ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Между «атмо» и «турбо». Какой выбрать двигатель?

Как говорилось в советской кинокомедии «Берегись автомобиля»: «Каждый, у кого нет машины, мечтает еe купить. И каждый, у кого есть машина, мечтает еe продать».

Со времени выхода фильма прошло больше пятидесяти лет, машины стали во много раз сложнее в техническом плане, модельный ряд расширился на несколько порядков. Но личный автомобиль — это по-прежнему серьeзная покупка для семьи, и никто не хочет прогадать с выбором.

Итак, у вас на руках заветная сумма, вы уже определились с маркой и моделью будущего автомобиля. И тут встаeт важный вопрос: с каким двигателем брать машину? Если вопрос о выборе дизельного или бензинового двигателя для вашего автомобиля решeн в пользу последнего, возникает ещe одна дилемма: атмосферный или с турбонаддувом.

В нашей стране большинство популярных моделей, будь то бюджетные седаны или сверхпопулярные кроссоверы, предлагаются как с турбированными, так и с атмосферными моторами. При этом, чем выше класс автомобиля и его цена, тем шире линейка именно турбированных агрегатов. Это общемировая тенденция: турбомоторы постепенно вытесняют атмосферные двигатели.

Прежде чем сделать выбор, стоит разобраться в главных отличиях атмосферных и турбированных силовых агрегатов, а также выявить их сильные и слабые стороны.

Как это работает


Основное отличие двух моторов заключается в способе подачи воздуха в цилиндры. В атмосферном двигателе воздух идeт под действием впуска разрежения, который создаeтся на такте, — поршень просто опускается и втягивает воздух. В турбированном моторе работает принудительный наддув — в цилиндры нагнетается больше воздуха с помощью турбокомпрессора.

По сути, турбированный двигатель является модернизацией своего предшественника — классического атмосферного мотора. Основная цель этого изобретения — увеличение мощности без увеличения объeма цилиндров. Турбированный бензиновый двигатель позволяет получить в камерах сгорания более высокую степень сжатия. Благодаря тому, что воздух подаeтся в камеры сгорания под давлением, достигается более полное сгорание топливно-воздушной смеси.

Турбина состоит из двух частей: ротора и компрессора. Двигатель в процессе работы производит выхлопные газы. Эти раскалeнные газы, поступая под давлением в ротор, раскручивают турбонагнетатель, воздействуя на лопатки турбины. Только после этого они поступают в глушитель. Вал ротора, вращаясь, приводит в действие компрессор, который нагнетает воздух в камеры сгорания, образуя дополнительную степень сжатия.

Воспользуемся простым примером для иллюстрации: если объeм мотора составляет 1,6 литра, то мощность классического атмосферника не превысит 100-110 л.с. В свою очередь, турбированный двигатель при том же объeме сможет выдать до 180 л.с.

Кстати, турбированные двигатели имеют свою небольшую классификацию.

  1. Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора.
  2. Турбокомпрессор, который использует энергию выхлопных газов. Принципы его работы мы рассмотрели выше. 


Немного истории


Готтлиб Даймлер, один из создателей первого двигателя внутреннего сгорания, экспериментировал с нагнетателем, приводимым от коленвала, ещe в 1885 году. Несколькими годами позже Луи Рено — отец одноимeнной марки автомобилей — получил патент на аналогичную конструкцию для ДВС в 1902-м. Причeм само устройство для промышленного применения братья Рутс изобрели ещe в 1859-м.

Примерно тогда же опыты с турбиной, работающей от выхлопных газов, ставил швейцарец Альфред Бюши. Именно ему приписывают создание турбонаддува, функционирующего по такому принципу, в 1905 году. Правда, установить истинного первого изобретателя сейчас сложно, ведь Бюши лишь получил патент.

Мировую же известность механическим нагнетателям принесла компания Mercedes-Benz, которая стала устанавливать наддувные компрессоры в конце 20-х годов сначала на гоночные, а начиная с 30-х и на серийные машины.

Из Германии мода на наддувные машины перекинулась на Голливуд, а оттуда на весь мир. Золотой век немецких «компрессоров» закончился одновременно с началом Второй мировой войны. Основное применение компрессоров в военное время пришлось на авиацию: наддув использовался для компенсации недостатка кислорода на больших высотах.

Сразу после Второй мировой войны использование компрессоров продолжилось в основном на моторах Формулы-1. Турбонаддува на гражданских машинах автопроизводители побаивались из-за детонации возросшего давления и температуры. Технологии производства подшипников оставляли желать лучшего, охлаждение и смазка тоже была малоэффективной, из-за этого турбины быстро приходили в негодность.

Окончательно и бесповоротно на путь «турбинификации» мировые производители встали после топливного кризиса конца 70-х.

Победа за турбокомпрессором?


Не углубляясь в технические подробности, скажем, что механические нагнетатели можно считать частью эволюционного пути, а массовое распространение в итоге получили турбокомпрессоры. Для раскрутки нагнетателя требуется мощность с вала двигателя, турбина же раскручивается просто за счeт выхлопных газов. Первый путь технически сложнее и дороже в массовом производстве.

Тем не менее механические компрессоры до сих пор устанавливают! С одной стороны, это премиальные модели британских Jaguar и Land Rover, некоторые двигатели у Mercedes, а с другой — традиционные масл-кары в духе Dodge Challenger Hellcat, которые продолжают специфически «подвизгивать» именно из-за своего механического нагнетателя.

Главное преимущество этой конструкции — приводной компрессор любой конструкции, будучи привязанным к коленвалу, не имеет инерционности. Связь «по педали» с ним прямая, и разгон остаeтся ровным практически во всeм диапазоне.
Как говорится, каждому своe. Но вернeмся к массовым автомобилям.

Преимущества


Если на рынке продаются оба вида двигателей, значит, у каждого есть ряд неоспоримых преимуществ. Рассмотрим их.

Атмосферный двигатель:

  • проще в обслуживании;
  • имеет более высокий ресурс;
  • меньший расход масла;
  • невысокие требования к качеству топлива и масла.
Турбированный двигатель:
  • высокая мощность и увеличенный крутящий момент при равных объeмах двигателя;
  • меньший расход топлива.

Недостатки


Равно как плюсы, у каждого из двух типов двигателей есть свои недостатки.

Атмосферный двигатель:

  • имеет большой вес;
  • при одинаковом объeме с турбомотором мощность ниже;
  • сниженная динамика — в сравнении с турбомотором того же объeма;
  • сложности при езде в горах.
Большинство минусов атмосферного двигателя всплывают при сравнении с турбированными агрегатами. Отдельно стоит сказать о последнем пункте: воздух в горах слишком разреженный, его количества не хватает для стабильной работы мотора, поэтому двигатель попросту «задыхается».

Турбированный двигатель:

  • высокие требования к качеству смазки и топлива;
  • дорогостоящий ремонт;
  • долгий прогрев зимой;
  • меньший интервал замены масла.

Трудности выбора



Автолюбителям, которые сомневаются, какой двигатель лучше и выгоднее, однозначного ответа дать не получится. Например, ценителям мощности и динамики имеет смысл присмотреться к турбированному мотору. Однако он же влечeт за собой значительные денежные траты на приобретение бензина и масла высокого качества.

Атмосферный двигатель примечателен своей простотой и неприхотливостью, он прекрасно может служить не одно десятилетие, кроме того, его работоспособность сможет поддержать даже человек с невысоким достатком.

Какое масло нужно турбомоторам, а какое — атмосферным?


У турбомотора наибольшая отдача, то есть максимум выработки тепла приходится на диапазон оборотов в районе 3000-4000 об/мин, когда турбина подаeт повышенное количество воздуха в цилиндры. После того как поток выхлопных газов станет достаточным для полноценной работы турбины, происходит скачок вырабатываемой энергии, сопровождаемый скачком температуры.

Моторное масло в таких условиях обязано сохранять свои свойства как при низких, так и при повышенных температурах. В случае турбированного двигателя это особенно важно, поскольку ось, на которой установлены турбинное и насосное колeса турбонаддува, работает в подшипниках скольжения. В случае если смазочный материал не обеспечит необходимую защиту данного узла, турбина может преждевременно выйти из строя, не выработав свой ресурс, который обычно составляет 30–70% ресурса двигателя.

Для машин с турбокомпрессорами лучше всего подходят синтетические масла, так как они лучше противостоят окислению по сравнению с минеральными и полусинтетическими. К тому же их вязкость в меньшей степени зависит от изменений температуры, что необходимо для обеспечения защиты подшипников турбины на всех режимах работы двигателя.

Что касается самих характеристик вязкости моторного масла, то турбированные моторы «предпочитают» всесезонные масла с низкотемпературным показателем вязкости SAE 0W и высокотемпературным SAE от 20 до 40. Моторные масла с низким показателем высокотемпературной вязкости следует выбирать для повышения топливной экономичности, высокие показатели вязкости — для лучшей защиты двигателя и турбины. В любом случае, подбор смазочного материала следует проводить в полном соответствии с руководством по эксплуатации конкретного автомобиля.

Кроме того, есть пара важных нюансов относительно использования автомобилей с турбированными двигателями:
важно постоянно следить за состоянием масла, меняя его с периодичностью, рекомендованной производителем;
необходимо регулярно проверять воздушный фильтр — если он забился, это нарушит работу компрессора;
турбина быстрее изнашивается, если сразу после остановки автомобиля отключать мотор. Чтобы продлить срок службы турбомотора, ему нужно дать немного поработать на холостых оборотах для охлаждения турбины.

Атмосферные двигатели, в отличие от турбированных, менее требовательны к специфическим характеристикам масла. В данном случае подойдут общие рекомендации, которые мы давали в одной из предыдущих статей.

Стоит лишь напомнить о том, что мы предлагаем простой способ найти подходящее масло, — воспользоваться удобным онлайн-подборщиком. Просто задайте параметры «вид техники — марка — модель» или воспользуйтесь строкой поиска, и вам будут предложены все подходящие виды масла согласно международным стандартам и допускам автопроизводителей.

Выбор, как всегда, за вами!

Государственное бюджетное учреждение города Москвы Дом ветеранов сцены им. А. А. Яблочкиной Департамента труда и социальной защиты населения города Москвы (ГБУ ДВС им. А. А. Яблочкиной)

Об учреждении

Государственное бюджетное учреждение города Москвы Дом ветеранов сцены им. А. А. Яблочкиной Департамента труда и социальной защиты населения города Москвы было основано в 1907 году и находилось в Измайловском парке в небольшом деревянном доме до 1965 года. В 1965 году был сдан в эксплуатацию ныне существующий комплекс. Дом ветеранов сцены был предназначен для постоянного проживания членов СТД РФ (ВТО) — работников театров, актёров, режиссёров, работников сцены и возможного поселения представителей близких творческих профессий: художников, работников телевидения и радио, журналистов, педагогов, общественных деятелей. В настоящее время ГБУ ДВС им А. А. Яблочкиной — стационарное учреждение социального обслуживания, предназначенное для постоянного проживания граждан пожилого возраста и инвалидов I и II групп, частично или полностью утративших способность к самообслуживанию и нуждающихся в постоянном постороннем уходе, в том числе театральных деятелей — ветеранов сцены, которые принимаются в ГБУ ДВС им. А. А. Яблочкиной в приоритетном порядке.

Материально-техническое обеспечение и перечень социальных услуг

Социально-бытовые услуги:

1. Предоставление жилых комнат, согласно утвержденным нормативам, а также комнат с комфортным проживанием.

Всего жилых комнат — 90

Оснащение комнат мебелью: кровати, столы, стулья, тумбочки, шкаф для одежды, телевизор, холодильник. При желании клиента, возможно создание комфортных условий, максимально приближенных к домашним, с обстановкой из личной мебели и вещей для большего уюта.

2. Обеспечение питанием, согласно утвержденным нормативам. Питание 5-разовое, осуществляется по 28-дневному меню, в том числе диетическому (стол № 9). Общее количество оборудованных столовых — одна на 90 посадочных мест. Имеется современная мебель, столовая посуда, современное кухонное оборудование.

3. Обеспечение мягким инвентарем в полном объеме (одежда, обувь, нательное белье и постельные принадлежности), согласно утвержденным нормативам.

4. Отдел бытового обслуживания представлен оборудованной парикмахерской, где организовано предоставление услуг парикмахера, и швейной мастерской, в которой штатный сотрудник (швея) выполнит работы по ремонту одежды.

5. Оборудована библиотека. Укомплектована книгами, журналами, газетами, настольными играми. Библиотечный фонд составляет более 6000 изданий.

6. Для проведения досуга в учреждении имеются:

— верхняя гостиная, комната досуга, концертный зал, оснащённые музыкальными инструментами, современной телевизионной, аудио- и видео аппаратурой, где проводятся концерты, творческие встречи, музыкальные занятия, репетиции, шахматные турниры, художественные выставки и др.

7. Для проведения культурно-массовых мероприятий оборудованы и функционируют:

— концертный зал, оснащенный звуковым оборудованием;

— гримёрные комнаты.

Имеется мультимедийное оборудование, звуковая аппаратура в полном объеме.

8. Для отправления религиозных обрядов создана и функционирует Домовая церковь.

9. В ДВС им. А. А. Яблочкиной организованы посещения театральных спектаклей практически во все московские театры, поездки на самые различные культурно-массовые мероприятия города Москвы и РФ, проводятся экскурсии по Москве и окрестностям.

Социально-медицинские услуги:

Медицинская часть ГБУ ДВС им. А. А. Яблочкиной представлена отдельным медицинским корпусом, включающим в себя кабинеты врача-терапевта, психиатра, невролога, психотерапевта, круглосуточный пост дежурной медицинской сестры, процедурный кабинет, палаты, физиотерапевтический кабинет, аптеку.

Каждого пациента наблюдает врач-терапевт по индивидуально составленной программе, которая включает необходимую базисную медикаментозную терапию, курсовую терапию, контроль динамики состояния.

В случае необходимости постоянного контроля состояния здоровья, больные переводятся в палаты медицинского корпуса.

В пансионате организовано круглосуточное наблюдение силами среднего медперсонала.

В лечении пациентов имеется возможность применения внутримышечных и внутривенных инъекций, внутривенных капельных вливаний лекарственных препаратов (строго по назначению врача).

Физиотерапия, представленная лазерным кабинетом, собственно физиотерапевтическим кабинетом, ингаляторием, позволяет успешно использовать в комплексном лечении и реабилитации лиц пожилого возраста методы немедикаментозного воздействия: лазеротерапию, магнитотерапию, УВЧ-терапию, дарсонвализацию, электрофорез, фонофорез, ингаляции, кислородные коктейли, УФО, ДДТ.

При необходимости пациенты осматриваются узкими специалистами территориальных учреждений здравоохранения. В отдельных случаях производится госпитализация в городской стационар.

Диагностические возможности:

  • Электрокардиография
  • Мониторинг артериального давления
  • Забор крови для проведения медицинских анализов
  • Определение пищевого статуса
  • Определение ЧСС
  • Определение ЧДД
  • Определение степени бронхообструкции

Социально-психологические услуги:

Работает кабинет психолога, оснащённый аудиотекой для релаксации и психологической разгрузки. Ведётся индивидуальная работа в отделении милосердия. В комнате досуга проводятся показы видеофильмов и беседы (лекции) на актуальные темы.

Социально-трудовые услуги:

Созданы условия для творческой реализации: проведение репетиций с опытным концертмейстером, подготовка и участие в тематических и праздничных концертах, музыкальных и литературных вечерах.

Любители природы имеют возможность реализовать себя в благоустройстве садово-парковой зоны. У жилых корпусов выделены территории для создания клумб, цветников. Имеется садовый инвентарь в полном объёме.

Социально-правовые услуги:

При необходимости могут быть организованы встречи-консультации с высококвалифицированным юристом.

Социальные работники учреждения оказывают помощь в решении многих возникающих вопросов.

Сведения о регистрации юридического лица ( в соответствии с актами налоговых органов)

Дата регистрации — 09.06.2012 г.

Документы:

Свидетельство о внесении записи в ЕГРЮЛ

77 № 015926569 от 09.06.2012 г.

Свидетельство о постановке на учёт в налоговом органе

77 № 015926570 от 09.06.2012 г.

ИНН 7720753353 ОГРН 1127746456089

Информация о лицензиях

  • Лицензия ЛО-77-01-018961 от 24.10.2019 на осуществление медицинской деятельности (за исключением указанной деятельности, осуществляемой медицинскими организациями и другими организациями, входящими в частную систему здравоохранения, на территории инновационного центра «Сколково»), выдана Департаментом здравоохранения города Москвы.
  • Лицензия ЛО-77-02-008230 от 26.12.2016 на осуществление фармацевтической деятельности, выдана Департаментом здравоохранения города Москвы.

Сведения о формах социального обслуживания

  • 148003 стационарное социальное обслуживание граждан пожилого возраста и инвалидов, частично или полностью утративших способность к самообслуживанию;
  • 148004 стационарное социальное обслуживание в отделениях милосердия граждан пожилого возраста и инвалидов, частично или полностью утративших способность к самообслуживанию.

Попечительский Совет

  1. Калягин А. А. народный артист РСФСР, председатель Общероссийской общественной организации «Союз театральных деятелей Российской Федерации (Всероссийское театральное общество)».
  2. Кибовский А. В. — Министр Правительства Москвы, Руководитель Департамента культуры города Москвы.
  3. Швыдкой М. Е. — специальный представитель Президента РФ по международному культурному сотрудничеству, художественный руководитель Московского Театра Мюзикла.
  4. Тимофеев В. А. — директор ГБУК «Московский государственный художественный историко-архитектурный и природно-ландшафтный музей-заповедник».
  5. Ушаков А. Ф. — генеральный директор Культурно-развлекательного комплекса «Измайловский кремль».
  6. Миронова М. А. — народная артистка России, учредитель Благотворительного фонда поддержки деятелей искусств «Артист».
  7. Георгиева М. М. — генеральный директор Национального фонда поддержки правообладателей.
  8. Смирнова Н. А. — Президент Международного благотворительного фонда развития культуры и искусства «Призвание».

1.1. Классификация транспортных средств по категориям / КонсультантПлюс

1. Транспортное средство, имеющее не более восьми мест для сидения, не считая места водителя, предназначенное для перевозки пассажиров и грузов, относится к категории:

M1, если произведение предусмотренного конструкцией числа пассажиров на условную массу одного пассажира (68 кг) превышает расчетную массу перевозимого одновременно с пассажирами груза;

N, если это условие не выполняется.

Транспортное средство, предназначенное для перевозки пассажиров и грузов, имеющее, помимо места водителя, более восьми мест для сидения, относится к категории M.

2. В случае полуприцепов и прицепов с центрально расположенной осью (осями) под технически допустимой максимальной массой принимается статическая вертикальная нагрузка, передаваемая на грунт осью или осями максимально загруженного сцепленного с тягачом полуприцепа и прицепа с центрально расположенной осью (осями).

3. Для целей пункта 1.1 настоящего приложения оборудование и установки, находящиеся на специальных транспортных средствах (автокраны, транспортные средства, оснащенные подъемниками с рабочими платформами, автоэвакуаторы и т.п.), приравниваются к грузам.

Объекты технического регулирования

Категория L - Мототранспортные средства, в том числе:

Мопеды, мотовелосипеды, мокики, в том числе:

Категория L1 - Двухколесные транспортные средства, максимальная конструктивная скорость которых не превышает 50 км/ч, и характеризующиеся:

- в случае двигателя внутреннего сгорания - рабочим объемом двигателя, не превышающим 50 см3, или

- в случае электродвигателя - номинальной максимальной мощностью в режиме длительной нагрузки, не превышающей 4 кВт.

Категория L2 - Трехколесные транспортные средства с любым расположением колес, максимальная конструктивная скорость которых не превышает 50 км/ч, и характеризующиеся:

- в случае двигателя внутреннего сгорания с принудительным зажиганием - рабочим объемом двигателя, не превышающим 50 см3, или

- в случае двигателя внутреннего сгорания другого типа - максимальной эффективной мощностью, не превышающей 4 кВт, или

- в случае электродвигателя - номинальной максимальной мощностью в режиме длительной нагрузки, не превышающей 4 кВт.

Мотоциклы, мотороллеры, трициклы, в том числе:

Категория L3 - Двухколесные транспортные средства, рабочий объем двигателя которых (в случае двигателя внутреннего сгорания) превышает 50 см3 (или) максимальная конструктивная скорость (при любом двигателе) превышает 50 км/ч.

Категория L4 - Трехколесные транспортные средства с колесами, асимметричными по отношению к средней продольной плоскости, рабочий объем двигателя которых (в случае двигателя внутреннего сгорания) превышает 50 см3 и (или) максимальная конструктивная скорость (при любом двигателе) превышает 50 км/ч.

Категория L5 - Трехколесные транспортные средства с колесами, симметричными по отношению к средней продольной плоскости транспортного средства, рабочий объем двигателя которых (в случае двигателя внутреннего сгорания) превышает 50 см3 и (или) максимальная конструктивная скорость (при любом двигателе) превышает 50 км/ч.

Если расстояние между центрами пятен контакта с дорожной поверхностью колес одной оси составляет менее 460 мм, такие транспортные средства относятся к категории L3.

(в ред. решения Совета Евразийской экономической комиссии от 16.02.2018 N 29)

(см. текст в предыдущей редакции)

Квадрициклы, в том числе:

Категория L6 - Четырехколесные транспортные средства, масса которых без нагрузки не превышает 350 кг без учета массы аккумуляторов (в случае электрического транспортного средства), максимальная конструктивная скорость не превышает 50 км/ч, и характеризующиеся:

- в случае двигателя внутреннего сгорания с принудительным зажиганием - рабочим объемом двигателя, не превышающим 50 см3, или

- в случае двигателя внутреннего сгорания другого типа - максимальной эффективной мощностью двигателя, не превышающей 4 кВт, или

- в случае электродвигателя - номинальной максимальной мощностью двигателя в режиме длительной нагрузки, не превышающей 4 кВт.

Категория L7 - Четырехколесные транспортные средства, иные, чем транспортные средства категории L6, масса которых без нагрузки не превышает 400 кг (550 кг для транспортных средств, предназначенных для перевозки грузов) без учета массы аккумуляторов (в случае электрического транспортного средства) и максимальная эффективная мощность двигателя не превышает 15 кВт.

Категория M - Транспортные средства, имеющие не менее четырех колес и используемые для перевозки пассажиров

Категория M1 - Транспортные средства, используемые для перевозки пассажиров и имеющие, помимо места водителя, не более восьми мест для сидения - легковые автомобили.

Автобусы, троллейбусы, специализированные пассажирские транспортные средства и их шасси, в том числе:

Категория M2 - Транспортные средства, используемые для перевозки пассажиров, имеющие, помимо места водителя, более восьми мест для сидения, технически допустимая максимальная масса которых не превышает 5 т.

Категория M3 - Транспортные средства, используемые для перевозки пассажиров, имеющие, помимо места водителя, более восьми мест для сидения, технически допустимая максимальная масса которых превышает 5 т

Транспортные средства категорий M2 и M3 вместимостью не более 22 пассажиров помимо водителя, подразделяются на класс A, предназначенные для перевозки стоящих и сидящих пассажиров, и класс B, предназначенные для перевозки только сидящих пассажиров.

Транспортные средства категорий M2 и M3 вместимостью свыше 22 пассажиров помимо водителя, подразделяются на класс I, имеющие выделенную площадь для стоящих пассажиров и обеспечивающие быструю смену пассажиров, класс II, предназначенные для перевозки преимущественно сидящих пассажиров и имеющие возможность для перевозки стоящих пассажиров в проходе и (или) на площади, не превышающей площадь двойного пассажирского сидения, и класс III, предназначенные для перевозки исключительно сидящих пассажиров.

Категория N - Транспортные средства, используемые для перевозки грузов - автомобили грузовые и их шасси, в том числе:

Категория N1 - Транспортные средства, предназначенные для перевозки грузов, имеющие технически допустимую максимальную массу не более 3,5 т.

Категория N2 - Транспортные средства, предназначенные для перевозки грузов, имеющие технически допустимую максимальную массу свыше 3,5 т, но не более 12 т.

Категория N3 - Транспортные средства, предназначенные для перевозки грузов, имеющие технически допустимую максимальную массу более 12 т.

Категория O - Прицепы (полуприцепы) к транспортным средствам категорий L, M, N, в том числе: (замечание АСМАП).

Категория O1 - Прицепы, технически допустимая максимальная масса которых не более 0,75 т.

Категория O2 - Прицепы, технически допустимая максимальная масса которых свыше 0,75 т, но не более 3,5 т.

Категория O3 - Прицепы, технически допустимая максимальная масса которых свыше 3,5 т, но не более 10 т.

Категория O4 - Прицепы, технически допустимая максимальная масса которых более 10 т.

Замена двигателя: какой можно поставить и как всё оформить

Как зарегистрировать машину с нестандартным мотором

Если автовладелец заранее знает, что хотя бы одна характери­стика нового двигателя не совпадёт с параметром штатного агрегата, он должен быть готов к длинной бюрократи­ческой процедуре, начать которую придётся задолго до того, как мотор будет установлен под капот.

Сначала нужно обратиться к экспертом за предвари­тельной оценкой, чтобы выяснить: можно ли в принципе «поженить» вашу машину с выбранным мотором? Например, такие услуги предо­ставляет Центр технической экспертизы ФГУП «НАМИ». В каждом регионе есть свои организации, которые должны получить аккреди­тацию на проведение подобных экспертиз и соответствующее свидетельство. Их список висит на сайте Федеральной службы по аккредитации, а также на сайте Евразийского экономического союза.

Автовладелец должен будет предоставить заявление, свой паспорт, СТС и ПТС, подтверждение собствен­ности на новый мотор, общее техническое описание авто­мобиля с указанием, какие изменения хочется внести. Если есть техническая документация (чертежи, расчёты), на основе которой планируется осуще­ствлять работы по замене, её тоже можно предоставить, но это не обязательно.

На основе всех документов комиссия экспертов может выдать отказ, если посчитает, что желаемый мотор невозможно поставить. Второй вариант: специ­алисты признают, что переделка не является измене­нием конструкции, напишут соответ­ствующее заключение и выдадут заявителю рекомендации, как поступать дальше.

Третий вариант: эксперты решат, что мотор поставить реально, но изначальная конструкция из-за этого изменится. Тогда вместе с заключе­нием выдадут список требований, а также работ, выпол­нение которых сделает новую конструкцию машины безопасной. Кроме того, владельца могут обязать получить серти­фикат соответ­ствия на двигатель. Его выдаст та же экспертная организация, если подать заявление на эту услугу.

В отдельном документе эксперты расскажут, сотрудники какой квали­фикации потребуются для пере­численных работ. Там же будут сформули­рованы доработки, которые разрешат сделать владельцу само­стоятельно. Такое заключение с 1 декабря 2020 года попадает в единый реестр, где привязы­вается к VIN автомобиля.

Дальше счастливому владельцу необходимо получить формальное разрешение на изменение конструкции, это бесплатно. Запрос на него можно подать через Госуслуги в любое терри­ториаль­ное подраз­деление ГИБДД. В допол­нение к заявлению понадобятся паспорт, ПТС, СТС и предвари­тельное заключение экспертов.

ГИБДД выносит решение по такому заявлению в течение трёх дней, а возможный отказ должен быть мотивирован. В случае положитель­ного ответа нужно будет ехать в сервис. Важно помнить, что сервис должен иметь серти­фикат, который подтвердит, что мотор меняли специ­алисты с той квалификацией, которую рекомендовали технические эксперты.

Завершив работу, сертифициро­ванный сервис должен выдать, помимо акта выпол­ненных работ, заявление-декларацию. В нём будут указаны изменения, внесённые в конструкцию машины. Они должны совпадать с тем, что пред­писывало предваритель­ное заключение экспертов. На те работы, которые владельцу разрешили выполнить само­стоятельно, он сам составляет аналогичную декларацию. Форма декларации есть в приложении к межгосудар­ственному стандарту о порядке оценки изменений в конструкции ТС.

Затем с заявлениями-декларациями владелец возвраща­ется в ту же организацию, что проводила предвари­тельную экспертизу, или выбирает другую. Доставить туда машину можно только на эвакуаторе – эксплуатация автомо­биля, чьё реальное техническое состояние не соответ­ствует прежним регистраци­онным данным, ещё запрещена. И так будет до получения новых регистраци­онных документов.

Теперь эксперты проведут техническую иденти­фикацию автомобиля и экспертизу его конструкции, сделают заключение о безопас­ности. По итогам всех исследо­ваний владелец получит протокол технической экспертизы. Если все работы выполнены правильно, эксперты укажут, что внесенные изменения соответ­ствуют действу­ющему техрег­ламенту. Если нет, предложат список доработок, после которых нужна будет повторная проверка.

С протоколом и декларациями о внесенных измене­ниях владелец отправ­ляется на пункт технического осмотра, где после проведения этой процедуры ему выдадут диагно­стиче­скую карту. При этом оператор обязан принять во внимание все внесённые в конструкцию изменения, если они подтверждены документами.

Дальше остаётся последний шаг — перереги­страция в ГИБДД. Для этого обязательно понадобится машина, поскольку инспектору будет необходимо её осмотреть. К ПТС и СТС, паспорту и квитанции об оплате госпошлины так же нужно приложить ещё несколько бумаг:

  • предварительное заключение техэкспертизы,

  • протокол финальной техэкспертизы,

  • сертификат соответствия на мотор, если он есть,

  • заявление-декларацию сервисного центра и копию его сертификации,

  • новую диагностическую карту.

После изучения всех документов инспектор проверит, насколько соответствуют реальные изменения предписанным. И наконец-то выдаст новые ПТС и СТС.

ЕС запрещает двигатели внутреннего сгорания

Звучит фантастически и утопически, но Евросоюз на полном серьёзе решил окончательно отказаться от двигателей внутреннего сгорания. Впрочем, такая норма если и окажется возможной, то только для личного автотранспорта.

Промышленность требует сроков

Революция в автоиндустрии ЕС: миллионы работников сменят квалификацию Автопром

Революция в автоиндустрии ЕС: миллионы работников сменят квалификацию

Девять стран Евросоюза обратились к руководству Еврокомиссии с настойчивой просьбой очень чётко и конкретно обозначить дату, с момента которой в сообществе станет запрещено торговать бензиновыми и дизельными автомобилями. Эта просьба спровоцирована постоянными новыми требованиями в ЕС к снижению выбросов CO2. Бизнес, в первую очередь автомобилестроение, хочет чётко понимать, где та красная черта, после которой двигатели внутреннего сгорания станут в принципе историей. И соответствующе подготовиться.

Считается, что именно отрасль автомобилестроения, вернее, продукция, которая выпускается, ответственна за четверть всех выбросов диоксида углерода. Огласить чёткую дату попросили Дания и Нидерланды, а их поддержали Австрия, Бельгия, Греция, Ирландия, Литва, Люксембург и Мальта.

ЕК просят определить поэтапное снижение производства автомобилей с двигателями внутреннего сгорания и график перехода отрасли на сборку транспортных средств, нейтральных к климату.

"Отсылая чёткие сигналы со стороны законодателей, мы должны подтолкнуть переход транспорта к экологическим решениям, таким образом создавая для сектора условия по поддержке перехода к транспортным средствам, не загрязняющим окружающую среду", — поясняет министр по проблемам климата и энергетики Дании Дан Йёргенсен.

Сплошь электрокары — до 2030 года

Главным документом должен стать новый свод стандартов выбросов диоксида углеродов в автомобильной отрасли. Главной целью названо снижение парникового эффекта на 55% до 2030 года и полностью нейтрализация влияния на экологию экономической деятельности человека к 2050 году. До этого декларировалась цель сократить последствия парникового эффекта на 40%. Значительное ужесточение условий и стало поводом для обращения девяти стран в ЕК.

По словам госсекретаря Нидерландов, ответственную за развитие инфраструктуры Стьенте ван Велдховен, если действительно реализовать поставленные задачи, то, учитывая срок эксплуатации легковых автомобилей в ЕС, полностью прекратить производить транспорт с двигателями внутреннего сгорания необходимо уже к 2030 году. Тогда к 2050 году такие машины будут раритетами, пишет Bloomberg.

Бизнес Евросоюза: этот год был гораздо хуже, чем 2008 Итожа двадцатый

Бизнес Евросоюза: этот год был гораздо хуже, чем 2008

Тем временем большинство автопроизводителей уже готовятся к полному переходу на сборку исключительно электромобилей. Volkswagen декларирует, что к 2030 году 70% всех произведённых автомобилей будут передвигаться исключительно на электричестве. В свою очередь, Volvo, Jaguar, Ford of Europe, Bentley и ещё несколько концернов объявили, что к этому сроку в их линейке не останется ни одного легкового транспортного средства с двигателями внутреннего сгорания.

В Великобритании на законодательном уровне до 2030 года собираются запретить торговлю новыми авто с бензиновыми и дизельными двигателями. Как уже ранее писал "Деловой Петербург", в последнем квартале 2020 года впервые в истории ЕС количество продаж электромобилей перевалило за один миллион единиц. При этом популярность транспорта с двигателями внутреннего сгорания упала аж на 37%. Продажи транспортных средств на электроэнергии в последнем квартале 2020 года подросли на 262,8%, а в Германии и вовсе на 500%.

Дешёвых "китайцев" на рынок не пускают

Однако переход на автотранспорт, дружественный окружающей среде, ещё в самом начале пути. В первом квартале этого года доля продаж электромобилей в ЕС составляла 5,7% от продаж всех новых авто.

Главным вызовом остаётся создание инфраструктуры и цена, которая сегодня значительно выше, чем автомобилей с двигателями внутреннего сгорания. И это несмотря на огромные дотации государств. Конечную стоимость снизить можно, уверены эксперты автоиндустрии. Например, китайский Wuling Hongguang Mini EV — сейчас эта малютка не только самый дешёвый, но и самый покупаемый электромобиль в мире. За счёт населения Китая, разумеется. Но этой марке въезд в ЕС запрещён по причине несоответствия стандартам.

В ЕС местные умельцы её уже переделали. Для того чтобы это транспортное средство стало легальным в Евросоюзе, пришлось внести некоторые изменения. Появился электродвигатель, произведённый в Германии, появился новый аккумулятор, который производят в Польше. А для того чтобы обеспечить безопасность, необходимо было оборудовать подушку безопасности. Её также произвели в Германии. А адаптировали всё литовцы, которые присвоили новому электромобилю имя Nicrob Freze. В честь русского изобретателя, кстати. Фрезе — это фамилия инженера Петра Алексеевича Фрезе, соавтора первого серийного российского автомобиля. Стоить такой автомобиль в ЕС будет 14 тыс. евро, из которых 4 тыс., надеются разработчики, компенсируют государства ЕС, в которых его выставят на продажу. Конечные 10 тыс. евро — очень заманчивая цена для западных европейцев, для которых такие малютки служат экологически чистой альтернативой в городском трафике. Особенно из-за льгот — уже сейчас во многих городах ЕС въезд в центр разрешён только электротранспорту, где-то парковки бесплатные, выделяются отдельные полосы приоритета, которые гарантируют, что не проведёшь драгоценное время в пробках.

Словом, учитывая всё это вместе, перспектива отказа от двигателей внутреннего сгорания в ЕС не выглядит далёкой фантастикой. Оглянуться не успеешь, а электромобиль за короткий срок вытеснит традиционные авто, как в своё время мобильные телефоны — обычные стационарные.

Выделите фрагмент с текстом ошибки и нажмите Ctrl+Enter

Самые надёжные двигатели BMW, как выбрать – автодилер БорисХоф

Рядный 6-цилиндровый мотор выполнен из алюминия и снабжен чугунными гильзами. Рабочий объем в зависимости от модификации составляет от 2,2 до 3 литров. Выпускался баварской компанией до 2006 года. Дважды (2003, 2004) признавался лучшим двигателем года. Нередки случаи, когда двигатели M54 вырабатывали без капитального ремонта свыше 300 000 км.

Установка оборудована газораспределительным механизмом Double Vanos с цепным приводом; для регулировки тепловых зазоров предусмотрены гидрокомпенсаторы. Длина впускного коллектора может меняться с учетом режима работы, что повышает эффективность ДВС.

Прочную опору коленчатому валу обеспечивают коренные подшипники (7 шт.), что обеспечивает уверенную работу двигателя на высоких оборотах и способствует увеличению ресурса.

Следует отметить, что по сравнению с предшественником (M52) рассматриваемый силовой агрегат БМВ является более надежным. Выбирая между подержанными автомобилями с установками M52 и M54, разумнее предпочесть второй вариант.

N55

Эта модель представляет собой рядный двигатель с шестью цилиндрами и рабочим объемом три литра. В разных версиях максимальная мощность составляет от 306 до 370 л. с. Блок двигателя изготовлен из алюминия и снабжен чугунными гильзами. Охлаждение поршней обеспечивают масляные форсунки.

Силовыми установками BMW N55 комплектовались отдельные модификации:

  • 1 серии с индексами E82, F20;
  • 2 серии в кузове F22;
  • 3 серии с индексами F30, E90;
  • 4 серии — F32;
  • 5 серии — F10;
  • 6 серии — F13;
  • 7 серии — F01;
  • кроссоверов X1(E84), X3(F25), X4(F26), X5(E70, F15), X6(E71,F16).

Серия моторов BMW N, как и B, отличается высокой технологичностью. В агрегате предусмотрена возможность изменения высоты клапанов, наличие регуляторов фаз механизма газораспределения. В состав установки входит двойная турбина, улитки которой различаются по диаметру.

Чтобы обеспечить длительную и бесперебойную работу этого двигателя, следует соблюдать сроки обслуживания и использовать топливо, а также расходные материалы высокого качества. Средний ресурс до капремонта составляет 250 000 км, но отдельные экземпляры вырабатывали и по 400 000 км.

Сейчас N55 сняты с производства, но можно найти вполне достойные варианты с пробегом, если брать автомобиль, выпущенный не ранее 2010 года

S85

Этот крупноразмерный V-образный ДВС с 10 цилиндрами выпускался в сериях B40 (рабочий объем 4 л) и B50 (5 л). Несколько лет подряд отмечался наградой «Лучший двигатель года объемом более 4 л». Надежный мотор BMW S85 устанавливался на моделях М5 в кузове Е60 и М6 с индексом Е63.

Дизель

Самым надежным среди моторов БМВ, работающих на дизтопливе, является турбированный N47, многократно признававшийся лучшим дизельным двигателем. В базовой версии рабочий объем установки составляет 2 л, выпускалась также дефорсированная модификация на 1,6 л. В составе мотора имеется 4 цилиндра, максимальная мощность — от 116 до 218 л. с.

Блок двигателя выполнен из алюминия с чугунными гильзами. Мотор оснащен механизмом впрыска горючего Common Rail. Газораспределительный механизм снабжен цепным приводом. Заявленный срок эксплуатации силового агрегата без капремонта — свыше 250 000 км.

Большинство современных и выпускавшихся ранее двигателей BMW отличаются надежной конструкцией. Установки способны полностью вырабатывать заявленный ресурс без серьезного ремонта, но только при соблюдении основных условий: своевременное обслуживание, качественное топливо и расходные материалы.

Какой двигатель лучше выбрать для «ШКОДЫ РАПИД»?

Чешский лифтбэк RAPID, безусловно, является одним из лидеров сегмента B+. Он надежен, быстр и комфортен даже при ежедневной интенсивной эксплуатации, чем и заслужил доверие огромного числа отечественных водителей.

А с новой линейкой двигателей ŠKODA RAPID стал еще более привлекательным вариантом. На сегодняшний день к покупке предлагаются три версии силовых агрегатов и три типа коробок передач. Широкий ассортимент комплектаций — это всегда хорошо, но здесь могут возникнуть и некоторые вопросы.

Наиболее частый: с каким двигателем лучше выбрать «ШКОДА РАПИД»? В нашей стране традиционно отдается предпочтение атмосферным ДВС. Да, они не столь тяговиты и экономичны, как турбомоторы TSI, но зато отличаются простотой конструкции, неприхотливостью к качеству бензина и невысокой стоимостью обслуживания.

В данной статье мы рассмотрим, какие именно двигатели устанавливаются на «ШКОДА RAPID», реализуемые в отечественных широтах, а также расскажем об их динамических возможностях.

Двигатели ŠKODA RAPID

В гамме двигателей ŠKODA RAPID, как уже упоминалось выше, присутствуют атмосферные модификации. Предусмотрено два варианта объемом 1.6 и мощностью 90 и 110 л. с. Данные моторы относятся к модернизированному семейству ЕА 211 и отличаются большим ресурсом по сравнению с предшественниками.

Конструкция силовых агрегатов претерпела значительные изменения. Так, 1.6 MPI теперь имеет по четыре клапана на каждом из четырех цилиндров, блок из высококачественного алюминиевого сплава, особую архитектуру выпускного коллектора и зубчатый ремень ГРМ вместо цепи.

Преобразования позволяют ДВС быстрее входить в рабочий температурный режим. А это ведет к сокращению топливного расхода и более быстрому прогреву автомобиля в зимний период.

Базовый двигатель ŠKODA RAPID идет в паре с механической 5-ступенчатой коробкой. Такой тандем обеспечивает разгон до 100 км/ч за 11,4 секунды, а средний расход горючего в режиме мегаполиса составляет 7,8 литра.

Для форсированного до 110 л. с. MPI 1.6 доступны сочетания не только с МКПП, но и с классическим автоматом Aisin. В первом случае ускорение отнимет 10,3, а во втором — 11,6 секунды. Потребление бензина также более выигрышно у версий с механикой — 7,9 литра против 8,2.

В целом же лифтбэки с обеими версиями 1,6-литровых моторов отлично подходят для спокойной и уверенной езды, как по городским улицам, так и по трассе. Здесь выбор будет, как и всегда, между удобной в пробках АКПП и более динамичной и экономичной МКПП.

Но с каким двигателем «ШКОДА RAPID» больше соответствует спортивному стилю вождения? Здесь наиболее приемлемыми окажутся модели с турбоагрегатом TSI 1.4 мощностью 125 л. с. До сотни лифтбэк с таким наполнением разгоняется за 9 секунд, а максимальный предел скорости равен 208 км/ч.

Вы, наверное, также спросите, какой расход у этого двигателя «ШКОДА»? А мы ответим, что это наиболее экономичный из всей линейки моторов «РАПИД», — всего 7,1 литра в городском цикле и 4,4 при езде по трассе. Такие показатели доступны благодаря идеально настроенной комбинации с 7-ступенчатой DSG. Минусом данной модификации является более высокая по сравнению с RAPID 1.6 стоимость.

Если вы все еще в сомнениях, с каким двигателем лучше выбрать «ШКОДА РАПИД», то обязательно пройдите тест-драйв модели в разных версиях, обратившись за этим к официальному дилеру чешского концерна — «Медведь Абакан».

Двигатель внутреннего сгорания - Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Присоединяя поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и двуокись углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ "Файл: Двухтактный двигатель.gif - Wikimedia Commons ", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания - Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Присоединяя поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и двуокись углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ "Файл: Двухтактный двигатель.gif - Wikimedia Commons ", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Стационарные поршневые двигатели внутреннего сгорания

Требуется ли разрешение на установку дизельного двигателя, например генератора?
Применимость разрешения будет зависеть в первую очередь от номинальной мощности двигателя и предполагаемого использования генератора.Чтобы установить неаварийный генератор мощностью более 300 тормозных лошадиных сил, вам необходимо получить разрешение на полеты или изменить существующее разрешение до выполнения каких-либо договорных обязательств, взятых на Производственный объект. Только аварийные генераторы обычно не нуждаются в разрешении или изменении разрешения для установки; тем не менее, программы пикового бритья не считаются чрезвычайной ситуацией, и все же есть несколько положений, которые могут применяться независимо от того, требуется ли разрешение. Эти положения и факторы, используемые для определения применимости, более подробно обсуждаются ниже.

Что такое стационарный поршневой двигатель внутреннего сгорания?
Стационарные поршневые двигатели внутреннего сгорания (RICE) - это двигатели, которые используют расширение газов и результирующее повышенное давление от сгорания топлива внутри ограниченного цилиндра (ов) для перемещения одного или нескольких поршней назад и вперед для вращения вала и производить механическую энергию. Механическая энергия может использоваться непосредственно для оборудования, такого как насосы или компрессоры, или может использоваться для питания электрического генератора и производства электроэнергии.

Стационарные поршневые двигатели внутреннего сгорания используют воспламенение от сжатия (CI) или искровое зажигание (SI), чтобы вызвать горение внутри цилиндров. CI RICE обычно работает на дизельном топливе, а SI RICE обычно работает на более легких видах топлива (например, бензине, пропане, природном газе, биогазе и т. Д.). RICE приводит к загрязнению воздуха в результате сгорания топлива, обычно вызывая более высокий уровень загрязнения, чем другие источники сгорания, такие как котлы, из-за более высокого давления внутри RICE и повторяющегося «периодического» сгорания, которое происходит с каждым циклом сгорания, который перемещает поршень ( с).

Чтобы соответствовать определению стационарного RICE в соответствии с правилами штата Вермонт, двигатель должен оставаться на стационарном источнике в течение 12 месяцев подряд или в течение всего сезона эксплуатации у сезонных источников. Федеральные правила отличаются тем, что, если двигатель установлен на шасси, предназначенном для перемещения, либо с его собственным питанием, либо с внешним питанием, он считается не стационарным RICE, а скорее внедорожным двигателем.

Как насчет двигателей для дорожных транспортных средств и внедорожных двигателей на моем предприятии?
Дорожная техника (e.грамм. грузовые автомобили, автобусы, легковые автомобили и мотоциклы), зарегистрированные для использования на дорогах общего пользования, подпадают под действие отдельных стандартов выбросов от автотранспортных средств и не подпадают под действие каких-либо разрешений на использование стационарных источников, выдаваемых Вермонтом AQCD, и не включаются в них. Внедорожные двигатели (например, локомотивы, морские суда, внедорожные транспортные средства для отдыха, газонная и садовая техника, а также внедорожное строительное оборудование, включая самосвалы, бульдозеры и переносные генераторы) также подпадают под действие отдельных стандартов выбросов, но их регулирование является более сложным. .Для любого стационарного источника в Вермонте, необходимого для получения разрешения на выбросы других загрязняющих веществ в атмосферу (см. VAPCR 5-401 для списка источников загрязнения воздуха, требующих разрешения на использование воздуха), выбросы загрязняющих веществ в атмосферу и использование топлива для любых внедорожных двигателей будут входит в разрешение на авиаперевозку. Основная причина их включения в разрешение на использование воздуха заключается в том, что выбросы от этих двигателей, вероятно, происходят полностью из стационарного источника, в отличие от транспортных средств, которые выбрасывают выбросы на многие километры автомагистралей.

Однако федеральное определение внедорожных двигателей включает положения, в которых говорится, что эти двигатели станут стационарными источниками в зависимости от того, как они используются. Если внедорожный двигатель остается неподвижным в одном и том же фиксированном месте в течение 12 месяцев подряд или в течение всего сезона эксплуатации с сезонными источниками, он будет считаться стационарным двигателем. Для этого часто используются компрессоры и генераторы.

Выбросы внедорожных двигателей и потребление топлива на Производственном объекте будут включены как часть регистрации Объекта и регулироваться в разрешении на использование Объекта на использование воздуха. Однако, если внедорожный двигатель не будет реклассифицирован как стационарный двигатель, разрешение не может налагать любые новые стандарты выбросов для двигателей, поскольку внедорожные двигатели уже подпадают под федеральные стандарты выбросов.

Как регулируется стационарный рис?
Есть несколько факторов, которые могут повлиять на то, какие правила применяются к стационарному RICE, например:

  • Номинальная тормозная мощность двигателя,
  • , когда двигатель был изготовлен или установлен,
  • , находится ли двигатель в главном источнике или в районе источника,
  • предполагаемое использование двигателя, в том числе когда / где двигатель перемещается (если применимо),
  • и является ли двигатель двигателем с воспламенением от сжатия или искровым зажиганием.Двигатели с искровым зажиганием далее подразделяются по циклам мощности (т. Е. Двухтактный против четырехтактного и "богатое горение" против "обедненное горение").

Таким образом, перед установкой стационарного RICE вы должны уведомить Отдел разрешений и проектирования AQCD, чтобы убедиться, что вы полностью осведомлены о своих обязательствах. Уведомление должно включать следующую информацию: марку, модель, мощность двигателя, мощность генератора в кВт (если применимо), год изготовления двигателя и сертификат выбросов для двигателя.Эта информация доступна на паспортной табличке двигателя, прикрепленной к двигателю, в отличие от паспортной таблички генератора, которая прикреплена к компоненту генератора. К уведомлению должна быть приложена фотография паспортной таблички двигателя, чтобы гарантировать, что вся информация точно собрана и отправлена. Если предполагается использование в качестве аварийного генератора, в уведомлении также должно быть указано, что аварийный генератор должен использоваться только для аварийного использования и что вы знакомы с государственными и федеральными определениями, ограничивающими, какие операции разрешены для аварийных генераторов.Генераторы, которые будут использоваться не в аварийных целях, включая большинство программ снижения пиковых нагрузок, обычно требуют разрешения или изменения разрешения перед установкой.

Что мне нужно сделать, чтобы получить разрешение на полеты?
Заявление на получение разрешения на строительство должно быть подано с соответствующей пошлиной в AQCD. Разрешение должно быть выдано до того, как заявитель сможет начать строительство объекта. Это потребуется перед установкой или эксплуатацией неаварийного стационарного RICE на объекте.Дополнительную информацию см. На нашей веб-странице, посвященной разрешению на создание руководств по применению. В дополнение к информации, необходимой для подачи заявки на получение разрешения на строительство, пожалуйста, также предоставьте следующие спецификации оборудования и проекты.

Технические характеристики и конструкция оборудования
Пожалуйста, предоставьте следующую информацию в Отдел разрешений и инженерии при подаче заявления на разрешение.

  • Производитель двигателя, Модель №, Серийный №(при наличии), дата изготовления
  • Дата установки:
  • Использование двигателя (аварийный резерв, основное питание, пиковая мощность, использование без генератора (пояснение)):
  • Мощность двигателя (л.с.):
  • Номинальная мощность двигателя (непрерывный / основной / резервный):
  • Мощность генератора (кВт):
  • Рабочая скорость двигателя (об / мин):
  • Тип топлива (дорожное дизельное топливо [бесцветное, без оттенка] / стандартное дизельное топливо [красный оттенок] / природный газ / пропан / бензин / другое):
  • Максимальная скорость сжигания топлива при 100% нагрузке (жидкое топливо [галлоны / час] / газообразное топливо [кубические футы / час]):
  • Конструкция двигателя: количество цилиндров
    • Рабочий объем на цилиндр (кубические дюймы)
    • двухтактный или четырехтактный
    • с турбонаддувом, наддувом или без наддува?
    • с промежуточным или промежуточным охлаждением?
    • метод зажигания [искра или сжатие (дизельный цикл)]:
  • Сертифицирован ли двигатель на соответствие федеральным ограничениям выбросов для двигателей внедорожников согласно 40 CFR Part 89 или Part 1039?
  • Если да, укажите уровень сертификации двигателя и год сертификации (т. Е.год соответствия стандартам, по которым он сертифицирован):
  • Будет ли использоваться расслоенный заряд или замедление двигателя?
  • Будет ли двигатель использовать катализатор для борьбы с загрязнением воздуха?
  • Будет ли двигатель оснащен уловителем частиц дыма для снижения выбросов твердых частиц?
  • Производитель генератора, Модель №, Серийный № (при наличии)
  • Мощность генератора (кВт): основная мощность и / или резервная мощность
  • Химия выхлопных газов (при наличии)

Государственные правила для генераторов
Освобождение от государственных разрешений для аварийных генераторов распространяется только на аварийное использование только генераторов и только в том случае, если совокупная мощность этих двигателей-генераторов на всем объекте составляет менее 2000 л.с.Вермонтское определение только для аварийного использования допускает неограниченную работу во время аварийных событий вне контроля предприятия, а также до 100 часов в год на плановые испытания и техническое обслуживание. Только в соответствии с определением штата Вермонт, аварийные события также включают работу в рамках программ реагирования на чрезвычайные ситуации ISO Новой Англии или местных энергетических компаний. Эти программы используются для обеспечения надежности электросети во время экстремально высоких нагрузок на электроэнергию и реализуются только после того, как будут выполнены отключения электроэнергии.Эти программы очень ограничены и не включают большинство программ пиковых значений или сброса нагрузки, используемых для снижения потребления электроэнергии, когда затраты на электроэнергию высоки, но надежность сети не находится под угрозой. В случае сомнений вам следует связаться с вашей энергетической компанией и в Отдел разрешений и инженерии AQCD, чтобы подтвердить, соответствует ли программа требованиям. Даже если ваш аварийный генератор имеет право на освобождение от разрешений, он не может быть освобожден от соблюдения минимальных стандартов выбросов. Если двигатель мощностью 450 л.с. или выше и установлен после 1 июля 2007 г., он должен как минимум соответствовать федеральным стандартам EPA Tier 2 на выбросы загрязняющих веществ для внедорожных двигателей 40 CFR Part 89 или аналогичным.Сюда входят двигатели, которые будут использоваться для аварийного резервного копирования. Эффект этого правила заключается в том, что многие старые несовместимые двигатели не могут быть установлены в Вермонте. Большинство существующих аварийных генераторов, установленных до этой даты, было разрешено использовать только в аварийных ситуациях. Если ваш двигатель имеет мощность 450 л.с. или больше, вам необходимо будет предоставить документацию в Отдел разрешений и проектирования AQCD о том, что предлагаемый двигатель соответствует требованиям, прежде чем устанавливать двигатель.

Федеральные правила для генераторов
Федеральное агентство по охране окружающей среды США имеет два правила, касающихся загрязнения воздуха, которые могут применяться к вашему генератору.Один применяется к новым двигателям, а другой - к существующим двигателям. Оба позволяют аварийным генераторам работать неограниченное количество часов в аварийных ситуациях и до 100 часов в год для проверок технического обслуживания и проверки готовности, но оба имеют более строгие требования к работе в рамках программ реагирования на аварийные ситуации.

Точное применение этих правил очень сложно для двигателей, установленных в переходный период 2005-2007 гг. Одно правило применяется к новым двигателям 2007 модельного года и новее, а также к тем, которые были заказаны после 11 июля 2005 года, которые были изготовлены (не установлены) после 1 апреля 2006 года, и одно применяется к существующим двигателям, установленным до 12 июня 2006 года.Применимость к этим правилам в переходный период не является безупречной, и двигатель может быть подчинен одному, обоим или ни одному из правил.

Краткое изложение этих правил приводится ниже. Поскольку Вермонт не принял на себя делегирование этих правил, Агентство по охране окружающей среды США является исполнительным органом и несет ответственность за определение применимости и выполнения этих правил. Для получения дополнительной информации обратитесь непосредственно к Агентству по охране окружающей среды США и их веб-сайту.

Часть 60, подраздел IIII
Настоящие правила применяются к более новым двигателям, включая аварийные генераторы, примерно 2007 модельного года и новее. За некоторыми исключениями, этот регламент для стационарных двигателей по существу указывает на стандарты выбросов для внедорожных двигателей, содержащиеся в 40 CFR Part 89 и 1039. Его требования возлагаются в первую очередь на производителя двигателей, который должен производить двигатели, соответствующие все более строгим стандартам выбросов для новых моделей. годы.Стандарты выбросов различаются в зависимости от года выпуска, размера двигателя и в некоторых случаях предполагаемого использования двигателя. Хотя большинство двигателей, произведенных после 2014 года, должны соответствовать стандартам выбросов Tier 4, которые требуют передовых средств контроля выбросов оксидов азота, включающих катализатор селективного каталитического восстановления (SCR) и впрыск жидкости для выхлопных газов дизельных двигателей (DEF) 1 , некоторые двигатели производятся и сегодня. в соответствии с менее строгими стандартами выбросов, если они предназначены для аварийного использования только или больших (> 750 л.с.) приложений, не связанных с генераторными установками.Если двигатель сертифицирован только для аварийного использования , оператор должен ограничить его работу только для аварийного использования . Сертификационная этикетка двигателя по выбросам будет указывать, если двигатель ограничен таким образом. Перед покупкой любого двигателя убедитесь, что он предназначен только для аварийного использования. Такие двигатели никогда не могут быть использованы или переведены на неаварийную работу в любой момент в будущем. Независимо от уровня сертификации выбросов двигателя, оператор двигателя должен использовать только топливо ULSD и должен обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с надлежащей практикой контроля загрязнения воздуха для минимизации выбросов.

Если вы планируете использовать биодизельное топливо, обратите внимание, что должны выполняться все из следующих условий:

  • Биодизель соответствует требованиям к топливу 40 CFR 60.4207 (b),
  • Гарантия производителя двигателя на двигатель (включая системы контроля выбросов) включает использование биодизеля (или смеси биодизеля), используемого в двигателе, и
  • Биодизель соответствует стандарту ASTM D6751.

1 Для стационарных двигателей, изготовленных и помеченных как , используйте только в аварийных ситуациях , Подчасть IIII не требует, чтобы они соответствовали последним (Уровень 4) стандартам выбросов, установленным для внедорожных двигателей в 40 CFR Part 89 и 1039.Для таких стационарных двигателей в аварийных ситуациях разрешено использовать только двигатели с маркировкой , которые соответствуют Уровню 3 для двигателей мощностью менее 750 л.с. и Уровню 2 для двигателей мощностью более 750 л.с. Кроме того, для внедорожных двигателей мощностью более 750 л.с. (560 кВт), которые не являются компонентом генераторной установки, стандарты выбросов Tier 4, вероятно, могут быть выполнены без необходимости в катализаторе селективного каталитического восстановления (SCR) и впрыскивании дизельного топлива. выхлопная жидкость (DEF).

Часть 63 Подчасть ZZZZ
Настоящие правила применяются к существующим двигателям, установленным до ~ 12 июня 2006 г., и его требования относятся в основном к предприятиям, эксплуатирующим двигатель.Требования различаются в зависимости от размера и использования двигателя. Аварийные генераторы на жилых / коммерческих / институциональных объектах, но не на промышленных объектах, не облагаются налогом. Федеральное определение экстренной операции не соответствует определению штата и является предметом текущих судебных разбирательств. В настоящее время двигатели , предназначенные только для аварийного использования, могут эксплуатироваться в рамках программы реагирования на чрезвычайные ситуации ISO Новой Англии, но не . Допускается некоторая неаварийная операция, но такая операция не может использоваться для снижения пиковой нагрузки или реагирования на неаварийный спрос или для получения дохода для объекта, за исключением случаев, разрешенных в настоящее время в (f) (4) (ii), которые все еще позволяют до 50 часов реакции на «местный» спрос.Вам следует напрямую проконсультироваться с нормативными актами и EPA, чтобы убедиться, что вы соблюдаете эти положения, если вы намереваетесь использовать двигатель для любых неаварийных программ или программ реагирования на запросы.

Аварийные генераторы на промышленных объектах и ​​неаварийные двигатели мощностью менее 300 л.с. должны устанавливать счетчик отработанного времени (аварийные устройства), менять масло и фильтр каждые 500 часов (аварийные устройства) или 1000 часов (неаварийные устройства) работы, но не реже одного раза в год, осматривайте воздушный фильтр двигателя каждые 1000 часов работы, но не реже одного раза в год, проверяйте шланги и ремни двигателя каждые 500 часов, но не реже одного раза в год, и ведите соответствующие записи.В неаварийных двигателях мощностью 300 л.с. и выше должен быть установлен катализатор окисления для снижения выбросов монооксида углерода, должно использоваться только топливо ULSD и двигатель должен обслуживаться в соответствии с рекомендациями производителя и в соответствии с надлежащей практикой контроля загрязнения воздуха для минимизации выбросов, включая ограничение времени работы на холостом ходу.

Какие еще разрешения или требования могут быть применимы к моему проекту?
Управление по оказанию помощи в области охраны окружающей среды Департамента охраны окружающей среды имеет специалистов по разрешениям, которые могут оказать помощь в определении того, какие другие государственные разрешения или программы могут быть применимы к вашему проекту.Дополнительную информацию об этой услуге можно найти на следующем веб-сайте: http://dec.vermont.gov/environmental-assistance/permit

.

Двигатель внутреннего сгорания | Encyclopedia.com

Принципы

Структура двигателя внутреннего сгорания

Ресурсы

Двигатель внутреннего сгорания - это любой тепловой двигатель, который получает механическую энергию путем сжигания химической энергии (топлива) в замкнутом пространстве (камере сгорания). Изобретение и разработка двигателя внутреннего сгорания в девятнадцатом веке оказали глубокое влияние на человеческую жизнь.Двигатель внутреннего сгорания представляет собой относительно небольшой и легкий источник той мощности, которую он производит. Использование этой мощности сделало возможным создание практичных машин, начиная от самой маленькой модели самолета и заканчивая самым большим грузовиком. Электроэнергия часто вырабатывается двигателями внутреннего сгорания. Газонокосилки, бензопилы и генераторы также могут использовать двигатели внутреннего сгорания. Важным устройством на базе ДВС является автомобиль.

Однако во всех двигателях внутреннего сгорания основные принципы остаются неизменными.Топливо сжигается внутри камеры, обычно в цилиндре. Энергия, создаваемая сгоранием или сгоранием топлива, используется для продвижения устройства, обычно поршня, через камеру. Прикрепив поршень к валу за пределами камеры, движение и сила поршня могут быть преобразованы в другие движения.

Горение - это сжигание топлива. Когда топливо сгорает, оно выделяет энергию в виде тепла, что приводит к расширению газа. Это расширение может быть быстрым и мощным.Сила и движение расширения газа могут быть использованы для толкания объекта. Взболтать банку с газировкой - это способ увидеть, что происходит, когда газ расширяется. Встряхивающее движение вызывает реакцию углекислого газа - шипение газировки, - которое при открытии банки выталкивает газированную жидкость из банки через отверстие.

Однако простое сжигание топлива не очень полезно для создания движения. Например, зажигание спички сжигает кислород в воздухе вокруг нее, но поднимаемое тепло теряется во всех направлениях и, следовательно, дает очень слабый толчок.Чтобы расширение газа, вызванное сгоранием, было полезным, оно должно происходить в ограниченном пространстве. Это пространство может направлять или направлять движение расширения; он также может увеличить свою силу.

Цилиндр - это полезное пространство для передачи силы сгорания. Круглая внутренняя часть цилиндра позволяет газам легко течь, а также увеличивает силу движения газов. Круговое движение газов также может способствовать втягиванию воздуха и паров в цилиндр или их повторному вытеснению.Ракета - простой пример использования внутреннего сгорания в цилиндре. В ракете нижний конец цилиндра открыт. Когда топливо внутри цилиндра взрывается, газы быстро расширяются к отверстию, давая толчок, необходимый для отталкивания ракеты от земли.

Эта сила может быть еще более полезной. Его можно заставить толкнуть объект внутри цилиндра, заставляя его двигаться через цилиндр. Пуля в пистолете - пример такого объекта. Когда топливо, в данном случае порох, взрывается, возникающая сила продвигает пулю через цилиндр или ствол пистолета.Это движение полезно для определенных вещей; однако его можно сделать еще более полезным. Закрыв концы цилиндра, можно управлять движением объекта, заставляя его двигаться вверх и вниз внутри цилиндра. Это движение, называемое возвратно-поступательным движением, затем можно использовать для выполнения других задач.

Двигатели внутреннего сгорания обычно используют возвратно-поступательное движение, хотя газовые турбины, ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.

Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал. К ним прикреплены другие компоненты, которые увеличивают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно поступать в цилиндр, а выхлоп, образованный взрывом топлива, должен обеспечивать выход из цилиндра. Также необходимо произвести зажигание или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.

Дизельные двигатели также называют двигателями с компрессором, поскольку они используют сжатие для самовоспламенения топлива. Воздух сжимается, то есть выталкивается в небольшое пространство цилиндра. Сжатие вызывает нагревание воздуха; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление, создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, тяжелее, чем бензиновые двигатели, но они более мощные и требуют менее дорогостоящего топлива.Дизельные двигатели обычно используются в больших транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах, но в 2000-х годах они находят свое применение в автомобилях, поскольку технологии совершенствуются и возникает потребность в менее дорогих видах топлива.

Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от искры электричества, вызывающей взрыв топлива в цилиндре. Газовый двигатель легче дизельного двигателя и требует более очищенного топлива (следовательно, более дорогостоящего).

В двигателе цилиндр расположен внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива. Внутри цилиндра находится поршень, который точно соответствует цилиндру. Поршни обычно имеют куполообразную форму вверху и полую внизу. Поршень прикреплен через шатун, установленный в полой нижней части, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.

Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека похожа на поршень. От колена до стопы нога действует как шатун, который прикрепляется к коленчатому валу с помощью кривошипа или педального узла велосипеда. Когда сила прикладывается к верхней части ноги, эти части начинают двигаться. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.

Обратите внимание, что при езде на велосипеде нога делает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей.Это так называемые удары. Поскольку двигатель также должен всасывать топливо и снова выпускать топливо, большинство двигателей используют четыре хода для каждого цикла, который совершает поршень. Первый ход начинается, когда поршень оказывается в верхней части цилиндра, называемой головкой цилиндра. Когда он опускается, в цилиндре создается вакуум. Это связано с тем, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой блока цилиндров увеличивается, а количество воздуха остается прежним.Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот ход называется тактом впуска.

Следующий ход, называемый тактом сжатия, происходит, когда поршень снова подталкивается вверх внутри цилиндра, сжимая или сжимая топливо в более тесное и тесное пространство. Сжатие топлива в верхней части цилиндра вызывает нагревание воздуха, что также нагревает топливо. Сжатие топлива также облегчает воспламенение и делает взрыв более мощным.У расширяющихся газов взрыва меньше места, а это означает, что они будут сильнее давить на поршень, чтобы уйти.

В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, который толкает поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал. Последний ход, такт выпуска, снова поднимает поршень вверх, который вытесняет выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан.Эти четыре удара также обычно называют «сосать, сжимать, хлопать и дуть». Двухтактные двигатели исключают такты впуска и выпуска, комбинируя их с тактами сжатия и увеличения мощности. Это позволяет создать более легкий и мощный двигатель - по сравнению с размером двигателя - требующий менее сложной конструкции. Однако двухтактный цикл - менее эффективный метод сжигания топлива. Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя.Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах и с небольшими инструментами.

Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. В дизельных двигателях топливо подается непосредственно для реакции с горячим воздухом внутри цилиндра. Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении примерно 14 частей воздуха на каждую часть бензина.Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.

Вакуум, создаваемый при движении поршня вниз по цилиндру, втягивает топливо в цилиндр. Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность посадки. Бензин поступает в цилиндр через впускной клапан.Затем бензин сжимается в цилиндр следующим движением поршня в ожидании воспламенения.

Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, которые действуют вместе в точно рассчитанной по времени последовательности для приведения в движение коленчатого вала. Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, в котором каждая нога помогает другой создавать мощность для управления велосипедом и подтягивать друг друга в цикле движений. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двух- и двенадцатицилиндровые двигатели.Количество цилиндров влияет на рабочий объем двигателя; то есть общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.

Искра попадает через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца, называемых электродами, которые входят в цилиндр. У каждого цилиндра своя свеча зажигания. Когда электрический ток проходит через свечу зажигания, ток перескакивает с одного электрода на другой, создавая искру.

Этот электрический ток возникает в батарее. Однако ток батареи недостаточно силен, чтобы вызвать искру, необходимую для воспламенения топлива. Поэтому он проходит через трансформатор, который значительно увеличивает его напряжение или силу. Затем ток можно направить на свечу зажигания.

Однако в случае двигателя с двумя или более цилиндрами искра должна направляться в каждый цилиндр по очереди. Последовательность срабатывания цилиндров должна быть рассчитана таким образом, чтобы, пока один поршень находился в рабочем такте, другой поршень находился в такте сжатия.Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно. Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем плавнее будет работать двигатель.

Время срабатывания цилиндров регулируется распределителем. Когда ток поступает в распределитель, он направляется к свечам зажигания через провода, по одному на каждую свечу зажигания. Механические распределители - это, по сути, вращающиеся роторы, которые по очереди подают ток в каждый провод.Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.

В самых маленьких двигателях используется аккумулятор, который при разряде просто заменяется. Однако в большинстве двигателей предусмотрена возможность перезарядки батареи, используя движение вращающегося коленчатого вала для выработки тока обратно в батарею.

Поршень или поршни толкают коленчатый вал вниз и вверх, вызывая его вращение. Это преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала возможно, потому что для каждого поршня коленчатый вал имеет кривошип, то есть секцию, расположенную под углом к ​​движению вверх-вниз.На коленчатом валу с двумя или более цилиндрами эти кривошипы также установлены под углом друг к другу, что позволяет им работать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает его поршень вверх.

Большое металлическое колесо, похожее на маховик, прикреплено к одному концу коленчатого вала. Он поддерживает постоянное движение коленчатого вала. Это необходимо для четырехтактного двигателя, поскольку поршни совершают рабочий ход только один раз на каждые четыре хода.Маховик обеспечивает импульс, переносящий коленчатый вал во время его движения, пока он не получит следующий рабочий ход. Он делает это с помощью инерции, то есть принципа, согласно которому движущийся объект будет стремиться оставаться в движении. Как только маховик приводится в движение поворотом коленчатого вала, он продолжает двигаться и вращать коленчатый вал. Однако чем больше цилиндров в двигателе, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.

Когда коленчатый вал вращается, его движение можно адаптировать для самых разных целей, прикрепив шестерни, ремни или другие устройства. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, или двигатель можно использовать просто для выработки электроэнергии. К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в последовательности с четырехтактным циклом поршней. Кулачок - это колесо, имеющее форму яйца, с длинным и коротким концом.К распределительному валу крепятся несколько кулачков в зависимости от количества цилиндров двигателя. Сверху кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отводить назад от клапана, заставляя клапан открываться; длинные концы кулачков толкают стержни назад к клапану, снова закрывая его. В некоторых двигателях, называемых двигателями с верхним расположением кулачка, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя.Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня над портами или отверстиями в стенке цилиндра, не требуют распределительного вала.

Коленчатый вал может приводить в действие еще два компонента: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое быстро приведет к перегреву двигателя и даже к расплавлению, если он не будет должным образом рассеян или отведен. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.

Есть два типа систем охлаждения. В системе жидкостного охлаждения используется вода, которая часто смешивается с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает температуру кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд каналов, содержащихся в рубашке. Затем вода циркулирует в радиаторе, который состоит из множества трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубке, дополнительно снижая температуру воды.И насос, и вентилятор приводятся в действие движением коленчатого вала.

В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. В большинстве мотоциклов, многих небольших самолетов и других машин, движение которых создает сильный ветер, используются системы воздушного охлаждения. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит через ребра, тепло, передаваемое к металлическим ребрам от цилиндра, уносится воздухом.

Смазка двигателя жизненно важна для его работы. Движение деталей друг относительно друга вызывает сильное трение, которое вызывает нагревание и вызывает износ деталей. Смазочные материалы, например масло, образуют тонкий слой между движущимися частями. Прохождение масла

КЛЮЧЕВЫЕ ТЕРМИНЫ

Инерция - Тенденция движущегося объекта оставаться в движении, а тенденция покоящегося объекта оставаться в покое.

Возвратно-поступательное движение —Движение, при котором объект перемещается вверх и вниз или назад и вперед.

Вращательное движение —Движение, при котором объект вращается.

через двигатель также помогает отводить часть выделяемого тепла.

Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос подает масло по каналам и отверстиям к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами в дополнение к компрессионным кольцам для перемещения масла вверх и вниз по внутренней части цилиндра.В двухтактных двигателях масло используется в составе топливной смеси, что обеспечивает смазку двигателя и устраняет необходимость в отдельной системе.

КНИГИ

Кроул, Дэниел А. Понимание взрывов . Нью-Йорк: Центр безопасности химических процессов, Американский институт инженеров-химиков, 2003.

Ниссен, Уолтер, Р. Процессы сжигания и сжигания . Нью-Йорк: Марсель Деккер, 2002.

Политцер, Питер и Джейн С. Мюррей, ред. Энергетические материалы . Амстердам, Нидерланды, и Бостон, Массачусетс: Elsevier, 2003.

M. L. Cohen

The Gale Encyclopedia of Science Cohen, M.

Каково будущее двигателя внутреннего сгорания?

С более строгими стандартами выбросов и появлением электрических силовых агрегатов может показаться, что дни двигателей внутреннего сгорания сочтены. Но Инженерное объяснение Ведущий Джейсон Фенске считает, что внутреннее сгорание будет продолжаться - благодаря новым технологиям.

Fenske довольно оптимистично оценивает долговечность двигателя внутреннего сгорания, как из-за присущего бензину преимущества по плотности энергии над батареями, так и из-за технологий, повышающих эффективность. В этом видео он более подробно рассматривает некоторые из этих технологий.

Один из вариантов - воспламенение от сжатия однородного заряда (HCCI). Двигатель HCCI сжигает бензин, но использует воспламенение от сжатия, как и дизельный двигатель, а не свечу зажигания. Теоретически это обеспечивает эффективность дизеля без образования сажи и высоких уровней выбросов оксидов азота (NOx).Однако для этого требуется гораздо более точный контроль температуры на впуске, а также момента зажигания.

Ferrari 488 GT Modificata

Следующая опция - воспламенение от сжатия с предварительным смешиванием заряда (PCCI). Фенске описал это как «золотую середину» между воспламенением от сжатия дизельного двигателя и HCCI, потому что он впрыскивает немного топлива раньше, чтобы позволить ему смешаться с воздухом в камере сгорания, а затем впрыскивает больше топлива позже. Это обеспечивает больший контроль времени зажигания, чем HCCI, но также может создавать очаги несгоревших побочных продуктов углеводородов, что плохо сказывается на выбросах.По словам Фенске, двигатели PCCI также имеют довольно узкий рабочий диапазон с высоким потенциалом детонации при полностью открытой дроссельной заслонке.

Наконец, у нас есть воспламенение от сжатия с контролируемой реактивностью (RCCI). При этом используются два вида топлива: топливо с низкой реактивностью (например, бензин), которое впрыскивается через порт, и топливо с высокой реактивностью (например, дизельное топливо), которое впрыскивается напрямую. «Реакционная способность» относится к тенденции топлива воспламеняться при сжатии. По словам Фенске, этот метод приводит к значительному повышению эффективности, но по-прежнему с довольно высокими выбросами.Сложность использования двух видов топлива также может сделать его коммерчески не пусковым.

Эти альтернативные конструкции двигателей внутреннего сгорания, возможно, еще не готовы к использованию, но автопроизводители стремятся выжать каждую каплю эффективности из сегодняшних бензиновых двигателей, используя более совершенные технологии, такие как прямой впрыск. Фенске также осветил еще одну возможную будущую технологию внутреннего сгорания - входное зажигание - в другом видео, которое также стоит посмотреть.

Двигатель внутреннего сгорания отказывается умирать - Выпуск 7: Отходы

Двигатель внутреннего сгорания - это пережиток прошлого.Это пережиток пара. Его детали были усовершенствованы, его материалы улучшены, а его мощность увеличена, но основной механизм - поршень, перемещающийся вверх и вниз в отверстии цилиндра - был изобретен до фонографа или лампочки.

Являясь продуктом эпохи дешевой энергии в изобилии, двигатель внутреннего сгорания также является откровенно расточительным. В четырехтактном бензиновом двигателе - двигателе, который, скорее всего, установлен в вашем автомобиле, моторной лодке, может быть, даже в вашем генераторе - поршень сначала приводится в движение вниз, всасывая воздух в цилиндр.Затем поршень совершает движение вверх, сжимая воздух; затем искра воспламеняет топливно-воздушную смесь, которая взрывается, толкая поршень вниз. Последний ход вверх выталкивает отработанную смесь. В этом цикле, состоящем из четырех тактов поршня, современный бензиновый двигатель обычно преобразует от 14 до 30 процентов энергии, запасенной в топливе, в полезную работу. Остальное теряется в виде тепла и трения.

Установка этого двигателя на транспортное средство приводит к образованию отходов. Такие аксессуары, как водяные насосы и компрессоры кондиционеров, потребляют энергию, не способствуя движению вперед.Сопротивление качению шин приводит к потере топлива, как и трение в подшипниках и шестернях трансмиссии. Аэродинамическое сопротивление заставляет двигатель усердно работать только для поддержания постоянной скорости на шоссе. В общем, автомобиль, на котором вы едете, потребляет около 20 процентов энергии топлива при движении по дороге. Ясно, что эту машину с выбросом парниковых газов из нефти уже давно пора сломать. Неудивительно, что каждый новый электромобиль, прорыв в химии аккумуляторов или обещание серийного производства автомобилей на топливных элементах звучит как объявление о смерти двигателя внутреннего сгорания.

Электромобили, похоже, вот-вот забьют последние гвозди в гроб. Благодаря небольшому количеству движущихся частей, создающих трение, электродвигатели намного более эффективны, превращая до 96 процентов потребляемой энергии в полезную работу. Они выделяют очень мало отработанного тепла и, при использовании альтернативной энергии, могут производить электроэнергию без выбросов. Кроме того, автомобиль с электродвигателем имеет явные конструктивные преимущества. Его почти пологая кривая крутящего момента (фунт-фут в зависимости от скорости вращения двигателя) означает, что ему не нужна сложная трансмиссия, что снижает стоимость и в то же время повышает эффективность.Двигатели внутреннего сгорания обычно должны вращаться со скоростью несколько тысяч оборотов в минуту (об / мин) для получения максимального крутящего момента, но электрические двигатели развивают максимальный крутящий момент в момент вращения вала. Вот что делает электромобили и гибриды такими приятными, даже если они не останавливаются.

По всем этим причинам аргументы против поршневого двигателя очевидны. Кажется, его дни сочтены. Но реальность такова, что внутреннее сгорание никуда не денется. Не говори Илону Маску, но тепловая машина, если использовать удобное прозвище, вероятно, будет управлять дорогами как минимум до 2050 года.

В стойкости двигателя внутреннего сгорания нельзя винить только рыночную инерцию или мощь Big Oil. Он выдерживает - и доминирует - потому что он так легко приспосабливается. Миниатюрные версии приводных триммеров и бензопил. Огромные высокоэффективные модели приводят в движение бульдозеры и грузовые суда. В автомобиле этот двигатель может быть сконфигурирован как газовый сиппер с умеренными манерами или как гоночный двигатель с высокими оборотами.

Он прекрасно подходит для транспортировки, поскольку в нем используется топливо, которое в высшей степени портативно и энергоемко.«Жидкие углеводороды - это жидкое золото», - говорит Джон Б. Хейвуд, инженер-механик, почетный профессор Сун Джэ в Массачусетском технологическом институте. Бензиновый двигатель заправляется за несколько минут, после чего он может проехать от 400 до 500 миль. И топливо тоже можно приспосабливать: в течение прошлого века, когда дороги улучшились и автомобили стали ездить быстрее, бензин был переработан, чтобы помочь двигателям извлекать его энергию.

Короче говоря, долгая и насыщенная жизнь бензинового двигателя - результат того, что палеоантрополог Рик Поттс называет отбором по изменчивости: идея о том, что в быстро меняющейся среде выживают только универсальные.Поттс, специалист по происхождению человека из Смитсоновского института, считает, что первые гоминиды преобладали благодаря своей гибкости. Климат, с которым наши предки столкнулись в раннем плейстоцене, сильно колебался, с частыми изменениями температуры, водоснабжения, источников пищи, растительности и конкуренции. «Они пережили это смутное время, потому что были универсальными специалистами», - говорит Поттс. Обладая длинными руками и длинными ногами, они могли лазить по деревьям в лесу или преодолевать километры по саванне. Обладая большим мозгом, они могли понять, как адаптироваться к меняющимся обстоятельствам, и изобрести социальные системы и технологии, которые помогут им справиться с этим.Они не были быстрее, сильнее или эффективнее других существ - они были более адаптивными.

Поршневой двигатель выглядит как еще один пример выживания благодаря приспособляемости. Он дешев в строительстве, соответствует требованиям, предъявляемым к различным видам топлива и физическим схемам, и идет в ногу с развитием металлургии и борьбы с загрязнением окружающей среды. Постоянные усовершенствования означают, что сегодняшний двигатель внутреннего сгорания выбрасывает на 99 процентов меньше загрязнения, чем его предшественники в 1960-х годах.Автопроизводители напоминают нам, что в регионах с плохим качеством воздуха современные двигатели фактически выталкивают более чистый воздух через выхлопную трубу, чем поглощают. Сегодня, столкнувшись с задачей сокращения выбросов углекислого газа и ограничения энергопотребления, инженеры, отраслевые эксперты и инвесторы, которые лучше всего разбираются в двигателях, далеки от того, чтобы отказаться от внутреннего сгорания. Фактически, они увеличивают свои вложения. У этой старой технологии еще много миль.

Немногие современные машины развились так же сильно, как двигатель внутреннего сгорания.Самые ранние версии были примитивными, медленными и ненадежными. Улучшения произошли с достижениями в металлургии и более глубоким пониманием процесса горения. Стартеры превратились из ручных кривошипов в кнопочные электрические устройства; электрические свечи зажигания гарантируют более стабильную и плавную работу. Изобретение жидкостного охлаждения позволило конструкторам перейти от примитивных одноцилиндровых двигателей к шести- и восьмицилиндровым двигателям, которые доминировали в автомобильной промышленности в середине 20-го века.Совсем недавно такие управляемые компьютером инновации, как точное управление распределением топлива в двигателе и улучшенная синхронизация открытия и закрытия клапана, позволили объединить высокую выходную мощность с плавной, равномерной работой на низких скоростях.

Новые требования к двигателям внутреннего сгорания сосредоточены на выбросах, и профессор-исследователь Джон М. ДеЧикко из Института энергетики Мичиганского университета считает, что бензиновый двигатель им также удовлетворит. «Существует множество возможностей для повышения эффективности, которые всегда будут подрывать альтернативы, насколько хватит глаз, - говорит ДеЧикко.«Горизонт эффективности простирается очень далеко в будущее». Чтобы решить эту новую задачу, производители доводят до совершенства все, от конструкции камеры сгорания до параметров трансмиссии и способа подачи топлива и воздуха в сердце двигателя.

На рынке уже распространены турбокомпрессоры, система отключения цилиндров, прямой впрыск топлива и бесступенчатые коробки передач. По словам Майка Андерсона, главного инженера по бензиновым четырехцилиндровым двигателям в General Motors, уменьшение соотношения площади поверхности к объему в цилиндре за счет использования меньшего диаметра и более длинных ходов коленчатого вала уже увеличило количество миль на галлон.Так же улучшилась конструкция камеры сгорания с помощью компьютерного моделирования.

Андерсон также объясняет, что способ работы двигателя имеет решающее значение, поскольку у каждого двигателя внутреннего сгорания есть своя оптимальная эффективность. «Мы хотим сделать этот островок эффективности как можно большим», - говорит он. Простое снижение трения также может принести большую выгоду: снижение его всего на 8 процентов сокращает расход топлива на 1 процент. Последняя версия 2-литрового двигателя GM с турбонаддувом снизила трение на 16 процентов по сравнению с его предшественником.

Грядут изменения и в доставке топлива. Томас Апостолос, президент Ricardo, Inc., американского подразделения глобальной инженерной консалтинговой компании с почти 100-летним опытом разработки двигателей, ожидает включения прямого впрыска топлива с распылителем и обедненной стратифицированной заправки, в которой соотношение Из топлива в воздух уменьшается, но топливо концентрируется именно там, где оно больше всего необходимо.

Бензиновый двигатель также может быть на грани объединения со своим целующимся кузеном, дизельным двигателем.В научных кругах этот брак был постоянной темой для обсуждения. Дизели выигрывают от отсутствия дросселирования: они управляют скоростью двигателя, изменяя подачу топлива, а не ограничивают поступление воздуха с помощью механического дросселя, который создает сопротивление и трение. Поскольку дизели инициируют сгорание с помощью внутреннего тепла, а не искры, они обычно имеют очень высокую степень сжатия - большое «сжатие» воздуха внутри цилиндра. Эти высокие давления позволяют извлекать больше работы из химической энергии, хранящейся в топливе.Пока инженеры экспериментируют с понижением степени сжатия в дизельных двигателях для снижения выбросов и повышением их в бензиновых двигателях, эти две технологии уже сближаются, говорит Билл Вёбкенберг, старший инженер, отвечающий за топливо, технические и нормативные вопросы Mercedes-Benz. СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ.

Один многообещающий пример: двигатель с воспламенением от сжатия с однородным зарядом (HCCI). В этом гибриде, что стало возможным благодаря улучшениям в компьютерном моделировании и управлении двигателем, внутреннее тепло двигателя воспламеняет равномерно распределенную смесь воздуха и топлива внутри цилиндра.Результатом является чистый двигатель, который, по словам исследователей General Motors, может быть на 80 процентов эффективнее дизельного двигателя при примерно 50 процентах стоимости.

Двигатели HCCI имели проблемы с поддержанием бесперебойной работы, поэтому в настоящее время планируется создать один двигатель с двумя режимами работы. Обычное сгорание будет использоваться для резкого ускорения, а режим HCCI будет использоваться для легких нагрузок, таких как круиз по шоссе. По словам Вобкенберга, Mercedes уже добился успеха с этой моделью в европейских приложениях.

Назревают еще более радикальные идеи. Новые способы организации механической компоновки двигателей внутреннего сгорания могут обещать значительное повышение эффективности. Компания EcoMotors International в Мичигане, например, разрабатывает двигатель с оппозитными поршнями и оппозитными цилиндрами, который может производить одну лошадиную силу на фунт веса двигателя. Другие компании разрабатывают двигатели с двойным сжатием и двойным расширением, которые распределяют работу по дополнительным цилиндрам, разделяя циклы сжатия и мощности.

Бензиновый двигатель - быстро движущаяся цель.На самом деле, ирония заключается в том, что он движется быстрее, чем некоторые из технологий, которые угрожают его заменить. По словам ДеЧикко, выбросы углерода от автомобилей в США будут сокращаться на 2,1 процента в год, в то время как выбросы от электростанций сокращаются с прогнозируемой скоростью менее 1 процента в год. Именно на этих заводах, две трети которых используют ископаемое топливо, используются электромобили. Фактически, Союз обеспокоенных ученых заявил в своем отчете, что транспортные средства с батарейным питанием не обладают явным преимуществом в парниковых условиях по сравнению с лучшими бензиновыми или гибридными моделями в США.С. утверждает, что в значительной степени полагается на электроэнергию, вырабатываемую углем.

Даже средний бензиновый двигатель может скоро приблизиться к своему электрическому сопернику по количеству граммов углекислого газа, выделяемого на милю. «Ничего не позаимствовав из« Звездного пути », мы разработали программу Ford Focus с выбросом углекислого газа 97 граммов на километр», - говорит Апостолос о Рикардо. «К 2040 году мы получим 30 граммов, что сделает двигатели внутреннего сгорания конкурентоспособными с электромобилями». И, конечно же, есть стоимость: батареи должны стать в 10 раз дешевле и в 100 раз повысить их удельную энергию, чтобы соответствовать бензиновым.Подключаемый гибрид Chevrolet Volt, например, оснащен батареей емкостью 16 киловатт-часов, что составляет около 8000 долларов стоимости автомобиля. Он хранит энергетический эквивалент одного галлона бензина. «До масштабируемого бизнес-кейса еще далеко, - говорит ДеЧикко.

Это не означает, что программы развития электричества и водорода бесполезны - они явно таковы. Но в борьбе с бензиновым двигателем им придется иметь дело не только с выдающимся исполнителем: им придется победить настоящего инженерного хамелеона.

Норман Майерсон - редактор раздела «Автомобили» в газете The New York Times. Его автопарк включает гибрид Prius (седьмой Prius в семье), Camaro SS350 1967 года, хорошо подержанный универсал Volvo и два мотоцикла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *