Назначение и устройство системы охлаждения двигателя
Назначение и устройство системы охлаждения двигателя
Система охлаждения предназначенная для охлаждения деталей двигателя, в процессе его работы и поддержания нормального температурного, наиболее выгодного теплового режима работы двигателя. Существуют жидкостное охлаждение, воздушное охлаждение и комбинированное охлаждение.
Перегрев двигателя ухудшает количественное наполнение цилиндра горючей смесью, вызывает разжижение и выгорание масла, в результате чего, могут заклинить поршни в цилиндрах и выплавиться вкладыши подшипников.
Переохлаждение двигателя вызывает уменьшение мощности и экономичности двигателя, на холодных деталях конденсируются пары бензина и в виде капель стекают по зеркалу цилиндра, смывая смазку, увеличиваются потери на трения, возрастает износ деталей и возникает необходимость в частой замене масла. А также происходит неполное сгорание топлива, отчего на стенках камеры сгорания образуется большой слой нагара – возможно зависание клапанов.
Для нормальной работы двигателя температура охлаждающей жидкости должна быть 80-95 градусов.
Тепловой баланс может быть представлен в виде диаграммы.
Рис. Диаграмма теплового баланса двигателя внутреннего сгорания.
На двигателях отечественного производства применяют закрытую принудительную жидкостную систему охлаждения, осуществляемую водяным насосом. Она непосредственно не сообщается с атмосферой, поэтому называется закрытой. В результате давление в системе увеличивается, температура кипения охлаждающей жидкости повышается до 108 – 119 градусов и снижается расход на ее испарение.
Данные системы охлаждения обеспечивают равномерное и эффективное охлаждение, а также производят меньше шума.
Рассмотрим систему охлаждения на примере двигателя марки ЗИЛРис. Схема системы охлаждения двигателя типа ЗИЛ. 1 – радиатор, 2 – компрессор, 3 – водяной насос, 4 – термостат, 5 – кран отопителя, 6 – подводящая трубка, 7 – отводящая трубка, 8 – радиатор отопителя, 9 – датчик указателя температуры воды в системе охлаждения двигателя, 10 – сливной кран рубашки блока цилиндров (в положении «открыто»), 11 – сливной краник радиатора.
Жидкость в рубашке охлаждения двигателя нагревается за счет отвода теплоты от цилиндров, поступает через термостат в радиатор, охлаждается в нем и под действием центробежного насоса (обеспечивает циркуляцию охлаждающей жидкости в системе) возвращается в рубашку двигателя. В народе центробежный насос называют «помпой». Охлаждению жидкости способствует интенсивный обдув радиатора и двигателя потоком воздуха от вентилятора. Вентилятор усиливает поток воздуха через сердцевину радиатора, служит для улучшения охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод.
– механический – постоянное соединение с коленчатым валом двигателя,
– гидровлический – гидромуфта. Гидромуфта включает в себя герметический кожух В, заполненный жидкостью.
В кожухе помещаются два сферических сосуда Д и Г, жестко соединенные с ведущим А и ведомым Б валами соответственно.Рис. Гидромуфта, а – принцип действия; б – устройство, 1 – крышка блока цилиндров, 2 – корпус, 3 – кожух, 4 – валик привода, 5 – шкив, 6 – ступица вентилятора, А – ведущий вал, Б – ведомый вал, В – кожух, Г, Д – сосуды, Т – турбинное колесо, Н – насосное колесо.
Принцип работы гидравлического вентилятора основан на действии центробежной силы жидкости. Если сферический сосуд Д, заполненный жидкостью, вращается с большой скоростью, жидкость попадает во второй сосуд Г, заставляя его вращаться. Потеряв энергию при ударе, жидкость возвращается в сосуд Д, разгоняется в нем, попадает в сосуд Г и процесс повторяется.
– электрический – управляемый электродвигатель. Когда температура охлаждающей жидкости достигает 90-95 градусов, клапан датчика открывает масляный канал в корпусе включателя и моторное масло поступает в рабочую полость гидромуфты из главной смазочной системы двигателя.
Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор.
Радиатор служит для охлаждения воды, поступающей из водяной рубашки двигателя.Рис. Радиатор а – устройство, б – трубчатая середина, в – пластинчатая середина, 1 – верхний бачок с патрубком, 2 – пароотводная трубка, 3 – заливная горловина с пробкой, 4 – сердцевина, 5 – нижний бачок, 6 – патрубок со сливным краником, 7 – трубки, 8 – поперечные пластины.
Состоит из верхнего 1 и нижнего 5 бачков и сердцевины 4 и деталей крепления. Баки и сердцевина изготовлены из латуни (для улучшения теплопроводности).
Наиболее распространены трубчатые и пластинчатые радиаторы. У трубчатых радиаторов, изображенных на рисунке «б» – сердцевина образована из ряда тонких горизонтальных пластин 8, сквозь которые проходит множество вертикальных латунных трубок, благодаря чему вода, проходя через сердцевину радиатора разбивается на множество мелких струек. Горизонтальные пластины служат дополнительными ребрами жесткости и увеличивают поверхность охлаждения.
Пластинчатые радиаторы состоят из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных межу собой по краям гофрированных пластин.
Термостат служит для ускорения прогрева холодного двигателя и обеспечения оптимального температурного режима. Термостат представляет собой клапан, регулирующий количество жидкости проходящей через радиатор.
При запуске двигателя сам двигатель и охлаждающая его жидкость холодные.
Для ускорения прогрева двигателя, охлаждающая жидкость движется по кругу, минуя радиатор. Термостат при этом закрыт, по мере нагрева двигателя (до температуры 70-80 градусов), клапан термостата, под действием паров жидкости, заполняющей его цилиндр, открывается и охлаждающая жидкость начинает свое движение по большому кругу, через радиатор.На современных автомобилях устанавливают двухконтурные системы охлаждения . Данная система включает два независимых контура охлаждения:
– контур охлаждения блока цилиндров;
– контур охлаждения головки блока цилиндров.Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРесПринцип работы системы охлаждения двигателя ЗИЛ-130
Рис. 1. Система охлаждения двигателя ЗИЛ-130.
1) – Радиатор;
2) – Жалюзи;
3) – Вентилятор;
4) – Водяной насос;
5) – Верхний бачок радиатора;
6) – Пробка радиатора;
7) – Отводящий шланг;
8) – Компрессор;
9) – Подводящий шланг;
10) – Перепускной шланг;
11) – Термостат;
12) – Патрубок;
13) – Фланец для установки карбюратора;
14) – Впускной трубопровод;
15) – Кран отопителя;
16) – Подводящая трубка;
17) – Отводящая трубка;
18) – Радиатор отопителя;
19) – Датчик указателя температуры жидкости;
20) – Дозирующая вставка;
21) – Водяная рубашка головки блока;
22) – Водяная рубашка блока цилиндров;
23) – Сливной кран рубашки блока цилиндров;
24) – Рукоятка привода сливного крана;
25) – Сливной кран патрубка радиатора;
26) – Подводящий патрубок;
27) – Нижний бачок радиатора.
Нагнетаемая водяным насосом жидкость через расположенные в передней стенке блока отверстия поступает в рубашку охлаждения левого и правого рядов цилиндров, двигаясь от передней части двигателя к задней, а также через отверстия в прокладке – в рубашку охлаждения головок блоков. В первую очередь большое количество охлаждающей жидкости подводится к наиболее нагретым местам и деталям двигателя: патрубки выпускных клапанов и гнёзда искровых свечей зажигания.
В головках блока двигателя ЗИЛ-130 охлаждающая жидкость движется через отверстия, просверленные в привалочных плоскостях блока и головок и дозирующих вставок (20), которые установлены в задних каналах впускного трубопровода. Расположенные во вставке отверстия ограничивают количество охлаждающей жидкости, которая поступает в рубашку впускного трубопровода.
В систему охлаждения двигателя ЗИЛ-130 охлаждающая жидкость заливается через горловину верхнего бачка радиатора, закрываемую пробкой (6). Слив жидкости выполняется через пару кранов (23), которые ввёрнуты с обеих сторон блока цилиндров, а также через кран (25) в подводящем патрубке водяного насоса.
17*
Похожие материалы:
Система охлаждения двигателя с электронным регулированием. Устройство и принцип действия.
Система охлаждения двигателя с электронным регулированием. Устройство и принцип действия. Программа самообучения.В бензиновом 4-цилиндровом рядном двигателе APF рабочим объемом 1,6 л с мощностью 74 кВт/101 л.с. впервые применена система охлаждения с электронным регулированием.
В дальнейшем эта система будет использована и в других двигателях.
Особенностями новой системы являются поддержание в двигателе оптимальной температуры охлаждающей жидкости в зависимости от нагрузки двигателя, термостатическое регулирование температуры охлаждающей жидкости, управление включением вентилятора радиатора.
Скачать.
Поделиться ссылкой:
Похожие статьи
- Двигатель рабочим объемом 2,0 л. Конструкция двигателя и принцип действия его систем и механизмов.
- Двигатель TSI 1,4 л/90 кВт с турбонаддувом. Конструкция и принцип действия.
- Двигатель TDI 1,6л с системой впрыска Common Rail. Устройство и принцип работы.
- Двигатель Audi 1,4 л TFSI. Описание конструкции.
- Двигатели FSI рабочим объемом 1,4 и 1,6 л с цепным приводом распределительных валов. Устройство и принцип действия.
- Двигатель TSI 1,2 л 77 кВт с турбонаддувом. Устройство и принцип действия.
- Двигатели и коробки передач AUDI A2. Устройство и принцип действия.
- Двухлитровый дизель TDI. Устройство и принцип действия.
- Двигатель Аudi TFSI 1,8л 4 кл/цил. с цепным приводом ГРМ.
- Двигатель FSI V8 4 кл./цил. 4,2 л. Конструкция и принцип действия.
- Двигатель V6 TDI 2,5 л 4 кл./цил. Конструкция и принцип действия.
- Volkswagen Crafter 2006. Описание конструкции.
- Двигатель 3,0 л V6 TDI. Конструкция и принцип действия.
- Двигатель FSI рабочим объемом 2 л с 4-клапаной системой газораспределения. Устройство и принцип действия.
Система охлаждения автомобиля – из чего она состоит и принцип ее работы
Добрый день, дорогие друзья. Сегодня речь пойдет о системе охлаждения автомобиля, а конкретнее – из чего она состоит, принцип ее работы. Рассмотрим и другие полезные вопросы, которые не раз возникают у владельцев авто. Назначение этой системы обсуждать не будем, если вы читаете эту статью, то это уже известно вам. Коснемся вопроса: «Чем ее промывать, как часто это нужно делать и как»? – предложу подробные рекомендации.
Что заливать в систему охлаждения двигателя?
Для начала давайте вспомним, что залито в вашу систему охлаждения? Еще не так давно можно было довольно часто встретить автомобили с водой в системе охлаждения двигателя вместо антифриза. К счастью, в наши дни применение воды в качестве охлаждающей жидкости стало скорее исключением из правил. Обычно ее используют в аварийных ситуациях, когда что-то в систему залить нужно, а антифриза под рукой нет.
Если сравнивать характеристики воды и специальной охлаждающей жидкости (антифриза), то последняя имеет массу преимуществ – это и более высокая температура кипения, и низкая температура замерзания, и наличие в составе смягчающих и антикоррозионных присадок, предотвращающих образование накипи и ржавчины в системе охлаждения двигателя.
С этим вопросом мы определились – никакой воды в системе охлаждения двигателя! Но стоит иметь в виду, что долговечность работы системы во многом зависит и от качества охлаждающей жидкости. Не стоит покупать первую попавшуюся канистру с надписью «Антифриз» или «Тосол», отдавать предпочтение нужно только продукции надежных производителей, имеющих все необходимые сертификаты.
Большинство поддельных жидкостей содержат в своем составе агрессивные кислоты, которые со временем разъедают не только детали охлаждающей системы, но и приводят к появлению «раковин» даже в головке блока цилиндров двигателя! Поэтому экономить на антифризе мы вам не советуем.
Очень подробно о видах автомобильных охлаждающих жидкостей, об их отличии друг от друга, и о том, как выбрать антифриз для своего автомобиля мы писали в этой статье, настоятельно рекомендуем ознакомиться!
Также одним из важных критериев качества охлаждающей жидкости является наличие в её составе специальных флуоресцентных добавок, которые помогают обнаруживать течи в системе охлаждения двигателя. Так как система должна быть герметичной, то течи в ней недопустимы.
Перегрев
Смотреть галерею
Зачастую перегрев возникает в результате засорения радиатора. В его сотах скапливается очень много мусора, накипи, это препятствует не только продвижению антифриза по каналам, но и уменьшает теплоотдачу. Как было сказано ранее, на отечественных автомобилях термостат заклинивает в положении, когда жидкость циркулирует только лишь по меньшему кругу. При этом она не попадает в основной радиатор. Следовательно, жидкость не успевает отдать тепло, зато она постоянно прогревается в рубашке охлаждения.
Чтобы избавиться от этой неисправности, наиболее приемлемый способ – это открыть полностью кран печки и включить вентилятор обдува на полную мощность. Конечно, эффект это даст, но не столь значительный. Желательно установить новый термостат, чтобы циркуляция жидкости происходила в нормальном режиме. Если вы не следите за уровнем антифриза в системе, это накладывает свой отпечаток. Результат этого — конечно же, повышение температуры.
Проверка системы охлаждения на герметичность
Проверка системы охлаждения двигателя на герметичность – очень важный этап в её обслуживании. Дело в том, что в герметичной системе антифриз кипит при температуре 130 °С, а в обычных условиях он закипает всего при 108 °С. Поэтому малейшая трещина, например, в радиаторе охлаждения, резиновом шланге или в расширительном бачке, нарушает герметичность и двигатель закипает.
Облегчить поиск микротрещин в системе охлаждения двигателя помогают специальные флуоресцентные добавки, входящие в состав современных антифризов – благодаря им он светится в лучах ультрафиолетовой лампы.
Но, к сожалению, далеко не у каждого автолюбителя есть такая лампа. Поэтому в процессе технического обслуживания системы охлаждения двигателя рекомендуем придерживаться нескольких простых правил:
- Для проверки уровня жидкости на расширительном бачке имеются отметки MIN и MAX. При холодном двигателе уровень антифриза должен находиться между этими двумя отметками.
- Если в расширительном бачке уровень охлаждающей жидкости постоянно снижается, то это свидетельствует об её утечке, то есть о нарушении герметичности системы охлаждения двигателя.
- Внимательно осмотрите ваш радиатор и патрубки на отсутствие течей и подтёков, при необходимости подтяните соединительные хомутики и убедитесь в том, что крышка радиатора закрыта до упора.
При обнаружении подтеканий антифриза в радиаторе рекомендуем изучить нашу инструкцию по ремонту радиаторов своими руками.
Наличие воздуха в автомобильной системе охлаждения (так называемые, «воздушные пробки») также способно нарушить её работу. Ниже мы раскроем вам самый простой способ, как выгнать воздух из системы охлаждения двигателя.
Наличие воздуха в системе охлаждения проверяется следующим образом:
- Откройте крышку расширительного бачка,
- Включите обогрев салона на полную мощность и дайте мотору поработать на холостых оборотах две-три минуты,
- Если в системе охлаждения есть воздух, то в расширительном бачке появятся пузырьки.
Для того, чтобы удалить воздух из системы охлаждения двигателя, автомобиль нужно поставить под наклоном, таким образом, чтобы «передок» был немного «задран» к верху. Далее последовательность действий будет следующей:
- Откройте крышку радиатора и заведите машину.
- Включите печку и дайте поработать двигателю несколько минут, чтобы воздух мог выйти из ситемы.
- После этого мотор можно заглушить и пробку радиатора закрыть.
А теперь давайте рассмотрим еще несколько нюансов, на которые стоит обратить внимание при обслуживании системы охлаждения двигателя для профилактики появление неисправностей или их устранения.
ОСНОВНЫЕ НЕИСПРАВНОСТИ И РЕМОНТ СИСТЕМЫ ОХЛАЖДЕНИЯ
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ
3. ОСНОВНЫЕ НЕИСПРАВНОСТИ И РЕМОНТ СИСТЕМЫ ОХЛАЖДЕНИЯ
Основные неисправности системы охлаждения имеют следующие признаки:
подтекание охлаждающей жидкости;
перегрев или переохлаждение двигателя;
повышенный шум при работе жидкостного насоса.
Подтекание охлаждающей жидкости может быть вызвано негерметичностью соединений шлангов системы охлаждения со штуцерами и патрубками, неплотностью соединений фланцев патрубков, негерметичностью спускных пробок и краника отопителя, повреждением шлангов, трещинами в бачках и сердцевине радиатора, износом самоподжимного сальникового уплотнения жидкостного насоса (при вытекании жидкости из дренажного отверстия насоса).
Контроль герметичности системы охлаждения производится специальным устройством, которое устанавливают вместо пробки на горловину радиатора или расширительного бачка и при помощи насоса устройства создают избыточное давление в системе 0,05…0,07 МПа, при котором не допускается просачивание жидкости из системы. Однако обычно подтекание жидкости легко обнаруживается по мокрым следам на месте стоянки, а также по снижению уровня охлаждающей жидкости в системе охлаждения.
Негерметичность соединений шлангов и фланцев патрубков устраняется подтяжкой их креплений – хомутов и резьбовых деталей. Поврежденные шланги и негерметичные пробки, и краники заменяют на новые.
Подтекание жидкости через трещины в бачках или сердцевине радиатора устраняется заделкой трещин при помощи пайки или заклеивания. Незначительное подтекание жидкости через радиатор может быть устранено при помощи добавления в охлаждающую жидкость специальных герметиков. Однако применение герметиков устраняет подтекание жидкости, как правило, лишь на небольшое время и может иметь вредные для системы охлаждения двигателя последствия. При добавлении герметика его частицы осаждаются не только на поврежденные места, но и на остальные поверхности, увеличивая отложения на внутренних поверхностях элементов системы охлаждения. Это может ухудшить циркуляцию жидкости в системе и соответственно снизить эффективность охлаждения двигателя и работу отопителя. В этом случае помимо замены негерметичного радиатора потребуется тщательно промыть всю систему охлаждения.
В случае вытекания жидкости через дренажное отверстие корпуса жидкостного насоса необходимо снять его с автомобиля для ремонта (замены деталей сальникового уплотнения) или замены. Недопустимо устранять подтекание закрытием отверстия. Это неизбежно приведет к попаданию жидкости в подшипники насоса и к их разрушению.
Перегрев двигателя характеризуется повышенной температурой и возможным закипанием охлаждающей жидкости. Возникает он вследствие:
недостаточного уровня охлаждающей жидкости;
пробуксовки или обрыва ремня привода жидкостного насоса;
неисправности электровентилятора;
поломки крыльчатки жидкостного насоса;
неисправности термостата;
засорения воздушных проходов в сердцевине радиатора;
отложения загрязнений и накипи в радиаторе и на стенках рубашки охлаждения.
При перегреве двигателя охлаждающая жидкость значительно увеличивается в объеме и может происходить ее выход через пробку распределительного бачка. Кроме того, при перегреве происходит потеря мощности двигателя вследствие ухудшения наполнения цилиндров горючей смесью, а также падению давления и выгорание масла, что приводит к усиленному изнашиванию поршневой группы и цилиндров.
Рис. 11 Схема проверки натяжения ремня привода жидкостного насоса: 1 – генератор; 2 – жидкостный насос; 3 – шкив коленчатого вала
Проверка натяжения ремня привода жидкостного насоса и генератора осуществляется по прогибу ремня при приложении к нему определенного усилия. Для проверки натяжения может использоваться линейка с рейкой или специальное динамометрическое устройство.
При нормальном натяжении ремня прогиб А (рис. 11) под усилием 98,1 н (10кгс) должен быть в пределах 10 – 15 мм, а прогиб В в пределах 12 – 17 мм.
Для увеличения натяжения ремня необходимо ослабить гайки крепления генератора, сместить его от двигателя и затянуть гайки.
При регулировке натяжения ремня необходимо иметь в виду, что при недостаточном натяжении ремня на больших оборотах двигателя вследствие пробуксовки он будет нагреваться и это приведет к его износу. В то же время при чрезмерном натяжении ремня будет происходить ускоренный износ подшипников жидкостного насоса и генератора. А также ускоренное вытягивание и разрушение самого ремня.
Проверка электропривода вентилятора производится по температуре охлаждающей жидкости, при которой происходит его включение и выключение. Температура замыкания контактов датчика включения электродвигателя вентилятора ТМ108 составляет 89…94°С (для ВАЗ, например). Если при данной температуре не происходит включения вентилятора или же он не отключается при снижении температуры ниже 80°С, то необходимо найти и устранить причину неисправности (устранить обрыв в электрической цепи привода вентилятора, заменить неисправный датчик или электродвигатель вентилятора).
Проверка действия термостата может производиться непосредственно на автомобиле. Для этого необходимо пустить двигатель и ощупать рукой нижний бачок или нижний патрубок радиатора. При исправном термостате бачок или патрубок начинает прогреваться, когда температура охлаждающей жидкости достигнет 80…90°С.
Ремонт жидкостного насоса производится главным образом по причине выхода из строя самоподжимного сальникового уплотнения (наблюдается вытекание жидкости через дренажное отверстие) или подшипников (появляется характерный свистящий шум при работе насоса, усиливающийся с повышением оборотов двигателя). При ремонте производится снятие насоса с двигателя и его разборка.
Долговечность подшипника и сальника в значительной мере зависит от натяжения ремня привода. На «Жигулях» клиновой ремень должен быть натянут так, чтобы в середине его ветви между насосом и генератором прогиб от усилия 10 кгс составлял 10 – 15 мм. В сущности, для подшипников лучше, если ремень натянут слабее, но по мере уменьшения натяжения ремень начинает проскальзывать относительно шкивов, особенно при резком увеличении нагрузки на генератор. Например, при включении фар неопытного владельца «Жигулей» может озадачить резкий свист под капотом – это признак проскальзывания ремня. В результате не только ухудшаются охлаждение и работа генератора, но и быстро изнашиваются сами шкивы и ремень (последний порой даже обугливается).
Постоянный и неустранимый шум подшипника означает, что он сильно поврежден или изношен и замена его неизбежна. Другой признак необходимости ремонта насоса – подтекание охлаждающей жидкости из-под валика привода: значит, сальник потерял герметичность вследствие износа его манжет или из-за нарушения «геометрии контакта» при изношенных подшипниках.
Пути жидкости организованы так, что обходят подшипник снизу. Это позволяет в ряде случаев при ремонте ограничится заменой негодного сальника, не трогая подшипник. Если же требуется замена подшипника, оставлять старый сальник бессмысленно.
При сильном износе подшипника крыльчатка «помпы» может задевать корпус или блок цилиндров, что порождает сильный шум.
Для замены сальника необходимо снять крышку 4 (см. рис. 3) или корпус насоса 2 (см. рис. 4). Крыльчатку спрессовывают с валика съемником (рис. 10).
На «Жигулях» в центре крыльчатки есть отверстие с резьбой М18х1,5 – оно позволяет воспользоваться съемником, показанным на рис. 11
Рис. 12 Замена сальника: 1 – съемник; 2 – крыльчатка; 3 – крышка насоса.
Рис. 13
Перед съемом крыльчатки обязательно нужно отметить ее положение на валике для последующего контроля при напрессовке.
Извлечь сальник при установленном подшипнике практически невозможно, да и не нужно. Достаточно отогнуть усики и вынуть внутренние детали. Главное не деформировать или как нибудь еще не повредить посадочное гнездо сальника в корпусе (или крышке).
Новый сальник осторожно запрессовывают простейшей деревянной оправкой диаметром 40 мм с отверстием в центре диаметром 16 мм – под валик насоса. Запрессовку лучше делать, используя пресс или тиски. Удары могут быть губительными для графитового кольца.
Замена подшипника жидкостного насоса.
В этом случае нужно демонтировать ступицу 8 (см. рис. 3) или шкив 7 (см. рис. 4). Это делается универсальным съемником, как и некоторые дальнейшие операции.
Рис. 14 Снятие ступицы универсальным съемником: 1 – крышка насоса; 2 – ступица; 3 – съемник;
Рис. 15 Выпрессовка (или запрессовка) подшипника с валиком: 1 – оправка; 2 – подшипник; 3 – крышка.
Далее выворачивают стопорный винт наружного кольца подшипника и выпрессовывают подшипник в сборе с валиком и сальником по направлению к сальнику – внутрь (рис. 13). Перед этим должна быть снята крыльчатка.
Рис. 16 – запрессовка сальника: 1 – оправка; 2 – сальник; 3 – крышка.
Рис. 17 – напрессовка на валик ступицы и крыльчатки: 1 – опора; 2 – валик; 3 – крышка; 4 – крыльчатка; 5 – прокладка (фанера).
Сборку насоса начинают с запрессовки сальника (рис. 16), контролируя при этом размер Б (рис. 7). Следовательно, при этом понадобится штангенциркуль или хотя бы подходящая линейка. Этот размер легко определить по старому сальнику – на нем видна «граница». При запрессовке надо быть очень осторожным – графитовое кольцо легко расколоть и сальник придет в негодность.
Затем запрессовывают подшипник с валиком (рис. 15), используя приспособление, и большие слесарные тиски или пресс. Удары опасны не только для сальника, но и для подшипника – появление лунок (отпечатков шариков на дорожках качения) от ударов совершенно недопустимо.
Важно не забыть о том, что в конце запрессовки отверстия под стопорный винт в подшипнике и корпусе (крышке) должны совместиться, для чего наружное кольцо с самого начала операции нужно правильно соорентировать относительно корпуса (крышки).
Затянув стопорный винт, гнездо вокруг него зачеканивают, чтобы исключить его ослабление и самоотворачивание при работе.
Ступицу 8 (рис.5) напрессовывают на валик (натяг 0,06 – 0,1 мм), используя тиски (пресс) и следя за соблюдением посадочных размеров, иначе плоскости вращения шкивов на двигателе могут не совпасть.
Чтобы напрессовать на валик крыльчатку 4 (рис. 17), достаточно использовать опору 1 на переднем конце валика и фанерку со стороны крыльчатки. При этом нельзя забывать контролировать размер А, от которого зависит зазор между лопатками крыльчатки и стенками подводящего жидкость канала, а также сила, прижимающая манжету к графитовому кольцу. Зазор больше предусмотренного ухудшает работу насоса, а его уменьшение приводит к риску контакта лопаток со стенкой.
Создание безопасных условий труда должно быть определяющим в любой сфере деятельности человека. И тем более там, где работа связана с повышенной опасностью для здоровья человека.
В России существует государственная Система стандартов безопасности труда, устанавливающая общие требования безопасности работ, которые проводятся на автотранспортных предприятиях, станциях ТО и специализированных центрах при всех видах технического обслуживания (ТО) и текущего ремонта (ТР) грузовых и легковых автомобилей, автобусов, тягачей и др., предназначенных для эксплуатации на дорогах общей сети России.
Ответственность за выполнение всего объема задач по созданию безопасных условий труда возлагается на руководство автотранспортного предприятия в лице директора и главного инженера.
Все лица, поступающие на работу, проходят вводный инструктаж по безопасности труда и производственной санитарии, который является первым этапом обучения безопасности труда на данном предприятии. Вторым этапом обучения является инструктаж на рабочем месте, проводимый с целью усвоения рабочим безопасных приемов труда непосредственно по той специальности и на том рабочем месте, где он должен работать.
Слесарь по ремонту автомобилей должен уметь оказать первую помощь при несчастных случаях, поражении током до прибытия скорой медицинской помощи или доставки пострадавшего в медицинское учреждение.
К производственному травматизму относятся увечья, ранения, ожоги, поражения электрическим током, отравления и профессиональные заболевания.
Производственный травматизм возникает вследствие недостатков в организации труда, пренебрежения правилами безопасности и отсутствия должного контроля за их выполнением.
Техническое обслуживание и ремонт необходимо выполнять в специально предназначенных для этой цели местах (постах) с применением устройств, приспособлений, оборудования и слесарно-монтажного инструмента, предусмотренных для конкретного вида работы.
Инструменты, применяемые на постах ТО и ТР, должны быть исправными. Не допускается использование гаечных ключей с изношенными гранями и несоответствующих размеров, применение рычагов для увеличения усилий затягивания резьбовых соединений, а также зубила и молотка в этих целях. Рукоятки отверток, напильников, ножовок должны быть изготовлены из пластмассы или дерева, на их поверхностях не должно быть сколов. Деревянные рукоятки во избежание раскалывания должны иметь металлические скрепляющие кольца.
Для осмотра автомобилей необходимо применять только безопасные переносные лампы напряжением 36В с предохранительными сетками. При работе в осмотровых канавах напряжение ламп не должно превышать 12В.
Перед установкой на пост ТО и ТР автомобили следует очистить от грязи и вымыть.
Автомобиль, установленный на напольный пост ТО или ремонта, необходимо надежно закрепить установкой не менее двух упоров под колеса, затормозить стояночным тормозом. При этом рычаг коробки передач должен быть установлен в положение, соответствующее низшей передаче. На автомобилях с карбюраторным двигателем или с газобаллонной установкой следует выключить зажигание, а на автомобилях с дизельным двигателем – перекрыть подачу топлива.
Осмотровые канавы должны иметь направляющие предохранительные борта – реборды и содержаться в чистоте.
Подъем и транспортировка узлов и агрегатов массой более 20 кг осуществлять только с помощью подъемно- транспортных механизмов, используя специальные приспособления по схеме захвата объекта, предусмотренной для данного вида работ.
ТО и ТР автомобиля следует осуществлять при неработающем двигателе, за исключением тех случаев, когда работа двигателя необходима по технологическому процессу данной операции (например, для регулировки угла опережения зажигания).
Выпрессовывать втулки, подшипники, фланцы и другие трудноснимаемые детали следует с помощью съемников и прессов. Съемники должны прочно и надежно захватывать детали в месте приложения усилия.
Паяльные лампы, электрические и пневматические инструменты выдаются только рабочим, прошедшим инструктаж и знающим правила обращения с ними.
При разборке автомобиля снимать, транспортировать тяжелые агрегаты следует с помощью подъемно-транспортных механизмов, оборудованных захватами, гарантирующими полную безопасность работ. Нельзя поднимать и вывешивать автомобиль за буксирные крюки. Запрещается: поднимать грузы массой, большей, чем допускается для данного механизма; снимать, устанавливать и транспортировать агрегаты при зачаливании их тросом и канатами без специальных захватов. Снимать и устанавливать рессоры следует после установки под шасси (кузов) специальных подставок (козелков). Опорная поверхность головок домкратов должна иметь форму, исключающую соскальзывание поднимаемого груза (автомобиля, агрегата). Площадка для опробывания тормозов на ходу.
Меры пожарной безопасности. Чтобы не создавать условий для возникновения пожара на автомобиле, нельзя:
— допускать загрязнений двигателя топливом и маслом;
— допускать течь в топливопроводах, баках и приборах системы питания;
— мыть двигатель бензином;
— курить вблизи баков и приборов системы питания;
— подогревать двигатель открытым пламенем.
В гаражах – стоянках и помещениях для технического обслуживания автомобилей запрещается:
— пользоваться открытым огнем, паяльными лампами там, где хранятся легковоспламеняющиеся и горючие жидкости;
— мыть или протирать бензином кузов, детали или агрегаты, а также мыть руки и чистить одежду бензином, курить;
— хранить горючие жидкости в больших количествах, чем требуется;
— держать открытыми горловины топливных баков;
— загромождать проходы;
В помещениях для стоянки и технического обслуживания автомобилей должны быть установлены огнетушители, ящики с сухим песком и лопаты. Около ящика с песком на пожарном стенде должны располагаться лопата, багор, топор, пожарное ведро.
Своевременное обнаружение загорания и быстрое уведомление пожарной команды является главным условием успешной борьбы с возникшим пожаром.
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ
Информация о работе «Анализ системы охлаждения двигателя ВАЗ-2106»
Раздел: Транспорт Количество знаков с пробелами: 40425 Количество таблиц: 0 Количество изображений: 15
Похожие работы
Тепловой и динамический расчет двигателя ВАЗ-2106
31359
23
9
… или рад в мм, где OB— длина развернутой индикаторной диаграммы, мм. По развернутой диаграмме через каждые 10° угла поворота кривошипа определяют значения ∆pг и заносят в гр. 2 сводной таблицы динамического расчета (в таблице значения даны через 30° и точка при φ=370°). Приведение масс частей кривошипно-шатунного механизма С учетом диаметра цилиндра, отношения , рядного …
Конструкция и расчет легкового автомобиля ВАЗ-2106
47139
6
20
… для размещения водителя, пассажиров, различных грузов и защиты их от внешних воздействий, а также для крепления на нем других агрегатов. Состоит из: · Кузов (Кузов автомобиля ВАЗ-2106 типа «седан», несущей конструкции, трехобъемный, четырехдверный. Каркас кузова состоит из подмоторной рамы с брызговиками, панелей пола с усилительными поперечинами и порогами, панелей передка, задка и др. Детали …
Организация поста технического обслуживания и ремонта карбюраторов двигателей легковых автомобилей
216966
1
41
… проведен анализ сервисных характеристик АТП 10 г. Новомосковска. Предложено для повышения конкурентоспособности этого предприятия создать на его территории пост технического обслуживания и ремонта карбюраторов двигателей легковых автомобилей. Пост следует организовать и укомплектовать современным оборудованием так, что бы на нем смогли не только проверить работоспособность карбюратора двигателя …
Организация работы зоны уборочно-моечных работ для автотранспортного предприятия г. Ижевска
71664
33
5
… во-вторых, применение специального оборудования приборов и инструмента на месте выполнения указанных работ. Кроме того, это не обходимо для организации рационального, последовательного их выполнения. Независимо от вида ТО первоочередными являются уборочно- моечные. работы, одной из задач которых является подготовка автомобиля к последующим операция ТО , и придания ему надлежащего внешнего вида. …
На что следует обратить внимание при обслуживании системы охлаждения двигателя
Чтобы предупредить неисправности системы охлаждения двигателя, необходимо регулярно выполнять следующие операции по ее техническому обслуживанию:
- Проверка плотности охлаждающей жидкости. Плотность антифриза проверяется ареометром. При повышенной плотности, разбавьте вашу жидкость дистиллированной водой, а при пониженной – аналогичной охлаждающей жидкостью.
- Натяжение приводного ремня. Одной из самых распространенных причин перегрева двигателя автомобиля (особенно с механическим приводом вентилятора) является слабое натяжение приводного ремня. Пробуксовка ремня снижает производительность помпы и, соответственно, скорость вращения крыльчатки.
- Чистка системы охлаждения двигателя. Также не забывайте проверять внешнее состояние мотора и радиатора. И радиатор, и двигатель нуждаются в регулярной чистке, так как грязь и мусор мешают нормальному охлаждению мотора. Зачастую радиатор забивается грязью, пылью, тополиным пухом и прочей гадастью. Весь этот мусор легко устраняется сильной струей воды или мощным пылесосом. Потёки масла на двигателе и прилипшая к ним пыль также должны регулярно смываться.
- Проверка термостата. Важным элементом системы охлаждения является термостат, благодаря которому поддерживается оптимальная рабочая температура мотора, а также быстрый прогрев двигателя сразу после запуска. Подробно о том как устроен автомобильный термостат и методах его диагностики мы писали в статье об устройстве и принципе работы автомобильного термостата.
- Вентилятор системы охлаждения двигателя. Еще один элемент, требующий внимания при уходе за системой охлаждения двигателя – это вентилятор. На большинстве современных автомобилей установлены электрические вентиляторы охлаждения, которые управляются термоэлектрическим датчиком, вкрученным в радиатор. При достижении заданной температуры контакты датчика замыкаются, и вентилятор начинает работать, охлаждая поверхность радиатора.
Если при нагревании двигателя вентилятор не включается, то причина этого может крыться в датчике температуры. Работоспособность датчика определяется очень просто, для этого нужно просто замкнуть его контакты:
- если вентилятор заработал, значит неисправен датчик,
- если нет – причина или в электродвигателе вентилятора, или в электрической цепи его питания.
Диагностика термостата
Определить неисправность термостата можно довольно просто. Сначала запустите и прогрейте двигатель. После прогрева потрогайте патрубки, которые идут на радиатор. Если они холодные, то в радиатор не поступает охлаждающая жидкость. Но не стоит радоваться: при достижении температуры 90 градусов и выше верхний и нижний патрубки должны быть горячими. Только в этом случае можно говорить о том, что термостат полностью исправен. Обратите внимание, что печка работает во всех режимах, независимо от того, по большому или малому кругу циркулирует антифриз в системе.
Когда происходит перегрев двигателя, то в поршневой группе происходит увеличение износа всех трущихся деталей. В этом случае выходят моментально из строя все подшипники, не исключено, что поршни начнут прогорать. Само собой, происходят потери при трении. Весь процесс воспламенения топливо-воздушной смеси, который происходит в камерах сгорания, нарушается. Наряду с этим наблюдается уменьшение мощности. Также увеличивается расход топлива. Обратите внимание, что при чрезмерном нагреве возможно зацикливание поршней в цилиндрах.
Как к нам добраться?
При движении от ул. Профсоюзная в сторону Ленинского проспекта. Вам необходимо пересечь перекресток с ул. Академика Волгина прямо и проехать до пешеходного светофора, за светофором через 50 метров будет поворот направо под шлагбаум (при въезде будет необходимо сказать охране, что Вы едете в Автотехцентр Авангард), далее движетесь прямо 150 метров и Вы приехали, Добро пожаловать!
При движении от Ленинского просп. по ул. Миклухо-Маклая в сторону ул. Профсоюзная. Перед пешеходным светофором (это первый светофор от Ленинского в сторону Профсоюзная) не доезжая до него 50 метров будет поворот налево под шлагбаум (при въезде будет необходимо сказать охране, что Вы едете в Автотехцентр Авангард), далее движетесь прямо 150 метров и Вы приехали, Добро пожаловать! Тел.
Устройство системы и ее «узкие» места
Лишнее тепло в моторе во время долгого воздействия приводит к механическим деформациям деталей. Также от длительного превышения температуры теряется герметизация за счет расширения металла. Хотя средняя рабочая температура находится в интервале 80-90С, но иногда мотор разогревается и до 200С. Без дополнительного искусственного отвода в данных случаях не обойтись.
Существует и вторая функция у этой системы. В холодные сезоны при заведении двигателя жидкость, циркулируя по малому кругу, распределяет равномерно тепло по всему телу силовой установки. Таким образом прогревается смазочная жидкость, проходные каналы. За счет этого снижается нагрузка на силовую установку, уменьшается ее механический износ.
Рассмотрим основные неисправности системы охлаждения, работающей с жидкостью, а не с воздухом. Для ее функционирования блок цилиндров имеет большое количество каналов, опоясывающих рабочие цилиндры. В них поступает охлаждающая жидкость из расширительного бачка. Осуществлением принудительной циркуляции хладогена занимается центробежный насос, вращающийся за счет ременной передачи от коленвала.
В системе установлен термостат, который обеспечивает циркуляцию жидкости либо по малому кругу с низкой температурой, либо по большому кругу, когда установится рабочий температурный режим. Это способствует более скорому прогреву мотора.
Для снижения температуры установлен радиатор. За счет ребристой поверхности, обеспечивающей большую площадь охлаждения, происходит отдача тепла в атмосферу. Он соединен с «рубашкой» блока цилиндров при помощи патрубков и различных шлангов. Усилить эффект охлаждения помогает многолопастной вентилятор, расположенный перед радиатором.
Контроль за температурой из салона авто помогает вести индикатор на панели приборов. Когда вскрываются возможные неисправности системы охлаждения и происходит повышение температуры, начинает гореть сигнальная лампочка.
Почему двигатель долго прогревается?
Термостат заклинил в открытом положении или изменил температурные характеристики.
Все очень просто – термостат это основной элемент, задающий температурный режим двигателя, его задача ограничивать количество антифриза попадающего в основной радиатор. Если вся охлаждающая жидкость будет проходить через основной радиатор, мотор будет прогреваться очень долго, а зимой он вообще не сможет прогреться.
Заклинила вискомуфта.
На некоторых автомобилях используется механический привод вентилятора охлаждения. В большинстве случаев он выполнен через т.н. вискомуфту. Вот её принцип работы:
Если вискомуфта клинит, вентилятор охлаждения будет постоянно вращаться с максимальной скоростью, и прогрев двигателя замедлится, но при исправном термостате двигатель все равно будет держать температуру.
Расширительный бачок системы охлаждения двигателя
Как известно, во время работы ДВС выделяет большое количество тепла. При этом важно удерживать температуру агрегата в заданных пределах для максимально эффективного сгорания топлива, снижения уровня токсичности выхлопа, увеличения ресурса и т.д.
Другими словами, нельзя как сильно охлаждать мотор, так и допускать его перегрев. Для поддержания необходимой рабочей температуры в устройстве современных двигателей используется комбинированная система, которая объединяет в себе жидкостное и воздушное охлаждение.
В устройстве жидкостной системы охлаждения важным элементом является расширительный бачок. Далее мы поговорим о том, для чего нужен расширительный бачок системы охлаждения двигателя, каково его основное предназначение, а также какие неисправности расширительного бачка системы охлаждения двигателя встречаются чаще всего.
Содержание статьи
Для чего предназначен и где находится расширительный бачок системы охлаждения двигателя
Итак, достаточно открыть капот, чтобы обнаружить указанный бачок. Как правило, данный элемент всегда на виду, чтобы водитель мог с легкостью контролировать уровень ОЖ, а также доливать тосол или антифриз при необходимости. На разных автомобилях бачок может быть установлен слева или справа от силового агрегата, ближе к моторному щиту или дальше от него.
Главной функцией бачка является компенсация изменяющегося объема ОЖ. Такой эффект возникает в результате изменения температуры жидкости. Устройство системы охлаждения может отличаться, в одних случаях бачок является простой емкостью для избытков жидкости, тогда как в других это целое устройство, способное регулировать давление в системе.
Расширительный бачок необходим жидкостной системе на современных ДВС. Дело в том, что ОЖ (тосол, антифриз) являются водным раствором на основе этилен или пропиленгликоля. Такая жидкость отличается более высоким коэффициентом теплового расширения по сравнению с водой.
Если просто, залив такую жидкость в радиатор, после нагрева ДВС и его выхода на рабочие температуры, жидкость также нагреется и произойдет ее расширение. Получается, фактически образуются излишки, происходит рост давления и т.д.
Если же заглушить мотор, после остывания ОЖ снова происходит уменьшение объема жидкости, а в системе создается разрежение. Это приводит к тому, что через клапан в крышке радиатора засасывается наружный воздух. Вполне очевидно, что в этом случае будут создаваться воздушные пробки, которые становятся причиной нарушения теплообмена, перегревов двигателя, некорректной работы системы охлаждения и т.п.
Для того чтобы этого не происходило, устанавливается отдельная емкость (бачок системы охлаждения), куда попадают излишки горячей ОЖ из радиатора. Также наличие жидкости в бачке позволяет избежать создания разрежения и образования воздушных пробок, так как при уменьшении объема в результате остывания жидкость из бачка заполняет собой пустоты.
Сегодня конструкторы пошли еще дальше, перенеся перепускной клапан, который раньше был в крышке радиатора, на крышку расширительного бачка. Получается, сброс давления и излишков антифриза при закипании происходит через крышку бачка. Другими словами, бачок взял на себя функцию верхней части радиатора и перестал быть простым резервуаром.
Как уже было сказано выше, бачок может быть установлен в разных местах в подкапотном пространстве, однако место его установки должно быть реализовано так, чтобы добиться эффекта сообщающихся сосудов. Емкость и радиатор соединяются при помощи патрубков.
Такое решение позволяет реализовать доступ для излишков горячего антифриза в расширительный бачок. При остывании ОЖ также получается добиться компенсации недостающего объема в системе путем поступления жидкости из бачка. Такая схема исключает попадание воздуха в радиатор и образование воздушных пробок в системе.
Устройство расширительного бачка
Конструктивно данная емкость очень простая. Материалом изготовления выступает полупрозрачный пластик. Также в бачок может быть дополнительно встроен датчик, который сигнализирует водителю о критическом снижении уровня ОЖ.
Сверху бачок закрыт крышкой, в которую установлен клапан для регулировки давления. Если давление в системе растет, тогда происходит срабатывание клапана.
Также на стенке бачка имеется указатель уровня в виде отметок «минимум» и «максимум», позволяя контролировать уровень жидкости. Важно понимать, что на холодном моторе уровень не должен опускаться ниже минимального. Также не допускается превышение максимального уровня.
Что касается крышки бачка с клапаном, она на холодном ДВС герметично закрывает емкость. Однако когда двигатель выходит на рабочую температуру и происходит нагрев ОЖ, в системе охлаждения и в бачке давление закономерно повышается.
Если рост давления дошел до отметки, в среднем, 120 кПа, происходит открытие клапана. Когда давление снижается до средней отметки около 83.4 кПа, клапан закрывается. Такая работа клапана необходима для того, чтобы избежать разрыва патрубков, повреждений радиатора и т.д.
Параллельно с этим после остывания мотора давление в системе начинает падать, объем ОЖ уменьшается и создается разрежение. При падении давления, в среднем, ниже отметки в 3 кПа, происходит открытие впускного клапана расширительного бачка для забора воздуха. В результате разница давлений нивелируется, а недостающий объем жидкости компенсируется из бачка.
Распространенные неисправности
Как правило, большинство проблем не связаны с самой емкостью. Не так часто отмечаются случаи, когда сам бачок трескается и начинает течь без явных причин. Однако даже с учетом простой конструкции проблемной частью вполне может оказаться именно крышка расширительного бачка системы охлаждения двигателя.
Выйти из строя может клапан, встроенный в крышку. Также недостаточное уплотнение может возникать по причине деформации резинового кольца. В результате подобных неисправностей крышка может начать пропускать антифриз, система завоздушивается и т.д.
Если клапан в крышке начинает работать некорректно, тогда в подобном случае неизбежны отклонения в работе системы охлаждения ДВС. Кроме образования воздушных пробок, такая ситуация в ряде случаев приводит к критическому росту давления и разрыву расширительного бачка. В подобной ситуации бачок нужно менять на новый. Не рекомендуется предпринимать попытки восстановить поврежденную емкость путем запаивания трещин.
Если говорить о крышке, ее повреждения и дефекты, а также нарушения в работе клапанов по причине засорения или выработки являются поводом для замены крышки. В отдельных случаях крышку чистят, пытаясь восстановить функциональность, однако такой метод срабатывает не всегда. С учетом невысокой стоимости элемент лучше сразу заменить.
Что в итоге
Как видно, в устройстве современного автомобиля к системе охлаждения двигателя и ее корректной работе выдвигаются повышенные требования. По этой причине для эффективного функционирования в конструкции дополнительно используется специальный бачок.
Еще нужно знать о том, если в схеме задействован указанный расширительный бачок системы охлаждения двигателя, что заливать в систему крайне желательно только антифриз или тосол, а не воду. Что касается поломок, если в системе охлаждения растет давление или образуются воздушные пробки, необходимо отдельное внимание уделить крышке расширительного бачка.
Нарушение работы клапанов в крышке часто приводит к тому, что повреждаются патрубки, быстрее выходит из строя термостат, страдает насос системы охлаждения (помпа), двигатель может перегреваться и т.д.
Читайте также
назначение,виды,описание,фото,устройство Работа систем охлаждения в различных режимах
Система охлаждения двигателя служит для поддержания нормального теплового режима работы двигателей путем интенсивного отвода тепла от горячих деталей двигателя и передачи этого тепла окружающей среде.
Отводимое тепло состоит из части выделяющегося в цилиндрах двигателя тепла, не превращающейся в работу и не уносимой с выхлопными газами, и из тепла работы трения, возникающего при движении деталей двигателя.
Большая часть тепла отводится в окружающую среду системой охлаждения, меньшая часть – системой смазки и непосредственно от наружных поверхностей двигателя.
Принудительный отвод тепла необходим потому, что при высоких температурах газов в цилиндрах двигателя (во время процесса горения 1800–2400 °С, средняя температура газов за рабочий цикл при полной нагрузке 600–1000 °С) естественная отдача тепла в окружающую среду оказывается недостаточной.
Нарушение правильного отвода тепла вызывает ухудшение смазки трущихся поверхностей, выгорание масла и перегрев деталей двигателя. Последнее приводит к резкому падению прочности материала деталей и даже их обгоранию (например, выпускных клапанов). При сильном перегреве двигателя нормальные зазоры между его деталями нарушаются, что обычно приводит к повышенному износу, заеданию и даже поломке. Перегрев двигателя вреден и потому, что вызывает уменьшение коэффициента наполнения, а в бензиновых двигателях, кроме того, – детонационное сгорание и самовоспламенение рабочей смеси.
Чрезмерное охлаждение двигателя также нежелательно, так как оно влечет за собой конденсацию частиц топлива на стенках цилиндров, ухудшение смесеобразования и воспламеняемости рабочей смеси, уменьшение скорости ее сгорания и, как следствие, уменьшение мощности и экономичности двигателя.
Классификация систем охлаждения
В автомобильных и тракторных двигателях, в зависимости от рабочего тела, применяют системы жидкостного и воздушного охлаждения. Наибольшее распространение получило жидкостное охлаждение.
При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.
По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными) .
Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.
Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.
Классификация систем охлаждения приведена на рис. 3.1.
По способу осуществления циркуляции жидкости системы охлаждения могут быть:
принудительными, в которых циркуляция обеспечивается специальным насосом, расположенным на двигателе (или в силовой установке), или давлением, под которым жидкость подводится в силовую установку из внешней среды;
термосифонными, в которых циркуляция жидкости происходит за счет разницы гравитационных сил, возникающих в результате различной плотности жидкости, нагретой около поверхностей деталей двигателя и охлаждаемой в охладителе;
комбинированными , в которых наиболее нагретые детали (головки блоков цилиндров, поршни) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.
Рис. 3.1. Классификация систем охлаждения
Системы жидкостного охлаждения могут быть открытыми и закрытыми.
Открытые системы – системы, сообщающиеся с окружающей средой при помощи пароотводной трубки.
В большинстве автомобильных и тракторных двигателей в настоящее время применяют закрытые системы охлаждения, т. е. системы, разобщенные от окружающей среды установленным в пробке радиатора паровоздушным клапаном.
Давление и соответственно допустимая температура охлаждающей жидкости (100–105 °С) в этих системах выше, чем в открытых системах (90–95 °С), вследствие чего разность между температурами жидкости и просасываемого через радиатор воздуха и теплоотдача радиатора увеличиваются. Это позволяет уменьшить размеры радиатора и затрату мощности на привод вентилятора и водяного насоса. В закрытых системах почти отсутствует испарение воды через пароотводный патрубок и закипание ее при работе двигателя в высокогорных условиях.
Жидкостная система охлаждения
На рис. 3.2 показана схема жидкостной системы охлаждения с принудительной циркуляцией охлаждающей жидкости.
Рубашка охлаждения блока цилиндров 2 и головки блока 3, радиатор и патрубки через заливную горловину заполнены охлаждающей жидкостью. Жидкость омывает стенки цилиндров и камер сгорания работающего двигателя и, нагреваясь, охлаждает их. Центробежный насос 1 нагнетает жидкость в рубашку блока цилиндров, из которой нагретая жидкость поступает в рубашку головки блока и затем по верхнему патрубку вытесняется в радиатор. Охлажденная в радиаторе жидкость по нижнему патрубку возвращается к насосу.
Рис.
3.2. Схема жидкостной системы охлаждения
Циркуляция жидкости в зависимости от теплового состояния двигателя изменяется с помощью термостата 4. При температуре охлаждающей жидкости ниже 70–75 °С основной клапан термостата закрыт. В этом случае жидкость не поступает в радиатор 5 , а циркулирует по малому контуру через патрубок 6, что способствует быстрому прогреву двигателя до оптимального теплового режима. При нагревании термочувствительного элемента термостата до 70–75 °С основной клапан термостата начинает открываться и пропускать воду в радиатор, где она охлаждается. Полностью термостат открывается при 83–90 °С. С этого момента вода циркулирует по радиаторному, т. е. большому, контуру. Температурный режим двигателя регулируется также с помощью поворотныхжалюзей, путем изменения воздушного потока, создаваемого вентилятором 7 и проходящего через радиатор.
В последние годы наиболее эффективным и рациональным способом автоматического регулирования температурного режима двигателя является изменение производительности самого вентилятора.
Элементы жидкостной системы
Термостат предназначен для обеспечения автоматического регулирования температуры охлаждающей жидкости во время работы двигателя.
Для быстрого прогрева двигателя при его пуске устанавливают термостат в выходном патрубке рубашки головки блока цилиндров. Он поддерживает желательную температуру охлажда-ющей жидкости путем изменения интенсивности ее циркуляции через радиатор.
На рис. 3.3 представлен термостат сильфонного типа. Он состоит из корпуса 2, гофрированного цилиндра (сильфона), клапана 1 и штока, соединяющего сильфон с клапаном. Сильфон изготовлен из тонкой латуни и заполнен легкоиспаряющейся жидкостью (например, эфиром или смесью этилового спирта и воды). Расположенные в корпусе термостата окна 3 в зависимости от температуры охлаждающей жидкости могут или оставаться открытыми, или быть закрытыми клапанами.
При температуре охлаждающей жидкости, омывающей сильфон, ниже 70 °С клапан 1 закрыт, а окна 3 открыты. Вследствие этого охлаждающая жидкость в радиатор не поступает, а циркулирует внутри рубашки двигателя. При повышении температуры охлаждающей жидкости выше 70 °С сильфон под давлением паров испаряющейся в нем жидкости удлиняется и начинает открывать клапан 1 и постепенно прикрывать окна клапанами 3. При температуре охлаждающей жидкости выше 80–85 °С клапан 1 полностью открывается, окна же полностью закрываются, вследствие чего вся охлаждающая жидкость циркулирует через радиатор. В настоящее время данный тип термостатов применяется очень редко.
Рис. 3.3. Термостат сильфонного типа
Сейчас в двигателях устанавливают термостаты, в которых заслонка 1 открывается при расширении твердого наполнителя – церезина (рис. 3.4). Это вещество расширяется при повышении температуры и открывает заслонку 1 , обеспечивая поступление охлаждающей жидкости в радиатор.
Рис.
3.4. Термостат с твердым наполнителем
Радиатор является теплорассеивающим устройством, предназначенным для передачи тепла охлаждающей жидкости окружающему воздуху.
Радиаторы автомобильных и тракторных двигателей состоят из верхнего и нижнего резервуаров, соединенных между собой большим количеством тонких трубок.
Для усиления передачи тепла от охлаждающей жидкости воздуху поток жидкости в радиаторе направляют через ряд обдуваемых воздухом узких трубок или каналов. Радиаторы изготовляют из материалов, хорошо проводящих и отдающих тепло (латуни и алюминия).
В зависимости от конструкции охлаждающей решетки радиаторы делят на трубчатые, пластинчатые и сотовые.
В настоящее время наибольшее распространение получили трубчатые радиаторы . Охлаждающая решетка таких радиаторов (рис. 3.5а) состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему резервуарам радиатора. Наличие пластин улучшает теплопередачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее, так как при одинаковом сечении струи поверхность охлаждения их больше, чем поверхность охлаждения круглых трубок; кроме того, при замерзании воды в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.
Рис. 3.5. Радиаторы
В пластинчатых радиаторах охлаждающая решетка (рис. 3.5б) устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются сравнительно редко.
Сотовый радиатор относится к радиаторам с воздушными трубками (рис. 3.5в). В решетке сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи водой или охлаждающей жидкостью. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника.
Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения. Из-за ряда недостатков, большинство из которых те же, что и у пластинчатых радиаторов, сотовые радиаторы в настоящее время встречаются крайне редко.
В пробке заливной горловины радиатора установлен паровой клапан 2 и воздушный клапан 1 , которые служат для поддержания давления в заданных пределах (рис. 3.6).
Рис.
3.6. Пробка радиатора
Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, в системах охлаждения устанавливают малогабаритные одноступенчатые центробежные насосы низкого давления производительностью до 13 м 3 /ч, создающие давление 0.05–0.2 МПа. Такие насосы конструктивно просты, надежны и обеспечивают высокую производительность (рис. 3.7).
Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. В водяных насосах автомобильных двигателей обыкновенно применяют полузакрытые крыльчатки, т. е. крыльчатки с одним диском.
Крыльчатки центробежных водяных насосов часто монтируют на одном валике с вентилятором. В этом случае насос устанавливают в верхней передней части двигателя, приводится он в движение от коленчатого вала при помощи клиноременной передачи.
Рис. 3.7. Водяной насос
Ременную передачу можно применять и при установке центробежного насоса отдельно от вентилятора. В некоторых двигателях грузовых автомобилей и тракторов привод водяного насоса осуществляется от коленчатого вала шестеренчатой передачей. Вал центробежного водяного насоса устанавливают обычно на подшипниках качения и снабжают для уплотнения рабочей поверхности простыми или саморегулирующимися сальниками.
Вентилятор в жидкостных системах охлаждения устанавливают для создания искусственного потока воздуха, проходящего через радиатор. Вентиляторы автомобильных и тракторных двигателей делят на два типа: а) со штампованными из листовой стали лопастями, прикрепленными к ступице; б) с лопастями, которые отлиты за одно целое со ступицей.
Число лопастей вентилятора изменяется в пределах четырех – шести. Увеличение числа лопастей выше шести нецелесообразно, так как производительность вентилятора при этом увеличивается крайне незначительно. Лопасти вентилятора можно выполнять плоскими и выпуклыми.
Современный автолюбитель, все больше интересуется устройством автомобиля. В изучении автомобильного устройства, сложно обойти стороной такую важную часть, как поддержание температурного режима в движке авто. СО (Система охлаждающая движок), важнейшая составляющая любой машины. От правильности ее функционирования, зависим износ и продуктивность движка машины. Исправная СО, существенно снижает нагрузку на рабочие элементы двигателя. Для поддержания корректного функционирования системы, необходимо хорошо понимать ее составляющие. Изучив полезные материалы, вы сможете обслуживать СО со знанием дела.
В ходе эксплуатации автомобиля, рабочие части движка способны набирать высокую температуру. Во избежание перегрева рабочих частей, авто оснащается системой охлаждения. Система охлаждения автомобиля, существенно снижает температуру рабочих частей двигателя. Поддержание оптимального температурного режима, происходит благодаря рабочей жидкости. Рабочая смесь, циркулирует по специальным проводникам, предотвращая перегрев. Система, на всех автомобилях, выполняет ряд дополнительных функций.
Функции охладительной системы.- Оптимизация температуры смеси для смазывания рабочих частей авто.
- Регулирование температуры отработанных газов, в выхлопной системе.
- Понижение температуры смеси для работы АКПП.
- Понижение температуры воздуха в турбине автомобиля.
- Нагревание потока воздуха в системе отопления.
На сегодняшний день, существует несколько видов систем охлаждения. Системы, разделяют в частности от способа понижения температуры рабочих частей.
Виды охлаждающих систем.
- Закрытая. В данной системе, понижение температуры происходит благодаря рабочей жидкости.
- Открытая (Воздушная). В открытой системе, понижение температуры осуществляется при помощи воздушного потока.
- Комбинированная. Рассматриваемая система охлаждения, совместила в себе два вида охлаждения. В частности от производителя системы, охлаждение производится совместно или последовательно.
Наиболее популярной в машиностроении, стала система охлаждения двигателя использующая ОЖ. Рассматриваемая система охлаждения, стала наиболее действенной и практичной к эксплуатации. Система охлаждения, равномерно осуществляет понижение температуры рабочих частей двигателя. Рассмотрим устройство и способ функционирования системы, используя наиболее популярный пример.
Вне зависимости от особенностей двигателя, конструкция и функционирование охладительной системы, отличаются не сильно. Таким образом, двигатели с различным видом топлива, обладают практически идентичной системой поддержания температурного режима. Система охлаждения, включает в себя составные части, обеспечивающие ее функционирование. Каждая составляющая, является крайне важна для полноценной работы. При нарушении работы одной составляющей, нарушается корректная оптимизация температурного режима.
Составные элементы систем охлаждения.
- Теплообменник ОЖ.
- Масляный теплообменник.
- Вентилятор.
- Насосы. В частности от модели ОС, их может быть несколько.
- Бак для рабочей смеси.
- Датчики.
Для функционирования рабочей смеси, в системе существуют специальные проводники. Контроль работы системы, осуществляется благодаря центральной системы управления.
Теплообменник, осуществляет понижение температуры жидкости, потоком холодного воздуха. Для изменения тепловой отдачи, теплообменник оснащается определенным механизмом, представляющим небольшую трубку.
Вместе с штатным передатчиком, некоторые производители, оснащают систему теплообменником масла и переработанных газов. Теплообменник масла, осуществляет понижение температуры жидкости, смазывающей рабочие составляющие. Второй, необходим для понижения температуры выхлопной смеси. Регулятор циркуляции выхлопа — снижает температуру выработки совокупности топлива и воздуха. Тем самым, снижается количество получаемого азота, в процессе функционирования двигателя. За правильную работу рассматриваемого устройства, отвечает специальный компрессор. Компрессор, приводит в движение рабочую смесь, перемещая ее по системе. Устройство, является встроенным в ОС.
Теплообменник, отвечает за противоположное действие. Устройство производит увеличение температуры, функционирующего по системе, потока воздуха. Для обеспечения максимальной продуктивности, механизм находиться на выходной части ОЖ из двигателя автомобиля.
Расширительный бочок, предназначен для заполнения системы рабочей смесью. Благодаря данному, в проводники поступает свежая ОЖ, восстанавливающая объем отработанной. Тем самым, уровень смеси, всегда остается необходимым.
Движение ОЖ, происходит благодаря центральному насосу. В зависимости от производителя, насос приводиться в действие различными методами. Большинство насосов, имеют привод в виде ремня или шестеренки. Некоторые производители, оснащают ОС еще одним насосом. Дополнительный насос, необходим при оснащении механизма компрессором, для охлаждения воздушного потока. Блок управления двигателя, отвечает за функционирование всех насосов системы.
Для создания оптимальной температуры жидкости, предусмотрен термостат. Данное устройство выявляет объем жидкости (движущейся через радиатор), который необходимо охладить. Тем самым, создаются необходимый температурный режим, для корректной работы двигателя. Устройство находиться между радиатором и проводника смеси.
Двигатели с большим объемом, оснащаются электрическими термостатами. Данный вид устройств, осуществляют изменение температуры жидкости в несколько этапов. Устройство имеет несколько режимов работы: свободный, замкнутый и промежуточный. Когда, нагрузка на двигатель становиться предельной, благодаря электрическому приводу, термостат приводиться в свободный режим. В данном случае, температура снижается до необходимого уровня. В частности от давления на двигатель, термостат работает в режиме поддержания оптимальной температуры.
Вентилятор, отвечает за улучшение продуктивности регулирования температуры жидкости. В зависимости от модели ОС и производителя, привод вентилятора различается.
Виды привода вентилятора:
- Механика. Данный вид привода, устанавливает непрерывный контакт с кален — валом движка.
- Электрика. В таком случае, вентилятор приводиться в действие благодаря электрическому движку.
- Гидравлика. Специальная муфта с гидравлическим приводом, непосредственно активирует вентилятор.
Благодаря возможности регулировки и множеству режимов работы, наиболее популярным стал — электрический привод.
Важными составляющими совокупности являются датчики. Датчик уровня и температуры охладительной жидкости, позволяют следить за необходимыми параметрами и своевременно их восстанавливать. Так же, в устройстве располагаются центральный блок управления и элементы регулировки.
Датчик температуры ОЖ, определяет показатель рабочей жидкости и переводит его в цифровой формат, для передачи устройству. На выходе радиатора, устанавливается отдельный датчик, для расширения функциональности охладительной системы.
Электрический блок, принимает показатели от датчика и передает его специальным устройствам. Блок, так же изменяет показатели для воздействия, определяя необходимое направление. Для этого, в блоке существует специальная программная установка.
Для осуществления действий и регулировки температуры охлаждающей жидкости, механизм оснащается рядом специальных устройств.
Исполнительные системы ОС.
- Регулировщик температуры термостата.
- Переключатель основного и вторичного компрессора.
- Блок управления режимов вентилятора.
- Блок, регулирующий работу ОС, после остановки движка.
Контроль за работой охладительной совокупности, осуществляет центральный блок управления двигателя. Большинство автомобилей оборудованы системой, в основе которой лежит определенный алгоритм. Необходимые условия работы и период определенных процессов, определяются с использованием соответствующих показателей. Оптимизация происходит, исходя из показателей датчиков (температура и уровень ОЖ, температура смазывающей жидкости). Тем самым, задаются оптимальные процессы для поддержания температурного режима в движке автомобиля.
Центральный насос, отвечает за постоянное движение охлаждающей жидкости по проводникам. Под давление, жидкость непрерывно движется по проводникам ОС. Благодаря данному процессу, происходит понижение температуры рабочих частей двигателя. В зависимости от особенностей определенного механизма, различают несколько направлений движения смеси. В первом случае, смесь направляется из начального цилиндра в конечный. Во втором, от коллектора выхода до входного.
Исход из показателей температуры, жидкость поступает по узкой или широкой дуге. При запуске двигателя, рабочие элементы и жидкость, в том числе, обладают низкой температурой. Для быстрого повышения температуры, смесь движется по узкой дуге, не охлаждая радиатор. Во время этого процесса, термостат находиться в замкнутом режиме. Тем самым, достигается оперативный прогрев двигателя.
По ходу повышения температуры элементов двигателя, термостат переходит в свободный режим (открывая крышку). При этом, жидкость начинает проходить через радиатор, двигаясь по широкой дуге. Поток воздуха в радиаторе, охлаждает нагретую жидкость. Вспомогательным элементом для охлаждения, так же, может являться вентилятор.
После создания необходимой температуры, смесь переходит в проводники, расположенные на двигателе. Во время работы автомобиля, процесс оптимизации температуры постоянно повторяется.
На автомобилях — оснащенных турбиной, устанавливается специальный механизм охлаждения с двумя уровнями. В данном, происходит разделение проводников ОЖ. Один из уровней — отвечает за охлаждения двигателя автомобиля. Второй — охлаждает воздушный поток.
Охладительное устройство, является особо важным для правильной работы автомобиля. При возникновении неполадок в нем, двигатель может перегреться и выйти из строя. Как и любая составляющая автомобиля, ОС, требует своевременного обслуживания и ухода. Одним из важнейший элементов для поддержания температурного режима, является охлаждающая жидкость. Данную смесь, необходимо регулярно менять, согласно рекомендациям производителя. При возникновении неисправностей в ОС, не рекомендуется эксплуатировать автомобиль. Это может подвернуть двигатель, влиянию высоких температур. Во избежание серьезных неисправностей, необходимо оперативно диагностировать устройство. Изучив устройство и принцип функционирования, вы сможете определить характер неисправности. При возникновении серьезных неисправностей, обратитесь к профессионалам. Данные знания, так же пригодятся вам в этом. Обслуживайте устройство своевременно и вы существенно увеличите срок ее эксплуатации. Удачи в изучении полезного материала.
Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе системы смазки, отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.
Виды систем охлаждения двигателя
Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:
- Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
- Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
- Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).
Устройство и принцип работы системы охлаждения ДВС
Система охлаждения двигателяНаиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:
- Радиатор системы охлаждения.
- Вентилятор радиатора.
- Малый и большой охлаждающие контуры.
- Рубашка системы охлаждения (система каналов в блоке цилиндров).
- Датчик температуры.
- Термостат.
- Расширительный бачок.
- Насос (помпа).
- Радиатор печки.
- Масляный радиатор (опционально).
- Радиатор системы рециркуляции отработавших газов (опционально).
В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.
Большой и малый круги циркуляции ОЖ
Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.
Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.
Как устроен радиатор охлаждения двигателя
Устройство радиатора системы охлаждения ДВС
Радиатор системы охлаждения ДВС состоит из следующих элементов:
- Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
- Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
- Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
- Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
- Крепления.
Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.
Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.
Особенности работы датчика температуры ОЖ
Датчик температуры системы охлаждения
Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.
Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем. Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом. Если же отклонения больше допустимых, датчик необходимо заменить.
В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.
Что используют в качестве охлаждающих жидкостей
Расширительный бачок системы охлажденияВ роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур. Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы. Чаще всего используется антифриз, который имеет более низкий порог замерзания.
При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.
Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки «Min» и «Max». Когда количество жидкости ниже минимальной отметки — выполняют долив. Если после работы уровень вновь упал — это свидетельствует о разгерметизации системы.
Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.
Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду.
Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.
При сгорании рабочей смеси температура в цилиндрах двигателя повышается до 2500 °С и в среднем при работе двигателя составляет 800…900°С. Поэтому детали двигателя сильно нагреваются, и если их не охлаждать, то будут снижаться мощность двигателя, его экономичность, увеличиваться изнашивание деталей и может произойти поломка двигателя.
При чрезмерном охлаждении двигатель также теряет мощность, ухудшается его экономичность и возрастает изнашивание.
Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения (). Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя.
Рисунок 1 – Типы систем охлаждения
Применение в двигателях различных систем охлаждения зависит от типа и назначения двигателя, его мощности и класса автомобиля.
Жидкостная система охлаждения
В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.
Так, при охлаждении антифризом температура стенок цилиндров на 15…20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.
Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 …100 °С на всех режимах работы двигателя.
Это возможно при условии, что с охлаждающей жидкостью уносится в окружающую среду 25…35 % теплоты, выделяющейся при сгорании топлива в цилиндрах двигателя. При этом в бензиновых двигателях величина отводимой теплоты больше, чем в дизелях.
Система охлаждения двигателя состоит из рубашки охлаждения головки и блока цилиндров, радиатора, насоса, термостата, вентилятора, расширительного бачка, соединительных трубопроводов и сливных краников. Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля.
Работа системы
Рисунок 3 — Система охлаждения двигателя
1, 2, 3, 5, 15, 18 — шланги; 4 — патрубок; 6 — бачок; 7, 9 — пробки; 8 — рубашка охлаждения; 10 — радиатор; 11 — кожух; 12 — вентилятор; 13, 14 — шкивы; 16 — ремень; 17- насос; 19 – термостат
При непрогретом двигателе основной клапан термостата 19 () закрыт, и охлаждающая жидкость не проходит через радиатор 10. В этом случае жидкость нагнетается насосом 17 в рубашку охлаждения 8 блока и головки цилиндров двигателя. Из головки блока цилиндров через шланг 3 жидкость поступает к дополнительному клапану термостата и попадает вновь в насос. Вследствие циркуляции этой части жидкости двигатель быстро прогревается. Одновременно меньшая часть жидкости поступает из головки блока цилиндров в обогреватель (рубашку) впускного трубопровода двигателя, а при открытом кране — в отопитель салона кузова автомобиля.
При прогретом двигателе дополнительный клапан термостата закрыт, а основной клапан открыт. В этом случае большая часть жидкости из головки блока цилиндров попадает в радиатор, охлаждается в нем и через открытый основной клапан термостата поступает в насос. Меньшая часть жидкости, как и при непрогретом двигателе, циркулирует через обогреватель впускного трубопровода двигателя и отопитель салона кузова. В некотором интервале температур основной и дополнительный клапаны термостата открыты одновременно, и охлаждающая жидкость циркулирует в этом случае по двум направлениям (кругам циркуляции ).
Количество циркулирующей жидкости в каждом круге зависит от степени открытия клапанов термостата, чем обеспечивается автоматическое поддержание оптимального температурного режима двигателя. Расширительный бачок 6, заполненный охлаждающей жидкостью, сообщается с атмосферой через резиновый клапан, установленный в пробке 7 бачка. Бачок соединен шлангом с наливной горловиной радиатора, которая имеет пробку 9 с клапанами. Бачок компенсирует изменения объема охлаждающей жидкости, и в системе поддерживается постоянный объем циркулирующей жидкости.
Для слива охлаждающей жидкости из системы охлаждения имеются два сливных отверстия с резьбовыми пробками, одно из которых находится в нижнем бачке радиатора, а другое в блоке цилиндров двигателя. Температура жидкости в системе контролируется указателем, датчик которого установлен в головке блока цилиндров двигателя.
Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа ().
Рисунок 4 – Жидкостный насос (а) и вентилятор (б) двигателя
1 — крыльчатка; 2 — корпус; 3 — окно; 4 — крышка; 5 — подшипник; 6 — вал; 7 — ступица; 8 — винт; 9 — уплотнительное устройство; 10 — патрубок; 11, 13,14 — шкивы; 12 — ремень; 15 — вентилятор; 16 — накладка; 17 – болт
Вал 6 насоса установлен в отлитой из алюминиевого сплава крышке 4 в двухрядном неразборном подшипнике 5. Подшипник размещен и зафиксирован в крышке стопорным винтом 8. На одном конце вала напрессована литая чугунная крыльчатка 1, а на другом конце — ступица 7 и шкив 11 вентилятора 15. При вращении вала насоса охлаждающая жидкость через патрубок 10 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя. Уплотнительное устройство 9, состоящее из самоподжимной манжеты и графитокомпозитного кольца, установленное на валу насоса, исключает попадание жидкости в подшипник вала.
Привод насоса и вентилятора осуществляется клиновым ремнем 12 от шкива 13, который установлен на переднем конце коленчатого вала двигателя. С помощью этого ремня также вращается шкив 14 генератора. Нормальную работу насоса и вентилятора обеспечивает правильное натяжение ремня.
Натяжение ремня регулируют путем перемещения генератора в сторону от двигателя (показано на (а) стрелкой). Насос корпусом 2, отлитым из алюминиевого сплава, крепится к фланцу блока цилиндров в передней части двигателя.
Жидкостный насос с приводом от зубчатого ремня
Рассмотрим устройство насоса, привод которого осуществляется зубчатым ремнем ().
Рисунок 5 – Жидкостный насос двигателя
1 — шкив; 2 — винт; 3 — подшипник; 4 — вал; 5 — корпус; 6 — уплотнительное устройство; 7 — отверстие; 8 — крыльчатка
Вал 4 насоса установлен в корпусе 5 из алюминиевого сплава в неразборном двухрядном шариковом подшипнике 3. Подшипник стопорится в корпусе винтом 2 и уплотняется специальным устройством 6, включающим в себя графитокомпозитное кольцо и манжету. На переднем конце вала напрессован зубчатый шкив 1 из спеченного материала, а на заднем конце — крыльчатка 8. В крыльчатке сделаны два сквозных отверстия 7, которые соединяют между собой полости с охлаждающей жидкостью, расположенные по обе стороны крыльчатки. Благодаря этим отверстиям выравнивается давление охлаждающей жидкости на крыльчатку с обеих сторон, что исключает осевые нагрузки на вал насоса при его работе.
Вал насоса приводится во вращение через шкив 1 зубчатым ремнем привода распределительного вала от коленчатого вала . При вращении вала жидкость поступает к центру крыльчатки и под действием центробежной силы направляется в рубашку охлаждения двигателя. Насос крепится корпусом к блоку цилиндров двигателя через уплотнительную прокладку.
Способствует ускорению прогрева двигателя и регулирует в определенных пределах количество охлаждающей жидкости, проходящей через радиатор. Термостат представляет собой автоматический клапан. В двигателях автомобилей применяют неразборные двухклапанные термостаты с твердым наполнителем.
Рисунок 6
1, 6, 11 – патрубки; 2, 8 – клапаны; 3, 7 – пружины; 4 – баллон; 5 – диафрагма; 9 – шток; 10 – наполнитель
) имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6. Через патрубок 1 термостат соединяется с головкой блока цилиндров двигателя, а через патрубок 11 — с нижним бачком радиатора.Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения.
Основной клапан 8 термостата с пружиной 7 начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3.
При возрастании температуры охлаждающей жидкости более 80 °С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 °С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор.
Расширительный бачок
Расширительный бачок служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери.
На автомобилях применяют полупрозрачные пластмассовые бачки с заливной горловиной, закрываемой пластмассовой пробкой. Через горловину система заполняется охлаждающей жидкостью, а через клапаны, размещенные в пробке, осуществляется связь внутренней полости бачка и системы охлаждения с атмосферой. В пробке расширительных бачков часто имеется один резиновый клапан, срабатывающий при давлении, близком к атмосферному. При сливе охлаждающей жидкости из системы пробку снимают с расширительного бачка. Расширительный бачок размещается в подкапотном пространстве отделения двигателя, где крепится к кузову автомобиля.
Радиаторы автомобилей
Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.
Рисунок 7 – Неразборный радиатор (а) и кожух (б) вентилятора двигателя
1 – пробка; 2 – горловина; 3, 4 – бачки; 5 – сердцевина; 6 – патрубок; 7, 8 – клапаны; 9 – кожух; 10 – уплотнитель
На некоторых двигателях () применяется электровентилятор. Он состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоскости его вращения. Это увеличивает подачу вентилятора и уменьшает шумность его работы. Для более эффективной работы электровентилятор размещен в кожухе 7, который прикреплен к радиатору. Электровентилятор крепится к кожуху на трех резиновых втулках. Включается и выключается электровентилятор автоматически датчиком 3 в зависимости от температуры охлаждающей жидкости.
В настоящее время все прогрессивное человечество использует для передвижения тот или иной автомобильный транспорт (легковые автомобили, автобусы, грузовые автомобили).
Русский энциклопедический словарь толкует слово автомобиль (от авто — подвижной, легко двигающийся), транспортная безрельсовая машина главным образом на колесном ходу, приводимая в движение собственным двигателем (внутреннего сгорания, электрическим или паровым).
Различают автомобили: пассажирские (легковые и автобусы), грузовые, специальные (пожарные, санитарные и другие) и гоночные.
Рост автомобильного парка страны вызвал значительное расширение сети предприятий технического обслуживания и ремонта автомобилей и потребовал привлечение большого количества квалифицированных кадров.
Чтобы справиться с огромным объёмом работ по поддержанию растущего автомобильного парка в технически исправном состоянии, необходимо механизировать и автоматизировать процессы техобслуживания и ремонта автомобилей, резко повысить производительность труда.
Предприятия по техническому обслуживанию и ремонту автомобилей оснащаются более совершенным оборудованием, внедряются новые технологические процессы, обеспечивающие снижение трудоёмкости и повышение качества работ.
Назначение и виды системы охлаждения
Температура газов в камере сгорания в момент воспламенения смеси превышает 2000°С. Такая температура при отсутствии искусственного охлаждения привела бы к сильному нагреву деталей двигателя и их разрушению. Поэтому необходимо воздушное или жидкостное охлаждение двигателя. При воздушном охлаждении не требуются радиатор, водяной насос и трубопроводы, отпадает опасность «размораживания» двигателя зимой при заправке системы охлаждения водой. Поэтому, не смотря на повышенную затрату мощности на приведение в действие вентилятора и затруднённый пуск при низкой температуре применяют воздушное охлаждение на лёгковых машинах и ряде зарубежных автомобилей.
Система охлаждения — жидкостная закрытого типа с принудительной циркуляцией жидкости, с расширительным бачком. Такая система заполняется водой или антифризом, не замерзающим при температуре до минус 40°С.
При чрезмерном охлаждении двигателя увеличиваются потери тепла с охлаждающей жидкостью, неполностью испаряется и сгорает топливо, которое в жидком виде проникает в поддон картера и разжижает масло. Это приводит к снижению мощности и экономичности двигателя и быстрому износу деталей. При перегреве двигателя происходят разложение и коксование масла ускоряющие, отложение нагара, вследствие чего ухудшается отвод тепла. Из-за расширения деталей уменьшаются температурные зазоры, увеличиваются трение и износ деталей, ухудшается наполнение цилиндров. Температура охлаждающей жидкости при работе двигателя должна составлять 85-100°С.
В автомобильных двигателях применяют принудительную (насосную) систему жидкостного охлаждения. Такая система включает рубашки охлаждения цилиндров, радиатор, водяной насос, вентилятор, жалюзи, термостат, сливные краники, указатели температуры охлаждающей жидкости.
Жидкость, циркулирующая в системе охлаждения, воспринимает тепло от стенок цилиндров и их головок и передаёт его через радиатор окружающей среде. Иногда предусматривается направление потока циркулирующей жидкости через водораспределительную трубу или продольный канал с отверстиями в первую очередь к наиболее нагретым деталям (выпуклые клапаны, свечи зажигания, стенки камеры сгорания).
В современных двигателях система охлаждения двигателя используется для подогрева впускного трубопровода, охлаждения компрессора и отопления кабины или пассажирского помещения кузова. В современных автомобильных двигателях применяют закрытые системы жидкостного охлаждения, сообщающиеся с атмосферой через клапаны в пробке радиатора. В такой системе повышается температура кипения воды, закипает вода реже и меньше испаряется.
Устройство, состав и работа системы охлаждения
Устройство системы охлаждения включает в себя: трубку отвода жидкости от радиатора отопителя; патрубок отвода горячей жидкости из головки цилиндров в радиатор отопителя; перепускной шланг термостата; выпускной патрубок рубашки охлаждения; подводящий шланг радиатора; расширительный бачок; рубашку охлаждения; пробку и трубку радиатора; вентилятор и его кожух; шкив; отводящий шланг радиатора; ремень вентилятора; насос охлаждающей жидкости; шланг подачи охлаждающей жидкости в насос; и термостат.
Радиатор предназначен для охлаждения горячей воды, выходящей из рубашки охлаждения двигателя. Располагается он впереди двигателя. Трубчатый радиатор состоит из верхнего и нижнего бачков, соединённых между собой тремя-четырьмя рядами латунных трубок. Поперечно расположенные горизонтальные пластины придают радиатору жесткость и увеличивают поверхность охлаждения. Радиаторы двигателей ЗМЗ-53 и ЗИЛ-130 трубчато-ленточные со змейковыми охлаждающими пластинами (лентами), расположенными между трубками. Системы охлаждения этих двигателей закрытые, поэтому пробки радиатора имеют паровой и воздушный клапаны. Паровой клапан открывается при избыточном давлении 0,45-0,55 кГ/см² (ЗМЗ-24, 53). При открытии клапана избыток воды или пара отводится через пароотводную трубку. Воздушный клапан предохраняет радиатор от сжатия давлением воздуха и открывается при охлаждении воды, когда давление в системе снижается на 0,01-0,10 кГ/см².
Если в системе охлаждения устанавливается расширительный бачок, то паровой и воздушной клапаны располагают в пробке этого бачка (ЗИЛ-131).
Для слива жидкости из системы охлаждения открывают сливные краны блоков цилиндров и сливной кран патрубка радиатора или расширительного бачка.
У двигателей ЗИЛ сливные краны блоков цилиндров и патрубка радиатора имеют дистанционное управление. Рукоятки кранов выведены в подкапотное пространство над двигателем.
Жалюзи створчатого типа предназначены для изменения количества воздуха, проходящего через радиатор. Управляет ими водитель при помощи троса и рукоятки, выведённой в кабину.
Водяной насос служит для создания циркуляции воды в системе охлаждения. Он состоит из корпуса, вала, крыльчатки и самоуплотняющегося сальника. Располагается насос обычно в передней части блока цилиндров и имеет привод клиновидным ремнём от коленчатого вала двигателя. Шкив приводит во вращение одновременно крыльчатку водяного насоса и ступицу вентилятора.
система охлаждение автомобиль ремонт
Самоуплотняющийся сальник состоит из резинового уплотнителя, графитизированной текстолитовой шайбы, обоймы и пружины, прижимающей шайбу к торцу подводящего патрубка.
Вентилятор предназначен для усиления потока воздуха, проходящего через радиатор. Вентилятор имеет обычно 4-6 лопастей. Для снижения шума лопасти располагают Х-образно, попарно под углом 70 и 110°. Изготовляют лопасть из листовой стали или пластмассы.
Лопасти имеют отогнутые концы (ЗМЗ-53, ЗИЛ-130), что улучшает вентиляцию подкапотного пространства и повышает производительность вентиляторов. Иногда вентилятор располагают в кожухе, который способствует повышению скорости воздуха, просасываемого через радиатор.
Для уменьшения мощности, необходимой для привода вентилятора, и улучшения работы системы охлаждения применяют вентиляторы с электромагнитной муфтой (ГАЗ-24 «Волга»). Эта муфта автоматически отключает вентилятор, когда температура воды в верхнем бачке радиатора ниже 78-85°С.
Термостат автоматически поддерживает устойчивый тепловой режим двигателя. Как правило, устанавливают на выходе охлаждающей жидкости из рубашек охлаждения головок цилиндров или впускного трубопровода двигателя. Термостаты могут быть жидкостные и с твёрдым наполнителем.
В жидкостном термостате имеется гофрированный баллон, заполненный легко испаряющейся жидкостью. Нижний конец баллона закреплён в корпусе термостата, а к штоку с верхнего конца припаян клапан.
При температуре охлаждающей жидкости ниже 78°С клапан термостата закрыт, и вся жидкость через перепускной шланг направляется обратно в водяной насос, минуя радиатор. Вследствие этого ускоряется перегрев двигателя и впускного трубопровода.
Когда температура превысит 78°С, давление в баллоне увеличивается, он удлиняется и приподнимает клапан. Горячая жидкость через патрубок и шланг направляется в верхний бачок радиатора. Клапан полностью открывается при температуре 91°С (ЗМЗ-53). Термостат с твёрдым наполнителем (ЗИЛ-130) имеет баллон, заполненный церезином и закрытый резиновой диафрагмой. При температуре 70-83°С церезин плавится, расширяясь, перемещает вверх диафрагму, буфер и шток. При этом открывается клапан и охлаждающая жидкость начинает циркулировать через радиатор.
При снижении температуры церезин затвердевает и уменьшается в объёме. Под действием возвратной пружины клапан закрывается, а диафрагма опускается вниз.
В двигателях автомобилей ВАЗ-2101 «Жигули» термостат выполнен двухклапанным и устанавливается перед водяным насосом. При холодном двигателе большая часть охлаждающей жидкости будет циркулировать по кругу: водяной насос→блок цилиндров→головка цилиндров→термостат→водяной насос. Параллельно жидкость циркулирует через рубашки впускного трубопровода и смесительной камеры карбюратора, а при открытом кране отопителя пассажирского помещения — через его радиатор.
Когда двигатель прогрет не полностью (температура жидкости ниже 90°С), оба клапана термостата частично открыты. Часть жидкости поступает к радиатору.
При полностью прогретом двигателе основной поток жидкости из головки цилиндров направляется в радиатор системы охлаждения.
Для контроля за температурой охлаждающей жидкости служат сигнальные лампы и указатели на щитке приборов. Датчики контрольно-измерительных приборов размещаются в головках цилиндров, верхнем бачке радиатора и рубашке охлаждения впускного трубопровода.
Особенности устройстваНасос охлаждающей жидкости центрального типа, приводится в действие от шкива коленчатого вала клиновидным ремнём. Вентилятор имеет четырёхлопастную крыльчатку, которая крепится болтами к ступице шкива, приводится в действие от ремня привода насоса. Термостат с твёрдым чувствительным наполнителем имеет основной и перепускной клапаны. Начало открытия основного клапана при температуре охлаждающей жидкости 77-86°С, ход основного клапана не менее 6 мм. Радиатор — вертикальный, трубчатопластинчатый, с двумя рядами трубок и стальными лужеными пластинами. В пробке заливной горловины имеются впускной и выпускной клапаны.
Предупреждение.
Проверка уровня и плотности жидкости в системе охлажденияПравильность заправки системы охлаждения проверяется по уровню жидкости в расширительном бачке, который на холодном двигателе (при 15-20°С) должен находиться на 3-4 мм выше метки «MIN», нанесённой на расширительном бачке.
Предупреждение. Уровень охлаждающей жидкости рекомендуется проверять на холодном двигателе, т.к. при нагревании её объём увеличивается и у прогретого двигателя уровень жидкости может значительно подняться.
При необходимости проверяйте ареометром плотность охлаждающей жидкости, которая должна быть 1,078-1,085 г/см³. При низкой плотности и при высокой (больше 1,085-1,095 г/см³) повышается температура начала кристаллизации жидкости, что может привести к её замерзанию в холодное время года. Если уровень жидкости в бачке ниже нормы, то доливайте дистиллированную воду. Если плотность нормальная, доливайте жидкость той же плотности и марки, какая находится в системе. Если ниже нормы, доведите её до неё, используя жидкость ТО-СОЛ-А.
Заправка системы охлаждения жидкостьюЗаправка производится при смене охлаждающей жидкости или после ремонта двигателя. Операции по заправке выполняйте в следующем порядке:
1. Снимите пробки с радиатора и с расширительного бачка и откройте кран отопителя;
2. Залейте охлаждающую жидкость в радиатор, а затем и в расширительный бачок, предварительно поставив пробку радиатора. Закройте пробкой расширительный бачок;
3. Запустите двигатель и дайте ему поработать на холостом ходу 1-2 мин для удаления воздушных пробок. После остывания двигателя проверьте уровень охл. жид. Если уровень ниже нормального, а в системе охлаждения нет следов подтекания, то долейте жидкость.
Регулировка натяжения ремня привода насоса
Натяжение ремня проверяется прогибом между шкивами генератора насоса или между насоса и коленчатого вала. При нормальном натяжении ремня прогиб «А» под усилием 10 кгс (98Н) должен быть в пределах 10-15 мм, а прогиб «В» в пределах 12-17 мм. Для увеличения натяжения ремня ослабив гайки крепления генератора, сместите его от двигателя и затяните гайки.
Насос охлаждающей жидкостиДля разборки насоса: — отсоедините корпус насоса от крышки; — закрепите крышку в тисках, используя прокладки, и снимите крыльчатку валика съёмником А.40026; — снимите ступицу шкива вентилятора с валика при помощи съёмника А.40005/1/5; — выверните стопорный винт и выньте подшипник с валиком насоса; — удалите сальник из крышки корпуса.
Проверьте осевой зазор в подшипнике (не должен превышать 0,13 мм при нагрузке 49Н (5 кгс)), особенно если отмечался значительный шум насоса. При необходимости подшипник замените. Сальник насоса и прокладку между насосом и блоком цилиндров при ремонте рекомендуется заменять. Осмотрите корпус и крышку насоса деформации или трещины не допускаются
Сборка насоса: — установите оправкой сальник, не допуская перекоса, в крышку корпуса; — запрессуйте подшипник с валиком в крышку так, чтобы гнездо стопорного винта совпало с отверстием в крышке корпус насоса; — заверните стопорный винт подшипника и зачеканьте контуры гнезда, чтобы винт не ослабевал; — напрессуйте с помощью приспособления А.60430 на валик ступицу шкива, выдержав размер 84,4+0,1 мм. Если ступица из металлокерамики, то после снятия напрессовывать только новую; — напрессуйте крыльчатку на валик с помощью приспособления А.60430, обеспечивающего технологически зазор между лопаткам крыльчатки и корпусом насоса 0,9-1,3 мм; — соберите корпус насоса с крышкой, установите между ними прокладку.
ТермостатУ термостата следует проверять температуру начала открытия и ход основного клапана. Для этого термостат установите на стенде БС-106-000, опустив в бак с водой или охл. жид. Снизу в основной клапан уприте кронштейн ножки индикатора. Начальная температура жидкости в баке должна быть 73-75°С. Температура жидкости постепенно увеличивается примерно на 1°С/м при постепенном окрашивании, чтобы она во всём объёме жидкости была одинаковой. За температуру начала открытия клапана принимается та, при которой ход основного клапана составит 0,1 мм. Термостат необходимо заменять, если температура начала открытия основного клапана не находится в пределах 81+ 5\4 °С или ход клапана менее 6 мм. Простейшая проверка термостата может быть осуществлена на ощупь непосредственно на автомобиле. После пуска холодного двигателя при исправном термостате нижний бачок радиатора должен нагреваться, когда стрелка указателя температуры жидкости находится примерно на расстоянии 3-4 мм от красной зоны шкалы, что соответствует 80-85°С.
РадиаторЧтобы снять радиатор с автомобиля: — слейте из него и блока цилиндров жидкость, удалив сливные пробки в нижнем бачке радиатора и на блоке цилиндров; кран отопителя кузова при этом откройте, а пробку радиатора удалите с наливной горловины; — отсоедините от радиатора шланги; — снимите кожух вентилятора; — отверните болты крепления радиатора к кузову, выньте радиатор из отсека двигателя.
Герметичность проверяется в ванне с водой. Заглушив патрубки радиатора, подведите к нему воздух под давлением 0,1 МПа (1 кгс/см²) и опустите в ванну с водой не менее чем на 30 с. При этом не должно наблюдаться травление воздуха. Незначительно повреждение латунного радиатора запаяйте мягким припоем, а при значительных замените на новый.
Ремонт системы охлаждения
Основные возможные дефекты деталей водяного насоса : сколы и трещины корпуса, срыв резьбы в отверстиях, износ посадочных мест под подшипники и упорную втулку; изгиб и износ посадочного места под крыльчатку на валике, под втулками, сальниками и шкивами вентиляторов; износ, трещины и коррозия поверхности лопаток крыльчатки; износы внутренней поверхности втулок и шпоночной канавки. Корпус насоса охлаждения изготавливают у ЗИЛ-130 из алюминиевого сплава АЛ4, корпус подшипников — из серого чугуна; у ЗМЗ-53 — из СЧ 18-36, у ЯМЗ КамАЗ — из СЧ 15-32. Основные дефекты корпуса подшипников водяного насоса двигателя ЗИЛ-130: износ торцевой поверхности под упорную шайбу; обломы торца гнезда и износ отверстия под задний подшипник; и износ отверстия под передний подшипник.
Трещины и обломы корпуса заваривают или заделывают синтетическими материалами. Сколы на фланце и трещины на корпусе устраняют сваркой. Деталь предварительно нагревают. Рекомендуется заварку производить ацетилено-кислородным нейтральным пламенем. Трещины можно заделывать эпоксидной смолой. Изношенные поверхности под подшипники при зазорах не более 0,25 мм следует восстанавливать герметиками «Унигерм-7» и «Унигерм-11». При зазоре более 0,25 мм для устранения дефекта требуется ставить тонкие (толщиной до 0,07 мм) стальные ленты.
Погнутый валик правят под прессом, а изношенный менее допустимого восстанавливают хромированием и последующим шлифованием до номинального размера. Изношенную шпоночную канавку на валу заваривают, а затем фрезеруют новую канавку под углом 90-180° к старой.
Крыльчатки можно изготавливать литьём из алюминиевого сплава или капрона. При этом ступица (втулка) должна быть стальной.
После восстановления корпус насоса охлаждения должен отвечать следующим техническим требованиям: торцевое биение поверхности корпуса подшипников под упорную шайбу крыльчатки относительно оси отверстий под подшипники не более 0,050 мм; биение торцевой поверхности бурта корпуса подшипников под корпус насоса относительно отверстий под подшипники не более 0,15 мм; шероховатость поверхности корпуса подшипников под упорную шайбу крыльчатки не более Rа=0,80 мкм, поверхностей отверстий под подшипники не более Rа=1,25 мкм.
Валики насосов охлаждения изготавливают у ЗИЛ и ЗМЗ из стали 45, HRC 50-60; у ЯМЗ — из стали 35, HB 241-286; у КамАЗ — из стали 45Х, HRC 24-30. Основные дефекты валика: износы поверхности под подшипники; износ шейки под крыльчатку; износ паза; повреждение резьбы.
Изношенные поверхности восстанавливают наплавкой в среде углекислого газа с последующим хромированием или железнением с последующим шлифованием на бесцентрово-шлифовальном станке. На уплотнительной шайбе допускаются риски и износ на глубину не более 0,5 мм. При большем износе шайбу заменяют. При установке валика следует заложить 100 г смазки «Литол-24» в межподшипниковую полость. Уплотняющую шайбу и торец опорной втулки перед установкой следует покрыть тонким слоем герметика или смазкой, состоящей по массе из 60% дизельного масла и 40% графита.
Изношенную или повреждённую резьбу в отверстиях восстанавливают нарезанием резьбы ремонтного размера или заваркой с последующим нарезанием резьбы номинального размера.
После сборки зазор между корпусом водяного насоса и лопастями крыльчатки должен быть 0,1…1,5 мм и валик легко вращаться.
Водяные насосы обкатывают и испытывают на специальных стендах, например насосы двигателей ЯМЗ-240Б — на стенде ОР-8899, двигателей Д-50 и Д-240 — на КИ-1803, двигателя ЗМЗ-53 — на ОР-9822. Обкатку выполняют за 3 мин при температуре воды 85…90°С и испытывают по режиму.
Каждый отремонтированный насос проверяют на герметичность при давлении 0,12…0,15 МПа. Утечка воды через уплотнения и резьбу шпилек не допускается.
Возможные дефекты деталей вентиляторов следующие: износ посадочных мест в шкивах под наружные кольца подшипников качения, износ ручьев в шкивах под ремень, ослабление заклёпок на крестовине, изгиб крестовине и лопастей.
Изношенные посадочные места под подшипники восстанавливают железнением, хромированием. Изношенные ручьи шкивов (до 1мм) протачивают. Ослабленные заклёпки на крестовине лопастей подтягивают. Если отверстия под заклёпки изношены, их рассверливают и ставят заклёпки увеличенного диаметра. Передние кромки лопастей после переклёпки должны лежать в одной плоскости с отклонением не более 2 мм. Шаблоном проверяют форму лопастей вентиляторов и угол их наклона относительно плоскости вращения, который должен быть в пределах 30…35° (при необходимости правят).
Собранный со шкивом вентилятор статически балансируют. Для устранения дисбаланса сверлят углубления дисбаланса сверлят углубления в торце шкивов или утяжеляют лопасть с её выпуклой стороны приваркой или приклёпыванием пластинки.
Если в гидромуфте привода вентилятора подтекает масло через уплотнения, есть осевой зазор и заедание ведомого и ведущего валов при вращении лопастей крыльчатки и шкива от руки, необходим ремонт.
В деталях гидромуфты дефекты аналогичны дефектам деталей вентиляторов. Это обусловливает и подобные способы их устранения. Шариковые подшипники гидромуфты необходимо заменять при осевом и радиальном зазоре более 0,1 мм.
При сборке зазор между ведомым и ведущим колёсами гидромуфты должен быть 1,5…2 мм. Шкив привода гидромуфты при неподвижной ступице вентилятора и, наоборот, ступица при неподвижном шкиве должны вращаться свободно. Термосиловой датчик включателя гидромуфты регулируют постановкой регулировочных шайб на включение при температуре охлаждающей жидкости 90…95°С и на выключение при её температуре 75…80°С.
Радиаторы системы охлаждения изготавливают из: верхние и нижние бачки и трубки — латунь, охлаждающие пластины — медь, каркас и латунь; бачки масляных радиаторов — сталь.
Радиаторы могут иметь следующие основные дефекты: отложения накипи на внутренних стенках трубок и резервуаров, их повреждения и загрязнения наружных поверхностей трубок, сердцевины, охлаждающих пластин и пластин каркаса, течь трубок, пробоины, вмятины или трещины на бачках, нарушение герметичности в местах пайки. После снятия с автомобиля радиатор поступает на участок ремонта, где его моют снаружи и дефектуют внешним осмотром и проверкой на герметичность сжатым воздухом под давлением 0,15 МПа для масляных радиаторов в ванне с водой при температуре 30…50°С. При испытании, герметизируя резиновыми пробками, водяной радиатор заполняют водой и создают насосом избыточное давление: в течение 3…5 мин радиатор не должен давать утечек. При обнаружении подтеканий радиатор разбирают, помещают сердцевину в ванну с водой и, подавая воздух по шлангу от ручного насоса в каждую трубку, по пузырькам определяют место повреждения. Загрязнение и накипь удаляют в установках, обеспечивающих подогрев раствора до 60-80°С, его циркуляцию и последующую промывку радиатора водой. Отверстия закрывают резиновыми пробками, через одну из которых поступает по шлангу на наличие дефектов. Когда радиаторы ремонтируют без разборки (не снимая бочков), то испытание на герметичность осуществляют после удаления накипи.
Течь трубок устраняют пайкой. Повреждённые трубки, расположенные во внутренних рядах, запаивают (заглушают) с обоих концов. Допускается запаивать до 5% трубок, при большем их числе повреждённые трубки заменяют. Заменяют на новые заглушенные трубки и трубки, имеющие большие вмятины. Для этого через трубки продувают горячий воздух, нагретый до 500-600°С в змеевике, укреплённом на паяльной лампе. Когда припой расплавится, трубку извлекают специальными пассатижами с язычком с размерами и формой, соответствующей сечению отверстия трубки. Отпаивать трубки можно шомполом, нагретым до 700-800°С в горне, или пропускать по нему электрический ток от сварочного трансформатора. Старые трубки извлекают и вставляют новые или отремонтированные по направлению усиков охлаждающих пластин. Трубки припаивают к опорным пластинам припоем.
По другой технологии дефектную трубку развальцовывают на большой диаметр (используют шомпол квадратного сечения для круглых трубок или ножевидный с уширением на конце для плоских) и вставляют новую, припаивая её по концам к опорным пластинам.
Общее число вновь установленных или гильзованных трубок для дизелей не должно быть более 20% от общего их числа, а для карбюраторных двигателей — 25%.
При больших повреждениях после отпайки опорных пластин вырезают дефектную часть радиатора (используют ленточные пилы и вместо неё устанавливают такую же часть радиатора из другого выбракованного, припаивая все трубки к опорным пластинам.
Трещины в чугунных резервуарах устраняют сварочным способом. В резервуарах из латуни, трещины и разрывы устраняют пайкой.
Вмятины бачков устраняют рихтовкой, для чего бачок надевают на деревянную болванку и деревянным молотком выравнивают повреждения. Пробоины устраняют постановкой заплат из листовой латуни с последующей припайкой их. Трещины запаивают.
Повреждения пластин каркаса устраняют газовой сваркой. Помятые пластины радиатора выпрямляют при помощи гребёнки.
Отремонтированный радиатор проверяют в ванне, предварительно накачав в него воздух.
Операции по ремонту масляных радиаторов аналогичны операциям по ремонту водяных. Смолистые отражения в них удаляют в препарате АМ-15. Пайку трубок к бачкам выполняют медно-цинковым припоем ПМЦ газовой сваркой. Испытывают масляные радиаторы под давлением 0,3 МПа.
При ремонте термостатов — удаляют накипь. Повреждение места пружинной коробки запаивают припоем ПОС-40. Пружинные коробки заполняют 15% -ным раствором этилового спирта.
При испытании термостата в ванне с водой начала открытия клапана должно быть 70°С, а полное открытие — при 85°С. Высота полного подъёма клапана 9-9,5 мм. Её регулируют, вращая клапан на резьбовом конце хвостовика пружинной коробки.
Заключение
В техобслуживание автомобилей всё шире внедряются методы диагностики с использованием электронной аппаратуры. Диагностика позволяет своевременно выявить неисправности агрегатов и систем автомобиля и устранить их до того, как они вызовут серьёзные нарушения. Объективные методы оценки технического состояния агрегатов и узлов автомобиля помогают вовремя устранить дефекты, которые способны вызвать аварийную ситуацию, что повышает безопасность дорожного движения.
Применение современного оборудования для выполнения работ по техническому обслуживанию и ремонту автомобилей облегчает и ускоряет многие производственные процессы, но требует от обслуживающего персонала усвоения определённого круга знаний и навыков: устройство автомобиля, основные технологические процессы техобслуживания и ремонта, умение пользоваться современными контрольно-измерительными приборами, инструментами и приспособлениями.
Для изучения устройства и процессов работы механизмов автомобиля необходимы знания физики, химии, основ электротехники в объёме программ средних школ.
Применение современного оборудования и приспособлений для выполнения монтажно-демонтажных работ ремонта автомобиля не исключает необходимости освоения навыков общеслесарных работ, которыми должен владеть рабочий, занимающийся ремонтом.
Хорошо организованное техобслуживание, своевременное устранение неисправностей в агрегатах и системах автомобиля, при высококвалифицированном выполнении работ, позволяют повысить долговечность автомобилей, снизить их простои, увеличить сроки межремонтных пробегов, что в конечном счёте значительно сокращает непроизводительные издержки и повышает рентабельность эксплуатации автотранспортных средств.
Устройство и принцип действия радиатора охлаждения двигателя
Радиатор охлаждения двигателя — Служит для выполнения очень важной функции. Для поддержания нужной для работы двигателя температуры. При запуске двигателя радиатор, не несет ни какой функции, это способствует быстрому прогреву двигателя. Когда двигатель достигает нужной температуры, термостат подключается в работу и помогает радиатору, чтобы двигатель не перегрелся. Если долгое время двигатель проработал на высоких оборотах, то температура жидкости всё же повышается. То к работе радиатора подключается вентилятор, нагоняя воздушный поток через середину радиатора, чтобы теплообмен был интенсивнее.
Радиатор охлаждения двигателя охлаждает жидкость, поступающую из двигателя и циркулирующую по трубкам. Радиатор состоит из двух баков, верхнего и нижнего, а так же сердцевины и деталей крепления.
В систему охлаждения жидкость заливают через горловину бака которая расположена вверху и закрыта крышкой. Жидкость которая проходит через сердцевину радиатора, разделяется на множество струек, для обеспечения более интенсивного охлаждения за счет увеличения площади соприкосновения жидкости со стенками трубок радиатора.
Работу системы охлаждения обеспечивает система управления двигателем.
Охлаждающая жидкость в системе имеет принудительную циркуляцию, которую обеспечивает центробежный насос. Потом горячая жидкость идет в радиатор на счет чего и происходит отвод тепла в окружающую среду. Тут цикл заканчивается, а вот охлажденная жидкость заново повторяет цикл.
Учитывая вышесказанное можно сказать что радиатор обеспечивает охлаждение жидкости как теплообменник. Для обеспечения более эффективной работы радиатора, обычно перед двигателем устанавливают специальный вентилятор радиатора. Этот вентилятор начинает работать автоматически с помощью специального термодатчика при повышения доступной температуры рабочего двигателя.
% PDF-1.4 % 18 0 obj> эндобдж xref 18 825 0000000016 00000 н. 0000018159 00000 п. 0000016796 00000 п. 0000018239 00000 п. 0000018418 00000 п. 0000029574 00000 п. 0000030008 00000 п. 0000030457 00000 п. 0000030615 00000 п. 0000030844 00000 п. 0000031067 00000 п. 0000031306 00000 п. 0000031382 00000 п. 0000033979 00000 п. 0000035727 00000 п. 0000037379 00000 п. 0000039077 00000 н. 0000041217 00000 п. 0000043316 00000 п. 0000043446 00000 п. 0000043594 00000 п. 0000043628 00000 п. 0000043914 00000 п. 0000044135 00000 п. 0000046101 00000 п. 0000050056 00000 п. 0000057127 00000 п. 0000057356 00000 п. 0000057540 00000 п. 0000060209 00000 п. 0000060387 00000 п. 0000060533 00000 п. 0000060669 00000 п. 0000060846 00000 п. 0000060986 00000 п. 0000061119 00000 п. 0000061296 00000 п. 0000061445 00000 п. 0000061588 00000 п. 0000061769 00000 п. 0000061918 00000 п. 0000062095 00000 п. 0000062277 00000 п. 0000062456 00000 п. 0000062599 00000 н. 0000062786 00000 п. 0000062973 00000 п. 0000063113 00000 п. 0000063265 00000 п. 0000063452 00000 п. 0000063604 00000 п. 0000063737 00000 п. 0000063880 00000 п. 0000064070 00000 п. 0000064222 00000 п. 0000064413 00000 п. 0000064549 00000 п. 0000064739 00000 п. 0000064897 00000 п. 0000065037 00000 п. 0000065225 00000 п. 0000065415 00000 п. 0000065577 00000 п. 0000065723 00000 п. 0000065866 00000 п. 0000066031 00000 п. 0000066225 00000 п. 0000066393 00000 п. 0000066585 00000 п. 0000066734 00000 п. 0000066904 00000 п. 0000067096 00000 п. 0000067251 00000 п. 0000067416 00000 п. 0000067588 00000 п. 0000067779 00000 п. 0000067922 00000 п. 0000068094 00000 п. 0000068287 00000 п. 0000068459 00000 п. 0000068595 00000 п. 0000068765 00000 п. 0000068935 00000 п. 0000069129 00000 п. 0000069279 00000 п. 0000069451 00000 п. 0000069643 00000 п. 0000069816 00000 п. 0000069975 00000 п. 0000070149 00000 п. 0000070323 00000 п. 0000070516 00000 п. 0000070689 00000 п. 0000070855 00000 п. 0000071048 00000 п. 0000071219 00000 п. 0000071412 00000 п. 0000071583 00000 п. 0000071754 00000 п. 0000071943 00000 п. 0000072114 00000 п. 0000072289 00000 п. 0000072463 00000 п. 0000072634 00000 п. 0000072768 00000 н. 0000072965 00000 п. 0000073158 00000 п. 0000073299 00000 н. 0000073473 00000 п. 0000073641 00000 п. 0000073812 00000 п. 0000073985 00000 п. 0000074178 00000 п. 0000074319 00000 п. 0000074485 00000 п. 0000074676 00000 п. 0000074850 00000 п. 0000075023 00000 п. 0000075216 00000 п. 0000075384 00000 п. 0000075564 00000 п. 0000075735 00000 п. 0000075908 00000 п. 0000076099 00000 п. 0000076252 00000 п. 0000076431 00000 п. 0000076604 00000 п. 0000076778 00000 п. 0000076978 00000 п. 0000077152 00000 п. 0000077335 00000 п. 0000077508 00000 п. 0000077705 00000 п. 0000077878 00000 н. 0000078060 00000 п. 0000078234 00000 п. 0000078432 00000 п. 0000078605 00000 п. 0000078785 00000 п. 0000078958 00000 п. 0000079154 00000 п. 0000079332 00000 п. 0000079505 00000 п. 0000079679 00000 п. 0000079871 00000 п. 0000080042 00000 п. 0000080222 00000 п. 0000080395 00000 п. 0000080593 00000 п. 0000080737 00000 п. 0000080926 00000 п. 0000081099 00000 п. 0000081272 00000 п. 0000081469 00000 п. 0000081642 00000 п. 0000081825 00000 п. 0000081998 00000 п. 0000082154 00000 п. 0000082356 00000 п. 0000082515 00000 п. 0000082696 00000 п. 0000082876 00000 п. 0000083049 00000 п. 0000083248 00000 н. 0000083425 00000 п. 0000083612 00000 п. 0000083746 00000 п. 0000083919 00000 п. 0000084063 00000 п. 0000084266 00000 п. 0000084429 00000 п. 0000084606 00000 п. 0000084747 00000 п. 0000084888 00000 н. 0000085061 00000 п. 0000085261 00000 п. 0000085417 00000 п. 0000085583 00000 п. 0000085757 00000 п. 0000085933 00000 п. 0000086077 00000 п. 0000086280 00000 п. 0000086460 00000 п. 0000086604 00000 п. 0000086777 00000 п. 0000086982 00000 п. 0000087157 00000 п. 0000087331 00000 п. 0000087504 00000 п. 0000087713 00000 п. 0000087893 00000 п. 0000088066 00000 п. 0000088210 00000 п. 0000088390 00000 н. 0000088600 00000 п. 0000088777 00000 п. 0000088955 00000 п. 0000089136 00000 п. 0000089346 00000 п. 0000089521 00000 п. 0000089696 00000 п. 0000089904 00000 п. 00000
00000 п.
00000 00000 п.
00000 00000 п.
00000 00000 п.
00000 00000 н.
00000
00000 н. 00001 00000 н. 0000191293 00000 н. 0000191443 00000 н. 0000191623 00000 н. 0000191828 00000 н. 0000191997 00000 н. 0000192177 00000 н. 0000192360 00000 н. 0000192561 00000 н. 0000192717 00000 н. 0000192890 00000 н. 0000193069 00000 н. 0000193271 00000 н. 0000193430 00000 н. 0000193599 00000 н. 0000193777 00000 н. 0000193950 00000 н. 0000194119 00000 н. 0000194292 00000 н. 0000194494 00000 н. 0000194663 00000 н. 0000194865 00000 н. 0000195034 00000 н. 0000195203 00000 н. 0000195405 00000 н. 0000195578 00000 н. 0000195747 00000 н. 0000195916 00000 н. 0000196116 00000 н. 0000196314 00000 н. 0000196483 00000 н. 0000196684 00000 н. 0000196886 00000 н. 0000197059 00000 н. 0000197255 00000 н. 0000197428 00000 н. 0000197594 00000 н. 0000197767 00000 н. 0000197933 00000 п. 0000198134 00000 н. 0000198307 00000 н. 0000198516 00000 н. 0000198689 00000 н. 0000198855 00000 н. 0000199065 00000 н. 0000199238 00000 н. 0000199451 00000 н. 0000199614 00000 н. 0000199786 00000 н. 0000199952 00000 н. 0000200158 00000 н. 0000200331 00000 п. 0000200500 00000 н. 0000200707 00000 н. 0000200879 00000 н. 0000201086 00000 н. 0000201252 00000 н. 0000201423 00000 н. 0000201592 00000 н. 0000201801 00000 н. 0000201972 00000 н. 0000202138 00000 н. 0000202347 00000 н. 0000202519 00000 н. 0000202688 00000 н. 0000202897 00000 н. 0000203069 00000 н. 0000203238 00000 н. 0000203441 00000 н. 0000203607 00000 н. 0000203773 00000 н. 0000203980 00000 н. 0000204149 00000 н. 0000204357 00000 н. 0000204559 00000 н. 0000204725 00000 н. 0000204927 00000 н. 0000205099 00000 н. 0000205291 00000 н. 0000205472 00000 н. 0000205631 00000 н. 0000205803 00000 н. 0000205972 00000 н. 0000206119 00000 н. 0000206301 00000 н. 0000206475 00000 н. 0000206650 00000 н. 0000206823 00000 н. 0000207004 00000 н. 0000207181 00000 н. 0000207362 00000 н. 0000207544 00000 н. 0000207725 00000 н. 0000207903 00000 н. 0000208085 00000 н. 0000208262 00000 н. 0000208441 00000 н. 0000208619 00000 н. 0000208800 00000 н. 0000208973 00000 н. 0000209155 00000 н. 0000209324 00000 н. 0000209503 00000 н. трейлер ] >> startxref 0 %% EOF 20 0 obj> поток x ڼ TkW> s &;) SjRggg dw6m4 +
>.| 9s
Введение и принцип работы системы охлаждения — Новости проекта — Новости
Поддерживайте двигатель в нужном температурном диапазоне во всех рабочих условиях. Система охлаждения должна не только предохранять двигатель от перегрева, но и предохранять зимний двигатель от переохлаждения. Системы охлаждения по разным охлаждающим средам можно разделить на воздушные и водяные. Устройство, которое охлаждает тепло высокотемпературной части двигателя непосредственно в атмосферу, называется системой с воздушным охлаждением.Устройство, которое передает тепло охлаждающей воде до того, как она рассеивается в атмосфере, называется системой с водяным охлаждением. Поскольку система водяного охлаждения ровная, эффект хороший, а шум при работе двигателя небольшой, в настоящее время система водяного охлаждения широко используется в автомобильных двигателях. Система охлаждения
Система охлаждения Принцип работы: тепловая нагрузка на части автомобиля, В дополнение к основным движущимся частям из-за трения, поднимающегося тепла, наиболее важная вещь из цилиндра двигателя в высокотемпературный газ, выделяемый теплом.Функция системы охлаждения заключается в передаче тепла от тепла двигателя и вспомогательного устройства трансмиссии в окружающую среду, чтобы двигатель и трансмиссионное устройство могли создать надежную и эффективную рабочую среду. А в зимнюю холодную и ветреную среду систему охлаждения очень легко подключить, работа не нормальная, что приводит к недостаточному нагреву двигателя, напрямую влияет на производительность двигателя, поэтому обслуживание системы охлаждения интуитивно понятно и важно.Система охлаждения
Вся система охлаждения двигателя состоит из двух систем: контуров охлаждающей воды и каналов охлаждающего воздуха. Контур охлаждающей воды включает двигатель, водопровод, термостат, радиатор и насос охлаждающей воды. Охлаждающий воздух проходит через интеркулер, радиатор, вентилятор и двигатель и забирает тепло, выделяемое двигателем. Двигатель является источником тепла для всей системы, энергии, вырабатываемой при сгорании топлива в двигателе, примерно одна треть отводится теплу через стенку цилиндра в систему охлаждения или непосредственно в атмосферу.В контуре охлаждающей воды термостат регулирует поток через регулятор парафинового шарика. Когда термостат не открыт, вода через байпасный канал через насос течет обратно в двигатель, когда термостат открыт, охлаждающая вода в радиатор, выход воды из радиатора и перепускная вода в насосе смешиваются. Что такое градирня? | Какова его цель?
Градирня — это устройство для отвода тепла, которое использует воду для передачи отработанного тепла в атмосферу.Все градирни работают по принципу отвода тепла от воды за счет испарения небольшой части воды, которая рециркулирует через агрегат. Смешивание теплой воды и более холодного воздуха высвобождает скрытую теплоту парообразования, вызывая охлаждение воды. Если вы когда-нибудь смотрите вниз с высотного здания, вы можете заметить квадратные блоки с вентиляторами наверху на зданиях ниже. Это градирни.
Никто не хочет оставаться в здании с плохим кондиционером — по крайней мере, ненадолго.С другой стороны, здания с отличным охлаждением вызывают желание вернуться, даже если просто чтобы насладиться воздухом. Это во многом благодаря продолжающейся модернизации и инновациям коммерческих систем градирен.
Для чего нужна градирня?
Водяная градирня используется для охлаждения воды и представляет собой огромный теплообменник, отводящий тепло здания в атмосферу и возвращающий более холодную воду в охладитель. В градирню поступает теплая вода от чиллера.Эта теплая вода известна как вода конденсатора, потому что она нагревается в конденсаторе чиллера. Чиллер обычно находится на более низком уровне, например, в подвале. Роль градирни заключается в охлаждении воды, чтобы она могла вернуться в чиллер для сбора большего количества тепла.
Как работает градирня?
Оборудование для кондиционирования воздуха и производственные процессы могут генерировать тепло в виде тонн горячей воды, которую необходимо охлаждать. Вот тут-то и пригодятся промышленные градирни.Перегретая вода проходит через градирню, где она рециркулирует и подвергается воздействию холодного сухого воздуха. Тепло уходит из рециркулирующей воды градирни за счет испарения. Затем более холодная вода повторно поступает в оборудование для кондиционирования воздуха или в процесс, чтобы охладить это оборудование, и цикл охлаждения повторяется снова и снова. Когда теплый конденсатор попадает в градирню, вода проходит через несколько форсунок, которые разбрызгивают воду небольшими каплями по всей заливке, что увеличивает площадь поверхности воды и обеспечивает лучшую потерю тепла за счет большего испарения.Назначение вентилятора наверху градирни — подавать воздух из нижней части градирни и перемещать его вверх и наружу в направлении, противоположном направлению теплой воды конденсатора в верхней части агрегата. Воздух переносит тепло через испаряющуюся воду из градирни в атмосферу.
Зачем нужны градирни?
Промышленная градирня является ключевым компонентом многих холодильных систем и используется в таких отраслях, как электростанции, химическая обработка, сталелитейные заводы и многие производственные компании, где необходимо технологическое охлаждение.Кроме того, коммерческие градирни можно использовать для обеспечения комфортного охлаждения больших коммерческих зданий, таких как аэропорты, школы, больницы или гостиницы.
Промышленная градирня может быть больше, чем система HVAC, и используется для отвода тепла, поглощаемого в системах циркуляции охлаждающей воды, используемых на электростанциях, нефтеперерабатывающих заводах, нефтехимических заводах, заводах по переработке природного газа, предприятиях пищевой промышленности и других промышленных объектах. .
В связи с увеличением численности населения во всем мире наблюдается огромный рост потребностей и требований мира к производимой продукции.Это вынудило промышленный сектор производить все больше и больше продукции каждый день, что генерирует больше тепла в процессе производства. Машины и процессы в отраслях промышленности, которые выделяют огромное количество тепла, должны постоянно охлаждаться, чтобы эти машины могли продолжать работать эффективно. Самым эффективным, действенным и наименее дорогим решением для отвода этого тепла является установка градирни.
Типы градирен
Системы градирен часто имеют жизненно важное значение для промышленных процессов.Эти высокие цилиндрические конструкции с открытым верхом отвечают за охлаждающую воду, создаваемую промышленным потоком охлаждающего воздуха для комфортного охлаждения. Они классифицируются по типу тяги (естественная или механическая) и по направлению воздушного потока (встречная или поперечная).
Системы градирни с естественной тягойобычно используются на крупных электростанциях и в промышленности с бесконечным потоком охлаждающей воды. Башня работает за счет отвода отработанного тепла за счет поднимающегося горячего воздуха, который затем выбрасывается в атмосферу.Эти башни высокие и имеют гиперболическую форму для создания надлежащего воздушного потока.
Системы градирни с механической тягойимеют воздух, нагнетаемый через конструкцию вентилятором, который циркулирует воздух через градирню. Обычные вентиляторы, используемые в этих башнях, включают пропеллерные и центробежные вентиляторы. Хотя градирни с механической тягой более эффективны, чем градирни с естественной тягой, они потребляют больше энергии и в результате обходятся дороже.
Системы с поперечными градирнямиимеют конструкцию, которая позволяет воздуху проходить горизонтально через наполнитель и конструкцию башни в открытую зону нагнетания.Горячая вода течет из распределительных бассейнов вниз. Однако вентиляторы и моторный привод требуют защиты от атмосферных воздействий и влаги, которая может привести к замерзанию, что сделает их менее эффективными.
Противоточные градирниимеют конструкцию, в которой воздух движется вверх, а противоток с горячей водой опускается вниз для охлаждения воздуха. Это обеспечивает максимальную производительность на всех участках плана и помогает минимизировать требования к напору насоса. Кроме того, системы противоточных градирен с меньшей вероятностью замерзнут в холодных погодных условиях и могут сэкономить энергию в долгосрочной перспективе.Все градирни Delta являются противоточными с этими преимуществами.
Системы градирни с принудительной тягойобычно устанавливаются с вентилятором в верхней части градирни, который пропускает горячий воздух и всасывает воздух. Высокая скорость выходящего воздуха снижает вероятность рециркуляции. Чтобы избежать улавливания капель воды в выходящем потоке воздуха, используются каплеуловители. Башни с принудительной тягой более эффективны, поскольку они потребляют на 30–75% меньше энергии по сравнению с конструкциями с принудительной тягой.
Системы градирни с принудительной тягойЭти системы градирни похожи на систему с принудительной тягой, но основное отличие состоит в том, что вентилятор, перемещающий воздух, расположен у основания градирни, что позволяет воздуху дуть снизу. Их использование ограничено из-за проблем с распределением воды, мощных вентиляторов и возможности рециркуляции.
Какой лучший материал для градирни?
Системы с водяным охлаждением в основном изготавливаются из трех материалов: металла, стекловолокна или пластика.Как вы знаете, металл может ржаветь и разъедать, а все, что внутри него, со временем может начать протекать. Неудивительно, что металлические градирни имеют средний срок хранения всего до 15 лет и требуют обслуживания с помощью эпоксидной краски, герметиков и т. Д. Такое обслуживание может привести к простою вашего бизнеса.
Каковы преимущества использования инженерного пластика?
Инженерный пластик разработан, чтобы противостоять износу. Он не ржавеет и не скалывается, и он может выдерживать суровые условия окружающей среды.Он также практически не требует обслуживания. Полиэтилен высокой плотности (HDPE), лучший в своем классе пластик, используемый Delta Cooling Systems, является бесшовным и устойчивым к коррозии, вызываемой окружающей средой, в отличие от градирен из металла или стекловолокна. При ожидаемом сроке службы более 20 лет вы можете установить его один раз, зная, что вам не придется беспокоиться об этом впоследствии.
Достижения в производстве и проектировании современных пластиковых градирен превратили использование градирен из ценного вспомогательного инструмента в средство повышения производительности и экономии средств. Промышленные градирни заводской сборки, образованные из формованных пластиков, продолжали приобретать популярность по сравнению с моделями из оцинкованного листового металла, которые когда-то доминировали в индустрии градирен. Есть много причин, по которым вы можете рассмотреть конструктивную пластиковую градирню, чтобы снизить затраты и лучше удовлетворить ваши технологические потребности:
- Срок службы — Стандартные металлические градирни имеют кожухи с тонкими листами из оцинкованной стали. Эти листы обычно имеют сварные швы, которые могут испортиться в течение года и потребуют повторной сварки, исправления или покрытия для предотвращения утечки.Кроме того, очищенная вода имеет тенденцию разрушать оцинкованный металл, по существу изнашивая его за чрезвычайно короткое время. Условия окружающей среды, такие как солнечный свет, загрязнение, соленый воздух и агрессивные химические вещества, также способствуют преждевременному упадку оцинкованной стали. Даже загрязнение окружающего воздуха может повлиять на оцинкованную сталь, что приведет к преждевременному выходу из строя. Поскольку металл расширяется и сжимается в зависимости от температуры, повторяющиеся циклы вызывают напряжение, которое также может ускорить коррозию, ржавчину и утечку.Даже низкосортные варианты корпуса из нержавеющей стали, нержавеющая сталь серии 300, подвергаются атакам и изнашиваются под воздействием химикатов для обработки воды и факторов окружающей среды.
- Гибкая модульная конструкция — В прошлом пластиковые градирни были слишком маленькими для многих промышленных процессов. По этой причине градирни из оцинкованного металла традиционно использовались для большинства применений с грузоподъемностью более 250 тонн, но эта ситуация резко изменилась. Delta, например, представила свою TM Series® пластиковых башен заводской сборки, которые можно объединить для обеспечения до 2500 тонн охлаждения в одном модульном блоке.Модульные градирни также облегчают использование дополнительного запаса холодопроизводительности, что может быть полезно при адаптации к рабочей тепловой нагрузке или изменениям оттока или при модернизации для удовлетворения будущих требований к охлаждению.
- Непрерывная и более экономичная работа — Инженерный пластик может также уменьшить ожидаемые и неудобные последствия эксплуатации градирни, в том числе: потребление электроэнергии, химикаты для очистки воды, рабочая сила и материалы для технического обслуживания, а также внеплановые простои технологического процесса для градирни ремонт.Техническое обслуживание и ремонт обычно означают прерывание технологического процесса, что является самой дорогостоящей из всех проблем, связанных с градирнями.
- Более простая установка — Основные преимущества конструкции новейших пластиковых градирен включают также более простую установку, особенно на крышах домов, поскольку легкий пластиковый корпус весит на 40% меньше, чем стальная градирня, но в 5-10 раз толще. Когда модульные градирни объединяются в кластер, установка часто выполняется быстрее и проще.
Какая связь между системами градирни и болезнью легионеров?
По данным Центров по контролю и профилактике заболеваний (CDC), градирни могут быть рассадником бактерий Legionella, микробов, вызывающих болезнь легионеров. Вот почему: бактерии процветают в теплых влажных условиях, что делает градирни идеальной средой. В результате люди могут заразиться болезнью легионеров, которая может вызвать пневмонию, когда они вдыхают капли воды из систем отопления, вентиляции и кондиционирования воздуха, содержащие бактерии Legionella.Фактически, исследование CDC в 2017 году выявило шесть вспышек легионеров в Нью-Йорке, которые привели к 213 случаям заболевания и 18 смертельным исходам. Три из этих вспышек были связаны с градирнями.
Для решения этой проблемы и ответственности общественного здравоохранения компании обрабатывают воду внутри своих промышленных градирен с помощью противомикробных веществ, убивающих бактерии. В качестве еще одной меры предосторожности пластиковые градирни могут быть изготовлены с использованием антимикробных смол, встроенных в материалы и компоненты устройства, чтобы обеспечить дополнительный уровень защиты от легионеллы.Узнайте больше о технологии антимикробных продуктов в Delta Cooling Towers.
Являются ли градирни экологически чистыми?
Учитывая растущую озабоченность по поводу соблюдения экологических стандартов и повышения рентабельности инвестиций в капитальное оборудование, необходимо учитывать некоторые стандарты. Систематический подход к экологизации градирни повысит устойчивость, повысит энергоэффективность, добавит экономии воды и уменьшит углеродный след; все это при одновременном улучшении некоторых ответвлений затрат, связанных с достижением таких зеленых целей.Фактически, предприятия могут сэкономить до 40 процентов на расходах на электроэнергию. В то время как обычные градирни, часто построенные с облицовкой из листового металла, являются экологически сложными и требуют значительного технического обслуживания, альтернатива использования градирен с формованным бесшовным пластиком сразу же выгодна как для окружающей среды, так и для чистой прибыли.
Традиционные металлические башни, которые служат всего несколько лет во многих сферах применения, сталкиваются с экологическими и экономическими проблемами, включая повышенное использование химикатов, более высокие затраты на техническое обслуживание, затраты на замену и требования по утилизации.Спроектированные градирни из пластика HDPE позволяют использовать самые агрессивные доступные варианты очистки воды. Это может позволить пользователям работать с более высокими циклами концентрации, тем самым экономя подпиточную воду. Это может сэкономить десятки тысяч галлонов воды в год. Такая экономия воды и химикатов может быть очень значительной и помочь решить проблемы с водой, а также сэкономить на эксплуатационных расходах. Градирни этой противоточной конструкции также полностью закрывают воду и не пропускают солнечный свет, тем самым уменьшая возможность биологического роста, который требует менее агрессивных химикатов для обработки воды.Узнайте больше об экологически чистых технологиях и продуктах Delta.
Как системы градирни могут помочь предприятиям сэкономить деньги?
Подумайте об этом так: системы градирен важны для многих предприятий, а это означает, что стремление к повышению эффективности операций и продуктов может помочь повлиять на чистую прибыль. Потребление воды может стать серьезным операционным расходом, и градирни могут рециркулировать около 98% воды, используемой для технологического охлаждения или кондиционирования воздуха.Если устройство изготовлено из пластика и использует воду вместо воздуха в качестве метода охлаждения, владельцы бизнеса могут ожидать снижения затрат на электроэнергию, практически полного отсутствия обслуживания и увеличения срока службы продукта по сравнению с более старыми металлическими системами. Это очень желательный сценарий сокращения расходов для любого предприятия. Кроме того, многие клиенты ценят знание того, что предприятия и отрасли, поддерживающие сообщества, заботятся об окружающей среде и работают в направлении экологически рациональных методов работы. Это может не быть фактором экономии денег, но может повысить доверие потребителей.И это тоже хорошо для бизнеса.
Как видите, можно многое узнать о системах градирен. Они не только выполняют функцию, без которой многие из нас не могут жить (это, конечно же, кондиционер), но и высокотехнологичны и, да, круты. Возможно, зная больше о градирнях, вы больше цените прохладный воздух.
Основы градирни: каковы общие термины, связанные с системой охлаждения?
Подход — это разница между температурой холодной воды, выходящей из градирни, и температурой воздуха по влажному термометру.Установление подхода фиксирует рабочую температуру башни и является наиболее важным параметром при определении как размера башни, так и стоимости.
Отвод: — это циркулирующая вода в градирне, которая сбрасывается в отходы, чтобы поддерживать концентрацию растворенных твердых веществ в воде ниже максимально допустимого предела. В результате испарения концентрация растворенных твердых частиц будет постоянно увеличиваться, если не будет снижена за счет слива.
Биоцид: химическое вещество, предназначенное для борьбы с популяцией вредных микробов путем их уничтожения.
Продувка: — это вода, специально сбрасываемая из системы для контроля концентрации солей или других примесей в циркулирующей воде. Единицы измерения% от расхода оборотной воды или галлонов в минуту.
Британская тепловая единица (БТЕ) : тепловая энергия, необходимая для повышения температуры одного фунта воды на один градус по Фаренгейту в диапазоне от 32 ° F до 212 ° F
Диапазон охлаждения: — это разница температур между горячей водой, поступающей в градирню, и холодной водой, выходящей из градирни.
Циклы концентрирования: сравнивает растворенные твердые вещества в подпиточной воде с твердыми веществами, концентрированными за счет испарения в циркулирующей воде. Например, хлориды растворимы в воде, поэтому циклы концентрирования равны отношению хлоридов в оборотной воде к хлоридам в подпиточной воде.
Растворенные твердые вещества : общее количество твердых веществ, растворенных в жидкости. Они могут быть ионными и / или полярными по природе.
Дрейф: — это вода, увлекаемая воздушным потоком и выбрасываемая в атмосферу.Потери сноса не включают потерю воды за счет испарения. Правильная конструкция башни может минимизировать потери на дрейф.
Теплообменник: — это устройство для передачи тепла от одного вещества к другому. Передача тепла может осуществляться путем прямого контакта, как в градирне, или косвенного, как в кожухотрубном конденсаторе. Также это могут быть пучки труб или ребристых трубок в башне для влажной / сухой обработки.
Тепловая нагрузка: Количество тепла, которое необходимо отвести от циркулирующей воды в градирне. Тепловая нагрузка равна скорости циркуляции воды (галлонов в минуту), умноженной на диапазон охлаждения, умноженной на 500, и выражается в БТЕ / час.Тепловая нагрузка также является важным параметром при определении размера и стоимости градирни.
Подпитка: — это количество воды, необходимое для восполнения обычных потерь, вызванных сливом, сносом и испарением.
Напор: Давление, необходимое для перекачивания воды из резервуара башни через всю систему и возврата в верхнюю часть башни.
Тонна: Тонна испарительного охлаждения составляет 15 000 БТЕ в час.
Wet Bulb: — это самая низкая температура, которую вода теоретически может достичь за счет испарения.Температура влажного термометра является чрезвычайно важным параметром при выборе и конструкции градирни, и ее следует измерять с помощью психрометра.
Чтобы получить расценки, посетите нашу простую форму расчета стоимости.
Принципы нагрева и охлаждения
Понимание того, как тепло передается с улицы в ваш дом и от вашего дома к вашему телу, важно для понимания проблемы поддержания прохлады в вашем доме. Понимание процессов, которые помогают сохранять ваше тело прохладным, важно для понимания стратегий охлаждения вашего дома.
Принципы теплопередачи
Тепло передается к объектам, таким как вы и ваш дом, и от них посредством трех процессов: теплопроводности, излучения и конвекции.
Проводимость — это тепло, проходящее через твердый материал. В жаркие дни тепло попадает в ваш дом через крышу, стены и окна. Теплоотражающие крыши, изоляция и энергоэффективные окна помогут снизить теплопроводность.
Излучение — это тепло, перемещающееся в виде видимого и невидимого света.Солнечный свет — очевидный источник тепла для дома. Кроме того, низковолновое невидимое инфракрасное излучение может переносить тепло непосредственно от теплых предметов к более холодным. Благодаря инфракрасному излучению вы можете почувствовать тепло горячего элемента конфорки на плите даже через всю комнату. Старые окна позволят инфракрасному излучению, исходящему от теплых предметов снаружи, проникать в ваш дом; оттенки могут помочь заблокировать это излучение. Новые окна имеют низкоэмиссионные покрытия, которые блокируют инфракрасное излучение. Инфракрасное излучение также будет переносить тепло от стен и потолка прямо к вашему телу.
Конвекция — еще одно средство для достижения тепла от ваших стен и потолка. Горячий воздух естественным образом поднимается вверх, унося тепло от стен и заставляя его циркулировать по всему дому. Когда горячий воздух проходит мимо вашей кожи (и вы вдыхаете его), он согревает вас.
Охлаждение тела
Ваше тело может охладиться посредством трех процессов: конвекции, излучения и потоотделения. Вентиляция усиливает все эти процессы. Вы также можете охладить свое тело с помощью теплопроводности — например, некоторые автокресла теперь оснащены охлаждающими элементами, — но это обычно нецелесообразно для использования в вашем доме.
Конвекция возникает, когда тепло уносится от вашего тела через движущийся воздух. Если окружающий воздух холоднее вашей кожи, воздух поглотит ваше тепло и поднимется. По мере того, как нагретый воздух поднимается вокруг вас, более прохладный воздух движется, чтобы занять его место и поглотить больше вашего тепла. Чем быстрее движется этот воздух, тем прохладнее вы чувствуете.
Излучение возникает, когда тепло распространяется через пространство между вами и предметами в вашем доме. Если предметы теплее, чем вы, тепло пойдет к вам.Удаление тепла через вентиляцию снижает температуру потолка, стен и мебели. Чем прохладнее ваше окружение, тем больше тепла вы будете излучать на предметы, а не наоборот.
Пот может быть неудобным, и многие люди предпочли бы сохранять спокойствие без него. Однако в жаркую погоду и при физических нагрузках пот является мощным охлаждающим механизмом тела. Когда влага покидает поры кожи, она переносит с собой много тепла, охлаждая ваше тело.Если ветерок (вентиляция) проходит по вашей коже, эта влага испарится быстрее, и вам будет еще прохладнее.
Справочник по воде— Открытые рециркуляционные системы охлаждения
В открытой рециркуляционной системе охлаждения одна и та же вода многократно используется для охлаждения технологического оборудования. Тепло, поглощаемое в процессе, необходимо отводить, чтобы можно было повторно использовать воду. Для этого используются градирни, брызговики и испарительные конденсаторы.
Открытые рециркуляционные системы охлаждения позволяют сэкономить огромное количество пресной воды по сравнению с альтернативным методом — прямоточным охлаждением.Количество воды, сбрасываемой в отходы, значительно сокращается при использовании метода открытой рециркуляции, а химическая очистка более экономична. Однако открытые рециркуляционные системы охлаждения по своей природе связаны с большим количеством проблем, связанных с обработкой, чем прямоточные системы:
- охлаждение за счет испарения увеличивает концентрацию растворенных твердых частиц в воде, повышая склонность к коррозии и осаждению
- относительно более высокие температуры значительно увеличивают коррозионный потенциал
- более длительное время удерживания и более теплая вода в открытой рециркуляционной системе увеличивают тенденцию к биологическому росту
- Переносимые по воздуху газы, такие как диоксид серы, аммиак или сероводород, могут абсорбироваться из воздуха, вызывая более высокую скорость коррозии
- микроорганизмов, питательных веществ и потенциальных загрязнителей также могут поглощаться водой через градирню
ГРАДУСЫ
Градирни — наиболее распространенный метод отвода тепла в открытых рециркуляционных системах охлаждения.Они предназначены для обеспечения интимного контакта воздуха и воды. Отвод тепла происходит в основном за счет испарения части охлаждающей воды. Некоторая ощутимая потеря тепла (прямое охлаждение воды воздухом) также имеет место, но это лишь небольшая часть общего отвода тепла.
Типы башен
Градирни классифицируются по типу тяги (естественная или механическая) и направлению воздушного потока (поперечный или противоточный). Башни с механической тягой подразделяются на башни с принудительной или вытяжной тягой.
Башни с естественной тягой. Башни с естественной тягой, которые иногда называют «гиперболическими» из-за характерной формы и функции дымоходов, не требуют вентиляторов. Они разработаны с учетом разницы в плотности между воздухом, поступающим в башню, и более теплым воздухом внутри башни. Теплый влажный воздух внутри градирни имеет меньшую плотность, поэтому он поднимается по мере того, как более плотный, прохладный воздух втягивается у основания градирни. Высокий (до 500 футов) дымоход необходим для обеспечения достаточного притока воздуха.Башни с естественной тягой могут быть противоточными или поперечными. Изображенная башня представляет собой модель с поперечным потоком. Заливка находится вне оболочки, образуя кольцо вокруг основания. В противоточной модели заполнение находится внутри оболочки. В обеих моделях пустой дымоход составляет большую часть высоты башни.
Вытяжные механические башни. В градирнях с механической тягой используются вентиляторы для перемещения воздуха через градирню. В конструкции с принудительной тягой вентиляторы нагнетают воздух в нижнюю часть башни. Практически все градирни являются противоточными.В градирнях с искусственной тягой наверху установлен вентилятор для втягивания воздуха через градирню. В этих градирнях могут использоваться как поперечные, так и противоточные воздушные потоки, и они, как правило, больше, чем градирни с принудительной тягой.
Противоточные башни. В противоточных башнях воздух движется вверх, а не вниз по потоку воды. Такая конструкция обеспечивает хороший теплообмен, поскольку самый холодный воздух контактирует с самой холодной водой. Коллекторы и форсунки обычно используются для распределения воды в противоточных башнях.
Башни Crossflow. В градирнях с поперечным потоком воздух проходит горизонтально, попадая в нисходящий поток воды. Конструкция с поперечным потоком обеспечивает более легкий путь для воздуха, тем самым увеличивая воздушный поток при заданной мощности вентилятора. Башни с поперечным потоком обычно имеют систему подачи под действием силы тяжести — распределительную площадку с равномерно расположенными измерительными отверстиями для распределения воды. Часто палубу покрывают, чтобы предотвратить рост водорослей.
Компоненты градирни
Заполнить раздел. Секция заполнения — самая важная часть башни.Различные типы насадок или наполнителей используются для равномерного распределения воды и увеличения площади поверхности воды для более эффективного испарения. Первоначально заливка состояла из «брызговиков» из красного дерева или обработанной под давлением пихты. Брызговики теперь доступны и из пластика. Другие типы заливки включают пластиковую решетку, керамический кирпич и пленочный наполнитель.
Пленочный наполнитель стал очень популярным в последние годы. Он состоит из плотно уложенных гофрированных вертикальных листов, которые заставляют воду стекать через градирню очень тонкой пленкой.Пленочный наполнитель обычно изготавливается из пластика. Поливинилхлорид (ПВХ) обычно используется в системах с максимальной температурой воды 130 ° F или ниже. Хлорированный ПВХ (ХПВХ) может выдерживать температуры примерно до 165 ° F.
Пленочный наполнитель обеспечивает большую охлаждающую способность в данном пространстве, чем наполнитель разбрызгиванием. Брызговик может быть частично или полностью заменен пленочным наполнителем для увеличения производительности существующей градирни. Из-за очень близкого расстояния пленочный наполнитель очень чувствителен к различным типам осаждения.В некоторых системах происходило образование отложений карбоната кальция и обрастания взвешенными твердыми частицами. Технологические загрязнители, такие как масло и жир, могут быть прямыми загрязнителями и / или приводить к сильному биологическому росту на заливке. Осаждение любого типа может серьезно снизить эффективность охлаждения градирни.
Жалюзи. Жалюзи. Жалюзи используются для того, чтобы направлять воздушный поток в градирню и минимизировать потери на ветер (разбрызгивание воды или выветривание по бокам градирни).
Сепараторы сноса. Сепараторы сноса. «Дрейф» — это термин, используемый для описания уносимых в воздух капель воды, покидающих верхнюю часть башни. Поскольку дрейф имеет тот же состав, что и циркулирующая вода, его не следует путать с испарением. Снос следует свести к минимуму, поскольку он расходует воду и может вызвать появление пятен на зданиях и автомобилях на некотором расстоянии от башни. Каплеуловители резко изменяют направление воздушного потока, передавая центробежную силу для отделения воды от воздуха. Ранние каплеуловители изготавливались из красного дерева в форме елочки.Современные каплеуловители обычно изготавливаются из пластика и бывают разных форм. Они более эффективны в устранении сноса, чем ранние версии из дерева, но вызывают меньший перепад давления.
Подход к влажному термометру, диапазон охлаждения
Градирни предназначены для охлаждения воды до определенной температуры при заданном наборе условий. «Температура по влажному термометру» — это самая низкая температура, до которой вода может быть охлаждена путем испарения. Конструировать градирню для охлаждения до температуры влажного термометра непрактично.Разница между температурой холодного поддона и температурой по влажному термометру называется «подходом». Башни обычно проектируются под углом 7-15 ° F. Разница температур между горячей возвратной водой и холодной водой в поддоне называется «диапазоном охлаждения» (DT). Диапазон охлаждения обычно составляет около 10-25 ° F, но в некоторых системах может достигать 40 ° F.
ЦИКЛЫ КОНЦЕНТРАЦИИ, ВОДНЫЙ БАЛАНС
Расчет циклов концентрирования
Вода циркулирует через технологические теплообменники и по градирне со скоростью, называемой «скоростью рециркуляции».«Вода теряется из системы в результате испарения и продувки. Для целей расчета продувка определяется как все потери воды без испарения (ветер, дрейф, утечки и преднамеренная продувка).
Подпитка добавляется в систему для замены испарения и продувки.
Примерно 1000 британских тепловых единиц теряется из воды на каждый фунт испарившейся воды. Это соответствует испарению около 1% охлаждающей воды на каждые 10 ° F падения температуры в градирне.Следующее уравнение описывает эту взаимосвязь между испарением, скоростью рециркуляции и изменением температуры:
где: E = испарение, галлонов в минуту RR = скорость рециркуляции, галлонов в минуту
DT = диапазон охлаждения, ° F F = коэффициент испарения
Коэффициент испарения F равен 1, когда все охлаждение происходит за счет испарения. Для простоты часто предполагается, что это так. На самом деле F зависит от относительной влажности и температуры сухого термометра. Фактическое значение F для системы обычно находится между 0.75 и 1,0, но может достигать 0,6 в очень холодную погоду.
По мере испарения чистой воды в оборотной воде остаются минералы, что делает ее более концентрированной, чем в подпиточной воде. Обратите внимание, что продувка имеет тот же химический состав, что и оборотная вода. «Циклы концентрирования» (или «циклы») представляют собой сравнение уровня растворенных твердых частиц продувки с подпиточной водой. При 3 циклах концентрирования продувка имеет в три раза концентрацию твердых веществ в составе подпитки.
Циклы можно рассчитать путем сравнения концентраций растворимого компонента в потоках подпитки и продувки.Поскольку хлорид и сульфат растворимы даже при очень высоких концентрациях, они являются хорошим выбором для измерения. Однако результаты расчета могут быть недействительными, если в систему подается хлор или серная кислота в рамках программы очистки воды.
Циклы, основанные на проводимости, часто используются как простой способ автоматизации продувки. Однако циклы, основанные на проводимости, могут быть немного выше, чем циклы, основанные на отдельных компонентах, из-за добавления хлора, серной кислоты и химикатов для обработки.
Используя любой подходящий компонент:
Циклы концентрации можно также выразить следующим образом:
где: MU = подпитка (испарение + продувка), галлонов в минуту BD = продувка, галлонов в минуту
Обратите внимание, что зависимость, основанная на скорости потока в галлонах в минуту, является обратной зависимостью концентрации.
Если E + BD заменяется на MU:
где:
E = испарение Решив для продувки, это уравнение принимает вид:
Это очень полезное уравнение для обработки охлаждающей воды.После определения циклов концентрирования на основе концентраций подпитки и продувки можно рассчитать фактическую потерю продувки из системы или продувку, необходимую для поддержания системы в желаемом количестве циклов.
Поскольку химические вещества для обработки не теряются при испарении, необходимо заменять только химические вещества, потерянные при продувке (все потери воды без испарения). Таким образом, расчет продувки имеет решающее значение при определении скорости подачи и затрат на обработку.
Факторы, ограничивающие циклы концентрации
Физические ограничения. Существует ограничение на количество циклов, достижимых в градирне. Ветровая нагрузка, дрейф и утечка — все это источники непреднамеренной продувки. Дрейфовые потери до 0,2% от скорости рециркуляции в старых градирнях могут ограничить количество циклов до 5-10. Дополнительные потери из-за утечек и ветра могут еще больше ограничить некоторые старые системы. Новые башни часто имеют гарантии дрейфа 0,02% от скорости рециркуляции или меньше.Вновь построенные системы, в которых используются башни с высокоэффективными каплеуловителями и не имеют посторонних потерь, могут быть механически способны выдерживать 50-100 циклов и более.
Химические ограничения. По мере увеличения уровня растворенных в воде твердых частиц возрастают тенденции к коррозии и осаждению. Поскольку коррозия — это электрохимическая реакция, более высокая проводимость из-за более высокого содержания растворенных твердых веществ увеличивает скорость коррозии (дальнейшее обсуждение см. В главе 24). По мере приближения удельной проводимости, превышающей 10 000 мкм, подавление коррозии становится все труднее и дороже.
Некоторые соли обладают растворимостью при обратной температуре; то есть они менее растворимы при более высокой температуре и, таким образом, имеют тенденцию к образованию отложений на трубках горячего теплообменника. Многие соли также менее растворимы при более высоком pH. По мере того, как вода в градирне концентрируется и pH увеличивается, тенденция к осаждению солей, образующих накипь, увеличивается.
Карбонат кальция, так как он является одной из наименее растворимых солей, обычно образует накипь в открытых рециркуляционных системах охлаждения. Также могут встречаться силикаты кальция и магния, сульфат кальция и другие виды накипи.В отсутствие обработки существует широкий диапазон относительной растворимости карбоната кальция и гипса, формы сульфата кальция, обычно встречающейся в охлаждающих системах.
Отложения карбоната кальция можно качественно спрогнозировать с помощью индекса насыщения Ланжелье (LSI) и индекса стабильности Ризнара (RSI). Индексы определяются следующим образом:
Индекс насыщения Ланжелье = pHa — pHs Индекс стабильности Ryznar = 2 (pHs) — pHa
Значение pH (pH насыщения) является функцией общего содержания твердых веществ, температуры, кальция и щелочности.pHa — это фактический pH воды.
Положительный результат LSI указывает на склонность карбоната кальция к отложению. Индекс стабильности Райзнара показывает ту же тенденцию, когда вычисляется значение 6,0 или меньше. Более полное обсуждение LSI и RSI представлено в главе 25 «Системы контроля отложений и отложений — охлаждение».
С химической обработкой охлаждающей воды или без нее циклы концентрирования в конечном итоге ограничиваются невозможностью предотвратить образование накипи.
КОНТРОЛЬ ДЕПОЗИЦИИ
Как отмечалось ранее, в охлаждающей воде содержится много загрязняющих веществ, которые способствуют возникновению отложений.Здесь обсуждаются три основных типа отложений: образование накипи, общее загрязнение и биологическое загрязнение.
Образование чешуек
Образование накипи в системе охлаждения можно контролировать с помощью:
- минимизация циклов концентрации за счет управления продувкой
- Добавление кислоты для предотвращения осаждения веществ, чувствительных к pH
- умягчение воды для снижения содержания кальция
- с использованием ингибиторов образования накипи для обеспечения работы в условиях перенасыщения
Контроль продувки. Увеличение продувки для ограничения циклов концентрирования — эффективный способ уменьшить возможность накипи циркулирующей воды. Однако высокие скорости продувки не всегда допустимы и, в зависимости от качества воды, не всегда могут обеспечить полный контроль над отложениями. Во многих населенных пунктах запасы пресной воды ограничены и дороги.
Таблица 31-1. Скорость подпитки и продувки при различных циклах
Таблица 31-1. Скорость подпитки и продувки при различных циклах a
Циклы | Макияж, галлонов в минуту | Продувка, галлонов в минуту |
2 | 2000 | 1000 |
4 | 1330 | 333 |
8 | 1140 | 143 |
15 | 1070 | 71 |
20 | 1050 | 53 |
a RR = 50 000 галлонов в минуту; DT = 20 ° F.
Образовавшийся CO 2 отводится через градирню, а сульфат остается как побочный продукт.
Снижение pH за счет подачи кислоты также снижает склонность к образованию отложений других чувствительных к pH веществ, таких как силикат магния, гидроксид цинка и фосфат кальция.
Поскольку контроль подачи кислоты имеет решающее значение, следует использовать автоматизированную систему подачи. Избыточная подача кислоты способствует чрезмерной коррозии; потеря поступающей кислоты может привести к быстрому образованию накипи.Для правильного перемешивания следует использовать систему разбавления кислоты, чтобы предотвратить кислотное воздействие на бетонный отстойник.
Когда уровень сульфата подпиточной воды высок и / или градирня работает при высоких циклах, подача серной кислоты может привести к образованию отложений сульфата кальция. Иногда в таких случаях вместо серной кислоты используют соляную кислоту. Однако это может привести к высокому уровню хлоридов, который часто значительно увеличивает скорость коррозии, особенно точечной коррозии и / или растрескивания нержавеющей стали под напряжением.
Иногда предлагалось введение диоксида углерода в оборотную воду для контроля pH. Такая обработка снижает pH, но не снижает щелочность. Циркуляционная вода аэрируется каждый раз, когда проходит над градирней. Это снижает концентрацию углекислого газа в воде до равновесного значения для атмосферных условий, вызывая повышение pH. Быстрое повышение pH в башне может привести к образованию отложений карбоната кальция на заполнении башни. Из-за аэрации углекислый газ не циркулирует и должен подаваться в соответствии со скоростью рециркуляции системы.Обычно это не считается практическим средством контроля pH в открытых рециркуляционных системах.
Смягчение воды. Смягчение воды. Смягчение состава извести или побочного потока можно использовать для снижения содержания кальция и, часто, щелочности. Это снижает склонность воды к образованию отложений как карбоната кальция, так и сульфата кальция при заданном количестве циклов и уровне pH. Попутное умягчение извести также используется для снижения содержания кремнезема.
Ингибиторы образования накипи. Ингибиторы образования накипи.Системы охлаждения могут работать при более высоких циклах концентрации и / или более высоком pH, если применяются соответствующие ингибиторы образования отложений. Эти материалы мешают росту кристаллов, что позволяет работать в «перенасыщенных» условиях. Органические фосфаты, также называемые фосфонатами, обычно используются для подавления образования отложений карбоната кальция. Фосфонаты или различные полимерные материалы могут использоваться для подавления других типов отложений, таких как сульфат кальция и фосфат кальция.
Имеется относительно качественная подпиточная вода при различных циклах концентрирования.Без каких-либо химических добавок, эта вода ограничена 2 циклами. За 5 циклов pH составляет примерно 8,3, а LSI — +1,5. Система может работать без подачи кислоты, если используется ингибитор образования накипи. При 10 циклах без подачи кислоты LSI составляет +2,5, и вода обрабатывается ингибитором отложений карбоната кальция. При 15 циклах и без подачи кислоты теоретический pH составляет 9,2, а LSI — +3,2. В этом случае вода не может быть эффективно обработана за 15 циклов обычными ингибиторами карбоната кальция.Кислоту следует подавать для снижения pH до 8,7 или ниже, чтобы можно было использовать ингибитор образования отложений.
Таблица 31-2. Рециркуляция охлаждающей воды при различных циклах.
Циркуляционная вода при 2 цикла | Циркуляционная вода при 5 циклов | Циркуляция воды при 10 циклах | Циркуляция воды при 15 циклах | |||
Подпиточная вода | Без кислоты | Без кислоты | Без кислоты | Без кислоты | Кислота для pH 8.7 | |
Кальций (как CaCO 3 ), частей на миллион | 50 | 100 | 250 | 500 | 750 | 750 |
Магний (как CaCO 3 ), частей на миллион | 20 | 40 | 100 | 300 | 300 | 300 |
M Щелочность (как CaCO 3 ), частей на миллион | 40 | 80 | 200 | 400 | 600 | 310 |
Сульфат (как SO 4 -2 ), частей на миллион | 40 | 80 | 200 | 400 | 600 | 890 |
Хлорид (как Cl — | 10 | 20 | 50 | 100 | 150 | 150 |
Кремнезем (как SiO2), млн -1 | 10 | 20 | 50 | 100 | 150 | 150 |
pH | 7.0 | 7,6 | 8,3 | 8,9 | 9,2 | 8,7 |
pH с (120 ° F) | 8,2 | 7,6 | 6,8 | 6,4 | 6,0 | 6,2 |
LSI | -1,2 | 0 | +1,5 | +2,5 | +3,2 | +2,5 |
RSI | 9.4 | 7,6 | 5,3 | 3,9 | 2,8 | 3,7 |
CaCO3 Контролируется a : | B | Б / С | Б / С | Х | B / A / S |
a B, только продувка; B / S, продувка плюс ингибитор образования накипи; B / A / S, продувка плюс вспомогательное средство плюс ингибитор накипи CaCO3; X, не может работать.
Общий контроль загрязнения
Виды, которые не образуют накипи (железо, грязь, ил и другой мусор), также могут вызывать проблемы с отложениями.Поскольку эти материалы состоят из твердых частиц, их осаждение часто больше связано с потоком, чем с нагревом. Взвешенные твердые частицы имеют тенденцию выпадать в областях с низким расходом, таких как отстойник градирни и теплообменники с охлаждающей водой со стороны кожуха. Отстойник градирни служит не только резервуаром для воды, но и отстойником. Накопившиеся твердые частицы можно периодически удалять из отстойника с помощью вакуума или с помощью лопаты. Для сведения к минимуму загрязнения теплообменников можно использовать природные и синтетические полимеры различных типов.
Органические технологические загрязнители, такие как масла и смазки, могут попасть в систему из-за утечек теплообменника. Поверхностно-активные вещества можно использовать для смягчения воздействия этих материалов. Обрастание более подробно рассматривается в главе 25.
Контроль биологического обрастания
Открытая рециркуляционная система охлаждения обеспечивает благоприятную среду для биологического роста. Если этот рост не контролировать, может произойти серьезное биологическое загрязнение и ускоренная коррозия. Ингибиторы коррозии и средства контроля отложений не могут эффективно работать в присутствии биологических скоплений.
Полное обсуждение микроорганизмов и борьбы с биологическим обрастанием можно найти в главе 26. Окисляющие противомикробные вещества (например, доноры хлора и галогена) обсуждаются в главе 27.
ПРОГРАММЫ КОНТРОЛЯ КОРРОЗИИ
Добавление одного ингибитора коррозии, такого как фосфат или цинк, недостаточно для эффективной обработки открытой рециркуляционной системы охлаждения. Требуется комплексная программа обработки, направленная на устранение коррозии и всех типов отложений.Все программы ингибиторов коррозии требуют хорошей программы биологического контроля и, в некоторых случаях, дополнительных средств контроля отложений для конкретных загрязнителей.
Программы на основе хроматов
В течение многих лет программы на основе хрома обеспечивали отличную защиту от коррозии для систем охлаждения. Однако вскоре было признано, что хромат, как тяжелый металл, связан с определенными опасностями для здоровья и окружающей среды. Обработка с использованием одного лишь хромата в концентрации 200-500 частей на миллион быстро уступила место таким программам, как «Дианодический цинк», которые включали цинк и фосфат для снижения уровней хромата до 15-25 частей на миллион.
Федеральные правила, ограничивающие сброс хромата в приемные потоки, вызвали дальнейшие усилия по сокращению или устранению хромата. Самая последняя проблема, связанная с обработкой хроматом, связана с присутствием хромата в выносе градирни. При вдыхании шестивалентный хром считается канцерогеном. Поэтому с мая 1990 года использование хромата в комфортных градирнях было запрещено Агентством по охране окружающей среды. Ожидается, что к концу 1993 года использование хроматов в открытых рециркуляционных системах охлаждения будет полностью запрещено.
Ингибиторы коррозии меди
Хромат — хороший ингибитор коррозии как для меди, так и для стали. Поэтому в большинстве программ на основе хроматов не требовалось никакого специального ингибитора коррозии меди. Однако большинство других ингибиторов для низкоуглеродистой стали не обеспечивают эффективной защиты медных сплавов. Следовательно, нехроматные программы обычно включают специальный ингибитор коррозии меди, когда в системе присутствуют медные сплавы.
Программы ранних фосфатов / фосфонатов
Во многих программах ранней антикоррозионной обработки использовались полифосфаты в относительно высоких концентрациях.В воде полифосфат подвергается процессу гидролиза, обычно называемому «реверсией», который возвращает его в его ортофосфатное состояние. В ранних программах этот процесс часто приводил к отложению ортофосфата кальция.
Более поздние усовершенствования использовали комбинации орто-, поли- и органических фосфатов. Общие диапазоны лечения следующие:
Ортофосфат | 2–10 частей на миллион |
полифосфат | 2–10 частей на миллион |
фосфонат | 2–10 частей на миллион |
pH | 6.5-8,5 |
Был разработан более конкретный набор контрольных пределов в этих диапазонах, основанный на индивидуальных характеристиках воды и условиях эксплуатации системы. Там, где использовалась вода с низким содержанием кальция (т.е. менее 75 частей на миллион), часто добавлялся цинк для обеспечения желаемой защиты от коррозии.
При тщательном контроле уровней фосфата, pH и циклов можно было достичь удовлетворительной защиты от коррозии с минимальным отложением. Однако здесь было мало места для ошибки, и отложение фосфата кальция часто было проблемой.
Дианодик II ®
Концепция Dianodic II ® произвела революцию в технологии бесхроматной обработки с ее введением в 1979 году. В этой программе используются относительно высокие уровни ортофосфата для создания защитной оксидной пленки на поверхностях из мягкой стали, обеспечивающей превосходное ингибирование коррозии. Использование высоких уровней фосфатов стало возможным благодаря разработке превосходных сополимеров на основе акрилата. Эти полимеры способны удерживать высокие уровни ортофосфата в растворе при типичных условиях охлаждающей воды, устраняя проблему отложения фосфата кальция, возникавшую в предыдущих программах.
Общие диапазоны управления для Dianodic II следующие:
Общий неорганический фосфат | 10-25 частей на миллион |
Кальций (как CaCO 3 ) | 75-1200 частей на миллион |
pH | 6,8-7,8 |
детальные диапазоны регулирования руды разработаны для отдельных систем на основе характеристик воды и условий эксплуатации системы.
ПрограммыDianodic II успешно защищают системы охлаждения с момента их появления.Продолжающиеся исследования привели к множеству улучшений в этом подходе к обработке, включая новые, более эффективные полимеры, которые расширили применимость к более разнообразным химическим свойствам воды. Наиболее широко используемая лечебная программа Dianodic II является отраслевым стандартом нехроматной обработки.
Программы щелочной обработки
Эксплуатация системы охлаждения в щелочном диапазоне pH 8,0–9,2 дает несколько преимуществ. Во-первых, вода по своей природе менее агрессивна, чем при более низком pH.Во-вторых, можно минимизировать или даже исключить подачу серной кислоты в зависимости от химического состава подпиточной воды и желаемых циклов. Система, использующая эту косметику, может выполнять программу щелочной обработки в диапазоне 4-10 циклов без подачи кислоты. Это устраняет высокие затраты на надлежащее обслуживание системы подачи кислоты, а также риски безопасности и проблемы обращения с кислотой.
Даже если кислоту невозможно удалить, щелочная работа все равно имеет преимущество. PH 8,0-9.0 соответствует диапазону щелочности, более чем вдвое превышающему pH 7,0-8,0. Следовательно, pH легче контролировать при более высоком pH, а более высокая щелочность обеспечивает большую буферную способность в случае избытка кислоты.
Недостатком щелочного режима является повышенный потенциал образования карбоната кальция и других отложений на основе кальция и магния. Это может ограничить циклы концентрации и потребовать использования средств контроля отложений.
Программы для щелочного цинка. Одна из самых эффективных щелочных программ основана на комбинации цинка и органического фосфата (фосфоната) для ингибирования коррозии. Цинк — отличный катодный ингибитор, позволяющий работать при более низких уровнях кальция и щелочности, чем при других щелочных обработках. Однако сброс продувки градирни, содержащей цинк, может быть сильно ограничен из-за его токсичности для водной среды. Программы на основе цинка наиболее применимы на предприятиях, где цинк может быть удален в процессе обработки отходов.
Щелочные фосфатные программы. Комбинации органических и неорганических фосфатов также используются для подавления коррозии при щелочном pH. Превосходная технология синтетических полимеров была применена для устранения многих проблем засорения, возникающих при ранних программах фосфатно-фосфонатной очистки. Из-за более высокого pH и щелочности требуемые уровни фосфатов ниже, чем при обработке Dianodic II. Общие диапазоны лечения следующие:
- Неорганический фосфат 2-10 частей на миллион
- Органический фосфат 3-8 частей на миллион
- Кальций (как CaCO 3 ) 75-1200 частей на миллион
- pH 8.0-9,2
Органические программы
В полностью органических программах не используются неорганические фосфаты или цинк. Защиту от коррозии обеспечивают фосфонаты и органические ингибиторы пленкообразования. Эти программы обычно требуют диапазона pH 8,7-9,2, чтобы использовать карбонат кальция в качестве катодного ингибитора.
Программы на основе молибдата
Чтобы быть эффективным, только молибдат требует очень высоких концентраций обработки. Поэтому его обычно применяют на более низких уровнях (например,g., 2-20 частей на миллион) и в сочетании с другими ингибиторами, такими как неорганические и органические фосфаты. Многие исследователи полагают, что молибдат в указанных выше концентрациях эффективен для борьбы с точечной коррозией мягкой стали. Поскольку молибдат более дорогой, чем большинство обычных ингибиторов коррозии, в миллионных долях, преимущество добавления молибдата необходимо сопоставить с дополнительными затратами. Использование молибдата может быть наиболее подходящим, если выделение фосфата и / или цинка ограничено.
РАССМОТРЕНИЕ БУДУЩЕГО
Химическое влияние продувки системы охлаждения на принимающие потоки внимательно изучается в Соединенных Штатах, где очистка водных путей является приоритетной задачей.Ограничения по сбросу цинка и фосфата действуют во многих штатах. В настоящее время ведутся обширные исследования по разработке новых, более «экологически чистых» программ лечения, которые, вероятно, будут продолжены. Потребуются обширные испытания для определения токсичности и воздействия новых молекул на окружающую среду. Ответы непросты, и новые программы, вероятно, будут дороже, чем существующие технологии.
МОНИТОРИНГ И КОНТРОЛЬ ОЧИСТКИ ОХЛАЖДАЮЩЕЙ ВОДЫ
Существует множество факторов, способствующих коррозии и загрязнению систем охлаждающей воды.Выбор и применение подходящих химикатов для обработки — лишь малая часть решения. Необходимы сложные программы мониторинга для выявления потенциальных проблем, чтобы можно было изменить программы лечения. Для точной настройки программ обработки необходим эффективный контроль подачи продукта и мониторинг остатков химических веществ. Постоянный мониторинг необходим для подтверждения результатов лечения и определения системных тенденций.
Мониторинг результатов лечения
Хотя простые инструменты мониторинга могут выявить проблемы, они могут не указать причину.Кратко обсуждаемые здесь инструменты мониторинга более подробно рассматриваются в главе 36.
Ни один инструмент мониторинга не может точно воспроизвести состояние системы. Также необходимо часто проверять заводское оборудование и документировать результаты.
Коррозия. Скорость коррозии можно контролировать с помощью купонов на коррозию, измерителей мгновенной скорости коррозии или Betz Monitall, который измеряет скорость коррозии на поверхностях теплопередачи. Повышенный уровень железа или меди в оборотной воде также может указывать на коррозию.
Депонирование. Склонность к отложению можно наблюдать на образцах коррозии или нагретом оборудовании, таком как испытательные теплообменники или Betz Monitall. Сравнение различных концентраций минералов и уровней взвешенных твердых частиц в подпиточной воде с таковыми при продувке может указывать на потерю некоторых химических веществ из-за отложений.
Биологическое обрастание. Существует множество методов мониторинга биологического обрастания. Те, которые контролируют биологический рост на реальных или смоделированных поверхностях системы, обеспечивают хорошую оценку состояния системы.Объемный учет воды различных видов может вводить в заблуждение.
Контроль параметров воды и сырья для обработки
Хотя некоторые программы лечения более снисходительны, чем другие, даже лучшая программа требует хорошего контроля циклов, pH и уровней обработки. Хороший контроль экономит деньги. В краткосрочной перспективе улучшенный контроль оптимизирует уровни обработки, предотвращает перекармливание и сводит к минимуму расход химикатов. В долгосрочной перспективе более чистые поверхности теплообменников, менее частая замена оборудования и сокращение времени простоя на очистку и ремонт в совокупности повышают эффективность системы, что способствует повышению рентабельности предприятия.Часто компьютеризированные системы кормления и контроля настолько эффективны в этих областях, что вскоре окупаются.
Подробная информация о системном мониторинге и управлении представлена в главах 35 и 36 (см. Также главы 26 и 27).
Рисунок 31-1. Градирня с естественной тягой («гиперболическая») основана на разнице плотностей теплого влажного воздуха внутри градирни и более холодного и осушающего воздуха снаружи для воздушного потока. Обратите внимание на кольцевое заполняющее кольцо вокруг основания этой модели с поперечным потоком.
ИксРисунок 31-2.Практически все градирни с наддувом — противоточные.
ИксРисунок 31-3. Градирни с противоточной тягой обеспечивают максимальную теплопередачу.
ИксРисунок 31-4. Шестиямерная градирня с противоточной тягой. Воздух поступает только в нижнюю часть башни.
ИксРисунок 31-5. Градирни с принудительной тягой с поперечным потоком требуют меньшей мощности вентилятора, чем противоточные конструкции.
ИксРисунок 31-6.Шестиямерная градирня с перекрестной тягой.
ИксРисунок 31-7. Компоненты типовой градирни. (Печатается с разрешения Power.)
ИксРисунок 31-8. Пластиковая фиалка брызговик может заменить деревянные рейки.
ИксРисунок 31-9. Установка гофрированного пленочного наполнителя башни может увеличить производительность градирни по сравнению с заполнением брызгами.
ИксРисунок 31-10. Расчет расходов воды в типовой открытой рециркуляционной системе.
ИксРисунок 31-11. Растворимость карбоната кальция и сульфата кальция при отсутствии обработки.
ИксРисунок 31-12. Купон на коррозию показывает результаты лечения Dianodic II.
ИксРисунок 31-13. Взаимосвязь между pH и М-щелочностью показывает усиление буферизации при более высоком pH.
ИксРисунок 31-14. Программы щелочного фосфата обеспечивают отличный контроль коррозии и отложений.
ИксРисунки 31-15 и 31-16
ИксРисунок 31-15.Факторы, влияющие на скорость коррозии в открытых рециркуляционных системах охлаждения.
Рисунок 31-16. Факторы, способствующие осаждению в открытых рециркуляционных системах охлаждения.
Как работают кондиционеры
Кондиционеры бывают разных форм и размеров, но все они работают в одном и том же качестве. Кондиционер обеспечивает холодный воздух в вашем доме или замкнутом пространстве, фактически удаляя тепло и влажность из воздуха в помещении. Он возвращает охлажденный воздух в помещение и передает нежелательное тепло и влажность наружу.Стандартный кондиционер или система охлаждения использует специальный химикат, называемый хладагентом, и имеет три основных механических компонента: компрессор, змеевик конденсатора и змеевик испарителя. Эти компоненты работают вместе, чтобы быстро преобразовать хладагент из газа в жидкость и обратно. Компрессор повышает давление и температуру газообразного хладагента и отправляет его в змеевик конденсатора, где он превращается в жидкость. Затем хладагент возвращается в помещение и попадает в змеевик испарителя.Здесь жидкий хладагент испаряется и охлаждает внутренний змеевик. Вентилятор нагнетает воздух в помещении через холодный змеевик испарителя, где тепло внутри дома поглощается хладагентом. Затем охлажденный воздух циркулирует по дому, в то время как нагретый испарившийся газ отправляется обратно в компрессор. Затем тепло выделяется в наружный воздух, когда хладагент возвращается в жидкое состояние. Этот цикл продолжается до тех пор, пока в вашем доме не будет достигнута желаемая температура.
Этот рисунок, результат новаторского проекта Уиллиса Кэрриера, был представлен Sackett & Wilhelms 17 июля 1902 года и лег в основу изобретения, которое изменило мир, первой современной системы кондиционирования воздуха.
Процесс кондиционирования воздуха
Во многих домах в Северной Америке используются кондиционеры сплит-системы, которые часто называют «централизованным воздухом». Системы кондиционирования воздуха состоят из ряда компонентов и делают больше, чем просто охлаждают воздух внутри. Они также могут контролировать влажность, качество воздуха и воздушный поток в вашем доме. Поэтому, прежде чем мы ответим на вопрос о том, как работают кондиционеры, будет полезно узнать, что составляет типичную систему.
Что такое Central Air?
Типичная система кондиционирования воздуха, часто называемая «центральным кондиционированием воздуха» или «сплит-системой кондиционирования воздуха», обычно включает в себя следующее:
- термостат, контролирующий работу системы
- Наружный блок с вентилятором, змеевиком конденсатора и компрессором
- внутренний блок (обычно печь или фанкойл), в котором находятся змеевик испарителя и вентилятор для циркуляции охлажденного воздуха
- Медная трубка, по которой хладагент течет между внутренним и наружным блоками
- расширительный клапан, регулирующий количество хладагента, поступающего в змеевик испарителя
- воздуховод, позволяющий воздуху циркулировать из внутреннего блока в различные жилые помещения и обратно во внутренний блок
Источник: U.S. Министерство энергетики — Energy Saver 101 Инфографика
В самом простом описании процесс кондиционирования воздуха включает в себя два действия, которые происходят одновременно: одно внутри дома, а другое вне дома.
- Внутри дома (иногда называемого «холодной стороной» системы) теплый воздух в помещении охлаждается, когда он проходит через холодный охлаждающий змеевик, заполненный хладагентом. Тепло из воздуха в помещении поглощается хладагентом, когда хладагент превращается из жидкости в газ.Охлажденный воздух возвращается в дом.
- Вне дома (иногда называемый «горячей стороной» системы) газообразный хладагент сжимается перед поступлением в большой змеевик наружного блока. Тепло выделяется наружу, когда хладагент снова превращается в жидкость, и большой вентилятор втягивает наружный воздух через наружный змеевик, отклоняя тепло, поглощаемое из дома.
Результатом является непрерывный цикл удаления тепла и влажности из воздуха в помещении, возврата холодного воздуха в дом и выхода тепла и влажности из дома.
Как работает система кондиционирования воздуха — более подробно
Теперь, когда у вас есть базовое представление о том, как работают кондиционеры, давайте копнем немного глубже и опишем весь процесс.
Термостат, который обычно устанавливается на стене в центре дома, контролирует и регулирует температуру воздуха в помещении. Процесс охлаждения начинается, когда термостат определяет, что температура воздуха необходимо снизить, и посылает сигналы компонентам системы кондиционирования воздуха как внутри, так и снаружи дома, чтобы начать работу.Вентилятор внутреннего блока втягивает горячий воздух из помещения через воздуховоды возвратного воздуха. Этот воздух проходит через фильтры, в которых собирается пыль, пух и другие частицы, переносимые воздухом. Затем отфильтрованный теплый воздух в помещении проходит через холодный змеевик испарителя. По мере того как жидкий хладагент внутри змеевика испарителя превращается в газ, тепло из воздуха в помещении поглощается хладагентом, таким образом охлаждая воздух, проходя через змеевик. Затем вентилятор внутреннего блока нагнетает охлажденный воздух обратно через воздуховоды дома в различные жилые помещения.
Газообразный хладагент выходит из дома через медную трубку и попадает в компрессор кондиционера снаружи. Думайте о компрессоре как о большом электронасосе. Компрессор сжимает газообразный хладагент и направляет хладагент в змеевик конденсатора наружного блока. Большой вентилятор втягивает наружный воздух через змеевик конденсатора, позволяя воздуху поглощать тепловую энергию из дома и выпускать ее наружу. Во время этого процесса хладагент снова превращается в жидкость.Затем он проходит через медную трубку обратно во внутренний блок, где проходит через расширительное устройство, которое регулирует поток хладагента в змеевик испарителя. Затем холодный хладагент поглощает больше тепла из воздуха в помещении, и цикл продолжается.
Типы кондиционеров
Как видите, вопрос «как работают кондиционеры» может привести к очень простому или очень сложному объяснению. То же самое и с описанием типов кондиционеров. А поскольку внутренние жилые помещения бывают самых разных форм и размеров, от сегодняшних новых крошечных домов до микрорайонов площадью 30 000 квадратных футов, системы кондиционирования воздуха также доступны в различных стилях и конфигурациях.Существует три основных типа — кондиционер со сплит-системой, комплектный кондиционер и бесканальный кондиционер. У каждого из них есть свои специализированные применения, но все они, по сути, делают одно и то же — создают прохладу в вашем доме. Тип системы охлаждения, который лучше всего подходит для вас, зависит от вашего географического положения, размера и физических ограничений вашего дома, а также от того, как вы его используете.
Кондиционер сплит-системы
Сплит-системапредлагает наиболее распространенный ответ на вопрос «что такое система кондиционирования?» Эти системы включают в себя как внутренний, так и наружный блоки.Внутренний блок, обычно печь или фанкойл, включает змеевик испарителя и нагнетательный вентилятор (кондиционер), который обеспечивает циркуляцию воздуха по всему дому. Наружный блок содержит компрессор и змеевик конденсатора.
Кондиционеры со сплит-системойимеют множество опций, включая базовые одноступенчатые системы, более тихие и более эффективные двухступенчатые системы и самые тихие и энергосберегающие многоступенчатые системы. Кондиционер сплит-системы обеспечивает постоянный и надежный контроль температуры во всем доме.А поскольку в системе используются фильтры в воздухообрабатывающем устройстве для помещений, она может очищать ваш воздух, пока он охлаждает его.
Автономный кондиционер
Комплексные системы — это комплексные решения, которые также отвечают на вопрос «что такое система кондиционирования?» Комплексные системы содержат змеевик испарителя, нагнетательный вентилятор, компрессор и змеевик конденсации — все в одном устройстве. Они хорошо работают, когда на чердаке или в чулане недостаточно места для внутреннего блока кондиционера сплит-системы. Они также являются хорошим выбором в тех областях, где предпочтительна установка на крыше.Подобно сплит-системам, комплексные системы забирают теплый воздух из дома через возвратные воздуховоды в секцию змеевика испарителя. Воздух проходит через змеевик испарителя, а более холодный воздух возвращается в дом через приточные воздуховоды. И, как и в сплит-системе, нежелательное тепло отводится наружу через змеевик конденсатора.
Пакетные системы также предлагают множество вариантов для повышения энергоэффективности. Они доступны в двухступенчатых системах и одноступенчатых системах.Модели с более высокой эффективностью включают многоскоростные нагнетательные вентиляторы. В США пакетные системы наиболее распространены на юге и юго-западе страны.
Бесконтактный кондиционер
Бесконтактные системы не считаются системами центрального кондиционирования воздуха, поскольку они обеспечивают охлаждение определенных, целевых областей в доме. Они требуют менее инвазивной установки, поскольку, как следует из их названия, они не полагаются на воздуховоды для распределения охлажденного воздуха. Подобно сплит-системам, бесканальные системы включают в себя наружный блок и, по крайней мере, один внутренний блок, соединенные медными трубками для хладагента.В бесканальной системе каждый внутренний блок предназначен для подачи холодного воздуха только в комнату, в которой он установлен. Внутренний блок можно установить на стене, на потолке или на полу. Некоторые бесканальные системы могут включать в себя несколько внутренних блоков, подключенных к одному наружному блоку. Независимо от количества внутренних блоков работа аналогична сплит-системе. Внутренний блок содержит змеевик испарителя и нагнетательный вентилятор, чтобы отводить теплый воздух из комнаты через холодный змеевик испарителя, а затем возвращать более холодный воздух обратно в комнату.Хладагент проходит по медным трубкам к наружному блоку, где расположены компрессор и змеевик конденсатора. Тепло изнутри отводится через змеевик наружного конденсатора. Хладагент возвращается во внутренний блок, и цикл продолжается.
Эти гибкие системы обеспечивают максимальный комфорт в помещениях, где расположены внутренние блоки. Они также действуют как система зонирования, предлагая индивидуальный контроль температуры в каждой отдельной комнате. Например, если вам нужен более прохладный домашний офис, но более теплая спальня, установите блок без воздуховодов в каждой комнате.Теперь вы можете установить разную температуру в каждой зоне в зависимости от ваших потребностей.
Независимо от того, какой тип системы работает в вашем доме или собственности, знать ответ на вопрос «как работают кондиционеры?» может помочь вам выбрать наиболее разумную систему. И это позволит вам лучше понять, какой выбор предлагает ваш подрядчик по ОВК.
Выбор подходящей системы охлаждения ПК
Компьютеры постоянно совершенствуются, поскольку встроенные процессоры становятся быстрее и эффективнее.Однако это приводит к увеличению выделяемого тепла. Помимо графической платы, процессор является самым горячим компонентом. Итак, что можно сделать, чтобы предотвратить перегрев? В нашем руководстве вы узнаете, как выбрать подходящую систему охлаждения для вашего компьютера.
Почему система охлаждения имеет значение?В современных процессорах устанавливается все больше и больше транзисторов для увеличения производительности и быстродействия оборудования. Из-за электронного напряжения каждый из этих транзисторов выделяет тепло, которое, в свою очередь, нагревает поверхность процессора.
Это дополнительно увеличивается из-за того, что многие транзисторы установлены рядом друг с другом в непосредственной близости. Если температура в компьютере поднимается выше 60 ° C , это может привести к значительному снижению производительности и, в худшем случае, к отказу оборудования.
Чтобы избежать этого, компьютер должен поддерживаться дополнительной системой охлаждения, чтобы как можно быстрее отводить тепло выхлопных газов от ядра процессора. Еще одна возможность предотвратить перегрев — это увеличить поверхность вывода тепла.
Какие бывают системы охлаждения?Помимо воздушного охлаждения, водяное охлаждение является самой популярной системой для компьютеров. Современные системы охлаждения процессоров оснащены тепловыми трубками. Они содержат специальную жидкость или газ, которые переносят тепло посредством конвекции, а не по трубам.
Также возможно охлаждение с помощью азота. Однако по сравнению с другими вариантами этот процесс не подходит для повседневного использования и требует больших усилий даже для специалистов.Это также опасно для здоровья.
Воздушное охлаждениеВ системах пассивного воздушного охлаждения тепло распределяется в окружающий воздух через охлаждающие элементы. Для достижения более высокой производительности в некоторых системах охлаждения используются тепловые трубки для отвода избыточного тепла от ПК.
При использовании методов активного воздушного охлаждения отработанное тепло компонентов отводится наружу через дополнительный охлаждающий элемент, прикрепленный к вентилятору. В корпусе компьютера создается постоянный поток воздуха.В целом системы воздушного охлаждения дешевле систем водяного охлаждения.
Пассивные системы воздушного охлаждения работают бесшумно, поскольку не требуют движущихся компонентов. Однако они подходят только для процессоров с относительно низкой производительностью и, следовательно, с ограниченной возможностью перегрева. Современные процессоры с высокими характеристиками требуют активных систем воздушного охлаждения.
Мощность охлаждения зависит от размера охлаждающего элемента, а также от воздушного потока, создаваемого вентилятором.Помните, что активные системы воздушного охлаждения не работают бесшумно. Те, у кого большие вентиляторы с низкой скоростью вращения, тише, чем маленькие вентиляторы с высокой скоростью вращения.
Системы водяного охлажденияОсновным преимуществом систем водяного охлаждения является то, что отработанное тепло передается бесшумно и эффективно на за пределы ПК. Производительность охлаждения выше, чем у систем воздушного охлаждения, поэтому эта опция особенно полезна для пользователей, желающих разогнать свои компьютеры.Разгон — это когда компьютер работает с измененными характеристиками, превышающими официально утвержденные.
В большинстве случаев охлаждающий элемент изготавливается из алюминия или меди. В нем насос перемещает воду по контуру. Тепло выхлопных газов процессора интегрировано в эту схему и отводится к радиатору. Здесь тепло, которое ранее было охлаждено водой, распределяется по окружающему воздуху.
Как и в случае с воздушным охлаждением, существуют активные и пассивные варианты с системами водяного охлаждения.В пассивных системах охлаждение радиатора происходит за счет стандартного движения воздуха. В активном варианте за создание воздушного потока отвечает вентилятор.
Какая система охлаждения подходит для какого компьютера?Прежде чем выбрать систему охлаждения, следует учесть несколько факторов. В общем, вы должны иметь в виду, что системы водяного охлаждения только охлаждают определенные области компьютера. Таким образом, решение с водяным охлаждением не заменяет систему охлаждения по умолчанию для других встроенных компонентов компьютера. Более того, установка водяного охлаждения может потребовать дополнительных усилий в процессе установки. Это тот случай, когда необходимо снять основную плату, например, для установки кулера.
Современные системы охлаждения, спроектированные как градирни, обеспечивают повышенную эффективность охлаждения благодаря тепловым трубкам. Мы бы порекомендовали кулер Dark Rock Pro 3 CPU Cooler от производителя, be quiet! .
Если у вас ограниченное пространство для кулера из-за компактной конструкции, низкопрофильные системы охлаждения — хороший вариант.Измерения специально разработаны для HTPC или узких корпусов. При использовании кулера для ЦП обратите внимание на совместимость компонентов разных производителей или разных технологий. Если система охлаждения основана на технологии AMD, она часто несовместима с базами Intel. То же верно и наоборот.
Однако это не проблема для большинства систем водяного охлаждения. Большинство кулеров для воды совместимы как с AMD, так и с Intel. Если вы выбираете вентилятор, предназначенный только для центрального процессора, обратите внимание на уровень шума, указанный в технических характеристиках продукта, чтобы избежать шумной и отвлекающей системы.
Что еще следует учесть?Помимо выбора подходящей системы охлаждения, перегрев компьютера можно предотвратить, следуя нескольким простым практическим правилам. Например, между корпусом компьютера и ближайшими стенами и мебелью должно быть минимальное расстояние 50 см , чтобы тепло мог отводиться.
Ни в коем случае нельзя прятать вентиляторы и охладители за предметами. Источники тепла, такие как лампы, не следует размещать в непосредственной близости от компьютера.