Системы карбюратора
Карбюратор двигателя состоит из 5 основных систем карбюратора:1) главная дозирующая система карбюратора предназначена для смешивания топлива с воздухом в установленных пропорциях, что обеспечивается с помощью специальных жиклеров с калибром (топливные и воздушные жиклеры).
2) система холостого хода карбюратора предназначена для поддержания работы двигателя на малых оборотах коленчатого вала.
3) система пуска карбюратора предназначена для подачи воздуха в эмульсионные трубки через воздушную заслонку и жиклеры.
4) система экономайзера карбюратора предназначена для обогащения горючей смеси во время продолжительной нагрузки.
5) система ускорительного насоса карбюратора предназначена для кратковременного обогащения горючей смеси во время разгона автомобиля.
Приготовление горючей смеси и работа основных систем карбюратораПриготовление горючей смеси осуществляется за счет смешивания двух компонентов топлива и воздуха в определенной пропорции.
Горючая смесь имеет свой состав, который приготавливается при определенном соотношением масс топлива к воздуха. Для того, чтобы сгорел 1 кг бензина теоретически необходимо смешать с ним 14,9 кг воздуха (при расчетах принимают 15). Правда идеального не бывает, и количество воздуха, которое расходуется на приготовление горючей смеси, немного больше или меньше по сравнению с теоретическим. В связи с этим состав горючей смеси характеризуется коэффициентом воздуха, который участвует в процессе сгорания топлива, к теоретически обусловленному количеству воздуха.
Для точного определения степени обогащения или обеднения горючей смеси приняли названия следующих смесей: 1) богатая смесь с коэффициентом избытка воздуха равным 0,70-0,852) обогащенная смесь с коэффициентом избытка воздуха 0,85-0,95
3) обедненная смесь с коэффициентом избытка воздуха 1,05-1,15
4) бедная смесь с коэффициентом избытка воздуха 1,15-1,20
Двигатель должен работать в оптимальном режиме. Оптимальный режим работы двигателя обеспечит нормальная горючая смесь. То есть горючая смесь должна быть не переобагащенная, и не переобедненная, так как в этих случаях снижается экономичность и мощность двигателя.
{jcomments on}
Основные системы карбюратора
Главная → Силовая установка → Основные системы карбюратораОсновные системы карбюратора
Система холостого хода каждой камеры карбюратора состоит из топливного жиклера 5, воздушного жиклера 10 и двух отверстий в смесительной камере — верхнего и нижнего. Нижнее отверстие снабжается винтом 30 для регулировки состава горючей смеси.
Эмульсирование бензина обеспечивается воздушным жиклером. Необходимая характеристика работы системы достигается топливным жиклером холостого хода, воздушным тормозным жиклером, а также величиной и расположением переходных отверстий в смесительной камере.
Главная дозирующая система состоит из большого и малого 4 диффузоров, эмульсионной трубки 28, главного топливного 27 и воздушного 3 жиклеров. Воздушный жиклер регулирует поступление воздуха внутрь эмульсионной трубки, расположенной в компенсационном колодце. Эмульсионная трубка имеет специальные отверстия, предназначенные для получения необходимой характеристики работы системы.
Система холостого хода и главная дозирующая система обеспечивают необходимый расход бензина на всех основных режимах работы двигателя.
В систему экономайзера входят детали как общие для обеих камер, так и отдельные для каждой камеры. К первым относятся механизмы привода и клапан 36 экономайзера с жиклером, а ко вторым — жиклеры 8, расположенные в блоке распылителей (по одному на каждую камеру).
Система ускорительного насоса с механическим приводом состоит из поршня и механизма привода, обратного 34 и нагнетательного 9 клапанов и распылителей 7 в блоке. Распылители выведены в каждую камеру карбюратора и объединены с жиклерами и распылителями системы экономайзера в отдельный блок.
Привод ускорительного насоса и экономайзера совместный. Он осуществляется от оси 22 дроссельных заслонок. Рычаг 33 привода дроссельных заслонок тягой соединяется с рычагом привода, на оси которого винтом укреплен
20.09.2010, 6269 просмотров.
Основные системы и устройства карбюратора Солекс
Ниже представлен краткий обзор систем, устройств и механизмов карбюратора Солекс (2108, 21081, 21083), автомобилей ВАЗ 2108, 2109, 21099.
Основные системы и устройства карбюратора Солекс
Пусковое устройство
Пусковое устройство карбюратора 2108, 21081, 21083 Солекс предназначено для обеспечения пуска холодного двигателя автомобиля. Состоит из корпуса, диафрагмы со штоком, рычагов привода воздушной и дроссельной заслонок. См. фото выше.
Система холостого хода
СХХ предназначена для обеспечения работы двигателя на холостом ходу. Она включает в себя: топливный и воздушный жиклеры; топливные, воздушные, эмульсионные каналы; винты регулировки «количества» и «качества» топливной смеси, поступающей в двигатель.
Схема системы холостого хода карбюратора Солекс 2108, 21081, 21083Экономайзер принудительного холостого хода (ЭПХХ)
ЭПХХ необходим для отключения подачи топлива в двигатель через систему холостого хода после остановки двигателя и при переходе с работы на холостом ходу к мощностным режимам. ЭПХХ состоит из электромагнитного клапана, электронного блока управления, концевого выключателя (наконечника винта «количества» топливной смеси).
Видимые элементы системы ЭПХХ карбюратора Солекс в подкапотном пространстве автомобиля ВАЗ 21083Главные дозирующие системы обеих камер карбюратора (ГДС)
ГДС обеспечивает работу карбюратора при запуске двигателя, работе на малых, средних и максимальных нагрузках. Состоит из главных топливных и воздушных жиклеров, эмульсионных трубок и эмульсионных колодцев, воздушных и топливных каналов, диффузоров с распылителями.
Переходные системы обеих камер карбюратора
Переходные системы необходимы для плавного перехода с холостого хода на малые и средние нагрузки (переходная система 1-й камеры). И со средних нагрузок на мощностные режимы работы двигателя (переходная система 2-й камеры). Переходные системы карбюратора состоят из топливных и воздушных каналов, топливных и воздушных жиклеров, выходных отверстий в обеих камерах карбюратора.
Переходные системы обеих камер карбюратора 2108, 21081, 21083 СолексУскорительный насос (УН)
УН необходим для кратковременного принудительного обогащения топливной смеси при открытии дроссельной заслонки на разных режимах работы двигателя автомобиля. УН состоит из корпуса, диафрагмы с толкателем и пружиной, шарикового клапана, топливных каналов, распылителя с двумя носиками в разные камеры карбюратора, механического привода от кулачка на оси дроссельной заслонки первой камеры.
Ускорительный насос карбюратора СолексЭкономайзер мощностных режимов
Экономайзер мощностных режимов служит для дополнительного обогащения топливной смеси на мощностных и нагрузочных режимах, поддерживая стабильную работу двигателя. Состоит из корпуса, диафрагмы с пружиной, шарикового клапана, топливного жиклера. Экономайзер мощностных режимов карбюратора 2108, 21081, 21083 СолексЭконостат
Эконостат обогащает топливную смесь поступающую в цилиндры двигателя на скоростных режимах, при полностью открытых дроссельных заслонках. Состоит из топливного жиклера, трубки, топливного канала.
Эконостат карбюратора СолексПоплавковый механизм
Поплавковый механизм предназначен для регулировки топливоподачи в карбюратор. Состоит из игольчатого запорного клапана и поплавков.
Элементы верхней части поплавковой камеры карбюратора СолексМеханизм блокировки дроссельной заслонки второй камеры карбюратора
Механизм блокировки обеспечивает устойчивую работу двигателя при движении автомобиля с непрогретым двигателем.
Еще статьи по карбюраторам 2108, 21081, 21083 Солекс
— «Провал» при нажатии на педаль «газа»
— «Переливает» карбюратор
— Регулировка оборотов холостого хода двигателя с карбюратором Солекс
— Быстрый старт автомобиля с карбюратором Солекс
— Уменьшение расхода топлива двигателя автомобиля с карбюратором Солекс
— Провал при резком нажатии на педаль газа
Устройство и основные неисправности карбюраторов
Карбюраторные двигатели внутреннего сгорания, которые еще не так давно были вершиной автомобилестроения, практически отошли в прошлое – их заменили инжекторные системы. Но как показывает статистика, карбюраторы по-прежнему распространены, вот только сузились области их применения.
Хоть инжекторы и принято считать более совершенными, грамотному автолюбителю хотя бы ради интереса стоит немного узнать об устройстве карбюраторных системах. Если же он владеет автомобилем с карбюратором, данный материал наверняка окажется для него еще и очень полезным. Об устройстве, эксплуатации, обслуживании и неисправностях карбюраторов – в материале АвтоПро.Достоинства и недостатки
Говоря об отличиях карбюраторных систем от инжекторных даже знающие люди часто сводят дискуссию к обсуждению достоинств и недостатков первых. Конечно, переход на инжекторы не был спонтанным – ему предшествовали серьезные изменения в машиностроении, так и требования потенциальных покупателей к личному транспорту. Давайте рассмотрим, чем карбюратор может похвастать, а что является его слабой стороной:
- Достоинства: простота, дешевизна, низкие требования к октановому числу топлива, относительно неплохая динамика;
Кстати, последнее является одной из серьезнейших причин, по которым на карбюраторы смотрят с опаской в странах Запада – он не соответствует даже самым «щадящим» требованиям экологических стандартов. На мотоциклы его, впрочем, ставят, но и экологические требования к данному виду транспорта менее жесткие. Не в пользу агрегата говорит и низкий коэффициент полезного действия. Десятая его часть уходит только на работу топливной системы. Отчасти недостатки карбюраторов компенсируются их «всеядностью» и простотой в ремонте.
Принцип работы
Карбюратор можно назвать сердцем питающей системы двигателя. Он отвечает за «приготовление» топливно-воздушной смеси, которая будет подана в цилиндры двигателя. Если вкратце, то суть работы этого агрегата в том, чтобы создавать топливовоздушную смесь. Кроме того, в карбюраторе имеется диффузор, который отвечает за подачу топлива – двигатель не всасывает его сам, как считают многие автолюбители. Также карбюратор позволяет двигателю нормально работать при разных режимах. Среди них:
- Холостой ход;
- Средние обороты;
- Высокая (максимальная) нагрузка;
- Введение в работу при полном охлаждение, как, например, после продолжительного нахождения на морозе.
Как несложно догадаться, карбюратор по-разному обогащает топливо и подает его в разных количествах – определенный состав топливовоздушной смеси и определенное ее количество будет соответствовать определенному режиму работы двигателя. Нормальную работу силового агрегата поддерживают и смежные с ним системы, как-то система охлаждения, электросистема и т.п. Здесь особенно важно понимать, что карбюратор должен быть четко откалиброван, ведь иначе вся система не будет работать в полную меру своих возможностей.
А что внутри агрегата
Вообще, карбюратор часто делят на две части. Одна поплавковая, а вторая – смесительная. Это вполне логичное упрощение, однако неопытного автолюбителя оно может навести не на тот след. Давайте попробуем разобраться с устройством агрегата, рассматривая все ключевые элементы, входящие в его состав. Для начала перечислим их, а уже потом рассмотрим в подробностях:
- Поплавковая камера;
- Система холостого хода;
- Главная дозирующая система;
- Экономайзер;
- Эконостат;
- Смесительная камера;
- Ускорительный насос.
Одним из самых важных элементов принято считать поплавковую камеру. Она работает так: когда двигатель потребляет топлива, камера начинает опустошаться, причем по мере движения находящегося в ней поплавка вниз открывается игольчатый канал. В работу включается уже топливный насос – как только объем топлива в камере будет достаточным, поплавок спровоцирует закрытие канала. Кстати, если в систему добавить достаточно мощный электрический бензонасос, агрегат будет быстрее набирать обороты за счет сгорания больших объемов топливовоздушной смеси (камера будет попросту наполняться быстрее).
Система холостого хода берет на себя задачу правильного дозирования топлива при, как несложно догадаться, холостых оборотах. Все просто: на холостых главная дозирующая система бездействует, поскольку требуемые объемы топлива невелики, так что работать должна узкоспециализированная система. Эту систему также можно отрегулировать в сторону большего или меньшего обогащения смеси. Главная дозирующая система заслуживает отдельного упоминания. Изучая ее, можно представить, чем могли вдохновляться инженеры, разрабатывавшие инжекторные системы. Если по-простому, то главная дозирующая система отвечает за дозировку горючего в случаях, когда автомобиль едет на средней скорости. Вот из каких элементов она состоит:
- Жиклеры. Это дозирующий элемент, выполненный в виде резьбовой пробки с одним четко откалиброванным отверстием;
- Главный распределитель. Понять его назначение легко по одному лишь названию;
- Диффузор. Место сужения воздушного канала, за счет которого увеличивается скорость потока атмосферного воздуха.
Экономайзер включен как в однокамерный, так и двухкамерный карбюратор. Он обеспечивает еще более сильное обогащение горючего. Незаменим в тех случаях, когда автомобиль нужно разогнать до 110 и более километров в час. Здесь стоит отметить, что существуют экономайзеры принудительного холостого хода (сокращенно ЭПХХ), призванные обеднять топливовоздушную смесь. Обычный экономайзер своему названию не соответствует – он обогащает смесь, открывая дополнительный канал для подачи топлива. Работает в тандеме с дроссельной заслонкой и может иметь механический или же пневматический привод.
Эконостат можно назвать одним из самых простых элементов карбюраторной системы. Он представляет собой трубку, которая поднимает уровень топлива по мере роста числа оборотов коленчатого вала. Эконостат обогащает смесь кислородом. Напоминаем, что правильный состав смеси отвечает не только за мощностные показатели мотора, но и за его экономичность. Эконостат позволяет сделать карбюраторный автомобиль намного более экономичным в плане расхода топлива.
Смесительная камера, одновременно являющаяся нижней частью карбюратора, является той второй «половинкой» агрегата, которую относят к важнейшим компонентам карбюратора. И неудивительно: как и поплавковая, смесительная камера берет на себя основные задачи агрегата. Это главный воздушный тракт, включающий топливодозирующие элементы, дроссельную заслонку и, по сути, диффузор. Как уже было указано выше, карбюраторы бывает одно- и двухкамерными. Речь идет именно о количестве смесительных камер и дроссельных заслонок. Заслонки в карбюраторах с парой смесительных камер могут открываться или одновременно, или последовательно (зависит от устройства конкретного двигателя).
Ускорительный насос обязательно входит в состав карбюраторов. Без него автомобиль мог бы заглохнуть и не отвечал бы требованию повышенной динамики. Данный элемент карбюраторной системы включается в момент открытия дроссельной заслонки – в систему резко попадает дополнительное топливо, столь необходимое, например, при резком увеличении нагрузки на мотор. Кстати, в переходных системах ускорительный насос также обеспечивает переход из одного режима работы карбюратора в другой.
Основные неисправности
Как уже стало ясно, карбюратор отвечает и за смешивание топлива с воздухом, и за его подачу. Несмотря на достаточное простое устройство, карбюраторы не так уж редко выходят из строя, а также нуждаются в довольно частом обслуживании. К счастью, в силу той же простоты агрегат довольно легко чистить, хотя в некоторых случаях его приходится разбирать. Основные неисправности карбюратора почти аналогичны таковым у инжекторов, разница кроется в причинах. А если говорить о следствиях, то они могут быть такими:
- Провалы при подгазовке. К примеру, автомобиль не сразу набирает скорость при воздействии на педаль «газа»;
- Раскачивание. По сути, это провалы, в которых можно проследить периодичность;
- Рывки и подергивания. Их легко прочувствовать, оказавшись за рулем автомобиля с карбюраторной системой, которая нуждается в ремонте и обслуживании. От провалов они отличаются быстротечностью;
- Сниженная интенсивность разгона. Здесь все понятно из названия.
Также стоит помнить, что на неисправность агрегата может указывать ряд неприятных вещей, которые и не нуждаются в представлении: затрудненный пуск двигателя и плохая работа «на холодную»; снижение или завышение холостых; серьезно завышенный расход топлива; невозможность запуска двигателя. Заметьте, что такие неисправности могут встречаться и при неравномерной компрессии в цилиндрах, прогорании клапанов, износе распределительного вала, смещении фаз газораспределения. В случае проблем лучше проводить полную диагностику у специалиста. Если проблема крылась в карбюраторе, то его неисправность может быть вызвана чем-то из следующего:
- Неправильная работа электромагнитного клапана;
- Неисправность ЭПХХ, блока управления;
- Деформация уплотнительного кольца;
- Засорение каналов и жиклеров;
- Дефекты экономайзера;
- Неверная регулировка поплавковой системы;
- Выход ускорительного насоса из строя.
Работы по выявлению источника проблем будет много. В подавляющем большинстве случаев система нуждается в промывке и продувке – каналы и жиклеры придут в норме и двигатель сможет работать нормально. Сложнее решать проблему повышенного расхода топлива, так как она может быть вызвать сразу рядом неисправностей. Крайне важна правильная регулировка механизмов системы – они должны работать в тандеме друг с другом, правильно формировать горючую смесь, дозировать и подавать ее. Также не забывайте, что система должна быть в достаточной мере герметичной.
Обслуживания карбюратора
Хоть карбюраторы и практически вытеснены инжекторными системами, они по-прежнему и в строю и, что очень радует, являются весьма дружелюбными по отношению к автолюбителю элементами двигательной установки. Поработать с карбюратором может даже неопытный автолюбитель, хотя и ему стоит обзавестись руководствами по обслуживанию конкретно его модели автомобиля (или найти информацию в сети). Перечень материалов и инструментов для работы с различными карбюраторами практически всегда один:
- Средство для чистки карбюраторов;
- Резиновые перчатки;
- Ветошь;
- Баллончик со сжатым воздухом;
- Щетка с не слишком жесткой щетиной;
- Защитные очки;
- Объемная емкость для деталей;
- Инструменты для снятия карбюратора (зависит от модели).
Проведите демонтаж карбюратора в соответствие с руководством. В большинстве случаев достаточно оттянуть возвратную пружину, отвести тяги, шланги, патрубки, ослабить хомуты, после чего открутить гайки. Мы все же советуем обратиться к руководствам, найти соответствующую информацию на форумах или даже видео-руководства – доступ к Всемирной паутине здесь будет очень кстати. После того как карбюратор снят, разберите его, поместите все детали в емкость, залейте в нее чистящее средство и оставьте так на несколько минут. После, продолжайте чистку уже с помощью щетки и баллончика с воздухом. Щетки с металлической щетиной для этой работы не подойдут – нужно взять обычную зубную щетку. Будьте особенно осторожны с жиклерами! Их лучше хорошенько продуть, а если проблему загрязнения это не решило, то крайне деликатно прочистить зубочисткой. При необходимости замените прокладки. В магазинах можно найти относительно недорогие ремкомплекты карбюраторов, куда входит все необходимое для ремонта. Если подвижные детали агрегата не повреждены, его можно будет быстро вернуть в строй. Не забывайте также о том, что после разборки, чистка, сборки и установки карбюратора его наверняка придется перенастроить.
Отдельно стоит рассказать об очистителях карбюратора. Волшебное средство, если так подумать – достаточно побрызгать спреем внутрь агрегата, и он очистятся от загрязнений. На самом деле очистители рекомендовано применять каждые 5-7 тысяч километров пробега. Если карбюратор не чистили долгое время, одного лишь спрея будет мало. Агрегат придется разбирать, а детали отмачивать в очистителе, после чего тереть щеткой. Категорически запрещено применение столь популярного WD-40, а также других очистных средств, в составе которых есть масло.
Подбор нового карбюратора
Несмотря на то, что карбюраторные системы являются крайне живучими, иногда они нуждаются не столько в капитальном ремонте, сколько в практически полной замене. К примеру, при полном закоксовывании воздушных и топливных каналов, при искривлении соединений и появлении серьезных механических повреждений карбюратора он нуждается в полной замене. Что здорово, не обязательно менять карбюратор на точно такой же – сегодня некоторые фирмы производят более экономичные, мощные и тихие аналоги. Однако при выборе нового агрегата нужно обращать внимание на:
- Диффузор. При правильном подборе отдавать предпочтение стоит диффузорам, диаметр которых составляет не более чем 0,8 от диаметра смесительной камеры;
- Главный топливный жиклер. Жиклер подходящей пропускной способности можно определить экспериментально, однако мы советуем для начала проконсультироваться со специалистом;
- Воздушный жиклер. Аналогично;
- Диаметр дросселя. Диапазон диаметров зависит от мощности отдельных цилиндров двигателя.
Также стоит уделить особое внимание подбору подходящего ускорительного насоса. Не забывайте и о том, что при выборе карбюратора стоит узнать как можно больше о фирме-производителе. Вот наиболее известные и надежные производители и поставщики:
Автолюбители также могут найти в продаже карбюраторы от различных малоизвестных фирм, заводы которых расположены в Китае, Турции, Таиланде и Индонезии. По качеству своей продукции они уступают вышеперечисленным фирмам, однако с учетом простоты и надежности карбюраторов, даже их товары могут приятно удивить. Одной из ключевых особенностей этих производителей также демократичная ценовая политика. Приятно радуют как ценой, так и ассортиментом чешские и польские фирмы. Как правило, в их каталогах можно найти не только сами агрегаты, но и все необходимое для их ремонта и обслуживания.
Вывод
Карбюратор – это тот агрегат, который встречается в автомобилях все реже. Многие считают его пережитком прошлого, но карбюраторы по-прежнему используются, к примеру, в газонокосилках и устанавливаются на мотоциклы. Пусть их золотая эпоха уже прошла, для многих автолюбителей они так и остаются символом надежности, простоты и неприхотливости. На самых современных автомобилях карбюраторы уже не найти, что во многом связано с низкой экологичностью, сложностью в эксплуатации при определенных погодных условиях, а также не слишком впечатляющим коэффициентом полезном действия данных агрегатов. К счастью, еще находящиеся в эксплуатации карбюраторные автомобили довольно легко обслуживать, ремонтировать, а в случае нужды и менять – богатство запчастей и новых агрегатов на рынке позволяет работать с карбюраторами и сейчас.
Дозирующие системы карбюратора
Мы продолжаем цикл статей о карбюраторном впрыске. Двигатель автомобиля в процессе езды функционирует в различных режимах. Для отдельных рабочих режимов требуется топливовоздушная смесь с разным составом. Зачастую на таких режимах происходят постоянные и резкие изменения, связанные с количеством паров горючего.
Главной задачей карбюратора становится приготовление такой смеси, которая будет оптимальной для любого режима работы мотора. Устройство карбюратора, который имеет распылитель с постоянным сечением, включает в себя различные дозирующие устройства. Каждый из этих элементов ступенчато включается в работу карбюратора или происходит поэтапное отключение, а также возможна одновременная работа. Это будет зависеть от режимов нагрузки, оборотов силового агрегата, угла открытия заслонки дросселя и т.д. Дозирующие системы карбюраторного впрыска отвечают за оптимальный состав рабочей топливовоздушной смеси во всех режимах и одновременно призваны обеспечить максимум мощности и наилучший показатель экономичности.
Рекомендуем дополнительно прочесть статью об устройстве карбюратора. Из этой статьи Вы сможете узнать об основных элементах конструкции и принципах работы данного устройства.Содержание статьи
Главная система дозирования топлива
Указанная главная дозирующая система является таким элементом, который встречается в конструкции практически любого карбюратора. Актуальные версии получили пневматическую систему для компенсации состава топливовоздушной рабочей смеси. В основе системы лежит 1 главный топливный жиклер и 1 главный воздушный жиклер. Данные жиклеры выходят в колодец, который называют эмульсионным.
Эмульсионный колодец расположен вертикально или под наклоном зависимо от модели и модификации карбюратора. Поток воздуха проходит по жиклеру для подачи воздуха и попадает в эмульсионную трубку. Трубка имеет ряды отверстий, расположенных вертикально. Между эмульсионной трубкой и стенками эмульсионного колодца создается топливовоздушная эмульсия первичного типа. Дальнейшим маршрутом эмульсии становится смесительная камера, куда она движется по каналу и попадает в распылитель. Главный топливный жиклер находится в нижней части. По этой причине уровень горючего по мере расходования эмульсии из распылителя склонен к подъему. Так происходит благодаря поступлению горючего из поплавковой камеры. Количество поступающего топлива ограничивает топливный жиклер.
Снижение уровня горючего в эмульсионном колодце означает, что в эмульсию попадает большее количество воздуха, который проходит через отверстия в эмульсионной трубке. Итогом становится возрастание доли воздуха в рабочей смеси, что и определяет большую степень компенсации. Встречаются также системы, когда бензин и воздух сразу попадают внутрь трубки. Ранние конструкции имели систему дозирования с параллельными жиклерами и диффузорами, расположенными последовательно. В таких устройствах за компенсацию практически полностью отвечала система холостого хода. Также делался упор на упругость пластин, которые открывали доступ для потока воздуха в более крупном диффузоре. Компенсационный параллельный жиклер обеспечивал подачу топлива.
Конструктивно простые карбюраторы авто с небольшим рабочим объемом мотора имели главную систему дозирования, которая состояла из компенсационного колодца и компенсационного ограничительного жиклера. Такое решение было неспособно осуществить значительную компенсацию и обеспечить подачу должного количества топлива во всех случаях. Для гибкой эксплуатации во всех режимах работы ДВС такие карбюраторы не подходили.
Более совершенные разработки дозирующей системы карбюраторного впрыска способны обеспечивать такую гибкость рабочей топливовоздушной смеси, которая находится на отметке от 1/14 до 1/17, где первая цифра указывает на весовую часть бензина, а вторая воздуха. Главные режимы работы мотора становятся экономичными благодаря системе дозирования. Система реализует приготовление обедненных составов около 1/16 или 1/16,5.
Горизонтальный карбюратор
Отдельное место занимает конструкция, которая применена в устройстве главной дозирующей системы горизонтального карбюратора с регулировкой игольного типа. Такая система обеспечивает одновременное механическое изменение количества воздуха, который миновал диффузор благодаря подъему шибера, и регулировку количества попадающего в диффузор горючего, которое дозируется посредством иглы с переменным профилем.
Игла проходит через жиклер и механическим способом изменяет проходное сечение. В таких карбюраторах четко задано соотношение как сечения диффузора, так и жиклера. Эти сечения напрямую зависят от той высоты, на которую поднимается шибер. Карбюраторы, которые имеют постоянное разрежения, в момент времени демонстрируют изменение данной характеристики по автоматическому принципу. Задача реализована посредством демпфирующей системы, которая в основе имеет золотник, а также опирается на разрежение в области заслонки дросселя. Система функционирует благодаря определяемой нагрузке на силовой агрегат и учету угла поворота дроссельной заслонки.
Переходная система во вторичной камере
Если говорить о переходной системе с дросселями, открывающимися последовательно во 2-й камере, то данное решение напоминает систему холостого хода, но с рядом особенностей.
Главная дозирующая система, расположенная во 2-й камере карбюратора, изначально рассчитана на то, чтобы обеспечивать «богатую» смесь для мощности. Благодаря этому камера не нуждается в возможности серьезной компенсации смеси сравнительно с первичной камерой. Результатом становится то, что переходная система подключается параллельно, а ее топливный жиклер соединен не с колодцем для эмульсии главной системы дозирования, а с поплавковой камерой.
Получается, что в работу вступает как переходная, так и главная система во вторичной камере. Включение обеих систем происходит одновременно, что и позволяет обогатить рабочую смесь до нужной степени.
Работа карбюратора при низком разрежении
Система, отвечающая за холостой ход, а также переходная система и система вентиляции картера отвечают за обеспечение стабильной работы мотора в таких режимах, когда разрежение минимально. Этого вакуума оказывается мало для того, чтобы задействовать главную систему дозирования, так что в таких режимах работы эти системы реализуют коррекцию состава топливовоздушной смеси.
Когда мотор находится в режиме холостых оборотов, над дросселем нет того вакуума, который необходим для активации главной системы дозирования. Очевидно, что для режима работы с низким разрежением и при слабо открытой заслонке дросселя понадобилась еще одна система. Эта система отвечает за процесс образования рабочей смеси при незначительном расходе воздуха, который протекает при таких режимах в смесительной камере.
Система холостого хода
Крайне редко встречается параллельная система, чаще представлена последовательная или автономная. По типу распыла выделяют дроссельный распыл и распыл в пространстве за дросселем. Система устроена так, что в основе имеются каналы для воздуха, горючего и эмульсии. Также присутствуют дозирующие элементы, под которыми понимаются жиклеры для работы на холостом ходу. Жиклер холостого хода, отвечающий за подачу топлива, берет эмульсию в нижней части соответствующего колодца главной дозирующей системы.
Получается, что данный жиклер представляет собой элемент в топливном канале дозирующей системы. Жиклер, отвечающий за подачу воздуха на холостом ходу, соединяется с пространством в смесительной камере. Речь идет о верхней части камеры, а такое устройство способно реализовать изменение количества подаваемого воздуха, который поступает в систему холостого хода при различных нагрузках и рабочих режимах силового агрегата.
Благодаря указанным характеристикам система холостого хода является важным участником в цепочке элементов, которые участвуют в процессе коррекции состава рабочей смеси для главной системы дозирования.
Чаще всего бывает так, что воздух попадает в устройство холостого хода по нескольким каналам (каналов бывает два или три). Такая реализация обеспечивает процесс образования эмульсии по двум или трем ступеням, что способствует получению более гомогенной рабочей смеси и одновременно улучшает равномерность ее состава по каждому отдельно взятому цилиндру ДВС.
Система холостого хода имеет выход применительно к пространству смесительной камеры. В пространстве за дроссельной заслонкой имеется достаточный вакуум при режиме холостых оборотов, которого хватает для работы системы холостого хода. В канал системы открыты переходные отверстия. Эти отверстия находятся в области кромки слегка открытой заслонки дросселя.
Модели К 88, ДААЗ 2108 и некоторые другие получили единственное вертикальное отверстие, похожее на щель. Одна часть находится ниже кромки заслонки дросселя и отвечает за работу на холостых оборотах. Если начать открывать дроссельную заслонку, тогда щель увеличивается, способствуя работе мотора при переходных режимах.
На холостых оборотах заслонка дросселя практически полностью перекрыта. Необходимый вакуум в карбюраторе имеется сразу за заслонкой. Такое разрежение позволяет через отверстие холостого хода получить топливо из главной дозирующей системы. Это топливо идет через топливный жиклер холостого хода и смешивается с воздухом, который попадает через воздушный жиклер холостого хода и другие каналы для его подачи. Полученная топливовоздушная рабочая смесь становится обогащенной, что и нужно мотору для работы в режиме холостых оборотов. Доля бензина и воздуха в этой смеси представлена в рамках от 1/12 до 1/14,5.
Под переходным режимом следует понимать работу ДВС с небольшим углом открытия заслонки дросселя. При указанном режиме богатая смесь из каналов системы холостого хода оказывается в зоне кромки заслонки, проходит через единое отверстие или конструктивную группу переходных отверстий, смешивается с поступающим воздухом и обедняется в определенных пределах (1/15 или 1/16,5).
Как уже говорилось, определенные модели карбюраторов в области кромки заслонки дросселя могут иметь только одно отверстие, похожее на щель. Это отверстие расположено вертикально. Конструктивно данное решение способно обеспечить эффективную компенсацию и достаточно плавно изменять состав топливовоздушной рабочей смеси во время режима перехода. Если учесть, что форму щели можно задать, тогда уместно говорить об отличной переходной характеристике. Когда мотор работает в других режимах система холостого хода производит компенсацию состава рабочей смеси, которую образует главная дозирующая система. Получается, что система холостого хода играет важную роль в общем устройстве всего карбюраторного впрыска и обеспечивает правильную его работу.
Не редки такие случаи, когда после непрофессиональной настройки холостого хода и при этом нормально выставленных для этого режима оборотах карбюратор все равно демонстрировал низкую эффективность или даже неработоспособность.
Автономный холостой ход
В ряде конструкций систему делают автономной, оснащая дополнительными устройствами для образования топливовоздушной рабочей смеси. Другими словами, получается своеобразный дополнительный карбюратор, работающий внутри основного карбюратора и приспособленный для эффективного функционирования в условиях низкого расхода воздуха. Примером может послужить автономная система холостого хода типа «Каскад». Такая система нужна для того, чтобы состав рабочей смеси оставался равномерным при распределении по цилиндрам силовой установки, а также для стабилизации ряда характеристик и самого процесса смесеобразования, согласованности с моментом зажигания и т.п.
Данная система конструктивно получила главный канал. Входное отверстие канала находится в области той кромки заслонки дросселя, которая опускается. Сама ложбинка канала имеет выход в область под дросселем. Такое расположение способно обеспечить возможность немедленно прекратить движение воздуха и горючего в канале в тот момент, когда осуществляется открытие заслонки дросселя. Данный канал становится основным путем для эмульсии, которая образовалась в системе режима работы на холостых оборотах.
Наилучшее качество распыла достигается благодаря смешиванию этой эмульсии с воздухом при помощи особых распылителей. Распылители способны в режиме малого расхода воздуха и эмульсии придать рабочей топливовоздушной смеси высочайшую скорость движения, граничащую со звуковой скоростью.
Такая особенность автономных решений холостого хода позволяет обеспечить наиболее качественный распыл смеси, который невозможен при использовании в карбюраторном впрыске других систем. Продвинутые карбюраторы могут иметь систему автономного холостого хода, которая характеризуется эмульгированием от двукратного до четырехкратного.
Подобные автономные системы могут быть устроены отлично друг от друга. Наиболее простую схему устройства демонстрирует карбюратор модели ДААЗ 2140. Данный карбюратор имеет конструкцию, при которой воздушный поток проходит через щель небольшого размера. В эту щель в верхней части дополнительно открыта еще одна щель из канала, по которому поступает эмульсия. Благодаря соотношению сечений этих щелей эмульсия и воздух получают скорости, приближенные к скорости звука.
Автономный холостой ход типа «Каскад» получил тип распылителя, который напоминает по своей форме кольцо и имеет отверстия, расположенные по кругу. Идущая из этих отверстий эмульсия встречается с воздушным потоком. Вся система автономного холостого хода данной конструкции сильно напоминает принципы работы смесительной камеры карбюратора. Распылитель в центре оснащен специальным регулировочным винтом с особым профилем. Этим винтом производится регулировка количества смеси в автономной системе.
Встречаются системы холостого хода, которые имеют в канале движения эмульсии распылители-сопла, направленные в центральную зону общего канала. Поток воздуха в такой конструкции подаётся через регулировочный винт, также оборудованный воздушным каналом.
Принудительный холостой ход
В таком режиме система подключает экономайзер. Указанное устройство является клапаном, который способен отключать подачу горючего. Дополнительным элементом становится система управления экономайзером, которая может быть электронно-пневматической или только электронной.
Когда ДВС переходит в режим принудительного холостого хода, на исполняющий клапан подается сигнал управления. В моторах, которые получили управление посредством микропроцессора, сигнал создает данная контролирующая система. Исполняющий клапан может находиться в выходном отверстии автоматической системы холостого хода и осуществлять перекрытие канала для подачи топливовоздушной рабочей смеси.
Вторым вариантом становится конструкция клапана с иглой, которая прерывает топливоподачу через жиклер. Такая конструкция приводит к росту инерционности всей системы. Особенность заключается в небольшом отрезке времени, когда в момент выхода из принудительного режима холостых оборотов в работу включается общая система холостого хода, но горючее еще не поступает по главному каналу через жиклер. Среди главных плюсов отмечается дешевизна и простота конструкции, а также меньшая склонность к потенциальным неисправностям в процессе активной эксплуатации.
Система с клапаном в канале является конструктивным решением в моделях ДААЗ 2104, 2105, 2107. Смена режимов происходит моментально, но ряд сложностей в процессе обслуживания и эксплуатации зачастую приводил к тому, что владельцы авто с подобным устройством системы вынуждены были деактивировать принудительный холостой ход.
Своеобразно система принудительного холостого хода реализована в модели К90. Устройство имеет такие каналы холостого хода в двух камерах, которые в конце получили солидные полости. В указанных полостях находятся тарелки электромагнитных клапанов. Когда на них происходит подача напряжения, тогда подача рабочей топливовоздушной смеси прекращается. Эти особенности позволяют карбюратору работать в штатном режиме тогда, когда экономайзер сломался.
Если карбюраторный автомобиль имеет дополнительное оборудование, отнимающее мощность мотора (АКПП, климатическую установку, генератор повышенной мощности и т.п.) тогда в конструкции можно встретить управляемый упор заслонки дросселя. Задачей такого решения становится стабилизация холостых оборотов во время включения дополнительных устройств и роста нагрузки на мотор. Дроссельная заслонка в таких режимах немного приподнимается.
Эконостат и экономайзер
Указанные устройства используются для того, чтобы обеспечить приток горючего в смесительную камеру и подать «богатую» топливовоздушную рабочую смесь при высоком разрежении. Под этим понимаются пиковые нагрузки на мотор, при которых обедненная и экономичная смесь не способна обеспечить должной отдачи от силового агрегата.
Экономайзер может управляться принудительно, как пневматическим способом, так и механически. Эконостат является устройством в виде трубки с различным сечением, в которой дополнительно могут быть эмульсионные каналы. Эти каналы выходят в верхнее пространство смесительной камеры над диффузором. Именно в этой области возникает разрежение во время пиковых нагрузок на ДВС.
Ранние модели карбюраторов, которые не имели эмульгирования, получили экономайзер с жиклером, который открывался принудительно и работал в параллели с топливным жиклером главной системы дозирования. Карбюраторы с эмульгацией данную конструкцию не получили. Дешевые модели карбюраторов, которые всегда готовят относительно «богатую» смесь почти во всех режимах, лишены экономайзера и эконостата.
Система вентиляции картера и рециркуляции отработавших газов
Вентиляция картера позволяет двигателю переработать вредные картерные газы. Вентиляция картера имеет в основе два канала. Один канал большего размера, другой меньшего. Первый канал является трубкой. В данной трубке находятся такие элементы, как пламегаситель и маслоотделитель. Картерные газы проходят через эти элементы и попадают в фильтр. Фильтр может быть инерционно-масляным перед масляной ванной или картонным воздушным фильтром, расположенным рядом с входом в первичную камеру карбюратора. Далее газы проходят процесс смешивания с воздухом и отправляются в цилиндры двигателя.
Холостой ход и переходной режим отличаются слабым разрежением над камерой. Для решения этой проблемы существует вторая трубка-канал для вентиляции. Данная трубка имеет меньший диаметр и соединяет большую трубку с пространством за заслонкой дросселя, где имеется подходящий для системы вакуум. Разные модели карбюраторов имеют золотник в малой трубке для того, чтобы перекрыть сообщение с большой трубкой в тот момент, когда открывается заслонка дросселя. Решение позволяет предотвратить проникновение воздуха под дроссель одновременно с его забором в смесительную камеру карбюратора.
Рециркуляция отработавших газов делает возможным заменить часть воздуха выхлопом. Это происходит на тех режимах, когда осуществляется торможение двигателем. Система позволяет понизить степень содержания токсичных веществ в выхлопе автомобиля. Встречается данная система не на всех типах моторов.
Устройство холодного пуска
Указанное пусковое устройство является заслонкой, которая имеет систему управления и располагается над смесительной камерой. Если эту заслонку закрыть, тогда разрежение в смесительной камере заметно возрастает. Результатом становится немедленное обогащение топливовоздушной смеси, что идеально для запуска холодного ДВС. Заслонка до конца не перекрывает подачу воздуха. Это обусловлено как расположением, так и тем, что конструктивно для нее сделан упор на пружину.
Еще одним вариантом становится установка клапана, который пропускает воздух в небольших количествах. Чтобы запустить мотор и вывести его на рабочую температуру, нужно закрыть заслонку воздуха и немного открыть заслонку дросселя. Воздушная заслонка может быть оборудована полностью механическим, полуавтоматическим или автоматическим приводом.
Механический привод приводит в действие водитель из салона. Это делается ручкой, которую называют манетка. В народе устройство получило более привычное название «подсос». Привод полуавтоматического типа получил большее распространение благодаря простоте и надежности. Водитель прикрывает заслонку самостоятельно, а открытие происходит автоматически. За открытие отвечает диафрагма, которая реагирует на появившийся вакуум во впуске. Такая реализация не позволяет смеси стать сильно обогащенной и препятствует тому, чтобы двигатель немедленно заглох после холодного запуска.
Хотя автоматический холодный пуск на отечественных машинах не сильно распространен, этого нельзя сказать о европейских и японских авто. К недостаткам автоматического решения относят его ломучесть, малый ресурс и проблематичное использование в условиях температурных перепадов.
Такой тип привода оказался самым сложным по конструкции и больше годится для стран с умеренным климатом. Автомат устроен так, что заслонка прикрыта специальным термоэлементом. Элемент прогревался жидкостью из охлаждающей системы, а также мог греться отдельным электронагревателем. Чем сильнее грелся мотор, тем больше термоэлемент открывал заслонку и давал проход воздуху. Автоматические системы с электронагревателями термоэлемента имели привод, который оснащался температурным датчиком.
Ускорительный насос
Такое устройство обеспечивает подачу дополнительного топлива в моменты резкого дросселирования. В условиях моментального открытия заслонки возникает нарушение в процессе смесеобразования во впуске, а результатом становится подача карбюраторным впрыском в цилиндры мотора недостаточного количества горючего на начальной стадии интенсивного разгона.
Насос нейтрализует «провал» и отвечает за правильный состав рабочей смеси в подобном режиме. Ускорительный насос бывает двух видов: поршневой насос и диафрагменный. Первый тип ускорителя уступает второму по стабильности ряда параметров. Главным минусом является его неспособность влиять на впрыск и интенсивность подачи зависимо от того угла, на который повернута дроссельная заслонка. Модели карбюраторов с регулировкой игольного типа или с постоянным разрежением способны готовить оптимальную по составу рабочую смесь для всех режимов работы силовой установки. Данные карбюраторы не требуют установки насоса-ускорителя.
Читайте также
Тюнинг и настройка карбюратора
Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.
Карбюратор: устройство и принцип работы
Жидкое топливо в бензиновых двигателях не может обеспечить работу поршневой группы. Для создания крутящего момента на коленчатом валу необходима серия циклических микровзрывов в цилиндрах, в то время, как жидкий бензин просто горит. Когда топливо смешивается с воздухом (содержащим большое количество кислорода), создается смесь, способная образовывать вспышку, обладающую большой кинетической энергией.
Автомобильные карбюраторы – история развития
На заре двигателестроения применение газа стало невыгодным. Возникла необходимость создания устройства, которое могло с высокой степенью надежности и безопасности обеспечить формирование из бензина и воздуха качественной смеси. Принцип работы карбюратора первой серии основывался на испарении паров топлива. Камера нагревалась от внешнего источника тепла, бензиновые пары смешивались с воздухом за счет конвекции.
Характеристики такого карбюратора не позволяли развивать большую мощность, поэтому эта конструкция не прижилась в моторостроении. Для первых экземпляров автомобилей было достаточно того, что они просто ехали, в дальнейшем потребности клиентов росли, стал развиваться автоспорт. Возникла необходимость создать карбюратор, не имеющий ограничений по мощности мотора.
Следующее поколение, изобретенное немецкими инженерами Даймлером и Майбахом, работало по принципу распыления топлива. Размеры агрегата уменьшились (не было необходимости встраивать объемную испарительную камеру с емкостью для нагрева), а производительность, напротив, выросла в разы. Фактически был создан вакуумный карбюратор, конструкция которого используется в современных моделях. Главный технический прорыв – переход топлива в газообразное состояние происходил принудительно, что давало простор для экспериментов с производительностью. Разумеется, устройство карбюратора Даймлера – Майбаха было не похоже на современные конструкции высокопроизводительных вакуумных моделей со специальным ресивером и контролем за разряжением воздуха.
Однако принцип работы был таким же, как на любом современном образце.
Устройство карбюратора (типовое описание для всех модификаций)
На схеме изображено взаимное расположение основных узлов:
- Трубка подачи бензина от топливного насоса;
- Поплавок с игольчатым клапаном, перекрывающим топливопровод;
- Жиклер приема топлива из поплавковой камеры;
- Форсунка распылителя жидкого топлива;
- Камера смесителя, в которой образовывается топливная смесь;
- Воздушная заслонка, регулирующая объем входящего потока чистого воздуха из фильтра;
- Диффузор, формирующий направление потока воздуха;
- Заслонка дросселя, регулирующая подачу смеси во впускной тракт двигателя.
Как работает карбюратор?
Рассмотрим работу каждого узла.
- Бензин под небольшим давлением (не путать с высокопроизводительными форсунками инжекторных систем) поступает в поплавковую камеру. Важно поддерживать уровень топлива в карбюраторе, не превышающий расположение жиклера. Иначе в смесительной камере не будет происходить аэрозольное распыление. Для каждой модели установлен верхний предел заполнения камеры, за которым механически «следит» поплавок с игольчатым клапаном. Такая конструкция выбрана потому, что небольшим усилием можно удерживать давление входящего топливопровода. При достижении предела – клапан запирает входное отверстие, при падении уровня – заполняет камеру бензином;
- Недостаток конструкции (к сожалению, безальтернативной) – высокая зависимость от загрязнения. Игольчатый клапан может «зависнуть» в закрытом состоянии, и работа мотора будет остановлена;
- Далее бензин поступает в жиклер. Диаметр этого элемента строго регламентирован, не допускаются отклонения даже в сотые доли миллиметра. В противном случае, на входе в смесительную камеру не будет происходить аэрозольное распыление, и топливовоздушная смесь не сформируется, а на жидком бензине, как уже говорилось, ДВС не работает;
- Из диффузора выходит аэрозоль из мельчайших капелек бензина, готовая для смешивания с воздухом;
- Камера смесителя (фактически – корпус карбюратора) предназначена для формирования газообразной смеси, состоящей из паров бензина и кислорода, содержащегося в воздухе. Бензин, равно как и воздух, попадает в камеру не под напором, а наоборот, за счет разряжения. При движении цилиндра вниз, возникает разница в давлении, своеобразный вакуум. За счет специально рассчитанной формы корпуса, потоки топлива и воздуха смешиваются равномерно, образуя качественную смесь;
- Заслонки (дроссельная и воздушная) управляемые педалью газа, дозируют интенсивность потока воздуха и скорость всасывания топлива из жиклера. Мотор работает интенсивнее, скорость вращения коленвала меняется вместе с мощностью и крутящим моментом.
Все системы карбюратора должны работать слаженно: если один из каналов (жиклеров) будет засорен, или неверно настроить положение заслонок, формирование смеси будет нарушено. Возрастет расход бензина, потеряется мощность, силовой агрегат будет работать неустойчиво, поэтому все узлы должны быть чистыми, их размер соответствовать заводским расчетам, произведена настройка регулировочных параметров. На карбюраторе есть ряд подстроечных винтов, правильные технические характеристики устанавливаются с их помощью. На иллюстрации показан пример карбюратора «Озон».
Хорошо настроенный карбюратор «выжимает» из мотора максимум возможностей при наименьших затратах на топливо. Разные модели карбюраторов могут иметь свои способы регулировки, но общий принцип единый.
У каждого карбюратора есть инструкция по выставлению параметров. Регулировка может производиться самостоятельно, или на профильном сервисе. При смене условий эксплуатации (количество кислорода в воздухе, регулярная нагрузка на автомобиль, включение кондиционера в летний период и пр.), следует произвести повторную настройку.
Чем отличаются карбюратор классической конструкции и устройство с электронным управлением?
Выше по тексту были описаны принципы работы механического карбюратора. Все настройки устанавливаются с помощью винтов, и не могут быть изменены динамически, в ходе работы. Схема карбюратора постоянно совершенствуется, и в новых моделях (некоторые выпускаются по сей день) достаточно много электроники. Например, электромагнитным клапаном оснащены практически все механические модели.
На этом устройстве остановимся подробнее:
Дело в том, что при полностью отпущенной педали газа, дроссельная заслонка перекрыта, и мотор по идее должен заглохнуть. Для работы ДВС без нагрузки (просто чтобы не заводить его каждый раз после остановки), внедрена система холостого хода. С ее помощью, даже при перекрытых заслонках, в корпус поступает минимальный объем бензина и воздуха. Формируемой топливной смеси достаточно для поддержания работоспособности силового агрегата без нагрузки на коленвал.
Этот параметр требует точной регулировки: если обороты холостого хода завышены, вырастет расход бензина, а если занижены – мотор будет глохнуть при остановках. При изменении условий работы (температура, наличие климатической установки с кондиционером, дополнительное оборудование, дающее нагрузку на генератор), режим холостого хода меняется, поэтому был установлен клапан холостого хода (электрический), который управляет процессом линейно, в зависимости от нагрузки.
Никакой программы управления нет, в клапан заходит лишь провод питания. В зависимости от некоторых условий работы, положение клапана меняется.
Это далеко не все электронные системы, которые могут быть внедрены в механику процесса. Например, все регулировки заводятся на блок управления, типа ЭБУ для инжекторных моторов. Такой микрокомпьютер постоянно отслеживает параметры нагрузки на силовой агрегат, и в реальном времени может менять настройки карбюратора. Задавая себе вопрос: «какой карбюратор лучше поставить?», можно рассматривать внедрение в машину современной конструкции. В отличие от карбюраторов традиционного исполнения, электронные системы не нуждаются в периодической настройке, но имеют более высокую стоимость, и сложнее в обслуживании и ремонте. Для обеспечения электроники исходными данными, на двигатель устанавливаются различные датчики, которые следят за параметрами мотора. На основе получаемой информации, исполнительные механизмы карбюратора приводятся в действие.
Виды карбюраторов по производителям – какой выбрать?
У всех на слуху различие т.н. китайской продукции, и карбюраторов именитых брендов (в список которых входят и ДААЗ, и Солекс, и Озон…). На самом деле, это не более, чем предрассудки. Изделие, выпущенное на заводе, с соблюдением технологии, имеющее сертификат качества, будет хорошо работать вне зависимости от географии производства. Низким качеством отличаются лишь так называемые товары «no-name», собранные крестьянами из Поднебесной буквально напильником на коленке, поэтому при подборе нового карбюратора, прежде всего ориентируйтесь на известность производителя и наличие сопроводительной документации. Разумеется, и гарантийные обязательства должны быть обеспечены сервисными центрами в пределах доступности. То есть, если вы живете в Калининграде, а ближайший сервисный центр производителя в Димитровграде – есть смысл подыскать другой экземпляр.
Итог
Не следует бояться этого на первый взгляд сложного устройства. Схема работы простая и надежная, залог нормального функционирования – чистота всех внутренних элементов и правильная настройка.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Теория работы карбюратора автомобиля [устройство и основные детали]
Карбюраторы смешивают топливо и воздух и управляют количеством топливовоздушной смеси, поступающим в двигатель. Расскажем простыми словами про работу карбюратора машины — устройство и основные детали.
Какие основные детали
Поплавковая камера
Поддерживает постоянным уровень топлива в поплавковой камере карбюратора. Работает следующим образом. Когда уровень топлива понижается, поплавок опускается, открывает игольчатый клапан и позволяет топливу поступать в поплавковую камеру. Путем поддержания уровня топлива в определенных рамках соотношение воздух/топливо в смеси поддерживается более точно.Воздушная заслонка
Позволяет заводить холодный двигатель путем обогащения топливовоздушной смеси. Воздушная заслонка перекрывает подачу воздуха в карбюратор и, соответственно, в двигатель поступает больше топлива, при этом обороты холостого хода уменьшаются. Поэтому к системе привода дроссельной заслонки добавляется система увеличения оборотов холостого хода для их повышения при прогреве мотора.Система холостого хода
Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах, когда главная дозирующая система не работает. Регулировочные винты позволяют изменять соотношение воздух/топливо в режиме холостого хода. Многие механики считают, что эта регулировка изменяет состав смеси во всем диапазоне оборотов, но это не так.Ускорительный насос
Обеспечивает впрыск дополнительного топлива при резком открывании дроссельной заслонки для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля. Если посмотреть внутрь горловины карбюратора и быстро передвинуть тяги привода дроссельной заслонки, топливо должно брызнуть из выходных отверстий ускорительного насоса.Переходная система
Обеспечивает переходный режим между холостым ходом и работой главной дозирующей системы. Многие карбюраторы имеют каналы или отверстия переходной системы рядом с пластинами дроссельных заслонок, которые подают топливо при их открывании во время открывания дроссельных заслонок.Главная дозирующая система
Дозирует подачу топлива к двигателю при движении автомобиля со средними скоростями. Состоит из главных топливных жиклеров, главного распределителя и диффузора. Главный топливный жиклер расположен в канале между поплавковой камерой карбюратора и главным распылителем. Главный распылитель обычно состоит из трубки с маленькими отверстиями для воздуха. Воздух здесь смешивается с топливом для образования распыленного топливовоздушного «тумана».Главный топливный жиклер определяет, сколько топлива будет смешано с заданным количеством воздуха.
Механики используют главные топливные жиклеры различных размеров для калибровки карбюратора в различных режимах работы. Путем использования жиклеров большего размера смесь обогащается. И наоборот, установка жиклеров меньшего размера обедняет смесь.Что такое экономайзер
Обеспечивает подачу дополнительного топлива, когда машина работает под нагрузкой и при полном открывании дроссельной заслонки. Наиболее распространенными являются экономайзеры диафрагменного типа. Когда вакуум во впускном коллекторе достигает определенного значения, клапан открывается, позволяя дополнительному топливу поступать к двигателю.Клапаны экономайзера подбираются в соответствии с величиной давления открывания, измеряемой в миллиметрах рт. ст. Двигатели с низким вакуумом должны оснащаться экономайзерами, которые открываются при малых значениях вакуума. Дозирующие стержни движутся внутрь и наружу в калиброванных отверстиях в соответствии с вакуумом впускного коллектора. Когда двигатель находится под нагрузкой, и вакуум снижается, то стержни выдвигаются из главных топливных жиклеров для увеличения подачи топлива.
Байпасные жиклеры выполняют функции, что и дозирующие стержни, за исключением, что имеют свой собственный жиклер или клапан экономайзера.
Карбюраторные системы
Чтобы обеспечить работу двигателя при различных нагрузках и при разных оборотах двигателя, каждый карбюратор имеет шесть систем:
- Главный дозатор
- Холостой ход
- Разгон
- Контроль смеси
- Отсечка холостого хода
- Обогащение мощности или экономайзер
Каждая из этих систем выполняет определенную функцию. Он может действовать самостоятельно или с одним или несколькими другими.
Основная система дозирования подает топливо в двигатель на всех оборотах выше холостого хода.Топливо, выпускаемое этой системой, определяется падением давления в горловине Вентури.
Для холостого хода необходима отдельная система, поскольку основная система дозирования может работать нестабильно при очень низких оборотах двигателя. На малых оборотах дроссельная заслонка почти закрыта. В результате скорость воздуха через трубку Вентури мала, и давление незначительно падает. Следовательно, перепада давления недостаточно для работы основной системы дозирования, и топливо из этой системы не выгружается.Поэтому большинство карбюраторов имеют систему холостого хода для подачи топлива в двигатель на низких оборотах.
Система ускорения подает дополнительное топливо при резком увеличении мощности двигателя. Когда дроссельная заслонка открыта, воздушный поток через карбюратор увеличивается, чтобы получить больше мощности от двигателя. Затем основная дозирующая система увеличивает расход топлива. Однако во время внезапного ускорения увеличение воздушного потока происходит настолько быстро, что существует небольшая задержка по времени, прежде чем увеличение расхода топлива станет достаточным для обеспечения правильного соотношения компонентов смеси с новым воздушным потоком.За счет дополнительной подачи топлива в этот период система ускорения предотвращает временное отклонение смеси от нормы и обеспечивает плавное ускорение.
Система контроля смеси определяет соотношение топлива и воздуха в смеси. С помощью пульта управления из кабины, ручное управление смесью может выбрать соотношение смеси в соответствии с рабочими условиями. В дополнение к этим ручным настройкам, многие карбюраторы имеют автоматические регуляторы смеси, так что соотношение топливо / воздух, когда оно выбрано, не изменяется при изменении плотности воздуха.Это необходимо, потому что, когда самолет набирает высоту и атмосферное давление уменьшается, происходит соответствующее уменьшение веса воздуха, проходящего через систему впуска. Объем, однако, остается постоянным. Поскольку именно объем воздушного потока определяет падение давления в горловине трубки Вентури, карбюратор стремится дозировать такое же количество топлива в этот разреженный воздух, что и в плотный воздух на уровне моря. Таким образом, естественная тенденция состоит в том, что смесь становится богаче по мере набора высоты самолетом.Автоматический контроль смеси предотвращает это, уменьшая скорость слива топлива, чтобы компенсировать уменьшение плотности воздуха.
Карбюратор имеет систему отключения холостого хода, чтобы можно было отключить подачу топлива для остановки двигателя. Эта система, входящая в состав ручного управления смесью, полностью останавливает выпуск топлива из карбюратора, когда рычаг управления смесью установлен в положение «отсечки холостого хода». Двигатель самолета останавливается путем отключения топлива, а не путем выключения зажигания.Если зажигание выключается, а карбюратор продолжает подавать топливо, свежая топливно-воздушная смесь продолжает проходить через систему впуска в цилиндры. Когда двигатель останавливается по инерции и если он слишком горячий, эта горючая смесь может воспламениться из-за локальных горячих точек в камерах сгорания. Это может привести к тому, что двигатель продолжит работу или откатится назад. Кроме того, смесь может пройти через цилиндры несгоревшей, но воспламениться в горячем выпускном коллекторе. Или двигатель останавливается, по-видимому, нормально, но горючая смесь остается во впускных каналах, цилиндрах и выхлопной системе.Это небезопасное состояние, поскольку двигатель может перевернуться после остановки и серьезно травмировать всех, кто находится рядом с гребным винтом. Когда двигатель останавливается с помощью системы отключения холостого хода, свечи зажигания продолжают воспламенять топливно-воздушную смесь до тех пор, пока не прекратится выход топлива из карбюратора. Уже одно это должно предотвратить остановку двигателя с горючей смесью в цилиндрах. Некоторые производители двигателей предлагают, чтобы непосредственно перед тем, как гребной винт перестал вращаться, дроссельная заслонка должна быть широко открыта, чтобы поршни могли перекачивать свежий воздух через систему впуска, цилиндры и выхлопную систему в качестве дополнительной меры предосторожности против случайного опрокидывания.После полной остановки двигателя ключ зажигания переводится в положение «выключено».
Система энергетического обогащения автоматически увеличивает насыщенность смеси во время работы на большой мощности. Это делает возможным изменение соотношения топливо / воздух, необходимое для различных условий эксплуатации. Помните, что на крейсерских скоростях обедненная смесь желательна из соображений экономии, тогда как при высокой выходной мощности смесь должна быть богатой, чтобы получить максимальную мощность и помочь в охлаждении цилиндров двигателя.Система обогащения энергии автоматически вызывает необходимое изменение соотношения топливо / воздух. По сути, это клапан, который закрывается на крейсерских скоростях и открывается для подачи дополнительного топлива в смесь во время работы на большой мощности. Хотя она увеличивает расход топлива при высокой мощности, система обогащения энергии фактически является устройством для экономии топлива. Без этой системы необходимо было бы эксплуатировать двигатель на богатой смеси во всем диапазоне мощностей. Тогда смесь будет богаче, чем необходимо на крейсерской скорости, чтобы обеспечить безопасную работу на максимальной мощности.Систему обогащения мощности иногда называют экономайзером или компенсатором мощности.
Хотя различные системы обсуждались отдельно, карбюратор функционирует как единое целое. Тот факт, что одна система работает, не обязательно препятствует работе другой. В то же время, когда основная система дозирования выпускает топливо пропорционально воздушному потоку, система контроля смеси определяет, является ли полученная смесь богатой или бедной. Если дроссельная заслонка внезапно открывается широко, системы ускорения и обогащения мощности действуют, чтобы добавить топливо к тому, которое уже выгружается основной системой дозирования.
Летный механик рекомендует
Базовая система индукции карбюратора
Рисунок 3-2 представляет собой схему системы впуска, используемой в двигателе, оборудованном карбюратором. В этой системе впуска воздух нормального потока карбюратора поступает через нижний передний обтекатель под вращателем гребного винта и проходит через воздушный фильтр в воздуховоды, ведущие к карбюратору. Клапан нагретого воздуха карбюратора расположен под карбюратором для выбора альтернативного источника теплого воздуха (обогрева карбюратора) для предотвращения обледенения карбюратора.[Рисунок 3-5] Обледенение карбюратора происходит, когда температура в горловине карбюратора понижается и присутствует достаточно влаги, чтобы замерзнуть и заблокировать поток воздуха к двигателю. Нагревательный клапан карбюратора пропускает воздух из наружного воздухозаборника для нормальной работы и пропускает теплый воздух из моторного отсека для работы в условиях обледенения. Нагрев карбюратора управляется двухтактным регулятором в кабине. Когда дверца нагретого воздуха карбюратора закрыта, теплый воздух, поступающий из выхлопной трубы, направляется в карбюратор.Это повышает температуру всасываемого воздуха. Альтернативная воздушная заслонка может быть открыта всасыванием двигателя, если нормальный путь воздушного потока должен быть чем-то заблокирован. Клапан закрывается пружиной и при необходимости всасывается двигателем.
Рисунок 3-2. Индукционная система без наддува с использованием карбюратора. Рисунок 3-5. Расположение клапана нагретого воздуха карбюратора.Воздушный фильтр карбюратора, показанный на Рисунке 3-6, установлен в воздухозаборнике перед воздуховодом карбюратора. Его цель — предотвратить попадание пыли и других посторонних предметов в двигатель через карбюратор.Экран состоит из рамы из алюминиевого сплава и экрана с глубокими гофрами, который обеспечивает максимальную площадь экрана для воздушного потока. Используется несколько типов воздушных фильтров, включая бумажные, поролоновые и другие типы фильтров. Большинство воздушных фильтров требуют регулярного обслуживания, при этом необходимо соблюдать особые инструкции для соответствующего типа фильтра. [Рисунок 3-6] Рисунок 3-6. Расположение воздушного фильтра.
Воздуховоды карбюратора состоят из фиксированного канала, приклепанного к носовой части кожуха, и гибкого канала между фиксированным воздуховодом и корпусом воздушного клапана карбюратора.Воздуховоды карбюратора обычно обеспечивают проход наружного воздуха к карбюратору. Воздух поступает в систему через воздухозаборник. Впускное отверстие расположено в воздушном потоке, поэтому воздух нагнетается в систему впуска, создавая ударный эффект для входящего воздушного потока. Воздух проходит по воздуховодам к карбюратору. Карбюратор дозирует топливо пропорционально воздуху и смешивает воздух с нужным количеством топлива. Дроссельной заслонкой карбюратора можно управлять из кабины, чтобы регулировать поток воздуха (давление в коллекторе), и таким образом можно контролировать выходную мощность двигателя.
Хотя многие новые самолеты не оборудованы таким оборудованием, некоторые двигатели оснащены системами индикации температуры воздуха карбюратора, которые показывают температуру воздуха на входе в карбюратор. Если груша расположена на стороне двигателя карбюратора, система измеряет температуру топливно-воздушной смеси.
Бортовой механик рекомендует
Карбюраторная система (автомобиль)
9.13.
Карбюраторная система Для смешивания топлива и регулирования скорости карбюратор имеет ряд фиксированных и регулируемых каналов, жиклеров, каналов и насосов, которые составляют системы или контуры дозирования топлива.Есть шесть основных систем, общих для всех карбюраторов:
(i) Поплавковая система
(ii) Система холостого хода и низкой скорости
(Hi) Высокая скорость или основная система дозирования
(iv) Система питания
(v) Система ускорительного насоса
(vi) Дроссельная система
9.13.1.
Бензин из топливного бака топливным насосом подается в топливный бак карбюратора (основной колодец), где он хранится. Бензин должен поддерживаться в топливном баке на точном, почти постоянном уровне.Этот уровень имеет решающее значение, поскольку он устанавливает уровень топлива во всех каналах и контурах карбюратора. При высоком уровне топлива образуется богатая топливная смесь, что приводит к высокому расходу топлива и высокому уровню выбросов. Низкий уровень топлива приводит к обеднению смеси, что приводит к помпажу двигателя и пропускам зажигания. Из-за этих проблем уровень топлива — одна из наиболее важных регулировок, необходимых для карбюратора.
Основная форсунка для слива топлива высокоскоростной системы подсоединяется непосредственно к дну топливного бака.Уровень топлива в чаше и форсунке одинаковый. Поплавок в сборе (рис. 9.42) имеет легкий полый латунный или пенопластовый понтон с петлей и хвостовиком. По мере повышения уровня топлива в чаше понтон поднимается выше. Он поворачивается на шарнире, чтобы переместить язычок к игольчатому клапану. Игольчатый клапан прижимается к седлу выступом узла поплавка, чтобы остановить поступающее топливо в бачок, когда поплавок достигает установленного уровня топлива. Поплавок опускается по мере того, как уровень топлива падает из-за использования, позволяя игольчатому клапану покинуть седло, чтобы заполнить резервуар топливом, подаваемым топливным насосом.Во время работы при выполнении многих рабочих условий
расход топлива в топливный бак и из него практически одинаков. Игольчатый клапан остается в частично открытом положении для поддержания требуемого расхода. Уровень топлива контролируется и поддерживается почти постоянным с помощью поплавка и впускного игольчатого клапана. Над топливным баком предусмотрено воздушное пространство. Давление в бачке атмосферное из-за отвода воздуха из рожка карбюратора. Атмосферное давление топлива в резервуаре обеспечивает перепад давления, необходимый для точной дозировки топлива в зону вакуума Вентури цилиндра карбюратора.
Рис. 9.46. Конструкция с поплавковым и игольчатым клапаном.
Конструкция и расположение поплавкового и игольчатого клапана в топливном баке различаются в зависимости от конструкции карбюратора (рис. 9.46). К некоторым поплавкам прикреплены небольшие пружины, чтобы они не подпрыгивали вверх и вниз при движении автомобиля по неровной дороге. Многие топливные баки имеют перегородки, предотвращающие расплескивание топлива на неровных дорогах и крутых поворотах. Иглы и седла в большинстве карбюраторов сделаны из латуни, и иглы часто имеют пластиковые наконечники, которые соответствуют любым неровностям на седле и по-прежнему обеспечивают хорошее уплотнение, когда клапан закрыт.
Когда двигатель выключен, тепло двигателя испаряет топливо в резервуаре. Количество испарения из системы с большим резервуаром может легко перегрузить канистру, используемую для контроля выбросов. Поэтому современные карбюраторы включают в себя небольшую поплавковую чашу из формованного пластика. Другие устанавливают изолятор между карбюратором и впускным коллектором для уменьшения нагрева.
9.13.2.
Система холостого хода и низких оборотов
Эта система полностью контролирует подачу бензина на холостом ходу и на скоростях малой нагрузки до 32 км / ч.На низких скоростях очень небольшое количество воздуха проходит через трубку Вентури, вызывая небольшой эффект Вентури, и, следовательно, дроссельная заслонка почти закрыта. Этого недостаточно для создания потока топлива в основной дозирующей струйной системе. Поэтому карбюраторы оснащены системой холостого хода, показанной на рис. 9.47, которая забирает топливо из основного колодца и переносит его через ограничения на высоту выше уровня топлива, где воздух попадает в топливную систему через воздуховыпускные отверстия холостого хода, образуя смесь топливо и воздух.Эта смесь следует по другому каналу к отверстию чуть ниже дроссельной заслонки, где смесь проходит через регулируемый вручную канал холостого хода и выпускается в воздушный поток. Смесь холостого хода, которая обеспечивает плавность холостого хода, регулируется поворотом регулируемого вручную игольчатого винта, называемого винтом регулятора смеси холостого хода.
Обычно используется один регулировочный винт для каждого первичного цилиндра. Наконечники винта выступают в проходы системы холостого хода и поворачиваются внутрь (по часовой стрелке) для получения обедненной смеси или наружу (против часовой стрелки) для получения более богатой смеси.Некоторые винты смесителя карбюратора имеют пластиковые ограничительные колпачки (рис. 9.48). Эти колпачки ограничивают объем регулировки, чтобы предотвратить чрезмерно богатую смесь холостого хода. Скорость холостого хода — это результат количества воздуха, проходящего через карбюратор, который регулируется положением дроссельной заслонки. Положение дроссельной заслонки устанавливается винтом регулировки холостого хода (рис. 9.49).
Дополнительные небольшие отверстия, называемые переходными портами (рис. 9.47), расположены чуть выше закрытой дроссельной заслонки в цилиндре карбюратора. На холостом ходу каналы передачи всасывают воздух из ствола, который находится под атмосферным давлением
, в поток топлива в системе холостого хода.Когда двигатель находится на небольшом ускорении, двигателю требуется больше топлива, чем может обеспечить только канал холостого хода, и, следовательно, порт передачи вступает в действие как низкоскоростная система (рис. 9.50). Когда горловина открывается, передаточный порт подвергается воздействию всасываемого вакуума, и поток в передаточном отверстии меняется на противоположный. Дополнительное топливо вытекает из передаточного отверстия для удовлетворения потребностей двигателя во время переключения с холостого хода на работу на низких оборотах. Топливо продолжает поступать из порта холостого хода, но с меньшей скоростью. Это позволяет получить почти постоянную топливно-воздушную смесь в течение этого переходного периода.
Рис. 9.47. Типовая схема холостого хода.
Рис. 9.48. Крышки ограничителя холостого хода.
Самая распространенная проблема в системе холостого хода — закупорка ограничителей холостого хода и выпускные отверстия для воздуха, требующие очистки. Это замечается, когда изменение регулировки винта смеси не влияет на холостой ход двигателя.
Рис. 9.49. Винт регулировки холостого хода.
Рис. 9.50. Низкоскоростной режим.
9.13.3.
Когда скорость транспортного средства достигает более 32 км / ч, дроссельная заслонка открывается достаточно широко, чтобы обеспечить достаточный воздушный поток для создания давления немного ниже атмосферного на конце главного нагнетательного сопла.В то же время зона частичного вакуума во впускном коллекторе перемещается вверх в цилиндре карбюратора. Воздушный поток и изменение давления усиливают эффект Вентури, заставляя бензин вытекать из главного нагнетательного сопла (рис. 9.51). При дальнейшем увеличении скорости основная система дозирования продолжает отключаться до тех пор, пока не принимает на себя всю нагрузку, в то время как система холостого хода выключается. Основная система дозирования обеспечивает подачу бензина, достаточного для работы двигателя на холостом ходу с максимальной скоростью, когда дроссельная заслонка почти полностью открыта.
Рис. 9.51. Высокоскоростная или основная система дозирования.
Рис. 9.52. Система с несколькими трубками Вентури.
Для лучшего смешивания топлива и воздуха в большинстве карбюраторов имеется несколько или наддувных вентиляционных отверстий, расположенных друг внутри друга (рис. 9.52). Основное выпускное сопло расположено в самом маленькой трубке Вентури, чтобы увеличить частичный эффект вакуума на сопле. Топливо поступает из бачка через главный жиклер и главный канал в выпускное сопло. Высокоскоростной отвод воздуха (рис.9.52) смешивает воздух с топливом перед его выпуском из форсунки. Первичная или верхняя трубка Вентури создает разрежение, которое вызывает распыление топлива из главного форсунки. Вторичная трубка Вентури создает воздушный поток, который удерживает топливо от стенок ствола, где оно может замедлиться и конденсироваться. Это приводит к турбулентности воздуха, что способствует лучшему перемешиванию и более тонкому распылению топлива.
9.13.4.
Высокоскоростная система подает обедненную топливовоздушную смесь на все карбюраторные системы.Когда нагрузка двигателя увеличивается во время работы на высоких оборотах, эта смесь слишком бедная, чтобы обеспечить необходимую мощность, требуемую двигателем. Необходимое дополнительное топливо вместо этого обеспечивается другой системой, называемой системой питания или силовым клапаном. Дополняет подачу топлива основного дозатора. Система питания или клапан могут управляться вакуумом или механической связью. Тип силового клапана зависит от конструкции карбюратора, но все они обеспечивают более богатую топливно-воздушную смесь.
Один тип силового клапана (рис.9.53) расположен в нижней части топливного бака с отверстием для основной нагнетательной трубки. Пружина удерживает маленький тарельчатый клапан в закрытом состоянии, а вакуумный поршень удерживает поршень над клапаном. Поскольку вакуум в коллекторе уменьшается по мере увеличения нагрузки на двигатель, большая пружина перемещает плунжер вниз. Это открывает клапан и позволяет большему количеству топлива поступать в главный нагнетательный патрубок.
В другом типе силового клапана с вакуумным приводом используется диафрагма (рис. 9.54). Вакуум в коллекторе управляет диафрагмой, которая удерживает клапан в закрытом состоянии.По мере того, как вакуум уменьшается при увеличении нагрузки, пружина открывает клапан, который направляет больше топлива через систему питания к главному нагнетательному соплу.
Дозирующие стержни также могут использоваться в качестве силовой системы (рис. 9.55), которая управляется вакуумными поршнями и пружинами или механической связью, связанной с дроссельной заслонкой. Концы стержней сужаются или ступенчатые для постепенного увеличения дополнительного расхода топлива и устанавливаются в отверстии главного жиклера. Стержни ограничивают площадь основного жиклера и уменьшают количество топлива, которое проходит через них
во время работы основной системы дозирования с малой нагрузкой.Дополнительное топливо для полной мощности дроссельной заслонки обеспечивается перемещением штоков из форсунок для увеличения потока через форсунки.
Рис. 9.53. Система питания с вакуумным поршнем
Рис. 9.54. Система питания, управляемая диафрагмой с вакуумным регулированием.
Дозирующие стержни с регулируемым вакуумом, также называемые повышающими стержнями, удерживаются в форсунках за счет разрежения в коллекторе, прикладываемого к поршням, прикрепленным к стержням. Когда вакуум падает под большой нагрузкой, пружины, работая против поршней, выталкивают штоки из жиклеров.Дозирующие стержни с механическим приводом управляются напрямую механической тягой, соединенной с дроссельной тягой.
9.13.5.
Система обеспечивает дополнительное топливо для некоторых условий работы двигателя. Если дроссельная заслонка открывается внезапно из закрытого или почти закрытого положения, поток воздуха увеличивается быстрее, чем поток топлива из главного нагнетательного сопла. Этот сброс воздуха во впускной коллектор внезапно снижает вакуум в коллекторе и приводит к обеднению топливной смеси.Эта чрезмерно бедная смесь приводит к спотыканию, иногда называемому ровным пятном. Для получения достаточного богатства смеси топливо подает ускорительный насос.
Ускорительный насос (рис. 9.56) представляет собой плунжер или диафрагму в отдельной камере в корпусе карбюратора. Он приводится в действие тягой, соединенной с тягой дроссельной заслонки карбюратора (рис. 9.57). Когда дроссельная заслонка закрывается; насос
Рис. 9.55. Энергосистема на основе дозирующих стержней, управляемая механической или вакуумной связью.
всасывает топливо в камеру через впускной обратный клапан, показанный на рис. 9.58A, а выпускной обратный клапан закрывается, так что воздух не проходит через сопло насоса. Насос движется вниз или внутрь, когда дроссельная заслонка быстро открывается, чтобы подавать топливо к форсунке в стволе (рис. 9.58B) через выпускной обратный клапан. При подаче топлива обратный клапан закрывается. Выходной обратный клапан насоса может быть стальным шаром или плунжером, а входной обратный клапан — стальным шаром, резиновой диафрагмой или частью плунжера насоса.
Рис. 9.56. Типовой ускорительный насос плунжерного типа.
Рис. 9.57. Тяга ускорительного насоса.
Большинство плунжеров или диафрагм насосов приводится в действие пружиной регулирования. Дроссельная заслонка удерживает насос в возвращенном положении. Когда дроссельная заслонка открывается, рычаг освобождает насос, а пружина перемещает плунжер для стабильной и равномерной подачи топлива. Ускорительный насос работает в течение первой половины хода дроссельной заслонки из закрытого в полностью открытое положение.
Во время работы на высоких оборотах разрежение на сопле насоса в цилиндре карбюратора может быть достаточно сильным, чтобы смещать выходную заслонку и откачивать топливо из насоса. Это называется пуловером с помпой или сифоном. В большинстве карбюраторов воздуховыпускные отверстия расположены в выпускных каналах насоса, чтобы предотвратить сифонирование. В некоторых карбюраторах к выходному отверстию добавляется дополнительный вес, чтобы противодействовать сифонированию. Плунжеры насосов некоторых карбюраторов имеют антисифонные обратные клапаны.
Проблемы с системой ускорения вызывают спотыкание или колебания двигателя, вызванные повреждением поршня из синтетического каучука или
Рис.9,58. Работа ускорительного насоса. A. Ход всасывания насоса B. Ход нагнетания насоса
Требуется замена диафрагмы. Иногда грязь попадает на седло обратного клапана или погружает напорный патрубок, требуя очистки или замены.
9.13.6.
При холодном пуске испаряется только легкая летучая часть топлива при низкой температуре. Холодные стенки коллектора вызывают конденсацию бензина из топливовоздушной смеси, и менее испаренное топливо достигает камер сгорания.При холодном пуске используется система дросселирования для подачи большого количества топлива в цилиндр карбюратора. Дроссельная заслонка (клапан) расположена в воздушном рупоре над основным напорным патрубком и трубкой Вентури, как показано на рис. 9.59. Дроссельную заслонку можно наклонять под разными углами, чтобы ограничить поток воздуха. Проворачивание двигателя при закрытой заслонке воздушной заслонки создает частичный вакуум во всем цилиндре карбюратора под пластиной. Это уменьшение воздушного потока и область частичного вакуума работают вместе, позволяя втягивать больше топлива в смесь.
Рис. 9.59. Дроссельная система.
Рис. 9.60. Автоматическая система дросселирования. A. Встроенный дроссель. Б. Дистанционный дроссель.
Дроссельная заслонка может приводиться в действие вручную с помощью кабеля, идущего к кабине водителя, или автоматически с помощью термостатической пружины. Вал дроссельной заслонки соединен с пружиной рычажным механизмом. Биметаллическая термостатическая пружина обычно располагается в одном из двух мест. В одном из типов он размещается в круглом корпусе на воздушном рупоре карбюратора (рис.9.60A). Это называется цельным или поршневым дросселем. У другого типа он расположен вне карбюратора в углублении на впускном коллекторе (рис. 9.60B). Это называется дистанционным, колодезным или вакуумным тормозным дросселем.
Независимо от типа и расположения, термостатическая пружина закрывает воздушную заслонку при холодном двигателе. При запуске холодного двигателя воздушная заслонка полностью закрывается. Как только двигатель запускается, воздушная заслонка приоткрывается для достаточного притока воздуха. Вакуум в коллекторе тянет за собой диафрагму или поршень, что немного открывает воздушную заслонку.Когда двигатель нагревается, термостатическая пружина воздушной заслонки постепенно ослабляет свое натяжение, позволяя вакууму медленно открывать воздушную заслонку, а также медленно отпускать кулачок быстрого холостого хода. Когда двигатель прогрет, воздушная заслонка полностью отпущена. Вал дроссельной заслонки смещен, чтобы обеспечить другое открывающее усилие. Если дроссельная заслонка внезапно открывается на холодном двигателе, кончик дроссельной заслонки открывается, позволяя большему количеству воздуха попасть в карбюратор. Термостатическая пружина для удаленной воздушной заслонки расположена либо на выпускном переходнике впускного коллектора, либо на выпускном коллекторе, где она быстро улавливает тепло.В случае встроенного дросселя тепло передается от коллекторной печи через изолированную трубку для нагрева термостатической пружины.
Липкий вал дроссельной заслонки, застрявший вакуумный поршень, изогнутые соединения, неправильная регулировка, а также засоренная или сгоревшая тепловая трубка дроссельной заслонки обычно вызывают проблемы в системе дроссельной заслонки, требующие замены поврежденных деталей, очистки вала и втулок и правильной регулировки.
Авиационные карбюраторы 101 | Организация владельцев Cessna
Под капотом Основные функции карбюратора и 3 вещи, которые, скорее всего, все испортят!Двигателям требуется топливо для выработки энергии, необходимой для выработки энергии.Большинство самолетов в парке авиации общего назначения используют карбюратор для обеспечения горючей смеси топлива и воздуха. Работа карбюратора состоит в том, чтобы измерить количество поступающего всасываемого воздуха и отмерить надлежащее соотношение топливо / воздух на впуске цилиндра.
Большинство карбюраторов, используемых в авиации общего назначения, поплавкового типа. Это означает, что карбюратор имеет резервуар, который заполнен топливом до уровня, регулируемого поплавком, прикрепленным к игольчатому клапану. Топливо поступает в резервуар через сетчатый фильтр, который фильтрует топливо.По мере увеличения уровня топлива поплавок поднимается, и игольчатый клапан, который прикреплен к поплавку с помощью рычага, закрывается и перекрывает поток топлива до тех пор, пока уровень поплавка снова не упадет.
Воздух поступает в карбюратор и проходит через трубку Вентури. Вентури ускоряет воздушный поток и снижает давление воздуха. Форсунка размещается в этой области низкого давления и соединяется с топливным баком. Низкое давление создает всасывание на сопле, и топливо выбрасывается в воздушный поток.Когда топливо выгружается, оно также испаряется.
На трубку Вентури в карбюраторе распространяется пара директив FAA по летной годности. Двухкомпонентные модели лучше распыляют топливо, но иногда выходят из строя. Цельные модели не выходят из строя, но иногда требуется новое сопло, чтобы помочь должным образом испарить топливо.
Величина всасывания на сопле регулируется массовым потоком воздуха, проходящим через сопло. Количество воздушного потока регулируется дроссельной заслонкой (также известной как «дроссельная заслонка»), расположенной после трубки Вентури и выпускного сопла.Поскольку дроссельная заслонка закрывается пилотом, перемещающим трос дроссельной заслонки, воздушный поток уменьшается. Когда пилот толкает трос дроссельной заслонки, дроссельная заслонка открывается, и поток воздуха и всасывание на выпускном сопле увеличиваются. Когда трос дроссельной заслонки вдвинут до упора, дроссельная заслонка «широко открыта».
Регулятор смеси на карбюраторе регулирует количество топлива, выходящего из выпускного сопла. Дроссельная заслонка контролирует количество всасывания, но смесь контролирует количество топлива и позволяет пилоту регулировать соотношение топлива и воздуха.
При быстром открытии дроссельной заслонки поток воздуха внезапно увеличивается, и имеется небольшая задержка всасывания на сопле, увеличивающая поток топлива, чтобы соответствовать увеличению потока воздуха. Чтобы это компенсировать, в некоторых карбюраторах используется ускорительный насос. По сути, это «плунжер», который выбрасывает дополнительное топливо в воздушный поток, когда дроссельная заслонка быстро перемещается.
Карбюраторы просты с механической точки зрения, с небольшим количеством движущихся частей и, как правило, не требуют значительного обслуживания.Однако следующие обстоятельства могут (и часто вызывают) серьезные проблемы в безотказной системе:
№1. Застой автомобильного топлива — Автомобильное топливо может вызвать проблемы, если самолет простаивает в течение длительного времени. В конечном итоге регулятор смеси заедает в положении отключения холостого хода. Рычаг управления смесью соединен с дозирующей втулкой клапана смеси через рычаг, который состоит из плотно сплетенной пружины. Дозирующая втулка может заедать в латунном корпусе карбюратора.Как только регулятор смеси выдвигается вперед в кабине, пружинный рычаг дозирующего клапана повреждается, потому что нижняя часть застревает в карбюраторе. Ремонт требует разборки карбюратора.
№ 2. Коррозия — Коррозия в результате загрязнения водой — еще одна распространенная проблема неиспользуемых карбюраторов. Зажим, на который устанавливается поплавок, изготовлен из стали и может значительно заржаветь при контакте с водой. То же самое и с пружинным рычагом на дозирующей втулке для регулирования смеси.Даже плунжер ускорительного насоса имеет стальную пружину (под кожей), которая может подвергнуться коррозии.
№ 3. Время и износ — Конечно, общий износ и усталость также могут вызвать проблемы с карбюратором. Ускорительный насос соединен с дроссельным механизмом через металлическую скобу в форме подковы. Этот зажим часто изнашивается. Со временем ось дроссельной заслонки и рычаг управления смесью в корпусе карбюратора также изнашиваются, как и игольчатый клапан и седло.
Карбюратор — это старое, простое, надежное изобретение, которое обеспечивает долгие годы использования, то есть при правильном обслуживании.Однако правильная очистка карбюратора иногда может быть сложной задачей, поэтому вот несколько советов, которые помогут вам сэкономить время и денег:
СОВЕТ № 1: Найдите чистящее средство, достаточно сильное, чтобы удалить лак, но достаточно мягкое, чтобы предотвратить повреждение любых неметаллических деталей. Очистители, которые погружают карбюратор в растворитель, слишком сильны. Фактически, у Marvel Schebler есть сервисный бюллетень, требующий от замены неметаллических деталей, которые контактировали с этим типом очистителя.
СОВЕТ № 2: Полностью снимите впускную сетку для очистки. Попытка продуть сжатым воздухом через входное отверстие может повредить поплавок.
Как карбюратор работает в топливной системе?
Карбюратор отвечает за смешивание бензина и воздуха в нужных количествах и подачу этой смеси в цилиндры. Хотя карбюраторы не используются в новых автомобилях, они обеспечивают топливом двигатели всех автомобилей — от легендарных гоночных автомобилей до роскошных автомобилей высшего класса.Они использовались в NASCAR до 2012 года, и многие энтузиасты классических автомобилей используют карбюраторные автомобили каждый день. При таком количестве стойких энтузиастов карбюраторы должны предложить что-то особенное для тех, кто любит автомобили.
Как работает карбюратор?
Карбюратор основан на вакууме, создаваемом двигателем, для втягивания воздуха и топлива в цилиндры. Эта система использовалась так долго из-за ее простоты. Дроссель может открываться и закрываться, позволяя большему или меньшему количеству воздуха попадать в двигатель.Этот воздух проходит через узкое отверстие, называемое трубкой Вентури . Это создает разрежение, необходимое для работы двигателя.
Чтобы понять, как работает трубка Вентури, представьте себе реку, текущую нормально. Эта река движется с постоянной скоростью, и ее глубина одинакова на всем протяжении. Если в этой реке есть узкий участок, воде придется ускориться, чтобы такой же объем прошел на той же глубине. Как только река вернется к исходной ширине после узкого места, вода все равно будет пытаться сохранить ту же скорость.Это заставляет воду с более высокой скоростью на дальней стороне узкого места притягивать воду, приближающуюся к узкому горлышку, создавая вакуум.
Благодаря трубке Вентури внутри карбюратора создается достаточно вакуума, чтобы воздух, проходящий через него, равномерно втягивал газ из форсунки . Жиклер находится внутри трубки Вентури и представляет собой отверстие, через которое топливо из поплавковой камеры может смешиваться с воздухом перед тем, как попасть в цилиндры. Поплавковая камера вмещает небольшое количество топлива, как резервуар, и позволяет горючему легко течь к жиклеру по мере необходимости.Когда дроссельная заслонка открывается, в двигатель втягивается больше воздуха, что приводит к увеличению мощности двигателя.
Основная проблема этой конструкции заключается в том, что дроссельная заслонка должна быть открыта, чтобы двигатель мог получать топливо. Дроссельная заслонка закрыта на холостом ходу, поэтому жиклер холостого хода позволяет небольшому количеству топлива поступать в цилиндры, чтобы двигатель не глохнул. Другие мелкие проблемы включают выход избыточных паров топлива из поплавковой камеры (камер).
В топливной системе
Карбюраторы на протяжении многих лет производились в различных формах и размерах.Маленькие двигатели могут использовать один карбюратор с одной форсункой для подачи топлива в двигатель, в то время как более крупные двигатели могут использовать до двенадцати форсунок, чтобы оставаться в движении. Трубка, содержащая трубку Вентури и жиклер, называется цилиндром , хотя этот термин обычно используется только в отношении многоствольных карбюраторов .
Многоствольные карбюраторы в прошлом были большим преимуществом для автомобилей, предлагая варианты конфигурации с 4 или 6 цилиндрами. Больше бочек означало, что в цилиндры могло поступать больше воздуха и топлива.В некоторых двигателях даже использовалось несколько карбюраторов.
Спортивные автомобили часто приходили с завода с одним карбюратором на цилиндр, к большому разочарованию их механиков. Все они должны были быть индивидуально настроены, и темпераментные (обычно итальянские) силовые установки были особенно чувствительны к любым недостаткам настройки. К тому же у них была тенденция довольно часто нуждаться в настройке. Это большая причина, по которой впрыск топлива впервые был популяризирован в спортивных автомобилях.
Куда пропали все карбюраторы?
С 1980-х годов производители постепенно отказываются от карбюраторов в пользу впрыска топлива.Оба выполняют одну и ту же работу, но сложные современные двигатели просто эволюционировали по сравнению с карбюраторами, и на смену им пришел гораздо более точный (и программируемый) впрыск топлива. На это есть несколько причин:
Впрыск топлива может подавать топливо непосредственно в цилиндр, хотя иногда используется корпус дроссельной заслонки, позволяющий одной или двум форсункам подавать топливо в несколько цилиндров.
Холостой ход сложно с карбюратором, но очень просто с топливными форсунками. Это связано с тем, что система впрыска топлива может просто добавить небольшое количество топлива в двигатель, чтобы поддерживать его работу, но карбюратор закрывает дроссельную заслонку на холостом ходу.Жиклер холостого хода необходим для предотвращения остановки карбюраторного двигателя при закрытой дроссельной заслонке.
Впрыск топлива более точный и расходует меньше топлива. Благодаря этому также уменьшается количество паров газа при впрыске топлива, поэтому вероятность возгорания меньше.
Несмотря на то, что карбюраторы устарели, они вошли в историю автомобилестроения и работают чисто механически и грамотно. Работая с карбюраторными двигателями, энтузиасты могут получить практические знания о том, как воздух и топливо попадают в двигатель для воспламенения и поддерживают все в движении.
Карбюраторы поплавкового типа — Системы дозирования топлива для поршневых двигателей
Карбюратор поплавкового типа состоит по существу из шести подсистем, которые регулируют количество выгружаемого топлива по отношению к потоку воздуха, подаваемого в цилиндры двигателя. Эти системы работают вместе, чтобы обеспечить двигатель правильным потоком топлива во всех рабочих диапазонах двигателя. Основные подсистемы поплавкового карбюратора показаны на рисунке 1. Это следующие системы:
- Система механизма поплавковой камеры
- Главная система дозирования
- Система холостого хода
- Система контроля смеси
- Система ускорения
- Система экономайзера
Рисунок 1.Карбюратор поплавкового типа |
Система механизма поплавковой камеры
Между подачей топлива и основной дозирующей системой карбюратора предусмотрена поплавковая камера. Поплавковая камера или чаша служит резервуаром для топлива в карбюраторе. [Рис. 2] Эта камера обеспечивает почти постоянный уровень топлива в основном выпускном сопле, который обычно находится примерно на 1⁄8 дюйма ниже отверстий в основном выпускном сопле. Уровень топлива должен поддерживаться немного ниже выпускных отверстий выпускного сопла, чтобы обеспечить правильный расход топлива и предотвращение утечки топлива из форсунки при неработающем двигателе.
Рисунок 2. Поплавковая камера (чаша) со снятым поплавком |
Уровень топлива в поплавковой камере поддерживается почти постоянным с помощью игольчатого клапана с поплавковым управлением и седла. Седло иглы обычно изготавливается из бронзы. Игольчатый клапан изготовлен из закаленной стали или может иметь секцию из синтетического каучука, которая подходит к седлу. При отсутствии топлива в поплавковой камере поплавок опускается к дну камеры и позволяет игольчатому клапану широко открываться.Когда топливо поступает из линии подачи, поплавок поднимается (плавает в топливе) и закрывает игольчатый клапан, когда топливо достигает заданного уровня. Когда двигатель работает и топливо всасывается из поплавковой камеры, клапан принимает промежуточное положение, так что открытия клапана достаточно для подачи необходимого количества топлива и поддержания постоянного уровня. [Фигура 1]
Когда топливо находится на правильном уровне (поплавковая камера), скорость нагнетания точно контролируется скоростью воздуха через трубку Вентури карбюратора, где падение давления на выпускном сопле заставляет топливо течь во всасываемый воздушный поток.Атмосферное давление над топливом в поплавковой камере вытесняет топливо из выпускного сопла. Вентиляционное или небольшое отверстие в верхней части поплавковой камеры позволяет воздуху входить или выходить из камеры при повышении или понижении уровня топлива.
Основная система дозирования
Основная система дозирования подает топливо в двигатель на всех оборотах выше холостого хода и состоит из:
- Вентури
- Главный дозирующий жиклер
- Главный напорный патрубок
- Переход к системе холостого хода
- Дроссельная заслонка
Поскольку дроссельная заслонка регулирует массовый расход воздуха через трубку Вентури карбюратора, ее следует рассматривать как основной узел в основной системе дозирования, а также в других системах карбюратора.Типичная основная система дозирования показана на рисунке 3. Вентури выполняет три функции:
- Пропорции топливовоздушной смеси
- Уменьшает давление на выходе сопла
- Ограничивает воздушный поток при полном открытии дроссельной заслонки
Рисунок 3. Основная система дозирования |
Сопло для выпуска топлива расположено в цилиндре карбюратора так, что его открытый конец находится в горловине или в самой узкой части трубки Вентури.Основное дозирующее отверстие или жиклер помещается в топливный канал между поплавковой камерой и выпускным соплом, чтобы ограничить поток топлива, когда дроссельная заслонка широко открыта.
Когда коленчатый вал двигателя вращается при открытой дроссельной заслонке карбюратора, низкое давление, создаваемое во впускном коллекторе, воздействует на воздух, проходящий через цилиндр карбюратора. Из-за разницы давлений между атмосферой и впускным коллектором воздух поступает из воздухозаборника через цилиндр карбюратора во впускной коллектор.Объем воздушного потока зависит от степени открытия дроссельной заслонки. Когда воздух проходит через трубку Вентури, его скорость увеличивается. Это увеличение скорости создает зону низкого давления в горловине Вентури. Сопло подачи топлива находится под действием этого низкого давления. Поскольку давление в поплавковой камере снижается до атмосферного, на выпускном сопле создается перепад давления. Именно эта разница давлений или дозирующая сила заставляет топливо течь из выпускного сопла. Топливо выходит из сопла мелкой струей, а мельчайшие частицы топлива в этой струе быстро испаряются в воздухе.
Дозирующее усилие (перепад давления) в большинстве карбюраторов увеличивается с увеличением открытия дроссельной заслонки. Топлива должны быть подняты в напорном патрубке до уровня, при котором он выбрасывает в воздушный поток. Для этого требуется перепад давления 0,5 дюйма рт. Ст. Когда дозирующее усилие значительно снижается на низких оборотах двигателя, подача топлива из выпускного сопла уменьшается, если в карбюратор не встроен стравливающий воздух (дозирующий воздушный жиклер). Уменьшение расхода топлива по отношению к расходу воздуха связано с двумя факторами:
- Топливо имеет тенденцию прилипать к стенкам выпускного сопла и периодически отламываться большими каплями вместо образования тонкой струи, и
- Части дозирующей силы требуется для повышения уровня топлива от уровня камеры поплавка к разгрузочному отверстию сопла.
Основной принцип стравливания воздуха можно пояснить с помощью простых схем, показанных на рисунке 4. В каждом случае к вертикальной трубке, помещенной в контейнер с жидкостью, применяется одинаковая степень всасывания. Как показано на A, всасывания, приложенной к верхнему концу трубки, достаточно для подъема жидкости на расстояние около 1 дюйма над поверхностью. Если сделать небольшое отверстие на стороне трубки над поверхностью жидкости, как в случае B, и применить всасывание, пузырьки воздуха попадают в трубку, и жидкость втягивается непрерывной серией небольших пробок или капель.Таким образом, воздух «просачивается» в трубку и частично снижает силы, замедляющие прохождение жидкости через трубку. Однако большое отверстие в нижней части трубки эффективно предотвращает сильное всасывание воздуха через отверстие для стравливания воздуха или вентиляционное отверстие. Точно так же отверстие для выпуска воздуха, которое является слишком большим по сравнению с размером трубки, уменьшит всасывание, доступное для подъема жидкости. Если система модифицируется путем размещения дозирующего отверстия в нижней части трубы, а воздух забирается ниже уровня топлива с помощью воздуховыпускной трубы, в трубе образуется мелкодисперсная смесь воздуха и жидкости, как показано на С.
Рис. 4. Принцип удаления воздуха |
В карбюраторе небольшой воздухозаборник попадает в топливную форсунку немного ниже уровня топлива. Открытый конец воздуховыпускного отверстия находится в пространстве за стенкой Вентури, где воздух относительно неподвижен и находится под приблизительно атмосферным давлением. Низкое давление на конце сопла не только всасывает топливо из поплавковой камеры, но также всасывает воздух из-за трубки Вентури.Воздух, попадающий в основную дозирующую топливную систему, снижает плотность топлива и разрушает поверхностное натяжение. Это приводит к лучшему испарению и контролю над сливом топлива, особенно при более низких оборотах двигателя. Дроссельная заслонка или дроссельная заслонка расположена в цилиндре карбюратора рядом с одним концом трубки Вентури. Он обеспечивает средства управления частотой вращения двигателя или выходной мощностью путем регулирования потока воздуха, подаваемого к двигателю. Этот клапан представляет собой диск, который может вращаться вокруг оси, так что его можно повернуть, чтобы открыть или закрыть воздушный канал карбюратора.
Система холостого хода
Когда дроссельная заслонка закрыта на холостых оборотах, скорость воздуха через трубку Вентури настолько мала, что она не может всасывать достаточно топлива из главного нагнетательного сопла; на самом деле разбрызгивание топлива может вообще прекратиться. Однако на дроссельной заслонке со стороны двигателя существует низкое давление (всасывание поршня). Чтобы двигатель работал на холостом ходу, предусмотрен топливный канал для выпуска топлива из отверстия в области низкого давления рядом с краем дроссельной заслонки.[Рисунок 5] Это отверстие называется жиклером холостого хода. При достаточно открытом дросселе для работы главного нагнетательного сопла топливо не вытекает из жиклера холостого хода. Как только дроссельная заслонка закрывается настолько, чтобы остановить разбрызгивание из главного нагнетательного сопла, топливо вытекает из жиклера холостого хода. Отдельный отвод воздуха, известный как отвод воздуха на холостом ходу, является частью системы холостого хода. Он работает так же, как и главный воздухозаборник. Также имеется устройство для регулирования смеси холостого хода. Типичная система холостого хода показана на рисунке 6.
Рисунок 5. Действие дроссельной заслонки в положении холостого хода |
Рисунок 6. Система холостого хода |
Система контроля смеси
С увеличением высоты воздух становится менее плотным. На высоте 18 000 футов воздух вдвое меньше плотности воздуха на уровне моря. Это означает, что в кубическом футе космоса на высоте 18 000 футов содержится только половина от количества воздуха, чем на уровне моря.Цилиндр двигателя, наполненный воздухом на высоте 18 000 футов, содержит вдвое меньше кислорода, чем цилиндр, полный воздуха на уровне моря.
Область низкого давления, создаваемая трубкой Вентури, зависит от скорости воздуха, а не от плотности воздуха. Воздействие трубки Вентури всасывает такой же объем топлива через выпускное сопло на большой высоте, как и на небольшой высоте. Следовательно, с увеличением высоты топливная смесь становится богаче. Это можно преодолеть ручным или автоматическим контролем смеси.На поплавковых карбюраторах обычно используются два типа устройств с чисто ручным управлением или с пультом управления для управления топливно-воздушными смесями: игольчатый тип и тип с обратным всасыванием. [Рисунки 7 и 8]
В игольчатой системе ручное управление обеспечивается игольчатым клапаном в основании поплавковой камеры. [Рис. 7] Его можно поднять или опустить с помощью регулятора в кабине. При переводе регулятора в положение «богатая» игольчатый клапан широко открывается, что позволяет топливу беспрепятственно течь к форсунке.При переводе регулятора в положение «бедная» клапан частично закрывается и подача топлива к форсунке ограничивается.
Рисунок 7. Игольчатая система контроля смеси |
Рисунок 8. Система регулирования смеси с обратным всасыванием |
Наиболее широко используется система контроля смеси с обратным всасыванием. [Рис. 8] В этой системе определенное количество низкого давления Вентури воздействует на топливо в поплавковой камере, так что оно противодействует низкому давлению, существующему в главном выпускном сопле.Атмосферная линия с регулируемым клапаном открывается в поплавковую камеру. Когда клапан полностью закрыт, давления топлива в поплавковой камере и на выпускном сопле практически равны, а расход топлива снижается до максимальной бедной. При полностью открытом клапане давление топлива в поплавковой камере наибольшее, а топливная смесь наиболее насыщенная. Регулировка клапана в положение между этими двумя крайними значениями контролирует смесь. Квадрант в кабине обычно обозначается как «наклонный» в задней части и «богатый» в передней части.Крайнее заднее положение обозначено как «отключение холостого хода» и используется при остановке двигателя.
На поплавковых карбюраторах, оборудованных игольчатым регулятором смеси, регулятор смеси помещается в отсечки холостого хода игольчатого клапана, таким образом полностью перекрывая поток топлива. В карбюраторах, оборудованных регуляторами обратного всасывания смеси, предусмотрена отдельная линия отсечки холостого хода, приводящая к очень низкому давлению дроссельной заслонки со стороны двигателя. (См. Пунктирную линию на рисунке 8.) Регулировка смеси так связана, что, когда она находится в положении «отсечки холостого хода», она открывает другой канал, ведущий к всасыванию поршня.В других положениях клапан открывает канал, ведущий в атмосферу. Чтобы остановить двигатель с такой системой, закройте дроссельную заслонку и установите смесь в положение «выключение холостого хода». Оставьте дроссельную заслонку до тех пор, пока двигатель не остановится, а затем полностью откройте дроссельную заслонку.
Система ускорения
При быстром открытии дроссельной заслонки через воздушный канал карбюратора устремляется большой объем воздуха; количество топлива, которое смешивается с воздухом, меньше обычного из-за медленной скорости реакции основной системы дозирования.В результате после быстрого открытия дроссельной заслонки топливно-воздушная смесь на мгновение выходит наружу. Это может привести к медленному ускорению двигателя или его спотыканию при попытке ускориться.
Чтобы преодолеть эту тенденцию, карбюратор оснащен небольшим топливным насосом, называемым ускорительным насосом. Обычный тип системы ускорения, используемой в поплавковых карбюраторах, показан на рисунке 9. Она состоит из простого поршневого насоса, приводимого в действие рычагом управления дроссельной заслонкой, и прохода, открывающегося в основную дозирующую систему или цилиндр карбюратора рядом с трубкой Вентури.Когда дроссельная заслонка закрыта, поршень движется назад, и топливо заполняет цилиндр. Если поршень продвигается медленно, топливо просачивается мимо него обратно в поплавковую камеру; при быстром толкании он распыляет топливо в трубку Вентури и обогащает смесь. Пример ускорительного насоса в разрезе показан на рисунке 10.
Рисунок 9. Система ускорения |
Рисунок 10.Ускоряющий насос показан в разрезе |
Система экономайзера
Чтобы двигатель развивал максимальную мощность при полном открытии дроссельной заслонки, топливная смесь должна быть богаче, чем для крейсерского режима. Дополнительное топливо используется для охлаждения камер сгорания двигателя для предотвращения детонации. Экономайзер — это, по сути, клапан, который закрывается при настройке дроссельной заслонки ниже примерно 60–70 процентов номинальной мощности. Эта система, как и система ускорения, управляется дроссельной заслонкой.
Типичная система экономайзера состоит из игольчатого клапана, который начинает открываться, когда дроссельная заслонка достигает заданной точки рядом с полностью открытым положением. [Рис. 11] По мере того, как дроссельная заслонка продолжает открываться, игольчатый клапан открывается дальше, и через него проходит дополнительное топливо. Эти дополнительные топливные добавки потока от основной дозирующей струи непосредственно к основной выпускной насадке.
Рис. 11. Система экономайзера игольчатого типа |
Система экономайзера с регулируемым давлением показана на рисунке 12.Этот тип имеет герметичный сильфон, расположенный в закрытом отсеке. Отсек вентилируется до давления в коллекторе двигателя. Когда давление в коллекторе достигает определенного значения, сильфон сжимается и открывает клапан в топливном канале карбюратора, пополняя нормальное количество топлива, выпускаемого через главное сопло.
Рис. 12. Система экономайзера, работающая от давления |
Другой тип экономайзера — это система обратного всасывания.[Рис. 13] Экономия топлива в крейсерском режиме обеспечивается за счет снижения эффективного давления, действующего на уровень топлива в поплавковом отсеке. Когда дроссельная заслонка находится в крейсерском положении, всасывание применяется к поплавковой камере через отверстие экономайзера, канал экономайзера обратного всасывания и жиклер. Всасывание, прикладываемое к поплавковой камере, противоположно всасыванию сопла, создаваемому трубкой Вентури. Расход топлива снижен, смесь обеднена для крейсерской экономии.
Рисунок 13.Карбюратор напорный |
Индукционная система карбюратора поршневого двигателя самолета
На рис. 1 представлена схема системы впуска, используемой в двигателе, оснащенном карбюратором. В этой системе впуска воздух нормального потока карбюратора поступает через нижний передний обтекатель под вращателем гребного винта и проходит через воздушный фильтр в воздуховоды, ведущие к карбюратору. Клапан нагретого воздуха карбюратора расположен под карбюратором для выбора альтернативного источника теплого воздуха (обогрева карбюратора) для предотвращения обледенения карбюратора.
Рис. 1. Индукционная система без наддува с использованием карбюратора |
[Рис. 2] Обледенение карбюратора происходит, когда температура в горловине карбюратора понижается и присутствует достаточно влаги, чтобы замерзнуть и заблокировать поток воздуха к двигателю. Нагревательный клапан карбюратора пропускает воздух из наружного воздухозаборника для нормальной работы и пропускает теплый воздух из моторного отсека для работы в условиях обледенения.Нагрев карбюратора управляется двухтактным регулятором в кабине. Когда дверца нагретого воздуха карбюратора закрыта, теплый воздух, поступающий из выхлопной трубы, направляется в карбюратор. Это повышает температуру всасываемого воздуха. Альтернативная воздушная заслонка может быть открыта всасыванием двигателя, если нормальный путь воздушного потока должен быть чем-то заблокирован. Клапан закрывается пружиной и при необходимости всасывается двигателем.
Рисунок 2.Расположение клапана нагретого воздуха карбюратора |
Воздушный фильтр карбюратора, показанный на рисунке 3, установлен в воздухозаборнике перед воздуховодом карбюратора. Его цель — предотвратить попадание пыли и других посторонних предметов в двигатель через карбюратор. Экран состоит из рамы из алюминиевого сплава и экрана с глубокими гофрами, который обеспечивает максимальную площадь экрана для воздушного потока. Используется несколько типов воздушных фильтров, включая бумажные, поролоновые и другие типы фильтров.Большинство воздушных фильтров требуют регулярного обслуживания, при этом необходимо соблюдать особые инструкции для соответствующего типа фильтра. [Рисунок 3]
Рисунок 3. Расположение воздушного фильтра |
Воздуховоды карбюратора состоят из неподвижного воздуховода, прикрепленного заклепками к носовой части кожуха, и гибкого воздуховода между неподвижным воздуховодом и корпусом воздушного клапана карбюратора. Воздуховоды карбюратора обычно обеспечивают проход наружного воздуха к карбюратору.Воздух поступает в систему через воздухозаборник. Впускное отверстие расположено в воздушном потоке, поэтому воздух нагнетается в систему впуска, создавая ударный эффект для входящего воздушного потока. Воздух проходит по воздуховодам к карбюратору. Карбюратор дозирует топливо пропорционально воздуху и смешивает воздух с нужным количеством топлива. Дроссельной заслонкой карбюратора можно управлять из кабины, чтобы регулировать поток воздуха (давление в коллекторе), и таким образом можно контролировать выходную мощность двигателя.
Хотя многие новые самолеты не оснащены таким оборудованием, некоторые двигатели оснащены системами индикации температуры воздуха в карбюраторе, которые показывают температуру воздуха на входе в карбюратор. Если груша расположена на стороне двигателя карбюратора, система измеряет температуру топливно-воздушной смеси.
Индукционная система Icing
Краткое обсуждение образования и местоположения льда в системе индукции полезно, даже несмотря на то, что техник обычно не занимается операциями, которые происходят, когда самолет находится в полете.[Рис. 4] Технические специалисты должны кое-что знать об обледенении индукционной системы, поскольку оно влияет на работу двигателя и устранение неисправностей. Даже когда осмотр показывает, что все находится в надлежащем рабочем состоянии и двигатель отлично работает на земле, обледенение системы впуска может привести к неустойчивой работе двигателя и потере мощности в воздухе. Многие неисправности двигателя, которые обычно приписываются другим источникам, на самом деле вызваны обледенением индукционной системы.
Рисунок 4.Расположение клапана нагнетания воздуха карбюратора |
Обледенение индукционной системы представляет собой опасность для эксплуатации, поскольку оно может перекрыть поток топлива / воздуха или изменить соотношение топливо / воздух. Лед может образовываться в индукционной системе, когда самолет летит в облаках, тумане, дожде, мокром снегу, снегу или даже в чистом воздухе с высоким содержанием влаги (высокая влажность). Обледенение индукционной системы обычно подразделяется на три типа:
- Ударный лед
- Лед испарения топлива
- Дроссель ледяной
Обледенение в системе индукции может быть предотвращено или устранено путем повышения температуры воздуха, проходящего через систему, с помощью системы нагрева карбюратора, расположенной выше по потоку рядом с входом в систему впуска и намного впереди опасных зон обледенения.Этот воздух собирается воздуховодом, окружающим выпускной коллектор. Обычно тепло поступает через регулирующий клапан, который открывает впускную систему для теплого воздуха, циркулирующего в моторном отсеке и вокруг выпускного коллектора.
Неправильное или неосторожное использование подогрева карбюратора может быть так же опасно, как и самая продвинутая стадия обледенения индукционной системы. Повышение температуры воздуха приводит к его расширению и уменьшению плотности. Это действие снижает вес заряда, подаваемого в цилиндр, и вызывает заметную потерю мощности из-за снижения объемного КПД.Кроме того, высокая температура всасываемого воздуха может вызвать детонацию и отказ двигателя, особенно во время взлета и работы на большой мощности. Следовательно, на всех этапах работы двигателя температура карбюратора должна обеспечивать максимальную защиту от обледенения и детонации.
При опасности обледенения системы впуска терморегулятор карбюратора переводится в горячее положение. Лед дроссельной заслонки или любой лед, который ограничивает поток воздуха или снижает давление в коллекторе, лучше всего удалить, используя полный нагрев карбюратора.Если тепла из моторного отсека достаточно и нанесение не было отложено, то лед исчезнет через несколько минут.
Когда нет опасности обледенения, терморегулятор обычно находится в «холодном» положении. Лучше всего оставить регулятор в этом положении, если в воздухе есть частицы сухого снега или льда. Использование тепла может растопить лед или снег, и образовавшаяся влага может накапливаться и замерзать на стенках индукционной системы. Чтобы предотвратить повреждение клапанов нагревателя в случае обратного пламени, не следует использовать нагрев карбюратора при запуске двигателя.Кроме того, во время наземной эксплуатации следует использовать достаточно тепла карбюратора, чтобы обеспечить плавную работу двигателя.
Работа с частично открытой дроссельной заслонкой может привести к обледенению в области дроссельной заслонки. Когда дроссельная заслонка находится в частично закрытом положении, это, по сути, ограничивает количество воздуха, доступного для двигателя. Когда самолет находится в глиссаде, ветряные мельницы с пропеллером фиксированного шага заставляют двигатель потреблять больше воздуха, чем обычно при той же настройке дроссельной заслонки, тем самым усугубляя недостаток воздуха за дроссельной заслонкой.Частично закрытая дроссельная заслонка в этих условиях устанавливает гораздо более высокую, чем обычно, скорость воздуха мимо дроссельной заслонки, и образуется область чрезвычайно низкого давления. Область низкого давления снижает температуру воздуха, окружающего дроссельную заслонку. Если температура в этом воздухе опускается ниже нуля и присутствует влага, на дроссельных заслонках и близлежащих устройствах образуется лед, ограничивая поток воздуха к двигателю, вызывая его остановку. Обледенение дроссельной заслонки может быть минимизировано на двигателях, оснащенных гребными винтами регулируемого шага, путем использования более высокого, чем обычно, среднего эффективного давления в тормозной системе (BMEP) при такой низкой мощности.Высокий BMEP снижает тенденцию к обледенению, потому что большое открытие дроссельной заслонки при низких оборотах двигателя в минуту (об / мин) частично устраняет препятствие для снижения температуры, которое создает работа с неполным дросселем.
Индукционная система фильтрации
Пыль и грязь могут стать серьезным источником неисправности авиационного двигателя. Пыль состоит из мелких частиц твердого абразивного материала, которые могут переноситься воздухом и втягиваться в цилиндры двигателя. Он также может накапливаться на топливных элементах карбюратора, нарушая правильное соотношение между потоком воздуха и потоком топлива при всех настройках мощности двигателя.Он воздействует на стенки цилиндра, шлифуя эти поверхности и поршневые кольца. Затем он загрязняет масло и разносится по двигателю, вызывая дальнейший износ подшипников и шестерен. В крайних случаях скопление может закупорить масляный канал и вызвать масляное голодание. Хотя запыленность наиболее критична на уровне земли, продолжение работы в таких условиях без защиты двигателя приводит к сильному износу двигателя и может вызвать чрезмерный расход масла. Когда необходима работа в запыленной атмосфере, двигатель может быть защищен альтернативным воздухозаборником системы впуска, который включает пылевой фильтр.Этот тип системы воздушного фильтра обычно состоит из фильтрующего элемента, дверцы и электропривода. Когда система фильтров работает, воздух втягивается через решетчатую панель доступа, которая не направлена прямо в воздушный поток. При таком расположении входа удаляется значительное количество пыли, поскольку воздух вынужден поворачиваться и попадать в канал. Поскольку частицы пыли твердые, они имеют тенденцию продолжать движение по прямой линии, и большинство из них в этой точке разделяются. Те, что втянуты в жалюзи, легко удаляются фильтром.
В полете с работающими воздушными фильтрами необходимо учитывать возможные условия обледенения, которые могут возникнуть в результате фактического обледенения поверхности или замерзания фильтрующего элемента после того, как он пропитается дождем. Некоторые установки имеют подпружиненную дверцу фильтра, которая автоматически открывается, когда фильтр чрезмерно ограничен. Это предотвращает прерывание воздушного потока, когда фильтр забивается льдом или грязью. В других системах на входе для фильтрованного воздуха используется защита от льда.
Ледозащитный кожух состоит из крупноячеистого экрана, расположенного на небольшом расстоянии от входа фильтрованного воздуха.В этом месте экран находится прямо на пути поступающего воздуха, поэтому воздух должен проходить через экран или вокруг него. Когда на сетке образуется лед, воздух, потерявший свои тяжелые частицы влаги, проходит вокруг обледеневшей сетки и попадает в фильтрующий элемент. Эффективность любой фильтрующей системы зависит от правильного обслуживания и ремонта. Периодическое снятие и очистка фильтрующего элемента имеет важное значение для удовлетворительной защиты двигателя.
Проверка и обслуживание индукционной системы
Во время всех регулярных плановых проверок двигателя следует проверять систему впуска на предмет трещин и утечек.Необходимо проверить блоки системы на надежность монтажа. Систему следует постоянно содержать в чистоте, поскольку куски тряпки или бумаги могут ограничить воздушный поток, если попадут в воздухозаборники или воздуховоды. Ослабленные болты и гайки могут вызвать серьезные повреждения, если попадут в двигатель.
В системах, оборудованных воздушным фильтром карбюратора, фильтр следует регулярно проверять. Если он загрязнен или не имеет надлежащей масляной пленки, фильтрующий элемент следует снять и очистить. После высыхания его обычно погружают в смесь масла и антикоррозийного состава.Перед повторной установкой фильтрующего элемента необходимо дать стечь излишкам жидкости. Бумажные фильтры следует проверять и при необходимости заменять.
Поиск и устранение неисправностей индукционной системы
На рисунке 5 представлено общее руководство по наиболее распространенным неисправностям индукционной системы.
1 Двигатель не запускается | ||
а. Индукционная система заблокировано | Проверить воздухозаборник и воздуховоды | |
Осмотрите крепление карбюратора и впускные трубы | Затянуть карбюратор и отремонтировать или заменить впускной патрубок | |
Проверить гайки уплотнения впускной трубы | ||
г.Заедание клапанов двигателя | Снимите крышку коромысла и проверьте. действие клапана | Смазать и свободно прихватывать клапаны |
г. Изогнутые или изношенные толкатели клапана | Заменить изношенные или поврежденные толкатели | |
а. Воздуховод с ограниченным доступом | ||
г.Сломанная дверь в воздух карбюратора клапан | ||
4 Двигатель неправильно работает на холостом ходу | ||
а. Набивка всасывающая, усохшая | Проверить правильность посадки сальника | |
Заменить дефектные впускные трубы | ||
г. |