ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Принцип работы двигателя внутреннего сгорания

Категория:

   Общие сведения об автогрейдерах

Публикация:

   Принцип работы двигателя внутреннего сгорания

Читать далее:



Принцип работы двигателя внутреннего сгорания

Двигателем внутреннего сгорания (ДВС) называется такой поршневой тепловой двигатель, в котором тепловая энергия, возникающая в цилиндрах при сгорании горючей смеси, преобразуется в механическую за счет воздействия на поршни газообразных продуктов сгорания, обладающих высоким давлением и температурой (до 2400° С и 8 МПа). При этом поршни, перемещаясь под давлением продуктов сгорания, приводят во вращение через кривошипно-шатунный механизм коленчатый вал двигателя, а от него — трансмиссию машины.

Принципиальная схема ДВС представлена на рис. 6.1. Из нее видно, что поршень может перемещаться в цилиндре из крайнего верхнего положения, или верхней мертвой точки (ВМТ), в крайнее нижнее положение, или до нижней мертвой точки (НМТ), на расстояние, соответствующее ходу поршня.

От НМТ поршень может перемещаться только вверх до ВМТ. Таким образом, двойной ход поршня (вниз и вверх) соответствует полному обороту вала. Значит, если обеспечить своевременное попадание в цилиндр горючей смеси, ее сжатие и сгорание, а затем удаление продуктов сгорания и новое заполнение цилиндра горючей смесью, можно добиться постоянного вращения коленчатого вала двигателя. На этом основана работа ДВС. А сама совокупность повторяющихся в определенной последовательности процессов впуска горючей смеси, ее сжатия, сгорания с последующим расширением и выпуска продуктов сгорания в атмосферу носит название рабочего цикла ДВС. Часть рабочего цикла, соответствующая перемещению поршня из одного крайнего положения в другое, называется тактом.

Рекламные предложения на основе ваших интересов:

Если полный рабочий цикл ДВС совершается за четыре такта (4 хода поршня), т. е. за два полных обо рота коленчатого вала, то такой двигатель называется четырехтактным; если же рабочий цикл состоит из двух тактов (2 хода поршня), то двигатель считается двухтактным. На рис. 6.1 видно, что полость цилиндра сообщается с внешней средой с помощью двух отверстий, закрываемых клапанами или другим образом. Одно из отверстий является впускным и предназначено для впуска горючей смеси или воздуха, другое — выпускным и служит для выпуска продуктов сгорания. Впускное и выпускное отверстия могут либо полностью перекрываться, либо закрываться попеременно.

Когда поршень занимает крайнее верхнее положение, над ним остается свободное пространство объемом Ус, которое является так называемой камерой сгорания. При перемещении поршня в НМТ в цилиндре освобождается объем Ур, называемый рабочим, который вместе с объемом камеры сгорания Vc образует полный объем цилиндра: V„= Ус+ Vp. Таким образом, поршень, перемещаясь в обратном направлении от НМТ до ВМТ, изменяет объем цилиндра с V„ до VQ, т. е. многократно сжимает газообразные вещества. Поэтому отношение полного объема цилиндра V„ к объему камеры сгорания VQ показывает так называемую степень сжатия в цилиндре е= Vn/Vc, т. е. величину сжатия горючей смеси в момент ее воспламенения. Эта величина зависит от конструкции ДВС. Так, у дизельных двигателей она достигает величины 14…22, а у карбюраторных 6… 10. Когда рабочий объем одного цилиндра Vp умножается на их число, получается рабочий объем двигателя Ул.

Рис. 6.1. Принципиальная схема ДВС

В зависимости от вида применяемого топлива ДВС могут быть дизельными (используется дизельное топливо) и карбюраторными (топливом являются бензин, газ). На автогрейдерах основными двигателями являются многоцилиндровые четырехтактные дизельные двигатели, в качестве пусковых на них используются одноцилиндровые двухтактные бензиновые двигатели. В общем, принципы работы дизельных и карбюраторных двигателей подобны. Основное отличие состоит в том, что в карбюраторных двигателях для воспламенения рабочей смеси (смеси паров топлива, воздуха, остаточных газов) в цилиндрах используется специальная электрическая система зажигания, а на дизельных двигателях — воспламенение топлива, впрыскиваемого под высоким давлением в камеру сгорания, происходит от высокой температуры воздуха, превышающей температуру вспышки смеси топлива и воздуха, сжатого в камере сгорания поршнем. Кроме того, в дизельных двигателях вначале цилиндры наполняются воздухом, а не горючей смесью (смесь мелкораспыленного жидкого или газообразного топлива с воздухом), как у карбюраторных, и сжимается воздух, а не горючая смесь (поэтому-то степень сжатия, температура и давление в цилиндрах у дизельных двигателей выше, чем у карбюраторных). В связи с этим для дизельных двигателей требуется специальная система впрыска топлива под давлением, в то время как у карбюраторных двигателей горючая смесь поступает за счет разрежения, создаваемого поршнями.

Принцип работы четырехтактного дизельного двигателя. Первый такт — впуск воздуха (рис. 6.2, а) производится при движении поршня от ВМТ до НМТ за счет создаваемого в цилиндре разрежения через открытый впускной клапан, который открывается с опережением до прихода поршня в ВМТ и закрывается с запаздыванием после достижения поршнем НМТ.

Рис. 6.2. Принцип работы четырехтактного дизельного двигателя: а — первый такт — впуск воздуха; 6 — второй такт — сжатие воздуха; в — третий такт — рабочий ход; 4— четвертый такт — выпуск отработавших газов; 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — впускной клапан; 5 — форсунка; 6 — выпускной клапан; 7 — цилиндр

Второй такт — сжатие воздуха (рис. 6.2,6) происходит при движении поршня от НМТ к ВМТ при закрытых впускном и выпускном клапанах. В конце сжатия давление воздуха достигает 3…4 МПа при температуре выше 500° С. В момент, когда поршень несколько не доходит до ВМТ, с помощью форсунки производится впрыск топлива под давлением 20…40 МПа. В нагретом воздухе распыленное топливо самовоспламеняется и сгорает.

Третий такт — рабочий ход (рис. 6.2,в) происходит при заканчивающемся сгорании топлива и расширении продуктов сгорания, сопровождающемся перемещением поршня от ВМТ к НМТ. С целью лучшей последующей очистки полости цилиндра от отработавших газов выпускной клапан открывается до момента подхода поршня в НМТ.

Четвертый такт — выпуск отработавших газов (рис. 6.2, г) производится при движении поршня от НМТ к ВМТ, когда выпускной клапан открыт. После этого рабочий цикл двигателя повторяется.

Принцип работы двухтактного карбюраторного двигателя. В отличие от дизельного двигателя для образования горючей смеси в нем использован карбюратор, а система зажигания со свечой, вставленной в головку цилиндра, служит для зажигания горючей смеси (рис. 6.3). В отличие от четырехтактного карбюраторного двигателя в двухтактном двигателе с кривошип- но-камерной продувкой отсутствуют клапаны, а впускное и выпускное отверстия перекрываются самим поршнем. Кроме того, имеется продувочное отверстие и для подачи горючей смеси от карбюратора в цилиндр используется герметичный картер двигателя.

В одном такте двухтактного двигателя сосредоточены не один, а два описанных выше процесса.

Первый такт — рабочий ход поршня (рис. 6.3, а, б) начинается, когда поршень, перекрыв выпускное и продувочное отверстия и открыв впускное отверстие, подходит к ВМТ. Тогда срабатывает свеча, искра от которой воспламеняет сжатую рабочую смесь, в камере сгорания резко повышается температура и давление (до 2,5 МПа). Поршень, под давлением перемещаясь вниз, сначала закрывает впускное отверстие и начинает сжимать рабочую смесь в картере 8 двигателя, а затем открывает выпускное отверстие 2 и продувочное, через которые под давлением (0,1 МПа) рабочей смеси из картера производится удаление отработавших газов и продувка рабочей полости цилиндра. При этом отражатель, установленный на головке поршня, направляет рабочую смесь по всей полости цилиндра, способствуя его очистке от продуктов сгорания. Когда поршень достигает НМТ, начинается его движение вверх.

Рис. 6.3. Принцип работы двухтактного карбюраторного двигателя: а — начало рабочего хода поршня; б—конец рабочего хода поршня; 1 — впускное отверстие; 2 — выпускное отверстие; 3 — шатун; 4 — цилиндр; 5 — поршень; 6 — свеча; 7 — продувочное отверстие; 8 — картер; 9—коленчатый вал; 10—карбюратор

Второй такт — сжатие рабочей смеси начинается с продолжающегося удаления отработавших газов и впуска в надпоршневое пространство рабочей смеси. По мере движения поршня вверх сначала перекрывается продувочное отверстие, а затем и выпускное, после чего рабочая смесь сжимается в течение всего движения поршня до ВМТ. В тот момент, когда нижний край поршня открывает впускное отверстие, начинается впуск горючей смеси в полость картера (в подпоршневое пространство). Затем рабочий цикл повторяется.

Принцип и особенности работы поршневых ДВС определили наличие у них следующих основных механизмов и систем: кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня под воздействием давления газов во вращательное движение коленчатого вала; механизм газораспределения, предназначенный для своевременного наполнения цилиндров горючей смесью или воздухом и выпуска отработавших газов в атмосферу; система смазки, предназначенная для очистки и подачи к трущимся сопряженным поверхностям двигателя необходимого для смазки и охлаждения этих поверхностей количества масла; система охлаждения, служащая для охлаждения всех нагреваемых деталей двигателя путем отвода от них тепла; система питания, предназначенная для подачи в цилиндры дозированного количества топлива или горючей смеси в распыленном состоянии; система зажигания (у карбюраторных двигателей), служащая для принудительного воспламенения рабочей смеси в цилиндрах; система пуска, предназначенная для быстрого и уверенного запуска двигателя при любых температурных условиях.

Работу ДВС характеризует такой параметр, как эффективная мощность N3, являющаяся мощностью, снимаемой с коленчатого вала двигателя для производства полезной работы. Мощность указана в паспорте на двигатель. Кроме того, в паспорте дается и регуляторная характеристика двигателя, т. е. зависимости мощности и крутящего момента на валу двигателя от частоты его вращения.

Рекламные предложения:


Читать далее: Классификация и техническая характеристика ДВС автогрейдера

Категория: — Общие сведения об автогрейдерах

Главная → Справочник → Статьи → Форум


Опишите принцип работы двигателя внутреннего сгорания, паровой турбины, ракетного двигателя

Основным двигателем реактивной авиации мира является турбореактивный двигатель (ТРД) и именно его принцип работы мы сейчас без труда и лишних ненужных заморочек проясним.

Все мы прилежно учились в школе  , и знаем, что в физике существует понятие «тепловая машина» (или «тепловой двигатель»). Человек долго подбирался к ее созданию.

Первые образцы приписывают даже Архимеду и потом Леонардо да Винчи. Но по настоящему она вошла в жизнь человека только в конце 60-х годов 18-го века, когда Д. Уатт построил свою паровую машину. Прогресс не остановить и современную жизнь уже невозможно представить без тепловых машин. Это не только тепловые электростанции и электроцентрали (в том числе, кстати и атомные станции), но и миллионы автомобилей различного назначения и, конечно же, мною очень любимые  авиационные двигатели.

Теорию работы тепловой машины описывает раздел физики термодинамика. Не углубляясь в ее законы (принцип этого сайта Вам известен, если Вы читали страницу «Сайт об авиации»  ), скажу, что тепловой двигатель – это машина для преобразования энергии в механическую работу. Работа – ее так сказать полезная «продукция». Этой энергией обладает используемое внутри машины так называемое рабочее тело, в качестве которого обычно выступает газ (или пар в паровой машине). Получает энергию рабочее тело при сжатии в машине, а полезную механическую работу мы потом будем иметь при последующем его расширении.

Но! Надо понимать, что в работоспособномтепловом двигателе работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. То есть вариант «на сколько сжали, на столько же и расширили» (все равно как в автомобильном амортизаторе) нам не подходит. Поэтому для сохранения нужной нам работоспособности газ перед расширением или во время него нужно еще и нагревать, а перед сжатием неплохо бы охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и сразу появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип. На его основе и работает турбореактивный двигатель.

Таким образом любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и неплохо бы холодильник. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера. Рабочее тело – воздух, который попадает в компрессор, там сжимается, далее идет в камеру сгорания, там нагревается, смешивается с продуктами сгорания ( керосина) и потом следует на турбину, вращая ее (а она, в свою очередь компрессор) и расширяясь, тем самым теряет часть энергии. И уже далее расходуется «полезная» энергия. Она превращается в кинетическую, когда газ сильно разгоняется в устройстве под названием реактивное сопло (которое обычно бывает сужающимся) и двигатель получает силу тяги за счет реакции струи. Все  … ТРД работает. Неплохо этот процесс показан в коротком ролике. Он без комментариев, но они здесь и не нужны  . Скажу только, что показанное переднее колесо – это компрессор, далее кольцом вокруг вала – камера сгорания и за ней колесо турбины. Все схематично, но достаточно просто, чтобы понять как работает турбореактивный двигатель…

План урока на тему «Принцип работы двигателя внутреннего сгорания»

1 этап

Класс: 8
Профиль: общий
Количество человек: 15
Цель урока: формирование понимания принципа работы двигателя внутреннего сгорания
Тип урока: урок формирования нового знания
План изучения приборов:
1. Название прибора
2. Какое явление или закон положен в основу действия прибора
3.Принципиальная схема устройства прибора (основные части, их назначение)
4. Действие прибора
5.Правила эксплуатации прибора

2 этап

Цель:формирование понимания принципа работы двигателя внутреннего сгорания
Задачи:
1. Обозначить название прибора
2. научить определять явления, которые положены в основу действия двигателя внутреннего сгорания
3.Научить изображать принципиальную схему устройства прибора (основные части, их назначение)
4. Научить описывать принцип действия двигателя внутреннего сгорания
5. Разъяснить правила эксплуатации двигателя внутреннего сгорания

3 этап

4 этап

Нарисовать таблицу «знаю-узнал новое-хочу узнать»

(Индивидуальная работа )

Ученики рисуют таблицу «ЗУХ» и заполняют ее в соответствии со своими знаниями. После этого начинается обсуждение таблиц. Учитель заполняет левую колонку такой же таблицы на доске со слов учеников.

Знаю

Узнал сегодня

хочу узнать

Составление ментальных карт поможет учителю понять, на каком уровне знаний находятся ученики и необходимо ли скорректировать материал.

Оценивание:

1 балл — дан ответ для записи на доске

  1. Ученик заполняет левую колонку таблицы в соответствии со своими знаниями

2. научить определять явления, которые положены в основу действия двигателя внутреннего сгорания

Анализ текста

(Индивидуальная работа)

1.Ученики анализируют текст учебника п.22 и одновременно с этим делают в тексте пометки (изображены на доске):

«V» — знаю

«-» — противоречит моим первоначальным знаниям

«?» — хочу узнать

«+» — это для меня новое

  1. После прочтения ученики самостоятельно заполняют оставшиеся колонки таблицы «ЗУХ». Помогают учителю заполнить таблицу на доске.

  2. Анализ третьего столбика таблицы — ученики предлагают варианты, где можно найти недостающую информацию

1 балл — ученик ориентируется в тексте параграфа и осознанно делает пометки

1 балл — ученик даёт ответ для записи на доске

1 балл — ученик предлагает способ получения интересующей информации

  1. Работа с текстом не вызывает затруднений.

  2. Заполнение таблицы происходит на основе текста и пометок.

  3. Ученик в ходе обсуждения понимает, откуда ему брать информацию далее

3. Научить изображать принципиальную схему устройства прибора (основные части, их назначение)

Заполнение пропусков на схеме ДВС

(Работа в парах)

Ученики заполняют пропуски на схеме ДВС согласно прочитанному тексту, в парах проверяют правильность заполнения.

(Приложение 1)

2 балла — схема заполнена правильно

1 балл — схема заполнена частично

0 баллов — схема не заполнена вообще, либо заполнена менее чем на половину

Ученик проверяет, насколько он понял текст учебника на основе работы с выданным материалом

4. Научить описывать принцип действия двигателя внутреннего сгорания

Создание схемы этапов работы ДВС

(Работа в парах)

Ученики изображают схему этапов работы ДВС согласно тексту учебника. Обмениваются работами и проверяют работы на основании пояснения этапов на модели учителем

2 балла — схема выполнена без ошибок

1 балл — есть неточности

0 баллов — схема выполнена менее, чем на половину

Ученики проверяют степень понимания текста учебника на основе создания новой единицы информации

Создание карточки правил работы с ДВС

(Индивидуальная работа)

Ученики придумывают правила работы с ДВС, учитель записывает лучшие варианты на доске

1 балл — дан ответ, который записан на доске

Ученик способен придумать правила предосторожности при работе с ДВС на основе знаний, которые он приобрёл на

Сопоставление пометок в тексте учебника и таблицы «ЗУХ»

(Индивидуальная работа)

.Ученики сопоставляют пометки в учебнике и данные таблицы, особенно обращая внимание на противоречия, новое и неизвестное по итогам урока. Делают запись, если что-то осталось непонятым.

три линии оценки:

Три линии оценки:

Приложение 1

Электрооборудование двигателя

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатель внутреннего сгорания повернуть пропеллеры генерировать толкать. Сегодня большинство самолетов авиации общего назначения или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. Мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера. Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить и изучить основы двигателей и их операция.На этой странице мы представляем компьютерный чертеж электрической системы Райта Авиадвигатель братьев 1903 года.

Механическое управление

На рисунке вверху показаны основные компоненты электрической системы двигателя Wright 1903. В любом двигателе внутреннего сгорания топливо и кислород объединяются в процесс горения произвести силу, чтобы повернуть коленчатый вал двигателя. Задача электрической системы — обеспечить искру, которая инициирует горение.

Электроэнергия вырабатывается магнето в задней части двигателя. Магнето полагается на физический принцип , электрическая индуктивность для производства электричества; когда провод проходит через магнитное поле, электрический ток наведено в проводе. Магнето имеет большой U-образный постоянный магнит вверху. Между плечами магнита намотана проволока. вал, который вращается фрикционным приводом трение колеса о маховик двигателя.В движущемся проводе индуцируется электрический ток. Мощность для поворота магнето обеспечивается работающим двигатель. Магнето очень похоже на генератор переменного тока или генератор на современный автомобиль. Братья Райт купили свой магнето, и он обеспечивал очень скромные 10 вольт при 4 амперах в работе. Два провода подключают магнето к двигателю; заземляющий провод к нога картер, и силовой провод к шине снаружи четырех камер сгорания двигателя.

В каждой камере сгорания электрическая шина проводит электричество к Свеча зажигания ввинчивается через стенку камеры. В заглушка изолирована от стенки камеры. Внутри камеры там представляет собой подвижный контактный переключатель . Когда переключатель замкнут, создается цепь, и через нее проходит электричество. провода, шину и вилку. При быстром размыкании переключателя возникает искра. сгенерировано. Вы можете увидеть этот эффект, если отключите работающий прибор в домашних условиях. Пружинные рычаги , установленные снаружи камеры, являются используется для размыкания и замыкания контактного переключателя с помощью изолированного вала, проходящего через через стенку камеры сгорания. Пружинные рычаги прикреплены к картеру двигателя, который заземлен на магнето. Рычаги активируются кулачками которые включают кулачковый вал под двигатель. Кулачковый вал соединен шестернями с кулачковым валом выпускного клапана. который превращается временная цепь. Шестерни и кулачки гарантируют, что контактный выключатель размыкается, и искра зажигания возникает как раз при подходящий момент двигателя цикл.Вот компьютерная анимация действия рычагов и контактного переключателя:

В этой анимации мы вырезали открытый цилиндр №3, чтобы вы могли наблюдать движение клапанов, кулачков, коромысел, электрических контактов и переключателей. Пружина, которая перемещает электрический контакт внутри цилиндра №3 частично скрыт самим цилиндром. Весна еле видна за синей пружиной выпускного клапана. Вы можете лучше увидеть действие электрический кулачок и пружина на соседнем цилиндре №4 справа.Но обратите внимание что синхронизация движения переключателей и клапанов различается между прилегающие цилиндры. В анимации мы вырезали шину, чтобы чтобы увидеть цилиндр №3 изнутри; штанга оборачивается вокруг цилиндра №3 в таким же образом, как он оборачивается вокруг цилиндра №2 слева.

Как это работает?

Чтобы понять, как работает электрическая система, мы нарисовали упрощенная схема подключения двигателя :

Мы пронумеровали цилиндры (и камеры сгорания) от 1 до 4. идёт от передней части двигателя к задней.Магнито, провода, контактные выключатели и заземленные цилиндры производят электрическая цепь , о которой вы слышали в школе. Этот конкретный тип схемы называется параллельной схемой . потому что есть параллельные линии , проходящие через четыре цилиндры. Контактный выключатель на любом цилиндре может быть открыт или закрыт не затрагивая соседние цилиндры. (Если бы цилиндры были подключен к серии , размыкание любого переключателя отключит ток ко всем цилиндрам.)

На протяжении почти всего цикла для данного цилиндра контактный выключатель удерживается разомкнутым, и через систему не течет ток. Но когда кулачок нажимает на рычаги, контактный переключатель в одном цилиндре изначально замкнут, что производит ток электричество от магнето через шину, выключатель и рычаги, к картеру и обратно к магнето. Это условие для цилиндра №1 показано вверху рисунка. Поскольку кулачок продолжает двигаться, контактный переключатель внезапно размыкается, как показано внизу рисунка.Небольшая искра возникает, когда выключатель открыт (вы можете увидеть этот эффект, если выдернете вилку из операционная лампа в вашем доме.) Внутри камеры сгорания эта искра используется для воспламенения топлива / воздуха. смесь в конце ход сжатия. Контактный выключатель остается разомкнутым внутри цилиндр до следующего обжига. Открытие переключателя называется электрическая неисправность (цепи) и эта техника зажигания называется системой «сделать и сломать». Четыре цилиндра этого двигателя горят по одному в порядке стрельбы , который повторяется.Братья использовал порядок стрельбы 1 — 3 — 4 — 2, чтобы сбалансировать стрельбы и сделать двигатель работает максимально плавно.

Историческая справка — Обратите внимание, что в системе «сделать и сломать» есть подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания. Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем у свечи зажигания. метод, используемый братьями. В современных системах также используется очень высокое напряжение по сравнению с системой братьев.Но у братьев было одно преимущество перед современными системами. Их контактные данные перемещались во время цикла двигателя, поэтому оставались относительно чистыми. Современные свечи зажигания могут испортить из-за масла и грязи, присутствующих в камера сгорания собирается в зазоре свечи . «Сделать и break «система не имеет этой проблемы.


Действия:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Как работает судовой двигатель?

Судовые двигатели обеспечивают движение судна из одного порта в другой.Независимо от того, идет ли речь о небольшом корабле, курсирующем в прибрежных районах, или о большом корабле, путешествующем по международным водам, на борту корабля для обеспечения тяги установлен четырехтактный или двухтактный морской двигатель.

Судовые двигатели — это тепловые двигатели, используемые для преобразования тепла, выделяемого при сжигании топлива, в полезную работу, т. Е. Выработку тепловой энергии и преобразование ее в механическую энергию. Двигатели, используемые на борту судов, представляют собой двигатели внутреннего сгорания (тип), в которых сгорание топлива происходит внутри цилиндра двигателя, а тепло выделяется после процесса сгорания.

Принцип работы судового двигателя

Как упоминалось ранее, двигатели внутреннего сгорания (внутреннего сгорания) в основном используются в морских силовых установках и для выработки электроэнергии. Работу судового двигателя можно объяснить следующей процедурой:

— Топливо впрыскивается в контролируемом количестве под высоким давлением

— Смесь топлива и воздуха сжимается внутри цилиндра двигателя с помощью поршня, что приводит к взрыву смеси при повышении давления за счет сжатия.В результате выделяется тепло, которое увеличивает давление горящего газа

2-тактные и 4-тактные двигатели

— Внезапное увеличение давления толкает поршень вниз и передает поперечное движение во вращательное движение коленчатого вала с помощью шатуна. Взрыв повторяется непрерывно для поддержания выходной мощности в зависимости от типа морского двигателя и его использования.

Прочтите по теме: 14 Терминологий, используемых для определения мощности судового двигательного двигателя

Коленчатый вал через маховик соединен либо с генератором, либо с гребным винтом для выполнения механической работы.Чтобы коленчатый вал постоянно вращался, взрыв необходимо повторять непрерывно.

Перед следующим взрывом отработанные газы вытягиваются из цилиндра через выпускной клапан и подается свежий воздух, который помогает вытолкнуть отработанный газ, а также обеспечивает свежий воздух для следующего процесса сгорания.

Прочтите по теме: Компоненты и конструкция системы выпуска отработавших газов

Типы судовых дизельных двигателей:

Два основных типа судовых дизельных двигателей: —

  • 4-тактный двигатель
  • Двухтактный двигатель

Четырехтактный двигатель может быть установлен на судне для выработки электроэнергии, а также для приведения в движение корабля (обычно на небольших судах).Этому двигателю требуется 4 цикла для завершения передачи мощности от камеры сгорания к коленчатому валу.

Связанное чтение: Почему 2-тактные двигатели чаще используются для движения на кораблях, чем 4-тактные?

События, происходящие в I.C. двигатель следующие:

  1. Ход всасывания для забора свежего воздуха внутрь камеры — это движение поршня вниз
  2. Такт сжатия для сжатия топливовоздушной смеси — движение поршня вверх
  3. Рабочий ход — при котором происходит взрыв, и поршень толкается вниз
  4. Такт выпуска — движение поршня вверх для отвода отработанных газов

Четыре события завершаются четырьмя тактами поршня (два оборота коленчатого вала).Впускной и выпускной клапаны расположены в верхней части головки блока цилиндров для всасывания свежего воздуха и удаления отработанных выхлопных газов.

И клапаны, и топливный насос (подающий топливо в форсунку) приводятся в действие с помощью распределительного вала, который приводится в движение коленчатым валом с помощью зубчатой ​​передачи. В четырехтактном двигателе распредвал вращается на половине скорости коленчатого вала. Картер открыт для гильзы поршня, которая способствует смазке гильзы.

2-тактные двигатели используются для движения судов и имеют больший размер по сравнению с 4-тактными двигателями.В этом двигателе полная последовательность выполняется за два цикла, т. Е.

.
  1. Такт всасывания и сжатия — это движение поршня вверх для втягивания внутрь свежего воздуха и сжатия топливовоздушной смеси
  2. Мощность и выхлоп — это движение поршня вниз из-за взрыва внутри камеры с последующим удалением выхлопных газов через выпускной клапан, установленный в верхней части цилиндра. Используется сальник, который отделяет картер от камеры сгорания и изолирует его.

Ниже показано базовое видео о работе судового двигателя:

В этом видео показано, как работает двухтактный судовой двигатель на судне —

Как и где производится судовой двигатель?

Если вы видели двигатели на кораблях, в том числе небольшие четырехтактные двигатели-генераторы, а также массивные двухтактные двигатели, одна мысль, которая должна была прийти вам в голову, — как и где были сделаны эти двигатели?

Наиболее известные производители двигателей, двигатели которых используются на судах:

  1. MAN Diesel & Turbo (ранее двигатели B&W) — известные судовые двигатели с высокой, средней и низкой частотой вращения.
  2. Wartsila (ранее Sulzer Engines) — известна производством судовых двигателей с высокой, средней и малой скоростью.
  3. Mitsubishi — производство двигателей для легких, средних и тяжелых условий эксплуатации
  4. Rolls Royce — известный своими двигателями для круизных лайнеров и кораблей
  5. Caterpillar производит — для средне- и высокоскоростных судовых дизельных двигателей

Прочтите по теме: Самые популярные судовые двигатели в судоходной отрасли

Wartsila по-прежнему является держателем рекорда Гиннеса по самому большому судному двигателю из когда-либо построенных.

Двухтактный двигатель Wärtsilä RT-flex96C с турбонагнетателем удерживает этот рекорд. Изготовлен для крупных контейнеровозов, его габариты следующие:

Длина — 27 метров (88 футов 7 дюймов),

Высота — 13,5 метра (44 фута 4 дюйма)

вес> 2300 тонн.

Выходная мощность ~ 84,42 МВт (114800 л.с.).

Размер судового двигателя варьируется от корабля к кораблю, типа хода и выходной мощности. Судовой двигатель может достигать высоты пятиэтажного здания, и для его размещения необходимо соответствующим образом спроектировать судовое машинное отделение.

Где производятся судовые двигатели?

Эти судовые двигатели построены на мощностях производителей. Например, MAN Diesel имеет производственные предприятия в Аугсбурге, Копенгагене, Фредериксхавне, Сен-Назере, Шанхае и т. Д.

Аналогичным образом Wartsila имеет производственные мощности в Финляндии, Германии, Китае и т. Д.

Судовой двигатель также может быть изготовлен на известной верфи при наличии контракта между двумя компаниями.

Двигатель обычно состоит из трех различных секций (поясняется ниже) и, в зависимости от размера машинного отделения и доступа для установки, он может быть установлен на верфи по частям или целиком.

Связанное чтение: Насколько массивные главные двигатели устанавливаются в машинном отделении корабля?

Материал, используемый для изготовления судового двигателя

Материал, из которого изготовлен судовой двигатель и различные детали судового двигателя:

Опорная плита: Опорная плита — это самая нижняя часть двигателя, которая является его основанием и вмещает подшипники коленчатого вала и А-образную раму. Для небольшого двигателя используется одинарная отливка из чугуна, а для больших двухтактных двигателей используются сборные литые стальные поперечные секции с продольными балками.

Чтение по теме: Важные вещи, которые нужно проверить Опорная плита судового двигателя

Рама: А-образная рама, как следует из названия, имеет форму буквы «А» и установлена ​​над фундаментной плитой двигателя. Он построен отдельно, чтобы нести направляющую крейцкопфа, а сверху он поддерживает основание антаблемента. Нижняя поверхность А-образной рамы обработана для создания сопрягаемой поверхности для установки поверх опорной плиты.

Антаблемент: Антаблемент, также известный как блок цилиндров, изготовлен из чугуна и используется для размещения охлаждающей воды и продувочного воздушного пространства.В зависимости от размера двигателя отливка может быть индивидуальной или многоцилиндровой (скрепленной болтами). Нижняя часть блока цилиндров обработана на станке для образования сопрягаемой поверхности и прикреплена к А-образной раме с помощью установленных болтов.

Другие части судового двигателя, которые устанавливаются внутри двигателя:

Детали двигателя Wartsila RTFlex Electronic

Поршень, гильза, цилиндр, шатун, коленчатый вал, распределительный вал, топливный насос, выпускной клапан и т. Д., И эти важные детали можно подробно изучить в нашей электронной книге —

Техническое обслуживание судовых двигателей

Базовое техническое обслуживание судового двигателя состоит из планового технического обслуживания, которое включает в себя капитальный ремонт важных подвижных и неподвижных частей камеры сгорания.

Ниже приведены некоторые из наиболее распространенных видов технического обслуживания судового двигателя:

  1. Ремонт и измерение поршня, колец и штока
  2. Ремонт и обмер гильзы цилиндра
  3. Капитальный ремонт и замер выпускного клапана
  4. Ремонт и обмер сальника
  5. Ремонт и измерение шатунных и крейцкопфных подшипников
  6. Ремонт и измерение коренных подшипников

Прочтите по теме: Типы коренных подшипников судовых двигателей и их свойства

7.Измерение прогиба коленчатого вала

8. Контроль и измерение фаз газораспределения топливного насоса

9. Проверки и ремонт пусковой воздушной системы

Время между капитальным ремонтом различных частей двигателя указано производителем в руководстве по эксплуатации двигателя. Техническое обслуживание необходимо проводить в соответствии со временем, указанным между двумя периодами капитального ремонта, независимо от проблем, обнаруженных двигателем.

Помимо своевременного ремонта, параметры двигателя и мощность необходимо проверять с помощью цифрового индикатора мощности.Осмотр продувочного пространства также проводится для проверки состояния поршневого кольца, которое, в свою очередь, определяет эффективность системы смазки гильзы цилиндра.

Судовые двигатели, используемые на судах, являются одними из самых сложных инженерных сооружений. Поэтому морские инженеры проходят специальную подготовку по эксплуатации, техническому обслуживанию и устранению неисправностей судовых двигателей на борту судов.

Вы также можете прочитать:

На что следует обратить внимание при капитальном ремонте топливного клапана

Отказ от ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight.Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

Теги: Судовые двигатели Судовой двигатель

КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ IC

Тепловой двигатель — это машина, которая преобразует тепловую энергию в механическую. Модель
при сжигании топлива, такого как уголь, бензин, дизельное топливо, выделяется тепло. Это тепло подается на
рабочее вещество при высокой температуре. Путем расширения этого вещества в пригодный
машин, тепловая энергия превращается в полезную работу. Тепловые двигатели можно разделить на
два типа:
(i) Внешнее сгорание и
(ii) Внутреннее сгорание.
В паровом двигателе сгорание топлива происходит вне двигателя, а пар
сформированный таким образом используется для запуска двигателя. Таким образом, он известен как двигатель внешнего сгорания. В
В случае двигателя внутреннего сгорания сгорание топлива происходит внутри двигателя
сам цилиндр.
Двигатель внутреннего сгорания может быть дополнительно классифицирован как: (i) стационарный или мобильный, (ii) горизонтальный или вертикальный
и (iii) низкая, средняя или высокая скорость. Два различных типа двигателей IC, используемых для
мобильные или стационарные операции: (i) дизельное топливо и (ii) карбюратор.

Искровое зажигание (карбюраторного типа) Двигатель IC

В этом двигателе жидкое топливо распыляется, испаряется и смешивается с воздухом в правильной пропорции
перед подачей в цилиндр двигателя через впускные коллекторы. Воспламенение смеси
вызывается электрической искрой и называется искровым зажиганием.
Компрессионное зажигание (дизельный) Двигатель IC

В этом случае в цилиндр впрыскивается только жидкое топливо под высоким давлением.

КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ IC:

Поперечное сечение двигателя внутреннего сгорания показано на рис.1. Краткое описание этих частей
дано ниже.

Цилиндр:

Цилиндр двигателя внутреннего сгорания составляет основную и поддерживающую часть силового агрегата
. Его основная функция заключается в обеспечении пространства, в котором поршень может работать, всасывая топливную смесь
или воздух (в зависимости от искрового зажигания или воспламенения от сжатия), сжимая его, позволяя ему расширяться
и, таким образом, вырабатывать мощность. Цилиндр обычно изготавливается из высококачественного чугуна. В некоторых случаях в
для придания большей прочности и износостойкости при меньшем весе в чугун добавляют хром, никель
и молибден.

Поршень:

Поршень двигателя — это первая деталь, которая начинает движение и передает мощность на коленчатый вал
в результате давления и энергии, генерируемых при сгорании топлива. Поршень
закрыт с одного конца и открыт с другого конца, чтобы обеспечить прямое присоединение шатуна
и его свободное действие.


Поршни изготовлены из серого чугуна, литой стали и алюминиевого сплава. Однако
современная тенденция — использовать в двигателе трактора только поршни из алюминиевого сплава.

Поршневые кольца:

Они изготовлены из чугуна, так как обладают способностью сохранять подшипниковые качества и эластичность
на неопределенный срок. Основная функция поршневых колец — поддерживать сжатие и в то же время
уменьшить площадь контакта стенки цилиндра и стенки поршня до минимума, таким образом уменьшая потери на трение
и чрезмерный износ. Другими важными функциями поршневых колец являются контроль
смазочного масла, смазка цилиндра и передача тепла от поршня
и стенок цилиндра.Поршневые кольца классифицируются как компрессионные кольца и масляные кольца
в зависимости от их функции и расположения на поршне.

Компрессионные кольца обычно представляют собой простые цельные кольца и всегда размещаются в канавках
, ближайших к головке поршня. Масляные кольца имеют канавки или прорези и расположены либо в самой нижней канавке
над поршневым пальцем, либо в канавке рядом с юбкой поршня. Их функция состоит в том, чтобы контролировать
распределение смазочного масла по цилиндру и поверхности поршня, чтобы предотвратить
ненужный или чрезмерный расход масла.

Поршневой палец:

Шатун соединен с поршнем через поршневой палец. Он изготовлен из закаленной легированной стали
с прецизионной обработкой. Существует три различных метода соединения поршня
с шатуном.

Шатун:

Это соединение между поршнем и коленчатым валом. Конец, соединяющий поршень,
известен как малый конец, а другой конец известен как большой конец. Большой конец имеет две половинки подшипника
, скрепленные вместе болтами.Шатун изготовлен из штампованной стали, а сечение — из двутавровой балки
.

Коленчатый вал:

Он соединен с поршнем через шатун и преобразует поступательное движение поршня
во вращательное движение маховика. Шапки коленчатого вала
опираются на коренные подшипники, размещенные в картере. Противовесы и маховик
, прикрепленный болтами к коленчатому валу, способствуют плавной работе двигателя.

Подшипники двигателя:

Коленчатый и распределительный валы опираются на подшипники качения.Эти подшипники должны быть
, способными выдерживать высокие скорости, большие нагрузки и высокие температуры. Обычно стальную заднюю часть покрывают кадмием, серебром марки
или медно-свинцовым покрытием, чтобы придать вышеуказанные характеристики. Для одноцилиндровых вертикальных / горизонтальных двигателей
современная тенденция заключается в использовании шариковых подшипников вместо основных подшипников
с тонким корпусом.

Клапаны:

Чтобы воздух попадал в цилиндр или выхлоп, а газы выходили из цилиндра, предусмотрены клапаны
, известные как впускной и выпускной клапаны соответственно.Клапаны
устанавливаются либо на головку блока цилиндров, либо на блок цилиндров.

Распределительный вал:

Клапаны приводятся в действие за счет действия распределительного вала, который имеет отдельные кулачки для впускного,
и выпускного клапанов. Кулачок поднимает клапан против давления пружины, и как только он
меняет положение, пружина закрывает клапан. Кулачок получает привод через шестерню или звездочку
и цепную систему от коленчатого вала. Он вращается на половину скорости распредвала.

Маховик

Обычно он изготавливается из чугуна, и его основная функция заключается в поддержании равномерной скорости вращения двигателя
, перемещая коленчатый вал через промежутки времени, когда он не получает мощность от поршня.
Размер маховика зависит от количества цилиндров, а также от типа и размера двигателя
. Это также помогает в уравновешивании вращающихся масс.

В четырехтактных двигателях имеется четыре такта, совершающих два оборота у
. коленчатый вал.Это соответственно такты всасывания, сжатия, мощности и выпуска. В
г. На рис. 3 поршень показан опускающимся на такте всасывания. В
втягивается только чистый воздух. цилиндр во время этого хода через впускной клапан, тогда как выпускной клапан закрыт. Эти
Клапаны могут управляться кулачком, толкателем и коромыслом. Следующий штрих —
такт сжатия, при котором поршень движется вверх, при этом оба клапана остаются закрытыми. Модель
воздух, втянутый в цилиндр во время такта всасывания, постепенно сжимается
когда поршень поднимается.Степень сжатия обычно варьируется от 14: 1 до 22: 1. Модель
давление в конце такта сжатия колеблется от 30 до 45 кг / см2. Как воздух
постепенно сжимается в цилиндре, его температура увеличивается, пока ближе к концу
такта сжатия, он становится достаточно высоким (650-80 ° C), чтобы мгновенно воспламенить любое топливо
который впрыскивается в цилиндр. Когда поршень находится в верхней части своего такта сжатия,
жидкое углеводородное топливо, такое как дизельное топливо, распыляется в камеру сгорания под номером
высокое давление (140-160 кг / см2), более высокое, чем в самом баллоне.Это топливо
затем воспламеняется, сжигаясь кислородом сильно сжатого воздуха.

Во время периода впрыска топлива поршень достигает конца своего такта сжатия, и
начинает возвращаться в свой третий последовательный такт, а именно рабочий такт. Во время этого хода
горячие продукты сгорания, состоящие в основном из диоксида углерода, вместе с азотом
, оставшимся от сжатого воздуха, расширяются, заставляя поршень опускаться. Это всего лишь
рабочего хода цилиндра.

Во время рабочего такта давление падает с максимального значения сгорания (47-55
кг / см2), которое обычно выше, чем большее значение давления сжатия (45
кг / см2), примерно до 3,5-5 кг. / см2 ближе к концу хода. Затем выпускной клапан открывается,
, обычно немного раньше, чем когда поршень достигает самой нижней точки хода. Выхлопные газы
удаляются при следующем движении поршня вверх. Выпускной клапан
остается открытым на протяжении всего хода и закрывается в верхней части хода.

Возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала
посредством шатуна и коленчатого вала. Коленчатый вал вращается в коренных подшипниках
, которые установлены в картере. Маховик установлен на коленчатом валу, чтобы сгладить
неравномерный крутящий момент, который создается в поршневом двигателе.

Введение в авиационные двигатели внутреннего сгорания

Двигатель внутреннего сгорания (IC) — это силовая установка, используемая сегодня почти на всех легких самолетах авиации общего назначения.Электрические авиационные двигатели обещают новое и более чистое будущее в авиации, но до них еще далеко, они используются в прототипах, но еще не вошли в массовое распространение. Поэтому мы сосредоточимся на двигателе внутреннего сгорания в этой серии, обсуждая двигательную установку легкого самолета.

Возвратно-поступательное движение

Летательный аппарат в прямом и горизонтальном полете подвергается воздействию четырех основных сил, которые необходимо уравновесить, чтобы самолет оставался в равновесии. Вес самолета уравновешивается подъемной силой, создаваемой крылом и горизонтальным стабилизатором в вертикальном направлении.Когда самолет движется по воздуху, возникает сопротивление или сила сопротивления, которой необходимо противодействовать, чтобы поддерживать скорость полета вперед. Этот противовес лобовому сопротивлению называется силой тяги и создается комбинацией двигателя и гребного винта.

Рисунок 1: Основные силы в полете

Двигатель внутреннего сгорания работает по принципу преобразования возвратно-поступательного движения (поршни движутся вверх и вниз) во вращательное движение (вращение коленчатого вала), которое используется для привода винта.Для перемещения поршней требуется энергия: эта сила создается при сгорании смеси топлива и воздуха, которая заставляет поршень двигаться и таким образом производит полезную работу. Тогда говорят, что химическая энергия (топливо) была преобразована в механическую энергию.

Давайте посмотрим на различные компоненты, из которых состоит типичный двигатель внутреннего сгорания.

Компоненты двигателя внутреннего сгорания

На изображении ниже показан внешний вид типичного двигателя внутреннего сгорания.Далее обсуждается каждый из основных компонентов.

Рисунок 2: Разрез типичного авиационного двигателя внутреннего сгорания

Поршни

Поршень является возвратно-поступательным элементом двигателя и отвечает за передачу усилия от расширяющихся газов в камере сгорания цилиндра на коленчатый вал через шатун. На разрезе выше не показан корпус цилиндра, внутри которого движется каждый поршень.

Рисунок 3: Расположение поршня и головки блока цилиндров.

Поршни обычно отливаются из алюминиевых сплавов.В приложениях с более высокими характеристиками (обычно в гоночных двигателях) поршень может быть кованым, а не литым. Поршень не контактирует напрямую с цилиндром, но газовое уплотнение между стенкой цилиндра и поршнем поддерживается за счет использования поршневых колец и масляной смазки. Эти кольца установлены в пазах, вырезанных в поршне, и изготовлены из чугуна. Обычно устанавливается несколько поршневых колец, расположенных чуть ниже днища поршня. На поршень самолета обычно устанавливают три различных типа колец: компрессионные кольца, маслосъемные кольца и маслосъемные кольца.

Рисунок 4: Поршень с установленными поршневыми кольцами

Компрессионные кольца находятся в верхней части поршня, чуть ниже головки. Эти кольца обеспечивают герметичное уплотнение между цилиндром и поршнем во время такта сжатия и сгорания четырехтактного цикла.

Маслосъемные кольца расположены под компрессионными кольцами. Эти кольца предназначены для обеспечения циркуляции масла изнутри поршня к стенкам цилиндра. Эта циркуляция осуществляется через набор небольших отверстий для слива масла.

Маслосъемные кольца расположены рядом с нижней частью поршня и имеют такую ​​форму, что они могут соскребать масло вверх и вниз по цилиндру во время движения поршня. Излишки масла удерживаются во время хода вверх, а затем возвращаются в картер во время хода вниз.

Картер

Картер — это название корпуса, в котором находятся коленчатый вал и шатуны, соединяющие поршень с коленчатым валом. Картер авиационного двигателя обычно изготавливается из литого или кованого алюминия.Это обеспечивает достаточную прочность и жесткость, чтобы удерживать коленчатый вал на месте, сохраняя при этом массовое преимущество алюминия перед сталью.

Смазочное масло двигателя хранится в нижней части картера двигателя с мокрым картером. Масло проходит через двигатель, смазывая коленчатый вал, шатунные подшипники и другие металлические детали. Масло попадает на стенки цилиндра, проходит через поршни, а затем стекает обратно в картер.

В системе с сухим картером масло хранится не в картере, а в отдельном внешнем резервуаре.Система смазки двигателя более подробно обсуждается в посте, посвященном смазке и охлаждению двигателя.

Шатун

Шатун (шатун) — это металлический компонент, который соединяет поршень и коленчатый вал. Шатуны и коленчатый вал преобразуют возвратно-поступательное движение поршня во вращательное движение коленчатого вала, которое затем используется для привода гребного винта и создания тяги.

Шатуны прикреплены к коленчатому валу с помощью крышки и стопорных болтов.Подшипник, установленный внутри крышки, позволяет шатуну преобразовывать возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Поршень прикреплен к шатуну с помощью поршневого пальца (также называемого поршневым пальцем или пальцем кисти), удерживаемого на месте с помощью набора пружинных зажимов.

Рисунок 5: Обозначенные компоненты шатуна

Коленчатый вал

Коленчатый вал — это вращающийся вал, на котором крепятся шатуны и поршни. Когда поршни двигаются вверх и вниз, это возвратно-поступательное движение преобразуется коленчатым валом во вращательное движение.Коленчатый вал размещен в картере и состоит из шейки, щеки кривошипа и шатунных штифтов.

Рисунок 6: Компоненты коленчатого вала

Шатуны прикреплены к шатунным шейкам, а коленчатый вал поддерживается блоком двигателя через набор подшипников на шейках коленчатого вала.

К коленчатому валу часто прикрепляют маховик, который накапливает энергию вращения и обеспечивает более постоянную скорость вращения, чем это было бы возможно при возвратно-поступательном движении поршней.

Клапаны

Любой четырехтактный двигатель внутреннего сгорания должен иметь как минимум два клапана на цилиндр: один для впуска топливно-воздушной смеси, а другой для выпуска газов после сгорания. В авиационных двигателях обычно используется двухклапанная конструкция. Многие автомобильные двигатели используют четырехклапанный механизм (два впускных и два выпускных), что улучшает поток впускных и выхлопных газов.

Клапаны должны сохранять свою прочность и форму при высоких температурах, поэтому их обычно изготавливают из высокопрочных сталей.Выпускные клапаны обычно меньше впускных, чтобы уменьшить вероятность преждевременного воспламенения или детонации. Выпускной клапан обычно является самой горячей частью двигателя, а клапан меньшего размера снижает вероятность того, что высокие температуры могут вызвать преждевременное воспламенение топливно-воздушной смеси, добавленной во время такта впуска.

Впускной и выпускной клапаны известны как тарельчатые клапаны и состоят из длинного штока, шейки и заглушки или головки. Головка состоит из двух поверхностей: поверхности горения и поверхности седла.Клапаны перемещаются вверх и вниз через направляющую клапана, открывая и закрываясь в определенные моменты цикла четырехтактного двигателя. Время газораспределения определяется вращением распределительного вала, о котором идет речь.

Рисунок 7: Типовой клапан двигателя

Распределительный вал

Впускной и выпускной клапаны открываются и закрываются с помощью распределительного вала, который приводится в движение от двигателя приводным ремнем, соединяющим коленчатый вал с распределительным валом. В четырехтактном цикле каждый клапан должен открываться и закрываться один раз за полный цикл, при котором коленчатый вал вращается на два полных оборота.Поэтому распределительный вал должен приводиться в движение на половине скорости вращения двигателя — это достигается за счет механической передачи.

Распределительный вал изготавливается с несколькими кулачками или кулачками, каждый из которых расположен над клапаном и приводит в движение этот клапан. Форма кулачка определяет, как клапан открывается и закрывается, а ориентация выступа определяет последовательность, в которой работает клапан. Проще всего визуализировать это движение, обратившись к приведенной ниже анимации.

Рисунок 8: Клапаны двигателя, приводимые в движение верхним кулачком

В авиационных двигателях клапаны управляются не напрямую через контакт с кулачком, а через систему толкателя и коромысла, которые соединяют кулачок с клапаном. Эта система допускает наличие зазора или зазора между коромыслом и наконечником клапана. Этот зазор важен, поскольку температура двигателя изменяется во время работы, что приводит к расширению клапана при более высоких температурах. Без зазора между наконечником клапана и коромыслом повышение температуры приведет к позднему открытию или преждевременному закрытию клапанов, что приведет к ухудшению работы двигателя и потере мощности.Зазор можно отрегулировать, обычно с помощью винта на узле коромысла.

Наконец, в каждый клапан встроены две пружины, которые помогают быстро закрыть клапан и гасить любой дребезг клапана, который может произойти из-за вибраций, присущих работе двигателя внутреннего сгорания.

Рисунок 9: Коромысло клапана двигателя

Свечи зажигания

Свеча зажигания предназначена для воспламенения топливно-воздушной смеси, поступающей во впускное отверстие цилиндра.Это сгорание затем заставляет поршень опускаться во время рабочего такта четырехтактного цикла. Свеча зажигания работает, принимая очень высокое напряжение от системы зажигания самолета, которое затем перескакивает между центральным электродом и заземленной внешней стороной свечи, в результате чего возникает искра. Это похоже на то, как молния прыгает между облаком и Землей. Для этого напряжение должно быть очень высоким — обычно в диапазоне от 5000 до 20000 В. Искра возникает, поскольку центральный электрод изолирован от заземленной внешней части вилки, и поэтому высокое напряжение должно преодолевать воздушный зазор. между ними возникает искра.Изоляция чаще всего достигается с помощью керамической вставки, которая не проводит электричество.

Свечи зажигания подразделяются на горячие и холодные. Керамическая вставка на горячей вилке имеет меньшую площадь контакта с металлической частью вилки, чем холодная вилка. Поэтому горячие свечи отводят тепло медленнее, чем холодные свечи, и лучше подходят для работы в более холодных двигателях с более низкой степенью сжатия. И наоборот, холодные свечи лучше подходят для работы в более горячих двигателях с более высокой степенью сжатия, поскольку они способны более эффективно рассеивать тепло.

Свеча зажигания должна потреблять высокое напряжение, генерируемое системой зажигания самолета. Напряжение поступает в вилку через выемку (клемму), которая удерживается гайкой и закрыта водонепроницаемым уплотнением.

Авиационные двигатели всегда имеют две отдельные системы зажигания, чтобы увеличить резервирование и снизить риск отказа двигателя на критическом этапе полета. Поскольку двойные системы зажигания полностью разделены, в каждом цилиндре будут установлены две свечи зажигания — по одной для каждой системы.

Рисунок 10: Свечи зажигания для самолетов с горячим и холодным током Компоновка поршневого двигателя

Двигатели внутреннего сгорания, используемые на легких самолетах, обычно соответствуют одной из ряда стандартных компоновок, которые классифицируются в соответствии с расположением цилиндров относительно коленчатого вала. Сейчас мы познакомим вас с несколькими распространенными макетами.

Рядный двигатель

Рядные двигатели

характеризуются вертикальным расположением цилиндров, расположенных в одну линию вдоль картера. Одним из преимуществ такой компоновки является низкая площадь лобовой части, которую двигатель представляет для встречного воздуха.Низкая площадь лобовой части означает, что капот двигателя может быть уменьшен, что снижает влияние лобового сопротивления самолета.

Проблемы с охлаждением задних цилиндров при рядном расположении обычно ограничивают количество цилиндров, которые могут быть размещены на двигателе.

Установка перевернутого рядного двигателя (такого как deHavilland Gipsy Major, показанного ниже) на самолет с носовым колесом может быть затруднительной из-за расположения цилиндров. Поэтому эти двигатели обычно устанавливаются на самолетах с хвостовым колесом.

Рисунок 11: Пример встроенного движка. Источник: http://commons.wikimedia.org/wiki/File:DHGipsyMajorengineDrover.JPG

Горизонтально противоположный (плоский) двигатель

Это расположение цилиндров, наиболее часто встречающееся в легких самолетах авиации общего назначения. Здесь цилиндры расположены горизонтально в два ряда с равным количеством цилиндров на каждом из них. Каждый цилиндр соединен с соответствующим цилиндром на противоположном берегу, чтобы свести к минимуму вибрацию. Коленчатый вал расположен по центру между двумя рядами цилиндров.

Горизонтально расположенные двигатели можно сделать короче, чем эквивалентный рядный двигатель, поскольку цилиндры размещены в двух рядах, а не в одном. Однако при такой компоновке двигатель шире и должен изготавливаться с двумя отдельными головками блока цилиндров, а не с одной.

Рисунок 12: Пример горизонтально расположенного двигателя. Источник https://upload.wikimedia.org/wikipedia/commons/b/b2/Lycoming_AEIO-540-D4A5.jpg

В таблице ниже перечислены некоторые из наиболее распространенных горизонтально-оппозитных двигателей, используемых сегодня в легких самолетах, а также некоторые примеры самолет у них мощность.

Название двигателя Примеры самолетов № цилиндров Рабочий объем Выходная мощность
Семейство Lycoming O-320 Cessna 172, Cessna 177, Piper PA-28 Cherokee, Piper PA-30 Twin Comanche, Robinson R22 4 320 куб. Дюймов (5,24 л) 150-160 л.с.
Семейство Lycoming O-540 Cessna 182, Cessna 206, Piper PA-32 Cherokee Six, Vans RV-10 6 541.5 кубических дюймов (8,87 л) 230-350 л.с.
Семейство Continental IO-360 Cirrus SR20, Mooney M20, Piper PA-34 Seneca 6 5,9 л (360 куб. Дюймов) 180 — 225 л.с.
Семейство Rotax 912 Tecnam Echo, Diamond DA-20, CSA Sportcruiser 4 1,2 л (74 куб. Дюйма) 80-100 л.с.

Радиальный двигатель

Радиальные двигатели состоят из группы цилиндров, расположенных радиально вокруг центрального коленчатого вала, подобно спицам колеса.Цилиндры данного ряда расположены в одной плоскости радиально от коленчатого вала, так что не все шатуны могут быть прикреплены непосредственно к коленчатому валу. Вместо этого один поршень соединяется непосредственно с коленчатым валом, а все остальные соединяются с кольцом на главном шатуне через узел ведущего и шарнирного штока.

Четырехтактные радиально-поршневые двигатели всегда проектируются с нечетным числом цилиндров, чтобы можно было использовать постоянный порядок зажигания.Это сделано для того, чтобы между поршнями на такте сгорания и такте сжатия оставался однопоршневой зазор.

Радиальные двигатели обычно использовались на более крупных самолетах, где можно было установить несколько рядов поршней для производства двигателя с большой выходной мощностью при сохранении как можно более компактного двигателя. В самолетах времен Второй мировой войны, таких как Republic P-47 Thunderbolt, Douglas C 47 и Avro Lancaster, использовались радиальные двигатели. Большие радиальные двигатели были в значительной степени устаревшими после Второй мировой войны, поскольку реактивные двигатели и газотурбинные двигатели могли производить большую мощность, более надежно при меньшей общей массе.

Рисунок 13: Радиальный двигатель. Источник https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Watercooled_radialengine.jpg/640px-Watercooled_radialengine.jpg

Двигатель V-типа

V-образные двигатели

характеризуются наличием цилиндров, расположенных в два ряда по V-образному расположению, если смотреть вдоль оси коленчатого вала. За счет V-образного расположения цилиндров общие размеры двигателя могут быть уменьшены по сравнению с горизонтально расположенной конфигурацией. Угол между двумя рядами цилиндров обычно называют углом V.Общие углы 90 °, 60 ° и 45 °.

Одним из самых известных двигателей V-образной конфигурации был двигатель Rolls Royce V12 Merlin, который приводил в действие ряд самолетов Второй мировой войны, включая Supermarine Spitfire, Hawker Hurricane и de Havilland Mosquito.

Рисунок 14: Двигатель Rolls Royce Merlin. Источник: https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Rolls-Royce_Merlin.jpg/640px-Rolls-Royce_Merlin.jpg

На этом мы подошли к концу нашего знакомства с поршневыми двигателями самолетов. .В следующем посте мы обсудим четырехтактный рабочий цикл, лежащий в основе работы большинства авиационных двигателей внутреннего сгорания.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

Двигатель

IC: работа, классификация, типы, методы, конструкция и примечания

В этой статье мы обсудим двигатель внутреннего сгорания: — 1. Примечания к двигателю внутреннего сгорания 2. Основные операции двигателя внутреннего сгорания 3.Классификация 4. Конструкция 5. Наддув 6. Порядок зажигания 7. Способы запуска двигателей внутреннего сгорания 8. Управление.

Состав:

  1. Примечания к двигателю внутреннего сгорания
  2. Основные операции двигателя внутреннего сгорания
  3. Классификация двигателей внутреннего сгорания
  4. Строительство двигателей внутреннего сгорания
  5. Наддув двигателей внутреннего сгорания
  6. Порядок запуска двигателя внутреннего сгорания
  7. Способы запуска двигателей внутреннего сгорания
  8. Управление двигателями внутреннего сгорания

1.Примечания к двигателю внутреннего сгорания:

Двигатели внутреннего сгорания (двигатели внутреннего сгорания) — это машины, в которых происходит сгорание топлива, и выделяемое тепло используется для обеспечения работы в расширительном устройстве, которое называется первичным двигателем.

В случае парового двигателя или турбины происходит сгорание топлива, и тепло сгоревшего топлива используется для генерации пара, который действует как среда для привода парового двигателя или паровой турбины. Эти двигатели называются двигателями внешнего сгорания.

Двигатели внутреннего сгорания являются первичными двигателями, которые развивают мощность после сгорания топлива и переводят тепло в механическую работу либо путем прямого сгорания топлива в цилиндре двигателя, либо сгорания топлива вне цилиндра.

Работа создается за счет использования давления и сил горячих газов, возникающих при сгорании топлива, а затем эти газы выпускаются из двигателя. Двигатели внутреннего сгорания преобразуют тепловую энергию в механическую.

Тепловая энергия вырабатывается путем прямого сгорания топлива в цилиндре двигателя, и часть тепла преобразуется в фактическую работу. При этом используется кривошипно-ползунковый механизм для преобразования тепла в реальную работу.

Есть два типа двигателей внутреннего сгорания:

(1) Поршневые двигатели и

(2) Роторные двигатели или газовые турбины.


2. Основные операции двигателя внутреннего сгорания:

В поршневых двигателях внутреннего сгорания для выработки энергии в основном используется кривошипно-шатунный механизм.Поршень совершает возвратно-поступательное движение в цилиндре и соединен с шатуном и коленчатым валом. Кривошипный механизм ползуна преобразует возвратно-поступательное движение во вращательное движение.

Топливо сгорает в цилиндре двигателя либо за счет самовоспламенения, либо от внешнего источника, например свечи зажигания. Топливно-воздушная смесь подается в цилиндр двигателя. Сгорание топлива происходит из-за его реакции с кислородом воздуха. При этом в цилиндре двигателя образуются горячие газы, которые прикладывают силу к поршню, и возвратно-поступательное движение поршня преобразуется во вращательное движение.На Рис. 13-2 показаны основные операции I.C. двигатель.


3. Классификация двигателей внутреннего сгорания:

Не существует стандартных методов или способов классификации I.C. Двигатели.

Их можно классифицировать по-разному, например:

(1) Расположение цилиндров двигателя:

(i) Горизонтальный двигатель

(ii) Вертикальный двигатель

(iii) V двигатель

(iv) Рядный двигатель

(v) Двигатель с оппозитным цилиндром

(vi) Двигатель с оппозитным поршнем

(vii) Двигатель Deltic

(viii) Y двигатель

(ix) Радиальный двигатель

(2) Занятый рабочий цикл:

(i) Четырехтактный двигатель

(ii) Двухтактный двигатель

(3) Используемое топливо:

(i) Бензиновый двигатель

(ii) Дизельный двигатель

(iii) Газовый двигатель

(iv) Двухтопливный двигатель

(4) Природа используемого термодинамического цикла:

(i) Двигатель цикла Отто

(ii) Дизельный двигатель

(iii) Двигатель с двойным циклом сгорания.

(5) Скорость:

(i) Низкооборотный двигатель

(ii) Среднеоборотный двигатель

(iii) Высокоскоростной двигатель

(6) Метод охлаждения:

(i) Двигатель с воздушным охлаждением

(ii) Двигатель с водяным охлаждением

(7) Область применения:

(i) Стационарный двигатель

(ii) Судовой двигатель

(iii) Автомобильный двигатель

(iv) Мотоциклетный двигатель

(v) Авиадвигатель

(vi) Локомотивный двигатель и т. Д.

(8) Метод зажигания:

(i) Двигатель с воспламенением от сжатия

(ii) Двигатель с искровым зажиганием.


4. Производство двигателей внутреннего сгорания:

На рис. 13-15 показаны механические элементы поршневого I.C. двигатель. Поршень, совершающий возвратно-поступательное движение в цилиндре, очень плотно прилегает к цилиндру. Чтобы предотвратить утечку газа с одной стороны поршня на другую его сторону, поршневые кольца вставляются в кольцевые канавки поршня.

Цилиндр просверлен в блоке цилиндров, может быть прикручен к верхней части картера. Верхняя часть цилиндра уплотняется путем прикручивания к ней головки блока цилиндров. Обычно между цилиндром и головкой цилиндра вставляется прокладка из медных листов и асбеста. Камера сгорания находится в верхней части головки блока цилиндров.

Поскольку сгорание происходит в цилиндре двигателя, он становится очень горячим. Чтобы сохранить материалы двигателя и смазку, двигатель следует охлаждать.На рис. 13-16 каналы для охлаждающей среды показаны в стенках блока цилиндров вокруг цилиндра, а также в головке цилиндров вокруг камеры сгорания.

Возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала посредством шатуна и кривошипа. Шатун соединяет поршень и кривошип, который установлен на коленчатом валу. Штифт, который соединяет поршень и шатун, известен как поршневой палец или поршневой палец.

Конец шатуна, который надевается на поршневой палец, называется малым концом шатуна, а другой конец, который надевается на палец кривошипа, называется большим концом шатуна. На рис. 13-15 показан эскиз I.C. двигатель.

Дно двигателя закрыто поддоном. Этот поддон часто содержит масло, которое перекачивается по двигателю для смазки.

Механический цикл двигателя внутреннего сгорания может завершаться за один оборот (двухтактный цикл) коленчатого вала или за два оборота (четырехтактный цикл) коленчатого вала.

В двигателе, работающем по принципу четырехтактного цикла, есть клапаны с механическим управлением, которые регулируют впуск и выпуск в цилиндр двигателя и из него. Открытие и закрытие клапанов регулируется кулачками, закрепленными на распределительном валу.

Распределительный вал приводится в действие посредством зубчатой ​​передачи или цепной передачи от коленчатого вала. Распределительный вал вращается на половину скорости вращения коленчатого вала. Клапаны, известные как тарельчатые клапаны, удерживаются в закрытом положении с помощью пружин клапана.

В случае двигателя, работающего в двухтактном цикле, управление впуском и выпуском осуществляется с помощью отверстий, которые прорезаны по окружности в стенках цилиндров. Эти порты открываются и закрываются с помощью движущегося поршня. Все эти серии событий образуют полный цикл событий, и эти события происходят в одном и том же порядке в любом цикле.

Если все события завершаются за четыре хода поршня, то говорят, что двигатель работает по принципу четырехтактного цикла.Если, с другой стороны, эти события завершаются за два хода поршня, то говорят, что двигатель работает по принципу двухтактного цикла. На рис. 13-6 показан эскиз двухтактного двигателя.


5. Наддув двигателей внутреннего сгорания:

Нагнетание — это процесс повышения давления топливовоздушной смеси, поступающей в бензиновый двигатель, до давления, превышающего давление атмосферного воздуха, и обычно достигается с помощью небольшого компрессора или нагнетателя, называемого нагнетателем.Нагнетатели также перемешивают смесь до более однородного состояния.

Мощность, необходимая для привода нагнетателей или нагнетателей, отбирается от двигателя через шестерни. Нагнетатели используются для увеличения мощности существующего двигателя или для уменьшения размера двигателя при той же мощности или для восстановления нормальной морской мощности двигателя, когда он работает на больших высотах.

Было обнаружено, что при наддуве бензинового двигателя до удвоенного атмосферного давления мощность увеличивается более чем вдвое, а такая же степень наддува в двигателях с воспламенением от сжатия увеличивает их мощность примерно на 75%.


6. Порядок запуска двигателя внутреннего сгорания:

Порядок запуска двигателя — это последовательность, в которой запускаются многоцилиндровые двигатели. В многоцилиндровом двигателе запускаются не в обычной последовательности, а в другой последовательности. Порядок стрельбы поддерживается для правильной балансировки двигателя и регулировки неуравновешенных сил. Порядок срабатывания указывает последовательность срабатывания цилиндров.Номер цилиндра записывается последовательно.

В следующей таблице показан порядок включения различных двигателей:


7. Способы запуска двигателей внутреннего сгорания:

Пусковые устройства обычно используются в двигателях с воспламенением от сжатия, особенно в двигателях, оборудованных турбулентными камерами сгорания. Бензиновые двигатели, а также газовые двигатели и малые агрегаты низкой компрессии C.I. двигатели могут запускаться вручную или электростартером.Как правило, инструкция по эксплуатации, поставляемая производителями, должна быть тщательно изучена перед процедурой запуска.

С более крупными агрегатами в низком классе сжатия C.I. для запуска двигателей используются следующие способы:

(1) Паяльная лампа

(2) Электронагреватель в камере сгорания

(3) Сжатый воздух

(4) Специальный картридж.

На рис. 13-91 показан способ запуска паяльной лампы. Паяльная лампа прикладывается к горячей колбе или неохлаждаемой части цилиндра, пока пятно не станет достаточно горячим, чтобы воспламениться пары масла.Затем двигатель закрывается, и когда происходит впрыск, масло воспламеняется, и двигатель начинает работать.

Электронагреватель действует точно так же, как паяльная лампа, но тепло подается электрическими средствами. Клапан сброса сжатия также используется с небольшими устройствами для облегчения работы по запуску. Двигатели средней и высокой степени сжатия неизменно запускаются сжатым воздухом.

Воздух используется в течение нескольких циклов для накопления энергии в маховике, а масло распыляется.В многоцилиндровых двигателях цилиндры приводятся в действие по одному или по два за раз. У дорожных транспортных средств с дизельными двигателями отключены все цилиндры, кроме одного, и двигатель запускается электрическим стартером или вручную. Когда двигатель проработает несколько секунд, задействуются другие цилиндры.

Сжатый воздух может подаваться посредством:

(i) Компрессоры с ручным приводом для малых установок

(ii) Компрессоры с приводом от самого двигателя

(iii) Компрессоры с отдельным приводом.


8. Управление двигателями внутреннего сгорания:

(1) В бензиновых двигателях управление осуществляется с помощью дроссельной заслонки, которая размещается во впускном коллекторе сразу после карбюратора. Величина открытия дроссельной заслонки определяет, сколько смеси может попасть в цилиндр. В автомобилях дроссельная заслонка управляется ножным блоком управления или педалью акселератора.

Изменится среднее эффективное давление в цилиндре и, как следствие, мощность, развиваемая в цилиндре двигателя.Положение дроссельной заслонки может регулироваться регулятором скорости центробежного типа. Для некоторых приложений дроссельная заслонка может быть установлена ​​в зависимости от нагрузки, при этом скорость поддерживается постоянной.

(2) В дизельных двигателях поток топлива регулируется центробежным регулятором, который приводит в действие тяги, которые приводят в действие какое-либо устройство на топливном насосе для обхода части топлива, которое в противном случае было бы впрыснуто в цилиндр двигателя. В насосе впрыска плунжерного типа регулятор изменяет относительное угловое положение плунжера, как показано на рис.13-94. Губернатор работает на стойке.

Поскольку дизельный двигатель не полагается на фиксированные пропорции воздуха и топлива для сгорания, можно использовать любое соотношение топлива до точки, когда весь кислород потребляется.

(3) В газовых двигателях есть три метода управления —

(i) Метод ударов и промахов

(ii) Контроль качества

(iii) Регулирующее количество.

(i) Метод управления ударами и промахами:

Рис.13-93 показано устройство для управления типом попадания и промаха.

В этой конструкции, когда скорость превышает допустимое значение, регулирующая втулка поднимается, и рычаг, прикрепленный к втулке, поднимает педальный блок, так что газовый клапан не открывается; в результате в цилиндр двигателя попадает только воздух.

Таким образом, в этом цикле мощность в цилиндре двигателя не развивается из-за полного отсутствия топлива, и в результате скорость падает. Скорость продолжает уменьшаться до тех пор, пока клюв не вернется в исходное положение.Таким образом, мы видим, что взрывы пропускаются с перерывами, но каждый заряд имеет нормальную силу.

Это простой способ управления газовыми двигателями, но он не так часто используется в других двигателях, потому что этот метод имеет недостаток, заключающийся в сравнительно большом изменении скорости из-за дополнительной продувки, которая происходит сразу после пропущенных взрывов. Это эффективный метод с точки зрения экономии расхода газа.

(ii) Контроль качества:

В этом методе изменяется крепость смеси.Когда скорость высока, соотношение воздух-топливо увеличивается. Это приводит к более низкому давлению и, следовательно, снижению скорости.

При таком управлении зажигание не всегда удовлетворительное. Невозможно найти наиболее подходящую точку для всех крепостей смеси. Также снижается термический КПД.

(iii) Регулирующее количество:

В этом методе прочность смеси остается прежней, но количество смеси, поступающей в цилиндр для сжатия.Степень сжатия не изменилась. Стандартный КПД воздуха остается прежним. При сгорании топлива создается меньшее давление, меньше работы выполняется во время этого цикла и, как следствие, уменьшается скорость.

Регулятор коротко замыкает впускной клапан, в результате чего он открывается на небольшую величину и, следовательно, небольшое количество газовоздушной смеси попадет в цилиндр двигателя. Это состояние легкой нагрузки. Если впускной клапан имеет большой ход, он откроется на большую величину, и, следовательно, большое количество воздушно-газовой смеси попадет в цилиндр двигателя.Это состояние большой нагрузки.

Поскольку в этом методе есть импульс в каждом цикле из-за взрыва правильной смеси, он имеет то преимущество, что дает более равномерный крутящий момент и более узкие пределы изменения скорости. Этот метод регулирования предпочтителен для двигателей с искровым зажиганием.


Дизельный двигатель

Модель 31009 Принцип работы Физический эксперимент Инструмент для испытания двигателя внутреннего сгорания

Описание продукта

Технические характеристики:

Название: Модель дизельного двигателя

Модель: 31009

Характеристика: Оборудование для физического обучения

Принцип: проиллюстрировать основную конструкцию и принцип работы дизельного двигателя.

Цвет: как на картинке

Размер: 17 x 10,6 x 30 см (Д x Ш x В) (1 см = 0,393 дюйма)

Внимание:

— Не разбирать во избежание смещения.

— Напряжение питания не должно превышать 3В, чтобы не сгорела лампочка.

— После эксперимента вытащите аккумулятор, хорошо заверните.

В упаковке:

1 модель дизельного двигателя (без аккумуляторов)

Подробнее:

Более подробные фотографии:











Дополнительная информация

При заказе от Alexnld.com, вы получите электронное письмо с подтверждением. Как только ваш заказ будет отправлен, вам будет отправлено электронное письмо с информацией об отслеживании доставки вашего заказа. Вы можете выбрать предпочтительный способ доставки на странице информации о заказе во время оформления заказа. Alexnld.com предлагает 3 различных метода международной доставки, авиапочту, зарегистрированную авиапочту и услугу ускоренной доставки, следующие сроки доставки:

Зарегистрированная авиапочта и авиапочта Площадь Время
США, Канада 10-25 рабочих дней
Австралия, Новая Зеландия, Сингапур 10-25 рабочих дней
Великобритания, Франция, Испания, Германия, Нидерланды, Япония, Бельгия, Дания, Финляндия, Ирландия, Норвегия, Португалия, Швеция, Швейцария 10-25 рабочих дней
Италия, Бразилия, Россия 10-45 рабочих дней
Другие страны 10-35 рабочих дней
Ускоренная доставка 7-15 рабочих дней по всему миру

Мы принимаем оплату через PayPal , и кредитную карту.

Оплата через PayPal / кредитную карту —

ПРИМЕЧАНИЕ. Ваш заказ будет отправлен на ваш адрес PayPal. Убедитесь, что вы выбрали или ввели правильный адрес доставки.

1) Войдите в свою учетную запись или воспользуйтесь кредитной картой Express.

2) Введите данные своей карты, и заказ будет отправлен на ваш адрес PayPal. и нажмите «Отправить».

3) Ваш платеж будет обработан, и квитанция будет отправлена ​​на ваш почтовый ящик.

Отказ от ответственности: это отзывы пользователей.Результаты могут отличаться от человека к человеку.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину. «

Arvin Swanger, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам. »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то непонятной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор»

организация. «

Иван Харлан, П.Е.

Теннесси

«Учебные материалы имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой для

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает напечатанный тест во время

Обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено. «

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

тест действительно потребовал исследований в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать. «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. «

Кристен Фаррелл, П.Е.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

до метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правила. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

Сертификация

. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материал был кратким и

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное. «

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по моей линии

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график. «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Dennis Fundzak, P.E.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

многие различные технические зоны за пределами

своя специализация без

приходится путешествовать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *