ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Электронная заслонка (дроссель) принцип работы и зависимость от других систем

Как работает электронная дроссельная заслонка, какие сюрпризы она вам может преподнести и почему производители ставят именно электронный дроссель а не всем привычный тросовый привод. Что следует знать и делать, чтобы электроника служила надежно и безотказно — обо всем читайте в этой весьма объемной статье.

Принцип работы электронного дросселя

Для управления электронной дроссельной заслонкой используется блок управления двигателем (ЭБУ) и шаговый электродвигатель с редуктором, совмещенный конструктивно с дроссельной заслонкой.

ЭБУ обычно использует в качестве расчетного параметра величину крутящего момента двигателя. Чтобы блок понимал, какие действия производит водитель неотемлемой частью электронного управления является датчик положения педали акселератора.

Датчик положения педели представляет собой переменный резистор, сопротивление которого (а значит и проводимое напряжение) изменяется в зависимости от положения педали газа.

Блок управления открывает дроссельную заслонку в соответствии с нажатием педали газа. В это же время в блок поступает большое количество сигналов от остальных датчиков системы управления. Статья о неисправностях инжекторного двигателя.

На основании всех показаний ЭБУ вычисляет необходимую мощность двигателя и соответствующим образом открывает или закрывает заслонку (регулируя тем самым подачу воздуха в цилиндры), а так же регулирует и количество впрыскиваемого форсунками топлива.

В это же время датчик положения дроссельной заслонки показывает блоку насколько на самом деле открыта дроссельная заслонка, обеспечивая таким образом обратную связь. То есть блок управления не только открывает своими командами заслонку, но он еще и «видит» открылась ли она на самом деле.

Весь процесс управления требует всего нескольких миллисекунд для достижения нужных в данный момент характеристик автомобиля.

Аварийные режимы работы

Применение электроники делает затруднительным диагностику посредством внешнего осмотра. Вы можете только визуально проверить чистоту самого дросселя и легкость перемещения заслонки. Дроссель должен быть чистым! А заслока не должна закусывать.

В случае неисправности узла электронного дросселя система включает аварийный режим «ограничения рывков» для возможности безопасного движения к месту ремонта, либо полного отключения возможности движения.

В таком режиме возможны два варианта развития событий:

1. Система по каким-то причинам не может управлять дроссельной заслонкой. Например неисправен или нет показаний от датчика положения дроссельной заслонки, или неисправен шаговый двигатель и дроссель неспособен перемещаться (открываться и закрываться).

В таком случае ЭБУ отключает управление зажиганием двигателя. Электронная заслонка устанавливается в положение «оключено». Система полностью отключает функции управления зажиганием.

2. Система на может контролировать намерение водителя. В этом случае ЭБУ ограничивает выходную мощность мотора. Например такое возможно если неисправен или нет сигнала от датчика положения педали акселератора.

Для предотвращения повреждения двигателя блок управления снижает приращение скорости и мощности двигателя. Вся система управления двигателем переводится в режим принудительного холостого хода. Обороты двигателя практически не изменяются при нажатии на педель газа.

Режимы ограниченного функционирования электронной дроссельной заслонки

1. Принудительное закрытие

Блок управления сообщает о неисправности, когда в системе подачи воздуха и управления дроссельной заслонкой имеется какой-то сбой. В этом случае ЭБУ перекрывает подачу топлива в цилинрды, отключает зажигание, закрывет дроссель и двигатель глохнет.

2. Режим принудительного управления мощностью холостого хода

Если при работе мотора на холостом ходу система управления не может нормально использовать дроссельную заслонку (например она закусывает при перемещении), то ЭБУ прекращает управление дроссельной заслонкой.

Она устанавливается в положение по умолчанию. А все управление осуществляется путем отключения подачи топлива в один цилиндр и задержкой угла опережения зажигания.

3. Режим принудительного холостого хода

Об этом режиме мы уже говорили с вами выше. Повторим. Когда намерение водителя не может быть распознано (например при потере сигнала с датчика положения педели газа). В этом режиме реакция двигателя на нажатие педали отсутствует. Автомобиль не развивает обороты и практически не едет.

4. Режим управления ограниченной мощностью

Когда система не может использовать дроссельную заслонку для регулирования мощности. В таком случае система определяет по положению педели акселератора, работает ли двигатель на оборотах холостого хода или ускоряется.

Система управляет мощностью двигателя путем прекращения подачи топлива или задерживая зажигание. В такой момент могут плавать обороты двигателя. Машина может двигаться неравномерно в таком режиме, так как обороты будут плавать. Таким автмобилем будет сложно управлять.

5. Когда точность определения намерений водителя снижена. 

Датчик положения педали состоит из двух переменных резисторов. Так вот когда сигнали этих резисторов вследствие поломки слишком сильно отличаются, система ограничивает крутящий момент двигателя.

Реакция двигателя на изменение положения педали замедляется, автомобиль начинает тупить. Снижается мощность двигателя, мотор плохо тянет.

Похожие статьи

 

www.em-grand.ru

Электронный датчик дроссельной заслонки

На современных автомобилях установлены двигатели внутреннего сгорания: бензиновые и дизельные. Отличаются они составом используемой для воспламенения топливной смеси. Принцип действия таких двигателей – поршневой. Подаваемая в камеры смесь, сжимается поршнем до соответствующих показателей давления, воспламеняется от прошедшей искры. Механическая энергия сжатия и химическая – горения преобразуются в тепловую энергию, под действием которой газы расширяются, и двигают поршень обратно. Клапаны раскрываются, выпуская отработанные газы.

Описание датчика дроссельной заслонки

Не будем вдаваться в подробности действия ДВС, отметим лишь, что подаваемая в камеру смесь, готовится в карбюраторе. Там горючее обогащается кислородом из всасываемого воздуха, и порциями впрыскивается в камеру. В современных двигателях карбюраторы заменены инжекторами, в целях контроля, за выбросами в атмосферу. В таких двигателях, обогащение происходит путем впрыска порции горючего в воздушный поток, осуществляемого движениями форсунок, которыми управляет электронный блок управления. Именно такая форма подачи топлива, в сочетании с нейтрализаторами выхлопных газов (катализаторами), способна контролировать вредные выбросы в атмосферу.

Содержание статьи

Что могут датчики дроссельной заслонки

Электронный контроль осуществляется посредством датчиков, которые передают следующие данные:

  1. Показатели вращения коленвала
  2. Расхода воздуха и его температура
  3. Температуры антифриза
  4. Положение заслонок дросселя
  5. Системе обратной связи (состав выхлопных газов)
  6. Детонации в моторе
  7. Напряжение электросети
  8. Скорости движения
  9. Положение распредвала
  10. Активация кондиционера
  11. Неровности дорожного полотна

Рассмотрим подробно работу датчика ПДЗ.

Это прибор для точного дозирования топливной смеси, подаваемой в камеру сжигания двигателя. Его работа повышает КПД мотора и эффективность движения.

Угол положения ДЗ преобразуются в напряжение тока и передается на контролирующие зоны электронного блока. Исходя из угла заслонки, меняется значение напряжения, что и распознается контролером, который подает сигналы к определенным действиям во впрыскивающий механизм. При этом, после обработки сигналов с датчиков, ЭБУ определяет оптимальные параметры для экономичного режима – адаптируют программу под стиль вождения, под данный двигатель и т. д. По сути, датчики фиксируют параметры зависимости положения заслонок дросселя с изменением напряжения в цепи.

Виды датчиков дроссельной заслонки

Датчики заслонок бывают двух типов:

контактные (пленочно резисторные) – которые напрямую связаны с осью заслонки, при вращении которой, перемещаются контакты датчика по полозьям. При этом преодолевается высокое сопротивление и изменение напряжения, что, в конечном итоге, и является исходящим от датчика сигналом. Конструкция простая, легко диагностируется. Однако, быстро изнашивается из-за постоянного воздействия силы трения.

бесконтактные – в местах контактов расположен перемещающийся магнит, а показатели переменного магнитного поля преобразует в электронный сигнал датчики Холла. Бесконтактные датчики имеют увеличенный ресурс, однако, сложно диагностируемые.

Как работают датчики дроссельной заслонки?

Датчик расположили возле заслонки, к которой крепиться потенциометр с тремя выходами. Один выход предназначен для подачи напряжения, второй – замыкание цепи на массу, а к третьему выходу присоединен электронный блок управления автомобиля, который считывает коды (текущие и ошибки).  Он измеряет напряжение на выходе, при нажатии на педаль. При закрытой заслонке напряжение имеет показатель 0,69 вольт. После нажатия на педаль газа, ось заслонки поворачивается на определенный градус, уводя за собой датчик.Как работает датчик дроссельной заслонки?

Изменяется сопротивление на дорожках, а, следовательно, и напряжение. В положении полного открытия заслонки датчик фиксирует уже порядка 4 вольт. Эти данные считывает ЭБУ и инициирует изменения в подаче топлива, подбирает приемлемый режим работы двигателя, адаптируя под предпочтения водителя. Когда заслонка открыта на три четверти и более, ЭБУ включает продув системы. Закрытые заслонки становятся толчком к регулировке холостого хода, путем подачи воздуха через обходной путь.

Признаки болезни и диагностика датчика положения ДЗ

Исправный датчик обеспечивает плавный ход машины и полное сгорание горючего. Если машину начинает дергать и мотать при нажатии на педаль, то это может быть признаком неправильной работы датчика. Причинами выхода из строя прибора служат:

— ослабление или потеря контакта клемм с дорожками. Стирание резисторной пленки всегда ведет к поломке прибора.

— повреждение самих дорожек, из-за использования материалов низкого качества

— выход из схемы цепи одного или нескольких сопротивлений

— сбой программы датчика Холла

Диагностика датчика положения дроссельной заслонки

Признаки болезни приборы:

  1. Затруднение пуска двигателя, даже после разогрева.
  2. Наблюдается больное расходование горючего.
  3. Ход прерывистый
  4. Затруднено ускорение автомобиля
  5. Завышение оборотов на холостом ходу
  6. Слышатся хлопки в выхлопных трубках
  7. Может заглохнуть на холостом ходу
  8. Светится индикатор Check Engine

Эти симптомы могут наблюдаться и при поломке других деталей и систем. Поэтому прежде чем кидаться менять датчик, нужно провести тестирование.

Для определения характера неисправности, в частности датчиков на отечественных марках, нужно произвести замеры напряжения вольтметром. Учитывая параметры нормы (закрытые заслонки – 0,69В, полностью открытые – 4В), снять показания вольтметра при включенном зажигании, при полном вдавливании в пол педали. По совпадению с нормальными параметрами можно судить о неисправности. Пошаговая рекомендация:

  1. Открыть доступ к датчику (снять фильтр, патрубки)
  2. Снять соединитель с разъема, пол которым можно увидеть три контакта – масса, контакт напряжения и питание. На некоторых моделях добавлен четвертый контакт – клемма холостого хода.
  3. Снимаем показания напряжения между массой и питанием (норма 5В и 12В, в зависимости от модели авто)
  4. Затем замеряем напряжение между выходным контактом и массой (0,7 при закрытых заслонках, до 5В – в состоянии максимального открытия). Вручную изменяем угол отклонения заслонки и фиксируем показания каждого положения. Так определяются зоны отсутствия или недостаточного контакта.
  5. Можно замерить сопротивление между массой и выходным напряжением (норма – от 2,5 кОм до 1 кОм).

Эти действия касаются диагностики контактного датчика. Бесконтакный его собрат тестируется на спец. оборудовании.

В основном, некорректную работу датчика ПДЗ выявляет тестирование автосканером, при считке кодов ошибок, среди которых будет и код датчика.

Ремонт датчика положения дроссельной заслонки

Ремонт такого устройства может стоить дороже его замены. Поэтому, неисправный датчик чаще заменяют новым, а не чинят. Изначально в приборе заложен эксплуатационный срок, соответствующий 50 тыс. пробега. Периодически зачищая контакты и промывая спиртом, можно увеличить срок работы в несколько раз.

Заменить датчик может практически любой автолюбитель (мы сейчас не говорим о блондинках за рулем), достаточно знать несколько маленьких хитростей:

  • Если нарушена целостность пыльника, замените и его
  • Во время входа зацепов оси заслонки в пазы датчика, корпус надо поворачивать по часовой стрелке. Затем разворачиваем в обратном направлении, чтобы совместить крепежные отверстия болтов.
  • Все процедуры нужно проводить после обесточивания агрегата. Иначе, ЭБУ считает их как ошибку, и Check не погаснет даже после смены датчика.Ремонт датчика дроссельной заслонки

Далее потребуется регулировка работы замененного устройства:

  • При необходимости сделать надпилы над филем для свободного хода корпуса датчика.
  • Присоединить клеммы аккумулятора. Добиться значения напряжения в 0.7 вольт выходного контакта. Включить зажигание и, вместе с присоединенным вольтметром, вращать до необходимых пределов. Снова обесточить
  • Включаем зажигание, давая возможность ЭБУ запомнить измененные параметры нового датчика.

Подведем итог: датчик ПДЗ – маленький прибор, с большой и ответственной функцией. От его правильной работы зависят эксплуатационные характеристики сердца любого автомобиля – его двигателя. Своевременное выявление неисправностей и аккуратное его использование – залог долгой бес проблемной работы мотора.

elm327.club

Электронная педаль газа — дроссельная заслонка под контролем

Электронная педаль газа

На современных автомобилях вместо обычного тросикового привода управления дроссельной заслонкой устанавливается так называемая «электронная педаль газа». В таких авто положением дроссельной заслонки управляет электроника. Когда вы нажимаете или отпускаете педаль газа, информация об этом идёт в блок управления (ЭБУ) и только после обработки и корректировки уже даётся команда в модуль дроссельной заслонки. О плюсах и минусах такой системы, а также о признаках неисправностей и пойдёт речь в данной статье.

Для тех, кто привык к механическим приводам, где нажатие на педаль газа напрямую вызывает перемещение дроссельной заслонки, будет непривычным и неизвестным управление автомобилем с электронной системой. Чтобы разобраться, нужно понять принцип работы «электронной педали» и её отличие от обычной механической.

Педаль газа с механическим управлением дросселем

Дроссель с механическим управлением от педали газа

В механическом приводе управления дроссельной заслонкой к педали газа прикреплён тросик, который идёт напрямую из салона в подкапотное пространство и другим концом прикручивается к приводу управления дросселем (полукруглая железная деталь рядом с дросселем). При нажатии на педаль тросик натягивается и тянет на себя эту деталь, которая напрямую соединена с дроссельной заслонкой и находится обычно с ней на одной оси вращения. Заслонка приоткрывает или закрывает трубопровод, по которому в двигатель подаётся воздух. Остальное делает электроника. Чтобы добиться нужного крутящего момента, электронный блок изменяет момент зажигания и момент впрыска топлива в камеру сгорания. Тем самым регулируется топливно-воздушная смесь и достигается требуемая величина крутящего момента.

Педаль газа с электронным управлением дросселем

Дроссель электронной педали газа

Здесь всю работу на себя берёт электроника. На педальном механизме установлены датчики положения педали газа. Информация с этих датчиков поступает в электронный блок управления, в котором анализируются все необходимые параметры для оптимального изменения величины крутящего момента. Эти параметры анализируются постоянно, непрерывно и при нажатии на педаль газа, после совершения нужных рассчётов электроника подаёт команду в модуль управления дроссельной заслонкой. Команда — это сигнал изменения положения заслонки на определённую величину угла.

Получив такую команду, модуль управления выполняет перемещение дроссельной заслонки. Для этого используется электродвигатель. Положение заслонки меняется, также при необходимости меняются момент зажигания и впрыска, достигается нужный крутящий момент и автомобиль трогается с места или ускоряется.

В модуле управления расположены угловые датчики положения дроссельной заслонки, информация с них поступает также в электронный блок, тем самым происходит обратная связь и электроника «узнаёт», в каком положении сейчас находится заслонка, выполнилась ли команда на изменение угла и т.п. Данная информация со всех датчиков поступает в блок управления постоянно. При изменении какого-либо параметра мгновенно принимаются меры для оптимального изменения других важных параметров. Благодаря этому достигается оптимальная работа двигателя, нужный крутящий момент, оптимальный расход топлива, а также устойчивая работа двигателя на холостых оборотах.

Крутящий момент

Чтобы изменить величину крутящего момента, электронный блок управления может изменить один или несколько параметров:

  • угол открытия дроссельной заслонки
  • давление наддува (если двигатель с турбонаддувом)
  • момент зажигания
  • момент впрыска топлива
  • включение/отключение цилиндров

Величина крутящего момента постоянно корректируется и зависит от следующих факторов:

  • условия запуска двигателя
  • устойчивые обороты холостого хода
  • содержание O2 в отработавших газах
  • ограничения по мощности и количеству оборотов
  • АКПП (при переключении передач)
  • контроль тяги при торможении
  • принудительный холостой ход при торможении
  • работа оборудования (климат-контроль, кондиционер)
  • круиз-контроль (включен ли режим)

Неисправности электронной педали газа

Неисправности электронной педали газа

В электронной системе предусмотрена контрольная лампа EPC, которая загорается на приборной панели при наличии какой-либо неисправности в системе или при нарушении её работы. Если сигнал с датчиков перестанет приходить или будет приходить неверным, эта лампа оповестит вас об этом.

В приводном механизме педали газа размещены 2 датчика — это потенциометры со скользящим контактом, эти контакты соприкасаются с контактными дорожками. Один датчик нужен для того, чтобы отправлять информацию о положении педали. Второй является контрольным и также передаёт информацию.

При изменении положения педали газа происходит изменение сопротивления этих датчиков, электронный блок «видит» это по изменению значения напряжения.

Если возникают какие-то неполадки, то как правило нужно заменить один или оба датчика, а также проверить контакт между датчиком и дорожками. Бывает, что на эти дорожки попадает грязь или пыль и нужного контакта не достагается. В этом случае их необходимо хорошо почистить.

При отсутствии сигнала с одного датчика положения педали газа:

  • регистрируется неисправность, включается контрольная лампа EPC
  • работа на холостых оборотах до того момента, пока система не опознает работоспособность второго датчика
  • после проверки и получения сигнала со второго датчика можно ехать дальше
  • при нажатии на педаль газа до упора обороты будут расти медленно
  • система будет пытаться себя «подстраховать», определяя холостой ход по сигналам торможения и положению педали тормоза
  • отключатся дополнительные системы, влияющие на работу двигателя — круиз-контроль

При отсутствии сигналов с двух датчиков положения педали газа одновременно:

  • регистрируется неисправность, включается контрольная лампа EPC
  • на педаль газа не реагирует
  • на холостом ходу обороты повышены до 1500 об/мин

При отсутствии сигнала с одного датчика положения дроссельной заслонки:

  • регистрируется неисправность, включается контрольная лампа EPC
  • отключается круиз-контроль и принудительный холостой ход
  • нормально реагирует на педаль газа

При отсутствии сигнала с обоих датчиков положения дроссельной заслонки:

  • выключается привод заслонки
  • на педаль газа не реагирует
  • холостые обороты повышены до 1500 об/мин

Таким образом, по симптомам можно определить, какой именно датчик вышел из строя. Если вы разбираетесь в электрике, можно заменить их самостоятельно. Иначе лучше доверить это специалистам. Диагностика в автосервисе покажет точную причину.



vmiredorog.ru

Электронный привод дроссельной заслонки | Системы впрыска

При электронном приводе акселератора перемещение дроссельной заслонки осуществляется при помощи электродвигателя, без традиционной механической связи между педалью акселератора и дроссельной заслонкой. Положение педали отслеживается датчиками, и соответствующие сигналы передаются в блок управления, где обрабатывается и передается на исполнительный механизм перемещения дроссельной заслонки. Благодаря такой системе блок управления может посредством перемещения дроссельной заслонки влиять на величину крутящего момента двигателя даже в том случае, когда водитель не меняет положения педали акселератора. Это позволяет достигать лучшей координации между системами двигателя.

Электронный привод дроссельной заслонки состоит из:

  • педального модуля
  • модуля дроссельной заслонки
  • корпуса дроссельной заслонки
  • блока управления двигателем
  • контрольной лампы электронного привода дроссельной заслонки

Педальный модуль посредством датчиков непрерывно определяет положение педали акселератора и передает соответствующий сигнал блоку управления двигателя. Он состоит из:

  • педали акселератора
  • датчика 1 положения педали акселератора
  • датчика 2 положения педали акселератора

Два одинаковых датчика используются для обеспечения надежной работы системы, но для работы системы достаточно работоспособности одного датчика.

Педальный модуль

Рис. Педальный модуль:
1 – педаль; 2 — корпус модуля педали акселератора; 3 – контактная дорожка;; 4 – датчики; 5 — рычаг

Оба датчика представляют собой потенциометры со скользящим контактом, укрепленным на общем валу. При каждом изменении положения педали изменяется сопротивление датчиков и, соответственно, напряжение, которое передается на блок управления двигателя. Используя сигнал от обоих датчиков положения педали акселератора блок управления двигателя узнает положение педали в каждый момент времени.

Разновидностью педального модуля является бесконтактный модуль с индукционными катушками. На общей многослойной плате предусмотрены одна катушка возбуждения и три приемные катушки для каждого чувствительного элемента, а также электронные элементы обработки сигналов и управления датчиком.

Ромбовидные приемные катушки расположены со смещением относительно друг друга, благодаря чему создается сдвиг фаз индуцируемого в них тока. Над приемными катушками находятся катушки возбуждения. На механизме педали закреплена металлическая шторка, который перемещается при движении педали вдоль платы на минимальном расстоянии от нее.

Катушка возбуждения запитывается переменным током. В результате возникает переменное электромагнитное поле, действующее на металлическую шторку. При этом в шторке индуцируется ток, который в свою очередь создает вокруг нее свое, вторичное, переменное электромагнитное поле. Оба поля, созданные катушкой возбуждения и металлической шторкой, действуют на приемные катушки, создавая на их выводах соответствующее напряжение. В то время как собственное поле шторки не зависит от ее положения, индуцируемый в приемных катушках ток, изменяется при перемещении шторки относительно них.

Изменение напряжения при перемещении заслонки

Рис. Изменение напряжения при перемещении заслонки:
1 – шторка; 2 – приемные катушки

При перемещении шторки изменяется степень перекрытия ею той или иной приемной катушки и соответственно меняется амплитуда напряжения на ее выводах. Переменные напряжения на выводах катушек преобразуются затем в электронной схеме датчика в сигналы постоянного напряжения, усиливаются и сравниваются друг с другом. Обработка завершается созданием линейного напряжения, подаваемого на выводы датчика.

Преимуществом модуля является отсутствие контактов, что повышает надежность системы.

Модуль управления дроссельной заслонки расположен на впускном трубопроводе и служит для обеспечения подачи нужного количества воздуха в цилиндры.

Модуль управления дроссельной заслонки обеспечивает необходимую массу воздуха, поступающего в цилиндры.

Модуль состоит из:

  • корпуса дроссельной заслонки 1
  • дроссельной заслонки 7
  • привода дроссельной заслонки

Модуль управления дроссельной заслонки

Рис. Модуль управления дроссельной заслонки:
1– корпус дроссельной заслонки; 2 – электропривод дроссельной заслонки; 3 – шестерня привода; 4 – промежуточная шестерня; 5 – шестерня пружинного возвратного механизма; 6 – угловые датчики привода дроссельной заслонки; 7 – дроссельная заслонка

Привод дроссельной заслонки воздействует на дроссельную заслонку в соответствии с командами блока управления двигателя 2.

Схема управления дроссельной заслонкой

Рис. Схема управления дроссельной заслонкой:
1 – электропривод; 2 – блок управления двигателем; 3 – угловые датчики управления дроссельной заслонкой; 4 – дорожки потенциометров; 5 – дроссельная заслонка

Положение дроссельной заслонки отслеживается с помощью двух датчиков, представляющих собой потенциометры со скользящим контактом. Скользящие контакты укреплены на шестерне, которая сидит на валике дроссельной заслонки. Контакты касаются дорожек потенциометров в крышке корпуса. При изменении положения дроссельной заслонки изменяются сопротивления дорожки потенциометров и, тем самым, сигнальные напряжения, которые передаются блоку управления двигателя.

Блок управления двигателя определяет по этим сигналам намерение водителя увеличить или уменьшить мощность двигателя, суммируя внешние и внутренние требования к крутящему моменту и по ним рассчитывает необходимую величину момента и соответственно этому изменяет его. Крутящий момент определяется расчетом по частоте вращения двигателя, сигналу о нагрузке двигателя и моменту зажигания, при этом блок управления двигателя сначала сравнивает фактический крутящий момент с оптимальным моментом. Если эти величины не совпадают, блок управления расчетом определяет направление и величину положения дроссельной заслонки в целях достижения совпадения фактического и оптимального крутящего момента. После подается управляющий сигнал приводу дроссельной заслонки для приоткрытия ее или, наоборот, некоторого закрытия, например в случае включения дополнительного потребителя ­- компрессора климатической установки.

Контрольная лампа электронного привода акселератора сигнализирует водителю, что в системе электронного привода имеется неисправность.

ustroistvo-avtomobilya.ru

Что такое датчик положения дроссельной заслонки?

Для автомобилистов одной из важных характеристик транспортного средства является расход топлива. На количество топливно-воздушной смеси, которое поступает в камеры сгорания, а если точнее, на количество воздуха в смеси напрямую влияет работа дроссельной заслонки. ДЗ – располагается под капотом между воздушным фильтром и впускным коллектором ДВС с впрыском топлива. В начале 21 века на автомобили с электронным управлением впрыска начали устанавливать датчик положения дроссельной заслонки, с целью установления точной дозировки смеси и оптимизации расхода относительно положения педали акселератора.

Что такое датчик положения дроссельной заслонки, принцип его работы, конструкция?

Работа дроссельной заслонки ориентируется на регулировку давления воздуха во впускной системе. Основываясь на принципе работы клапана, во время того как заслонка открыта – давление в системе сравнимо с атмосферным, после закрытия – в системе образуется вакуум.

где находится ДПДЗ

Датчик положения дроссельной заслонки устанавливается в системе питания на оси заслонки и регулирует скорость ее работы. Если рассматривать конструкцию датчика, можно сказать, что это потенциометр, который управляет изменениями напряжения. Прибор относится к резистивным и в его устройстве находится активный ползунок; имеет три вывода: подача напряжения, масса и управление двигателем.

Во время того, как дроссельная заслонка находится в закрытом положении напряжение датчике минимально. Увеличение напряжение происходит пропорционально открытию заслонки, и в крайней позиции достигает порядка 5В. Блок управления двигателем, основываясь на полученных данных датчика, способен дать оценку движениям дроссельной заслонки и, при необходимости, изменяет характер ее работы, изменяя впоследствии момент и количество топливно-воздушной смеси, зажигание.

В некоторых случаях вместо потенциометра устанавливают магнитно-резистивный датчик, который состоит из статичного магнита (размещается на вале заслонки), элемента с электронной чувствительностью из магниторезистивного материала. Считается бесконтактным, поскольку отсутствует механическая связь. Работа бесконтактного датчика основана на магнитных волнах при повороте оси заслонки с изменением сопротивления.

Типы датчиков положения ДЗ

На сегодняшний день автомобильная промышленность представляет два типа датчиков:

  • Контактный потенциометр. Используется всеми производителями транспортных средств. В конструкции имеет ползунок и резистивные дорожки. Жестко крепится на патрубке дросселя и соединяется с осью. Работает на основе динамики напряжения, что способствует коррекции ЭБУ подачи топлива. При давлении на акселератор дроссель открывается, что разворачивает ось и перемещает ползунок, изменяя протяжность резистивных дорожек электрической цепочки.устройство датчика положения ДЗ
  • Бесконтактный. Производится как альтернативный вариант потенциометра. Работает на основе динамического изменения влияния магнитного поля. Бегунок не контактирует с рабочей частью, поскольку имеет постоянный магнит. На изменения реагирует электронный элемент. Считается, что такие датчики более долговечны и реже ломаются. Однако стоит учесть, что и стоят они на порядок выше.

Считается, что магниторезистивные датчики более долговечны и реже ломаются. Однако стоит учесть, что и стоят они на порядок выше.

Виды неисправностей ДПДЗ

Проблемы работы датчика дросселя связаны с его конструкторским устройством, и в целом характерны для большей части переменных резисторов. Автолюбители выделяют три основные проблемы:

  1. Износ подвижного контакта или пленочного сопротивления.
  2. Люфт креплений.
  3. Окисление активных контактов.

В процессе работы подвижного контакта и взаимодействии с пленочным сопротивлением возникает постоянное трение, которое при длительном воздействии изнашивает как резистивный слой, так и непосредственно поверхность активного контакта. Практика показывает, что степень износа напрямую зависит от стиля вождения и проявляется крайне неравномерно. Из-за этого только в некоторых местах образуются места, где активный контакт не достает до резистивного слоя, провоцируя исчезновение напряжения на выводе датчика положения дросселя.

В таком случае в старых инжекторных транспортных средствах снижается подача топлива и повышается риск детонации двигателя. В современных инжекторных ДВС система блокирует работу силового узла и активирует индикатор «check engine».

Окисление рабочих контактов возникает исключительно при условии повышенной влажности под капотом. В итоге сопротивление может повыситься, а электрический контакт полностью разорваться.

Причины и признаки поломок датчика

Определить неисправную работу датчика дросселя можно по нескольким «симптомам»:

  1. Падение общей мощности ТС;
  2. Увеличенный расход топлива;
  3. Поздний отклик после нажатия на педаль газа;
  4. Неустойчивая работа холостого хода;
  5. Разгон сопровождается резкими рывками.

Подобные признаки могут наблюдаться и при поломках некоторых других элементов подкапотного пространства, поэтому перед началом мер по исправлению проблемы необходимо произвести проверку работы ДПДЗ. В целом причин поломок датчика дросселя несколько:

  • Деформация напыления основы в начале работы активного ползунка, из-за чего напряжение выхода не может линейно расти;
  • Неисправность сердечника. Поломка хотя бы одного наконечника провоцирует образование задиров и зазубрин на основе подложки, что приводит к выходу из строя оставшихся наконечников. В результате – контакт полностью исчезает.

внешний вид датчика положения ДЗ

Провалы автомобиля при работе на 1–3 передачах могут свидетельствовать о неправильной адаптации дроссельной заслонки или некачественном датчике. Неоригинальные устройства очень зависимы от температуры. Тогда, чем больше корпус подвергается нагреванию, тем чаще меняется выходной показатель.

Диагностика работы ДПДЗ

Диагностировать работу датчика и дросселя можно собственными силами. Для этого необходимо под капотом создать легкий доступ к устройству (по большому счету, достаточно снять воздуховоды фильтра с патрубка и убрать шланги вентиляции).

После этого необходимо разъединить контактные провода датчика положения дроссельной заслонки, обнажив три основных контакта (обязательно понимать какой контакт за что отвечает). Далее заводим двигатель и подсоединяем положительную клемму мультиметра к питанию, а отрицательную к массе. После включения тестера и проведения замеров, показатель должен варьироваться от 4 до 6 Вольт.

После выключения зажигания измерения проводят, переключив мультиметр для измерения сопротивления. Тесты проводятся при закрытой заслонке, чтобы получить достоверные данные о сопротивлении между массой и сигналами для ЭБУ. Нормой считаются данные 0,8–1,2 кОм. Подобный тест необходимо повторить при открытом дросселе (норма данных 2,3–2,7 кОм).

настройка ДПДЗ

Если полученные данные отличаются от диагностической нормы, можно смело делать вывод о неисправности и потребности в замене датчика. Некоторые автомобили имеют собственный эталон показателей. Ознакомиться с ним можно на официальном сайте компании производителя, на форумах или в техническом руководстве ТС.

Замена датчика положения дросселя и регулировка нового устройства

В большинстве случаев заменить датчик достаточно просто и можно обойтись своими силами. Вся процедура состоит из трех основных частей: демонтаж старого неисправного устройства, установка нового ДПДЗ, сброс ошибки из памяти ЭБУ. В некоторых случаях потребуется произвести регулировку нового девайса.

Действия необходимо проводить при выключенном зажигании, при обесточенном датчике. Раскручиваем два винта крепления, и снимаем разъем с устройства. Ура, старый датчик снят.

Для установки нового датчика необходимо осторожно соединить торец оси дросселя с посадочным местом устройства. Отверстия должны быть совмещены во время поворота устройства по кругу. Далее необходимо вкрутить винты крепления и закрепить разъем.

Чтобы правильно сбросить ошибку из контроллера ЭБУ необходимо оставить отключенные клеммы от аккумулятора не менее чем на 8 часов. Приблизительно за такой срок память контроллера должна обнулиться. Самым надежным вариантом, если первый способ не помог, будет обратиться в сервис, где при помощи мотортестера проблема будет исправлена. С другой стороны, можно рискнуть продолжить использовать транспортное средство в «щадящем режиме», уповая на то, что рано или поздно ЭБУ самостоятельно сбросит ошибку.

Регулировка нового датчика положения дросселя

В большинстве случаев, современные датчики необходимо настроить после установки в автомобиль. Для этого после монтажа следует полностью закрыть заслонку и подключить щупы мультиметра к массе и выходу ДПДЗ. Устройство должно находиться в режиме вольтметра, и подключаться относительно полярности. Далее датчик поворачивается так, чтобы тестер показал минимальное напряжение. В подобном положении датчик необходимо плотно закрепить.

Иногда, после этого можно заметить завышенные холостые обороты. В подобном случае требуется провести «обучение» ЭБУ новым настройкам датчика. Для этого на 20–25 минут сбрасываются клеммы с аккумулятора, и устанавливаются обратно только при закрытой дроссельной заслонке. Далее на несколько секунд включается зажигание, но не заводится двигатель. Спустя 15–20 секунд работы зажигания его можно выключить. Процедуру необходимо повторить по второму кругу. За это время контроллер ЭБУ успеет сохранить новые параметры датчика.

Подробно обзнакомиться с проблемой и способами ее устранения можно на видео в сети:

Главное, при замене датчика положения дросселя использовать исключительно оригинальные устройства хорошего качества. Предметы низшей пробы могут поддаваться воздействию температуры и искажать данные.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

pricurivatel.ru

Электронная дроссельная заслонка

Одна из основных тенденций современного автомобилестроения – исключить человеческий фактор там, где успешно справляется электроника. В определенных ситуациях водитель допускает погрешность: не выжать до конца сцепление или не вовремя переключить передачу. Ошибки пагубно сказываются на работе двигателя и трансмиссии. Электронные системы способны с большей точностью управлять различными устройствами. Одним из первых успешных устройств подобного рода стала электронная дроссельная заслонка.

 Назначение электронной дроссельной заслонки

Электронный дроссель, как и традиционная механическая заслонка, контролирует поступление воздуха в камеру внутреннего сгорания двигателя автомобиля. Нажимая на педаль газа, водитель меняет положение заслонки, установленной в корпусе, имеющем форму трубы, через которую проходит поток воздуха переменной силы.

Применение электронной дроссельной заслонки позволяет добиться от двигателя большей экономичности, так как исключают ошибку человека при управлении акселератором

Механизм заслонки с переходом узла на электронное управление остался прежним. Коренным образом изменилась только система привода. Ось традиционной заслонки связана с педалью газа тросом. Нажимая на газ, водитель сокращает трос, который поворачивает ось заслонки, открывая ее. В электронном дроссельном узле движением оси управляет электромотор, и прямой связи между педалью газа и заслонкой нет. Педаль в данном случае выполняет функцию пульта дистанционного управления. Электроника позволяет менять положение заслонки быстро и ровно настолько, насколько это нужно для обеспечения работы двигателя при заданной нагрузки. Соответственно, конструкция позволяет избежать потери мощности, сокращает затраты топлива, а заодно служит пусковым устройством для холодного двигателя.

История создания

Система для смешивания паров бензина с воздухом, включающая механическую дроссельную заслонку, была изобретена в 1872 году инженерами Готлибом Даймлером и Вильгельмом Майбахом. В таком виде система просуществовала более века, пока немецкая компания Bosch не разработала электронный вариант дросселя.

Механизм заслонки электронного дроссельного узла нуждается в периодической чистке, так как в него попадает мелкая пыль, которую не способен отсеять даже очень качественный фильтр

Впервые, электронный дроссель применили для гоночного автомобиля. В далеком 1985 году, компания Volkswagen экспериментировала над вторым поколением Golf, пытаясь сделать из него автомобиль для гонок. Для этого Golf оснастили сразу двумя двигателями, а для синхронизации их мощностей использовали систему E-Gas. Дроссель на одном из них управлялся механически, а для другого применили электропривод, который синхронизировал положение заслонки. В результате удалось добиться суммарной мощности двигателя в 500 лошадиных сил, а разгон до сотни занимал 3,4 секунды. Неплохой результат для 1985 года!

Для гражданских автомобилей электронный дроссель стал доступен практически в то же время. Такие производители как Saab, Mercedes-Benz и BMW оснащают свои автомобили заслонками с электроприводом. Тем не менее, полностью вытеснить простой и дешевый в производстве механический привод им не удалось до сих пор.

Устройство электронной дроссельной заслонки

Электронной дроссельный узел состоит из следующих элементов:

электронный блок управления;

электромотор, управляющий приводом дроссельной заслонки;

механизм, состоящий из корпуса, оси и заслонки;

датчик положения педали газа;

датчик положения дроссельной заслонки.

Датчик положения устанавливается на корпусе заслонки. Его сигнал меняется при изменении положения шестерни, укрепленной на торце оси. Данные фиксируются, и сигнал, чье напряжение меняется в зависимости от положения, передается в блок управления. При обработке напряжение сигнала переводится в проценты: от 0 до 100%. 0% – заслонка закрыта, 100% — открыта полностью.

Как и многие другие инновации, электронное управление дросселем впервые нашло применение в мире спорта. При помощи электропривода была решена проблема управления множественными дросселями

Датчик, установленный на педали газа, фиксирует изменение ее положения и передает данные блоку управления. Данные обрабатываются, и в зависимости от положения педали запускается привод заслонки, открывая или прикрывая ее. Существует и обратная связь. Положение заслонки отслеживается датчиком и блок управления, получая сигнал, сравнивает угол открытой заслонки с положением педали газа. Благодаря этой связи электронное управление поддерживает холостой ход двигателя, контролируя оптимальное положение заслонки  согласно заданным параметрам.

Эволюция электронного дросселя

На современных автомобилях помимо управления оборотами двигателя электронный дроссель выполняет еще несколько дополнительных функций. 

В дроссельный узел интегрирована встречавшаяся еще на карбюраторах система холодного пуска. Для реализации используется дополнительный датчик, который измеряет температуру охлаждающей жидкости и передает данные блоку управления. Для более быстрого и эффективного прогрева двигателя система открывает заслонку, обеспечивая работу на повышенных оборотах, обычно, в районе 1500 rpm.  По мере роста температуры заслонка постепенно закрывается, и обороты снижаются до холостого хода.

Также электроника помогает компенсировать нагрузку на двигатель при подключении дополнительных систем. Климатическая установка, генератор, круиз-контроль и другие системы повышают нагрузку на коленвал. Блок управления заслонкой обрабатывает данные по нагрузке, а затем рассчитывает оптимальное положение заслонки в том или ином режиме эксплуатации.

В электронном дроссельном узле реализована система быстрого прогрева двигателя, упрощающая запуск автомобиля зимой

В целом применение электронной дроссельной заслонки значительно повышает экономичность автомобиля, но установка системы имеет высокую себестоимость, что как правило не позволяет использовать ее для бюджетных моделей автомобилей.

Характерные неисправности электронной дроссельной заслонки

Как и любое другое сложное устройство, электронный дроссельный узел усложняет конструкцию автомобиля и потенциально является источником проблем. Электроника подвержена негативному влиянию климатических условий и может работать неправильно при экстремально низкой температуре или влажности. В постгарантийный период замена электронного дросселя может стать источником расходов для владельца автомобиля, так как узел, как правило, неремонтопригоден и меняется целиком.

Механизм заслонки в электронном дроссельном узле не отличается от традиционного, поэтому заслонка нуждается в периодической чистке, особенно, в случае эксплуатации в тяжелых условиях.

blamper.ru

Достоинства и недостатки электронного дросселя « Invent-labs

dbw

В этой статье я коротко расскажу вам о моем личном опыте, связанном с электронным дросселем. Здесь будет только практическая информация, без громких бессмысленных фраз из рекламных буклетов автопроизводителей.

 

Что такое электронный дроссель?

Электронный дроссель — это дроссельная заслонка, которая управляется электродвигателем вместо привычного троса. ЭБУ считывает сигнал с датчика положения педали и отдает команду на открытие или закрытие дроссельной заслонки. В английской терминологии это называется Drive-By-Wire, что переводится примерно как «управление по проводах».

Вся суть в том что ЭБУ может крутить дроссель независимо от положения педали. В этом скрывается много возможностей по улучшению ездовых качеств, и столько же возможностей по ухудшению.

В чем же проблемы?

У этой системы есть большой минус: конструкция существенно усложняется. Вместо одного механического троса мы получаем 2 датчика положения педали, плюс 2 датчика положения дроссельной заслонки, плюс привод дроссельной заслонки. 

Кроме того, есть и другие неочевидные недостатки, которые зависят уже от конкретной настройки ЭБУ. Речь идет о т.н. «резиновой педали». Этот эффект проявляется в заторможенной реакции автомобиля. Вы нажимаете на газ, но машина «не едет», и лишь за несколько секунд начинает вялый разгон. При этом действительно получается наибольшая экономия топлива, но какое-либо удовольствие от вождения убивается начисто. Второй неприятный эффект — машина самостоятельно «подгазовывает». Вы нажимаете дроссель на некоторое положение, и останавливаете педаль. А автомобиль самостоятельно «дожимает» педаль, а потом возвращает обратно. Видимо чтобы создать иллюзию мощного двигателя. Если сложить два этих явления — получается комбинация, в которой физически невозможно точно дозировать тягу. Именно так был настроен дроссель на моей бывшей Skoda Fabia 1.2. Зимой, на скользком покрытии, ездить было невозможно. Дроссель реагировал с большой задержкой. А после этой задержки еще и подгазовывал, моментально срывая колеса в пробуксовку. Половину навыков зимнего вождения пришлось выкинуть к черту, так как они попросту не работали на этом автомобиле. Спасала лишь хорошая резина. Это очень показательный пример того как именитые производители могут прохалтурить с настройкой.

Чем хорош электронный дроссель?

Второй показательный пример — моя Audi A4 1.8T. Тоже на электронном дросселе. Но езда кардинально отличается от Шкоды. Машина реагирует как и должна, нет никакого «улучшения» со стороны электроники. Сразу ощущается то, что машину настраивали с учетом удовольствия от управления.

Опыты с созданием и доводкой драйвера дросселя Invent-DBW показал другие очень интересные плюсы этой системы.

Антипробуксовка, или трекшн-контроль

Собственно ради этого мы и начали работу с электронным дросселем. Проблема всех мощных передне- и заднеприводных авто — потеря сцепления с дорогой при разгоне. Наиболее быстрый разгон проходит на грани срыва колес в пробуксовку. Человек не может точно держать колеса на этой грани. Наши органы чувств не успевают вовремя реагировать. А электроника — успевает. Достаточно измерять скорость ведущих колес и скорость ведомых колес. Если ведущие вращаются быстрее ведомых — нужно уменьшить тягу. Вопрос заключается лишь в одном — как именно уменьшать тягу мотора? На обычном дросселе мы не можем регулировать количество смеси в цилиндрах. Остается позднить зажигание, что вызывает значительный рост температуры выхлопных газов. Если стартовать без фанатизма — атмосферник переносит такую пытку более-менее сносно. А на турбомоторе мы очень быстро поджарим или турбину или сам двигатель. Единственное решение — электронный дроссель. Абсолютно без вреда для мотора мы получаем идеально ровный, и максимально эффективный разгон на любой поверхности.

Приятная управлемость. 
Поскольку мы ставили перед собой задачу максимально приблизить реакции электроники к механическому приводу, у нас получилась отличная управляемость. Нет даже намека на «резину», которой страдает множество заводских авто. Машина реагирует так же резво, как и на троссовом управлении дросселем.

Нет дерганности при больших диаметрах дроссельной заслонки
Если дроссель большого диаметра — машина получается очень агрессивной. При малейшем нажатии педали — прыгает вперед. Поначалу это может нравиться, но только до первой поездки по городу в час пик. Но на эл.дросселе этой проблемы можно избежать. Мы сделали регулировку нелинейности. Это значит что в самом начале хода педали двигатель реагирует очень мягко, позволяя плавно трогаться и ехать в пробке, не «гладя» педаль с ювелирной точностью. Эту функцию можно настроить под конкретный двигатель и под вкусы водителя. При правильной настройке получается пропорциональное увеличение тяги. Сколько педаль нажали — столько мощности развивает мотор. Без каких либо неудобств в городской езде.

Нет провала при нажатии «в пол»
В большей или меньшей степени этим страдает любой двигатель. Вы резко нажимаете газ в пол на низких оборотах, а машина где-то секунду «думает», и только потом начинает разгон. В этот момент создаются настолько неблагоприятные условия в цилиндрах, что смесь отказывается нормально гореть. Этого можно избежать, если сначала нажать на педаль немного, а лишь потом «дожать». Разгон получается сразу, без задержек. Но в критической ситуации вряд ли вы будете об этом думать. Вы будете давить до упора, в надежде что двигатель «вывезет». Но электронный дроссель думает всегда, и в этот момент он возьмет управления на себя, открывая дроссель именно так как нужно для максимально быстрого разгона. 

Существенное уменьшение турбоямы
dbw_vs_mechВсе кто ездил на турбомоторе, знают об этом эффекте. Машина лучше разгоняется с низов, если дроссель открывать не полностью, а сначала приоткрыть на некоторое положение, и по мере увеличения тяги дожимать до полного. Этот момент сложный для понимания, но если упустить все подробности — турбина быстрее надувает давление, если в начале создать ей воздушную «подпорку».
И мы сделали такой алгоритм. Дроссель на разгоне открывается так, чтобы обеспечить максимально благоприятные условия для раскрутки турбины. В результате получается ровное ускорение с самых низов. Если резко нажать, то нет ощущения, что под педалью «никого нет». Есть ровный нарастающий разгон. 

 

invent-labs.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *