ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Фонарь светодиодный – ремонт, схема, замена аккумулятора

Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Джорджем Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзела появилась возможность запатентовать 1896 году первый электрический фонарь.

С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.

Светодиодный аккумуляторный фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.

Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и выключатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.

Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН, поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.

Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.

После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами, к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.

При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром, что фонарик не светит по причине их перегорания.

Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.

Поиск причины отказа фонаря

Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.

Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.

Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.

Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.

Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфатации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.

Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.

Переделка (модернизация) электрической схемы фонаря

Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.

Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.

Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.

Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.

Электрической схема после доработки

Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.

После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.

Ремонт светодиодного аккумуляторного фонаря

После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.

Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.

Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5h5U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.

После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.

Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.

Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.

Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.

Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.

Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.

Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.

По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.

В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.

Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора.

Переделка схемы индикации режима зарядки аккумулятора

Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.

Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.

Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.

Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, не желающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.

Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.

HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.

На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.

Модернизация переключателя режимов работы

Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.

В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.

К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.

Ремонт и модернизация


светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»

Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.

Фонарь мощный, дорогой, стоит около $20. По заявлению производителя световой поток фонаря достигает 200 метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече.

Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.

При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим измерения постоянного напряжения, напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.

При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.

Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.

От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.

Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.

Как оказалось в ручке не было радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.

Электрическая принципиальная схема

Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.

С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.

Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.

С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В. ). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.

С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.

Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.

Проверка работоспособности электрической схемы

Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.

После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.

Восстановление кислотного аккумулятора

Так как кислотный аккумулятор емкостью 1,7 А был полностью разряжен, а штатное зарядное устройство было неисправно то решил его зарядить от стационарного блока питания. При подключении аккумулятора для зарядки к блоку питания с установленным напряжением 9 В, ток заряда составил менее 1 мА. Напряжение было увеличено, до 30 В — ток возрос до 5 мА, и через час под таким напряжением составил уже 44 мА. Далее напряжение было снижено до 12 В, ток упал до 7 мА. После 12 часов заряда аккумулятора при напряжении 12 В ток поднялся до 100 мА, таким током и заряжался аккумулятор в течении 15 часов.

Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.

Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.

Ремонт зарядного устройства

Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.

Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме не было элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?

Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.

Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.

Ремонт адаптера был экономически нецелесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.

На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.

Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.

Доработка электрической принципиальной схемы


светодиодного аккумуляторного фонаря «Фотон»

Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.

На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.

Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.

Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.

При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.

На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.

Чем заменить сгоревший ЧИП

Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.

Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.

Ремонт с модернизацией


светодиодного фонаря Keyang KY-9914

Посетитель сайта Марат Пурлиев из Ашхабада поделился в письме результатами ремонта светодиодного фонаря Keyang KY-9914. В дополнение представил фотографию, схемы, подробное описание и дал согласие на публикацию информации, за что я выражаю ему свою признательность.

Спасибо Вам за статью «Ремонт и модернизация светодиодных фонарей Lentel, Фотон, Smartbuy Colorado и RED своими руками».

Воспользовавшись примерами ремонта, я отремонтировал и модернизировал фонарь Keyang KY-9914, в котором сгорели четыре светодиода из семи, и выработал ресурс аккумулятор. Светодиоды сгорели из-за переключения переключателя во время зарядки аккумулятора.

В доработанной электрической схеме изменения выделены красным цветом. Неисправный кислотный аккумулятор я заменил на три последовательно включенных бывших в употреблении пальчиковых АА аккумуляторов Sanyo Ni-NH 2700, которые оказались под рукой.

После переделки фонаря ток потребления светодиодов в двух положениях переключателя составил 14 и 28 мА, а ток заряда аккумуляторов 50 мА.

Ремонт и переделка светодиодного фонаря


14Led Smartbuy Colorado

Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.

Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.

Как проверить в светодиодном фонаре батарейки на пригодность

Ремонт любого электроприбора начинается с проверки источника питания, поэтому, несмотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.

Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».

В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.

Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения, необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.

Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.

Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.

Как проверить исправность выключателя

Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.

В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.

Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.

Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.

Проверка исправности светодиодов

Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.

Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.

Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.

После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.

Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.

Ток потребления светодиодного фонаря

Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.

Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H, рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.

Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.

Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штатных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.

Переделка конструкции

После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.

Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.

Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.

Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.

Далее печатная плата была зафиксирована прижимным кольцом, после чего головная часть фонаря была прикручена к его корпусу.

После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.

Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.

Ремонт светодиодного фонаря RED 110

Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.

На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.

Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.

Схема зарядного устройства была выполнена по классической схеме. Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.

Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.

10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.

При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром. Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.

Для удобства работы от платы светодиода был отпаяны провода. После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.

Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из Справочной таблицы параметров популярных SMD светодиодов для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.

Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста, которая применяется при установке радиатора на процессор компьютера.

Для того, чтобы обеспечить плотное прилегание плоскости светодиода к плате необходимо сначала положить его на плоскость и немного отогнуть вверх выводы, чтобы они отступали от плоскости на 0,5 мм. Далее выводы залудить припоем, нанести термопасту и установить светодиод на плату. Далее прижать его к плате (удобно это сделать отверткой с вынутой битой) и прогреть выводы паяльником. Далее убрать отвертку, ножом прижать в месте изгиба вывода его к плате и прогреть паяльником. После затвердевания припоя нож убрать. За счет пружинных свойств выводов светодиод будет плотно прижат к плате.

При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.

Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.

Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.

Замена кислотного аккумулятора в светодиодном фонаре

Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.

В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.

В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.

Через несколько лет эксплуатации светодиодный фонарь Lentel GL01, ремонт которого описан в начале статьи, опять принесли мне в ремонт. Диагностика показала, что выработал свой ресурс кислотный аккумулятор.

Был куплен для замены аккумулятор Delta DT 401, но оказалось, что его геометрические размеры были больше, чем неисправного. Штатный аккумулятор фонарика имел размеры 21×30×54 мм и был выше на 10 мм. Пришлось дорабатывать корпус фонарика. Поэтому прежде, чем покупать новый аккумулятор убедитесь, что он вместится в корпус фонаря.

Был удален упор в корпусе и ножовкой по металлу отпилена часть печатной платы, с которой предварительно был выпаян резистор и один светодиод.

После доработки новый аккумулятор хорошо установился в корпус фонаря и теперь, надеюсь, прослужит не один год.

Замена кислотного аккумулятора


аккумуляторами типоразмера АА или ААА

Если нет возможности приобрести аккумулятор 4V 1Ah Delta DT 401, то его можно успешно заменить тремя любыми пальчиковыми никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА емкостью от 1 А×часа, которые имеют напряжение 1,2 В. Для этого достаточно соединить последовательно, соблюдая полярность, три аккумулятора проводами методом пайки. Однако экономически такая замена нецелесообразна, так как стоимость трех качественных пальчиковых аккумуляторов типоразмера АА может превышать стоимость покупки нового светодиодного фонаря.

Но где гарантия, что в электрической схеме нового светодиодного фонаря не имеются ошибки, и не придется его тоже дорабатывать. Поэтому считаю, что замена свинцового аккумулятора в доработанном фонаре целесообразна, так как обеспечит надежную работу фонаря еще несколько лет. Да и всегда будет приятно пользоваться фонариком, отремонтированным и модернизированным своими руками.

Замена кислотного аккумулятора Li-ion

Замене батареек или аккумуляторов в светодиодном фонаре посвящена отдельная статья «Как заменить свинцовый аккумулятор литий-ионным».


Евгений 25.05.2016

Здравствуйте.
Занимаюсь подводной охотой, сейчас вышли новые светодиоды XHP70, у меня есть два фонаря, в которых установлено по одному светодиоду Т6. Возможна ли замена их в моих фонарях на новые XHP70 и какая стоимость работы и запчастей, заранее благодарен.

Александр

Здравствуйте, Евгений.
Оптимальный ток потребления светодиода Т6 составляет 0,7 А, а светодиодной сборки XHP70 – 4,0 А. Следовательно, потребуется замена не только светодиода, но и драйвера, то есть практически замена всей электроники фонаря.
Возможность отвести тепло от светодиода ХНР70 штатным радиатором, установленным в фонаре тоже под вопросом. В дополнение время работы фонаря со штатным аккумулятором уменьшится в 6 раз, то есть вместо 2 часов фонарь будет работать 20 минут.
Таким образом, после модернизации нет гарантий надежной работы фонаря в связи с возможным перегревом светодиода. В дополнение стоимость такой переделки может превысить стоимость нового фонаря с светодиодом XHP70.

Степан Тимофеевич 05.05.2018

Здравствуйте, Александр Николаевич.
Есть в собственности фонарь «Облик 6002». Использовал редко. Более 2-х лет не включал. Сейчас не светит. Включил зарядку, но пока реакции нет. Как быть?
Прочел вашу статью, но там много «мудрёного», а я не специалист по электротехнике, а врач. Жду ваш совет. Спасибо!

Александр

Здравствуйте, Степан Тимофеевич.
Аккумуляторы имеют свойство со временем терять емкость, особенно если находятся в разряженном состоянии. Это как раз Ваш случай. Нужно заменить аккумулятор, а если нет такой возможности, то купить новый фонарь.

Владимир 07.09.2021

Попал на вашу страничку в поисках Схемы на фонарик YJ-2828 … Схемы не оказалось. Пришлось самому рисовать.
Если хотите — можете выставить на вашей страничке.
Схема вычерчена с фонаря мной лично (гарантирую) проблем с авторством не будет.
Может кому-то пригодится. Да вы много и добротно потрудились …
Удачи !!!

Александр

Здравствуйте, Владимир!
Спасибо за высокую оценку сайта и представленную сему фонаря YJ-2828.

Фейковый фонарик с зумом на CREE диоде.

Стоимость: $3,19

Нет, все же чудес не бывает… Хороший фонарик нельзя купить дешево. Это аксиома. Но она не имеет обратимости. Высокая цена тоже не является гарантией качества. 

Ну вот, лирическое отступление закончено, теперь про фонарики. 

Фонарик про который я хочу сейчас рассказать, наверно рекордсмен по участию в обзорах. Это одна из самых распространенных моделей в китайских магазинах. Линза COVEX, CREE диод, много люменов, дешевый и с достаточно приятным дизайном. Эти фонарики покупают практически все, кто выбирает недорогой фонарик.

  

 

Не стал исключением и я. Этот фонарик был моим первым зуммируемым фонариком с линзой Covex.

На сайте продавца все было очень красиво: много фото, описаний, подарков для простачков которые вдруг купят много-много этого г…, фотографии производства и много-много сертификатов (ха-ха). Забегая вперед скажу что фонарик, конечно же, подвально-наколенной сборки из непонятно каких материалов и все на странице этого продавца обман.

Фасад какого-то производства. 

Вот фотка якобы с производства фонариков. Не знаю где продавец эту фотку скомуниздил…

Нечитаемые сертификаты. Конечно же не к этому товару и не к этому производству.

Вот как этот фонарик светит:

Вообще-то, примерно так фонарик и светил. Это при полностью выдвинутой линзе. При втянутой получался ровный круг света с четкой границей. Именно за это мне и нравятся зуммируемые фонарики. Здесь продавец не обманул, но это не его заслуга, это линза COVEX.

Внешне все красиво, придраться не к чему. Фонарик пришел с картриджем под три батарейки ААА. Диод внутри стоял конечно же не CREE, а какой-то непонятный, по виду обычный EPISTAR, но с квадратной светящей поверхностью. Светил хорошо, ярко (забегая вперед скажу что недолго), поэтому элементы ААА высаживал с невероятной прожорливостью. При этом фонарик совсем не грелся. 

Это теперь я уже набрался опыта, а в тот момент я не понимал что с фонариком не так. У меня как раз было родное удлинительное колечко для этого фонарика, позволяющее поставить в него Li-Ion аккумулятор 18650. Аккумулятор встал как родной, фонарик светил ярко и красиво, но почему-то все тусклее и тусклее пока не стал едва-едва светить каким-то голубым светом. Осмотрев диод я увидел что он почернел, явно из-за перегрева. Фонарик я разобрал. Вот тут-то все встало на свои места. 

Вот почти полная расчлененка, не стал снимать только уплотнительные колечки.

К корпусу претензий нет. Алюминий явно заводской, вполне приличный. Отложим его в сторонку.

А вот дальше начинается интересное. Модуль, в котором находятся светодиод и драйвер, и который должен отводить тепло от светодиода на корпус сдалан из ПЛАСТМАССЫ!

Да-да. До такого мог додуматься только супержадный извращенец-садист. Точить этот модуль из алюминия, конечно же дороже на несколько центов. А то что светодиод сгорит очень быстро от перегрева это никого не волнует. Тоесть, тот кто придумал сделать такое, заранее знал о том что надежность этого изделия будет нулевая и пользоваться им покупатель не сможет.  

Ой, сзади пружинка. Странно, могли бы и здесь сэкономить десятую часть цента.

А драйвер? Естественно…  нет.

В драйвере одна деталь — проводок. Зато какая надежность. Уж он-то не сгорит. Какое элегантное лаконичное изделие.

Вытравлен какой-то номер. А! вот почему там пружинка, это готовое заводское изделие было куплено готовым, уже с пружинкой. 

А вот непонятный «левый» светодиод. Уже сгорел, бедняга…

Вот эта деталь-виновница. Даже если бы она была такой же формы но из алюминия, все равно она была бы плохой. Она неправильной формы.

Поговорим о форме: в ней внутри дырка и плата светодиода опирается на небольшой порожек, площадь контакта алюминиевой платы светодиода и этого колечка очень мала. А через это колечко тепло должно отводиться на корпус. Под платой светодиода должна быть ровная площадка с максимальной площадью контакта. У зуммируемых фонариков и так теплоотвод является большой проблемой, мало того что здесь тепловой контакт был бы минимален, так с пластмассовой деталью теплоотвода не было вообще. Использовать эту деталь из пластмассы нельзя.

Полюбуемся напоследок светоневым рисунком…  и в мусор.

Что дальше? Вытачивать новое колечко (теплоотводящий модуль) и покупать светодиод и драйвер? Такой вариант решения проблемы, мог бы быть если бы у меня был токарный станок или знакомый хороший токарь. Заказывать просто токарю на завод, с учетом цен которые они заламывают, я не буду. Дешевле будет купить другой фонарик. Вариант отпадает.

Выбросить этот хлам и купить другой фонарик у более честного продавца? А где гарантия что после двух месяцев ожидания не приедет такое же $#%45%, или еще хуже? Здесь хоть корпус качественный.

Третий вариант, купить правильный модуль с драйвером и светодиодом в сборе. Этот вариант я и выбрал. Модуль я заказал на e-bay, об этом уже был обзор. 

Вот как он выглядит:

Диод CREE XM-L T6

Нормальный драйвер. Пружинка есть.

В модуле под платой светодиода не дырка, а контактная площадка, смазанная термопроводящей пастой.  

Остается только слегка смазать термопастой резьбу и закрутить купленный модуль вместо того недоразумения, которое было в фонарике изначально.

Вот теперь фонарик действительно не страшно включать… по крайней мере можно надеяться что он не сгорит через несколько минут.

Напоследок даю ссылку страницу продавца, который продает такие некачественные изделия: Ссылка на плохие фонарики.

Ни в коем случае не покупайте там ничего! Там сплошной обман.

Возможно, вам будет интересно:

Фонарь 1 светодиод. Светодиодный фонарик с одной батарейкой. Радиотехника, электроника и схемы своими руками. Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

Давно хотел сделать себе миниатюрный и яркий фонарик питающийся от одно элемента АА или ААА. Для таких целей есть даже спец. микросхемы, но их дефицит у нас + жаба заставили меня пораскинуть мозгами. В результате было сделано это чудо:

Светит очень ярко. Яркость свечения почти не падает, если подключить параллельно еще один светодиод. Распространённость деталей + легкость сборки и настройки позволят без проблем повторить эту конструкцию.

Трансформатор наматывается на ферритовом кольце. Я брал кольцо из старой материнской платы. Наматывать очень просто. Берем два провода одинаковой длинны (я использовал два разноцветных провода от сетевого кабеля). Складываем их вместе и сложенным проводом начинаем наматывать на кольцо виток к витку. В результате у нас получаться 4 провода по два с каждой стороны кольца. Берём по одному проводу разных цветов с каждой стороны и связываем их вместе. Должно получиться примерно следующее:

Вид сбоку:

Вместо транзистора BC547C можно применить наш отечественный кт315. Резистором R1 можно немного регулировать яркость свечения. Плата для этой схемы не разрабатывалась, на мой взгляд она тут ни к чему.

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.


Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

Название Cree XM-L T6 Cree XM-L2 Cree XP-G2 Cree XR-E
Фото
U, В 2,9 2,85 2,8 3,3
I, мА 700 700 350 350
P, Вт 2 2 1 1
Рабочая температура, °C
Световой поток, Лм 280 320 145 100
Угол свечения, ° 125 125 115 90
Индекс цветопередачи, Ra 80-90 70-90 80-90 70-90

Главная характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Название
Фото
U, В 5,7; 8,55; 34,2; 6; 12; 3,6 3,5
I, мА 1100; 735; 185; 2500; 1250 5000 9000…13500
P, Вт 6,3 8,5 18 20…40
Рабочая температура, °C
Световой поток, Лм 440 510 1250 2000…2500
Угол свечения, ° 115 120 100 90
Индекс цветопередачи, Ra 70-90 80-90 80-90

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали .

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police


LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.


Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).


Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.


Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3. 7В аккумулятора – 10-25Ом.


Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Фонарик — вещь, которая нужна в каждом доме. Бывает пропадёт свет, или надо в тёмный подвал сходить. В общем такая штука всегда должна быть под рукой. И желательно, чтоб он мог долгое время храниться без подзарядки. А то про севшие батарейки узнаёшь в самый неподходящий момент:) Для этого будем использовать литий-ионный аккумулятор, который имеет очень низкий саморазряд. В общем долгое время лежал у меня без дела фонарь ДиК-5 евро . В качестве источника света в нём задействована лампочка накаливания на 2.5в 0.15А, источником питания которой служат 3 круглых дисковых элемента Д-0.26. Фонарь изначально держал заряд около часа беспрерывной работы, а нынче совсем не держит и элементы питания окислились. Лампочка же особо не светит. Короче хорошим фонариком и не назовёшь.

Я его разобрал, извлёк все внутренности и вырезал гравером пластиковые перегородки, фиксирующие элементы питания. Далее было решено заменить лампочку светодиодом мощностью 1Вт (4200к), который выпаял из лампы точечного светильника ибо там им было тесновато, да и отражатель плохой.

Далее позаимствовал из разбитого сотового телефона Nokia, который мне отдали на з/ч, аккумуляторную батарею и разъём зарядного устройства. Рассчитал резистор для светодиода, так как Батарея выдаёт 3.6В, а напряжение светодиода 3В (в моём случае).

Так как светодиод греется, ему нужно охлаждение. Я выпилил кусок алюминия и зафиксировал на одной половине корпуса, просверлил в нём два отверстия под ноги светодиода и вставил, предварительно изолируя каждую ногу термоусадочной трубкой. На фото ниже — для сравнения вид обычной лампы и светодиода, в рефлекторе.

Между радиатором и светодиодом смазал площадку термопастой. Тумблер взял из люминисцентной лампы. Далее всё спаял и зафиксировал разъём под зарядку на термоклей. Батареи, хотя она и 860mAh, хватает на 2.5-3 часа непрерывной работы.


Делаем фонарик на светодиодах своими руками

Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5 V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 — 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 — 3.5 V, like from a 3 V lithium coin cell.

Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка

Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0. 1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков

Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.


Вариант исполнения фонаря от одной батарейки 1,5в.


Транзистор и сопротивление помещаются внутрь ферритового кольца



Белый светодиод работает от севшей батарейки ААА

Вариант модернизации «фонарик – ручка»

Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент : мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический цилиндр проводит ток.

По типоразмеру батарейки делаем цилиндр.

Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.


Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка — около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:

Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « — », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».


Внимание: на цоколе должен быть минус светодиода.

Сборка:

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.

Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.


Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 — откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях :
Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная, мотают ее проводом не тоньше 0,6 мм, лучше — жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания, а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть увеличен до 1А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.
Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.

Светодиодный фонарь из калькулятора Б3-30

В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.

В результате получилась очень простая схема.

Преобразователь напряжения выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1 и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь китайского производства рассчитанного на установку двух элементов питания типа АА. Преобразователь монтируется на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и облуживаются припоем.
После установки на плату всех деталей торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном случае зависит от типа используемого фонаря. В моем случае никакой доработки фонаря не потребовалось, отражатель имеет контактное кольцо, к которому подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо одного элемента питания и зажимается крышкой.

В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.

Время, ч V батареи, В V преобр., В
0 1,28 2,83
2 1,22 2,83
4 1,21 2,83
6 1,20 2,83
8 1,18 2,83
10 1,18 2.83
12 1,16 2.82
14 1,12 2.81
16 1,11 2.81
18 1,11 2.81
20 1,10 2.80

Самодельный фонарик на светодиодах

Основа — фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.

Схема включения — типовая:

Монтаж выполнен навесным способом.
Электролитические конденсаторы — танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки — SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 — К10-17б. Светодиоды — сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.

Выходное напряжение стабилизатора в данной схеме включения равно 3.3V. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе, включенном последовательно с выходом.
Кроме этого, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось — различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции.

Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.

Тестирование:
Стабилизация выходного напряжения (3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА.

Немного о КПД.
КПД схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели, использованные в схеме, имеют чрезвычайно высокое омическое сопротивление — около 1.5ом
Решение кольцо из µ-пермаллоя с проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один слой — получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток насыщения по расчетам — более 3А. Выходной и входной электролит меняем на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.

Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device — ADP1110.

Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Модель Выходное напряжение
ADP1110AN Регулируемое
ADP1110AR Регулируемое
ADP1110AN-3.3 3.3 V
ADP1110AR-3.3 3.3 V
ADP1110AN-5 5 V
ADP1110AR-5 5 V
ADP1110AN-12 12 V
ADP1110AR-12 12 V

Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет — представляю вашему вниманию еще одну схему:


В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.

резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило 3.4 — 3.6В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому — намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC — 4 штуки.

Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.


Ток, потребляемый от батареи напряжением 2,41V, — 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит — 2×41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит — 2×44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5… 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18…24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.

Преобразователь напряжения для питания светодиодного фонаря промышленного образца.

Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 — микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки — практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали — с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.

Фонарик на источнике тока


Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.


Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т.к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т.е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.

Фонарь на ADP3000-ADJ

Параметры:
Питание 2.8 — 10 В, КПД ок. 75%, два режима яркости — полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости — 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.


Схема фонаря на Кр1446ПН1.

Резисторы R1 и R2 — датчик тока. Операционный усилитель U2B — усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта — 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт — существенно меньше, чем 36 мВт.

О компонентах.

На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше — типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

КПД получившегося устройства.
Входные U I P Выходные U I P КПД
Вольт мА мВт Вольт мА мВт %
3.03 90 273 3.53 62 219 80
1.78 180 320 3.53 62 219 68
1.28 290 371 3.53 62 219 59

Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL — NW 98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).

Схема переделки и параметры модуля.

Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.


Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA

Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.


За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого — светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка — двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения — тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света.

Рис. 9.2 Рис 9.3


Печатная плата устройства приведена на рис. 9.3, а расположение элементов — на рис. 9.4.

Включение и выключение фонаря одной кнопкой


Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме «выкл.» ток потребления схемы — практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет «выжать» из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм — 100-300 витков с отводом от середины, намотанные на тороидальное колечко.

Светодиодный фонарь с регулируемой яркостью и режимом «Маяк»

Питание микросхемы — генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов — прямо пропорциональная.
Режим «Маяк», когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке регулятора яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток — 240 В; напряжение затвор-исток — 20 В. ток стока — 0.18 А; мощность — 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена — КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора — 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6″4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная — 2*20 витков Диаметр провода — 0.37 мм. марка — ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков — 38. Индуктивность дросселя 860 мкГн




Схема преобразователя для светодиода от 0,4 до 3V — работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.




Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp





Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.

Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm


Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством .

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.


Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

Схемы:



РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА

Номиналы деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д — КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 — 70mA.
напряжение = 3,6V.

LED-Treiber PR4401 SOT23




Здесь можно посмотреть к чему привёли результаты эксперимента.

Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.

Самый простой способ получить более-менее стабильный ток через светодиод — включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
I led = (Uмакс.пит — U раб. диода) : R1

Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы, — на основе линейных стабилизаторов:


В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень хорошо подходят стабилизаторы типа LM 317.
ный немецкий текст: iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht… Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:

Источники:
http://pro-radio.ru/
http://radiokot.ru/

Во времена увлечения туризмом был приобретен фонарь Duracell c мощной криптоновой лампой на двух больших батарейках типоразмера D (в советском варианте тип 373). Светил отлично, но высаживал батарейки часа за 3-4.

Кроме того, дважды случилась неприятность — батарейки потекли и электролитом залило все внутри фонаря. Контакты окислились, покрылись ржавчиной и даже после чистки и установки новых элементов питания, фонарь уже не внушал доверия, а уж батарейки тем более. Выбросить было жалко, а не имение возможности использовать, натолкнуло на мысль переделать фонарь на модные сейчас литиевый аккумулятор и светодиод. С полгода в закромах лежал литиевый аккумулятор Sanyo 18650 емкостью 2600 мА/ч, у китайских товарищей выписал вот такой светодиод (якобы Cree XML T6 U2) с рабочим напряжением 3-3,6 В, током 0,3-3 А (опять же, якобы — мощностью 10 Вт), световым потоком 1000-1155 люмен, цветовой температурой 5500-6500 К и углом рассеивания 170 градусов.

Поскольку опыт переделки фонарей на питание от литиевых аккумуляторов уже имелся ( и ), то решил пойти тем же путем: применить хорошо зарекомендовавшую себя связку: АКБ 18650 и контроллер заряда TP4056. Оставалось решить одну проблему — какой драйвер использовать для светодиода? Простым токоограничивающим резистором тут не отделаешься — мощность светодиода пусть и не 10 Ватт, как утверждают китайские товарищи, но все же. Изучая материал по «драйверостроению для мощных светодиодов» набрел на очень интересную, и как оказалось, часто применяемую микросхему АМС7135. На основе данной микросхемы китайцы давно и удачно завалили планету своими фонарями). Принципиальная схема питания мощного светодиода на основе АМС7135.

Как видим, допускается питание в диапазоне 2,7…6 В, а это довольно широкий спектр источников питания, в том числе и литиевые аккумуляторы. Задача чипа — ограничить ток, протекающий через светодиод на уровне 350 мА.
Согласно информации производителя чипа, конденсатор Со нужно использовать, если:

  • длина проводника между АМС7135 и светодиодом больше 3 см;
  • длина проводника между светодиодом и источником питания больше 10 см;
  • светодиод и микросхема не установлены на одной плате.

В реальности производители фонарей зачастую пренебрегаю этими условиями, и исключают конденсаторы из схемы. Но как показал эксперимент — напрасно, о чем несколько позже. К дополнительным преимуществам ИС типа АМС7135 можно отнести наличие встроенной защиты при обрыве, КЗ светодиода и диапазон рабочих температур -4О…85°С. Подробно документацию на чип АМС7135 можно .

Схема электрическая фонаря

Еще одной важной и крайне полезной особенностью данной микросхемы является то, что их можно устанавливать параллельно для увеличения тока, протекающего через светодиод. В результате родилась такая схема:

Исходя из нее, ток протекающий через светодиод, составит 1050 мА, что на мой взгляд, более чем достаточно для совсем не тактического, а хозяйственного фонаря. Далее приступил к монтажу все в единую систему. При помощи дремеля в корпусе фонаря удалил направляющие для батареек и контактные шины:


Так же дремелем убрал посадочное гнездо для криптоновой лампы и сформировал площадку для светодиода

Поскольку мощный светодиод во время работы выделяет много тепла, то для его рассеивания решил применить теплоотвод, снятый с материнской платы.


По задумке, светодиод, теплоотвод и головная часть фонаря с отражателем будут создавать одно целое и накручиваясь на корпус фонаря не должны ни за что цепляться. Для этого обрезал грани теплоотвода, просверлил отверстия для проводов и приклеил светодиод к теплоотводу термоклеем.


Ремонт светодиодного фонаря | Электрика и слаботочка

Светодиодные переносные фонари по сравнению с аналогами на лампах накаливания отличаются повышенной яркостью и экономичностью. Понятно, что за светодиодами будущее освещения.

Светодиодные переносные фонари по сравнению с аналогами на лампах накаливания отличаются повышенной яркостью и экономичностью. Понятно, что за светодиодами будущее освещения.

Разновидностей, типов и форм этих изделий очень много.  фронтальных светодиодов может быть один или несколько, помимо этого фонарь может быть дополнен боковым рассеивающим освещением из светодиодов или люминесцентной лампы.

Основным источником питания фонарей служит необслуживаемый аккумулятор. Заряжается он от сети 220в через зарядное устройство — преобразователь, встроенный в блок с сетевой вилкой. Блок питания преобразует напряжение с переменного 220 вольт в постоянное, со значением около десяти вольт, или чуть больше. Далее, напряжение через шнур и разъем на фонаре попадает на аккумулятор.

Качество сборки фонарей оставляет желать лучшего, поэтому время их бесперебойной работы может отличатся.

Порой поломки столь незначительные, что позволяют устранить ее самому без особых усилий и вмешательства мастера.

Вот на фото один из представителей бесконечного парка светодиодных переносных фонарей.

Он не светиться ни спереди ни сбоку, при любом положении переключателя питания.

 Притом он при подключении к сети, сигнализирует процесс заряда свечением светодиода, но даже через десять часов ничего не меняется.

Читайте также

Разбираем фонарь.

В задней части фонаря — ,кроме компаса ,- есть еще крепежные винты, скрытые резиновыми заглушками. Чтобы добраться к этим винтам, снимаем эти заглушки пальцами или подковырнув отверткой.

Далее, крестовой отверткой откручиваем все четыре винта, сложив их в одном месте.

Снимаем заднюю крышку, легким потягиванием ее на себя. Следует быть осторожным, чтобы не дернуть крышку слишком сильно и не оборвать провода внутри.

После того, как крышка снята, с ее обратной стороны можно увидеть прикрепленную к ней плату с элементами зарядного устройства и переключателя положений.

Визуально никаких обгорелых элементов схемы не видно и провода не отломаны.

Извлекаем аккумулятор

Для этого, пальцами захватываем аккумулятор и вытягиваем его наружу.

Повернув его к себе боком, можно увидеть параметры аккумулятора.

Ни окислений ни плохого контакта на разъеме аккумулятора не видно. Все выглядит довольно не плохо.

Переходим к передней части фонаря

Круговыми движениями против часовой стрелки, откручиваем обруч с защитным стеклом.

Теперь можно осмотреть светодиоды и заднюю часть отражателя, и еще плату питания лампы дневного света.

Здесь также все визуально нормально.

Возвращаемся к батарее. Не снимая проводов меряем напряжение на ее выводах вольтметром. Красным отмечен положительный вывод, черным — отрицательный.

Итак, выставляем мультиметр на постоянное напряжение и соединяем его щупы с батареей.

При этом показания вольтметра составляют два вольта, что совсем недостаточно для свечения светодиодов.

 Следует отметить, что перед замером его пытались зарядить около часа.

Становится понятно, что напряжение где-то «не дотягивает» или происходит его падение по схеме.

Вначале проверим блок питания.

Включаем его в сеть, и замеряем результат.

Как видно напряжение составляет 17 вольт.

Для китайского блока это нормальный показатель. Лишнее напряжение, более 6 вольт, необходимое для работы аппарата стабилизирует плата в самом фонаре.

Теперь подсоединяем блок питания к фонарю и замеряем напряжение на батарее.

Показатели равны 4,9 вольта. То есть для зарядки батареи напряжение то, что надо.

Но как только отключаем зарядное, напряжение на батарее падает до тех же двух вольт.

И даже если полностью отключить батарею и замерить на ней напряжение, оно будет два вольта.

Понятно, что при таком напряжении никакой светодиод работать не будет, так как минимальное напряжение для его свечения является не менее трех вольт.

Вывод напрашивается сам собой, батарею нужно менять. Тем более дата ее выпуска 2008 год, что для батареи рекорд. Найти такую, или похожую не составит особых проблем.

Чтобы до конца быть уверенным в неисправности именно батареи, можно накинуть на концы от аккумулятора напряжение 5 вольт от другого блока питания, предварительно отключив саму батарею.

Обязательно соблюдать полярность. Когда все подключено, включаем фонарь. Если все работает, то 100% проблема в АКБ.

Менять АКБ есть смысл, так как цена фонаря может быть в пять раз дороже батареи. Если фонарь дешевый, то возможно лучше купить уже новый, чем ремонтировать этот. Аккумуляторы в этих устройствах обычно не подлежат замене.

Что касается дорогих фонарей, то брать следует только новую батарею с проверкой напряжения и желательно гарантией.

Ремонт китайского фонарика TrustFire XM-L Z5 / Хабр

Анекдот (вместо эпиграфа).

Профессор читает лекцию студентам:… как видите, данное технологическое решение простое, понятное, и очень надёжное. По этим причинам оно и не используется. На практике применяют другую технологию, которую мы с вами будем изучать в течение следующих пары месяцев…

Этот недешевый в общем-то фонарик принесли в практически идеальном внешне состоянии, что говорит о его явно безвременной кончине. И дважды сдохшим изнутри.


Первый раз он почил когда сгорела электроника токового драйвера — вполне закономерно для экстремального режима на предельных нагрузках. После чего над ним поработал видимо «умелец», пустив питание кристалла напрямую — в результате выгорел и сам светодиод.

Изготовители старательно запилили маркировку транзисторов и микросхем, наверное из чувства стыда за неоптимальный выбор компонентов. Но при этом не удосужились облудить медные ободки на плате выключателя (слева, показан красной стрелкой), и на «пятаке» платы драйвера — которые контачат с алюминиевым корпусом. Пришлось сделать это самому, чтоб предотвратить разрушение металлов в образовавшейся гальванопаре. Выгоревший кристалл был демонтирован при помощи промышленного фена. Вместо него запаял свежеприобретенный OS-Star-5W Warm White 3000K 300Lm, рассчитанный на ток 0.7А с падением напряжения 6v на светодиоде. В фонарике он будет использоваться на пониженной мощности, с целью продления ресурса светодиода и времени автономной работы фонаря от АКБ.

Тестируем новый кристалл. Его теплоотводный «пятак» тоже припаял к подложке для улучшения теплоотдачи, но как оказалось в дальнейшем, на выбранном рабочем токе 0.2А фонарь практически не греется. Вольтметр (слева) показывает падение напряжения на светодиоде, подключенном к лабораторному источнику питания через ограничительный резистор.

Драйвер восстанавливать заморочно и бессысленно, да и как показано ниже — даже вредно по факторам надежности и КПД в случае применения фонаря для повседневных целей. Поэтому пятак был очищен от радиодеталей, а для ограничения тока светодиода в районе 0.2А на полных батареях использован резистор сопротивлением 10 Ом.

На фото рядом два резистора по 5.1 Ом, аналогичные тем что упакованы в термоусадку. Там они соединены там последовательно, т.к. резистора на 10 Ом не оказалось под рукой.

После промывки от флюса и сборки светодиодного узла, фонарик был поставлен на испытания. Аккумуляторы 18650 не «родные», выдранные из батблока отслужившего свой срок ноутбука. Тем не менее какой-то запас емкости в них еще остался. Перед началом прогона они были заряжены до напряжения 4.12v каждый.

Потребляемый ток замерялся каждый час. Через 7 часов непрерывной работы напряжение аккумуляторов снизилось до 3.6v, что говорит о еще не окончательном их разряде, но уже близко к этому. При этом фонарик достаточно ярко освещает помещение, а на улице хорошо просвечивает более чем на полсотни меторв. Таким образом изделие восстановлено, и соответствует пожеланиям заказчика.

Расчеты и обоснование

В оригинале был применен светодиод с падением напряжения на нем 3v. В сводной таблице указан ток светодиода в различных режимах работы фонаря, и ток потребления от источника питания. Первоисточник информации из форума, и из вот этого обзора

На основе этих данных можно посчитать коэффициент экономии энергии батарей в оригинальной конструкции фонаря:
Kэ = Iсд / Iпит

Получаем (округленно) для режимов:

  • максимальный — 2.05
  • средний — 1.78
  • минимальный — 1.63

Эти цифры показывают во сколько раз ток потребления от батарей ниже тока, который был бы в схеме с непосредственной запиткой через ограничительный резистор. Т.е. по сути характеризуют экономию питания, получаемую за счет импульсного драйвера питания светодиода.

На новом установленном светодиоде падение напряжения уже 6v, он конструктивно состоит из двух трехвольтовых секций, включенных последовательно. А значит и количество излучаемого света при одном и том же протекающем токе, у него в два раза больше чем у оригинального трехвольтового.

Ток потребления схемы с резисторным ограничителем находится в пределах от 0.21 до 0.13 А, в зависимости от степени разряда батарей. Но с учетом удвоения излучаемого света, световой поток даже на разряжающихся акб заметно больше, чем у оригинальной схемы в минимальном (экономичном) режиме. Для резисторного ограничителя ток потребляемый от батарей и ток СД — одинаковы. Но можно посчитать КПД, как отношение мощности подводимой к СД к общей мощности потребляемой всей схемой.

Итак КПД высоконадежного фонаря с резистором вместо импульсного драйвера, на полностью заряженной батарее — 74%, а на разряжающейся — 81%.

Для расчета КПД в оригинальной конструкции с импульсной запиткой, примем падение напряжения на СД 3.1v, а ток светодиода не меняется по мере разряда АКБ.

Получается что на небольшой мощности для повседневных нужд — оптимальнее правильный подбор светодиода, и применение простого и надежного резисторного ограничения тока. Такой подход обеспечивает больший КПД использования энергии батарей, по сравнению с запиткой через импульсный драйвер. А также многолетний ресурс безотказной работы, обусловленный надежностью схемы, и тем что в недогруженном режиме светодиод прослужит во много раз дольше.

Небольшое пояснение

Расчет КПД в схеме драйвером произведен без учета увеличения потребляемого тока по мере разряда батарей. Поэтому реальный КПД с импульсником на посаженных батареях окажется чуть меньше значений, указанных в последней таблице.

С драйвером ток светодиода поддерживается неизменным, и соответственно его яркость. Поэтому по мере разряда батарей, потребляемый от них ток начинает увеличиваться. Батареи будут садиться всё быстрее и быстрее.

С резистором же ситуация в точности наоборот — ток потребления снижается при разряде батарей, и т.о. позволяет протянуть на одной зарядке раза в полтора… два примерно дольше, чем если б было с драйвером. Конечно это достигается ценой некорого снижения яркости, но в такой ситуации лучше чтоб хоть немного да светило, чем вообще никак.

Вариант использовать вместо резистора проходной стабилизатор тока на ИМС или полевом транзисторе — рассматривал, но тоже отклонил т.к. сокращается время автономной работы по сравнению с резисторной схемой.

Выбор резистора был обусловлен разумным компромиссом между минимально необходимой освещенностью при разряде батарей, и стремлением по максимуму продлить время автономной работы фонаря. Что и было достигнуто — на посаженных батареях фонарь позволяет читать книжный текст, и дает вполне приемлимую освещенность для ориентирования на улице, «пробивая» десятки метров.

ФОНАРИК СВЕТОДИОДНЫЙ КАРМАННЫЙ «ЭКОТОН – 17»

Фонарик светодиодный карманный «Экотон-17» (далее по тексту «фонарик») предназначен для работы в качестве индивидуального осветительного прибора. Фонарик выполнен в виде небольшого цилиндра диаметром 30 мм, со световой головкой диаметром 45 мм. Длина фонарика 160 мм. Фонарик имеет неразборную конструкцию и защищен от прямого попадания осадков. Внутри корпуса фонарика находятся литий-ионный аккумулятор, электронная плата управления и световой модуль с фокусирующей линзой. Световой модуль закрыт прозрачным защитным стеклом из макролона. На корпусе фонарика расположена кнопка включения. На торцевой части фонарика находится зарядное гнездо. Заряд аккумулятора осуществляется с помощью автоматического зарядного устройства. При разряде аккумулятора фонарик выдает предупредительный световой сигнал в виде 10-кратных миганий с минутными паузами ровным светом. После этого фонарик автоматически выключается.

Фонарик обеспечивает 4 опции света:

  • «максимальный» —  до 5 часов работы,
  • «оптимальный» — до 12 часов работы,
  • «экономичный» — до 40 часов работы,
  • «сигнальный» — мигающий свет.

Переход с одного режима света на другой выполняется кнопкой включения фонарика.

Фонарик изготавливается в исполнении для значения температуры от минус 20° С до плюс 45° С. При пользовании фонарик закрепляется на кисти руки с помощью шнурка с фиксатором. Переносится фонарик в кармане одежды или в сумочке.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. Дальность светового луча, м, не менее 50

2.     Освещенность на расстоянии 1  м, в опциях:
—      «максимального» света, не  менее, люкс
—      «оптимального» света, не менее, люкс
—      «экономичного» света, не менее, люкс


1500
900
60

3. Угол  излучения, 2θ0.5 Iv  град

10

4. Ресурс светодиодного модуля, час, не менее

50 000

5. Ресурс аккумуляторной батареи (кол-во циклов заряд/разряд)

1000

6. Максимальное время подзарядки аккумуляторной батареи, час, не более

4

7. Масса фонарика, грамм, не более

130

8. Степень защиты от внешних воздействий IP 54

9. Класс защиты от поражения человека электрическим током

III

10.  Гарантийный срок  эксплуатации

1 год

11. Срок службы фонаря, лет 5

Комплект поставки: фонарик, адаптер зарядный сетевой, паспорт, коробка упаковочная.

1000 люмен Duracell Flashlight Teardown

Здесь я покажу вам, как разобрать фонарик Duracell 1000 люмен. Хотя это может быть не очень практично, но каким-то образом приятно разбирать продукт с серьезным недостатком дизайна.

Эти фонарики были разработаны для работы от щелочных батарей, а не от аккумуляторов. Перезаряжаемые батареи способны выдавать намного более высокий ток, чем щелочные батареи. Переключатель на конце фонарика не ограничивает ток ниже максимального предела 3 А, указанного в техническом описании Cree XM-L.

Фонарик, который я собираюсь разобрать, стал жертвой такого неосторожного поведения, что фактически использовал аккумуляторные батареи в фонарике Duracell. Одно нажатие кнопки и все. Перегорел светодиод. Эта функция сделана для некоторых очень неудовлетворенных клиентов. Теперь по разборке.

Обновление от 14 апреля 2018 г .: Я проверил новые фонари Duracell 1000 люмен в Costco, и теперь они говорят, что работают с перезаряжаемыми батареями.

Сначала сниму линзу двумя ремешками.



Далее откручиваю светодиодный модуль.


Затем я сниму пластик, окружающий светодиод. Это часть, которая крепит светодиод и радиатор (сборка MCPCB). Между MCPCB и алюминиевым корпусом имеется радиатор. Но эта пластиковая деталь не кажется очень безопасным или надежным способом убедиться, что MCPCB не оторвется от основания, если фонарик упадет.
После распайки двух проводов MCPCB может выскочить.

Оригинальный MCPCB имел номер детали RB-AL03, изготовленный RAYBEN. Он рассчитан на 0,5 — 0,9 C / Вт, с максимальной рабочей температурой 110 C.

Я поискал аналогичный светодиод на mouser.com и нашел светодиод XML по цене 6,93 доллара США за штуку или 3,24 доллара США за 2000 штук за раз. Я не нашел тот же MCPCB, доступный в Интернете, но другой для XML, который продается по 1,01 доллара каждый или 0,44 доллара за каждый по 10 000 за раз. Поэтому неудивительно, что вы можете найти сборки XML MCPCB на ebay менее чем за 10 долларов каждая.

А стоит ли чинить фонарик за 18 долларов? Возможно нет.Ваш почасовой труд, заказ запчастей и оплата доставки делают это непрактичным. Однако, если бы вы могли установить MCPCB более высокой мощности, то, возможно, стоило бы сделать собственный фонарик. Или как насчет УФ-светодиода для определения флуоресцентных красителей? А как насчет красного, зеленого или синего фонарика?


И, конечно же, какой разбор был бы полным без взгляда на узел кнопки включения? Я использовал торцевую головку 17 мм и молоток, чтобы вытолкнуть кнопку. Затем я повернул его против часовой стрелки, когда выступы заземления подошли к резьбе, чтобы они не зацепились.
Вот она, плата выключателя питания. Это сборка, которая так дорого обошлась Duracell при возврате продукции. (Понятия не имею, сколько.) Они, должно быть, не осознавали, что для управления светодиодами следует использовать источник тока, а не источник напряжения. Обратите внимание, что на плате нет индукторов. Это означает, что они не используют преобразователь постоянного тока, такой как понижающий преобразователь. Стоит ли возвращать все эти продукты, чтобы сэкономить доллар, не считая катушки индуктивности? Думаю, нет.
Ну вот и все.Кнопка питания фактически все еще работала (на другом моем фонарике) после того, как я собрал его заново.

Светодиодный фонарик Мастерим | WIRED

Это может быть немного ОКР, GeekDads, но технические детали, по крайней мере, немного интересны, так что терпите меня. Понимаете, у меня есть светодиодный фонарик, который я вообще очень люблю. В фонаре используются литиевые элементы (18650), которые я извлек из старого аккумуляторного блока ноутбука, поэтому он работает вечно и излучает поразительное количество света. Единственное, что мне не понравилось / не понравилось, так это то, что это был многорежимный свет — i.е. при быстром нажатии на переключатель индикатор переключается между низким, средним, высоким и (очень раздражающим) режимом мигания. Низкий, средний и высокий режимы хороши, хотя переключатель слишком чувствителен и склонен к случайному переключению режимов. Однако последний режим — режим моргания, вызывающий судороги, — был решающим фактором.

Итак, старый фонарик с лампой накаливания состоит из лампы, батареи, переключателя и некоторого провода, так что здесь особо нечего настраивать или переделывать. А современный светодиодный фонарик включает в себя небольшую печатную плату, состоящую из регулятора тока и микроконтроллера.

Да, вы правильно прочитали: мы живем так далеко в будущем, что даже в наших фонариках есть компьютеры.

«ЦП» на плате драйвера отвечает за контроль переключателя и соответствующее изменение режимов. По сути, это маленький PIC, который использует ШИМ для управления уровнем выходного сигнала светодиода. И, к счастью для меня, оказалось, что эти платы драйверов довольно стандартны по размеру, поэтому вполне разумно заменить их на замену, НЕ включающую режим моргания, вызывающего ярость.

Чтобы понять, в чем дело, взгляните на следующий набор изображений. Прежде всего, это «вставной» модуль, который содержит светодиод и схему драйвера.

После небольшой аккуратной разборки обнаруживается латунное «таблеточное» кольцо и схема драйвера. Если вы также обратитесь к изображению выше, вы заметите, что схема драйвера на самом деле припаяна к латунной таблетке, которая, в свою очередь, контактирует с алюминиевым вставным модулем. Ток проходит через все это и через сам корпус фонаря, поэтому очень важны хороший контакт и проводимость.

И да, красный провод оторвался от плюсовой клеммы схемы драйвера. Виноват.

В верхней части вставки вы можете увидеть настоящий светодиод с черным и красным проводами от драйвера, припаянными на место. Эти соединения обычно блокируются пластиковым изолирующим диском, который предотвращает короткое замыкание алюминированного отражателя. Было легко нагреть паяные соединения наверху и отсоединить старые провода.

После удаления старого драйвера очень легко установить новый.Все, что требовалось, — это пропустить провода через отверстия и аккуратно припаять их на место (соблюдая полярность!).

Единственной сложной частью всего упражнения было отпаяние старого драйвера от латунной таблетки. Как только это было сделано, можно было легко вставить новый драйвер на место и припаять его к таблетке.

После замены драйвера и сборки фонарика пришло время протестировать. Успех! Больше никаких стробоскопов!

Если вы хотите узнать больше о настройке и переделке фонарей, зайдите в вики по фонарикам и загляните на страницу DIY P60.Кроме того, Candlepowerforums — это и место в Интернете для заядлых гиков-фонариков.

И, наконец, если вас не устраивают предварительно запрограммированные режимы в вашем фонарике, есть даже прошивка с открытым исходным кодом, которая позволяет вам настраивать и записывать собственный драйвер. Как я уже сказал, мы живем в будущем …

Cree LED Flashlight mod — Отключение разных режимов (Sipik SK68 Clone)

Примерно месяц назад я купил на eBay клон светодиодного фонарика Sipik SK68 на общую сумму 4 доллара.04! Доставка заняла около трех недель, что неплохо, учитывая, что она была бесплатной, но когда я начал ее использовать, обнаружился довольно неприятный недостаток дизайна.

Фонарик

Он фокусируется и работает от одной батареи AA 1,5 В или одной литиевой батареи 14500 3,7 В. Яркость с батареей 14500 составляет около 300 люмен, что очень ярко. Это отличное предложение по цене!

У этого фонаря есть одна очень плохо спроектированная особенность: его режимы. Он имеет три режима: Bright , Dim и Strobe , но для переключения режимов свет нужно выключить и снова включить.Это огромное неудобство, когда вы выключаете его в ярком режиме, так как при следующем цикле включения он будет в тусклом режиме. Вам нужно переключать режимы, чтобы снова вернуть его в нормальное состояние. Это меня расстроило, и в любом случае другие режимы мне не понадобились, только полная яркость. Время исправить!

Разборка

Я начал с того, что открутил крышку объектива, открыв излучатель и линзу Cree LED.

Затем нужно удалить «таблетку» светодиода — в ней находятся драйвер и излучатель светодиода.Кольцо фокусировки может вращаться свободно, но светодиодная таблетка (серебристая алюминиевая деталь) плотно прилегает. Отвинтите его, удерживая плоскогубцами за кольцо фокусировки, и открутите их оба. Таблетка будет откручиваться, затем просто вытащите таблетку.

Внизу таблетки находилась печатная плата с маркировкой JX2205 . Я не смог найти никакой ценной информации об этом в Интернете. Просто вытащите печатную плату отверткой.

На плате находится повышающий преобразователь — он повышает напряжение, скажем, с единицы.Аккумулятор 5V для более высокого напряжения, необходимого для светодиода. Он также обеспечивает постоянный ток, необходимый для всех мощных светодиодов.

Исправление

Визуально осмотрев плату, я обнаружил две микросхемы (микросхемы), которые могли быть виноваты.

Один из них представлял собой шестиногую ИС с маркировкой 601 , которая оказалась микросхемой драйвера с повышающим преобразованием. Здесь ничего нет. Другой, который я предположил, был транзистором, оказался нашим виновником.Он имел всего 3 ножки и имел маркировку 8133A . После некоторого поиска в Google я нашел схему с надписью «ИС трехфункционального драйвера светодиода мощностью 5 Вт» :

На схеме показано, что он включает транзистор между контактом 1 (LX) и 3 (земля), который включает и выключает светодиод. Все, что нам нужно сделать, чтобы обойти это, — это соединить контакты 1 и 3 вместе.

После проверки платы все внешнее кольцо действует как заземляющий провод, поэтому мы можем просто припаять перемычку между контактом 1 на микросхеме и внешним заземлением, как показано ниже стрелкой:

После быстрой и небрежной пайки перемычка оказалась на месте:

Теперь все, что нужно сделать, это собрать корпус, и, надеюсь, вы будете держать очаровательный одномодовый фонарик! Драйвер во многих фонариках и клонах Sipik SK68 может отличаться от разных партий / производителей, однако, если ваш драйвер использует этот чип, процесс должен быть таким же.Если нет, просто ищите номера деталей интегральных схем, пока не найдете виновника.

Заключение

Этот проект имел большой успех и, на мой взгляд, делает этот фонарик еще более выгодной покупкой. Пожалуйста, дайте мне знать, если вы попробуете это!

Заявление об ограничении ответственности : Вы делаете это на свой страх и риск. Если вы сломаете фонарик, я не несу ответственности. Это, очевидно, аннулирует любую гарантию, так что будьте осторожны и удачи!

Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.комментарии предоставлены

Простой ремонт вашего светодиодного фонарика

Работая с фонариками, мы в FlashlightZ столкнулись с целым рядом различных проблем с фонариками. Однако многие проблемы, которые мы видим, имеют довольно простое решение. Отправка фонарика в ремонт и ожидание возврата может вызывать затруднения. Прежде чем обратиться в гарантийный центр, вы можете решить проблему, проверив наличие этих легко устраняемых проблем.

Проверьте батареи

Всегда лучше начинать с самого простого решения, которым может быть батарея.Если у фонарика тусклый или слабый свет или он просто не включается, это может быть аккумулятор. Проверьте аккумулятор фонарика, чтобы убедиться, что он все еще заряжен. Возможно, вам просто придется заменить или зарядить аккумулятор. Если батареи заряжены, внимательно осмотрите батареи на предмет утечек. Если они протекают, обязательно утилизируйте их должным образом и замените на новые фирменные батарейки.

Проверьте уплотнительное кольцо

На самом деле это очень распространенная проблема, если ваш фонарик вообще не включается.Большинство светодиодных фонарей поставляются с уплотнительным кольцом уже на хвосте и головке фонаря, как вы можете видеть на изображении выше с корпусом Klarus XT2C. Некоторые фонарики, такие как Armytek Viking Pro, поставляются с двумя уплотнительными кольцами на голове. Однако многие фонарики не включаются, если на голове или хвосте есть два или более уплотнительных кольца. Убедитесь, что есть только одно уплотнительное кольцо в головке и одно уплотнительное кольцо в хвостовой части. Если по какой-то причине их больше, чем один, удалите столько лишних и затяните хвост и головку фонаря, чтобы посмотреть, решит ли это проблему.

Другая проблема может возникнуть с уплотнительным кольцом, если у фонарика есть тактическое кольцо. Тактическое кольцо должно быть помещено перед уплотнительным кольцом. Другими словами, тактическое кольцо должно быть ближе к головке фонаря, чем уплотнительное кольцо. Если уплотнительное кольцо расположить перед тактическим кольцом, хвостовая крышка не сможет полностью затянуться, что предотвратит включение фонарика.

Проверка на наличие грязи

Это очень важная процедура технического обслуживания, особенно если вы берете фонарик с собой на прогулку.Если ваш фонарик мигает, возможно, на пути электрического тока попадет грязь. Убедитесь, что ваш фонарик очищен от грязи, особенно внутри тела, головы и хвоста. Разберите фонарик и тщательно осмотрите и очистите каждую деталь. Возьмите ватную палочку со спиртом и тщательно очистите каждую деталь. Не используйте слишком много медицинского спирта, так как он может повредить внутреннюю часть фонарика. Но слишком много использовать ватную палочку — довольно сложная задача.

Вот и все! Надеюсь, эти несколько шагов избавят вас от необходимости отправлять фонарики в ремонт. Однако, если ни один из этих шагов не работает для вас, обязательно используйте эту гарантию, чтобы ваш фонарик работал в отличной форме.

Эта запись не была размещена ни в одной категории.

Как починить светодиодный фонарик: простые решения

Детали светодиодного фонарика

Прежде чем вы узнаете, как починить сломанный светодиодный фонарик, вам необходимо изучить основные части обычного светодиодного фонарика.Вот краткое руководство, если вы еще не знакомы с названиями.

Корпус — это то, что вмещает весь фонарик. Головка фонаря — это место, где расположены лампа и светодиод. Хвостовая часть имеет заднюю крышку и, как правило, кнопку питания, нажатие на которую включает и выключает свет. Кнопка или выключатель питания также могут быть расположены чуть ниже изголовья фонарика. Батарейки находятся в батарейном отсеке, который находится между головой и хвостом. Контактные пластины внутри отсека подключаются к зарядам аккумулятора.Уплотнительные кольца — это кольца в хвосте и голове, обычно серебристого цвета.

Проведите диагностику

Теперь, когда вы лучше ознакомились с частями вашего устройства, вам нужно будет точно определить проблему, с которой вы столкнулись со светодиодным фонариком. Он тускло светит? Свет мерцает? Может просто не включится.

Как починить светодиодный фонарик? Когда у вас возникли проблемы со светодиодным фонариком, первым делом вам может быть необходимо проверить батареи.Слабый свет или фонарик, который не включается, могут означать, что аккумулятор необходимо проверить. Посмотрите, достаточно ли заряда в аккумуляторе. Обязательно проверьте батареи на предмет утечек. При обнаружении течи утилизируйте батареи надлежащим образом. Утечка происходит, когда аккумулятор не используется слишком долго, а фонарик не используется.

Если вы заменили батареи, но проблема не исчезла, проверьте, нет ли грязи, что вам следует делать в рамках регулярного технического обслуживания устройства.Грязь и сажа могут затруднить беспрепятственное прохождение электрического тока через устройство. Это может привести к мерцанию света, что не идеально, если вам нужен устойчивый и надежный поток света. Области, подверженные загрязнению, — это внутренняя часть головы и хвоста фонарика.

Вы также можете подумать, что проблема заключается в кнопке светодиодного фонарика, или есть проблема с ослабленным уплотнительным кольцом или застрявшей контактной пластиной. Эти проблемы потребуют разборки, поэтому читайте дальше, чтобы узнать, как очистить и как починить кнопку питания светодиодного фонарика и уплотнительное кольцо.

Как исправить черный экран ЖК / LED телевизоров

Ваш телевизор когда-нибудь показывал только черный экран, даже если звук работал? К сожалению, в наши дни это обычная проблема для ЖК / светодиодных телевизоров низкого / среднего уровня … Еще более неприятно то, что эта проблема часто возникает из-за довольно крошечных и дешевых компонентов, которые можно легко заменить. Наиболее частые проблемы:

  • Неисправный конденсатор на плате блока питания
  • Неисправный светодиод в системе подсветки

В этом посте мы рассмотрим последний и один из способов его устранения.

У одного из моих родственников внезапно возник этот точный симптом. Эта проблема на недорогих телевизорах часто возникает в течение первых двух лет. Поскольку затраты на ремонт такого телевизора довольно низкие, подумайте о том, чтобы отремонтировать его самостоятельно!

Диагностика

Первым шагом в устранении неполадок является поиск первопричины проблемы. Поскольку отказ подсветки — очень распространенная проблема, это первое, что нужно проверить. Для этого проще всего включить экран, поднести к нему фонарик и проверить, видно ли изображение насквозь.Изображение будет очень темным, как при очень низкой яркости экрана.

Теперь, когда у нас теперь само изображение в порядке, это означает, что основная плата, вероятно, тоже в порядке, поэтому мы собираемся протестировать саму систему подсветки.

Это подразумевает разборку телевизора, чтобы получить доступ к подсветке, которая находится между ЖК-экраном спереди и платами сзади. В моем случае с Samsung F5000 мне пришлось обработать следующим образом:

Разборка

Сначала нам нужно снять заднюю часть корпуса, чтобы открыть платы (слева направо: основная плата, T-CON, источник питания) и отсоединить ЖК-панель от платы T-CON.

Отсоедините 2 ленты в нижней части экрана от платы.

Поверните телевизор, чтобы снять передний корпус и ЖК-панель. Будьте очень осторожны с панелью — она ​​очень хрупкая!

Снимите передний корпус, затем ЖК-панель.

Теперь, когда ЖК-панель снята, мы можем снять лицевую панель, которая удерживает диффузор задней подсветки, и получить доступ к самой подсветке.

  • Передний диффузор подсветки
  • Задний диффузор подсветки

Здесь мы видим, что система подсветки сделана из светодиодов, которые довольно просто заменить, если они стали причиной неисправности.

Примечание. В старых телевизорах для подсветки используются неоновые трубки, которые толще и меньше подвержены подобным сбоям. Светодиодная подсветка — самая распространенная вещь в наши дни, но не путайте светодиодный телевизор с OLED-телевизором. Первая — это классическая ЖК-панель со светодиодной подсветкой, а вторая — это OLED-панель, которая не требует подсветки, поскольку она интегрирована в каждый пиксель (что, кстати, делает запасные части намного дороже).

Итак, давайте снимем эту белую крышку, которая является частью светорассеивателя, чтобы лучше видеть подсветку.

Подсветка из светодиодных лент

Как видим, система подсветки состоит из 5 светодиодных лент. Первое, что нужно сделать, это поискать перегоревшие светодиоды. В большинстве систем светодиодной подсветки полосы устанавливаются последовательно, что означает, что если одна из них выйдет из строя, вся система погаснет…

Примечание. Если вы присмотритесь, вы увидите, что один выглядит иначе, чем другие! 3-я полоса сверху, 6-й светодиод слева. Скоро мы это протестируем!

Тестирование

Используя мультиметр, мы можем подтвердить, что полоски действительно установлены последовательно, поэтому теперь мы должны тестировать каждую полоску индивидуально.Профессионалы используют светодиодные тестеры, такие как этот (около 40 долларов на Amazon), но так как у меня не было его в то время, я решил сделать его в стиле МакГайвера! 🤓

Для включения одного такого светодиода обычно требуется входное напряжение 2,5–3,6 В. Посмотрев эту модель в Интернете, я обнаружил, что те, которые используются на этих полосах, требуют 3,6 В; Так как на полосе 9 светодиодов: 3,6 x 9 = входное напряжение 32,4 В, необходимое для освещения одной полосы. Это максимальное напряжение, которое мы НЕ хотим превышать, иначе светодиоды могут быть повреждены во время тестирования.

Итак, я взял 3 батареи 9 В, которые лежали в ящике, и соединил их последовательно, чтобы получилась виртуальная батарея на 27 В (3 x 9 В). Это меньше оптимальных требуемых 32,4 В, но не намного ниже, он может немного осветить полоску, чтобы мы могли определить, что не работает. Вот посмотрите на установку:

Самодельный тестер светодиодной ленты

Особенность 9-вольтовых батарей в том, что они предназначены для подключения друг к другу! Так что вам просто нужно проложить несколько кабелей с обоих концов, и готово.

Теперь нам просто нужно протестировать каждую полоску по отдельности, чтобы увидеть, загорелись они или нет. Для каждого, что не полностью, это будет означать, что в нем есть хотя бы один неисправный светодиод.

  • Тестер светодиодных лент
  • Нижняя полоса в порядке

После повторения этой операции на всех полосах я обнаружил только 1 неисправный светодиод, который, как мы думали, выглядел сгоревшим, когда мы впервые посмотрели на подсветку (3-я полоса сверху , 6-й светодиод слева). Для лучшего понимания того, как выглядит сгоревший светодиод, вот 2 изображения сгоревшего и исправного.Обратите внимание на жареный цвет по сравнению с обычным.

  • Перегоревший светодиод
  • Нормальный светодиод

Ремонт

Теперь, когда мы определили, в чем проблема, у нас есть 3 варианта:

  • Замените всю полосу на новую
  • Замените светодиод на новый
  • Обойдите светодиод и скрестите пальцы, чтобы подсветка все еще была достаточно однородной

Для начала я выберу третий один, просто чтобы убедиться, что с телевизором нет других проблем, но после этого лучше заменить светодиод на новый, иначе вы можете заметить более темное пятно на изображении.

Обычно нам нужен нагреватель, чтобы правильно снять светодиод, но у меня его не было. Итак, после нескольких попыток с феном, я запачкал и припаял провод под ним. 🙈

Грязный, правда?

После обхода светодиода мы можем включить телевизор. Осторожно! Высокое напряжение (200-300 В) проходит через телевизор при подключении, поэтому будьте очень осторожны с ним, чтобы не подействовать на себя!

и Вуаля! вся подсветка должна снова загореться.

Подсветка снова заработала, кроме отключенного светодиода

Теперь нам просто нужно отключить телевизор , заменить светодиод на новый и собрать все вместе.На всякий случай мы должны снова включить телевизор и убедиться, что все в порядке.

Скрин исправлен

Заключение

У подобных симптомов может быть много других основных причин, черный экран часто выглядит как что-то очень серьезное и, следовательно, дорогостоящее в ремонте, но этот случай является прекрасным примером того, что некоторое время на поиск первопричины может иногда привести к хороший сюрприз: вот исправление 1 $!

И, прежде всего, всегда лучше ремонтировать, чем выбрасывать! 😊

Что нужно знать о ремонте vs.Замена светодиодных ламп

Все мы знакомы с постепенным отказом от ламп накаливания в пользу более экологически чистых и энергоэффективных светодиодных ламп, лент и светильников. Хотя вы, возможно, начали заменять несколько ламп, так как старые перегорели, вы, вероятно, заметили, что новое освещение может стоить руки и ноги.

Возможно, вы испытали шок от наклеек, когда впервые начали делать покупки. Там, где вы могли купить 3 упаковки старых ламп накаливания за пару долларов, новые светодиодные лампы могут стоить от 6 до 9 долларов за штуку.Замена 24 лампочек за один раз может стоить от 144 до 216 долларов.

Прежде чем вы решите, что сможете обойтись фонариком на телефоне, примите во внимание следующие факты о светодиодных индикаторах от Министерства энергетики США:

  • Они выделяют меньше тепла.
  • Они используют от 20% до 25% энергии.
  • Они могут прослужить до 40 000 часов, что в 15-25 раз дольше, чем лампы накаливания.
  • Вы можете сэкономить около 7000 долларов за 20 лет, вложив 216 долларов за 24 лампы накаливания.

Опции светодиодов

Светоизлучающие диоды (светодиоды) доступны в различных стилях, например, умные лампочки со встроенным Bluetooth и Wi-Fi.Они могут стоить от 40 до 100 долларов за лампочку, но способны активировать голосовые функции, такие как затемнение, изменение цвета и включение / выключение через удаленные приложения или приложения для смартфонов.

Светодиодные ленты

— еще один оригинальный способ добавить света в уникальные места. Используйте их в качестве подсветки под шкафом, художественных работ или акцентного свечения в любом приложении. Они доступны с клейкой основой и источником питания низкого напряжения. Это делает установку несложной даже для самого неопытного домашнего мастера. Стоимость белых полосок или полосок, меняющих цвет, составляет от 50 до 300 долларов.

Хотите вывести энергоэффективное освещение на новый уровень? Подумайте о замене всего светильника на светильник со встроенным светодиодным освещением. Для этого проекта вам понадобится профессиональный разнорабочий или электрик. Стоимость оборудования составляет от 100 до 150 долларов плюс оплата труда.

Работаете дома и вам нужна лучшая система освещения? Светодиодные трековые светильники — идеальное решение. Обычно они состоят из шести светильников и могут быть подключены напрямую или подключаться к розетке. Цены варьируются от 50 до 200 долларов плюс установка.

Светодиодные фонари

работают не только в помещении, но и на улице. Выберите настенные светильники, потолочные светильники, садовые светильники или дорожные светильники. Сэкономьте еще больше энергии с помощью светильников на солнечных батареях.

Ремонт светодиодов

Использование светодиодных ламп вместо ламп накаливания дает массу преимуществ, и хотя они обычно более надежны, иногда они перегорают раньше, чем ожидалось. Когда старая лампа перегорает, ничего не остается, кроме как выбросить ее в мусорное ведро.Большим преимуществом светодиодных ламп является то, что вы можете отремонтировать практически все.

Преждевременное выгорание может быть вызвано плохим качеством компонентов, перегревом светодиода и скачками напряжения. Хорошая новость заключается в том, что вам не нужно иметь большой опыт, чтобы справиться с ремонтом, а стоимость значительно ниже, чем цена новой лампы.

Действия по устранению проблемы

Шаг 1 — Разберите лампу, сняв корпус рассеивателя с помощью небольшой отвертки.

Шаг 2 — Найдите перегоревший светодиод по черному пятну или следам ожога.

Шаг 3 —Если видимых повреждений нет, используйте мультиметр для проверки работы диода. Коснитесь анода красным датчиком и катода черным датчиком, чтобы найти диод, который не горит.

Шаг 4 — Удалите неисправный светодиод горячим пинцетом.

Шаг 5 —Паяйте старый светодиод на новый того же типа (обычно отмечен на печатной плате лампы). Температура пайки составляет 260 градусов C в течение не более 2 секунд.

Шаг 6 — Установите на место корпус рассеивателя.Возможно, вам придется использовать клей, чтобы держать его закрытым.

Пусть Puls освещает путь ремонта или замены светодиодов

Независимо от того, являетесь ли вы опытным мастером «Сделай сам» или неопытным любителем, мастер Puls может помочь вам позаботиться обо всех ваших потребностях в ремонте или замене светодиодов. Наши специалисты имеют опыт работы со всеми видами электрического оборудования, обеспечивая безопасную и быструю настройку. При необходимости доступна удобная онлайн-запись на прием с обслуживанием в тот же день.

Хватит тратить деньги на неэффективные лампы накаливания и светильники.Позвольте мастеру Puls сделать все: от рекомендации правильной конфигурации и светодиодных продуктов до покупки и установки лучшего света для ваших нужд. Наши полностью проверенные специалисты могут отремонтировать поврежденные или перегоревшие светодиодные лампы, что является менее дорогостоящим решением вашей проблемы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *