В чём плюсы и минусы биоэтанола — ДРАЙВ
В последнее время в мировой прессе всё чаще публикуются сообщения об опасности и даже вредности массового перевода автомобилей на биоэтанол. Одно авторитетное мнение очень скоро оспаривается другим, не менее авторитетным. Критика настолько жёсткая, что поневоле вызывает недоумение. Как такое может быть: ведущие страны принимают энергетические стратегии, которые, если верить скептикам, совершенно бездумны и являются кратчайшим путём к масштабным экологическим и экономическим катастрофам? Где правда? Попробуем разобраться.
Противники сжигания этанола в двигателях внутреннего сгорания приводят убедительные доводы. Они не опровергают факта, что при использовании этилового спирта выхлоп автомобилей становится намного чище. Это действительно так. Главная же беда — в самом производстве этого вида топлива, когда в атмосферу выбрасываются огромные количества углекислого газа. А значит, вся экологическая эффективность использования спиртосодержащих смесей сводится на нет.
Вообще говоря, этиловый спирт можно получать из любых растений, лишь бы там в достаточном количестве содержались сахар и крахмал. Картофель, ячмень, пшеница, свёкла — всё подходит. Но лучший вариант — сахарный тростник. Можно также перерабатывать различные отходы, например древесные опилки, но пока что это экономически невыгодно. А потенциально рентабельные методы находятся в стадии разработки.
Правы они? И да и нет. Производство этанола действительно насыщает атмосферу парниковыми газами (ещё они называются GHG — от greenhouse gas) в количествах, сопоставимых с выбросами бензиновых двигателей внутреннего сгорания. Но у всякой монеты есть и обратная сторона. Дело в том, что в процессе производства и сжигания 1 литра этанола из растительного сырья в атмосферу попадает ровно столько же CO 2, сколько до этого было поглощено теми же самыми растениями в результате реакции фотосинтеза. По сути производство этилового спирта есть не что иное, как «фотосинтез наоборот», с той лишь разницей, что в одном случае требуется солнечный свет, а в другом — выделяется тепло.
Когда биоэтанол получит глобальное распространение, а всё к этому и идёт, то «с банкой чистого спирта» можно будет не только ходить в гости, но и помогать тем несчастным на дороге, у которых совсем опустел бак. Если вас смущает цвет, то помните, что в отличие от пищевого топливный спирт не подвергается чересчур уж тщательной обработке.
Получается, биоэтанол абсолютно нейтрален в качестве источника парниковых газов. Значит — лучше от него не станет, но и хуже не будет, в отличие от продуктов переработки нефти. Есть у этилового спирта и ещё одно преимущество: положительный энергетический баланс. В зависимости от вида сырья последний может колебаться от 1,24 до 8. То есть при сжигании этанола выделяется в несколько раз больше энергии, чем затрачивается при его производстве.
Сам процесс заправки этанолом не содержит в себе ничего особенного — всё ровно так же, как и в случае с бензином. Однако сеть таких заправок сегодня ещё только развивается. Например, в США точек, где продают E85, сегодня насчитывается примерно полторы тысячи.
Но и без недостатков у C2H5OH не обходится. При сгорании 1 литра этилового спирта выделяется на 34% меньше энергии, чем при сгорании того же объёма бензина. Выходит, что если заправлять автомобиль топливом с содержанием этанола (к примеру, широко пропагандируемой смесью с бензином E85), то расход топлива неизбежно возрастёт вплоть до этих самых 34% — всё будет зависеть от концентрации спирта в каждом конкретном случае.
Но с этой печальной картиной столкнутся лишь владельцы машин с двигателями, изначально рассчитанными на традиционный бензин и лишь затем адаптированными под новомодное топливо.Из примерно тысячи европейских этанольных заправок почти 800 находятся в Швеции. Эта страна планирует лет через 20 вообще отказаться от нефти. Скандинавы уповают на гибриды, потребляющие этанол. На этой фотографии люди из Scania представляют новейший городской автобус.
Нельзя забывать, что октановое число этанола равно 105. Это означает, что его можно сжигать в двигателях с куда большей степенью сжатия. Так что, в принципе, двигатели, рассчитанные исключительно на новый источник энергии, должны быть уж никак не хуже нынешних бензиновых или дизельных собратьев. И в плане экономичности, и в плане мощностных характеристик. А уж про экологию и говорить не приходится! Примерно на 80% уменьшаются выбросы углеродных соединений, а конкретно CO
Вот так выглядит стандартный завод по производству биоэтанола. Отличие от классических спиртовых заводов только в масштабах производства и количестве ректификационных колонн. Получают «зелёное» топливо, что называется, не отходя от кассы, прямо в поле. Это связано с тем, что транспортировка сырья серьёзно увеличивает себестоимость.
В этом смысле весьма пессимистично выглядят перспективы так называемых многотопливных (чаще всего битопливных) автомобилей. Они могут называться Flex Fuel, Flexifuel, BioFlex, Tri-Flex и как угодно ещё — всё зависит от фантазии фирм-производителей. Про такие разработки мы писали уже не раз и не два. Причём если некоторые носят статус концептов, то другие — вполне себе серийные машинки. Но у всех этих автомобилей есть один противный недостаток — этанол там сжигается неэффективно, ведь степень сжатия нельзя изменить, просто нажав кнопку на панели.
Не секрет, что наиболее дешёвым способом транспортировки жидких топлив является закачка их в трубопровод. Но в случае с этанолом появляется проблема. Он гигроскопичен, то есть впитывает из атмосферы воду и, следовательно, обладает повышенной коррозионной агрессивностью. Поэтому пока что топливный спирт перевозят автотранспортом или по железной дороге.
Получается забавная ситуация: на бензине Flexifuel-машина едет хорошо, а на E85 (если кто забыл, это коктейль из 85% этанола и 15% бензина), во-первых, плохо, а во-вторых, «жрёт» ощутимо больше. Да, биоэтанол дешевле бензина, но не намного. Зря вы думаете, что с этим топливом сэкономите сколько-нибудь значимую сумму. Может даже случиться и так, что будут одни убытки. Смотря как ездить — на одной лишь «зелёной» ориентации недалеко окажешься. Поэтому не удивляйтесь, что внедрение, казалось бы, перспективной идеи сопровождается законодательным регулированием, например в США и Бразилии.
Не стоит думать, что при заправке биоэтанолом машина наотрез отказывается ехать, подобно водородным аналогам. По сравнению с бензином E85 действительно обладает меньшей энергетической ценностью, но для её сгорания требуется меньше кислорода, поэтому в цилиндры можно впрыскивать большие количества топлива. В итоге мощность падает, но не настолько, чтобы водители приходили в ярость.
Стоит тормознуть и поговорить подробнее, ибо в этих странах внедрение биоэтанола зашло очень далеко. Бразильцы очень не любят топливные кризисы c 1973 года. И всячески стараются их предотвратить. Так, с 1975-го в стране функционирует масштабная биотопливная кампания. Не стоит поэтому удивляться, что 4,5% площади Бразилии заняты плантациями сахарного тростника, а большинство местных автомобилей можно с чистой совестью причислить к заядлым алкоголикам. За год миллион бразильских рабочих производит двадцать с лишним миллиардов (!) литров этанола.
В Бразилии существует целая отрасль по выращиванию сахарного тростника, со своими традициями и правилами. При производстве широко используется дешёвый ручной труд, что приносит сумасшедшие доходы местным «сахарным королям».
Назвать экономику этой страны зависимой от нефти никак нельзя. Выращивая и перерабатывая сахарный тростник, Бразилия полностью обеспечивает себя топливом и электричеством. Всё это безусловно радует, но даже в бочке спирта нашлось место вездесущему дёгтю. Ради новых плантаций бразильцы вырубают леса Амазонки. Можно назвать это странной и недальновидной политикой, а если сказать прямо — то это настоящий идиотизм. Как жить без «лёгких планеты»?
Сахарный тростник в Бразилии выращивают тысячи частных хозяйств. И это порождает некоторые проблемы. Ведь из тростника и сахар делают. Поэтому когда в 1980-х годах резко выросли цены на сахар, производство этанола сократилось до такой степени, что людям стало элементарно нечем заправлять свои машины.
Сейчас правительство регулирует ситуацию и даже вложило в 2007 году 25 миллионов долларов в развитие новых технологий. В США же эта сумма равняется $385 миллионам.Похожая ситуация складывается и в США. Президент Буш выдвинул программу «20 за 10», которая должна помочь к 2017 году снизить потребление бензина на 20%. За счёт чего? Разумеется, за счёт этанола. К озвученному сроку власти намерены увеличить его производство до 30 с лишним миллиардов литров. За последние годы инвестиции только в исследования перевалили за 12 миллиардов долларов. И это только начало.
В Америке производят этанола хоть и много, но всё-таки чуть меньше, чем в Бразилии. Правда, делают его не из тростника (он в Штатах расти не хочет), а из кукурузы. Такой вариант менее эффективен, а стало быть, себестоимость американского эталона выше бразильского. Тем не менее программу активно продвигают власти многих штатов, и губернатор «кукурузного» Иллинойса, кандидат в президенты Барак Обама (Barack Obama), — не исключение.
Чтобы машину можно было заправлять топливом, содержащим более 10% этанола, необходимы некоторые переделки. «Мозг» мотора должен научиться определять концентрацию спирта и подбирать соответствующие режимы работы. Поскольку спирт содержит воду, модернизации требует и топливная магистраль. Кроме того, если автомобиль эксплуатируется в холодных условиях, надо подогревать топливо перед запуском.
Достигнут ли американцы своих целей? Каково будущее всей этой затеи с биоэтанолом? Пока что всё туманно. Ясно одно — рассчитывать на тотальный переход к спиртовым двигателям нереально. Если предположить стопроцентную эффективность процесса переработки, то для того, чтобы только США перевести с нефти на этанол, нужно 75% сельскохозяйственных земель нашей планеты засеять соответствующими культурами. Грубо говоря, если даже всю Луну засадить тростником, этого окажется недостаточно.
Массовое культивирование культур для производства этанола неизбежно окажет значительное влияние на сельское хозяйство. Фермеры не дураки — раз спрос на кукурузу растёт, они будут её сеять везде, где смогут. А кто при этом подумает о миллионах голодающих жителей Земли? Поэтому многие исследователи и негодуют, утверждая, что «выращивать» биотопливо в то время, когда людям есть нечего, — низкое, подлое и вообще аморальное занятие.
Этанольный вопрос неизбежно связан с большой политикой. На фотографии справа вы видите, как президент США Джордж Буш и президент Бразилии Луис Инасиу Лула да Силва (Luiz Inacio Lula da Silva ) радуются окончанию очередного раунда трудных переговоров. Поэтому не удивляйтесь, если в будущем мы столкнёмся самыми разными пиар-кампаниями, прямо противоречащими друг другу.
Впрочем, к любой критике надо относиться со здоровой долей скептицизма. Сами по себе биотопливные программы вполне разумны и при грамотной реализации способны принести ощутимую пользу. Стоит только иметь в виду, что повсеместное внедрение этанола окажет ощутимое влияние на мировую экономику. И, разумеется, найдутся те, чьи интересы пострадают. Пример: так называемый саммит «табачных королей» 1988 года, где боссы крупнейших компаний обсуждали, как бы нейтрализовать политику ВОЗ по борьбе с курением. И есть ли гарантия, что подобные действия не предпринимают сейчас все те, кто почувствовал угрозу нефтяному бизнесу? Всё-таки, как ни крути, а внедрение биотоплива — это вопрос не столько научный и экономический. Здесь вступает в дело большая политика.
Октановое число спиртов и эфиров
В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди кислородных соединений достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и грег-бутиловый спирты (ТБС), метил-грет бутиловый эфир (МТБЭ), обладающие (табл. 8.3) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Особенно быстрыми [c.209]Почему эфир так легко воспламеняется Ответить на этот вопрос чрезвычайно трудно, так как мы очень мало знаем о химии горения, химии взрывов и т. п. Существует так называемая точка воспламенения — минимальная температура, которую должно достигнуть данное вещество, чтобы загореться, если его поджечь. Так вот, точка воспламенения эфира ниже, чем у бензина и большинства растворителей, которые применяются в лаборатории диэтиловый эфир —49° С, бензин (октановое число 100) —38° С, бензол 11 С и этиловый спирт 13° С. [c.440]
Изопропиловый эфир (СдН,)20, который является побочным продуктом, можно использовать для повышения октанового числа бензинов (добавляется в бензин в количестве 20%). Выход изопропилового спирта достигает 95—99%, а втор-бутилового —90%. Большую часть изопропилового спирта используют для производства ацетона, значительное количество применяют как растворитель, в форме сложных эфиров, как антифриз и т. д. [c.202]
Оксигенирование было частью стратегии получения бензина с требуемым октановым числом начиная с конца 1970-ых годов, и с этой целью предпринимались попытки использовать целый ряд спиртов и эфиров. Все оксигенированные виды топлива снижают выделение окиси углерода (СО) и несгоревших [c.167]
Законы США будут вводиться постепенно. По содержанию кислорода уже в конце 1992 г. были введены ограничения, которые требуют, чтобы содержание кислорода в бензине в районах с повьппенным содержанием СО в воздухе не превышало 2,7%. Остальные ограничения планируется ввести с 1995 г. по месяцам постепенно, причем в соответствии с принятыми законами содержание низкокипящих и токсичных органических компонентов необходимо будет уменьшить на 15%, а к 2000 г. -на 25%. С учетом законов о чистом воздухе будущий бензин должен содержать изомеризат или легкую нафту, легкий и тяжелый риформат, алкилат, легкий и тяжелый бензин каталитического крекинга, кислородсодержащие добавки. Лучше всего применять добавки, которые имеют высокое октановое число, такие как метанол, этанол, метил-тргт-бутиловый эфир и т. д. В табл. 45 представлены октановые числа спиртов-кислородсодержащих добавок, применяемых в регулярном и премиальном бензинах США, не содержащих свинцовых соединений. Как следует из данных таблицы, наибольшее октановое число в регулярном бензине имеет метанол, но он обладает рядом существенных недостатков. Это прежде всего его способность впитывать в себя воду из воздуха, что приводит к коррозии, и высокая испаряемость. Следующим по октановому числу идет этанол, который в качестве добавки широко применяется в США. Более тяжелые спирты также находят применение, однако надо отметить, что по мере увеличения углеводородной группы октановое число спиртов падает. Большинство нефтяных компаний смешивают свой бензин с кислородсодержащими добавками, учитывая специфику районов, где они будут продавать свою продукцию. В районах с повышенным содержанием СО в воздухе количество кислорода в бензине должно составлять не менее 2,7%. Это, как правило, большие города или крупные промышленные центры. Если же это сельскохозяйственные штаты, то там содержание кислорода в бензине не должно быть выше 2,0%, так как повышение [c.88]
Спирты сивушных масел находят применение в технике в качестве растворителей, особенно в производстве лаков, для получения сложных эфиров карбоновых кислот (стр. 115), в качестве добавок к моторному топливу для повышения его октанового числа. [c.87]
МТБЭ и ЭТБЭ. Октановые числа смешения эфиров несколько ниже, чем у метилового и этилового спиртов, однако это компенсируется другими преимуществами, к которым следует отнести низкую токсичность, хорошую совместимость с топливом и гидролитическую устойчивость, высокие антикоррозионные свойства. [c.128]
Это метиловый (МС), этиловый (ЭС) и трет-бутиловый (ТБС) спирты, метил-трет-бутиловый эфир, обладающие высокими октановыми числами, низкими температурами кипения (табл, б.З), что повыи1г1ет октановое число головных фракций и тем самым улучшить коэффициент распределения детонационной стойкости по фракциям. [c.61]
Кроме спиртов в качестве кислородсодержащих добавок применяются эфиры. Ниже приведены октановые числа эфиров, вводимых в регулярные бензины США и. м./м. м./(и. м. + м. м.)/2 [c.440]
В качестве высокооктановых добавок к бензинам применяют также кислородсодержащие вещества, имеющие октановые числа смешения 120—150 пунктов (низшие алифатические спирты, метил-грет-бутиловый эфир). [c.369]
В связи с удорожанием нефти и запрещением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди них достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и трет-бутило-вый (ТБС) спирты, и особенно метил-шрет-бутиловый эфир (МТБЭ), обладающие (табл. 9.9) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Из спиртов наиболее широкими сырьевыми ресурсами обладает метанол. Его можно производить из газа, угля, древесины, биомассы и различного рода отходов. Безводный метанол хорошо смешивается с бензином в любых соотношениях, однако малейшее попадание воды вызывает расслаивание смеси. У метанола ниже теплота сгорания, чем у бензина, он более токсичен. Тем не менее метанол рассматривают как топливо будущего. Ведутся также исследования по непрямому использованию метанола в качестве моторных топлив. Так, разработаны процессы получения бензина из метанола на цеолитах типа 25М. [c.857]
В условиях отказа от ТЭС, ужесточения требований по содержанию бензола и других ароматических соединений в составе современных автомобильных бензинов увеличивается содержание кислородсодержащих высокооктановых компонентов. К ним относятся эфиры, спирты, в том числе метил-т/ ет-бутиловый эфир (МТБЭ) и др. Такие соединения одновременно обеспечивают выполнение требований как по октановому числу, так и по содержанию кислорода. [c.20]
Изопропиловый спирт применяется в химической промышленности как заменитель этилового спирта в различных процессах, где требуется его участие, как-то получение алкоголятов, сложных эфиров и т. п. Одно время изопропиловый спирт шел в больших количествах на изготовление диизопропилового эфира, предложенного в качестве антидетонационного компонента (октановое число 100) к моторному топливу. В парфюмерной промышленности изопропиловый спирт нашел применение вместо этилового спирта нри изготовлении духов и особенно одеколонов. Но главная масса изопропилового спирта идет на получение ацетона (см. ниже). [c.760]
Широко используются спирты (метанол, этанол) и эфиры (метилтретбутиловый эфир — МТБЭ), при этом обеспечивается не только требуемое октановое число, но и снижается токсичность выхлопных газов. Так, добавка 10—15% МТБЭ снижает содержание СО в выхлопных газах на 20%- Перспективно использование в качестве моторного топлива спиртобензиновых смесей (СБС). [c.221]
Образующуюся в первой стадии изопропилсерную кислоту подвергают гидролизу при 100° или нагревают с изопропиловым спиртом. Диизопропиловый эфир интересен тем, что имеет высокое октановое число, равное 105, и хотя из-за своей низкой теплотворной способности он как моторное топливо применяться не может, но добавки его к бензину в количестве 20—40% значительно повышают октановое число. Так, например, бензин с октановым числом, равным 74, после добавки 20% диизопропилового эфира имеет октановое число, равное 101. Это явилось стимулом для изучения пригодности и других эфиров. Было установлено, что многие из них действительно сильно повышают октановое число бензинов. Особенно хорошие результаты показали добавки 25% метил-/проктановое число с 74 соответственно до 111, 115, 112 и 112. [c.513]
Отметим, наконец, что немаловажных результатов следует ожидать от некоторых антидетонационных добавок, не принадлежащих к классу углеводородов. Простейшими из них являются такие легкодоступные вещества, как ацетон, метиловый спирт и некоторые другие кислородсодержащие органические соединения с октановыми числами порядка 90—100. Правда, практическое значение таких добавок в ряде случаев резко ограничивается высоким содержанием в ндх кислорода, что в свою очередь вызывает снижение эффективности топлива. Тем большего внимания поэтому заслуживают такие вещества, которые, обладая хорошими антидетонационными свойствами, менее богаты кислородом н более подходят в качестве антидетонационных добавок к моторному топливу. Таков, например, изопропиловый эфир октановое число 98) и некоторые другие органические вещества. В поисках подобного рода антидетонационных добавок во всех странах ведется большая, напряженная работа, важнейшие результаты которой, естественно, не оглашаются. [c.314]
Водноэмульсионные топлива. Стабилизация прямых и обратных -эмульсий воды в топливе с целью повышения его октанового числа и уменьшения токсичности выхлопных газов. — Перспективная область применения. Оксиэтилированные спирты и алкилфенолы эфиры многоатомных спиртов алкилоламиды и их производные. [c.322]
Для повышения детонационной стойкости вводят этиловую жидкость. Помимо этиловой жидкости, где компонентом, повы-шаюш,им октановое число, является тетраэтилсвинец (ТЭС), для повышения детонационной стойкости применяют также тетра-метилсвинец (ТМС) и метил-трет-бутиловый эфир (МТБЭ). Последний использовать наиболее целесообразно, так как в процессе сгорания бензина не образуются токсичные газы, содержащие свинец. В качестве высокооктанового компонента автомобильных бензинов возможно использование метилового спирта. [c.432]
Известно, что кислородсодержащие органические соединения (спирты и эфиры) имеют высокую температурную чувствительность в чистом виде. Например, октановое число метанола в чистом виде по исследовательскому методу (температура воздуха перед карбюратором 52°С, п=6С0 об/мин) составляет 112 единиц, тогда как по моторному методу (1емперату ра подогрева смеси после карбюратора 140 С, п=900 об/мин ) — 90 пунктов. Следовательно, чувствительность метанола, определяемая как разность между ОЧИМ и ОЧММ, равна 22. Для МТБЭ этот показатель равен 16. Согласно опьпным данны.м [6], у парафиновых и нафтеновых углеводородов, облгщающих малой чувствительностью, длительности задержек воспламенения в широком диапазоне изменения температур сжатия (450-600 С) почти не зависят от температуры. У непредельных и ароматических углеводородов, отличающихся высокой температурной чувствительностью, с ростом температуры сжатия наблюдаются непрерьшное уменьшение периода задержки воспламенения. Периодом задержки воспламенения топлива принято и ивать интервал времени от начала развития предпламенных реакций (завершение быстрого нафевания смеси топливо-воздух до заданной начальной тел пературы) до момента появления пламени. Парафиновые и нафтеновые углеводороды обладают двухстадийным процессом воспламенения, поэтому длительность периода задержки х . — для них складывается из двух частей задержки холодного пламени х, — и так называемого второго периода задержки хз — интервала времени от момента угасания холодного пламени (завершение холодно-пламенной стадии) до возникновения горячего взрыва. Стадия холодного пламени характеризуется [c.39]
МТБЗ имеет следующие показатели =0,7405, т. кип.= = 55,2°С, т. затв. минус 108,6 °С, скрытая теплота парообразования 342 кДж/кг (81,7 ккал/кг), теплота сгорания 35000 кДж/кг ( 8400 ккал/кг). В отличие от низкомолекулярных спиртов, ме-тил-грег-бутиловый эфир практически не растворим в воде, но с бензином смешивается во всех соотношениях и обладает весьма высокими октановыми числами смешения 98—110 по моторному методу, 115—135 по исследовательскому. [c.318]
С целью уменьшения загрязнения атмосферы токсичными выхлопными газами при использовании этилированных бензинов октановое число нередко повышают за счет добавления высокооктановых углеводородов (алкилбензины, ароматические углеводороды). Однако из-за их дефицитности, а также отрицательного влияния ароматаков на эксплуатационные характеристики двигателей эти способы малоперспективны. Одно из направлений расширения производства высокооктановых неэтилированных бензинов — использование эфиров и спиртов как присадок к топливу. Среди них наиболее эффективны метилтретичнобутиловый эфир МТБЭ и вторичный бутиловый спирт ВБС (табл. 19). [c.54]
При создании условий для формирования крупных ССЕ с малодоступной для кислорода воздуха поверхностью достигается обычное нормальное сгорание. В качестве модификаторов размеров ССЕ используют алкилсвинцовые соединения, спирты, эфиры и другие антидетонаторы. Па рис. 87 показано экстремальное изменение октанового числа (О.Ч.) от концентрации тетраэтилсвинца. [c.217]
Спирты, продукты их переработки и спирто-бензииовые смеси Наиб перспективны низшие алифатич спирты-этанол и особенно метанол, к-рые благодаря высоким октановым числам и небольшому загрязнению атмосферы выхлопными газами могут использоваться как автомобильное топливо непосредственно или в смесях с бензином Достоинство этанола-доступность сырьевых ресурсов (см Этиловый спирт), метанола — горит при более низкой т-ре, чем бензин, недостатки метанола-низкая теплота сгорания (примерно вдвое меньше, чем у бензина), высокая токсичность Интерес к метанолу быстро возрастает по след причинам синтез-газ, из к-рого гл обр производят метанол, м б получен конверсией любого углеродсодержащего сырья, в т ч прир газа, нефтяных остатков и углей, синтез метанола освоен в крупных масштабах, из него получают высокооктановый бензин, высокооктановые добавки к нему (метил-трет-амиловый и метил-жрет-бути-ловый эфиры), др виды топлив, напр дизельные (см также Метиловыи спирт) [c.115]
Технология третьего варианта коммерчески освоена в меньшей, чем процесс алкилирования, степени, но он весьма перспективен и важен, что связано со все возрастающим спросом на повысители октанового числа бензина (изопропиловый спирт, третичный бутиловый спирт и метилбути-ловый третичный эфир для замены тетраэтилсвинца). Мощности США по производству перечисленных повысителей октанового числа достигли 2,27 млн. л/сут, однако потенциальная потребность при 6 %-ной добавке их к бессвинцовому бензину составляет приблизительно 56,7 млн. т/сут. [c.230]
В последние годы все шире применяют М. т., вырабатываемые из ненефтяного сырья (см. Альтернативные топлива). Сжатые (основа СН , давление 15-20 МПа) и сжиженные (основа jHg и СдНщ, давление 1,6 МПа) газы используют гл. обр. в двигателях с принудит, воспламенением. Перспективны жидкие топлива, получаемые при переработке углей, сланцев, битуминозных песков и др. В качестве самостоятельных М. т. или их компонентов находят применение — акие кислородсодержащие продукты, как спирты (метанол, этанол) и эфиры (метил- 1/>ет-бутиловый и ме-тил-т/ е 1-амиловый, октановое число 115-120), к-рые можно добавлять в автомобильные бензины в кол-ве 7-11% по массе. Из спиртов наиб, перспективен метанол, т.к. его произ-во обеспечено широкими сырьевыми ресурсами. См. также Авиакеросин, Дизельные топлива. Газотурбинные топлива. Котельные топлива. Реактивные топлива. [c.143]
В пром-сти пиролиз П. в составе легких низкооктановых прямогонных бензинов приводит к этилену и пропилену. н-П. используют для получения изопентана, пентенов, амиловых спиртов и их эфиров, амилфенола н др., а также в качестве р-рителя. Изопентан широко применяют как компонент высокооктановых бензинов. Техн. изопентан (т-ра выкипания 24-34 С, dl° 0,620, октановое число 90 по моторному методу) добавляют к бензинам (до 15%) для повышения их испаряемости и октанового числа, а также исключения применения тетраэтилсвинца в качестве антидетонатора (см. также Алкилат). Каталитич. гидрированием изопентана на СЮ3-А12О3 получают изопрен. [c.461]
Метиловый спирт, кумол и бензол, увеличивающие октановое число смеси, также понижают тенденцию к пробегу . Напротив, серный эфир и перекись ди-тирет-бутила увеличивает тенденцию к пробегу . [c.252]
Использование метанола в качестве альтернативного моторного топлива, а также его производных (метил-л2рел -бутилового эфира и т. д.) сегодня получило наибольшее распространение во всем мире. В противовес этому применение метилового спирта в качестве добавок к традиционным низкооктановым бензинам (бензометанольные смеси) для повышения их октанового числа и улучшения экологических свойств (за счет уменьшения содержания сернистых соединений) находится еще в рамках научных исследований. Это связано с тем, что бензоме-танольным смесям присущи следующие недостатки [c.276]
При получении изопропилового спирта побочно образуются полимеры пропилена—СдН12, СдНхд, И высшие (до 5% от выхода изопропилового спирта) и диизо-пропиловый эфир (СНз)2СНОСН(СНз)2 (до 20% от выхода изопропилового спирта). Смесь полимеров пропилена используется как моторное топливо. Диизопропиловый эфир применяется в качестве растворителя и высокооктановой добавки к авиационному бензину (октановое число 99). Выход диизопропилового эфира можно значительно увеличить, если проводить гидролиз с меньшим количеством воды. [c.398]
Технический П. (смесь всех изомеров с примесью изопентана) применяют для синтеза малеиновой к-ты и бутадиена полимеры П.-смазочные масла, компоненты типографских красок 1-П. и 2-П.-исходное сырье для получения амиловых и гексиловых спиртов и альдегидов 3-метил-1-бутен-полупродукт в орг. синтезе, используют для повышения октанового числа топлив, в произ-ве пластмасс 2-метил-2-бутен и 2-метил-1-бутен применяют в синтезе изопрена, трет-амиловото спирта, гексиловых спиртов, сложных эфиров. [c.463]
В настоящее время во всем мире наметилась тенденция отказа от введения органических соединений свинца в бензин. Введение органических соединений свинца повышало октановое число бензинов. Для улучшения качества бензина и повышения его октанового числа можно использовать низшие спирты — С1 — Сн и метил-третра-бутиловый эфир (МТБЭ). Поэтому возникает необходимость в простом и быстром методе определения этих кислородсодержащих соединений в бензинах. В работе [11] описан многомерный ГХ-метод, используемый для анализа бензиново-спиртовых смесей. В нем используется кварцевая СОТ-колонка большого диаметра. [c.113]
Для улучшения свойств и увеличения ресурсов в состав автомобильных бензинов во все возрастающих количествах вводят кислородсодержащие соединения — метиловый и ewop-бутиловый спирты, метил-трет-бутиловый и метил-трети -амиловый эфиры (МТБЭ и МТАЭ). Они являются высокооктановыми добавками к бензинам и имеют октановые числа смешения 120—150 пунктов (низшие алифатические спирты, метил-отрет-бутиловый эфир). В связи с тенденцией использования бутиленов для производства метил-mpem-бутилового эфира, алкилата или втор-бутилового спирта возрастает роль процессов получения высокооктановых компонентов бензина из пропан-пропиленовой фракции. [c.126]
В СССР для решения этой проблемы необходимо увеличение октанового числа неароматических компонентов бензина до 72-75 пунктов. Этого можно достичь увеличением производства либо традиционных изо-коыпонентов — алкилатов, изомеризатов, легких бензинов гидрокрекинга, поликер-бекзинов, либо высокооктановых кислородсодержащих добавок — эфиров и спиртов. Перспективны» также методы дополнительной обработки риформата, улучшающие его качество как компонента неэтилированного топлива АИ-93, что позволяет уменьшать требуемое октановое число изокомпонентов, либо их дозировку. [c.70]
Были вьшолнены исследования изменения октановых чисел бензинов газовых стабильных (БГС) при добавлении следующих оксигенатов этиловый спирт, этил-треш-бутиловый эфир (ЭТБЭ) и этилидендиацетат. Октановое число определялось с помощью моторной установки УИТ-85. [c.265]
Данные табл. 4.1 свидетельствуют о том, что метанол и этанол по своим физи-ко-химическим свойствам близки к бензинам. В частности, они имеют повышенную испаряемость, сравнительно невысокие плотность и вязкость, приемлемые для двигателей с принудительным воспламенением октанового числа (91—92 ед.). Преимуществом метанола является его низкая пожароопасность. Положительное свойство спиртов — наличие в молекулах атомов кислорода, поэтому их используют в качестве оксигенатов (кислородсодержащих компонентов), повышающггх детонационную стойкость бензинов и способствующих снижению выбросов сажи и монооксида углерода как в бензиновых двигателях, так и в дизелях. Метанол может смешиваться с бензином и служить основой для эфирной добавки — метил-третбутилового эфира (МТБЭ). В 1998 г в США произведено около 12,5 млрд л МТБЭ, при этом бензин с МТБЭ составляет примерно 30 % от всего объема продаж бензина в США [4.13]. В настоящее время МТБЭ замещает в США большее количество бензина и сырой нефти, чем другие альтернативные топлива, вместе взятые. В России метанол в качестве моторного топлива пока не используется, что объясняется его повышенной стоимостью (500 долл. США за 1 т) по сравнению с традиционными моторными топливами [4.13]. [c.140]
Спирты, октановые числа — Справочник химика 21
В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди кислородных соединений достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и грег-бутиловый спирты (ТБС), метил-грет бутиловый эфир (МТБЭ), обладающие (табл. 8.3) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Особенно быстрыми [c.209]Изопропиловый эфир (СдН,)20, который является побочным продуктом, можно использовать для повышения октанового числа бензинов (добавляется в бензин в количестве 20%). Выход изопропилового спирта достигает 95—99%, а втор-бутилового —90%. Большую часть изопропилового спирта используют для производства ацетона, значительное количество применяют как растворитель, в форме сложных эфиров, как антифриз и т. д. [c.202] Это метиловый (МС), этиловый (ЭС) и трет-бутиловый (ТБС) спирты, метил-трет-бутиловый эфир, обладающие высокими октановыми числами, низкими температурами кипения (табл, б.З), что повыи1г1ет октановое число головных фракций и тем самым улучшить коэффициент распределения детонационной стойкости по фракциям. [c.61]
МТБЭ и ЭТБЭ. Октановые числа смешения эфиров несколько ниже, чем у метилового и этилового спиртов, однако это компенсируется другими преимуществами, к которым следует отнести низкую токсичность, хорошую совместимость с топливом и гидролитическую устойчивость, высокие антикоррозионные свойства. [c.128]
Большой интерес всегда вызывал вопрос об использовании в качестве моторных топлив низших спиртов. Многие из них имеют октановое число от 92 до 100 и выше [298, 299]. Этиловый спирт иногда использовался как компонент топлив, если существовал недостаток в продуктах нефтяного происхождения, однако стандартами такое использование спиртов не предусматривалось. Спирты не нашли широкого применения в качестве компонента топлива и по причине высокой стоимости, и вследствие некоторых технических особенностей. Дело в том, и это одна из самых серьезных причин, что при попадании в топливо небольших количеств воды — за счет ли абсорбции из воздуха или через воздушники емкостей, где находится топливо, содержащее спирт, — оно расслаивается. [c.433]
Автомашины, способные использовать различные виды топлива (метанол, бензин или любую их смесь), широко представлены на выставках автотехники в США в 90-е годы. В любой современной автомашине можно без всяких переделок использовать смесь 90% бензина и 10% метилового спирта — так называемый газохол. Помимо увеличения октанового числа, важно еще, что метанол можно получать из самых разных источников из природного газа, зерна, угля, древесины — это способствует сохранению нефтяных ресурсов. [c.210]
Метанол и этанол прекрасно растворяются в бензине, имеют неплохие октановые числа смешения, но растворимы и в воде. А поскольку в товарных бензинах всегда есть вода, то спирт будет переходить в водную фазу и с ней отслаиваться. В резервуарах при хранении он окажется внизу. Чтобы этого не происходило, требуется добавка гомогенизатора, например изобутилового спирта, а это уже дороже. С МТБЭ этой проблемы нет, он растворим только в бензине. [c.94]
Получаемые продукты состоят из парафиновых и олефиновых углеводородов, большей частью линейного строения и с концевым положением двойной связи, а также из некоторого количества кислородсодержащих соединений (спирты и кетоны). По фракционному составу углеводороды представляют собой смесь низших гомологов (Сз—С4), бензина, дизельного топлива, мягкого и твердого парафина. Групповой, и фракционный состав продуктов можно заметно варьировать, изменяя температуру, давление и катализаторы. В частности, синтез можно направить на преимущественное образование углеводородов изостроения, обладающих более высоким октановым числом, линейных а-олефинов и т. д. В последнее время в патентной литературе предлагаются новые катализаторы, например цеолиты, для селективного синтеза из СО и Нг низших олефинов (С2—Сз) и даже ароматических углеводородов, что является важной предпосылкой для предстоящего перебазирования органического синтеза на твердое ископаемое топливо. [c.526]
Бензин, как уже отмечалось, отличается низким октановым числом. Его качество повышали смешением с бензолом и этиловым спиртом. В результате получалось моторное топливо с октановым числом до 77. Добавлением тетраэтилсвинца октановое число может быть повышено до 80 и т. д. В целях увеличения выхода бензина часть масла (когазина II) подвергали крекингу, что давало бензин с октановым числом 66 — 70. Его можно было улучшать также процессом DHD. Однако когазин II использовался не только в качестве дизельного топлива, но и как сырье для получения смазочных масел, и поэтому крекинг когазина II не получил широкого развития. [c.199]
Борьба против загрязнения атмосферы в последнее время приобретает все большее значение. Одним из основных путей повышения чистоты окружаюш,его воздуха является уменьшение содержания в бензинах свинцовых антидетонаторов. Однако при снижении содержания тетраэтилсвинца или при полном отказе от этилирования ухудшаются антидетонационные свойства товарных бензинов. Для повышения октанового числа потребуется дополнительно вводить высокооктановые компоненты, содержащие ароматические и изопарафиновые углеводороды, или использовать в качестве компонента автомобильных бензинов метиловый спирт. [c.106]
Широко используются спирты (метанол, этанол) и эфиры (метилтретбутиловый эфир — МТБЭ), при этом обеспечивается не только требуемое октановое число, но и снижается токсичность выхлопных газов. Так, добавка 10—15% МТБЭ снижает содержание СО в выхлопных газах на 20%- Перспективно использование в качестве моторного топлива спиртобензиновых смесей (СБС). [c.221]
По литературным данным [7,8],октановое число смешения метанола по моторному методу оценивается в 102-104,5 единиц. Исследования показали, гго этот показатель изменяется в более широких пределах. На рис 2.4 представлены результаты по определению октановых чисел смешения двух спиртов метилового и изопропилового. Как видно из рисунка, октановое число смешения спиртов с увеличением их содержания в топливной композиции проходит через максимум. С повышением октанового числа базового бензина значение концентрации спирта. [c.34]
Для повышения детонационной стойкости вводят этиловую жидкость. Помимо этиловой жидкости, где компонентом, повы-шаюш,им октановое число, является тетраэтилсвинец (ТЭС), для повышения детонационной стойкости применяют также тетра-метилсвинец (ТМС) и метил-трет-бутиловый эфир (МТБЭ). Последний использовать наиболее целесообразно, так как в процессе сгорания бензина не образуются токсичные газы, содержащие свинец. В качестве высокооктанового компонента автомобильных бензинов возможно использование метилового спирта. [c.432]
Рнс. 60. Зависимость октанового числа авиационного бензина от концентрации в нем компонентов /—этилового спирта 2 — ал-кплбензола Л— изооктана 4— бензола [c.104]
Образующуюся в первой стадии изопропилсерную кислоту подвергают гидролизу при 100° или нагревают с изопропиловым спиртом. Диизопропиловый эфир интересен тем, что имеет высокое октановое число, равное 105, и хотя из-за своей низкой теплотворной способности он как моторное топливо применяться не может, но добавки его к бензину в количестве 20—40% значительно повышают октановое число. Так, например, бензин с октановым числом, равным 74, после добавки 20% диизопропилового эфира имеет октановое число, равное 101. Это явилось стимулом для изучения пригодности и других эфиров. Было установлено, что многие из них действительно сильно повышают октановое число бензинов. Особенно хорошие результаты показали добавки 25% метил-/проктановое число с 74 соответственно до 111, 115, 112 и 112. [c.513]
Бензин, получаемый по методу Фишера — Тропша на железном катализаторе (способ Хайдрокол ), содержит гораздо больше олефинов (85—90%) и заметное количество кислородсодержащих соединений (главным образом спиртов) его октановое число 55—60 (моторный метод). При пропускании такого бензина через слой боксита октановое число повышается на 10—20. При этом происходит не только структурная изомеризация а-олефинов, но и дегидратация спиртов в а-олефины и их последующая изомеризация. Процесс проводят при 350—440 °С, 0,17 МПа и объемной скорости 1,5 Некоторые результаты приведены в табл. 56. [c.177]
Как видно из таблицы, октановые числа смешения большинства стабилизаторов щзевышают 100 пунктов. Для эфирной «головки» (отход производства бутиловых спиртов ) этот показатель равен 168 пунктам по моторному методу, т.е. по антидетонационным свойствам он превышает все известные высокооктановые добавки к бензинам. Кубовый остаток и [c.33]
Таким образом, комбинирование бензина деструктивной гидрогенизации (получаемого из угля или крекинг-остатков нефти) со спиртом или лучше с гомологами бензола или с индивидуальными изопарафиновыми углеводородами, открывает пути для нрименепия моторов с весьма высокими степенями сжатия и, следовательно, с высоким коэффициентом полезного действия. Установлено, что если при расходе 1 гл горючего машина со степенью сжатия 5 проезжает 15 миль (т. е. при расходе 1 л пробег равен 6,377 км), то та же машина со степенью сжатия 6, 7 и 8 проезжает 16,37 17,58 и 18,55 мили (т. е. при расходе 1 л соответственно 6,96 7,59 и 7,89 км), или расход горючего при степенях сжатия 5, 6, 7 и 8 составит на каждые 100 км 15,681, 14,386, 12,882 и 9,500 л. Расходы топлива в двигателе в 400 л. с., при различных октановых числах этих топлив, иллюстрируются, кроме того, следующими данными [3] [c.7]
Октановое число сырого бензина гидроколь-ироцесса (фракция Сз и выше), углеводороды которого относятюя главным образом к нормальным а-алкенам и который, кроме того, содержит до 10% спиртов, относительно невелико (около 60). Однако несложной обработкой этого бензина над дегидратирующим контактом молшо не только освободить его от спиртов, но и значительно повысить его октановое число, частью за счет передвижения кратной связи в 6- и у-положения, частью за счет скелетной изомеризации. Результаты этой изомеризации представлены в табл. 55. [c.214]
При создании условий для формирования крупных ССЕ с малодоступной для кислорода воздуха поверхностью достигается обычное нормальное сгорание. В качестве модификаторов размеров ССЕ используют алкилсвинцовые соединения, спирты, эфиры и другие антидетонаторы. Па рис. 87 показано экстремальное изменение октанового числа (О.Ч.) от концентрации тетраэтилсвинца. [c.217]
Пропан. Пропан встречается в больших количествах в природных газах, газах крекинга нефти, в газах, образующихся при перегонке нефти и синтезе бензина по Фишеру—Тропшу (см, ниже). Он может быть синтезирован из иодистого пропила или иодистого изопропила путем восстановления омедненным цинкрм. Этот углеводород го 5Ит более сильно светящимся пламенем, чем этан. Пропан является исходным продуктом для многочисленных синтезов, осуществляемых в широком масштабе в промышленности. Хлорированием его получают 1-хлор-, 2-хлор-, 1,2-дихлор- и 1,3-дихлор-пропан (см. талоидпроизводные), нитрованием — нитропарафины, исходные продукты для получения аминов. При дегидрировании пропана образуется пропилен (см. ниже), из которого в промышленности получают хлористый аллил, глицерин, изопропиловый спирт и т. д. Наконец, из пропана и пропилена путем полимеризации получают углеводороды с разветвленной углеродной цепью (2-,метилпентан, 2,3-диметилбутан и т. д ), служащие добавками к авиационному бензину (повышение октанового числа, см. стр. 87). [c.40]
Технология третьего варианта коммерчески освоена в меньшей, чем процесс алкилирования, степени, но он весьма перспективен и важен, что связано со все возрастающим спросом на повысители октанового числа бензина (изопропиловый спирт, третичный бутиловый спирт и метилбути-ловый третичный эфир для замены тетраэтилсвинца). Мощности США по производству перечисленных повысителей октанового числа достигли 2,27 млн. л/сут, однако потенциальная потребность при 6 %-ной добавке их к бессвинцовому бензину составляет приблизительно 56,7 млн. т/сут. [c.230]
В США, странах Западной Европы, Японии накоплен определенный опыт по эксплуатации автомобильного парка с применением бензино-метанольных смесей с низким содержанием метанола — около 5%. Такие топлива уменьшают выбросы оксида углерода, снижают отношение воздух/топливо, повышают октановое число и позволяют вывести из состава бензина канцерогенный бензол. Эти соединения фотохимически менее активны, чем углеводороды, и, следовательно, имеют более низкую смогообразующую способность. Правда, есть и такой взгляд, что спирты могут превращаться при окислении в камерах сгорания в смогообразующие альдегиды. [c.226]
Как уже было отмечено, продукты синтеза обладают низким октановым числом. Повысить качество бензина можно, например, следуюш,пми методами 1) смешением с бензолом или с абсолютным спиртом, что дает мототопливо с [c.689]
Известно, что кислородсодержащие органические соединения (спирты и эфиры) имеют высокую температурную чувствительность в чистом виде. Например, октановое число метанола в чистом виде по исследовательскому методу (температура воздуха перед карбюратором 52°С, п=6С0 об/мин) составляет 112 единиц, тогда как по моторному методу (1емперату ра подогрева смеси после карбюратора 140 С, п=900 об/мин ) — 90 пунктов. Следовательно, чувствительность метанола, определяемая как разность между ОЧИМ и ОЧММ, равна 22. Для МТБЭ этот показатель равен 16. Согласно опьпным данны.м [6], у парафиновых и нафтеновых углеводородов, облгщающих малой чувствительностью, длительности задержек воспламенения в широком диапазоне изменения температур сжатия (450-600 С) почти не зависят от температуры. У непредельных и ароматических углеводородов, отличающихся высокой температурной чувствительностью, с ростом температуры сжатия наблюдаются непрерьшное уменьшение периода задержки воспламенения. Периодом задержки воспламенения топлива принято и ивать интервал времени от начала развития предпламенных реакций (завершение быстрого нафевания смеси топливо-воздух до заданной начальной тел пературы) до момента появления пламени. Парафиновые и нафтеновые углеводороды обладают двухстадийным процессом воспламенения, поэтому длительность периода задержки х . — для них складывается из двух частей задержки холодного пламени х, — и так называемого второго периода задержки хз — интервала времени от момента угасания холодного пламени (завершение холодно-пламенной стадии) до возникновения горячего взрыва. Стадия холодного пламени характеризуется [c.39]
Бензино-метанольные карбюраторные топлива являются одним из вариантов альтернативных топлив. Для предотвращения фазового разделения (дестабилизащш) бензино-метанольных смесей применяют специальные стабилизаторы-выспше спирты. Так,по ТУ 6-02-32-1-80 для автомобильного бензина БМ-15 с октановым числом 76 пунктов по моторному методу рекомендуется следующий состав, % масс. метанол-15, изобутиловый спирт-7-9, остальное-базовый бензин. Включение в композицию дорогостоящего (45го1С.рубУт) и дефицитного изобутилового спирта резко увеличивает себестоимость топлива и сужает возможный масштаб его использования. [c.6]
Октановое число смешения — одна из наиболее важных характеристик кислородсодержащих соединений при применешш их в качестве компонентов автомобильных бензинов. В чистом виде многие кислородсодержащие органические соединения имеют высокие октановые числа. Спирты характеризуются более высокой активностью гфи горении по сравнению с углеводородами. Благодаря этому горение в двигате.че протекает устойчивее. Основной причиной этого [c.34]
Биоэтанол как альтернатива бензину | Управление РСО-Алания по государственному регулированию производства и оборота алкогольной и спиртосодержащей продукции
За последний год в России значительно вырос интерес к спирту в качестве замены бензину.
С середины 1970-х годов энтузиазм по поводу использования спиртов в качестве альтернативного топлива в ДВС увеличился. А пика он достиг к середине 1980-х годов. Спирт как альтернативное топливо из-за его минимального воздействия на атмосферу приобретает большое значение. Этанол — альтернатива горючему из нефти из-за меньших выбросов парниковых и выхлопных газов, повышения энергоэффективности. Кроме того, оно удобно для двигателей внутреннего сгорания большой мощности из-за высокого октанового числа, скорости горения. Спирты с низкой молекулярной массой подходят и вместо добавок для повышения октанового числа.
Что такое этанол?
Этанол (этиловый спирт), также содержащийся в алкогольных напитках, получают путем ферментации раствора сахара. В США его производят из кукурузного крахмала. Трава, древесина и сельскохозяйственные отходы также могут быть использованы для производства «целлюлозного» этанола.
Ферментация — это основной метод синтеза этанола, используемый в промышленности. Меласса сахарного тростника — важное сырье для производства этанола, который является побочным продуктом сахарной промышленности. Кроме того, в процессе ферментации зерновые крахмалы (пшеница и кукуруза), картофельное пюре, фруктовые соки, не содержащие сахара лигноцеллюлозные фракции сельскохозяйственных культур, таких как травы и растения, используются в качестве сырья. Как правило, меласса содержит до 50% простого сахара, который легко сбраживается в этанол. Это идеальное сырье для производства этанола с высокой доступностью и низкой стоимостью. Однако, как только сырье доставляется на завод по производству этанола, оно хранится на складе и кондиционируется для предотвращения раннего брожения и загрязнения. Более того, фермент, такой как микроскопические дрожжи, играет жизненно важную роль в процессе ферментации, превращая углеводы в этанол в отсутствие кислорода.
Особенности применения
Чистый этанол — 100% этанол или E100 — теоретически можно было бы использовать в автомобилях, но практически это нереализуемо по следующим причинам:
- Этанол плох для холодного запуска, потому что он не горит так быстро, как бензин. Чистый этанол бесполезен в качестве топлива в зимние месяцы.
- Нет легковых автомобилей, предназначенных для использования E100 (не считая некоторые гоночные автомобили), что может привести к повреждению двигателя. Даже авто, работающие на нескольких видах топлива (FFV), работающие как на бензине, так и на этаноле, могут использовать горючее до E85.
- 100% этанол трудно достать. Технически его можно употреблять как очень крепкий алкогольный напиток. Согласно правилам США, топливные спирты должны быть непригодными для питья и разбавленными до 95,5%. И, если этанол не смешан с бензином, он будет облагаться налогом на спиртные напитки / пошлиной на алкоголь.
85% этанола на 15% бензина или E85 — наиболее распространенное биотопливо в Штатах. Самый высокий процент этанольного топлива, продаваемого в США — это E85, а в Бразилии — E95, где запуск автомобиля в холодную погоду не является проблемой.
Считается, что E10 можно использовать в обычных автомобилях без модификации двигателя.
Зачем использовать этанол в качестве альтернативного топлива
Спиртовое топливо имеет больше преимуществ по сравнению с ископаемым топливом.
1. Спирт с более низким молекулярным весом может быть получен из местных энергетических ресурсов, таких как биомасса, уголь и природный газ, которые доступны по низкой цене.
2. Сжигание спирта в двигателях внутреннего сгорания (ДВС) создает большее давление сгорания по сравнению с бензином. Это происходит из-за более высокого отношения местных продуктов к реагентам. Кроме того, это улучшает выходную мощность и тепловой КПД по сравнению с бензином.
3. Снижаются выбросы парниковых газов.
4. По сравнению с бензином спирты с более высоким средним октановым числом могут повысить мощность.
5. Уменьшается выделение токсичных газов в окружающую среду.
6. Утечки и разливы спиртового топлива из танкеров не так страшны. Спирты смешиваются с водой и могут быть смыты ею. Они легко распадаются при попадании в землю.
7. Спиртовое топливо имеет более низкие выбросы паров.
8. Сжигая спирт в ДВС мы выбрасываем незначительное количество золы из-за меньшего содержания углерода в спирте.
9. Общая энергоэффективность топлива улучшается.
Бразилия и этанол
Технология создания топлива на основе этанола существовала с 1920-х годов, но не получила широкого распространения до 1980-х годов. В поисках возобновляемых альтернативных источников энергии правительство Бразилии обнаружило, что в 80-х годах около 90% автомобилей страны работали на этаноле. Хотя это число снизилось одновременно с ценами на нефть, использование этанола в стране снова увеличилось. Теперь все используемые виды топлива должны содержать минимум 25% этанола. Бразилия является крупнейшим экспортером этанола в мире, занимая второе место в мире по количеству заводов-производителей подобного топлива. Около 87% зарегистрированных транспортных средств (2012 г.) работают на спирте. Потребление бензина в стране снизилось на 30%. Производятся оптовые поставки спиртового топлива в другие страны, однако, из объемы не сопоставимы с используемыми внутри страны.
Этанол дешевле бензина?
Производство этанола не самое дешевое, но, поскольку он поступает из возобновляемых источников, по прогнозам, вскоре он станет дешевле, чем традиционное топливо. И, в зависимости от того, где производится этанол, затраты на импорт могут перестать быть ключевым фактором ценообразования. Транспортировка оптовых партий сокращает цену в пересчете на литр топлива, по сравнению с розничными продажами.
Этанол более экологичен?
Это зависит от того, как был произведен этанол и как он используется. Как правило, использование E85 приводит к меньшим выбросам, чем при использовании обычного топлива. Этанол также вытесняет бензол, который вызывает рак и является нетоксичным, водорастворимым и биоразлагаемым веществом. Так как этанол производится из растений, он квази-возобновляемый.
Что касается расчетов «жизненного цикла» считается, что целлюлозный этанол производит на 86% меньше парниковых газов. Парниковые газы — двуокиси углерода, метана, закись азот. Жизненный цикл рассчитывается с учетом того, как топливо производится, транспортируется и т. д. Исследование Калифорнийского университета в Беркли показало, что для производства этанола не требуется больше энергии, чем он может произвести. Этанол, полученный из кукурузы, имеет положительный «энергетический баланс», особенно если учесть, что другие ценные продукты, такие как кукурузное масло, являются побочными продуктами процесса его производства.
Этанол полезен для планеты?
Горение E85 все еще выделяет загрязняющие вещества и производит выбросы выхлопных газов. Топливо с содержанием этанола от 6% до 20% выделяет наибольшее количество выбросов. Рекомендуется использовать чистый бензин или более высокие концентрации этилового спирта.
Расчет выбросов в течение всего производственного цикла проблематичен. Часто не принимаются во внимание изменения в использовании земель. Например, преобразование лесных земель в пахотные, что ускоряет глобальное потепление. Производство этанола из кукурузы в значительной степени зависит от ископаемого топлива и удобрений. Однако до тех пор, пока сельскохозяйственные угодья не используются для выращивания целлюлозных материалов, целлюлозный этанол довольно экологичен — для его создания требуется меньше удобрений, а побочные продукты могут использоваться для производства горючего топлива.
Почему на сегодняшний день России не выгодно переходить на биоэтанол?
В России широкое использование этанола в качестве топлива проблематично по нескольким причинам. В первую очередь, наше законодательство ограничивает оборот этанола. Кроме того, этому спирту необходимо как-то предать «непитьевое» состояние. Безопасный процесс такого перевода уже разработан на основе реакции дегидратации — отщепления воды от молекул спиртов. При нужных условиях получаем смесь углеводородов, близкую по составу к бензину. Этот способ разработан в Институте общей и неорганической химии РАН под руководством члена-корреспондента РАН Александра Гехмана.
Даже с учетом наличия земель для выращивания кукурузы или иных растений, служащих для производства биотоплива, и небольших тратах на транспортировку, конечный продукт выходит дороже привычного бензина. Дело в акцизах, накладываемых государством на спиртосодержащую продукцию.
Автомасла, антифризы и автошампуни от производителя
Что такое биоэтанол и чем он отличается от обычного бензина
Когда речь заходит о возобновляемых источниках энергии для автомобилей, чаще всего упоминается электричество и водород. Но на сегодня неплохие перспективы имеет и биотопливо. Владимир ШЛЯХОВОЙ разбирался с самым популярным его видом — биоэтанолом.
Биоэтанол — это обычный этиловый спирт, полученный путем сбраживания сахаросодержащих веществ растительного происхождения. В настоящее время для этого используются чаще всего сахарный тростник, кукуруза, пшеница и древесные опилки. По сравнению с бензином этиловый спирт имеет более высокое октановое число (99 по моторному и 105 по исследовательскому методу), меньшую температуру сгорания и более чистый выхлоп, поскольку в нем не содержится сера. К тому же спирт сгорает без образования золы. Поэтому при использовании спиртсодержащих бензинов на свечах образуется меньше отложений, а двигатель меньше греется.
В то же время этанол имеет в 1,7 раза меньшую теплотворную способность, чем бензин (26 МДж/кг против 44 МДж/кг), а поэтому расход спиртобензиновой смеси будет большим, хотя при малом содержании этанола это практически незаметно.
Спирт не растворяется в бензине и достаточно коррозионно-активен, поэтому при приготовлении спиртобензиновых смесей используются специальные эмульгаторы, стабилизаторы и ингибиторы коррозии, благодаря чему смесь не расслаивается и не разрушает элементы топливной системы.
По большому счету бензиновый двигатель может работать и на чистом спирте, но для этого необходимо перепрошить программу работы двигателя, установить устройство для стабилизации его запуска и заменить подверженные коррозии материалы топливной системы более стойкими. Кроме того, если принято решение полностью перейти на спирт, желательно повысить степень сжатия двигателя до 12–14, чтобы полностью использовать детонационную стойкость топлива и повысить КПД его использования.
В то же время низкое давление насыщенных паров и высокая удельная теплота испарения этанола (905 кДж/кг) делают практически невозможным запуск бензиновых двигателей на чистом спирте уже при температуре ниже +10°С. Для сравнения: для воды этот показатель составляет 2260 кДж/кг, для бензина 230–310 кДж/кг. Поэтому обычно этанол используют не в чистом виде, а смешивают с бензином в той или иной пропорции.
Бразилия впереди планеты всей
Этиловый спирт — горючее давно и хорошо известное. Он использовался в качестве моторного топлива с самого начала автомобильной эры. Еще в 1896 году Форд построил автомобиль, работающий на этаноле, а хорошо известный Ford-Т стал первым в истории массовым автомобилем, который мог работать как на бензине, так и на этаноле и их смеси.
Сейчас в разных странах выпускаются бензины (а вернее, жидкое моторное топливо) с различным содержанием спирта — от 5 до 100%, что зашифровано в их маркировке. Так, Е5 означает, что спирта в смеси находится 5%, Е20 — 20% и т.д. Единственное исключение — Е100, который на самом деле содержит 96% спирта, поскольку более высокую концентрацию получить перегонкой невозможно. Впрочем, чаще всего спиртсодержащие бензины содержат либо до 25% этанола, либо 70–85%. В первом случае такие топлива могут использоваться обычными неадаптированными автомобилями, а во втором — переоборудованными для работе на спирте, либо «двухтопливными» (FlexFuel), которые могут работать как на чистом бензине, так и на чистом спирте, и на их смеси в любой пропорции. В разных странах такие автомобили называются по-разному, но в их названии обязательно присутствует слово Flex — «гибкий».
Автомобили, специально адаптированные для топлива Flex Fuel, могут работать как на чистом бензине, так и на спирте и на их смеси в любой пропорции. Но для обычных автомобилей бензин Е85 — настоящий яд.
В таких автомобилях концентрация спирта в топливе определяется автоматически, и «электронные мозги» проводят соответствующую подстройку топливной аппаратуры. При этом Е85 считается летним, а Е70 и Е75 — зимним топливом, которое благодаря повышенному содержанию бензина легче воспламеняется при отрицательных температурах.
Мировым лидером в производстве и использовании биоэтанола в качестве моторного топлива стала Бразилия, где на этаноле и спиртсодержащем бензине ездит 80% машин (оставшиеся работают на дизтопливе). И с оглядкой на это многие другие страны также пытаются пойти подобным путем.
В Бразилии биоэтанол прижился во многом благодаря законодательно утвержденному правилу «80/20»: все бензины без исключения должны содержать не менее 20% спирта.
Но Бразилия — страна особая. Здесь программа по переводу автотранспорта на спирт, принятая после энергетического кризиса начала 70-х годов, преследовала сразу две цели: не только уменьшить зависимость от импорта нефти, но и трудоустроить значительное число безработных. Причем последняя задача играла приоритетную роль, поскольку позволила обеспечить работой на выращивании, уборке и переработке сахарного тростника миллионы человек. В результате в Бразилии, где условия для выращивания сахарного тростника просто идеальны, с одного гектара ежегодно получают 7500 л этанола, что является рекордным показателем. Например, в США, где спирт получают из кукурузы, 1 га дает только 3800 л биоэтанола.
Энергетический баланс
Впрочем, в производстве биоэтанола есть еще один очень важный показатель – энергетический баланс, который обозначает соотношение между количеством энергии, запасенным в полученном топливе и количеством энергии, затраченным на его изготовление.
Например, согласно ряду исследований, проведенных в США, этанол, производимый из кукурузы, имеет отрицательный энергетический баланс. То есть на полный цикл его производства (с учетом обработки почвы, посева и уборки урожая, а также его последующей переработки) необходимо потратить больше энергии, чем содержится в полученном этаноле. Хотя согласно официальному отчету Департамента сельского хозяйства США, кукурузный этанол имеет топливный баланс 1,24. Таким образом, этанол, произведенный из кукурузы, содержит всего на 24% энергии больше, чем тратится при его производстве. То есть из пяти гектаров кукурузы четыре расходуются впустую — непосредственно на процесс производства, и только 20% идут на получение товарного спирта.
Кукуруза — североамериканское сырье для биотоплива. Кроме того, используются маниок, картофель, сахарная свекла, батат, сорго, ячмень и другие культуры.
Кстати, Бразилия и здесь является мировым лидером, поскольку багасса (жом) сахарного тростника используется в качестве топлива на электростанциях, что позволяет увеличить энергетический баланс этанола, производимого из сахарного тростника, до 8. Энергетический баланс этанола, производимого из целлюлозы, может достигать 2. В данном случае речь идет об использовании в качестве сырья древесных опилок, соломы и других отходов растительного происхождения, которых в Украине ежегодно образуется несколько десятков миллионов тонн. Что же касается сахарной свеклы, то в связи с дороговизной ее выращивания производимый из нее этанол имеет отрицательный энергетический баланс. В то же время переработка в топливо зерновых культур непременно приведет к росту цен на все продукты питания.
Справедливости ради стоит отметить, что энергетический баланс бензина и дизтоплива составляет около 1, так как для их производства требуется большое количество энергии: для разведки нефти, ее добычи, транспортировки (постройка танкеров и трубопроводов), переработки, доставки бензина и т.п.
В настоящее время стоимость этанола гораздо выше себестоимости бензина. Но почему же тогда спиртсодержащий бензин стоит дешевле обычного? Во-первых, как уже упоминалось, его энергетическая ценность ниже, чем у чистого бензина, поэтому, предлагая меньший пробег на том же количестве топлива, нельзя просить больше. А во-вторых, бензин в отличие от спирта облагается огромным акцизом, из-за чего его продают намного дороже реальной стоимости. Поэтому в результате выходит, что более дорогой спирт обходится автомобилистам дешевле.
Топливо «со спиртом» — можно ли им безопасно заправляться?
Топливо «со спиртом» — можно ли им безопасно заправляться?
Падение продаж на топливном рынке Украины заставляет топливный ритейл максимально бороться за долю рынка и привлечение новых клиентов. С этой целью сети АЗС увеличивают количество акций по программам лояльности, предлагают дополнительные сервисы и т.д. Но всё же главный аргумент для автомобилиста при выборе той или иной сети АЗС — это цена. И здесь немаловажную роль начинает отыгрывать так называемый «бюджетный» сегмент, а именно альтернативное, или биотопливо. Оно стоит в среднем на одну гривну дешевле традиционного, и доля его на рынке постоянно растёт. Первой в Украине такой бензин начала реализовывать сеть автозаправочных комплексов БРСМ-Нафта, но в трудные времена для топливщиков над выводом такого топлива задумались и другие участники рынка. В частности, одна из крупнейших сетей АЗС WOG недавно выпустила в свет новое топливо А-95 есо +, с добавлением абсолютизированного биоэтанола. В компании утверждают, что производится оно в заводских условиях, причём на европейском заводе. Надо отметить, что подобная добавка, в отличие от спирта, может храниться только в специальных резервуарах, и только в условиях профильного производства. Собственно, это и стало поводом для комплексной проверки спиртовых бензинов, которую провели в столичном Институте потребительских экспертиз.
Пока что выбор такого бензина не особо велик — спиртовое топливо эксперты нашли в четырех сетях АЗС — WOG, БРСМ-Нафта, КЛО и Авиас. В целом, результаты экспертов удивили, поскольку только у одного образца показатели оказались, скажем так, не совсем хорошими.
Сколько спирта?
Лабораторные испытания начались с главного — с определения объемной доли биоэтанола, величина которой и обуславливает основные свойства спиртового топлива. Надо отметить, что спиртовое топливо делится на две категории — автобензин с содержанием биоэтанола не менее 30% относится к альтернативным топливам, если биоэтанола менее 30% — не являются альтернативным, а относятся к спиртовым по маркам Е5, Е7, Е10 (согласно Техническому регламенту), и эти марки бензинов нельзя путать с альтернативными топливами — они выпускаются по разным нормативным документам! По итогам лабораторных испытаний у WOG, БРСМ-Нафта и КЛО этанол был определён в районе 36 процентов, что относит эти топлива к альтернативным. А вот бензин от Авиас показал результат в 26% содержания спирта. Необходимо отметить, что топливо с таким содержанием не соответствует требованиям Технического регламента — допускается содержание биоэтанола с 1 января 2016 года до 7 % (Е7), с 1 января 2018 года до 10% (Е10). Согласно Закону об альтернативных топливах, альтернативные топлива должны содержать биоэтанола не менее 30%, остальные альтернативными не являются.
Ну и главная новость для автомобилистов — спирта в таком топливе оказалось не так уж много, а значит, им можно спокойно заправляться зимой.
Октановое число
Далее в лаборатории проверили октановое число. Этот показатель характеризует стойкость топлива к детонации — преждевременному сгоранию бензина в камере сгорания. Детонация вредна для мотора не только повышенным расходом топлива и снижением мощности, но и преждевременным износом двигателя из-за лишних нагрузок. Октановое число измеряли по исследовательскому методу. И вновь экспертов ждали приятные новости. Все образцы показали изрядный запас прочности. Октановое число варьировалось, от 96,6 единиц у WOG до 97,2 у БРСМ-нафта. А вот у Авиас октан достиг значения 98,8 единиц. Это нестандартное значение, которое может даже нанести вред автомобилю. Такой чересчур высокий показатель обусловлен высоким октановым числом самого спирта.
Содержание бензола и ароматических углеводородов
Как известно, бензол и ароматические углеводороды — это вещества, которые могут нанести вред топливной системе и привести к ее преждевременному износу. Кроме того, не испаряясь целиком, бензол смывает масляную пленку в моторе, что приводит к повышенному износу цилиндров двигателя. Ну и конечно, они наносят вред окружающей среде.
Однако без ароматических углеводородов невозможно производить качественный бензин, поскольку ароматика — это продукты вторичной переработки нефти, которые дают высокооктановый компонент. Без них невозможно сделать высокооктановый бензин. Отрицательные стороны — это негативное влияние на окружающую среду, поэтому содержание этих компонентов ограничивают в нормативных документах. До бесконечности этого делать нельзя. В альтернативных бензинах за счёт 30 процентного содержание биоэтанола, содержание ароматических углеводородов можно сократить, так как спирт имеет большее октановое число.
Спиртовые бензины производятся по ТУ, поэтому производитель сам определяет граничные количества этих веществ, например, того же бензола. Например у КЛО 4 %. Поэтому оценивали по фактическому содержанию, с оглядкой на ДСТУ для улучшенного «девяносто пятого», который не допускает содержание бензола больше 1 %. Практическое отсутствие вредных веществ (0,3 % бензола и 10 % ароматики) оказалось в «заводском» топливе 95 есо + от сети WOG и (1 % бензола и 15 % ароматики) в А95 Е Премиум + от сети БРСМ-Нафта. Такие показатели действительно подтверждают европейское происхождение этого бензина. Немного отстал от лидера образец КЛО (0,61 % бензола и 12,3 % ароматики). А вот в образце спиртового бензина Авиас ситуация оказалась печальной. Если по содержанию ароматики ещё приемлемо (22,1 %), то вот с бензолом всё плохо. Здесь его оказалось целых шесть процентов!
Без коррозии
Одним из самых важных эксплуатационных показателей спиртового топлива является коррозионная активность. Дело в том, что спирт является сильным растворителем и разъедает резиновые и пластиковые детали топливной системы. Чтобы этого избежать, в состав биотоплива нужно вводить специальную присадку, повышающую значение кислотного параметра pH. В целом, этот показатель должен быть от 6 до 9 единиц. Все участники справились с этим тестом, а самое высокое значение (7,4 единицы) было обнаружено в пробе топлива 95 есо + от сети WOG, на втором месте сеть БРСМ-Нафта (7,3 единицы). У остальных участников значение также было не ниже семи. Такие показатели говорят о том, что по своим антикоррозионным свойствам спиртовой бензин практически не отличается от обычного бензина и является безвредным для резинотехнических деталей двигателя.
Итоги
И что же в сухом остатке? Можно ли заправляться «спиртовым» бензином без риска для собственного автомобиля? Эксперты дают однозначный ответ — да. И тот факт, что подобное топливо появилось у флагмана отечественного рынка, говорит о том, что потенциал огромен, а конкуренция в данном сегменте будет только усиливаться. В любом случае, очень радует тот факт, что у крупных сетей, таких как БРСМ-Нафта и КЛО, которые давно продают подобное топливо, нет проблем с качеством. Ну а что касается нового топлива от WOG, то исследование показало, что предела совершенству нет. Произведённое на нефтехимическом производстве с соответствующей технологией, такое топливо будет задавать новые акценты качества.
Дмитрий Сысоев
АЗС |
Октановое число (исследовательский метод) |
Массовая часть бензола, (%) |
Массовая часть ароматических углеводородов, (%) |
Массовая часть этанола, (%) |
Значение рН |
WOG |
96,6 |
0,3 |
10 |
36,2 |
7,4 |
БРСМ-Нафта |
97,2 |
1 |
15 |
36 |
7,3 |
КЛО |
96 |
0,61 |
12,3 |
36,3 |
7,2 |
Авиас |
98,8 |
5,9 |
22,1 |
26,7 |
7,2 |
азс бензин
Views: 9240виды топлива, контроль качества и технологии заправки
Каждый день в мире выполняется более 100 тысяч авиарейсов. В год мировая авиация потребляет около 300 млн тонн топлива. Эти цифры прекрасно отражают масштаб и сложность системы авиатопливообеспечения. Системы, от надежной работы которой во многом зависит безопасность миллионов людей, пользующихся авиатранспортом
Чем заправляют самолеты
Топливо для самолетов бывает двух видов. Поршневые двигатели, которыми оборудуются небольшие самолеты и вертолеты, работают на бензине — так же, как и автомобильные моторы. Правда, по составу такое топливо несколько отличается от автомобильного. Газотурбинные двигатели (турбореактивные и турбовинтовые), которыми сегодня оснащены практически все коммерческие воздушные суда, потребляют топливо для реактивных двигателей, которое также называют авиакеросином.
Основная марка авиакеросина, которым в России заправляют почти все пассажирские, транспортные и военные дозвуковые самолеты и большую часть вертолетов — ТС-1 — топливо сернистое. Оно вырабатывается из нефти с высоким содержанием серы.
В Европе основа системы авиатопливообеспечения — керосин Jet A-1. Он считается более экологичным как раз за счет меньшего содержания серы — при его производстве прямогонная керосино-легроиновая фракция полностью проходит процедуру гидроочистки. Российский авиакеросин — это смесь гидроочищеного и неочищенного прямогонного дистиллятов. В целом же это аналоги — более того, отечественный продукт может использоваться при гораздо более низких температурах, чем «Джет». ТС-1 сегодня наравне с Jet A-1 включен в международные документы и руководства по эксплуатации не только самолетов российского производства, но и лайнеров семейств Airbus и Boeing (правда, только выполняющих полеты по России). Но это авиакеросин для гражданской авиации, не предназначенный для сверхзвуковых самолетов.
«Газпром нефть» запустила НИОКР по созданию неэтилированного авиационного бензина. Вместе с учеными из Всероссийского научно-исследовательского института нефтяной промышленности специалисты компании в 2014 году занялись разработкой рецептуры неэтилированного топлива с октановым числом 91, и сейчас эта работа уже завершена.
Основное авиатопливо для сверхзвуковой авиации — РТ. При его производстве с помощью гидроочистки из нефтяного дистиллята удаляются агрессивные, а также нестабильные соединения, содержащие серу, азот и кислород. При этом повышается термическая стабильность топлива, что крайне важно при полетах на сверхзвуковых скоростях, когда за счет трения о воздух нагревается весь корпус самолета, а вместе с ним и топливо в баках.
Разумеется, РТ, обладающее такими характеристиками, можно использовать и в обычных воздушных судах вместо ТС-1. Для самых же скоростных самолетов применяется авиакеросин Т-6, обладающий еще большей термостабильностью и повышенной плотностью.
Что касается авиабензина, то это, по сути, автомобильное моторное топливо, но с улучшенными свойствами, влияющими на надежность работы двигателя. Именно потребность в повышении детонационной стойкости, октанового числа, сортности, обеспечивающих запас динамических характеристик и надежности, заставляет производителей авиабензина добавлять в него тетраэтилсвинец (этилировать). Из-за токсичности эта присадка давно запрещена при производстве автомобильного бензина, но двигатель самолета работает в гораздо более напряженном режиме, а создать неэтилированный авиабензин, не уступающий по характеристикам этилированному, октановое число которого превышает 92–95, пока не удалось никому.
При этом самым современным и совершенным самолетам и вертолетам с поршневыми двигателями нужен авиабензин с повышенным октановым числом — не меньше 100. Поэтому разработкой экологичных аналогов этилированного авиабензина 100LL (одна из самых востребованных марок в мире) сегодня занимаются ведущие производители и научные центры во всем мире. В том числе подобная программа существует и у «Газпром нефти».
100 тысяч авиарейсов выполняется в мире каждый день
Заправка в крыло
Правильная организация заправки даже одного воздушного судна — процесс сложный и при этом очень ответственный. Инцидентов и катастроф, причиной которых стала некачественно организованная заправка, к сожалению, в истории мировой авиации произошло немало. Достаточно вспомнить аварию 2000 года, когда у Ту-154 авиакомпании «Сибирь», летевшего из Краснодара, при посадке в Новосибирске отказали все три двигателя. Как показало расследование, топливные насосы просто забило частицами эпоксидного покрытия, кустарно нанесенного на внутренние стенки топливозаправщика умельцами одного из краснодарских ремонтных предприятий. Но если в этом случае благодаря профессионализму пилотов обошлось без жертв, то в Иркутске при падении гигантского транспортника Ан-124 на жилые дома в 1997 году погибли 72 человека. Одна из версий причины отказа трех двигателей «Руслана» из четырех — превышение содержания воды в авиационном топливе, которое привело к образованию кристаллов льда, забивших топливные фильтры. Чтобы такого не случалось, весь процесс заправки очень жестко регламентирован, а само топливо проходит несколько проверок качества на пути от нефтеперерабатывающего завода до бака самолета.
Первый этап — выходной контроль на самом НПЗ. Однако качественные характеристики керосина могут измениться при его перевозке в случае несоблюдения всех правил транспортировки. Поэтому при приеме керосина на топливозаправочном комплексе (ТЗК), вне зависимости от того, каким путем оно пришло с завода: по трубе, как в аэропортах московского авиаузла или санкт-петербургском Пулково; железнодорожным или автомобильным транспортом, как это происходит в большинстве воздушных гаваней страны, или, тем более, если керосин проделал долгий путь, включающий и наземные и водные маршруты, как при доставке в отдаленные точки, такие как Чукотка, — обязательно проводится входной контроль. Из каждой партии берутся пробы для лабораторных исследований, а также арбитражная проба, которую сразу опечатывают и хранят на случай возникновения разногласий в оценке качества у разных участников процесса топливообеспечения. Само топливо при закачке в приемные резервуары ТЗК проходит через фильтры с тонкостью фильтрации не более 15 мкм.
Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета. Контролировать же процесс заправки и скорректировать его можно со специальной панели, расположенной рядом с местом подсоединения рукава.
Затем керосин отстаивается в резервуарах, после чего проходит полномасштабную проверку по всем основным параметрам, определенным ГОСТом, таким как плотность, фракционный состав, кислотность, температура вспышки, кинематическая вязкость, концентрация смол, содержание воды и механических примесей, температура начала кристаллизации, взаимодействие с водой, удельная электропроводность. Если экзамен успешно сдан, керосин получает паспорт качества, который становится для топлива пропуском на перрон аэропорта. Правда, перед выдачей для заправки самолета, керосин проходит еще один этап контроля — аэродромный — и еще раз фильтруется, теперь через еще более мелкий фильтр. Проверке подвергается и сама заправочная техника, которую без специального контрольного талона до самолета не допустят.
Заправляют самолеты двумя способами. В крупных современных аэропортах перрон соединен с ТЗК системой центральной заправки, а на самолетных стоянках установлены топливные гидранты. Из них керосин в баки воздушного судна перекачивается через специальные заправочные агрегаты (ЗА). Однако пока все же более распространен другой способ — с помощью цистерн—топливозаправщиков (ТЗ). В свою очередь в ТЗ керосин наливается на пунктах налива — складских или перронных. В зависимости от размера цистерны топливозаправщик может вместить до 60 тысяч литров керосина.
Перед началом закачки топливо еще раз проверяют, правда, без использования лабораторий. Керосин сливается из резервуаров ТЗ в прозрачную банку, и визуально определяется наличие в нем воды, кристаллов льда или осадка. Также проверяется и наличие воды в баках самолета перед заправкой и после нее. Перед подсоединением рукава топливозаправщика к горловине бака и само воздушное судно, и ТЗ обязательно заземляются. В истории бывали случаи, когда разряды статического электричества воспламеняли топливо и вызывали серьезные пожары. Для обеспечения безопасности людей самолеты практически всегда заправляются до посадки в них пассажиров.
Где хранится керосин
Объем топливных баков самого крупного и вместительного до последнего времени пассажирского лайнера Boeing-747 достигает 241 140 л (у последних модификаций). Это позволяет залить около 200 тонн топлива. Более привычные ближне- и среднемагистральные Boeing-737 и Airbus A-320 могут принять по 15–25 тонн.
В большинстве самолетов топливо размещается в крыльях и баке, расположенном в центральной части самолета. На некоторых моделях еще один бак есть в хвосте или стабилизаторе — для утяжеления задней части самолета и облегчения взлета, а также для регулировки центровки самолета в полете.
Сначала топливо вырабатывается из внутренних отсеков крыла, затем из концевых. Однако непосредственно к двигателям керосин поступает только из одного бака — расходного (как правило, центрального), куда перекачивается изо всех остальных емкостей.
Для того чтобы предотвратить снижение давления при расходе топлива и прекращения его подачи в топливную систему, все баки сообщаются с атмосферой с помощью специальных дренажных баков в концевой части крыла. Попадающий в них забортный воздух замещает объем израсходованного горючего.
Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета, нарушение которой может привести к самым печальным последствиям, вплоть до катастрофы. Контролировать же процесс заправки и скорректировать его в случае необходимости можно со специальной панели, расположенной рядом с местом подсоединения рукава.
Сам оператор топливозаправщика в процессе заправки держит в руке специальный прибор контроля Deadman, кнопку которого необходимо нажимать через определенные промежутки времени. Если этого не происходит, заправка прекращается — система воспринимает пропуск в нажатии как нештатную ситуацию. Как только заданное количество керосина попало в баки, автоматика отключает подачу топлива, и заполняются документы, фиксирующие результаты заправки.
Автоматизация по всем направлениям
Постоянно автоматизируется не только сам процесс того, как заправляют самолеты. Именно в этом направлении развивается и вся система авиатопливообеспечения. Уже сегодня клиенты лидеров мирового рынка в этом сегменте могут в онлайн-режиме заказать заправку своего самолета в любом аэропорту присутствия топливного оператора. Такую схему развивает, например, Air Total International, свою интегрированную облачную систему управления топливозаправкой создает и Air BP, причем делает он это совместно с глобальным центром планирования полетов RocketRoute, в платформу которого интегрируются данные о топливозаправочной сети по всему миру.
В этом же направлении двигается «Газпромнефть-Аэро» в рамках реализации программы «Цифровой ТЗК».
241 тыс. л — объем топливных баков одного из самых крупных и вместительных в настоящее время пассажирских лайнеров Boeing-747
Сам процесс заправки по такой схеме выглядит как кадр из фантастического фильма. К лайнеру на стоянке подъезжает ТЗ, пилот, как на обычной АЗС, платит за топливо пластиковой картой с помощью мобильного терминала, которым оборудован топливозаправщик. Водитель ТЗ с планшета оформляет и распечатывает документы, подтверждающие факт заправки для пилота — уже через 10 минут в офис авиакомпании приходят необходимые финансовые документы, а баки самолета заполняются топливом.
Наличие такой системы, очевидно, повышает конкурентоспособность топливных операторов, так как значительно упрощает и оптимизирует процесс планирования полетов их клиентам — авиакомпаниям.
Биокеросин производят из биомассы с помощью процесса Фишера — Тропша, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50 50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50%.
Зеленый керосин
Еще одно направление развития авиатопливного рынка совпадает с вектором движения рынка автомобильного — это снижение уровня вредных выбросов в атмосферу. Главная технология здесь — создание более чистого топлива, в первую очередь за счет разработки и использования биокомпонентов.
На сегодня процедуру сертификации прошли несколько технологий производства авиационного биотоплива. Биокеросин производят из биомассы с помощью процесса Фишера — Тропша*, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50×50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50 %. При этом конечный продукт по химическому составу эквивалентен традиционному авиатопливу, и его применение не влияет на эксплуатационные характеристики самолетов.
Одним из первых коммерческие заправки биотопливом начал аэропорт норвежского Осло, а пионером в использовании экологичного керосина стала немецкая Lufthansa. Использование биотоплива одобрено Федеральной авиационной администрацией США (FAA), им уже заправляют свои самолеты в США несколько десятков авиакомпаний.
Но у развития этого направления есть одно но — производство биотоплива пока слишком дорого, поэтому сегодня, во времена низких цен на нефть, оно не может на равных конкурировать с обычным «Джетом», а тем более с ТС-1.
Полезные дополнения
Авиакеросин, как правило, не используется в чистом виде. Для улучшения его характеристик используются различные присадки. Основные из них:
Противодокристаллизационная (ПВК-жидкость): наиболее известная присадка этого типа — жидкость «И-М». При полете на большой высоте топливо охлаждается до очень низких температур (от −30°С до −45°С). В таких условиях вода, содержащаяся в топливе, кристаллизуется, частицы льда могут забить фильтры, и двигатель остановится. Присадки эффективно решают эту проблему.
Антистатическая: увеличивает электропроводность топлива, снижая при этом активность накопления статического электричества в топливной системе и, соответственно, риск возникновения пожара.
Антиокислительная: борется с окислением топлива и отложением смолистых образований в топливной системе и двигателе.
Противоизносная: увеличивает срок эксплуатации механизмов топливной системы.
* Процесс Фишера — Тропша — химическая реакция, происходящая в присутствии катализатора, в которой монооксид углерода (CO) и водород h3 преобразуются в различные жидкие углеводороды. Обычно используются катализаторы, содержащие железо и кобальт. Принципиальное значение этого процесса — производство синтетических углеводородов
Спирт и октан — Sunoco Race Fuels
Спирты, такие как метиловый спирт (метанол) и этиловый спирт (этанол), часто используются в гоночном топливе. Иногда они представляют собой небольшую часть топлива, а иногда они являются основным компонентом топлива. Метанол обычно используется как «чистый», поэтому многие его называют гоночным алкоголем. Этанол также можно использовать в чистом виде, что и делают некоторые гонщики, но чаще можно услышать о E85, смеси примерно 85% этанола.
Об октановом числе спиртов сказано много.Однако с технической точки зрения октановое число спиртов невозможно измерить.
Все двигатели для октановых испытаний, как определено в процедурах определения октанового числа, установленных Американским обществом испытаний и материалов (ASTM), карбюраторные. Регулировка соотношения воздух / топливо на карбюраторах двигателей с октановым числом ограничена и не может удовлетворить чрезвычайно разные требования к соотношению воздух / топливо чистых спиртов.
Смеси спиртов можно тестировать для определения того, что называется «октановым числом смеси» или BOV.По сути, октановое число смеси спирт / бензин сравнивается с октановым числом бензина без спирта, и выполняется некоторая математика, чтобы вычислить, какое влияние спирт оказал на октановое число бензина. Таким образом, определяется BOV. Однако BOV — это не то же самое, что нормальное октановое число.
Октановое число на насосе определяется путем усреднения двух октановых тестов, указанных в ASTM — теста на октановое число по исследовательскому методу (RON, или просто «R») и теста на моторное октановое число (MON или просто «M»).Среднее значение выражается как (R + M) / 2 и иногда называется антидетонационным индексом или AKI. В США насосный газ продается на основе AKI, и именно это значение мы обычно используем для представления октанового числа топлива. Квадратные желтые наклейки с октановым числом, которые вы видите на бензоколонках, обозначают октановое число (R + M) / 2.
BOV для метанола и этанола обычно завышают октановое число. Это потому, что действует закон убывающей доходности. В то время как небольшое количество спирта может повысить октановое число на несколько порядков, вдвое большее количество спирта не приводит к увеличению октанового числа в два раза.Таким образом, хотя может показаться, что спирт имеет высокое октановое число, когда используется небольшое количество (как при определении BOV), его реальное октановое число не такое высокое. Проблема в том, что настоящее число не может быть определено… поэтому нам остается только гадать.
Этанол — хороший тому пример. Его BOV обычно указывается как октановое число 112 или около того. Опять же, это означает, что если вы добавите немного этанола в бензин, некоторые математические вычисления говорят нам, что октановое число увеличится, как если бы этанол был с октановым числом 112. На самом деле это не так… просто так кажется, когда добавляется небольшое количество.
По лучшим оценкам фактического октанового числа чистого этанола оно составляет около 100. Это, вероятно, консервативное значение, но нас устраивает. Если вы видите заявления об октановом числе этанола в диапазоне 112, подозревайте, что октановое число может быть неверно основано на BOV.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Этанол и октан для начинающих
Об этаноле часто говорят как о высокооктановом топливе.Но не все имеют четкое представление об октановом числе и о том, как оно влияет на производительность их автомобилей. Итак, начнем с самого начала: что такое октан?
Официальное определение октанового числа: мера способности топлива противостоять «детонации» или «звону» во время сгорания, вызванным преждевременной детонацией топливно-воздушной смеси в двигателе.
На расположенном ниже бензонасосе отображаются три числа, которые представляют октановое число топлива.
Большинство автомобилей рассчитаны на работу с октановым числом 87, но для других требуется топливо с более высоким октановым числом.Например, Honda Civic 2016 года требует топлива с минимальным октановым числом 87, в то время как высокопроизводительный автомобиль, такой как Mercedes-Benz E350 2016 года, требует как минимум 91 октановое число.
Лучший способ узнать, какое октановое число нужно вашему автомобилю, подробно описано в руководстве по эксплуатации или на этикетке на внутренней стороне крышки крышки топливного бака. В некоторых автомобилях он указывается рядом с указателем уровня топлива на приборной панели.
Министерство энергетики заявляет: «Топливо с более высоким октановым числом часто требуется или рекомендуется для двигателей, которые используют более высокую степень сжатия и / или используют наддув или турбонаддув, чтобы нагнетать больше воздуха в двигатель.Повышение давления в цилиндре позволяет двигателю извлекать больше механической энергии из данной топливно-воздушной смеси, но требует топлива с более высоким октановым числом, чтобы предотвратить преждевременную детонацию смеси. В этих двигателях высокооктановое топливо улучшит характеристики и топливную экономичность ».
Нефтяные компании любили использовать синтетические усилители октанового числа на нефтяной основе, называемые ароматическими соединениями. Хотя эти ароматические углеводороды действительно вызывают повышение октанового числа, они часто вредны для окружающей среды. Одним из них был МТБЭ, который в конечном итоге был запрещен из-за его токсичного содержания.
Согласно отчету Агентства по охране окружающей среды о токсичности воздуха в городских условиях для Конгресса, современные ароматические углеводороды, такие как бензол, толуол, этилбензол и ксилол, вызывают канцерогенные выбросы, поскольку выделяют твердые частицы и ароматические углеводороды, которые могут нанести вред иммунной, респираторной, неврологической, репродуктивной и других областях. системы развития. И в довершение ко всему, производство ароматических углеводородов дорогое, что увеличивает ваши расходы на топливо. На самом деле проигрыш по большей части.
Вот где появляется этанол.
С точки зрения октанового числа этанол имеет рейтинг 113.Как упоминалось выше, топливо с более высоким октановым числом снижает детонацию двигателя и работает лучше. Кроме того, почти весь бензин в США содержит 10 процентов этанола. Когда вы смешиваете 10-процентный этанол с октановым числом 113 и бензин с октановым числом 85, он увеличивает октановое число на два пункта до нормального октанового числа 87, используемого большинством потребителей. Таким образом, чем выше содержание этанола, тем выше октановое число. Октановое число для E15 (15% этанола) составляет 88, а для E85 (85% этанола) — 108.
Кроме того, как утверждает Аргонская национальная лаборатория, этанол снижает выбросы парниковых газов на 34–44% по сравнению с бензином.
Более того, поскольку этанол дешевле синтетических ароматических углеводородов, бензин, смешанный с этанолом, снижает цену на насосе. Как указано в исследовании, опубликованном ранее в этом году Университетом Иллинойса, этанол на 35–1 доллар дешевле бензола, толуола и ксилола.
Другими словами, потребители не только экономят на насосе, но и обеспечивают бесперебойную работу своих транспортных средств, сокращая при этом выбросы вредных парниковых газов. Поговорим о беспроигрышном решении.
По мере того, как производители автомобилей увеличивают количество моделей, оснащенных двигателями с высокой степенью сжатия для достижения максимальной производительности и эффективности, потребуются топлива с более высоким октановым числом, и этанол будет играть решающую роль.
Национальная лаборатория Ок-Ридж, Аргоннская национальная лаборатория и Национальная лаборатория возобновляемых источников энергии недавно обнаружили, что эффективность транспортных средств увеличится на 5 процентов для E25 и 10 процентов для E40, что делает смеси этанола среднего уровня оптимальным топливом для автомобилей будущего.
Центр данных по альтернативным видам топлива: основы этанольного топлива
Этанол — это возобновляемое топливо, которое производится из различных растительных материалов, известных под общим названием «биомасса». Более 98% бензина в США содержит этанол, обычно E10 (10% этанола, 90% бензина), который насыщает топливо кислородом, что снижает загрязнение воздуха.
Этанол также доступен в виде E85 (или гибкого топлива), который можно использовать в транспортных средствах с гибким топливом, предназначенных для работы на любой смеси бензина и этанола до 83%. Другая смесь, E15, одобрена для использования в легковых автомобилях 2001 модельного года и более новых.
Сделать этанол доступным в качестве автомобильного топлива необходимо в несколько этапов:
- Сырье для биомассы выращивается, собирается и транспортируется на предприятие по производству этанола.
- Сырье превращается в этанол на производственном предприятии, а затем транспортируется на топливный терминал или конечному потребителю по железной дороге, грузовиком или баржей.
- Этанол смешивается с бензином на топливном терминале для получения E10, E15 или E85, а затем доставляется грузовиком на заправочные станции. E15 поступает либо непосредственно с терминала, либо через насос-блендер из резервуаров E10 и E85 на станции.
Свойства топлива
Этанол (CH 3 CH 2 OH) — прозрачная бесцветная жидкость. Он также известен как этиловый спирт, зерновой спирт и EtOH (см. Поиск по свойствам топлива). У этанола одна и та же химическая формула, независимо от того, произведен ли он из сырья на основе крахмала или сахара, такого как кукурузное зерно (поскольку это в первую очередь в Соединенных Штатах), сахарный тростник (как в основном в Бразилии) или из целлюлозного сырья (например, древесной щепы или растительных остатков).
У этанола более высокое октановое число, чем у бензина, что обеспечивает превосходные свойства смешивания. Требования к минимальному октановому числу бензина предотвращают детонацию двигателя и обеспечивают управляемость. Бензин с более низким октановым числом смешивают с 10% этанолом, чтобы получить стандартное октановое число 87.
Этанол содержит меньше энергии на галлон, чем бензин, в разной степени, в зависимости от процентного содержания этанола в смеси. Денатурированный этанол (98% этанола) содержит примерно на 30% меньше энергии, чем бензин на галлон.Влияние этанола на экономию топлива зависит от содержания этанола в топливе и от того, оптимизирован ли двигатель для работы на бензине или этаноле.
Энергетический баланс этанола
В США 94% этанола производится из крахмала кукурузного зерна. Для превращения любого исходного сырья в этанол требуется энергия. Этанол, произведенный из кукурузы, демонстрирует положительный энергетический баланс, а это означает, что процесс производства этанольного топлива не требует больше энергии, чем количество энергии, содержащееся в самом топливе.
Целлюлозный этанол улучшает энергетический баланс этанола, поскольку исходное сырье является либо отходами, побочными продуктами другой отрасли (древесина, растительные остатки), либо специальными культурами, такими как просо и мискантус, с меньшими потребностями в воде и удобрениях по сравнению с кукурузой. Когда биомасса используется в процессе преобразования непищевого сырья в целлюлозный этанол, количество энергии ископаемого топлива, используемой в производстве, сокращается еще больше. Еще одно преимущество целлюлозного этанола заключается в том, что он приводит к более низким уровням выбросов парниковых газов в течение жизненного цикла.
Для получения дополнительной информации об энергетическом балансе этанола загрузите следующие документы:
Смеси этанола и бензина с высоким октановым числом: количественная оценка потенциальных преимуществ в США
https://doi.org/10.1016/j.fuel.2012.03.017Получение прав и содержаниеРеферат
Этанол вносит значительный вклад в автомобильные перевозки топливо в США, Бразилии и других странах. Правила использования возобновляемых видов топлива в США и ЕС подразумевают, что использование этанола в ближайшем будущем будет продолжать расти.Этанол с высоким октановым числом может использоваться в смеси этанола среднего уровня для увеличения минимального октанового числа (октановое число по исследовательскому методу, RON) бензина обычного сорта. Более высокий RON обеспечит более высокий тепловой КПД в будущих двигателях за счет более высокой степени сжатия (CR) и / или более агрессивного турбонаддува и уменьшения габаритов, а в современных двигателях, используемых сегодня на дорогах, за счет более агрессивного момента зажигания в некоторых условиях движения. Такой подход будет отличаться от нынешней практики примешивания этанола к смеси бензина, составленной с более низким октановым числом, так что чистое октановое число полученной конечной смеси не изменится по сравнению с историческими уровнями.
Разрабатывая сценарии доступности этанола в будущем, мы оцениваем, что значительное увеличение (на 4–7 пунктов) RON бензина в США возможно за счет добавления дополнительных 10–20% этанола сверх уже имеющихся 10%. Сохраняя RON смеси на уровне 88 (что обеспечивает E10 с ∼92,5 RON), мы предполагаем, что RON будет увеличен до 94,3 для E15 до 98,6 для E30. Даже дальнейшее увеличение RON может быть достигнуто при условии изменения RON смеси и / или углеводородного состава. Например, увеличение RON смеси с 88 до 92 увеличит RON E10 с 92.От 5 до 95,6 и обеспечит более высокое RON с дополнительным содержанием этанола (например, RON от 97,1 для E15 до 100,6 для E30). Возможные увеличения CR оцениваются для различных оценок будущего октанового числа, включая эффект усиленного испарительного охлаждения этанола в двигателях с прямым впрыском. Для рассмотренных сценариев RON этанола и смесей, увеличение CR оценивается примерно в 1-3 единицы CR для двигателей с левым впрыском топлива, а также для двигателей с прямым впрыском, в которых можно полностью использовать более сильное испарительное охлаждение этанола.Обсуждаются воздействия на сектор переработки и смешивания топлива, а также соображения перехода. Хотя необходима дополнительная работа для количественной оценки и оптимизации затрат и выгод как для автомобильного, так и для нефтеперерабатывающего секторов, а также для потребителей, похоже, что существенные социальные выгоды могут быть связаны с извлечением выгоды из присущего этанолу высокооктанового числа в будущем этаноле с более высоким октановым числом — бензиновые смеси.
Основные моменты
► Более высокие уровни смеси этанола прогнозируются для бензина в США.► Этанол имеет большее октановое число (RON) и теплоту испарения (HoV), чем бензин. ► Модель смешивания с линейным молярным октановым числом используется для количественной оценки RON-потенциала этанола и смеси. ► Расчетное октановое число при охлаждении от испарения топлива в двигателях DI. ► Повышение эффективности двигателей в будущем станет возможным за счет повышения детонационной стойкости таких видов топлива.
Ключевые слова
Октановое число по исследованиям
Октановое число
Испарительное охлаждение
Этанол
Бензин
Рекомендуемые статьи Цитирующие статьи (0)
Полный текстCopyright © 2012 Elsevier Ltd.Все права защищены.
Рекомендуемые статьи
Цитирующие статьи
Свойства тройной топливной смеси бензин-этанол-метанол по сравнению с топливными смесями этанол-бензин и метанол-бензин
https://doi.org/10.1016/j.ejpe.2019.08.006 Получить права и содержаниеОсновные моменты
- •
Исследование основных физических свойств двухспиртовой бензиновой смеси.
- •
Смеси двойного спирта и бензина демонстрируют более высокую летучесть, чем базовый бензин.
- •
Двойная смесь спирта и бензина снижает степень летучести при однократном смешивании метанола.
- •
Более высокое октановое число может быть достигнуто за счет правильного составления тройной бензиновой смеси.
Реферат
Были составлены два бинарных набора смесей бензин-метанол (GM) и бензин-этанол (GE), а также два других тройных набора смесей бензин-метанол-этанол (GME), включающие один и два спирта.Измеряли дистилляцию по ASTM-D86, давление пара и октановое число. Также были построены кривые перегонки для каждой смеси и обсуждалось влияние образования азеотропа. Полученные результаты показывают, что кривые перегонки бензиновых смесей, содержащих от 5 до 15 об.% Метанола, показывают более значительное снижение температуры перегонки, чем смеси бензин-этанол. Кроме того, большее снижение температуры перегонки наблюдается при увеличении количества смешанного спирта. При равных долях смешанного спирта кривая дистилляции тройного топлива (GE5M5) располагается между кривыми дистилляции бинарных топливных смесей GM10 и GE10.Более приемлемое давление пара достигается в тройном топливе GEM, содержащем 7,5–15,0 об.% Двойного спирта, такое же давление в смесях GM увеличивает тенденцию к образованию паровых пробок. При одинаковом содержании спирта смеси GEM дают более высокое октановое число, чем смесь GE.
Ключевые слова
Кривая дистилляции
Образование азеотропа
Тройные и бинарные топливные смеси
Рекомендуемые статьиЦитирующие статьи (0)
© 2019 Египетский научно-исследовательский институт нефти. Производство и хостинг Elsevier B.V.
Рекомендуемые статьи
Ссылки на статьи
Октановое число смесей этанол-бензин: измерения и новый метод оценки на основе молярного состава
Этанол имеет высокое октановое число и может быть добавлен в бензин для получения высокооктановых топливных смесей. Понимание увеличения октанового числа при смешивании этанола имеет большое фундаментальное и практическое значение. Возможные проблемы с расходом топлива и испарением топлива привели к вопросам точности измерений октанового числа для смесей этанол-бензин с умеренным и высоким содержанием этанола (например,g., E20-E85) с использованием двигателя Cooperative Fuel Research (CFR ™). Нелинейность октанового числа с объемным содержанием этанола затрудняет оценку точности таких измерений. В настоящем исследовании исследовательское октановое число (RON) и моторное октановое число (MON) были измерены для матрицы смесей этанол-бензин, охватывающих широкий диапазон содержания этанола (E0, E10, E20, E30, E50, E75) в набор бензиновых смесей, охватывающих диапазон значений RON (82, 88, 92 и 95). Также измеряли октановое число чистого этанола, денатурированного этанола и водного этанола.Один набор измерений был проведен с использованием двигателя CFR ™, оснащенного улучшенными характеристиками, предоставленными производителем (цифровая октановая панель GE Energy Waukesha XCP-OA ™) для цифрового измерения детонации и точного контроля температуры и расхода топлива. Вторая серия измерений была проведена в отдельной лаборатории с двигателем CFR ™, оснащенным топливным жиклером с регулируемым отверстием. Оба подхода решают проблемы с потоком топлива при высоких концентрациях этанола. Было обнаружено, что модель смешения с линейным молярным октановым числом описывает большую часть нелинейности в данных RON и MON, но измеренные значения все же были несколько выше прогнозируемых.Отклонения от линейной модели можно описать с помощью члена с зависимостью 2-го порядка от содержания этанола с одним масштабным параметром (Pg). Параметр Pg можно оценить по измеренному октановому числу молярной смеси спирт-бензин 50:50 и октановым числам бензина (ONg) и спирта (ONa). Октановое число любой смеси этанола и бензина (ONb) с этой смесью затем можно оценить (в пределах 1 ON) по молярной доле спирта (xa), используя следующее выражение: Это исследование подтверждает сопутствующий документ (SAE 2012-01 -1277), в котором современный одноцилиндровый двигатель, оснащенный несколькими системами впрыска топлива, использовался для оценки характеристик с ограничением детонации смесей этанол-бензин, описанных здесь, и для оценки значимости октанового числа и теплоты испарение как предикторы этой производительности.