ООО «Центр Грузовой Техники»

8(812)244-68-92

Клиренс — Медицинская энциклопедия

I

Клиренс

в медицине (англ. clearance очищение: синоним коэффициент очищения) — показатель скорости очищения плазмы крови, других сред или тканей организма от какого-либо вещества в процессе его биотрансформации, перераспределения в организме и (или) выведения из организма.

Клиническое значение клирено-тестов. Исследование К. ряда веществ, или клиренстесты, применяют в диагностической практике для оценки выделительной и метаболической функции некоторых органов, величины регионарного кровотока, обмена ряда веществ, а в фармакологии и токсикологии — для изучения кинетики лекарственных препаратов и вдов. В зависимости от целей исследования определяют либо так называемый тотальный плазменный К., характеризующий скорость очищения плазмы от изучаемого вещества (тест-вещество) без информации о природе этого очищения (выделение органами, биотрансформация и т.д.), либо так называемый органный К. (почечный, печеночный и др.), отражающий вклад данного органа в очищение плазмы. Общепринято обозначать клиренс символом С, рядом с которым в форме индекса сокращенно указывается вещество, К. которого изучается (например, C

in — клиренс инулина, Cpnc — клиренс пенициллина) или обозначается тотальный плазменный клиренс (Ctp).

Ctp определяют по отношению количества (i) тест-вещества, введенного в вену путем однократной инъекции, к площади (S) под кривой изменения его концентрации в плазме крови в процессе исследования: Ctp = i/s. Для определения органного К. производят, как правило, непрерывную внутривенную инфузию тест-вещества, поддерживая постоянство его концентрации в плазме крови (р) и определяя концентрацию (k) в объеме (v) секрета органа (желчи, мочи и др.), полученном за время исследования. В общем случае органный К. определяют по форме С = v․k/p, но для некоторых веществ при исследовании почечного К. в эту формулу вместо (k) вводят разницу концентраций тест-вещества в крови и в моче. Для стандартизации показателей клиренса полученные его значения нередко выражают в перерасчете на единицу поверхности тела обследуемого.

В клинической практике клиренс-тесты наиболее широко применяются для диагностики нарушений функций почек и печени. Используя различия в механизме выделения почками разных тест-веществ, по их К. определяют основные показатели функционального состояния почек: почечный плазмоток, клубочковую фильтрацию, канальцевую реабсорбцию и секрецию. Для расчета почечнго плазмотока используют вещества, от которых кровь полностью очищается при однократном прохождении через почки: кардиотраст, парааминогиппурат (ПАГ), гиппурон. В норме Cnar соответствует очищению около 620 мл плазмы за 1 мин на 1,73 м3 поверхности тела. Для измерения клубочковой фильтрации применяют вещества, которые не секретируются и не реабсорбируются в канальцах и поступают в мочу только путем фильтрации: инулин, тиосульфат натрия, маннитол, полиэтиленгликоль 1000. На 1,73

м2 поверхности тела Cin в норме составляет около 130 мл/мин. Вполне удовлетворительные результаты дает определение клубочковой фильтрации по К. эндогенного креатинина (без введения тест-вещества извне). Существенно расширило возможности изучения почечных функций применение клиренс-тестов с радиоактивными изотопами (см. Радионуклидная диагностика, Ренография радионуклидная). Так, определение К. инулина, меченного 131I, позволяет определить клубочковую фильтрацию при низком диурезе, раздельно оценить функции каждой из почек, рассчитать почечный кровоток.

К важным диагностическим клиренс-тестам в гепатологии относятся бромсульфофталеиновая и вофавердиновая пробы, проба с бенгальским розовым. С их помощью оценивают поглотительную и выделительную функции печени, их динамику в ходе лечения больных вирусным гепатитом и хроническими заболеваниями печени. Используя высокую гепатотропность бенгальского розового, по скорости его поглощения из крови судят о состоянии полигональных клеток печени, а с помощью препарата, меченного радиоактивным йодом, вычисляют также степень поглощения препарата, показатели его элиминации, время экскреции, что позволяет выявить нарушения желчевыведения, судить об обтурационном или преимущественно паренхиматозном генезе желтухи.

В лечении заболеваний, при которых существенно нарушается биохимический гомеостаз крови, в избытке накапливаются биологически активные и токсические вещества, важное значение имеет направленное изменение их К. Повысить К. ряда токсических веществ помогают форсированный диурез (см. Диурез форсированный), Гемодиализ, Перитонеальный диализ, энтеросорбция, введение комплексонов, плазмообменные трансфузии; для повышения К. циркулирующих иммунных комплексов при иммунологических конфликтах применяют плазмаферез (см. Плазмаферез, Цитаферез), гемосорбцию (Гемосорбция).

Библиогр.:

Клиническая нефрология, под ред. Р.М. Тареева, т. 1, с. 33, М., 1983.

II

Клиренс (англ. clearance очищение; син. коэффициент очищения)

в медицине — скорость очищения крови (реже — других сред и тканей организма) от какого-либо вещества в процессе его химических превращений, перераспределения в организме и (или) выделения из организма; определяется как объем крови (в мл), полностью освобождаемой от этого вещества за 1 мин., или (реже) как скорость убывания индикаторного вещества из исследуемого органа или ткани (например, по полупериоду элиминации).

Клиренс отрицательный — К, характеризующийся отрицательной величиной, что свидетельствует об удержании данного вещества в организме (в плазме крови).

Клиренс печёночный — К., характеризующий поглотительно-выделительную функцию печени, например, К. билирубина.

Клиренс плазматический общий (син. К. плазматический тотальный) — К., характеризующий суммарную деятельность всех механизмов очищения плазмы крови от данного вещества и определяемый по динамике его концентрации в плазме после однократного внутривенного введения.

Клиренс плазматический тотальный — см. Клиренс плазматический общий.

Клиренс почечный — К., характеризующий выделительную функцию почек, например, К. мочевины, креатинина, инулина.

Клиренс тканевой — К., определяемый по скорости элиминации радиоактивных изотопов из ткани (органа), в которой создано депо соответствующего препарата; позволяет судить о скорости регионарного кровотока.

Источник: Медицинская энциклопедия на Gufo.me


Значения в других словарях

  1. Клиренс — (англ. clearence) то же, что Дорожный просвет. Большая советская энциклопедия
  2. клиренс — сущ., кол-во синонимов: 3 глубина 24 зазор 15 просвет 23 Словарь синонимов русского языка
  3. клиренс — орф. клиренс, -а (тех.) Орфографический словарь Лопатина
  4. клиренс — клиренс м. Расстояние между нижней точкой агрегатов самоходной машины (автомобиля, трактора и т.п.) и поверхностью дороги; дорожный просвет. Толковый словарь Ефремовой
  5. клиренс — КЛИРЕНС 1. Минимальное расстояние между поверхностью дороги и нижней точкой велосипеда — передней шестерней цепного привода. 2. Старое название дорожного просвета наземных транспортных средств. (Терминология спорта. Толковый словарь спортивных терминов, 2001) Словарь спортивных терминов
  6. КЛИРЕНС — КЛИРЕНС — см. Дорожный просвет. Большой энциклопедический словарь
  7. клиренс — КЛИРЕНС -а; м. [англ. clearance — зазор, пространство]. Техн. Расстояние от нижней точки днища автомашины, танка и т.п. до полотна дороги. Толковый словарь Кузнецова
  8. Клиренс — (от англ. clearance — очистка, от clear — ясный, светлый), дорожный просвет. Автомобильный словарь

gufo.me

КЛИРЕНС в медицине — Большая Медицинская Энциклопедия

КЛИРЕНС в медицине (англ. clearance) — скорость очищения плазмы крови, других сред или тканей организма от какого-либо вещества в процессе его биотрансформации, перераспределения в организме и (или) выделения из организма.

Понятие «клиренс» в медицине было сформулировано в 1929 г. Ван-Слайком (D. D. Van Slyke) с соавт. применительно только к очищению плазмы от веществ, выделяемых почками, в частности от мочевины. При этом К. определялся как степень очищения от какого-либо вещества плазмы крови, прошедшей через почки за 1 мин. В последующие годы в связи с широким применением в диагностике индикаторных красок и радиоактивных изотопов понятие «клиренс» стали использовать для обозначения не только показателя очищения плазмы, но и скорости убывания индикаторного вещества из исследуемого объема какой-либо ткани, органа. Однако традиционное употребление понятия «клиренс» (применительно к очищению плазмы) наиболее устойчиво.

В сложившейся терминологии очищение плазмы от какого-либо вещества обозначают как К. данного вещества, напр. К. инулина, К. креатинина. В формулах К. обозначают символом С, рядом с к-рым сокращенно обозначают вещество, напр. Cin — К. инулина. В зависимости от того, роль какого органа в очищении плазмы изучается, говорят о почечном К., печеночном К. и т. д. Существует также понятие общего, или тотального плазматического К. (Стр), величина к-рого характеризует скорость очищения плазмы от вещества независимо от механизмов очищения (выделение экскреторными органами, биотрансформация с потерей исходных свойств и др.). Определив одновременно общий плазматический К. и интенсивность очищения от данного вещества почкой или печенью, рассчитывают роль этих органов в общем плазматическом К. Так была показана, напр., ведущая роль почек в очищении плазмы от пенициллина, инулина, парааминогиппурата (ПАГ) и ведущая роль печени в К. бромсульфофталеина и бенгальского розового.

Для определения общего плазматического К. индикаторное вещество однократно инъецируют в вену и через определенные интервалы времени собирают несколько проб крови для изучения динамики концентрации введенного вещества в плазме. Падение концентрации в крови некоторых веществ, напр. ПАГ, происходит по экспоненте (за равные промежутки времени концентрация снижается на одинаковую относительную часть исходной величины), других веществ, напр, бромсульфофталеина, этанола, цитембена,— в виде линейной зависимости (концентрация уменьшается на одинаковую абсолютную величину за равные интервалы времени), а некоторые вещества имеют кривую снижения концентрации в крови в виде неправильной функции. В зависимости от характера падения концентрации вещества в плазме крови для расчета К. используют различные формулы.

Тотальный плазматический К. рассчитывают по формуле

Cтр = I/S,

где I — количество введенного в кровь вещества, S — площадь под кривой концентрации вещества в плазме (по оси ординат) за время исследования (на оси абсцисс). При экспоненциальном характере кривой концентрации, чтобы не определять площадь под ней, используют формулу

Cтр = I*0,693/P0T1/2

где Р0 — исходная концентрация в плазме в мг/мл, Т1/2 — время (в минутах или в часах) уменьшения концентрации вещества в плазме в 2 раза, I — количество введенного вещества.

Роль отдельных органов в К. какого-либо вещества может быть установлена по различию концентраций этого вещества в плазме притекающей к органу и оттекающей от него крови. Об этой разнице можно судить также по различию концентраций вещества в плазме и в выделяемых жидкостях (для экскреторных органов). К. вещества, обусловленный выделительной функцией, определяется по общей формуле

C = V*K/P,

где V — объем секрета (экскрета), полученный за единицу времени (обычно в мл/мин), К — концентрация вещества, т. е. количество в 1 мл секрета (напр., мочи, желчи), P — концентрация вещества в плазме. Методически существенно, что для определения общего плазматического К. производят однократную инъекцию вещества; для измерения органного, в частности почечного, К. предпочтительна непрерывная инфузии, чтобы поддерживать концентрацию тест-вещества в плазме на постоянном уровне.

Клиническое значение клиренс-тестов

Наиболее широкое применение и развитие клиренс-тесты получили в изучении почечных функций. С помощью клиренс-тестов определяют почечный плазмоток, клубочковую фильтрацию, реабсорбцию и секрецию (см. Почки). При этом используют различия в почечном К. разных веществ. Определение почечного плазмотока основано на измерении К. кардиотраста, ПАГ, или гиппурона, от которых плазма крови полностью очищается при однократном прохождении через корковое вещество почки. Для измерения клубочковой фильтрации определяют К. веществ, которые фильтруются, но не секретируются и не реабсорбируются (инулин, тиосульфат натрия, полиэтиленгликоль 1000, маннитол). Полученный результат приводят к стандартной поверхности тела (1,73 м2). К. инулина у человека равен 127, а клиренс ПАГ — 624 мл/мин на 1,73 м2. Поскольку длительная инфузии в вену р-ров инулина и других веществ, используемых для определения клубочковой фильтрации, сложна, в клинике вполне удовлетворительные результаты дает ее измерение по К. эндогенного креатинина. Когда вещество выделяется только почкой, то можно определить его К. без взятия мочи, если скорость введения вещества регулируется так, чтобы концентрация его в плазме поддерживалась на постоянном уровне, тогда количество вводимого вещества равно его К.

Поскольку определение почечного К. связано с исследованием концентрации тест-вещества в моче, то нельзя не учитывать транспорт воды в почках, а также их способность не только экскретировать, но и удерживать некоторые вещества в организме. В последнем случае концентрация вещества в моче будет меньше, чем в плазме крови. Чтобы определить, происходит ли экскреция почкой данного вещества, пользуются расчетом К. по формуле

C = V(U — Р)/P ,

где U — концентрация вещества в моче. Для веществ, концентрация которых в моче ниже, чем в плазме, полученная величина К. будет отрицательной; это укажет на то, что вещество удерживается в плазме, а выделяется избыток воды. Понятие о положительном и отрицательном К. важно для характеристики осмо- и ионорегулирующей функции почек.

Применение в качестве тест-веществ радиоактивных изотопов существенно расширило возможности клиренс-тестов в клин, практике и повысило их клин, значимость. По кривой спада радиоактивности над сердцем определяют эффективный почечный плазмоток и кровоток. Вещества, К. которых используется для определения клубочковой фильтрации, но имеющие в молекуле радиоактивные изотопы (инулин-131I, ЭДТА-51Cr, ЭДТА-169Yb), позволяют производить исследование без сбора мочи, что дает возможность определить клубочковую фильтрацию при низком диурезе. Изотопная ренография позволяет оценивать функц, состояние почек при различных их заболеваниях, эвакуаторную функцию верхних мочевых путей; ее используют для наблюдения за состоянием и функцией трансплантированной почки (см. Ренография радиоизотопная).

Клиренс-тесты в гепатологии применяют для изучения поглотительновыделительной функции печени (см.). При этом в организм вводят вещества, поглощаемые печенью и выделяемые с желчью (билирубин, бромсульфалеин, азорубин-S, бенгальский розовый, вофавердин, уевердин и др.). Чаще используют бромсульфофталеиновую пробу (см.) и вофавердиновую пробу (см.).

Для определения печеночного паренхиматозного К. применяют бенгальский розовый, меченный 131I, который обладает выраженной гепатотропностью. Кривые К. обрабатывают при помощи экспоненциального уравнения, вычисляя полупериод элиминации, время максимального уровня излучения над печенью и время появления препарата в Кишечнике. При заболеваниях печени скорость и степень поглощения и степень поглощения и экскреции краски уменьшаются: при поражении полигональных клеток в большей мере страдает процесс поглощения, а при воспалении, и особенно нарушении проходимости желчных путей,— экскреторная функция. Особенно важно сопоставление показателей очищения от препарата крови и печени. В случае препятствия оттоку желчи наблюдается нормальное или малоизмененное убывание препарата из крови при замедленном выведении его из печени; одновременное нарушение поглощения бенгальского розового позволяет предполагать поражение паренхимы. С помощью клиренс-тестов представляется возможным выявление безжелтушных форм вирусного гепатита, прогностическая оценка восстановительного периода после острого вирусного гепатита, степени поражения и динамики процесса при хрон, заболеваниях печени.

Для изучения регионарного кровотока используют метод так наз. тканевого клиренса — скорости элиминации изотопов 133Xe, 85Kr, альбумина, меченного 131I и др. из исследуемой ткани (органа), в к-рой создано депо препарата.

Перспектива применения клиренс-тестов в клин, исследованиях неуклонно расширяется. С их помощью изучают обмен ряда веществ, напр, альбумина, длительность жизни эритроцитов, продукцию билирубина, биол, цикл гормонов, скорость потребления профакторов и факторов свертывающей и противосвертывающей системы крови.

Определение плазматического К. находит применение при изучении фармакокинетики лекарственных препаратов, для изучения всасывания лекарств из жел.-киш. тракта, распределения их в организме, роли различных органов в их выделении или разрушении. Кроме того, по К. судят об эффективности очищения организма от эндогенных и экзогенных веществ при использовании таких методов лечения, как гемодиализ (см.), перитонеальный диализ (см.), гемосорбция (см. ), лимфосорбция (см.), плазмаферез (см.), обменное замещение крови.


Библиография: Гехмосорбция, под ред. Ю. М. Лопухина, М., 1977; Г р а ф н e тетерева Й. и др. Значение плазматического клиренса в изучении кинетики антибиотиков, Антибиотики, т. 5, № 3, с. 56, 1960; Лопухин Ю. М. и М о-лоденков М. Н. Гемосорбция, М., 1978; Основы гепатологии, под ред. А. Ф. Блюгера, с. 116, Рига, 1975; Шюк О. Функциональное исследование почек, пер. с чешек., Прага, 1975, библиогр.; Я р о ш e в с к и й А. Я. Клиническая нефрология, Л., 1971; Кои-shanp our E. Renal physiology, Philadelphia, 1976.


xn--90aw5c.xn--c1avg

Клиренс лекарственных средств — SportWiki энциклопедия

Клиренс — важнейший фармакокинетический параметр, позволяющий подобрать длительное лечение. Чтобы обеспечить нужный терапевтический эффект и свести к минимуму риск побочного действия, средняя сывороточная концентрация препарата в стационарном состоянии должна находиться в пределах терапевтического диапазона. Если биодоступность равна 100%, в стационарном состоянии скорость элиминации препарата равна скорости его поступления.

Скорость поступления = С1 х Ссредн, (1.1)

где скорость поступления — количество введенного препарата в единицу времени, С1 — суммарный клиренс, а Ссредн — средняя сывороточная концентрация препарата в стационарном состоянии. Если известна требуемая средняя сывороточная концентрация, скорость поступления можно рассчитать по клиренсу.

Важнейшая с клинической точки зрения особенность клиренса — он, как правило, не зависит от концентрации препарата. Дело в том, что системы, отвечающие за элиминацию большинства лекарственных средств (ферментные, транспортные), обычно не насыщаются, и абсолютная скорость элиминации линейно зависит от сывороточной концентрации препарата. Иными словами, элиминация подчиняется кинетике первого порядка — доля препарата, удаляемая за единицу времени, постоянна. Если же системы элиминации насыщаются, постоянна не доля, а количество препарата, удаляемое за единицу времени. При этом элиминация подчиняется кинетике нулевого порядка, а клиренс зависит от сывороточной концентрации препарата:

Cl=Vm/(Km+C) (12)

где Кm — концентрация препарата, при которой скорость элиминации составляет половину от максимальной, а Vm — максимальная скорость элиминации.

Это уравнение аналогично уравнению Михаэлиса— Ментен, выражающему соотношение между скоростью ферментативной реакции и концентрацией субстрата. Подобрать схему лечения препаратами, элиминация которых не подчиняется кинетике первого порядка (то есть клиренс зависит от сывороточной концентрации), гораздо труднее (см. ниже).

Понятие клиренса лекарственного средства аналогично понятию клиренса в физиологии почек. Так, клиренс креатинина равен отношению скорости экскреции креатинина с мочой к концентрации креатинина в плазме. В общем случае клиренс лекарственного средства равен отношению скорости элиминации вещества всеми органами к концентрации препарата в биологической жидкости.

Cl=Скорость элиминации/ С (1.3)

Если клиренс постоянен, скорость элиминации прямо пропорциональна концентрации лекарственного средства. Важно отметить, что клиренс отражает не количество элиминировавшегося препарата, а объем биологической жидкости (плазма или цельная кровь), полностью очищающийся отданного вещества за единицу времени. Можно рассчитать клиренс для плазмы или цельной крови, а также клиренс свободного препарата.

Элиминация лекарственных средств осуществляется почками, печенью и другими органами. Рассчитав клиренс для каждого органа как отношение скорости элиминации данным органом к концентрации препарата (например, в плазме) и просуммировав клиренсы для всех органов, получим суммарный клиренс.

Clпоч + Сlпеч + Сlпр = Сl(1.4)

где Сlпоч — почечный клиренс, Сlпеч — печеночный клиренс, Сlпр — клиренс для прочих органов (лекарственные средства могут метаболизироваться в других органах, выводиться с калом, потом, слюной).

В стационарном состоянии суммарный клиренс можно определить с помощью уравнения 1.1. При однократном введении препарата, биодоступность которого равна 100%, а элиминация подчиняется кинетике первого порядка, суммарный клиренс можно рассчитать на основании закона сохранения массы и интегрирования уравнения 1.3 по времени.

Cl=Доза/ПФК

где ПФК — площадь под фармакокинетической кривой, описывающей зависимость сывороточной концентрации препарата от времени.

Примеры. Клиренс цефалексина (для плазмы) составляет 4,3 мл/мин/кг (Приложение II). У больного весом 70 кг клиренс цефалексина составит 300 мл/мин. Поскольку 90% препарата выводится с мочой в неизмененном виде, можно сказать, что за 1 мин почки очищают от цефалексина 270 мл крови. Если функция почек не меняется, клиренс постоянен, а скорость элиминации цефалексина зависит от сывороточной концентрации препарата (уравнение 1.3). Клиренс пропранолола (для цельной крови) составляет 16 мл/мин/кг (1120 мл/мин при весе 70 кг). Препарат элиминируется преимущественно печенью, то есть за 1 мин печень очищает от пропранолола 1120 мл крови. Клиренс не всегда соответствует плазмотоку (или кровотоку) через орган, отвечающий за элиминацию. Если препарат связывается с эритроцитами, скорость его доставки в этот орган существенно выше, чем можно предположить исходя из концентрации препарата в плазме. В стационарном состоянии соотношение клиренса для плазмы и цельной крови выглядит следующим образом:

Сlп/Clк= Ск/Сп=1+Ht х (Сэ/Сп — 1)

где Сlп — клиренс для плазмы, Сlк — клиренс для цельной крови, Сп — концентрация препарата в плазме, Ск — концентрация препарата в цельной крови, Сэ — концентрация препарата в эритроцитах, Ht — гематокрит.

Таким образом, клиренс для цельной крови равен частному от деления клиренса для плазмы на отношение концентраций препарата в цельной крови и плазме. Это соотношение, в свою очередь, можно рассчитать, зная гематокрит (в норме около 0,45) и соотношение концентраций препарата в эритроцитах и плазме. В большинстве случаев клиренс для цельной крови меньше печеночного кровотока (если препарат элиминируется печенью) или суммы печеночного и почечного кровотока (если препарат элиминируется печенью и почками). Клиренс такролимуса, который метаболизируется преимущественно в печени, для плазмы составляет 2 л/мин; иными словами, он более чем вдвое превышает печеночный плазмоток и даже превосходит печеночный кровоток (1,5 л/мин). Однако поскольку такролимус в значительной степени связывается с эритроцитами, его клиренс для цельной крови равен всего 63 мл/мин. Следовательно, на самом деле такролимус удаляется из крови гораздо медленнее. Иногда рассчитанный для цельной крови клиренс препаратов, которые элиминируются путем метаболизма, превышает печеночный кровоток. Это означает, что препарат метаболизируется и вне печени. Так, клиренс эсмолола для цельной крови (11,9 л/мин) превышает сердечный выброс, поскольку препарат интенсивно метаболизируется эритроцитарными эстеразами.

Понятие клиренса очень важно и для оценки влияния различных физиологических и патологических состояний на элиминацию лекарственных средств отдельными органами. Скорость доставки препарата в орган равна произведению кровотока через этот орган (Q) на концентрацию препарата в артериальной крови (Са), а скорость удаления из органа — произведению кровотока через этот орган на концентрацию препарата в венозной крови (Q,). Разница между этими скоростями в стационарном состоянии и есть скорость элиминации данным органом:

Скорость элиминации = QxCa — QxCv = = Q х (Са — Cv). (1.7)

Разделив обе части этого уравнения на Са, получим клиренс препарата для данного органа (Сlорг).

Clopr = Q X ((Са-Cv)/Ca) = Q x E

Выражение (Сa — Cv) / Са представляет собой коэффициент экстракции препарата, (Сa — Cv) / Са = Е.

Уравнение 1.8 существенно, в частности, для понимания элиминации лекарственных средств, которые интенсивно удаляются печенью (путем метаболизма и экскреции с желчью). Концентрация этих препаратов в крови, оттекающей от печени, низкая, коэффициент экстракции близок к единице, а клиренс для цельной крови зависит только от печеночного кровотока. Скорость элиминации лекарственных средств с высоким коэффициентом экстракции печенью (дилтиазем, имипрамин, лидокаин, морфин, пропранолол) зависит не от способности печени элиминировать эти вещества, а от скорости их доставки с кровью в печень. Суммарный клиренс таких препаратов выше 6 мл/мин/кг (Приложение II).

В действительности ситуация может оказаться сложнее. Уравнение 1.8 не учитывает ни связывание лекарственных средств с компонентами крови и тканей, ни способность печени элиминировать лекарственные средства (вне зависимости от печеночного кровотока) — так называемый внутренний печеночный клиренс. Для лекарственных средств, элиминация которых подчиняется кинетике первого порядка, внутренний клиренс характеризует отношение констант, входящих в уравнение 1.2, Vm / Кm. В нескольких моделях, описывающих печеночную элиминацию, уравнение 1.8 было расширено с учетом связывания лекарственного средства с белками плазмы и внутреннего печеночного клиренса (Morgan and Smallwood, 1990). Согласно этим моделям, если способность печени метаболизировать препарат велика по сравнению со скоростью его доставки с кровью, клиренс примерно равен печеночному кровотоку. В противном случае клиренс зависит от концентрации свободного препарата в крови и внутреннего печеночного клиренса. С помощью таких моделей можно объяснить некоторые противоречивые результаты экспериментальных исследований на животных. Так, индукция микросомальных ферментов или заболевания печени могут приводить к изменению скорости метаболизма некоторых лекарственных средств in vitro, но суммарный клиренс in vivo при этом может не меняться. Это объясняется тем, что индукция микросомальных ферментов и заболевания печени приводят к изменению внутреннего печеночного клиренса, а клиренс препаратов с высоким коэффициентом экстракции ограничен только печеночным кровотоком и практически не зависит от внутреннего клиренса. Кроме того, при высоком коэффициенте экстракции на клиренс не влияет и связывание препарата с белками плазмы, которое может меняться, например, при различных патологических состояниях или конкуренции за участки связывания. Клиренс лекарственных средств с низким коэффициентом экстракции, напротив, чувствителен к изменению внутреннего печеночного клиренса и связывания с белками плазмы, но почти не зависит от печеночного кровотока (Wilkinson and Shand, 1975).

Этот показатель отражает экскрецию лекарственного средства с мочой и позволяет оценить изменение фармакокинетики препарата при заболеваниях почек. Лекарственные средства выводятся почками путем клубочковой фильтрации, канальцевой секреции и канальцевой реабсорбции. Скорость фильтрации препарата зависит от СКФ и концентрации свободного препарата в плазме (препарат, связанный с белками плазмы, не проходит через клубочковый фильтр). Скорость канальцевой секреции определяется способностью транспортных систем канальцев секретировать препарат. Эта способность, в свою очередь, зависит от связывания препарата с белками плазмы, степени насыщения транспортных систем и скорости доставки препарата к канальцам. И наконец, лекарственное средство может реабсорбироваться из канальцев обратно в кровь. На почечный клиренс влияют те же факторы, что и на печеночный клиренс — связывание препарата с белками плазмы, почечный кровоток и внутренний почечный клиренс (последний, в свою очередь, зависит от числа функционирующих нефронов).

sportwiki.to

Клиренс лекарственных средств (Cl)

Клиренс лекарственных средств (Cl)

Клиренс (англ. clearence — очищение) — показатель скорости очищения плазмы крови, других сред или тканей организма, т.е. это объем плазмы, полностью очищающийся от данного вещества за единицу времени:

Поскольку за элиминацию лекарственных веществ отвечают в основном почки и печень , для ее количественной характеристики можно использовать такой показатель, как клиренс. Так, независимо от того, какими механизмами выводится то или иное вещество почками (фильтрация, секреция, реабсорбция), в целом о почечной экскреции этого вещества можно судить по тому, насколько снижается его сывороточная концентрация при прохождении через почки. Количественным показателем степени удаления вещества из крови служит коэффициент экстракции Е (для процессов, подчиняющихся кинетике первого порядка, он постоянен):

Е = (Ca-Cv) / Ca,

где Са — сывороточная концентрация вещества в артериальной крови,

Cv — сывороточная концентрация вещества в венозной крови.

Если кровь при прохождении через почки полностью очищается от данного вещества, то Е = 1.

Почечный клиренс Clпоч равен:

Clпоч = QE,

где Q — почечный плазмоток,

Е — коэффициент экстракции.

Для бензилпенициллина , например, коэффициент экстракции составляет 0,5, а почечный плазмоток — 680 мл/мин. Это означает, что почечный клиренс бензилпенициллина равен 340 мл/мин.

Клиренс веществ с высоким коэффициентом экстракции (например, при элиминации парааминогиппуровой кислоты почками или пропранолола — печенью) равен плазмотоку через соответствующий орган. (Если некоторое вещество связывается с форменными элементами крови и при этом связанная фракция быстро обменивается со свободной (в плазме), то правильнее рассчитывать коэффициент экстракции и клиренс не для плазмы, а для цельной крови).

Лучше всего элиминацию того или иного вещества отражает его суммарный клиренс. Он равен сумме клиренсов для всех органов, где происходит элиминация данного вещества. Так, если элиминация осуществляется почками и печенью, то

Сl = Сlпоч + Сlпеч,

где Сl — суммарный клиренс,

Сlпоч — почечный клиренс,

Сlпеч — печеночный клиренс.

Бензилпенициллин, например, в норме удаляется как почками (Сlпоч = 340 мл/мин), так и печенью (Сlпеч = 36 мл/мин). Таким образом, его суммарный клиренс равен 376 мл/мин. Если почечный клиренс снизится вдвое, то суммарный клиренс составит 170 + 36 = 206 мл/мин. При анурии суммарный клиренс становится равен печеночному.

Разумеется, элиминации подвергается только та часть вещества, которая находится в крови, и именно эту элиминацию отражает клиренс. Для того чтобы на основании клиренса судить о скорости удаления вещества не только из крови, но и из организма в целом, необходимо соотнести клиренс со всем тем объемом, в котором находится данное вещество, — то есть с Vp (объемом распределения). Так, если Vp = 10 л, а Сl = 1 л/мин, то за одну минуту удаляется 1/10 общего содержания вещества в организме. Эта величина называется константой скорости элиминации k .

Специальные клиренс-тесты используются преимущественно для распознавания нарушения функций почек и печени. Гиперлипидемия IV типа: кинетические исследования

Ссылки:

Все ссылки

medbiol.ru

Клиренс — это… Что такое Клиренс?

в медицине (англ. clearance очищение: синоним коэффициент очищения) — показатель скорости очищения плазмы крови, других сред или тканей организма от какого-либо вещества в процессе его биотрансформации, перераспределения в организме и (или) выведения из организма. Клиническое значение клирено-тестов. Исследование К. ряда веществ, или клиренстесты, применяют в диагностической практике для оценки выделительной и метаболической функции некоторых органов, величины регионарного кровотока, обмена ряда веществ, а в фармакологии и токсикологии — для изучения кинетики лекарственных препаратов и вдов. В зависимости от целей исследования определяют либо так называемый тотальный плазменный К., характеризующий скорость очищения плазмы от изучаемого вещества (тест-вещество) без информации о природе этого очищения (выделение органами, биотрансформация и т.д.), либо так называемый органный К. (почечный, печеночный и др.), отражающий вклад данного органа в очищение плазмы. Общепринято обозначать клиренс символом С, рядом с которым в форме индекса сокращенно указывается вещество, К. которого изучается (например, Cin — клиренс инулина, Cpnc — клиренс пенициллина) или обозначается тотальный плазменный клиренс (Ctp).

Ctp определяют по отношению количества (i) тест-вещества, введенного в вену путем однократной инъекции, к площади (S) под кривой изменения его концентрации в плазме крови в процессе исследования: Ctp = i/s. Для определения органного К. производят, как правило, непрерывную внутривенную инфузию тест-вещества, поддерживая постоянство его концентрации в плазме крови (р) и определяя концентрацию (k) в объеме (v) секрета органа (желчи, мочи и др.), полученном за время исследования. В общем случае органный К. определяют по форме С = v․k/p, но для некоторых веществ при исследовании почечного К. в эту формулу вместо (k) вводят разницу концентраций тест-вещества в крови и в моче. Для стандартизации показателей клиренса полученные его значения нередко выражают в перерасчете на единицу поверхности тела обследуемого.

В клинической практике клиренс-тесты наиболее широко применяются для диагностики нарушений функций почек и печени. Используя различия в механизме выделения почками разных тест-веществ, по их К. определяют основные показатели функционального состояния почек: почечный плазмоток, клубочковую фильтрацию, канальцевую реабсорбцию и секрецию. Для расчета почечнго плазмотока используют вещества, от которых кровь полностью очищается при однократном прохождении через почки: кардиотраст, парааминогиппурат (ПАГ), гиппурон. В норме Cnar соответствует очищению около 620 мл плазмы за 1 мин на 1,73 м3 поверхности тела. Для измерения клубочковой фильтрации применяют вещества, которые не секретируются и не реабсорбируются в канальцах и поступают в мочу только путем фильтрации: инулин, тиосульфат натрия, маннитол, полиэтиленгликоль 1000. На 1,73 м2 поверхности тела Cin в норме составляет около 130 мл/мин. Вполне удовлетворительные результаты дает определение клубочковой фильтрации по К. эндогенного креатинина (без введения тест-вещества извне). Существенно расширило возможности изучения почечных функций применение клиренс-тестов с радиоактивными изотопами (см. Радионуклидная диагностика, Ренография радионуклидная). Так, определение К. инулина, меченного 131I, позволяет определить клубочковую фильтрацию при низком диурезе, раздельно оценить функции каждой из почек, рассчитать почечный кровоток.

К важным диагностическим клиренс-тестам в гепатологии относятся бромсульфофталеиновая и вофавердиновая пробы, проба с бенгальским розовым. С их помощью оценивают поглотительную и выделительную функции печени, их динамику в ходе лечения больных вирусным гепатитом и хроническими заболеваниями печени. Используя высокую гепатотропность бенгальского розового, по скорости его поглощения из крови судят о состоянии полигональных клеток печени, а с помощью препарата, меченного радиоактивным йодом, вычисляют также степень поглощения препарата, показатели его элиминации, время экскреции, что позволяет выявить нарушения желчевыведения, судить об обтурационном или преимущественно паренхиматозном генезе желтухи.

В лечении заболеваний, при которых существенно нарушается биохимический гомеостаз крови, в избытке накапливаются биологически активные и токсические вещества, важное значение имеет направленное изменение их К. Повысить К. ряда токсических веществ помогают форсированный диурез (см. Диурез форсированный), Гемодиализ, Перитонеальный диализ, энтеросорбция, введение комплексонов, плазмообменные трансфузии; для повышения К. циркулирующих иммунных комплексов при иммунологических конфликтах применяют плазмаферез (см. Плазмаферез, Цитаферез), гемосорбцию (Гемосорбция). Библиогр.: Клиническая нефрология, под ред. Р.М. Тареева, т. 1, с. 33, М., 1983.

в медицине — скорость очищения крови (реже — других сред и тканей организма) от какого-либо вещества в процессе его химических превращений, перераспределения в организме и (или) выделения из организма; определяется как объем крови (в мл), полностью освобождаемой от этого вещества за 1 мин., или (реже) как скорость убывания индикаторного вещества из исследуемого органа или ткани (например, по полупериоду элиминации).

Кли́ренс отрица́тельный — К, характеризующийся отрицательной величиной, что свидетельствует об удержании данного вещества в организме (в плазме крови).

Кли́ренс печёночный — К., характеризующий поглотительно-выделительную функцию печени, например, К. билирубина.

Кли́ренс плазмати́ческий о́бщий (син. К. плазматический тотальный) — К., характеризующий суммарную деятельность всех механизмов очищения плазмы крови от данного вещества и определяемый по динамике его концентрации в плазме после однократного внутривенного введения.

Кли́ренс плазмати́ческий тота́льный — см. Клиренс плазматический общий.

Кли́ренс по́чечный — К., характеризующий выделительную функцию почек, например, К. мочевины, креатинина, инулина.

Кли́ренс тканево́й — К., определяемый по скорости элиминации радиоактивных изотопов из ткани (органа), в которой создано депо соответствующего препарата; позволяет судить о скорости регионарного кровотока.

dic.academic.ru

45. Почечный клиренс лекарств, механизмы, качественные характеристики.

Почечный клиренс— это мера объема плазмы, которая очищается от лекарственного вещества в единицу времени:

Cl(ml/min) =U×V/P, где U — концентрация ЛВ в мл мочи, V — объем мочи, выделяемой в мин, P — концентрация ЛВ в мл плазмы.

Механизмы почечного клиренса:

1) фильтрация

2) активная секреция

3) реабсорбция

ЛВ, выделяемое только фильтрацией (инсулин) будет иметь клиренс, равный гломерулярной скорости фильтрации (125-130 мл/мин).

ЛВ, выделяемое фильтрацией и полной секрецией (парааминогиппуриевая кислота) будет иметь клиренс, равный почечному плазменному клиренсу (650 мл/мин).

Значения клиренса между 130 и 650 мл/мин предполагают, что ЛВ фильтруется, выделяется и частично повторно реабсорбируется.

Ряд таких показателей как возраст, совместное употребление нескольких лекарственных препаратов, болезнизначительно влияют на почечный клиренс:

а) почечная недостаточность уменьшение клиренса ЛСвысокий уровень ЛС в крови

б) гломерулонефрит потеря сывороточного белка, который обычно был доступен и связывал ЛСувеличение уровня свободной фракции ЛС в плазме

46. Факторы, влияющие на почечный клиренс лекарств. Зависимость почечного клиренса от физико-химических свойств лекарственных веществ.

Факторы, влияющие на почечный Cl:

а) гломерулярная фильтрация (ГФ)

б) скорость почечного кровотока (ПК)

в) максимальная скорость секреции (Tm)

г) объём мочи (UV)

д) фракция несвязанная в крови (Fnc)

Зависимость почечного клиренса от физико-химических свойств ЛВ:

I. Неполярные неионогенные вещества: фильтруются только в несвязанных формах, не секретируются, реабсорбируются

Clпоч.=Fnc×UV(Clмал и зависит отUV).

II. Полярные неионогенные вещества: фильтруются в несвязанной форме, не секретируют, не реабсорбируются

Clпоч.=Fnc× СГФ (Cl– высокий)

III. Ионизированные в моче неполярные в неионной форме: фильтруются, активно секретируются, неполярные реабсорбируются

Clпоч.=Fнеиониз. несвяз. ×Fионная в моче ×Uv

IV. Ионизированные в моче полярные в неионизированном виде: фильтруются, активно секретируются, не реабсорбируются

Клиренс определяется ПК, Гф, Tm,Km–Clвысокий

47. Управление почечным клиренсом лекарственных веществ с переменной ионизацией.

Следует подкислить или подщелочить мочу (кислые вещества лучше выводяться в щелочной моче, щелочные – в кислой, т.к. они в этих условиях не реабсорбируются)

48. Печеночный клиренс лекарств, детерминанты и ограничения. Энтерогепатический цикл лекарственных средств.

Механизмы печеночного клиренса:

1) метаболизм (биотрансформация, химические превращения)

Основная стратегия метаболизма ксенобиотиков: неполярные вещества полярные (гидрофильные) метаболиты, выводимые с мочой.

2) выведение нетрансформированных веществ в желчь

Только полярные в-ва с молекулярной массой > 250 – активный транспорт в желчь (органические кислоты, основания).

Детерминанты печеночного клиренса:

а) Скорость кровотока в печени

б) Vmaxэкскреции или метаболических превращений

в) Km– константа Михаэлиса

г) Несвязанная с белком фракция

Ограничения печеночного клиренса:

А. 1. ЕслиVmax/Kmвелико →Cl печ= скорости кровотока в печени

2. Если Vmax/Kmсредние величины →Cl= сумма всех факторов

3. Если Vmax/Kmмало →Clпечмал, ограничен

Энтерогепатический цикл ЛС — ряд препаратов и продуктов их превращения в значительном коли­честве выводится с желчью в кишечник, откуда частично выводится с экс­крементами, а частично —повторно всасывается в кровь, вновь попадает в печень и выводится в кишечник.

Печеночная элиминация препаратов может быть значительно изменена болезнью печени, возрастом, диетой, генетикой, продолжительность назначения лекарственных средств(например, вследствие индукция печеночных ферментов), и других факторов.

studfile.net

Клиренс (медицина) — это… Что такое Клиренс (медицина)?

У этого термина существуют и другие значения, см. Клиренс.

Клиренс (англ. clearance — очищение) или коэффициент очищения — показатель скорости очищения биологических жидкостей или тканей организма от вещества в процессе его биотрансформации, перераспределения в организме, а также выведения из организма.

Клиренс отрицательный — Клиренс, характеризующийся отрицательной величиной, что свидетельствует об удержании данного вещества в организме (в плазме крови).

Клиренс печёночный — Клиренс, характеризующий поглотительно-выделительную функцию печени, например, Клиренс билирубина.

Клиренс плазматический общий (син. Клиренс плазматический тотальный) — Клиренс, характеризующий суммарную деятельность всех механизмов очищения плазмы крови от данного вещества и определяемый по динамике его концентрации в плазме после однократного внутривенного введения.

Клиренс плазматический тотальный — см. Клиренс плазматический общий.

Клиренс почечный — Клиренс, характеризующий выделительную функцию почек, например, Клиренс мочевины, креатинина, инулина.

Клиренс тканевой — Клиренс, определяемый по скорости элиминации радиоактивных изотопов из ткани (органа), в которой создано депо соответствующего препарата; позволяет судить о скорости регионарного кровотока.

Клиренс-тесты

Клиренс-тест или исследование клиренса применяют в фармакологии и токсикологии для изучения кинетики лекарственных препаратов, а в медицине — для оценки выделительной и метаболической функции органов, величины регионарного кровообращения, обмена веществ. В клинической практике исследование клиренса наиболее широко применяются для диагностики нарушений функций почек и печени.

См. также

Экскреция

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 17 сентября 2012.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *