электромагнитная форсунка состоит из управляемого клапана, иглы и сопла. Функционирование этой системы выполняется в соответствии с заложенной программой, что позволяет добиться высокой точности подачи горючего.

Электромагнитная фосунка

Электронный блок полностью контролирует все операции, что исключает любые ошибки при впрыске топливной смеси. Согласно заложенной программе напряжение подаётся на обмотку клапана, что приводит к созданию электромагнитного поля. Под его воздействием сопло освобождается, вследствие чего и производится впрыск топлива. Прекращение подачи напряжения приводит к обратному результату, и пружина возвращает иглу в прежнее положение. Такой метод впрыска топливной смеси имеет высокую точность и задействован на большей части бензиновых двигателей.

Электрогидравлическая форсунка

Использование такой системы можно часто увидеть в автомобилях, оснащённых дизелем. Эту технологию также допускается применять на агрегатах, имеющих систему впрыска Common Rail. Такие инжекторные форсунки состоят из сливной и впускной дроссели, электромагнитного клапана и камеры. Путём изменения давления топлива легко добиться возможности управлять его подачей на цилиндры, и эта особенность является главным отличием инжектора от аналогичных механизмов.

Электрогидравлическая форсунка

Понять, как осуществляется управление форсункой электрогидравлического типа достаточно просто. В состоянии ожидания электромагнитный клапан всегда закрыт, причём игла форсунки высокого давления прижата к седлу топливом. В этом положении подача горючего невозможна по элементарным физическим причинам. Давление в системе, воздействующее на иглу намного меньше чем на поршень, что не позволяет запустить механизму впрыска.

При подаче сигнала с управляющего блока происходит включение электромагнитного клапана, которое заключается в открытии дроссельной заслонки. Подобный принцип работы форсунки не допускает мгновенного выравнивания давления, что приводит к подъёму иглы и подаче топлива.

Пьезоэлектрическая форсунка

Практичное устройство современной форсунки представляет собой наиболее совершенную технологию впрыска. Установка подобного оборудования выполняется на дизельные двигатели, оснащённые системой Common Rail. Состоят такие виды форсунок из переключающего клапана, пьезоэлемента, толкателя и иглы. Скорость циклов впрыска подобного устройства в 4 раза превосходит срабатывание механизмов других типов. Такие возможности позволяют реализовать многократный впрыск топлива за один цикл, а дозировка горючего более совершенна.

Получить такие возможности удалось благодаря использованию особых компонентов. Подача напряжения влияет на характеристики сердечника что обеспечивает впрыск топлива. Пьезокристалл, изменяясь в размерах, давит на поршень толкателя в результате чего открывается клапан и горючее поступает в сливную магистраль. За счёт увеличения давления в топливной системе подымается игла, и происходит впрыск горючей смеси.

Пьезоэлектрическая форсунка

В работе такого устройства также используется гидравлический принцип, в основе которого лежит разница давления. Для точно рассчитанного срабатывания не менее важен и пьезоэлемент, в состав которого входят цирконий и палладиум. Такая технология обеспечивает огромную скорость срабатывания и довольно большое усилие, направленное на открытие клапана. Для регулировки количества горючего для впрыска используется соотношение давления в рампе и время воздействия на пьезоэлемент.

Принцип работы форсунок

Система впрыска топлива отвечает за подачу горючего в цилиндр или впускной коллектор двигателя. Чтобы понять, как работает форсунка инжектора, требуется рассмотреть описание топливной системы. Управляемый процесс подачи горючего наиболее важная часть в обеспечении работоспособности двигателя. Инжектор обычно устанавливают перед расположением дроссельной заслонки, именно на этом месте в более старых моделях устанавливался карбюратор. Система впрыска топлива может иметь различную конфигурацию, так насос-форсунка или ТНВД значительно отличаются от Common Rail.

Форсунки в инжекторе

Распределённый впрыск топлива присущ большинству современных автомобилей. Существуют несколько типов форсунок, принцип работы которых имеет свои особенности.

  • Одновременный – подача горючего осуществляется сразу на все цилиндры, что характеризуется равными показателями расхода топлива на каждый инжектор;
  • Попарно-параллельный – открытие канала выполняется в парном режиме, причём одна форсунка осуществляет подачу топлива перед циклом впуска, а другая выпуска;
  • Фазированный – каждый из инжекторов автоматически открывается перед впуском, обеспечивая высокую точность впрыска;
  • Прямой – подача топлива происходит напрямую в камеру сгорания, что является наиболее продуктивным вариантом.

С помощью насоса высокого давления происходит подача горючего на форсунку, которая может иметь механическое или электрическое исполнение. Ведущие производители автомобилей с начала 90-х перестали устанавливать механические форсунки ввиду несовершенства этой технологии. Ужесточение требований к выхлопным газам и изменение характеристик такой форсунки в процессе эксплуатации привели к переходу на более современные методы подачи горючего.

Устройство инжектора и его назначение

Использование сразу двух топливных форсунок получило широкое распространение и считается самым удобным в работе двигателя. Что касается устройства инжектора, наиболее востребованы одноканальные модели. В такой системе впрыска под определённым давлением подходит распыляемая жидкость, пар или газ, необходимый для распыления. При более детальном рассмотрении схемы инжектора будет хорошо заметен гидравлический разъем, который служит для установки на посадочное место форсунки, которая крепится на рампе.

Гидравлический разъем инжектора

Такая система имеет высокие требования к герметичности, и уплотнительные кольца обеспечивают надёжную установку инжектора. В нижней части такого устройства имеются специальная распылительная пластина, а электрический разъём используется для управления соленоидом. С помощью насоса регулируется давление форсунок, которое зависит от типа топливной системы. Наиболее важным элементом инжектора является сопло, обеспечивающее впрыск горючего.

Среди таких устройств, форсунки высокого давления занимают особое место. Системы Common Rail или ТНВД создают необходимые условия для впрыска, а струя распыла топлива зависит от геометрии камеры внутреннего сгорания. Детали инжектора, кроме функциональных элементов, включают фильтрующую сетку, распылитель и пружину, обеспечивающую обратное движение иглы.

Преимущества использования инжектора

Ресурс, которым обладают форсунки высокого давления, не идёт ни в какое сравнение с карбюраторной моделью управления. Система, контролируемая электроникой, имеет ряд преимуществ, которые ощутимы сразу после запуска двигателя.

  • Система дозированного впрыска даёт ощутимую экономию топлива;
  • Увеличение мощности силового агрегата и его динамических показателей;
  • Огромный ресурс работы и отсутствие необходимости в обслуживании;
  • Простота запуска силовой установи независимо от погодных условий;
  • Меньший износ двигателя и плавность при наборе скорости;
  • Приемлемый уровень выхлопных газов.

Форсунки - преимущество инжектора над карбюратором

Эффективность работы инжекторного двигателя превосходит системы прошлого поколения и представляет собой точно отлаженный механизм. Электронное управление даёт возможность задействовать форсунки низкого давления или систему Common Rail для наиболее точной подачи топлива. Карбюратор чрезвычайно редко выходит из строя, а отсутствие необходимости периодической настройки делает такую систему удобной в эксплуатации.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Топливная форсунка. Назначение, устройство, принцип работы

Видео: Устройство и принцип действия насос форсунки. Принцип работы форсунки инжекторного двигателя. Изучаем Common Rail. Дизельные форсунки. Разбираем топливную форсунку. Промывка топливной форсунки своими руками. Что убивает форсунки дизельного двигателя. Регулировка дизельных форсунок на стенде в домашних условиях. Работа распылителя и стенда КИ-562

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «Коммон рейл» фирмы «Бош» показан на рисунке.

Разрез электрогидравлической форсунки фирмы Бош

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Принцип действия электрогидравлической форсунки

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Аварийный ограничитель подачи топлива через форсунку

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно  чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Пьезоэлемент

Рис. Пьезоэлемент

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Разрез пьезоэлектрогидравличе­ской форсунки

 

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Принцип работы пьезофорсунки

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

График процесса двойного впрыска и характер распыления топлива

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Характер протекания процесса многоступенчатого впрыска

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Где в автомобиле находятся форсунки?

Тип впрыска топливаРасположение форсунок
Центральный впрыскОдна или две форсунки располагаются во впускном трубопроводе перед дроссельной заслонкой. Таким образом, форсунка заменяет устаревшую технологию – карбюратор.
Распределенный впрыскДля каждого цилиндра установлена своя форсунка, которая осуществляет впрыск топлива во впускной трубопровод цилиндра. Форсунка располагается у основания впускного трубопровода
Непосредственный впрыскФорсунки располагаются в верхней части стенок цилиндра и впрыскивают топливо непосредственно в камеру сгорания.

Видео-урок: Система питания дизеля

Устройство форсунки двигателя, бензиновые и дизельные, промывка и чистка

Автомобильная форсунка — устройство, отвечающее за непосредственное распыление топлива внутри камеры сгорания. Непосредственный впрыск — модификация распределенного впрыска горючего, где горючее впрыскивается в цилиндры напрямую. Форсунка — основной связывающий компонент между топливным насосом и мотором. Существует несколько модификаций данного устройства. На современных двигателях используют форсунки, которые оснащены электронным управлением впрыска. Главное предназначение форсунок:

  • обеспечение правильной дозировки топливной смеси;
  • обеспечение правильной струи топливной смеси — кол-во, давление, угол.

Принцип действия форсунки

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

По методу впрыска современные топливные форсунки делятся на три вида – электромагнитные, электрогидравлические и пьезоэлектрические.

  • Электромагнитные форсунки. Такой вид форсунок зачастую устанавливают в бензиновые двигатели. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой. Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение. Визуальное устройство форсунки бензинового двигателя показано на рисунке слева.
  • Электрогидравлическая форсунка. Использование такой системы можно часто увидеть в автомобилях, оснащённых дизелем. Такие инжекторные форсунки состоят из сливной и впускной дроссели, электромагнитного клапана и камеры. Путем изменения давления топлива легко добиться возможности управлять его подачей на цилиндры, и эта особенность является главным отличием инжектора от аналогичных механизмов. Визуальное устройство форсунки дизельного двигателя показано на рисунке слева.
  • Пьезоэлектрические форсунки. Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются только на дизельных двигателях внутреннего сгорания с системой подачи топлива Common Rail. Визуальное устройство форсунки Common Rail показано на рисунке слева.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной. Рекомендуется производить ремонт форсунок у специалистов, например ремонтировать форсунки систем Common Rail лучше тут.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ. Причинами, влияющими на работу форсунок, могут быть:

  • чрезмерное содержание серы в топливе;
  • коррозия металлических элементов;
  • износ;
  • засорение фильтров;
  • воздействие высоких температур;
  • проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков, таких как появление незапланированных сбоев при старте двигателя, увеличение расхода топлива, появление выхлопа черного цвета, нарушение ритмичности работы мотора на холостом ходу.

Способы чистки форсунок

Существует три метода чистки форсунок:

  • ультразвуковая чистка;
  • промывка инжектора через топливную рампу;
  • добавление в топливо специальной промывки.

Ультразвуковая чистка, пожалуй, самая эффективная, но имеет ряд недостатков. Так, с помощью данного метода очищаются лишь сами форсунки, другие же части топливной системы не затрагиваются. Кроме того, данный метод исключен для форсунок, в конструкции которых содержатся элементы керамики (они разрушаются под действием ультразвука).

Метод чистки инжектора через топливную рампу подразумевает присоединение к ней трубок, через которые подается специальный химический состав под высоким давлением. Подобную процедуру выполняют, как правило, на сервисе. Стоимость ее довольно высока. После данной процедуры в обязательном порядке следует заменить свечи зажигания.

Прочистка форсунок посредством специального химического состава, заливаемого в бак, зачастую малоэффективна. Химические соединения, как правило, не способны справиться с сильным загрязнением. Данный способ хорош в профилактических целях, но не для чистки непосредственно. В состав подобных соединений для чистки входят жидкие компоненты, нацеленные на удаление налета, а также мелкодисперсные частицы с абразивными свойствами. Они должны очищать топливопровод от продуктов окисления и налета, а форсунки под их воздействием должны очищаться от нагара. В результате форма распыла топлива вновь должна приобрести правильную конусообразную форму.

виды, устройство и принцип работы

Использование форсунок (инжекторов) позволило сделать работу автомобильного двигателя более экономичной и контролируемой в сравнении с карбюраторными системами. Их главная задача — обеспечение точной дозировки топлива, подаваемого в камеру сгорания, в определенный момент времени и образование оптимальной топливовоздушной смеси. Применяются форсунки и на бензиновых, и на дизельных моторах. Конструктивно они представляют собой сложные устройства высокой точности обработки.

Где в автомобиле находятся форсунки?

Тип впрыска топливаРасположение форсунок
Центральный впрыскОдна или две форсунки располагаются во впускном трубопроводе перед дроссельной заслонкой. Таким образом, форсунка заменяет устаревшую технологию – карбюратор.
Распределенный впрыскДля каждого цилиндра установлена своя форсунка, которая осуществляет впрыск топлива во впускной трубопровод цилиндра. Форсунка располагается у основания впускного трубопровода
Непосредственный впрыскФорсунки располагаются в верхней части стенок цилиндра и впрыскивают топливо непосредственно в камеру сгорания.

Устройство и принцип работы

Конструктивно, форсунка включает в себя следующие элементы:

Плунжер – создаёт давление топлива. Его движение происходит при вращении кулачков рапредвала, а обратное движение – при помощи пружины плунжера.

Клапан управления – регулирует впрыск топлива в двигатель. Клапаны бывают электромагнитные и пьезоэлектрические. Основной элемент клапана управления – это игла клапана.

Запорный поршень – реализует поддержку давления топлива на иглу распылителя при необходимости.

Обратный клапан – также поддерживает давление топлива на иглу распылителя.

Игла распылителя – непосредственно обеспечивает впрыск топливной смеси в камеру возгорания.

Пружина форсунки – с её помощью игла распылителя «садится» на седло. Силу пружины поддерживает давление топлива.

Форсунки управляются с помощью системы управления двигателем на основе сигналов от датчиков инжекторной системы.

Топливная форсунка способствует правильному приготовлению воздушно-топливной смеси, для чего в процессе впрыска существует три фазы:

Предварительный впрыск – необходим, чтобы смесь при основном впрыске сгорала плавно. Сгорание небольшого количества топлива повышает давление и температуру в камере, что помогает ускорить воспламенение топлива при основном впрыске.

Основной впрыск – эта фаза обеспечивает качественное приготовление смеси при разных режимах работы двигателя. Высокое давление, достигающееся на этой фазе, помогает получить однородную горючую смесь. А полное сгорание уменьшает выброс вредных веществ и увеличивает мощность двигателя.

Дополнительный впрыск – нужен для очистки сажевого фильтра. На этой фазе давление резко падает, а игла возвращается на начальную позицию. Это предотвращает поступление топлива в камеру с плохим распылом и под низким давлением.

Рассмотрим этапы процесса работы топливной форсунки.

Кулачок распредвала передвигает плунжер форсунки вниз.

Топливо течёт в каналы форсунки.

Происходит закрытие клапана и отсечка топлива, начинает нагнетаться давление.

Когда давление достигает 13 МПа, то игла поднимается и при этом осуществляется предварительный впрыск горючей смеси. Может быть 1-2 предварительных впрыска, что зависит от режима работы.

Клапан открывается и предварительный впрыск заканчивается, а топливо переходит в питающую магистраль, и его давление снижается.

Клапан закрывается и давление снова начинает возрастать.

Когда давление достигнет 30 Мпа, игла распылителя поднимется, преодолевая силу пружины, и производит основной впрыск топлива. Чем больше давление, тем больше топлива сожмётся и больше поступит в камеру. Максимальное давление – 220 МПа. Оно обеспечивает самую высокую мощность двигателя.

Клапан открывается, и основной впрыск завершается, при этом снижается давление, и закрывается игла распыления.

При дальнейшем передвижении плунжера вниз, происходит дополнительный впрыск топлива. Обычно осуществляется два дополнительных впрыска.

Основные характеристики форсунок:

Динамический диапазон работы – характеризует минимальное время впрыска топлива.Время открытия / закрытия форсунки – характеризует время, которое необходимо для открытия / закрытия форсунки.

Угол распыла – характеризует, под каким углом осуществляется распыление топливной смеси.

Дальнобойность факела топлива – характеризует процесс распыления.Мелкость распыления и распределения топлива в факеле – характеризует качество приготовления горючей смеси и работы самой форсунки.

Функции и виды форсунок

Топливная форсунка, или инжектор, представляет собой своеобразный клапан, работа которого контролируется блоком управления (ЭБУ) двигателя. Это позволяет подавать топливо, находящееся под высоким давлением, строго ограниченными порциями и в заданный момент времени. В зависимости от типа системы впрыска форсунка может устанавливаться в различных местах. Так, при моновпрыске она располагается перед дросселем во впускном трубопроводе. В системе с распределенным впрыском форсунки устанавливаются в ГБЦ перед клапанами. При этом для каждого цилиндра предусматривается свой отдельный инжектор. В двигателях с непосредственным впрыском форсунки находятся в верхней части цилиндра, подавая топливо сразу в камеру сгорания.

По способу управления (типу привода) инжекторы разделяют на следующие типы:

  • механические;
  • электромагнитные;
  • электрогидравлические;
  • пьезоэлектрические.

Устройство механической форсунки

Механические форсунки применяются на дизелях. Принцип их работы основан в воздействии усилия давления топлива на запорную пружину. Когда давление в системе выше сопротивления пружины, игла поднимается и происходит впрыск. После того как давление падает, игла возвращается в исходное положение. Стоит отметить, что давление таких форсунок дизельных двигателей очень низкое, а потому они редко применяются в современном автомобилестроении.

Электромагнитные и гидромеханические инжекторы могут иметь:

  • клапан форсунки со сферическим профилем;
  • штифтовой клапан;
  • дисковый клапан.

Как устроена электромагнитная форсунка двигателя

Такой тип инжекторов используется преимущественно в бензиновых системах, включая двигатели с непосредственным впрыском. По функциональному назначению электромагнитные форсунки разделяются на пусковые (например, в системе «K-Jetronic») и рабочие. Последние могут быть центральными (выполняют точечный впрыск) и индивидуальными (распределяют топливо по цилиндрам).

Читайте также:  Конструктивные особенности топливного бака автомобиля

Устройство электромагнитной форсунки

Конструктивно электромагнитная форсунка самая простая. Ее основными элементами являются:

  • герметичный корпус;
  • разъем для подключения к электрической цепи;
  • запирающая пружина;
  • обмотка возбуждения клапана;
  • якорь электромагнита;
  • игла;
  • уплотнители;
  • сопло;
  • фильтр-сеточка форсунки;
  • распылитель.

В заданный момент времени ЭБУ двигателя подает напряжение на обмотку возбуждения, что обеспечивает формирование электромагнитного поля, воздействующего на якорь с иглой. В этот момент усилие сжатия пружины становится меньше магнитной силы, якорь втягивается, игла поднимается и освобождает сопло инжектора. Управляющий клапан форсунки двигателя открывается, и происходит впрыск топлива под высоким давлением. Когда блок управления прекращает подачу энергии на обмотку, пружина возвращает иглу в исходное положение.

Вопреки расхожему заблуждению, сама электромагнитная форсунка бензинового двигателя не создает давление. Давление в системе создается топливным насосом.

Электромагнитные инжекторы подбираются в зависимости от мощности двигателя. Прежде всего, необходимо знать, какое сопротивление у форсунок. В заводском исполнении они бывают низкоомные (2-6 Ом) и высокоомные 12-16 Ом.  При низком сопротивлении может быть установлен дополнительный резистор в 6-8 Ом, который снизит потребление тока.

Принцип действия электрогидравлической форсунки

Устройство электрогидравлической форсунки двигателя

Электрогидравлический инжектор (насос-форсунка) — это форсунки топливные дизельные. Они подходят для типовых ТНВД и систем Common Rail. Состоят такие форсунки из следующих элементов:

  • сопло;
  • пружина;
  • камера управления;
  • дроссель слива;
  • якорь электромагнита;
  • магистраль слива топлива;
  • разъем для подключения к электрической цепи;
  • обмотка возбуждения;
  • штуцер подачи топлива;
  • дроссель на впуске;
  • поршень;
  • игла распылителя.

В момент начала цикла управляющий электромагнитный клапан форсунки полностью закрыт. Топливо в системе давит на поршень, находящийся в камере управления, а игла инжектора плотно прижата к седлу. ЭБУ двигателя подает напряжение на обмотку возбуждения электромагнитного клапана. Дроссель слива открывается, и топливо поступает в сливную магистраль.

Дроссель впуска, в свою очередь, не позволяет мгновенно выровнять давление на впуске и в камере управления. Таким образом, на некоторый промежуток времени усилие, воздействующее на поршень, уменьшается, а давление на иглу остается высоким. Эта разность давлений и обеспечивает подъем иглы и впрыск топлива.

Особенности работы пьезоэлектрической форсунки

Устройство пьезоэлектрической форсунки двигателя

Это исключительно дизельная форсунка, которая считается наиболее прогрессивной, поскольку обеспечивает более быстрое срабатывание, максимально точную дозировку и позволяет выполнять многократный впрыск на протяжении одного цикла. Она применяется в дизельных двигателях Common Rail. Пьезоэлектрические форсунки двигателя состоят из таких деталей:

  • игла;
  • уплотнители;
  • блок дросселей;
  • пружина запора иглы;
  • переключающий клапан форсунки;
  • пружина клапана;
  • поршень клапана;
  • пьезоэлемент;
  • сливная магистраль;
  • поршень толкателя;
  • фильтр;
  • разъем для подключения к цепи питания;
  • нагнетательная магистраль.

Принцип работы такого инжектора основан на изменении длины пьезоэлемента при подаче на него напряжения. В начальном положении игла под воздействием давления топлива посажена на седло. Когда ЭБУ двигателя посылает сигнал на пьезоэлемент, последний, изменяя длину, воздействует на поршень толкателя. 

Переключающий клапан форсунки открывается, и топливо подается на слив. Аналогично электрогидравлическим системам, создается разность низкого давления над иглой и высокого под ней, и она поднимается, выполняя впрыск дизтоплива. Количество последнего при этом регулируется длительностью подачи напряжения на пьезоэлемент пьезофорсунки и давлением в топливной рампе двигателя.

Основные неисправности

Неисправность форсунок – это основная причина остановок и поломок двигателя автомобиля. При включённом двигателе такие неисправности очень просто заметить.

Признаки неисправности форсунок:

На неполных нагрузках появился дымный выхлоп (увеличилась токсичность).

Мощность двигателя снизилась.

Высокая температура и стуки отработанных газов.

При увеличенных нагрузках появились рывки и провалы в работе двигателя.

На небольших оборотах работа двигателя стала неустойчивой.

Неисправность форсунок может привести к потере её качеств: нарушиться герметичность, появятся подтёки, изменится угол распыления топлива, прекратится любая подача топлива в камеру возгорания, топливо будет неравномерно распределяться в камере.

Эксплуатационные неисправности разделяются на две категории:

Неисправности, вызваны использованием некачественного топлива, что нарушает распыление и становится причиной перегрева (износ элементов форсунки, заедания иглы, оплавление металла и др.).

Неисправности, вызваны неверной сборкой аппаратуры или её неправильным монтажом (перекосы деталей, закупорка топливных каналов, отсутствие плотности соединительных деталей, защемление иглы и др.)

Рассмотрим основные варианты неисправности форсунок.

Сама распространённая неисправность форсунок – это их загрязнение. Так как они находятся при воздействии высокой температуры, то при использовании некачественного топлива, на них образовываются твёрдые отложения, перекрывающие отверстия и нарушающие герметичность. Общее загрязнение топливной системы ведёт за собой засорение фильтра и каналов форсунок. Чтобы восстановить нормальную работу форсунок, их следует промыть.

Нарушение герметичности иглы – также довольно частая причина выхода форсунок из строя. Она обусловливается износом иглы. Решить эту проблему можно заменив иглу и распылитель.

Нарушение регулировки давления – происходит из-за износа пружины и её ослабления или износа иглы и штанги. Устранить такую проблему можно изменив натяжение пружины при помощи винта регулировки.

Заедание иглы – это следствие перегрева или работы с иглой, которая неплотно закрывается. Поэтому в пространство распылителя попадают газы из цилиндра. Для решения такой проблемы либо очищают детали, либо производят замену иглы.

Заменять форсунки рекомендуется после каждых 100-150 тыс. км пробега. Но, как правило, они ещё могут поработать 30-50 тыс. км после истечения официальной гарантии.

Чтобы форсунки не засорялись и работали исправно, их необходимо периодически обслуживать. Периодичность обслуживания дизельных форсунок для различных двигателей разная и находится в пределах от 500 до 5000 часов.

Форсунка как работает — на работающем двигателе, на дизеле, на инжекторе

Автор Nika На чтение 4 мин. Просмотров 7 Опубликовано

Форсунка в автомобиле — это специальное устройство, которое отвечает за непосредственное распыление горючего вещества внутри системы сгорания. В настоящее время есть некоторое количество модифицированных устройств такого механизма.

Типы форсунок

На сегодняшний день форсунки различают по трем видам: электромагнитные, электрогидравлические и пьезоэлектрические.

Электромагнитные форсунки

Этот вид форсунок обычно ставят на бензиновый двигатель. Тем самым такой вид обладает самой простой и понятным механизмом работы, состоящей из клапанов электромагнита, а еще обладает системой распылителя, со входящими в нее другими деталями.

Электромагнитные форсункиЭлектромагнитные форсункиЭлектромагнитные форсунки

Механизм работы такого типа использования форсунок весьма простой. Напряжение подается в систему обмотки, который тем самым возбуждает клапан, которое происходит в определенное время, обычно для этого идет установка программы, благодаря которой происходит принцип работы.

Напряжение создается в нужном поле, затягивающимся с помощью грузика иголки из клапана, в этом случае высвобождается сопло. В результате таких действий происходит впрыск определенного количества горючего вещества. По мере того как снижается напряжение, то иголка начинает возвращаться в первоначальное состояние.

Тип гидравлических электронных

Механизм типовых деталей пролегает в применении большого количества давления в системе подачи горючего вещества. В первом варианте клапана электромагнита закрыты, а иголка по большей степени прижимается к седлу того места, где находится система управления камерой.

гидравлические электронные форсункигидравлические электронные форсункигидравлические электронные форсунки

В итоге сигнал, который подается от этой системы в механизм, начинает запускать клапан и открывается дроссель слива. А действует это за счет того, что горючее вытекает из системы камеры в магистральный механизм слива. Дроссельная система впускового механизма начинает мешать ему, чтобы температуру давления смогла выгорать и в системе впуска магистрали смогло быстро ровнять свое давление.

В результате этого процесса снижается давление в поршне и ослабевает усилие прижимной системы, а так как давление на игле не изменяется, то в такой момент начинает происходить тот самый впрыск или как, можно сказать, подача автомобиля.

Электрический тип

Такой тип использования форсунок работает за счет механизированной системы гидравлики. Вначале иголка помещается в седло за счет воздействия на него большого давления. Когда начинает поступать сигнал типа электрического на элемент пьезоэлектрического механизма, за счет толчков на поршневую систему толкателя, который тем самым начинает давить на поршневой механизм клапана переключения. Это тем самым приводит к тому, что клапан переключения начинает открываться и благодаря этому горючее переходит в магистральную систему слива, давление наверху иголки начинает понижаться. Благодаря тому, что температура внизу не меняется игла приподнимается, в процессе этого обычно происходит подача горючего в систему.

электромеханические форсункиэлектромеханические форсункиэлектромеханические форсунки

Принцип работы

Процесс впрыска топлива в топливную систему берет на себя ответветственность подачи горючего вещества в цилиндр или коллектор впуска двигателя. Чтобы разобрать весь процесс работы форсунки, то для начала следует рассмотреть механизм системы подачи топлива. Таким образом, процесс управления подачи горючего вещества немаловажная часть, тем самым обеспечивая работу двигательной системы. Инжекторная система форсунок устанавливается перед тем как расположить заслонку дросселя, именно на том месте старой модели установлен карбюратор.

Распределительный процесс системы впрыска топлива присущ большому количеству новеньких автомобилей.

Существуют несколько типов форсунок, принцип работы которых имеет свои особенности:

  • Одновременные — подается горючее за счет осуществления на все цилиндры, что характерно равными показателями расходного количества топлива на все инжекторы.
  • Попарно-параллельные — открывается канал, который выполняет работу парно, тем самым одна форсунка осуществляет систему подачи топлива перед впуском, а другая наоборот.
  • Фазированные — инжекторы по автоматической системе открываются, обеспечивают таким образом, лучшую четкость впрыска.
  • Прямые — топливо подается напрямую за счет камеры сгорания, что является наилучшим вариантом продуктивность.

Форсунка электрическая. Принцип работы. Неисправности

Форсунка (инжектор) — конструктивный элемент системы впрыска, назначение которого заключается в дозированной подаче топлива, подводимого к ней под высоким давлением, его распылении в камере сгорания (впускном коллекторе) и образовании топливно-воздушной смеси.

Принцип работы форсунки

Пример конструкции форсунок

Рис. Пример конструкции форсунок систем распределённого (а) и центрального (моно) впрыска (б): 1 — топливный фильтр, 2 — уплотни тельные кольца, 3 — запирающий элемент, 4 — седло, 5 — пружина, 6 — обмотка, 7 — корпус, 8 — электрический разьём

Устройство электрической форсунки может быть разным(примеры конструкций приведены на рисунке), но принцип работы одинаков для всех типов форсунок.

Форсунка представляет собой определённой формы ёмкость с топливом. С одной стороны топливо под давлением поступает из топливной магистрали через фильтровочную сетку, а с другой стороны в распылённом состоянии попадает в рабочую область ДВИГАТЕЛЯ, если подано напряжения на солсноццальный клапан форсунки.

  • MOНO впрыск — форсунка одна (обычно рядный двигатель до 4-х цилиндров)
  • ДУБЛЬ MOНO впрыск — две форсунки, работающие на две половины, обычно 6-ти цилиндрового, V-образного двигателя
  • РАСПРЕДЕЛЁННЫЙ впрыск — по одной форсунке на цилиндр, рабочая часть расположена во впускном коллекторе
  • ПРЯМОЙ впрыск — по одной форсунке на цилиндр, рабочая часть расположена внутри цилиндра
  • ПУСКОВАЯ — одна на двигатель, рабочая часть расположена во впускном коллекторе

Форсунки бывают НИЗКООМНЫЕ (от 1 до 7 Ом) и ВЫСОКООМНЫЕ (от 14 до 17 Ом). Низкоомные форсунки управляются пониженным напряжением или в цепях управления имеются добавочные сопротивления (5-8 Ом). Фрагмент схемы с добавочными сопротивлениями (152) приведен на рисунке.

Фрагмент схемы системы управления и фото блока сопротивлений

Рис. Фрагмент схемы системы управления и фото блока сопротивлений.

Форма факела распылённого топлива различна

Рис. Форма факела распылённого топлива различна.

Осциллограмма, отображающая форму импульса на форсунке, с системой впрыска от порта (PFI) и системы последовательного впрыска (SFI), которые используют привод выключаемого транзистора насыщения, изображена рядом и отмечена буквой А. Соленоиды форсунок включаются блоком управления двигателем. Напряжение резко падает, когда клапан открыт, а затем, при выключении напряжения, резко возрастает (из-за индуктивности соленоида). Ширина импульса изменяется в зависимости от нагрузки двигателя.

Осциллограмма, отображающая форму импульса на форсунке системы моновпрыска (TBI). Такие системы для включения и выключения форсунок используют формирователи пиковых токов и токов синхронизации. Клапаны соленоидов форсунок включаются при наличии высокого тока питания, подаваемого от блока управления двигателем.

После срабатывания, ток уменьшается и поддерживает клапан в открытом состоянии. Наблюдается резкое падение напряжения при первом открытии клапана, а затем резкое увеличение напряжения, когда формирователь тока создаст меньший ток синхронизации, чем высокий ток включения. Когда соленоид отключается(после периода синхронизации) создаётся амплитуда напряжения, обусловлештя индуктивностью катушки соленоида (схема В).

Некоторые формирователи пиковых токов и токов синхронизации производят быстрые переключения напряжения во время периода синхронизации из-за низкого сопротивления обмотки соленоида форсунки (схема С).

Форсунка распределённого впрыска топлива

Рис. Форсунка распределённого впрыска топлива.

Примером может служить осциллограмма форсунки автомобиля ФОРД «Сиерра» 1,6i, EEC 4 приведённая ниже.

Осциллограмма форсунки

Рис. Осциллограмма форсунки

Ниже приведены схемы подключения форсунок при одновременном, групповом и фазированном впрыске топлива.

При одновременном и групповом методе все форсунки, соединённые параллельно впрыскивают топливо одновременно, причём за один оборот коленвала впрыскивается половина полной порции топлива.

Такой метод соединения форсунок использовался на а\м выпуска 80 х — начала 90 х годов.

Современные системы управления двигателями используют последовательный или фазированный впрыск топлива. Такой метод управления позволяет увязывать момент впрыска с моментом открытия впускного клапана в конкретном цилиндре, изменять количество подаваемого топлива в цилиндр.

Схемы подключения форсунок при одновременном, групповом и фазированном впрыске топлива

Рис. Схемы подключения форсунок при одновременном, групповом и фазированном впрыске топлива

На схемах использованы следующие обозначения: 1,2,3,4 — форсунки, 5 — ЭБУ двигателем.

Форсунки систем прямого впрыска топлива отличаются от форсунок, применяемых на системах впрыска топлива во впускной коллектор. Распылитель форсунки расположен непосредственно в камере сгорания и испытывает большие температурные нагрузки и нагрузки высокого давления. Форсунка прямого впрыска длиннее, т.к. необходимо пройти толщину головки блока. Давление топлива значительно выше, чем в обычных системах впрыска и факел распыла имеет свои особенности для каждого двигателя. Эти особенности систем прямого впрыска можно отнести к бензиновым и дизельным двигателям. На рисунке показана форсунка и её осциллограмма двигателя HDI СИТРОЕН. Сопротивление обмотки соленоида форсунки 0,3 — 1 Ом.

Форсунка системы прямого впрыска HDI и осциллограмма

Рис. Форсунка системы прямого впрыска HDI и осциллограмма, снятая на режиме XX.

Расположение

ПУСКОВАЯ форсунка обычно расположена во впускном коллекторе таким образом, чтобы её широкий факел распылённого топлива (до 90 градусов) попадал в район впускных клапанов всех цилиндров.

Форсунка МОНО впрыска расположена на месте обычного карбюратора и топливо впрыскивается в общий объём впускного коллектора.

Форсунки РАСПРЕДЕЛЕННОГО впрыска расположены на впускном коллекторе в районе впускных клапанов каждого цилиндра. Если впускных клапана два, то факел распылённого топлива состоит из двух частей, каждая из которых направлена под один из клапанов.

Форсунки ПРЯМОГО впрыска расположены в головке блока. Распылитель расположен в цилиндре и имеет узкую щель, формирующую факел, направленный под углом к днищу поршня.

Одно из принципиальных отличий систем прямого впрыска топлива в том, что в зависимости от режима работы двигателя давление топлива регулируется в пределах 80-130 атм. Система управления контролирует как момент впрыска, происходящий во время такта всасывания, так и порцию топлива, изменяя давление в трубопроводе и длительность открытия форсунки.

Форсунки

Неисправности форсунки

Сопротивление обмотки форсунки должно соответствовать справочным данным. Обычно форсунки на входе имеют мелкую сетку, которая может забиться мелкими частичками примесей или ржавчины из бака и топливных магистралей.

Если впускная сетка не задержала примеси, то проходя через запирающий элемент и седло форсунки, эти части получают дополнительный износ из-за абразивных свойств посторонних частиц. Постепенно форма факела меняется или вообще пропадает и форсунка льёт топливо обычной струйкой, что не способствует правильной работе двигателя.

На распылителе форсунки постепенно скапливаются смоляные отложения. Иногда отложения образовываются в результате использования на двигателе газовой установки.

Методика проверки

Проверку топливной части форсунки необходимо начинать с подключения к автономной установке, которая может создать на входе в форсунку рабочее давление. При этом из форсунки не должно капать или литься топливо. При кратковременном подключении форсунки к питанию 12 в (высокоомные форсунки 14-17 Ом, низкоомные — от 2 до 7 Ом через добавочное сопротивление 10-15 Ом) должны раздаваться звонкие щелчки запирающего клапана, втягиваемого магнитным полем соленоида. Если форсунка «не щелкает», то, вероятно, всё внутри забито ржавчиной. Такая форсунка отправляется «в последний путь». Если первичные проверки дают положительный результат, проверяем форму факела и степень распыла топлива, а также производительность форсунки в единицу времени — это обычно 80 — 90 мл. за 30 сек (50 — 60 мл. для малообьёмных двигателей).

Ремонт форсунки

Как временную меру, можно рекомендовать промывку форсунки в промывочной установке. Продувку сжатым воздухом в открытом состоянии с обеих сторон, но обычно всё заканчивается заменой форсунок на новые.

Принцип работы инжектора. Механический инжектор: принцип действия

В этой статье будет рассмотрен принцип работы инжектора и всех его основных компонентов. Это довольно перспективная система, которая в настоящее время используется на всех автомобилях независимо от их ценовой группы. Но не стоит забывать, что впервые такие конструкции начали массово использовать в 70-х и 80-х годах. И сначала инжекторы были без использования электронных компонентов. Конечно, они могут присутствовать, но в минимальном количестве.Также стоит сравнить системы впрыска топлива с инжектором и карбюратором.

Карбюратор против инжектора

Возможно, среди поклонников карбюратора останутся только те, кому нравится начинать со светофора. Причина в том, что карбюратор позволяет развивать большой крутящий момент и мощность на дне. Система впрыска впрыска, даже идеально настроенная, не рядом. Простота карбюратора и стоимость обслуживания также дают небольшое преимущество. Но это то, что касается мощности и крутящего момента на высоких скоростях, тогда инжектор выигрывает здесь и с большим запасом.Другими словами, если вы обгоните, ваш автомобиль будет более отзывчивым, если будет установлен впрыск. Также возможно увеличить мощность, установив турбину — устройство, способное нагнетать избыточное давление воздуха в систему впрыска. За счет этого мощность двигателя увеличивается в разы. Конечно, ресурс страдает, но чем вы не пожертвуете ради захватывающей езды?

Этапы развития впрыска

На знаменитых «сигарах» «Ауди 100» использовался механический инжектор.Принцип его работы можно сравнить с системой подачи топлива в дизельных двигателях. С помощью механического насоса и того же привода инжекторов топливовоздушная смесь подавалась в камеры сгорания. Конечно, нельзя не упомянуть переходную ссылку — карбюраторы с электронным управлением. Они использовались на небольшом количестве автомобилей и исключительно японского производства. Жителям Страны Восходящего Солнца очень нравятся различные электронные гаджеты и по сей день.Но электронные карбюраторы были не очень популярны, в конце 80-х началась их эра и сразу закончилась. Кстати, на автомобилях ВАЗ-2110, например, были установлены карбюраторы без каната «всасывания». Регулировка подачи воздуха осуществлялась автоматически с помощью специального демпфера, который менял свое положение при прогреве двигателя. Но сегодня форсунки стали очень популярными, конструкции которых уже стали классическими. Вот они и должны быть рассмотрены более подробно, разобрать по частям.

Топливный насос

Это сердце всей топливной системы, поскольку оно помогает циркулировать бензин. Он состоит из следующих элементов:

  1. Фильтр (у людей его называют «памперсы», так как он имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Насос с приводом от двигателя.
  4. Датчик уровня
  5. (конструктивно он интегрирован с топливным насосом).

Насос расположен непосредственно в баке, закреплен гайками.Доступ к нему можно получить, подняв заднее сиденье. Во всех автомобилях, будь то старая «десятка» или новая «японка», бензиновый насос находится прямо под сиденьем. Конечно, удаление и установка будут выполняться на всех машинах по-разному. Топливопровод проложен от насоса к рампе. Он должен выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали проложена труба, которая возвращает излишки бензина обратно в бак. Все просто принцип работы бензонасоса.Инжектор работает из-за избыточного давления, создаваемого насосом.

Топливная рампа

Устанавливается непосредственно на двигатель. Его миссия — держать смесь бензина и воздуха под определенным давлением. Именно в нем происходит процесс объединения двух компонентов горючей смеси — бензина и воздуха. И пропорция всегда должна быть одинаковой — 14 частей воздуха на бензин. Только в этом случае двигатель будет работать максимально стабильно, стабильно, экономно.К рампе были подключены такие механизмы, как дроссель, электромагнитные форсунки, предохранительный клапан. Кстати, именно в топливной рампе установлен датчик давления топлива. Но о нем и всех других электронных компонентах будет рассказано далее. Следует отметить, что инжектор Вентури, принцип действия которого аналогичен системе, рассмотренной в статье, имеет очень широкое применение не только в автомобилях.

Форсунки

С помощью этих устройств подача топливно-топливной смеси в камеры сгорания всех цилиндров.Каковы эти механизмы? Если вы сносно знакомы с конструкцией карбюратора, то помните электромагнитный клапан. Вот и все, дизайн очень похож на тот, который вы можете увидеть на соплах. У них есть обмотка, на которую подается постоянное напряжение. Игольчатый клапан под напряжением открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно максимально заполняло камеру сгорания.Легко понять принцип работы инжектора, с его помощью осуществляется распыление. Топливно-воздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, зажигание происходит намного быстрее и лучше, чем в случае карбюраторной системы.

Корпус дроссельной заслонки

Откройте капот автомобиля и внимательно посмотрите, что находится под ним. Вы увидите воздушный фильтр, который обычно прикручивается к «телевизору» — передней части автомобиля. От него есть небольшой патрубок, соединенный с куском пластиковой трубы, к которой подключены провода.Это датчик, который измеряет расход воздушного двигателя. Но после этого это демпфер. С его помощью регулируется подача воздуха к топливной рампе. Но здесь нужно взглянуть на принцип работы инжектора. В конце концов, следует отметить, что при полностью закрытой заслонке небольшая часть воздуха все еще поступает в топливную систему для обеспечения оптимального значения частоты вращения двигателя. И это происходит с помощью одного конкретного привода — регулятора холостого хода (неправильно называть его датчиком, поскольку он является шаговым двигателем, он не производит никаких измерений).Этот механизм открывает и закрывает, если необходимо, канал, через который воздух поступает в топливную рампу.

Электронный блок управления

.

инжектор | Определение, использование и принцип

Инжектор , устройство для впрыскивания жидкого топлива в двигатель внутреннего сгорания. Термин также используется для описания устройства для подачи питательной воды в котел.

четырехтактный дизельный двигатель Типичная последовательность событий цикла в четырехтактном дизельном двигателе включает один впускной клапан, форсунку впрыска топлива и выпускной клапан, как показано здесь. Впрыскиваемое топливо воспламеняется в результате его реакции на сжатый горячий воздух в цилиндре, более эффективный процесс, чем в двигателе внутреннего сгорания с искровым зажиганием. Encyclopædia Britannica, Inc.

В дизельных двигателях топливо должно находиться в сильно распыленной форме для правильного сгорания. Обычно это достигается с помощью плунжера и цилиндрового устройства (впрыск твердого вещества), который нагнетает точно измеренные количества жидкого топлива в камеры сгорания через распылительные форсунки. Сжатый воздух (впрыск воздуха) иногда используется вместо поршня. Эти форсунки широко используются в таком дизельном оборудовании, как железнодорожные локомотивы, грузовые автомобили, автобусы, землеройные машины, корабли и стационарные электростанции, и иногда встречаются в двигателях с искровым зажиганием для самолетов и грузовых автомобилей.Дизельный двигатель

с камерой предварительного сгорания. Encyclopædia Britannica, Inc.

В инжекторах питательной воды котла используется высокоскоростная струя пара для подачи воды в котел. Поскольку было трудно поверить в то, что пар из котла может заставить себя и саму воду поступать обратно в котел, введение (1859 г.) таких инжекторов их изобретателем Анри Жиффаром вызвало большой интерес. Они могут использовать отработанный пар при атмосферном давлении для подачи питательной воды в 1 мегапаскаль (150 фунтов на квадратный дюйм).Принцип аналогичен тому, который используется в эжекторе. При смешивании с относительно холодной питательной водой пар конденсируется, передавая большую часть своего импульса воде. Кинетическая энергия, связанная с результирующей высокой скоростью, преобразуется в давление в сходящемся-расходящемся канале, доставляя воду в котел. В настоящее время такие насосы практически полностью заменены центробежными насосами для подачи в котел.

Инжектор Паровой инжектор Анри Гиффара. Иллюстрация из Открытий и изобретений 19-го века , Роберт Рутледж, Джордж Рутледж и сыновья, Лимитед, 1900 .

Принцип действия

  • Учебный ресурс
  • Проводить исследования
    • Искусство и Гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • история
    • математический
    • Наука
    • Социальная наука
    Топ подкатегорий
    • Advanced Math
    • алгебра
    • Basic Math
    • Исчисление
    • Геометрия
    • Линейная Алгебра
    • Предварительная алгебра
    • Предварительное исчисление
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Топ подкатегорий
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Наука о здоровье
    • Физика
    • другое →
    Топ подкатегорий
    • Антропология
    • Закон
    • Политология
    • Психология
    • Социология
    • другое →
    Топ подкатегорий
    • Бухгалтерский учет
    • Экономика
    • Финансы
    • Управление
    • другое →
    Топ подкатегорий
    • Аэрокосмическая Техника
    • Биоинженерия
    • Химическая инженерия
    • Гражданское строительство
    • Компьютерные науки
    • Электротехника
    • Промышленный инжиниринг
    • Машиностроение
    • Веб-дизайн
    • другое →
    Топ подкатегорий
    • Архитектура
    • Связь
    • английский
    • Гендерные исследования
    • Музыка
    • исполнительских искусств
    • Философия
    • Религиоведение
    • Написание
    • другое →
    Топ подкатегорий
    • Древняя история
    • Европейская история
    • История США
    • Всемирная история
    • другое →
    Топ подкатегорий
    • хорватский
    • чешский
    • финский
    • греческий
    • хинди
    • японский
.

ЖЕЛЕЗНОДОРОЖНЫЙ ИНЖЕКТОР — ЭЛЕКТРОМАГНИТНЫЙ (CRIE)

Общее описание Инжекторы Common Rail обеспечивают точное электронное управление временем и количеством впрыска топлива, а более высокое давление, которое обеспечивает технология Common Rail, обеспечивает лучшее распыление топлива. Чтобы снизить шум двигателя, электронный блок управления двигателя может впрыскивать небольшое количество дизельного топлива непосредственно перед событием основного впрыска («пилотный» впрыск), тем самым снижая его взрывоопасность и вибрацию, а также оптимизируя время впрыска и количество для изменений в качество топлива, холодный запуск и тд.
Некоторые современные топливные системы Common Rail производят до пяти впрысков за ход.
Внешний вид
На рис. 1 показан типичный электромагнитный инжектор Common Rail.


Рис. 1

Принцип действия электромагнитного инжектора Common Rail

Электромагнитный клапан TWV (двухходовой клапан) открывает и закрывает выпускное отверстие, чтобы контролировать как давление в контрольной камере, так и начало и конец впрыска.Принцип действия показан на рис. 2.


Рис. 2

Неинъекционная фаза

Когда ток не подается на соленоид, сила пружины больше, чем гидравлическое давление в контрольной камере. Таким образом, электромагнитный клапан перемещается вниз, эффективно закрывая выпускное отверстие. По этой причине гидравлическое давление, которое прикладывается к командному поршню, вызывает сжатие пружины сопла. Это закрывает иглу форсунки, и в результате топливо не впрыскивается.

Фаза впрыска

Когда ток первоначально подается на соленоид, сила притяжения соленоида тянет электромагнитный клапан вверх, эффективно открывая выпускное отверстие и позволяя топливу вытекать из камеры управления. После того, как топливо вытекает, давление в камере управления уменьшается, подтягивая командный поршень вверх. Это заставляет иглу форсунки подниматься и начинать впрыск. Топливо, которое течет через выпускное отверстие, течет в трубу утечки и ниже командного поршня.Топливо, которое течет ниже поршня, поднимает иглу поршня вверх, что помогает улучшить реакцию открытия и закрытия форсунки. Ток открытия 85В, 7А. Ток удержания 12В, 2А.

Конец фазы впрыска

Когда ток продолжает подаваться на соленоид, форсунка достигает своего максимального подъема, где скорость впрыска также находится на максимальном уровне. Когда ток на соленоид выключен, электромагнитный клапан падает, что приводит к немедленному закрытию иглы форсунки и прекращению впрыска.

• Проверьте сопротивление

  1. Убедитесь, что зажигание выключено и двигатель не запущен.
  2. Отсоедините двухконтактный разъем инжектора.
  3. Подключите точный омметр между клеммами разъема форсунки.
    Сопротивление должно составлять от 0,4 до 0,8 Ом.
  4. Подключите разъем инжектора.

• Тестирование выходного сигнала

Напряжение на форсунке против тока

  1. Установите для первого входа осциллографа 100 В (полная шкала).
  2. Подключите активный измерительный провод этого канала к одному из проводов инжектора. Затем подключите провод заземления к заземлению шасси.
  3. Подключите токовый зажим переменного / постоянного тока к другому каналу осциллографа. Установите диапазон ограничения переменного / постоянного тока до 20А.
    Важное примечание: Необходимо зажимать только один из двух проводов, но не оба. Неважно, какой провод будет обрезан с помощью токового зажима: положительный или отрицательный. Это повлияет только на полярность измеряемого тока.
  4. Запустите двигатель, прогрейте его до рабочей температуры и оставьте его работать на холостом ходу.
  5. Сравните результат с осциллограммой на рис. 2.


Рис. 3
Примечание: Тестовая установка может слегка исказить записанные сигналы.

Напряжение Инжектора

  1. Установите все входы осциллографов на 100 В (полная шкала).
  2. Подключите активный измерительный провод канала # 1 к одному из проводов первого инжектора.
    Затем подключите провод заземления к заземлению шасси.
  3. Подключите активный измерительный провод канала № 2 к одному из проводов второго инжектора.
  4. Подключите активный измерительный провод канала № 3 к одному из проводов третьего инжектора.
  5. Подключите активный измерительный провод канала № 4 к одному из проводов четвертого инжектора.
  6. Запустите двигатель, прогрейте его до рабочей температуры и оставьте на холостом ходу
  7. Сравните результат для каждого инжектора с осциллограммой на рис.3

Рис.4

• Возможные повреждения форсунок:

  1. Разомкнутая цепь или короткое замыкание на плюс или на массу в проводе (ах)
  2. Нет или плохая проводка штекерного соединения
  3. Заземление слабое или корродированное
  4. Механическая неисправность в компоненте
,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *