ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Повышение плотности электролита в АКБ

В холодное время года или после длительного простоя могут появиться проблемы с запуском двигателя. Это происходит из-за севшей АКБ. Длительная зарядка батареи не помогает справиться с этой проблемой, если плотность электролита значительно снизилась.

Почему снижается плотность

Плотность электролита изменяется во время использования аккумулятора. Когда батарея теряет заряд, показатель понижается, и наоборот. Очень низкая плотность электролита связана со следующими причинами:

  • Влияние низких температур в течение длительного времени;
  • Перезаряд АКБ, вследствие чего происходит выкипание электролита;
  • Регулярное добавление воды.

Воду в электролит доливать можно, но перед этим нужно проверять его плотность и не проводить процедуру без необходимости. Делайте замеры в каждой банке. Нормальные значения – от 1,25 до 1, 29. Чем холоднее регион, тем выше должна быть плотность.

Как повысить плотность

Чтобы провести процедуру повышения плотности, следуйте плану.

  1. Зарядите батарею (если АКБ разряжена, то при добавлении раствора, поднимется концентрация серной кислоты – пластины разрушается).
  2. Температура электролита должна быть от 20 до 25 градусов.
  3. Осмотрите аккумулятор: на нем не должно быть дефектов и повреждений, особое внимание уделите токовыводам.
  4. Если уровень в норме (от 1,18) долейте электролит с нормальной плотностью до 1,25.
  5. Выполняйте долив в каждой банке, используя клизму-грушу.
  6. Потрясите аккумулятор, чтобы новый раствор перемешался со старым.

Что делать при минимальной плотности

Если уровень упал ниже 1,18 долив электролита не поможет. Используйте аккумуляторную кислоту − у нее очень высокая плотность (1,84). Заливайте кислоту по описанной выше схеме. Выполняйте процедуру в защитной одежде, перчатках и маске в хорошо проветриваемом помещении или на открытом воздухе.

Следите, чтобы кислота не попала на кожу – может появиться ожог.

Повышение плотности зарядным устройством

Повысить плотность электролита можно при помощи слабого тока. Такой способ требует больше времени. 

  1. Полностью зарядите АКБ.
  2. Жидкость начнет выкипать, произойдет испарение дистиллированной воды.
  3. Общий уровень электролита понизится.
  4. Долейте новый электролит необходимой плотности.
  5. Сделайте замеры ареометром.
  6. Если показания недостаточны, повторите процедуру, пока плотность не достигнет 1,25 г/см3.

Не спешите выбрасывать аккумулятор, если машина стала плохо заводиться. Попробуйте восстановить АКБ методом повышения плотности электролита. Это займет немного времени, но продлит жизнь батареи на несколько сезонов и сэкономит деньги.

А чтобы продлить жизнь своему акб, соблюдайте простые правила ухода. Читайте.

Как правильно повысить плотность электролита в аккумуляторе

Пониженная или повышенная плотность электролита в аккумуляторе уменьшает эффективность работы батареи и ускоряет ее износ. Поэтому периодически необходимо измерять данный показатель и в случае отклонений от нормы проводить корректировку. Разберем детально, как это правильно сделать.

Содержание

  1. Чем и как проверять плотность электролита для аккумуляторов
  2. Как повысить плотность электролита в автомобильном аккумуляторе
  3. Резюме

Чем и как проверять плотность электролита для аккумуляторов

Нормой считается показатель в 1,27 грамма на кубический сантиметр. Измерения проводятся специальным диагностическим инструментом — ареометром. Важно, чтобы он был качественно изготовлен и показывал точные результаты. Хорошим и недорогим прибором является ареометр RedMark в тубе. Его можно использовать для проверки электролита и тосола.


Вот несколько правил, которые следует соблюдать:

  • Измерения нужно проводить при полностью заряженной батарее.
  • Проверять необходимо каждую банку.
  • Температура воздуха должна быть 20–25 градусов тепла.

С учетом последнего пункта может возникнуть вопрос о том, как повысить плотность электролита в аккумуляторе зимой. Если автомобиль стоит не в теплом гараже, придется снять батарею и занести ее домой. Полностью зарядить и только потом проверить каждую банку.

Как повысить плотность электролита в автомобильном аккумуляторе

Прежде чем приступить к работе, подготавливаем все необходимое. Важно помнить, что данная жидкость представляет собой соединение, опасное для человека. Его попадание на открытые участки кожи может вызвать сильные химические ожоги. Поэтому работать необходимо в защитных резиновых перчатках. Кроме того, потребуются:

  • ареометр;
  • стеклянная емкость;
  • корректирующий электролит;
  • дистиллированная вода.


Суть работы заключается в том, чтобы откачать часть жидкости из аккумуляторной батареи и заместить ее корректирующим электролитом. Для откачки можно использовать ареометр. Набираем в него жидкость из батарейных банок и сливаем ее в заранее подготовленную емкость.

При откачивании важно помнить о том, что нельзя оголять аккумуляторные пластины. Необходимо, чтобы они все время были покрыты жидкостью.

Многие автовладельцы задаются вопросом, какой корректирующий электролит для аккумуляторов купить? Хорошим вариантом является «ДРЕКО», имеющий плотность 1,3 г/см3. С его помощью приводим показатели каждой банки в норму.

Вы спросите, а что будет, если переборщить? Параметры 1,28–1,29 г/см3 — это уже повышенная плотность электролита, которую в новом аккумуляторе нужно обязательно снизить. Просто добавляем дистиллированную воду. Использовать обычную, из-под крана, нельзя.

Резюме

Быстрый разряд и слабый пусковой ток далеко не всегда говорят о том, что батарею пора менять. Возможно, что причина неэффективной работы кроется именно в понизившейся плотности. Чтобы решить проблему, достаточно купить электролит для аккумуляторов, имеющий повышенную концентрацию, и с его помощью довести показатели до нормы.


Как поднять плотность электролита в аккумуляторе? Как заменить электролит в аккумуляторе? Что такое «плотность аккумулятора»?

Аккумуляторные батареи автомобилей созданы не только для пуска двигателя, но и для питания электрических приборов машины в тот момент, когда зажигание выключено. По невнимательности водитель с легкостью может забыть о включенных в автомобиле фарах или работающей магнитоле, громкость которой сведена к нулю. Вернувшись к машине на следующий день, можно обнаружить, что она не заводится, и причина тому севший источник питания. Завести машину при разряженном аккумуляторе можно, но через раз-два экстренные методы запуска двигателя начинают надоедать, и явно возникает необходимость вернуть в рабочее состояние аккумулятор.

«Плотность аккумулятора» или соотношение серной кислоты и воды в электролите

В простонародье распространен такой термин как «плотность аккумулятора». По сути, он является ошибочным, поскольку никто не измеряет плотность непосредственно источника питания. Любой автомобильный любитель скажет, что под понятием «плотность аккумулятора» подразумевается плотность электролита, который залит в батарею. Именно от того какой плотности электролит находится в аккумуляторе, зависит его возможность заряжаться и сохранять накопленную энергию.

Если аккумулятор разрядился по невнимательности водителя или другим причинам, следует попробовать вернуть ему работоспособное состояние при помощи зарядного устройства. Перед тем как заряжать аккумулятор, в него доливают дистиллированную воду, которая могла испариться в процессе работы источника питания. Вода в аккумуляторе смешивается с готовым электролитом, что приводит к понижению его плотности, то есть к уменьшению процентного содержания серной кислоты в итоговом растворе. Через некоторое время плотность электролита в аккумуляторе, из-за постоянного разбавления его дистиллированной водой, снижается, и опускается ниже комфортного уровня. Эксплуатация батареи становится невозможно, и в таких ситуациях возникает необходимость в повышение плотности электролита в аккумуляторе.

Как поднять плотность электролита в аккумуляторе самостоятельно?

Плотность аккумулятора, а если говорить точнее, то электролита в нем, повысить можно довольно просто без обращения к специалистам сервисного центра. Первым делом необходимо провести ряд подготовительных процедур:

  • Подготовьте емкости, которые понадобятся для слива части старого электролита из аккумулятора;
  • Обзаведитесь средствами личной защиты – перчатки, очки, одежда (которую не страшно испортить). Помните: Электролит аккумулятора частично состоит из серной кислоты, которая опасна, и при попадании на кожу способна вызвать ожог, а одежду серьезно испортить;
  • Возьмите инструменты, которые понадобятся, чтобы поднять плотность электролита в аккумуляторе: ареометр, клизма-груша, мерный стакан, воронка;
  • Купите необходимые расходные материалы: дистиллированная воды, аккумуляторная кислота или готовый электролит.

Чтобы поднять плотность электролита в аккумуляторе, придется самостоятельно полностью заменить весь электролит, который уже залит в батарею, на новый раствор. Сделать это довольно просто, если выполнять все по инструкции и соблюдать необходимые меры предосторожности.

Как поменять электролит в аккумуляторе?

Большинство современных аккумуляторов выпускаются разборными, и они предусматривают возможность замены электролита самостоятельно. Неразборные аккумуляторы – большая редкость, и в них нельзя при необходимости отвинтить пробки для удаления старого электролита и заливки нового. При желании можно залить электролит и в неразборную батарею, но для этого необходимо в каждой банке с помощью сверла проделать отверстие. После замены электролита на место отверстий напаивается пластмасса, и аккумулятор вновь становится рабочим.

Сам процесс замены электролита довольно простой, и он состоит из следующих пунктов:

  1. Первым делом необходимо снять аккумулятор с автомобиля и найти подходящее место для замены электролита в нем и зарядки;
  2. Далее необходимо снять защиту с аккумулятора, если она имеется, и открутить пробки с банок;
  3. После этого берем клизму-грушу и вставляем ее конец в одну из банок аккумулятора. Пользуясь данным резиновым прибором, выкачиваем из аккумулятора старый электролит и сливаем его в заранее подготовленную емкость. Внимание: Ни в коем случае не выливайте электролит на землю, если вы выполняете работы на улице;
  4. Выкачав практически весь старый электролит из всех банок, необходимо почистить пластины аккумулятора от его остатков. Сделать это можно с помощью дистиллированной воды, которая не вызовет внутри аккумулятора нежелательные реакции. Для этого дистиллированную воду заливают в каждую банку аккумулятора, после чего его поднимают и трясут. Хорошо удерживайте аккумулятор, чтобы в процессе тряски он не выпал. После этого сливаем получившийся раствор.

Стоит отметить, что некоторые автолюбители рекомендуют для «чистоты» будущего электролита в батарее не только промыть ее дистиллированной водой, но и использовать различные растворы. К примеру, рекомендуется залить в батарею раствор воды с содой и оставить его там на 4 часа. После этого также рекомендуется заливать на час в аккумулятор раствор поваренной соли.

  1. Очистив банки аккумулятора от старого электролита, необходимо залить в него новый. Хорошо, если вы приобрели готовый электролит в магазине, тогда достаточно залить его с помощью воротки до указанных граней в каждую банку. В случае если у вас аккумуляторная кислота и дистиллированная вода, требуется предварительно сделать раствор электролита с плотностью в 1,27-1,28 грамм на сантиметр кубический;
  2. После этого закрываем банки и начинаем процесс зарядки аккумулятора;
  3. Сменив электролит в батарее, необходимо выполнять процесс заряда батареи по циклу «зарядка-разрядка» с силой тока не более 0,1 Ампер до тех пор, пока плотность аккумулятора (плотность электролита) не достигнет рабочих значений. Внимание: Зарядку можно окончить и начать использовать аккумулятор только после того как на концах клемм аккумулятора удастся замерить 14 Вольт.

Если вы решили поменять электролит в аккумуляторе самостоятельно, настоятельно рекомендуем соблюдать все меры предосторожности. Кислотная среда, которой является электролит, вредна не только при попадании на кожу, но и в дыхательные пути. Менять электролит следует исключительно в хорошо проветриваемых помещениях с предельной осторожностью.

Загрузка…

Как поднять плотность электролита в аккумуляторе?

Многим этот вопрос кажется простым, а ответ очевидным. Слить электролит с низкой плотностью и залить с более высокой. Или слить только часть, а вместо неё добавить концентрированный раствор. Но перед тем как это делать, стоит задуматься, а надо ли? Такой подход требуется в единичных случаях. Есть ещё один более правильный вариант – это поднятие плотности электролита с помощью зарядки. Чаще всего именно так и следует повышать плотность. В этой заметке речь пойдёт о том, как правильно поднять плотность электролита, зарядкой или заменой. Рассмотрим, что более уместно в той или иной ситуации.

 

Содержание статьи

А какая плотность нормальная?

Как известно, электролит в свинцово-кислотном аккумуляторе является раствором серной кислоты (H2SO4) в воде (используется дистиллированная вода без примесей). В рамках этого материала мы не будет рассказывать о сортах серной кислоты, её плотности и т. п. Если интересно, можете прочитать это в отдельном материале про электролит.



Плотность электролита полностью заряженного аккумулятора должна быть на отметке 1,27 гр/см3. Обычно в разных банках она лежит в интервале 1,25─1,27 гр/см3. При этом ЭДС на выводах аккумуляторной батареи 12,6─12,9 вольта. В таблице ниже можно посмотреть зависимость плотности, напряжения, степени заряженности и температуры замерзания электролита.
Плотность электролита, г/см. куб. (+15 гр. Цельсия)Напряжение, В (в отсутствии нагрузки)Напряжение, В (с нагрузкой 100 А)Степень заряда АКБ, %Температура замерзания электролита, гр. Цельсия
1,1111,78,40-7
1,1211,768,546-8
1,1311,828,6812,56-9
1,1411,888,8419-11
1,1511,94925-13
1,16129,1431-14
1,1712,069,337,5-16
1,1812,129,4644-18
1,1912,189,650-24
1,212,249,7456-27
1,2112,39,962,5-32
1,2212,3610,0669-37
1,2312,4210,275-42
1,2412,4810,3481-46
1,2512,5410,587,5-50
1,2612,610,6694-55
1,2712,6610,8100-60
Плотность электролита, г/см. куб. (+15 гр. Цельсия)Напряжение, В (в отсутствии нагрузки)Напряжение, В (с нагрузкой 100 А)Степень заряда АКБ, %Температура замерзания электролита, гр. Цельсия

Падение плотности ниже 1,15 гр/см3 (ЭДС ниже 12 В) рекомендуется не допускать. Это приводит к необратимым последствиям для аккумулятора. Если автомобиль эксплуатируется в холодном климате, то плотность допускается увеличивать до 1,29─1,3 гр/см3. От себя могу добавить, что в последнее время часто встречаю новые аккумуляторы типа Ca/Ca, у которых электролит в заряженном состоянии (ЭДС > 12,6 В) имеет плотность 1,24─1,25 гр/см3. Об таких фактах можно найти немало отзывов в сети. С чем это связано? Мне кажется, причина может быть только в сульфатации во время хранения.



Вернуться к содержанию
 

А нужно ли поднимать плотность?

Если коротко, то далеко не всех случаях требуется повышение плотности. Точнее не требуется её повышение неестественными способами. Чтобы пояснить мысль, нужно обратиться к процессам, происходящим в свинцово-кислотной электрохимической системе.

Аккумуляторная батарея состоит из наборов положительных и отрицательных электродов, погруженных в раствор серной кислоты. Чтобы исключить замыкание, электроды помещены в изолирующие конверт-сепараторы. Электрод состоит из решётки и обмазки.

Решётки изготавливаются по различным технологиям из разных сплавов и это тема отдельного разговора. А в качестве обмазки на отрицательных электродах присутствует порошкообразный свинец (Pb), а на положительных – паста диоксида свинца (PbO2). Последний имеет красно-коричневый цвет.



В процессе разряда АКБ на электродах протекают следующие реакции при непосредственном участии электролита.

Положительный электрод (анод)

PbO2 + SO42- + 4H+ + 2e => PbSO4 + 2H2O

Отрицательный электрод (катод)

Pb + SO42- — 2e => PbSO4

Общая реакция в электрохимической системе описывается уравнением

Pb + 2H2SO4 + PbO2 => 2PbSO4 + 2H2O

Как видите, в процессе разряда серная кислота из электролита взаимодействует как с диоксидом свинца на аноде и металлическим свинцом на катоде с образованием сульфата свинца (PbSO4) и воды (H2O). Ток течёт от анода к катоду. В результате реакции постепенно падает плотность электролита. Обычно нижний предел 1,1─1,15 гр/см3. К этому моменту поры обмазки забиваются сульфатом свинца и реакция сходит на нет. Напряжение на выводах к этому моменту падает до 12 вольт и ниже.



При заряде указанные реакции идут в обратном направлении. То есть, сульфат свинца растворяется с расходом воды и образованием Pb, PbO2 и серной кислоты. Концентрация электролита растёт и плотность увеличивается.

К чему все это было сказано? Дело в том, что плотность электролита должна повышаться «естественным путём» в результате зарядки. Если к моменту окончания заряда плотность не достигла 1,27 гр/см3, то причина проблемы не электролит, а система в целом. Конечно, это условии, что зарядное устройство (ЗУ) работает исправно и плотность вы измеряете исправным ареометром.

Итак, в чём причина пониженной плотности к моменту окончания заряда? Это процесс сульфатации, подробнее о котором можно прочитать здесь. Постепенно в процессе эксплуатации часть PbSO4 не растворяется до конца во время зарядки и накапливается на активной массе электродов. Это значит (см. реакции выше), что процессы при зарядке прошли не до конца. Поскольку растворился не весь сульфат свинца, то восстановилась не вся серная кислота и осталось больше воды. Результат – концентрация электролита меньше, как и его плотность.



Отсюда вывод. Чтобы поднять плотность электролита в аккумуляторе, нужно в первую очередь заниматься десульфатацией и максимально полной зарядкой АКБ. Если пониженная плотность вызвана сульфатацией, то не следует повышать её увеличением концентрации электролита. Это только усугубит ситуацию.

Даже если плотность ниже 1,27 гр/см3, все вещества остаются в электрохимической системе. Если вы искусственно увеличиваете плотность электролита, то равновесие нарушается и концентрация PbSO4 будет ещё больше. При разряде из электролита выделится сульфат свинца, который уже точно не растворится при заряде, поскольку теперь он в избытке. А плотность по окончании заряда снова будет ниже нормы. И так далее.



Что делать? Никому не навязываю своё мнение, но, мне кажется замена электролита (или изменение его плотности «вручную») для увеличения плотности уместна в следующих случаях.
  • Перелили воды или она попала туда в результате ЧП. В результате этого снизилась плотность.
  • Нужно повысить плотность электролита для использования в холодном климате.

Я менял электролит в АКБ только один раз из-за непредвиденной ситуации. Заряжал его как-то даче рядом с домом под открытым небом. Зарядил, отключил, но пробки закрывать не стал, чтобы газы вышли он отстоялся немного. Занялся другими делами и забыл про него. Пошёл ливень и все залило с верхом. Пришлось выбирать оттуда старый и заливать новый покупной электролит с нормальной плотностью. Если же просто упала плотность в результате эксплуатации, это не повод увеличивать его концентрацию.



Вернуться к содержанию
 

Как повысить плотность электролита в Pb аккумуляторе?

Итак, вы всё же решили поднять плотность раствора в аккумуляторной батарее. Как это сделать? Вам потребуется электролит (продаётся в автомобильных магазинах с плотностью 1,27─1,29 гр/см3), ёмкость для откачиваемого электролита, резиновая «груша», длинная гибкая трубка из материала стойкого к серной кислоте, пластиковая воронка (удобно заливать электролит обратно в банки), зарядное устройство.


Внимание! Электролит является едким веществом! При попадании на кожу и слизистые вызывает сильный химический ожог! Поэтому при работе обязательно используйте очки для защиты глаз, а также резиновые перчатки для защиты рук. Если будете разводить концентрированную кислоту, помните, что нужно наливать кислоту в воду, а не наоборот. При падании электролита на кожу или слизистые нужно обратиться в больницу.

Процесс выглядит примерно так.

  • Зарядили аккумулятор по максимуму.
  • Выбрали старый электролит. Именно так, выбрали, откачали и т. п. С помощью гибкой трубки из материала, стойкого к кислоте и обычной резиновой «груши». Не допускается переворачивать АКБ для слива. В этом случае осыпавшиеся частицы со дна могут замкнуть пластины. Или электроды деформируются, порвут сепаратор и будет замыкание. В случае замыкания банки аккумулятор можно смело идти сдавать в приёмку.
  • Затем заливаете покупной или самостоятельно приготовленный электролит с плотностью 1,27─1,29 гр/см3.
  • Даёте отстояться немного. При необходимости заряжаете.



Это если нужна полная замена электролита, когда он испорчен. Если же нужно увеличить концентрацию, то можно частично отобрать электролит из банок. Я для этого использую колбу от старого ареометра. Поплавок давно разбился, а колбу я оставил и использую вместо «груши».



Затем в банки заливаете такое же по объёму количество раствора более высокой концентрации. Можно использовать аккумуляторную кислоту (92─94%) плотностью 1,835 гр/см3. После этого можно поставить АКБ на зарядку для выравнивания концентрации. Не нужно трясти и бултыхать батарею для перемешивания. Иначе могут быть те же последствия, что и при переворачивании.
Вернуться к содержанию
 

Опрос

Примите участие в опросе!

 Загрузка …
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Исправления и дополнения к материалу, а также ваше мнение о повышении плотности электролита в свинцово-кислотном аккумуляторе, оставляйте в комментариях ниже. Голосуйте в опросе и оценивайте статью.
Вернуться к содержанию

Как повысить плотность электролита: три главных метода

Плотность – важнейшая характеристика электролита. От ее нахождения в пределах нормы напрямую зависит работоспособность аккумулятора. В прошлой статье мы узнали, в чем главная причина падения уровня плотности, а сейчас поговорим о том, как же все-таки решить эту проблему.

Корректирующая жидкость

Этот метод актуален лишь для обслуживаемых аккумуляторов. В случае необслуживаемых АКБ у водителя нет доступа к внутренней части батареи, поэтому придется искать обходные пути.

Если плотность электролита еще не дошла до критического уровня, ситуацию можно исправить с помощью добавления корректирующего электролита. Этот раствор отличается увеличенной концентрацией основного компонента – серной кислоты. Вам необходимо извлечь из банок излишек электролита с недостаточной плотностью и залить вместо него корректирующий раствор. Сделать это можно с помощью обычной груши, постоянно контролируя плотность электролита ареометром.

Зарядное устройство

Этот способ подойдет для всех видов аккумуляторов. Подключив прибор к АКБ (не забывая о полярности), подключите ваше устройство к сети. Для плавного повышения значения плотности можно выбрать силу тока в 10% от емкости аккумулятора.

Полная замена электролита

Если значение плотности опустилось до критического уровня, то первые два способа не сработают. В этом случае следует полностью заменить электролит, предварительно откачав всю старую жидкость из банок.

Магазин «Центр-АКБ» – одно из лучших мест, где можно купить аккумулятор для авто в Нижнем Новгороде. На нашем официальном сайте вы найдете множество полезных статей и полный каталог продукции. А также сможете проконсультироваться со специалистами по вопросам выбора нового аккумулятора. Именно здесь вы найдете автомобильные аккумуляторы Варта, Bosch, Аком, Mutla и многие другие выдающиеся бренды отечественных и зарубежных производителей.

Телефон для связи: +7 (831) 416-13-13

Мы находимся по адресам:

ул. Березовская, д. 96А

ул. Деловая, д. 7к5

проспект Кирова, 12

ул. Русская улица, 5

Плотность электролита в аккумуляторе зимой: значения, как поднять?

Автомобилю, постоянно находящемуся в использовании, требуется надежный АКБ, который позволит быстро запустить двигатель вне зависимости от внешних факторов. Плотность электролита в аккумуляторе зимой необходимо держать в определенных рамках, чтобы жидкость не замерзла. Данный параметр является основным и оказывает существенное влияние на длительность службы источника питания.

При правильной и своевременной корректировке значений кислотности жидкости можно значительно увеличить срок службы АКБ. Ведь плотность электролита в аккумуляторе зимой и летом должна отличаться, чтобы компенсировать влияние температуры, влажности и других климатических условий на химические процессы.

Что такое плотность электролита и от чего она зависит?

Если говорить простым языком, то плотность — это кислотность жидкости в АКБ. В роли электролита сурьмянистые аккумуляторы используют смесь воды и серной кислоты. Количество последней по отношению к общему объему раствора и называют плотностью. Измеряют ее в граммах на сантиметр кубический (г/см3).

На степень закисленности основное влияние оказывают факторы, способные изменить количество воды в растворе: мороз, жара, влажность. Также на нее влияет степень заряда аккумуляторной батареи. Измерение показателей производятся специальным прибором — ареометром. Процедуру необходимо проводить с полностью заряженным аккумулятором. Особенно это важно делать перед зимой, чтобы выявить проблему заранее и уменьшить риск порчи АКБ, вследствие замерзания воды в ней. Если были выявлены низкие значение, то, скорее всего, проблема кроется в одной из следующих причин:

  • дефект ячейки;
  • обрыв внутренней цепи батарей;
  • глубокий разряд АКБ или одной из его секций.

Почему замерзает аккумулятор?

Все дело в плотности: чем она меньше (воды в растворе больше), тем быстрее замерзнет электролит при понижении температуры. Умеренный климат требует, чтобы этот параметр был в пределах 1,25-1,27 г/см3. Зимой и в северных регионах рекомендуемая плотность увеличивается на 0,01 г/см3.

Многих автолюбителей интересует: «При какой температуре замерзает электролит в аккумуляторе?». Получить ответ на этот вопрос поможет следующая таблица:

 

Плотность электролита при 25°C, г/см³ Температура замерзания, °С Плотность электролита при 25°C, г/см³ Температура замерзания, °С
1,09 -7 1,22 -40
1,1 -8 1,23 -42
1,11 -9 1,24 -50
1,12 -10 1,25 -54
1,13 -12 1,26 -58
1,14 -14 1,27 -68
1,15 -16 1,28 -74
1,16 -18 1,29 -68
1,17 -20 1,3 -66
1,18 -22 1,31 -64
1,19 -25 1,32 -57
1,2 -28 1,33 -54
1,21 -34 1,4 -37

Таблица 1. Плотность электролита в аккумуляторе автомобиля зимой.

Как повысить плотность если она низкая?

Поднимать эту характеристику приходится после неоднократного корректирования уровня жидкости в АКБ дистиллированной водой или в случае нехватки параметра для эксплуатации батареи в зимой. Явным признаком недостаточной концентрации серной кислоты является оледенение ячеек. Что делать если замерз электролит в аккумуляторе? Потребуется отогреть АКБ при комнатной температуре, после чего поставить на зарядку.

Внимание! Замерять плотность нужно только в полностью заряженной аккумуляторной батарее.

Помимо правильно проведенной полной зарядки существует еще такие способы поднятия плотности, как добавление концентрированного (корректирующего) электролита или кислоты.

Для корректировки понадобится:

  • ареометр;
  • мерная емкость;
  • посуда для приготовления смеси;
  • спринцовка;
  • серная кислота или корректирующий электролит;
  • дистиллированная вода.

Процедура проводится следующим образом:

  1. Из ячеек батареи отбирается немного кислотного раствора и измеряются показатели кислотности.
  2. Если надо увеличить плотность — доливается столько же корректирующего электролита, если уменьшить —добавляется дистиллированная вода.
  3. После проведения процедуры со всеми ячейками АКБ ставится на зарядку стационарным устройством для смешивания жидкости.
  4. По окончании зарядки надо подождать не меньше часа, чтобы плотность во всех секциях батареи выровнялась.
  5. Проводится проверка показателей и в случае необходимости процедура повторяется с уменьшением шага разбавления вдвое.

Плотность между ячейками не должна отличаться сильнее, чем на 0,01 г/см3. Если добиться этого не вышло — необходимо провести выравнивающую зарядку малым током.

Что делать, когда плотность ниже 1,18 г/см

3

Чтобы зимой не замерзла вода в аккумуляторе нужно не допускать снижения плотности электролита. Если это значение преодолело критический минимум в 1,18 г/см3, то требуется добавление кислоты. Сама процедура проводится в том же порядке, что был описан ранее, только количество отбираемой и добавляемой жидкости необходимо сократить, чтобы не превысить значение первым доливом.

Важно! При изготовлении электролита нужно вливать кислоту в воду, и ни в коем случае не наоборот.

Что делать если электролит в аккумуляторе замерз, а после отогрева приобрел багровый цвет? К сожалению, такая батарея уже не сможет нормально работать зимой при температуре ниже 5°C. Скорее всего у такого АКБ осыпалась активная масса, что уменьшило рабочую поверхность пластин. Восстановить нормальные показатели у такого АКБ невозможно.

Поддержание количества электролита и его плотности на должном уровне существенно продлевает срок службы батареи, а также ее способность сопротивляться морозу и безпроблемно запускать двигатель автомобиля.

Как в аккумуляторе ПОДНЯТЬ ПЛОТНОСТЬ электролита самостоятельно❓

Поднять плотность в аккумуляторе в домашних условиях можно несколькими способами: полностью заменить старый электролит на новый либо восполнить заряд АКБ. Обе манипуляции следует проводить в хорошо проветриваемых помещениях с соблюдением техники безопасности. После завершения процедуры нужно откорректировать объем рабочего раствора, а затем произвести замер параметра плотности ареометром.

Почему падает плотность электролита?

Основные причины, по которым может упасть показатель уровня электролита в банках автомобильной аккумуляторной батареи (АКБ):

  1. Разряд устройства. Как правило, разряжение в аккумуляторе автомобиля происходит в холодное время года, поэтому зимой используют специальные методы, позволяющие восстановить и поднимать уровень заряда. Проблема может проявляться в автомобильном аккумуляторе, который близок к естественному износу. При быстром разряде можно сделать вывод о падении пропорции рабочего раствора до критически низкого уровня. Проблема разряжения может быть связана с механическим повреждением устройства или неисправностью генераторной установки, в результате чего электросеть автомобиля питается от АКБ.
  2. Выкипание рабочей жидкости в результате перезарядки аккумулятора. Если на устройство поступает постоянное напряжение, это приводит к разделению воды на кислород и водород. В результате при зарядке жидкость выкипает и уровень электролита снижается.
  3. Постоянное добавление дистиллированной воды вместо химического раствора. Если долить жидкость единожды, то уровень плотности АКБ в машине упасть не должен, но постоянные доливания будут этому способствовать.

Как подготовить аккумулятор к восстановлению?

Перед тем, как восстановить на обслуживаемом аккумуляторе плотность электролита, необходимо выполнить ряд действий:

  1. Производится демонтаж батареи с авто, для этого предварительно ослабляются клеммные зажимы устройства.
  2. При наличии защиты выполняется ее снятие. Для этого потребуется гаечный ключ соответствующего размера.
  3. С помощью отвертки или другого приспособления с плоским наконечником производится откручивание пробок на банках. Рекомендуется использовать защитные очки и перчатки, чтобы не допустить появления ожогов.
  4. Пользователь выполняет диагностику объема рабочей жидкости в устройстве. Для легковых транспортных средств данный параметр должен составить около 1,5 сантиметров выше пластин. Диагностика плотности электролита должна производиться через 3 часа после подзарядки устройства либо примерно через 10 ч после остановки двигателя. Если уровень жидкости соответствует норме, то ареометр опускается в банки и с помощью груши производится набор небольшого объема воды.
  5. В зависимости от температуры воздуха производится оценка полученных параметров. Проверка выполняется для каждой банки отдельно. В идеале данный показатель должен составить в диапазоне от 1.25 до 1.29 г/см3.

При подготовке аккумуляторной батареи необходимо учитывать следующие нюансы:

  1. Перед открытием банок пользователю нужно произвести очистку корпуса устройства от загрязнений чистой ветошью. Это нужно сделать для того, чтобы при откручивании пробок грязь не попала внутрь батареи. В противном случае возможен полный выход устройства из строя.
  2. Если диагностика будет выполняться без демонтажа батареи, то нужно убедиться в ее качественной посадке. Устройство не должно болтаться.
  3. При подготовке аккумуляторную батарею нельзя переворачивать, поскольку это может привести к разрушению пластин, расположенных внутри. В результате АКБ полностью выйдет из строя без возможности восстановления.

Видео: руководство по использованию ареометра

Канал «Аккумуляторщик» в своем видеоролике подробно описал процесс подготовки аккумулятора и рассказал об использовании ареометра.

Как самостоятельно увеличить плотность электролита?

Для правильного проведения процедуры необходимо учитывать следующие нюансы:

  1. При приготовлении нового рабочего раствора в дистиллированную воду добавляется кислота, а не наоборот. В противном случае начнется кипение жидкости.
  2. Пользователю понадобятся точные расчеты нужного объема кислоты, так как в процессе заряда уровень плотности электролита увеличивается.

Важно знать

На новом аккумуляторе самостоятельно поднимать плотность электролита не рекомендуется, поскольку это приведет к более быстрому разряду устройства. Повышенный рабочий параметр негативно повлияет на функциональность батареи.

Приступать к процедуре необходимо с соблюдением техники безопасности, так как электролит – это ничто иное, как кислотный раствор, поэтому:

  • наденьте резиновые перчатки;
  • максимально обезопасьте себя от попадания электролита на одежду и тем более кожу;
  • используйте защитные очки и респиратор.

Что понадобится?

Чтобы правильно повысить плотность аккумуляторной батареи перед зимним периодом, нужно подготовить следующие материалы и инструменты:

  • ареометр;
  • мерный стакан или другая аналогичная емкость;
  • отдельная емкость для разведения нового рабочего раствора;
  • клизма-груша;
  • корректирующий раствор либо кислота;
  • дистиллированная вода.

Пошаговая инструкция по повышению плотности электролита добавлением жидкости

Правильный способ для увеличения параметра плотности электролита батареи:

  1. Перед тем, как в аккумуляторе поднять плотность, производится снятие аккумуляторной батареи с автомобиля. Для этого отключаются клеммные зажимы и производится демонтаж фиксирующей пластины. Действия по выполнению задачи осуществляются с применением гаечного ключа.
  2. С банки аккумуляторной батареи отбирается небольшой объем рабочего раствора. Для этого используется ареометр.
  3. Вместо изъятого объема жидкости в банку добавляется корректирующий раствор вещества при необходимости увеличения плотности. В случае, если требуется понизить этот параметр, используется дистиллированная вода с плотностью 1,00 г/см3.
  4. Затем аккумулятор ставится на подзарядку. На протяжении последующих 30 минут производится подзарядка устройства номинальным током. Такие действия позволят залитому корректирующему раствору смешаться с рабочей жидкостью.
  5. Аккумуляторная батарея отключается от зарядного прибора на один-два часа. Это позволит плотности в банках «выровняться» и снизиться уровню температуры. Также за два часа из банок выйдут все пузырьки, благодаря чему исключается вероятность погрешности при контрольном замере.
  6. Повторно производится диагностика уровня плотности электролита, при необходимости процедура повторяется заново. Также при необходимости в банки добавляется жидкость для увеличения или уменьшения параметра, а затем заново производится замер.

Важно знать

Надо учитывать, что разница параметра плотности между банками должна составить не более 0,01 г/см3. Если при выполнении задачи не удалось достигнуть такого результата, то требуется выполнить дополнительную, «выравнивающую» зарядку на протяжении 1-2 часов. При этом параметр тока должен составить в 2-3 раза меньше номинального.

Формула расчета количества жидкости для корректировки плотности электролита

где:

  • Vэ — объём удаляемого из банки электролита, см3;
  • Vб — объём электролита в одной банке, см3;
  • ρн — начальная плотность электролита до корректировки, г/см3;
  • ρк — конечная плотность, которую надо получить, г/см3;
  • ρд — плотность доливаемой жидкости, (вода — 1,00 г/см3 или корректирующий электролит — * г/см3).

Важно знать

При использовании данной формулы объёмы удаляемого и добавляемого электролитов равны.

Таблица: корректировка плотности в АКБ
Плотность электролита в батарее, г/см3 Уровень плотности по стандарту, г/см3
1,24 1,25 1,26
Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята
1,24 60 62 120 125
1,25 44 45 65 70
1,26 85 88 39 40
1,27 122 126 78 80 40 43
1,28 156 162 117 120 80 86
1,29 190 200 158 162 123 127
1,30
Плотность электролита в батарее, г/см3 Уровень плотности по стандарту, г/см3
1,27 1,29 1,31
Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята Отсос рабочей жидкости Добавление раствора 1,40 г/см3 Добавление дистиллята
1,24 173 175 252 256
1,25 118 120 215 220
1,26 65 66 177 180 290 294
1,27 122 126 246 250
1,28 40 43 63 65 198 202
1,29 75 78 143 146
1,30 109 113 36 38 79 81

Как поднять зарядным устройством?

Для повышения плотности зарядным оборудованием выполняются следующие действия:

  1. Аккумуляторная батарея доводится до полной зарядки. Предварительно нужно снять устройство с автомобиля и подключиться к оборудованию, которое будет заряжать АКБ, с соблюдением полярности. Сначала выполняется соединение с прибором, а затем его подключение к сети.
  2. В процессе восстановления заряда пользователю нужно следить за состоянием электролита. После того, как жидкость начала кипеть, необходимо снизить параметр силы тока до 1-2 ампер. При кипении воды происходит ее испарение, это приводит к тому, что плотность концентрации электролита начинает повышаться.
  3. Время испарения жидкости определяется конкретной ситуацией, в некоторых случаях на это может потребоваться более 24 часов.
  4. После снижения уровня воды в банках производится добавление электролита и замер плотности.
  5. При необходимости производится повторение данной операции.

Руководство по повышению плотности в необслуживаемом аккумуляторе

Действия по повышению плотности выполняются аналогичные, разница заключается в получении доступа к рабочей жидкости:

  1. В необслуживаемых устройствах корпус полностью закрыт, поэтому пользователю надо демонтировать батарею и снять с нее наклейку. Крышку аккумулятора снимать не нужно, поскольку установить ее обратно будет сложно.
  2. Нужно сделать отверстие в крышке, используя шило или дрель. Оно должно быть небольшим, поскольку придется впоследствии его запаивать.
  3. Используя одноразовый шприц в АКБ добавляется дистиллят или корректирующий электролит в зависимости от того, что нужно сделать с рабочим параметром. Следует добавлять по 5 мл жидкости. Рекомендуется использовать банку батареи, в которой расположен индикатор плотности. Если индикатор стал черного либо зеленого цвета, то в аккумулятор нужно добавить еще 20 мл жидкости.
  4. Для определения уровня рабочего раствора игла опускается в банку, а шток подтягивается в обратном направлении. Затягивая рабочий раствор в шприц, рекомендуется отмечать уровень с помощью маркера. Если в батарее применяется пластик светлого оттенка, то уровень жидкости можно определить на просвет или замерить с помощью линейки. Остальные банки доливаются до уровня, который должен составить на 1,5-2 см выше поверхности пластин.
  5. После выполнения задачи отверстия нужно заделать герметиком либо специальными резиновыми пробками. Затем аккумулятор следует осторожно потрясти, чтобы перемешать электролит. Но действовать надо аккуратно, чтобы не повредить пластины.

Как увеличить плотность, если она ниже 1,18

Если рабочее значение плотности составил менее 1,18 г/см3, описанные способы не позволят решить проблему и пользователю потребуется полностью сливать кислоту из банок.

Алгоритм действий при этом будет такой:

  1. Электролит откачивается из аккумуляторной батареи, насколько это возможно (для откачки можно использовать грушу с клизмой).
  2. Аккумулятор осторожно переворачивается без резких движений. Это позволит предотвратить возможное осыпание пластин. В дне устройства надо просверлить отверстия в каждой банке с помощью дрели. Эти действия рекомендуется выполнять в емкости, к примеру, миске или тазике.
  3. Затем аккумулятор устанавливается в вертикальное положение и из него сливаются остатки рабочего раствора.
  4. Производится промывка батареи с помощью дистиллята.
  5. Отверстия в дне аккумулятора запаиваются, на этом этапе важно убедиться в герметичности устройства, чтобы не допустить дальнейшей утечки жидкости. Производится заливка нового раствора в батарею.

Важно знать

Пластик для запаивания отверстия в аккумуляторе должен быть максимально устойчивым к воздействию серной кислоты. Кроме того, если цвет электролита коричневый или черный, восстанавливать батарею не имеет смысла. Темный оттенок свидетельствует об осыпании пластин или о разрушении батареи.

Видео: самостоятельное увеличение плотности электролита

Канал «Denis МЕХАНИК» в своем видеоролике подробно изложил процесс зарядки аккумуляторной батареи и добавления электролита, а также увеличения его плотности.

Как увеличить плотность электролита в АКБ? — 130.com.ua

Практически все автовладельцы не обращают внимания на аккумулятор до первых проблем. Именно наша безответственность быстро приводит к моментам поломки, когда машина уже просто отказывается заводиться. Самая частая причина — разрядка аккумулятора.

Кстати, даже новый аккумулятор может помешать вашей поездке. Есть доля вероятности купить не совсем качественный аппарат. Что под этим подразумевается? Чаще всего: не полностью заряженный аккумулятор или недостаток электролита.Такие нюансы не проверяйте во время покупок.

Основные способы

Как только аккумулятор отказывается работать, ставим на зарядку. Но что мы видим: цикл зарядки прошел, а батарея все еще разряжена. Возникла новая проблема-аккумулятор просто не держит заряд. Здесь нужно выяснить причины, по которым это происходит.

Чаще всего это происходит с батареями, которые были посажены на 0. Здесь появляется новая задача — проверить на сколько разряжена батарея.Сначала проверьте плотность электролита с помощью специального прибора — кислотометра.

Делаем так:

  • Установите измеритель кислоты в любой аккумуляторный блок.
  • Шкала ареометра покажет плотность электролита.
  • Сравните полученные значения с табличными параметрами плотности.

Если вы живете в регионе с суровым климатом, то значение будет примерно 1,25 кг / литр. Здесь имейте в виду, что разница в плотности между двумя банками не должна быть больше 0.01.

Как поднять плотность?

Способ решения этой проблемы зависит от того, какие значения вы получите.

Плотность 1,18-1,20 кг / литр

Грушей откачиваем старый электролит: максимально. Наполните новый наполовину откачанным вами объемом. Условно, например: закачивают 1 кг., Наливают 0,5 кг. Здесь нам нужно добиться нормы плотности электролита, а остальное долить дистиллированной водой.

Плотность менее 1.18 кг / литр

В этом случае нужно использовать аккумуляторную кислоту. Делаем все так же, как и в первом случае, но вполне вероятно, что процедуру придется повторить. Ваша главная задача остается прежней — получить значение нормы.

Плотность очень низкая

К сожалению, здесь придется полностью менять электролит для экономии аккумулятора. С помощью груши нужно будет максимально откачать старый электролит, а банки закрыть пробками.И дальше этого плана придерживаются:

  • После закручивания заглушек положить аккумулятор на бок. Берем сверло 3 мм. или 3,5 мм. и проделайте одно отверстие на дне банки. Итак, мы можем полностью слить электролит.
  • Промойте все банки дистиллированной водой. Отверстия закрыты кислотостойким пластиком. Итак, мы сделали все необходимое, чтобы подготовить емкость для нового электролита.
  • Приготовьте электролит самостоятельно. Возьмите дистиллированную воду и налейте в нее аккумуляторную кислоту.Обратите внимание, обратный порядок недопустим, то есть в кислоту нельзя наливать воду. Не забудьте надеть резиновые перчатки.

В результате вы должны получить значения электролита, необходимые для вашего региона. Если по каким-то причинам не удалось увеличить плотность электролита, придется выбрать новый аккумулятор. Купить аккумулятор с доставкой по Украине в Харьков, Киев, Одессу можно на 130.com.ua.

Материалы по теме

Достижение высокой плотности энергии за счет увеличения выходного напряжения: полностью обратимый 5.Батарея 3 В

Особенности

Стабильные электролиты 5,5 В позволяют использовать литий-металлическую батарею 5,3 В и литий-ионную батарею 5,2 В

Изучить механизм лития-делитирования 5,3 В LiCoMnO 4 катоды

Выявить корреляцию между электролитами и CEI или SEI на электродах

Большая картина

Сегодня более высокая плотность энергии перезаряжаемой батареи становится все более желательной из-за растущих требований со стороны ближайшие электромобили.Современные литий-ионные батареи, основанные на химии интеркаляционного катода, оставляют относительно мало места для дальнейшего повышения плотности энергии, поскольку удельная емкость этих катодов приближается к теоретическим уровням. Увеличение выходного напряжения элемента — это возможное направление значительного увеличения плотности энергии батарей. Обширные исследования были посвящены изучению элементов питания> 5,0 В, но были достигнуты лишь ограниченные успехи из-за узкого окна электрохимической стабильности традиционных электролитов (<5.0 В). Здесь мы разрабатываем электролит 5,5 В (1 M LiPF 6 в FEC / FDEC / HFE с добавкой LiDFOB), который позволяет катодам LiCoMnO 4 5,3 В обеспечивать плотность энергии 720 Вт · ч кг -1 для 1000 циклов. и 5,2 В графита || LiCoMnO 4 полных элементов для обеспечения плотности энергии 480 Вт · ч · кг -1 на 100 циклов.

Резюме

Плотность энергии нынешних литий-ионных аккумуляторов ограничена низкой емкостью интеркаляционного катода, что оставляет относительно мало возможностей для дальнейшего улучшения, поскольку удельная емкость этих катодов приближается к теоретическим уровням.Увеличение выходного напряжения элемента — это возможное направление значительного увеличения плотности энергии батарей. Обширные исследования были посвящены изучению элементов питания> 5,0 В, но были достигнуты лишь ограниченные успехи из-за узкого окна электрохимической стабильности электролитов (<5,0 В). Здесь мы сообщаем о 5,5 В электролите (1 M LiPF 6 в фторэтиленкарбонате, бис (2,2,2-трифторэтил) карбонате и гидрофторэфире [FEC / FDEC / HFE] с дифтор (оксалат) боратом Li [LiDFOB ] аддитив), что позволяет 5.3 В LiCoMnO 4 катодов для обеспечения плотности энергии 720 Втч кг -1 на 1000 циклов и графита 5,2 В || LiCoMnO 4 полных элементов для обеспечения плотности энергии 480 Втч кг -1 на 100 циклы. Электролиты на 5,5 В представляют собой большой шаг в развитии литиевых батарей высокой энергии.

Цели устойчивого развития ООН

ЦУР 7: Доступная и чистая энергия

Ключевые слова

высокое напряжение

Литий-металлический аккумулятор

Литий-ионный аккумулятор

высокая плотность энергии

Литий-металлический анод

стабильный электролит

стабильный электролит Рекомендуемые статьиЦитирующие статьи (0)

© 2019 Elsevier Inc.

Рекомендуемые статьи

Цитирующие статьи

Оптимизация максимальной удельной энергии литий-ионной батареи с использованием метода поверхности с прогрессивным квадратичным откликом и дизайна экспериментов

Благодаря высокой теоретической плотности энергии и длительному сроку службы литий-ионные батареи ( LIB) широко используются в качестве аккумуляторных батарей. Спрос на LIB большой мощности и большой емкости резко вырос из-за растущего спроса на электромобили и устройства хранения энергии 1,2,3 .Чтобы удовлетворить эту тенденцию, необходимо повысить плотность энергии LIB. Для этого исследуются и разрабатываются новые электродные материалы. Однако разработка новых электродных материалов требует значительного времени и усилий; поэтому многие исследователи в настоящее время проводят исследования по этому же вопросу.

Таким образом, одним из способов снижения затрат на исследования и разработки является оптимизация конструктивных параметров существующих электродных материалов, таких как пористость и толщина, для увеличения мощности и емкости LIB 4,5,6,7,8,9 , 10,11,12,13,14,15 .Крайне важно оптимизировать переменные конструкции для достижения целевой производительности, потому что мощность и емкость имеют компромиссное соотношение. Однако взаимосвязь между конструктивными параметрами и характеристиками литий-ионных батарей очень нелинейна; поэтому их сложно сконструировать экспериментально. Чтобы преодолеть эти трудности, оптимизация с использованием численных моделей, учитывающих электрохимические реакции, является эффективным методом. Недавние исследования были проведены с целью оптимизации переменных конструкции элементов с использованием численных моделей для разработки батарей большой мощности / большой емкости 4 .

Ранее Ньюман провел параметрическое исследование с использованием графика Рагона, чтобы максимизировать удельную плотность энергии батареи 5,6,7,8,9,10,11 . График Рагона — это простой график, который показывает взаимосвязь между удельной энергией и удельной мощностью клетки. Дойл и др. разработал электрохимическую модель для прогнозирования характеристик заряда и разряда батареи с использованием теории пористого электрода и теории концентрированного раствора. Это послужило основой для последующих исследований по оптимизации LIB 5 .В ходе параметрического исследования Дойл и Ньюман сравнили удельную плотность энергии ячеек, состоящих из электродов разной толщины, пористости и электролитов, и предложили оптимизированный элемент, используя график Рагона 6,7,8 . Сринивасан и Ньюман оптимизировали пористость и толщину положительного электрода для различных скоростей углерода, сохранив при этом соотношение емкостей двух электродов, толщину и пористость сепаратора, а также пористость отрицательного электрода 9 .Christensen et al. оптимизировали толщину и пористость отрицательных электродов из титаната лития (LTO) для электромобилей и использовали график Рагона для прогнозирования энергетических характеристик 10 . Стюарт и др. улучшен график Рагона с учетом импульсных характеристик гибридного электромобиля (HEV) и оптимизировано удельное отношение мощности к энергии аккумуляторного элемента HEV 11 . Appiah et al. оптимизировали толщину и пористость LiNi 0,6 Co 0,2 Mn 0.2 O 2 катода посредством параметрического исследования с использованием графика Рагона 12 . Однако получение оптимальных переменных с использованием графика Рагона и параметрического исследования может быть дорогостоящим в вычислительном отношении; поэтому необходимы исследования с использованием методов численной оптимизации.

Например, Xue et al. отобрали 12 проектных переменных, включая пористость электрода, коэффициент диффузии и различные коэффициенты углерода, и рассчитали градиент с помощью метода комплексной ступенчатой ​​аппроксимации. Затем они оптимизировали удельную плотность энергии, используя методы последовательного квадратичного программирования 13 .Golmon et al. разработала многомасштабную модель батареи, которая дополнительно учитывала микромасштаб, использовала сопутствующий анализ чувствительности для расчета градиента и оптимизировала емкость батареи 14 . Чанхонг Лю и Линь Лю оптимизировали потерю емкости аккумулятора с помощью алгоритма на основе градиента, называемого поиском нескольких начальных точек, и улучшили потерю емкости аккумулятора на 22%. 15 . Однако оптимизация на основе градиента — сложный процесс, требующий различных этапов вычислений и времени.Кроме того, он чувствителен к числовому шуму, и результаты оптимизации сходятся к локальному оптимуму 16 .

Чтобы избежать недостатков оптимизации на основе градиента, исследователи изучили множество алгоритмов, не требующих вычисления градиента 17,18,19 . Среди них метод поверхности прогрессивного квадратичного отклика (PQRSM) является одним из методов последовательной приближенной оптимизации (SAO), который может быть эффективно применен к нелинейным задачам без вычислений градиента 20 .Кроме того, PQRSM применяет алгоритм доверительной области, который гарантирует слабую глобальную сходимость и имеет низкую вероятность сходимости по локальному оптимуму 21,22,23 . Кроме того, в отличие от параметрического исследования с использованием графика Рагона, которое требует сотен симуляций для анализа одной ячейки, PQRSM требует меньше вычислений для получения оптимальных результатов. Для этих преимуществ PQRSM использовался в различных областях техники; однако он никогда не применялся для оптимизации LIB 24,25 .

В этом исследовании оптимизация максимальной удельной плотности энергии ячейки LIB выполняется с использованием плана экспериментов, PQRSM и электрохимической модели LIB, которая используется для расчета удельной плотности энергии и удельной плотности мощности. Во-первых, был проведен план экспериментов (DOE) для анализа чувствительности восьми факторов конструкции ячейки, включая толщину анода, толщину катода, толщину сепаратора, пористость анода, пористость катода, пористость сепаратора, размер частиц анода и размер частиц катода.Расчетные факторы, чувствительные к удельной плотности энергии и удельной плотности мощности, были выбраны в качестве проектных переменных посредством анализа чувствительности DOE. PQRSM, который гарантирует слабую глобальную сходимость и не требует вычисления градиента, использовался в качестве алгоритма оптимизации для максимизации удельной плотности энергии LIB. После оптимизации различия в удельной плотности энергии и удельной плотности мощности исходной и оптимизированной ячейки сравнивались с помощью разряда постоянного тока.Это подтвердило превосходство оптимизированного результата дизайна.

Замена обычных добавок к электролиту для аккумуляторов производными диоксолона для литий-ионных аккумуляторов с высокой плотностью энергии

  • 1.

    Гуденаф, Дж. Б. и Ким, Ю. Проблемы перезаряжаемых литиевых аккумуляторов. Chem. Матер. 22 , 587–603 (2010).

    CAS Статья Google Scholar

  • 2.

    Тараскон, Дж. М. и Арман, М.Проблемы и проблемы, с которыми сталкиваются перезаряжаемые литиевые батареи. Nature 414 , 359–367 (2001).

    ADS CAS PubMed Статья Google Scholar

  • 3.

    Арико, А. С., Брюс, П., Скросати, Б., Тараскон, Дж. М. и ван Шалквейк, В. Наноструктурированные материалы для передовых устройств преобразования и хранения энергии. Nat. Матер. 4 , 366–377 (2005).

    ADS PubMed Статья CAS Google Scholar

  • 4.

    Лю К., Ли, Ф., Ма, Л. П. и Ченг, Х. М. Современные материалы для хранения энергии. Adv. Матер. 22 , E28 – E62 (2010).

    CAS PubMed Статья Google Scholar

  • 5.

    Чае, С., Чой, С. Х., Ким, Н., Сунг, Дж. И Чо, Дж. Интеграция графитовых и кремниевых анодов для коммерциализации высокоэнергетических литий-ионных аккумуляторов. Angew. Chem. Int. Эд. 58 , 2–28 (2019).

    Артикул CAS Google Scholar

  • 6.

    Liu, W. et al. Насыщенный никелем слоистый оксид переходного металла лития для высокоэнергетических литий-ионных батарей. Angew. Chem. Int. Эд. 54 , 4440–4457 (2015).

    CAS Статья Google Scholar

  • 7.

    Мантирам, А., Найт, Дж. К., Мён, С. Т., О, С. М. и Сан, Ю. К. Катоды из слоистого оксида с высоким содержанием никеля и лития: прогресс и перспективы. Adv. Energy Mater. 6 , 1501010 (2016).

    Артикул CAS Google Scholar

  • 8.

    Касаваджула, У., Ван, К. и Эпплби, А. Дж. Вставные аноды на основе нано- и кремния в массе для литий-ионных вторичных элементов. J. Источники энергии 163 , 1003–1039 (2007).

    ADS CAS Статья Google Scholar

  • 9.

    МакДауэлл, М.Т., Ли, С. В., Никс, В. Д. и Цуй, Ю. Статья в честь 25-летия: понимание литиирования кремния и других легирующих анодов для литий-ионных аккумуляторов. Adv. Матер. 25 , 4966–4985 (2013).

    CAS PubMed Статья Google Scholar

  • 10.

    Чен, З., Шеврие, В., Кристенсен, Л. и Дан, Дж. Р. Разработка электродов из аморфного сплава для литий-ионных аккумуляторов. Электрохим. Solid State Lett. 7 , A310 – A314 (2004).

    CAS Статья Google Scholar

  • 11.

    Choi, N.-S. и другие. Влияние добавки фторэтиленкарбоната на межфазные свойства кремниевого тонкопленочного электрода. J. Источники энергии 161 , 1254–1259 (2006).

    ADS CAS Статья Google Scholar

  • 12.

    Шобукава, Х., Альварадо, Дж., Янг, Ю. и Мэн, Ю.С. Электрохимические характеристики и межфазные исследования кремниевого композитного анода для литий-ионных аккумуляторов в полном элементе. J. Источники энергии 359 , 173–181 (2017).

    ADS CAS Статья Google Scholar

  • 13.

    Zhao, H. et al. Пленкообразующие добавки к электролиту для литий-ионных аккумуляторов: прогресс и перспективы. J. Mater. Chem. А 7 , 8700–8722 (2019).

    CAS Статья Google Scholar

  • 14.

    Xu, G. et al. Назначение функциональных добавок для устранения плохих характеристик высоковольтных (класс 5 В) литий-ионных аккумуляторов LiNi0,5 Mn1,5 O4 / MCMB. Adv. Energy Mater. 8 , 1701398 (2018).

    Артикул CAS Google Scholar

  • 15.

    Han, J. G. et al. Несимметричный фторированный малонатоборат как амфотерная добавка для литий-ионных аккумуляторов с высокой плотностью энергии. Energy Environ. Sci. 11 , 1552–1562 (2018).

    CAS Статья Google Scholar

  • 16.

    Haregewoin, A. M., Wotango, A. S. и Hwang, B. J. Электролитные добавки для электродов литий-ионных аккумуляторов: прогресс и перспективы. Energy Environ. Sci. 9 , 1955–1988 (2016).

    CAS Статья Google Scholar

  • 17.

    Чой, Н.-С. и другие. Проблемы, с которыми сталкиваются литиевые батареи и электрические двухслойные конденсаторы. Angew. Chem. Int. Эд. 51 , 9994–10024 (2012).

    CAS Статья Google Scholar

  • 18.

    Jo, H. et al. Стабилизация межфазного слоя твердого электролита и циклическая характеристика кремний-графитового анода батареи с помощью бинарной добавки фторированных карбонатов. J. Phys. Chem. С 120 , 22466–22475 (2016).

    CAS Статья Google Scholar

  • 19.

    Nguyen, C.C. и Lucht, B.L. Улучшенные характеристики циклирования анодов из наночастиц Si за счет введения метиленэтиленкарбоната. Электрохим. Commun. 66 , 71–74 (2016).

    CAS Статья Google Scholar

  • 20.

    Чен, Л., Ван, К., Се, X. и Се, Дж. Влияние виниленкарбоната (ВК) в качестве добавки к электролиту на электрохимические характеристики кремниевого пленочного анода для литий-ионных аккумуляторов. J. Источники энергии 174 , 538–543 (2007).

    ADS CAS Статья Google Scholar

  • 21.

    Далави, С., Гудуру, П. и Лучт, Б. Л. Добавки к электролиту, улучшающие характеристики литий-ионных батарей с кремниевыми анодами. J. Electrochem. Soc. 159 , A642 – A646 (2012).

    CAS Статья Google Scholar

  • 22.

    Etacheri, V. et al. Влияние фторэтиленкарбоната (FEC) на характеристики и химию поверхности анодов литий-ионных аккумуляторов с Si-нанопроволокой. Langmuir 28 , 965–976 (2012).

    CAS PubMed Статья Google Scholar

  • 23.

    Xu, C. et al. Улучшенные характеристики кремниевого анода для литий-ионных аккумуляторов: понимание механизма модификации поверхности фторэтиленкарбоната как эффективной добавки к электролиту. Chem. Матер. 27 , 2591–2599 (2015).

    CAS Статья Google Scholar

  • 24.

    Jaumann, T. et al. Срок службы и производительность: понимание роли FEC и VC в литий-ионных батареях высокой энергии с нанокремниевыми анодами. Energy Storage Mater. 6 , 26–35 (2017).

    Артикул Google Scholar

  • 25.

    Ким, К.и другие. Понимание термической нестабильности фторэтиленкарбоната в электролитах на основе LiPF6 для литий-ионных аккумуляторов. Электрохим. Acta 225 , 358–368 (2017).

    CAS Статья Google Scholar

  • 26.

    Schiele, A. et al. Критическая роль фторэтиленкарбоната в газовыделении кремниевых анодов для литий-ионных аккумуляторов. ACS Energy Lett. 2 , 2228–2233 (2017).

    CAS Статья Google Scholar

  • 27.

    Schwenke, K.U., Solchenbach, S., Demeaux, J., Lucht, B.L. и Gasteiger, H.A. Воздействие CO 2 возникло из VC и FEC во время образования графитовых анодов в литий-ионных батареях. J. Electrochem. Soc. 166 , A2035 – A2047 (2019).

    CAS Статья Google Scholar

  • 28.

    Aurbach, D. et al. Об использовании виниленкарбоната (ВК) в качестве добавки к растворам электролитов для литий-ионных аккумуляторов. Электрохим. Acta 47 , 1423–1439 (2002).

    CAS Статья Google Scholar

  • 29.

    Buqa, H. et al. Формирование пленки SEI на высококристаллических графитовых материалах в литий-ионных батареях. J. Источники энергии 153 , 385–390 (2006).

    ADS CAS Статья Google Scholar

  • 30.

    Michan, A. L. et al. Восстановление фторэтиленкарбоната и виниленкарбоната: понимание добавок к электролиту литий-ионных аккумуляторов и межфазного образования твердого электролита. Chem. Матер. 28 , 8149–8159 (2016).

    CAS Статья Google Scholar

  • 31.

    Ushirogata, K., Sodeyama, K., Okuno, Y. & Tateyama, Y. Аддитивный эффект на восстановительное разложение и связывание растворителя на основе карбоната с образованием межфазной фазы твердого электролита в литий-ионной батарее. J. Am. Chem. Soc. 135 , 11967–11974 (2013).

    CAS PubMed Статья Google Scholar

  • 32.

    Ота, Х., Саката, Ю., Иноуэ, А., Ямагути, С. Анализ слоев SEI, полученных из виниленкарбоната, на графитовом аноде. J. Electrochem. Soc. 151 , A1659 – A1669 (2004).

    CAS Статья Google Scholar

  • 33.

    Wang, Y., Nakamura, S., Tasaki, K. & Balbuena, P. B. Теоретические исследования для понимания химии поверхности угольных анодов для литий-ионных батарей: как виниленкарбонат играет свою роль в качестве добавки к электролиту? J. Am. Chem. Soc. 124 , 4408–4421 (2002).

    CAS PubMed Статья Google Scholar

  • 34.

    Herstedt, M., Andersson, A. M., Rensmo, H., Siegbahn, H., Edström, K.Характеристика SEI, образованного на природном графите в электролитах на основе ПК. Электрохим. Acta 49 , 4939–4947 (2004).

    CAS Статья Google Scholar

  • 35.

    Чжан С.С., Сюй К. и Джоу, Т. Р. Исследование EIS по образованию границы раздела твердых электролитов в литий-ионных аккумуляторах. Электрохим. Acta 51 , 1636–1640 (2006).

    CAS Статья Google Scholar

  • 36.

    Son, H. B. et al. Влияние восстанавливающих циклических карбонатных добавок и линейных карбонатных сорастворителей на быструю заряжаемость ячеек LiNi0.6Co0.2Mn0.2O2 / графит. J. Источники энергии 400 , 147–156 (2018).

    ADS CAS Статья Google Scholar

  • 37.

    Deng, B. et al. Влияние потенциала отсечки заряда на добавку электролита для полных ячеек с мезоуглеродными микрогранулами LiNi0.6Co 0.2Mn0.2O2. Energy Technol. 7 , 1800981 (2019).

    Артикул CAS Google Scholar

  • 38.

    Zuo, X. et al. Влияние трис (триметилсилил) бората на сохранение высоковольтной емкости ячеек LiNi0,5Co0,2Mn0,3O2 / графит. J. Источники энергии 229 , 308–312 (2013).

    CAS Статья Google Scholar

  • 39.

    Deng, B. et al. Исследование влияния высоких температур на циклическую стабильность LiNi0.Катод 6Co0.2Mn0.2O2 с использованием инновационной добавки к электролиту. Электрохим. Acta 236 , 61–71 (2017).

    ADS CAS Статья Google Scholar

  • 40.

    Han, J.-G., Kim, K., Lee, Y. & Choi, N.-S. Поглощающие материалы для стабилизации LiPF6-содержащих карбонатных электролитов для литий-ионных аккумуляторов. Adv. Матер. 31 , 1804822 (2019).

    Артикул CAS Google Scholar

  • 41.

    Фэн П., Ли, К. Н., Ли, Дж. У., Чжан, С. и Нгаи, М. Ю. Доступ к новому классу синтетических строительных блоков посредством трифторметоксилирования пиридинов и пиримидинов. Chem. Sci. 7 , 424–429 (2016).

    CAS PubMed Статья Google Scholar

  • 42.

    Альпелиани М., Зарини Ф. и Перроне Е. О получении 4-гидроксиметил-5-метил-1,3-диоксол-2-она. Synth. Commun. 22 , 1277–1282 (1992).

    CAS Статья Google Scholar

  • 43.

    Liu, J. B. et al. Серебро-опосредованное окислительное трифторметилирование фенолов: прямой синтез арилтрифторметиловых эфиров. Angew. Chem. Int. Эд. 54 , 11839–11842 (2015).

    CAS Статья Google Scholar

  • 44.

    Фарлоу М. У., Мэн Э. Х. и Таллок Д. В. Карбонилфторид.Неорганические синтезы (Rochow, E.G. ed.) Vol. 6, 155–158 (McGraw-Hill Book Company, Inc., 1960). https://doi.org/10.1002/9780470132371.ch58.

  • 45.

    Аватанео М., Де Патто У., Галимберти М. и Маркионни Г. Синтез α, ω-диметоксифторполиэфиров: механизм реакции и кинетика. J. Fluor. Chem. 126 , 631–637 (2005).

    Артикул Google Scholar

  • 46.

    Петцольд, Д.и другие. Опосредованное видимым светом высвобождение и превращение фторфосгена in situ. Chem. Евро. J. 25 , 361–366 (2019).

    CAS PubMed Статья Google Scholar

  • 47.

    Xu, W., Vegunta, S. S. S. & Flake, J. C. Аноды с модифицированной поверхностью кремниевых нанопроволок для литий-ионных аккумуляторов. J. Источники энергии 196 , 8583–8589 (2011).

    ADS CAS Статья Google Scholar

  • 48.

    Zhang, J. et al. Прямое наблюдение неоднородной межфазной границы твердого электролита на аноде из MnO с помощью атомно-силовой микроскопии и спектроскопии. Nano Lett. 12 , 2153–2157 (2012).

    ADS CAS PubMed Статья Google Scholar

  • 49.

    Wan, G. et al. Подавление роста дендритного лития путем образования на месте химически стабильной и механически прочной межфазной границы твердого электролита. ACS Appl. Матер. Интерфейсы 10 , 593–601 (2018).

    CAS PubMed Статья Google Scholar

  • 50.

    Снеддон И. Н. Связь между нагрузкой и проникновением в осесимметричной задаче Буссинеска для штампа произвольного профиля. Внутр. J. Eng. Sci. 3 , 47–57 (1965).

    MathSciNet МАТЕМАТИКА Статья Google Scholar

  • 51.

    Колле, Дж. П., Шуман, Х., Леджер, Р. Э., Ли, С. и Вайзель, Дж. У. Эластичность отдельного фибринового волокна в сгустке. Proc. Natl Acad. Sci. США 102 , 9133–9137 (2005).

    ADS CAS PubMed Статья Google Scholar

  • 52.

    Чжан, К., Ву, Т., Лу, Дж. И Амин, К. Растворение, миграция и осаждение ионов переходных металлов в литий-ионных батареях на примере катодов на основе марганца — критический обзор . Energy Environ. Sci. 11 , 243–257 (2018).

    CAS Статья Google Scholar

  • 53.

    Гилберт, Дж. А., Шкроб, И. А. и Абрахам, Д. П. Растворение переходных металлов, миграция ионов, электрокаталитическое восстановление и потеря емкости в полных литий-ионных элементах. J. Electrochem. Soc. 164 , A389 – A399 (2017).

    CAS Статья Google Scholar

  • 54.

    Ravdel, B. et al. Термическая стабильность электролитов литий-ионных аккумуляторов. J. Источники энергии 119-121 , 805–810 (2003).

    ADS CAS Статья Google Scholar

  • 55.

    Ko, M. et al. Масштабируемый синтез графита, внедренного в кремний в нанослой, для высокоэнергетических литий-ионных аккумуляторов. Nat. Энергетика 1 , 16113 (2016).

    ADS CAS Статья Google Scholar

  • 56.

    Делли, Б. Полностью электронный численный метод решения функционала локальной плотности для многоатомных молекул. J. Chem. Phys. 92 , 508–517 (1990).

    ADS CAS Статья Google Scholar

  • 57.

    Делли Б. От молекул к твердым телам с подходом DMol 3 . J. Chem. Phys. 113 , 7756–7764 (2000).

    ADS CAS Статья Google Scholar

  • 58.

    Klamt, A. & Schüürmann, G. COSMO: новый подход к диэлектрическому экранированию в растворителях с явными выражениями для экранирующей энергии и ее градиента. J. Chem. Soc. Perkin Trans. 2 , 799–805 (1993).

    Артикул Google Scholar

  • 59.

    Холл, Д. С., Селф, Дж. И Дан, Дж. Р. Диэлектрические постоянные для квантовой химии и литий-ионных аккумуляторов: смеси растворителей этиленкарбоната и этилметилкарбоната. J. Phys. Chem. С 119 , 22322–22330 (2015).

    CAS Статья Google Scholar

  • 60.

    Лойенга Х. Диэлектрические проницаемости гетерогенных смесей. Physica 31 , 401–406 (1965).

    ADS CAS Статья Google Scholar

  • Влияние количества электролита на литий-ионные элементы

    В производственной цепочке литий-ионных аккумуляторных элементов процесс заполнения имеет первостепенное значение для качества конечного продукта и затрат.Заполнение состоит из нескольких этапов дозирования жидкого электролита в ячейку и последующего (промежуточного) смачивания компонентов ячейки. Количество залитого электролита не только влияет на скорость смачивания электродов и сепаратора, но также ограничивает емкость ячейки и влияет на срок службы батареи. Однако слишком много электролита является мертвым грузом, приводит к более низкой плотности энергии и излишне увеличивает стоимость батареи. Для обеспечения низких затрат на производство и в то же время высокого качества ячеек в данной статье исследуется оптимальное количество электролита.На основе экспериментальных данных спектроскопии электрохимического импеданса, процесса заполнения, процесса формирования, а также испытания на срок службы представлены взаимозависимости между количеством электролита, скоростью смачивания, емкостью, плотностью энергии и сроком службы для крупноформатных ячеек.

    Литий-ионные батареи (LIB) в качестве электрохимических систем хранения энергии являются ключевой технологией для замены ископаемого топлива и позволяют хранить возобновляемые ресурсы из-за их малого веса, высокой плотности энергии и длительного срока службы. 1 Эти батареи за последние три десятилетия заняли доминирующее положение в бытовой электронике и послужили толчком к успеху мобильных устройств, таких как сотовые телефоны и портативные компьютеры. Таким образом, ожидается, что рынок электротранспорта и стационарного хранения энергии будет активно продвигаться за счет LIB. 2 Цель более высокой плотности энергии в автомобильной промышленности может быть достигнута за счет уменьшения процентного содержания неактивных материалов, таких как фольга токосъемника, компоненты корпуса или сепараторы на элемент.Это способствует тенденции к увеличению размеров ячеек 3 , а также к более толстым электродам. 4 Ячейки большого формата, однако, создают проблемы для производственных процессов, таких как заполнение жидкими электролитами. Для обеспечения надежной работы и высокой производительности все полости и поры электродов и сепаратора должны быть увлажнены перед началом цикла пласта. 5 В противном случае существует опасность образования неоднородной межфазной границы твердого электролита (SEI), которая является продуктом реакции компонентов растворителя электролита и лития на поверхности анода. 6 В то время как SEI на аноде формируется во время этих начальных циклов зарядки и разрядки, межфазная фаза катодного электролита (CEI) является результатом старения при повышенных температурах или цикличности при высоких напряжениях. 7 Преждевременная зарядка до полного смачивания может привести к сильным локальным колебаниям толщины слоя, которые могут вызвать частичное отрывание слоя. 8 Тогда, в отличие от реальной функции SEI, возможен перенос электронов от электрода к электролиту (восстановление электролита) и блокирование ионов, что отрицательно сказывается на емкости и сроке службы элемента. . 9

    Увеличение количества слоев, толщины электрода и площади поверхности на ячейку еще больше снижает трудоемкое смачивание компонентов ячейки электролитом. 10 Небольшие поверхности в монетных элементах не представляют проблемы для смачивания, так как электролит может достичь всех полостей за короткое время. Однако при промышленном производстве ячеек большого формата выполняется несколько периодических циклов смачивания и формирования, в результате чего общая продолжительность составляет до 3 недель. 11 Это подразумевает значительные расходы, так как десятки тысяч циклов, а также складские помещения необходимы для управления требуемой пропускной способностью. 11

    Один из способов снизить стоимость LIB — ускорить процесс смачивания. 12 Weydanz et al. 13 показали, что наполнение под вакуумом до 100 мбар значительно ускоряет этот производственный этап. Habedank et al. 14 даже достиг в 12 раз более быстрого смачивания за счет лазерного структурирования электродов, что дополнительно улучшает поведение C-rate. 15 Состояние смачивания определяется как смоченные и насыщенные поверхности и полости электродов и сепаратора по сравнению с полными поверхностями и полостями узла ячейки. Заполнение полостей, которые представляют собой внутренние поверхности среды, можно описать как микроскопическое смачивание. А смачивание (макроскопических) поверхностей можно рассматривать как поверхностное смачивание. Первые можно измерить с помощью спектроскопии электрохимического импеданса (EIS). 16,17 Последнее можно визуализировать с помощью нейтронной радиографии. 18 Другим способом снижения затрат на киловатт-час является снижение затрат на материалы, например, за счет минимизации количества электролита на элемент. 12 В лабораторных условиях дозируется непропорционально большое количество электролита по сравнению с поверхностями компонентов в однослойных ячейках. Напротив, при производстве промышленных ячеек в ячейках большого формата не хватает пустого пространства для содержания электролита в таком же соотношении к поверхности активного материала и сепаратора. 19 Кроме того, поскольку электролит является неактивным материалом, слишком много и, следовательно, ненужного электролита является мертвым грузом, что снижает плотность энергии и увеличивает стоимость батареи. 10

    Чтобы точно определить влияние количества производимого электролита, были построены большие ячейки, заполненные разным количеством электролита. Эти клетки были измерены во время смачивания с помощью импедансной спектроскопии, затем подверглись процедуре формирования и были циклически проверены на срок службы.

    Cell-Assembly

    Ячейки-пакеты, состоящие из 13 анодных листов и 12 катодных листов, были собраны в Техническом университете Мюнхена на полуавтоматических машинах в сухом помещении с точкой росы ниже -55 ° C. Катодные листы состояли из двустороннего покрытия из LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM111) на алюминиевой фольге коллектора, а для анода в качестве активного материала использовался графит. покрытый с обеих сторон медный коллектор.Точные характеристики имеющихся в продаже электродов с покрытием показаны в Таблице I. Электродные листы были разделены в процессе удаленной лазерной резки, как описано в Ref. 20 к формату 101 мм × 73 мм (катод) и 104 мм × 76 мм (анод). Коммерческий сепаратор (Celgard 2325) был зажат между электродами, чтобы обеспечить электрическую изоляцию, и обернут вокруг пакета ячеек для обеспечения механической стабильности, удерживая электроды в их точном положении. Язычки и фольга токосъемника были соединены с помощью ультразвуковой сварки, и готовый пакет ячеек был упакован в гибкий пакет с углубленным карманом.С трех сторон пакет из фольги запечатывали импульсными запаивающими планками, оставляя одну сторону открытой для заполнения электролитом. Чтобы предотвратить нежелательные побочные реакции с остаточной влажностью, как указано в Ref. 21, они были высушены в вакуумной печи при 60 ° C и 20 мбар перед последующим заполнением в течение ночи. Подробности процедуры заполнения будут объяснены в следующем разделе. До и после каждого этапа производства ячейки взвешивались, чтобы отобразить влияние каждого этапа процесса на плотность энергии продукта посредством сборки ячеек, как показано на рисунке 1.

    Таблица I. Технические характеристики используемых электродов.

    шт. катод анод
    активный материал мас.% 93,0 (NCM111) 92,5 (графит)
    Углерод проводящий мас.% 3,0 0,5
    связующее мас.% 4.0 7,0
    загрузка емкости мАч см -2 2,748 3,606
    пористость % 32,1 32,2
    толщина электрода мкм 118 130
    толщина фольги подложки мкм 20 (Al) 10 (Cu)

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 1. Изменение доли NMC на этапах процесса сборки электролизера после изготовления электродов в качестве индикатора влияния сборки электролизера на удельную энергию продукта. Объемный коэффициент vf описывает количество дозированного электролита и приведен в таблице II.

    Filling-Process

    1 M раствор LiPF 6 в смеси этиленкарбоната (EC) и этилметилкарбоната (EMC; массовое соотношение EC: EMC 3: 7) с 2 мас.% Виниленкарбоната (VC ) от BASF служил электролитом.Как правило, для крупноформатных ячеек требуется несколько итераций дозирования после поглощения жидкости узлом ячеек из-за небольшого пустого пространства в ячейке и высокого сопротивления потоку пористых структур. 22 Для данной экспериментальной схемы из-за небольшого количества электролита по сравнению с объемом пустот между гибкой фольгой пакета и стопкой одной стадии дозирования было достаточно. В результате наполнение состояло из шести этапов: промывка инертным газом, вакуумирование, дозирование, герметизация, удаление воздуха и смачивание.Электролит дозировали в вакуумную камеру при абсолютном давлении 80 мбар. Количество варьировалось по объемному коэффициенту.

    от 0,6 до 1,8 объема пор компонентов ячейки (сепаратора и электродов). Средний объем пор ячеек составил 8,85 мл. Точность дозирования и полученные объемы электролита сведены в Таблицу II. Давление закрытия герметизирующих стержней было установлено на 3 бара в течение 3 секунд при температуре герметизации 195 ° C.

    Таблица II. Точность дозирования, итоговое количество дозированного электролита и емкость ячеек после формирования, которые соответствуют токам при испытании на срок службы.

    объемный коэффициент 0,6 0,8 1,0 1,2 1,4 1,6 1,8
    количество электролита мл 5.35 7,11 8,77 10,98 12,54 14,26 15,82
    стандартное отклонение мл 0,08 0,04 0,17 0,04 0,13 0,16 0,19
    количество электролита мл Ач — 1 теор 1,10 1,46 1,81 2.26 2,58 2,93 3,26
    Емкость ячеек Ач об. 2,68 3,23 3,33 3,16 3,28 3,41 3,44
    стандартное отклонение Ач рев. 0,12 0,07 0,04 0,07 0,11 0,01 0.02
    количество ячеек 3 5 6 3 4 3 4

    После вентиляции камеры ячейки выдерживались под давлением окружающей среды в течение 180 минут перед первой загрузкой. Во время этого смачивания электрохимические измерения проводились с помощью потенциостата Interface 5000E от Gamry Instruments. Последовательность состояла из измерений потенциала открытого тока (OCV) и EIS и была запрограммирована на повторение в течение не менее 90 минут.Сначала измеряли OCV в течение 15 секунд с периодом выборки 0,5 секунды. Впоследствии потенциостатический EIS был запущен с начальной частотой 100 кГц и был изменен на 1 Гц с 10 точками на декаду и амплитудой 10 среднеквадратичных мВ в качестве сигнала возбуждения переменного тока, подаваемого на ячейку. Постоянное потенциальное смещение, которое может применяться к ячейке во время сбора данных, было установлено равным нулю по сравнению с OCV ячейки. Напряжение переменного тока суммировалось с напряжением постоянного тока.

    Кривые EIS были проанализированы с акцентом на высокочастотное сопротивление (HFR).HFR ячейки — это значение импеданса, при котором мнимая часть равна нулю. Он интерпретируется как внутреннее сопротивление ячейки и изменяется во время смачивания компонентов ячейки жидким электролитом. 17

    Процесс формирования и испытание на срок службы

    Формирование проводилось с использованием испытательной системы ячеек BaSyTec, подключенной к ячейкам в температурной камере при 25 ° C. Процесс состоял из 2 циклов при скорости C 0,1 ° C (что соответствует 4,86 ​​Ач или ).Ячейки заряжались в режиме постоянного тока и постоянного напряжения (CCCV) с ограничением тока, соответствующим C / 20, в то время как разряд выполнялся в режиме постоянного тока (CC). Верхнее напряжение отсечки было установлено на 4,2 В, а нижнее напряжение отсечки было установлено на 2,5 В.

    Перед началом испытания на срок службы элементы были дегазированы, удаляя газ, который образовывался во время первых циклов зарядки и разрядки в результате химических реакций между ними. электроды и электролит, а также активация электродов.Сначала клетки были измерены с помощью EIS, используя ту же процедуру, что и в последнем разделе. Из-за временной стабильности EIS только трех циклов измерения было достаточно, чтобы зафиксировать поведение импеданса ячейки после цикла. Затем клетки помещали в вакуумную камеру. Камера промывалась инертным газом и откачивалась до 100 мбар, что было немного выше, чем уровень давления для дозирования электролита в последней секции. Ячейки открыли для удаления газа и снова запечатали. После вентиляции камеры мешок с избыточным газом упаковки был вырезан, и клетки снова были измерены с помощью EIS и взвешены.

    Обратимые емкости клеток определяли по второму циклу формирования. Вернувшись в температурную камеру, циклирование было выполнено при 1 C (Ah rev ) и 25 ° C в режиме CCCV для зарядки с ограничением тока, соответствующем C / 20, и в режиме CC для разряда. Перед каждым набором из 50 циклов при 1 ° C выполняли один цикл при 0,1 ° C, а затем один цикл при 0,5 ° C. После завершения испытания на срок службы клетки были измерены с помощью EIS в четвертый раз.

    Для каждого варианта были протестированы не менее трех независимых ячеек, и данные на рисунках всегда представляют собой среднее значение этих ячеек. Планки погрешностей на рисунках представляют собой стандартное отклонение измерений.

    На рис. 1 показана массовая доля NMC в общей массе промежуточного продукта в процессах сборки ячеек. Поскольку (без электролита) активный материал катода является единственным резервуаром лития в элементе, содержание NMC является показателем плотности энергии элемента.Начальная доля катода в 76% уменьшается за счет таких этапов сборки, как z-образное складывание, при котором добавляются сепаратор и аноды. Затем удельный вес дополнительно увеличивается за счет приваренных ультразвуком язычков и алюминиевой фольги упаковки. График разделен на различные количества электролита для секции, представляющей процесс заполнения. С увеличением количества электролита весовая доля NMC еще больше уменьшается. От vf 0,6 до 1,8 наблюдается разница почти в 10% в доле NMC.Окончательное увеличение доли NMC связано с удалением фольги мешка для отходов после дегазации.

    Измерения EIS после дозирования электролита показаны на рисунке 2a для смачивания ячеек. Результирующая HFR изменяется с течением времени и сходится к окончательному значению, как описано в Ref. 17. Эта точка схождения зависит от количества жидкого электролита. Большие дозированные количества приводят к более низким значениям HFR клеток после смачивания. Кроме того, HFR уменьшается и сходится для величин, больших или равных vf 1, тогда как он снова увеличивается для меньших величин перед сходимостью.Относительно скорости смачивания

    (со степенью смачивания) влияние на скорость смачивания также становится заметным на Рисунке 2b. Скорость смачивания клеток с vf 0,6 и 0,8 пересекает нулевую линию в отрицательный диапазон и медленно приближается к нулю. В отличие от ячеек с большим количеством электролита, эти ячейки еще не завершили смачивание за время измерения 150 мин. Увеличение HFR и связанное с этим более длительное смачивание элементов является результатом недостаточного количества электролита в элементе.На этом этапе можно провести различие между двумя фазами микроскопического смачивания. Во время первой фазы смачивания HFR элементов уменьшается, как и в элементах с большим количеством электролита. Причина этого может заключаться в том, что электролит сначала проникает через участки поверхности компонентов ячейки, которые находятся в прямом контакте с жидкостью, и начинает сжимать или замещать остаточный газ в порах. Эта фаза смачивания заканчивается минимальной HFR (Рисунок 2a) или переходом через нуль скорости смачивания (Рисунок 2b).Минимум получается из-за локального избытка электролита, который замыкает электрическую цепь параллельно несмачиваемым участкам во время измерения EIS. На втором этапе жидкость электролита перераспределяется в оставшиеся поры, которые еще не заполнены электролитом в такой же степени. Капиллярные силы, действующие во время проникновения, зависят от радиуса пор. 23 Следовательно, объемная доля жидкого электролита в малых порах увеличивается за счет более крупных пор с тем же углом смачивания, если присутствует недостаточно электролита.Вторая фаза завершается, когда между порами всех компонентов ячейки достигается равновесие сил (например, капиллярных сил, сжатия газа, силы тяжести и т. Д.). Макроскопически теперь наблюдается однородное распределение жидкого электролита. HFR остается постоянным с течением времени, а скорость смачивания приближается к нулю.

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 2. а) HFR ячеек при смачивании жидким электролитом; б) Скорость смачивания как функция времени после дозирования жидкого электролита.

    Помимо недостаточного насыщения электролитической жидкостью, подробное картирование скорости смачивания показывает, что зависимость от количества электролита незначительна (для исследованных количеств и формата ячейки). Влияние гидростатического давления столба жидкости на пакет ячеек приводит к разнице 0,06 мОм в первые 10 минут и снижается до менее 0,01 мОм через 20 минут. Можно предположить, что гидростатическое давление не оказывает большого влияния, поскольку даже максимальный дозируемый объем составляет 16.01 мл остается небольшим по сравнению с смачиваемыми поверхностями.

    Влияние количества электролита на обратимую емкость и плотность энергии ячеек после образования показано на Рисунке 3 как функция от коэффициента C. Объемный коэффициент 1 соответствует дозированному количеству электролита, равному величине всех полостей электродов и сепаратора. Однако никакие границы раздела или объемы между сепаратором и электродами не принимаются во внимание. Следовательно, для достижения максимально возможной производительности за счет смачивания всех пустотных объемов необходим коэффициент, превышающий vf 1.Емкость при 0,1 ° C увеличивается с vf 0,6 до 1,2, а затем остается постоянной, поскольку vf продолжает увеличиваться. При 0,5 и 1 ° C он не меняется до vf 1,4. Превосходное электрическое поведение ячеек с vf 1 или меньшим 1 C может быть объяснено диффузией носителей заряда: во время этих более длительных фаз заряда / разряда носители заряда имеют достаточно времени для обхода недостаточно (в достаточной степени). ) смоченные участки ячеек. Максимальная плотность энергии достигается при 0,1 C и vf 0,8. Чем больше электролита дозируется в ячейки, тем ниже становится плотность энергии после этого пика.Причина такого поведения — уменьшение веса активного материала, которое имеет большее влияние, чем увеличение емкости. Также можно показать, что плотность энергии при 1 ° C не уменьшается так быстро, как при более низких уровнях C.

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 3. Обратимая удельная емкость (столбцы слева) и удельная энергия (столбцы справа) ячеек в зависимости от количества электролита в течение первых трех циклов (0.1 C, 0,5 C, 1 C) срока службы.

    На рисунке 4 показана удельная емкость ячеек во время испытания на срок службы в зависимости от объемного фактора, а также от коэффициента C. Емкость тем выше, чем ниже C-rate, и уменьшается с увеличением количества циклов. Поскольку после 50 циклов клетки циклируются с двумя более низкими скоростями C, на графике появляются небольшие скачки при 1 C, что свидетельствует о восстановлении клеток после низких скоростей. Ячейки с vf 0,6 уже испытывают резкое падение емкости в течение первых 50 циклов и теряют свою функциональность из-за недостаточного количества электролита внутри элементов.Ян и др. 24 различают линейное и нелинейное старение. В то время как рост SEI за счет электролита играет доминирующую роль в линейной фазе, нелинейное старение является индикатором литиевого покрытия, вызванного большими локальными градиентами электролита на аноде и на границе раздела с сепаратором. 24 Здесь после формирования кулоновская эффективность ячеек с vf 0,6 [vf 1] составляет 99% (± 1) [102,5% (± 1,1)] при 0,1 C. При 1 ° C она быстро падает до 78% ( ± 2) [95.8% (± 0,5)], а затем требуется около 30 циклов [1 цикл] для достижения эффективности 97% (± 1) [99,9% (± 0)]. Предполагается, что емкость, которую не удалось восстановить во время разряда, на которую указывает эффективность, будет размещена в позднем здании ГЭИ. В дополнение к восстановлению SEI из-за растрескивания во время работы, 9 дополнительный SEI образуется из несмаченных участков, вытягивающих электролит из уже увлажненных участков из-за изменения преобладающего равновесия сил. Низкая максимальная эффективность 97% при 1 ° C для vf 0.6 является результатом местных плохо или даже не увлажненных участков, которые имеют более высокое сопротивление и, следовательно, способствуют нанесению литиевого покрытия по сравнению с другими участками. 25 При дальнейшем истощении электролита ионная проводимость через поры сепаратора уменьшается, прекращая функциональность ячеек. По этой причине предполагается, что истощение электролита и последующее литиевое покрытие является механизмом разрушения элементов.

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 4. Характеристики ячеек в течение всего срока службы после формирования. Тест состоял из 20 [0,1 C, 0,5 C, 50 [1 C]] циклов в режиме CCCV для зарядки и в режиме CC для разряда.

    По мере увеличения количества электролита до vf 1,4 характеристики ячеек улучшаются, так что потери емкости в течение их срока службы уменьшаются. Однако для больших количеств (vf 1,6–1,8) большая потеря емкости может наблюдаться в увеличенном виде первых 200 циклов при 1 ° C на Рисунке 4.Ячейки могут до некоторой степени компенсировать эту потерю: даже несмотря на то, что емкость при 0,5 ° C после 650 циклов снова выше, чем для vf 1,2, элементы остаются ниже производительности этих элементов с vf 1,4 даже при более высоких циклах. Этот нежелательный эффект потери емкости во время первых циклов можно объяснить избытком VC. Добавка, не израсходованная во время формирования, создает CEI во время цикла до тех пор, пока не будет исчерпана. Таким образом он связывает литий, который впоследствии больше не может участвовать в перезарядке. 26

    Два разных эффекта, потеря лития и истощение электролита, также можно наблюдать на рисунке 5, представляющем напряжение разряда в зависимости от емкости элементов. Во время первого цикла преобладает недостаток электролита. Чем больше электролита присутствует в элементах, тем выше напряжение во время разряда и тем выше емкость, при которой напряжение падает до напряжения отсечки. Это эквивалентно уменьшению перенапряжения при увеличении количества электролита и, следовательно, увеличению разрядной емкости элемента.После 100 циклов ячейка с vf 0,6 уже разрушилась. Поскольку применялись высокие скорости зарядки при относительно низких температурах, возможными причинами могут быть нанесение литиевого покрытия уже в первых циклах 27 или недоступные электродные области. Ячейки с vf 1,6 и vf 1,8 остаются при более высоких напряжениях примерно до 2,5 А · ч, но затем падают, так что емкость ячеек соответствует емкости ячеек с vf 0,8. Эта потеря емкости связана с недоступным количеством лития, который лигирован в CEI.Ячейки с vf 1,2 и 1,4 по-прежнему генерируют высокое напряжение во всем диапазоне емкости, а также высокую конечную емкость. Однако после 500 циклов эти элементы (vf 1.2 и 1.4) страдают от потери напряжения в начале фазы разряда, что, как предполагается, является результатом литиевого покрытия в сочетании с повышенным SEI. Хотя ячейки, заполненные vf 1.4, все еще достигают максимальной емкости, напряжение vf 1.6 и 1.8 выше при одновременной более низкой емкости. Как правило, напряжение в начале процесса разряда падает из-за того, что в элементах присутствует меньше электролита.Однако потеря лития в элементах (из-за чрезмерного наращивания CEI) указывается преждевременным падением напряжения с высокого уровня по сравнению с элементами без чрезмерного CEI.

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 5. Напряжение разряда по емкости характеристической ячейки как функция количества электролита для 1 st , 100 th и 500 th цикл при 1 C теста на срок службы.

    CV-доля определяется как емкость, заряженная в режиме CV, по отношению к общей заряженной емкости Q в режимах CC и CV:

    и показан на рисунке 6. Процент заряда может служить индикатором способности аккумуляторов к быстрой зарядке и зависит от C-rate: с увеличением SOC потенциал катода увеличивается, а потенциал графита приближается. 0 В по сравнению с Li + / Li . Разница между двумя потенциалами определяет напряжение ячейки.Таким образом, в режиме CC напряжение зарядки повышается, чтобы обеспечить определенный ток. Анод должен интеркалировать атомы лития за заданное время (определяемое скоростью C). Если скорость интеркаляции на аноде ниже, чем скорость переноса Li + в электролите, вызванная током заряда, литий накапливается на поверхности анода. Потенциал графита падает ниже 0 В по сравнению с Li + / Li , и металлическое покрытие литием происходит поверх анода.Следовательно, высокие концентрации углерода способствуют нанесению литиевого покрытия. 28 Кроме того, гальваническое покрытие может быть вызвано несмачиваемыми участками анода или сепаратора из-за результирующего неоднородного распределения плотности тока. 29 Отрицательный потенциал анода (по сравнению с литием) приводит к тому, что напряжение ячейки превышает потенциал катода, так что верхнее напряжение отсечки и, следовательно, фаза CV достигается раньше. 30 На верхнем уровне напряжения отсечки напряжение поддерживается постоянным в режиме CV, и элемент будет заряжаться до тех пор, пока ток не упадет до состояния отсечки.Таким образом, небольшая доля CV является синонимом высокой скорости интеркаляции анода и полностью увлажненного сепаратора, как показано на Рисунке 6: чем больше электролита дозируется в ячейки, тем ниже доля CV. С увеличением количества циклов и C-rate доля CV увеличивается. Следовательно, элементы не только должны заряжаться в течение более длительного времени, но они также должны подвергаться более длительному воздействию более высоких напряжений, что представляет собой нагрузку на компоненты элементов. 31

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 6. CV-доля клеток в течение жизненного цикла после образования. CV-доля определяется как емкость, заряженная в режиме CV, по отношению к общей заряженной емкости в режимах CC и CV. Испытание на срок службы состояло из 20 [0,1 C, 0,5 C, 50 [1 C]] циклов в режиме CCCV для зарядки и в режиме CC для разряда.

    HFR всех ячеек после смачивания, формирования, дегазации и испытания на срок службы показано на рисунке 7. Предполагалось, что SOC всех ячеек равняется 0%, поскольку они либо никогда не заряжались (просто смачивались), либо разряжались до напряжения 2.5 В. HFR после дегазации немного выше, чем после образования. Причина этого может заключаться в том, что небольшое количество жидкого электролита вытягивается из пор во время дегазации и должно повторно занимать это пространство. Для ячеек с vf от 0,6 до 1,2 оба значения HFR после образования и дегазации выше, чем HFR после смачивания. От vf 1,4 до 1,8 HFR после образования и после дегазации ниже, чем после смачивания. В сочетании с электрохимическими характеристиками во время испытания на срок службы измерения показывают, что количество электролита не менее vf 1.4 требуется, чтобы позволить SEI полностью сформироваться во время формирования и обеспечить оптимальную ионную проводимость через сепаратор, необходимую для перезарядки. Перенос заряда между электролитом и анодом даже улучшается за счет образования SEI с достаточным количеством электролита, как показывают значения HFR. Однако в течение срока службы внутреннее сопротивление элемента увеличивается из-за расхода электролита, нежелательных реакций и образования дополнительных SEI и CEI. Стандартное отклонение измерений не позволяет делать какие-либо существенные выводы, но существует тенденция к тому, что HFR увеличивается в меньшей степени в течение срока службы с большими количествами электролита, чем с элементами с небольшими количествами электролита.

    Приблизить Уменьшить Сбросить размер изображения

    Рис. 7. HFR ячеек после смачивания, формирования, дегазации и испытания на срок службы (1040 циклов без образования) для различных количеств электролита при SOC 0.

    Исследование, на котором основана эта статья, показало, что плотность энергии, а также емкость литий-ионных батарей зависят от количества электролита. Слишком мало электролита приводит к потере емкости и срока службы, тогда как слишком большое количество электролита снижает плотность энергии.Для оптимального смачивания компонентов ячейки электролитом было определено минимальное количество электролита, соответствующее объему пор. Кроме того, избыток ВК сравнивали с недостатком электролита в течение срока службы элементов. Оба механизма отказа можно распознать по разному напряжению разряда в зависимости от емкости. При недостатке электролита напряжение резко падает уже в начале процесса разряда, а превышение VC приводит к более позднему, но более сильному падению напряжения в конце фазы разряда.Доля CV при циклировании увеличивается с уменьшением количества электролита и без влияния чрезмерных количеств VC. Следовательно, предполагается, что без чрезмерной добавки VC и с увеличением количества электролита производительность увеличивается в течение срока службы, особенно при более высоких скоростях C. Также было показано, что HFR уменьшается с увеличением количества электролита. При слишком низком количестве электролита можно использовать EIS для обнаружения перераспределения электролита в порах.Таким образом, EIS не может использоваться только для измерения распределения электролита после завершения смачивания компонентов ячейки, но также помогает выяснить, было ли дозировано достаточное количество электролита для данной структуры пор. Этапы производства после заполнения и цикла влияют на внутреннее сопротивление ячейки в зависимости от дозированного объема электролита, который также можно измерить с помощью EIS и наблюдать с помощью HFR.

    Становится очевидной не только необходимость адаптации состава электролита к активным материалам и количества электролита на поверхность активного материала, но также необходимость адаптации количества электролита к желаемому заказчику применению.

    Авторы выражают признательность Федеральному министерству образования и исследований Германии (BMBF) за финансирование их исследований в рамках проекта Cell-Fi (номер гранта 03XP0069C). Авторы благодарят Таню Цюнд за ее критический отзыв об электрохимической интерпретации, Яна Бернд Хабеданка и Ходу Мохсени за техническую поддержку в лазерной резке и ультразвуковой сварке, а также Gamry Instruments за предоставление потенциостата.

    Флориан Дж. Гюнтер 0000-0002-5967-6801

    Будущее литий-ионных и твердотельных батарей

    Аккумуляторы всегда были важной конструктивной особенностью для всего, от портативных инструментов до компьютеров и мобильных телефонов, от источников бесперебойного питания до спутников.Исследования аккумуляторов ведутся годами с целью увеличения плотности энергии (количества энергии при заданном размере и весе). Потребность в большей плотности энергии возникла во время подъема портативных устройств, от промышленных измерительных инструментов до мобильных телефонов. Увеличение количества телекоммуникационных спутников означало, что вес батареи был важным фактором. Каждое технологическое развитие ставило во главу угла возможности аккумуляторов. В то время как лаборатории работали над модернизацией аккумуляторных технологий, электронные технологии продолжали развиваться быстрее, требуя все большего количества энергии и мощности.

    Но только когда на свет появились электромобили (EV), производители начали серьезно задумываться о важности аккумуляторов для обеспечения большей дальности действия, большей надежности и снижения затрат. Для рынка электромобилей размер и вес так же важны, как и срок службы. Классифицируемые как первичные (одноразовые, как правило, для долговременных приложений с низким энергопотреблением) и вторичные (перезаряжаемые) батареи претерпевают одно новшество за другим, поскольку они пытаются обеспечить большую плотность энергии, чем когда-либо прежде.

    Текущее состояние аккумуляторов
    Сегодня современная технология первичных аккумуляторов основана на металлическом литии, тионилхлориде (Li-SOCl2) и оксиде марганца (Li-MnO2). Они подходят для долгосрочных применений от пяти до двадцати лет, включая учет, электронный сбор данных, отслеживание и Интернет вещей (IoT). Ведущим химическим составом аккумуляторных батарей, используемых в телекоммуникациях, авиации и железнодорожном транспорте, являются никелевые (Ni-Cd, Ni-MH) батареи.Литиевые (литий-ионные) батареи доминируют на рынке бытовой электроники и распространили свое применение на электромобили. Здесь важно отметить, что количество литий-ионных аккумуляторов, используемых в электромобилях, превышает объем мобильных и ИТ-приложений вместе взятых.

    Литий-ионные аккумуляторы, вызванные ростом рынка мобильных телефонов, планшетов и портативных компьютеров, были вынуждены достигать все более и более высокой плотности энергии. Плотность энергии напрямую связана с количеством часов, в течение которых может проработать аккумулятор.Специалисты по аккумуляторным батареям в этой области постоянно корректируют технологию, чтобы получить большую плотность, включая изменение химического состава и модификацию конструкции. Они даже изучали цепочку поставок сырья, считая, что добывать кобальт в качестве добавки к литий-ионным конструкциям дорого и сложно. Плотность энергии измеряется в ватт-часах на килограмм (Втч / кг). Литий-ионные конструкции обеспечивают максимальную плотность до 250-270 Втч / кг для имеющихся в продаже батарей. Для сравнения, примите во внимание, что свинцово-кислотные батареи предлагают менее 100 Втч / кг, а никель-металлогидридные батареи едва превышают 100 Втч / кг.Помимо плотности энергии, важным фактором является также плотность мощности. Плотность мощности измеряет скорость, с которой батарея может быть разряжена (или заряжена), в зависимости от плотности энергии, которая является мерой общего количества заряда. Например, аккумулятор большой мощности можно разрядить всего за несколько минут по сравнению с аккумулятором. высокоэнергетический аккумулятор, который разряжается за несколько часов. Конструкция батареи по своей сути обменивает плотность энергии на плотность мощности. По словам Джун Сан Пак, технического менеджера по твердотельным технологиям, «литий-ионные аккумуляторы могут быть чрезвычайно мощными с точки зрения удельной мощности, и Saft производит одни из самых высоких литий-ионных аккумуляторов в мире, используемых в Joint Strike Fighter и Гоночные элементы Формулы 1 мощностью до 50 кВт / кг.”

    Технология литий-ионных аккумуляторов значительно продвинулась за последние 30 лет, но лучшие литий-ионные аккумуляторы приближаются к своим пределам производительности из-за материальных ограничений. У них также есть серьезные проблемы с безопасностью — например, возгорание при перегреве — что ведет к увеличению затрат, поскольку в аккумуляторную систему должны быть встроены средства безопасности.

    Рекомендуем вам: Разработка быстро заряжаемых аккумуляторов

    На вопрос о материалах, альтернативных литий-ионным, Парк сказал: «Существуют альтернативные материалы и химия аккумуляторов, которые выходят за рамки литий-ионных, включая литий-серу, натрий и т.д. конструкции на основе магния (Li / S, Na, Mg).Они, безусловно, имеют потенциальные преимущества по сравнению с существующими литий-ионными батареями с точки зрения плотности энергии или стоимости после выпуска на рынок. Однако уровень зрелости технологий по сравнению с литий-ионными батареями на данный момент все еще невысок. Следовательно, для того, чтобы конкурировать с литий-ионными батареями, требуется дальнейший прорыв от используемых материалов к производству ». В конечном итоге кажется, что литий-ионные аккумуляторы не готовы к коммерциализации из-за разрыва между практическим производством и академическими исследованиями в настоящее время, но серьезно изучаются.

    Парк объясняет: «Стремление уменьшить углеродный след также стимулирует развитие устойчивой генерации энергии, такой как солнечная и ветровая, в сочетании с накопительными устройствами, такими как аккумулятор». Это намекает на тот факт, что более высокие требования приводят к инновациям в выборе материалов, дизайне и производственных процессах. Такие материалы, как твердый полимер, керамика и стеклянный электролит, позволяют использовать твердотельные батареи и использовать новые экологически безопасные процессы, исключающие использование токсичных растворителей, которые используются в процессах производства литий-ионных аккумуляторов.

    Твердотельные батареи
    Хотя текущая промышленность сосредоточена на литий-ионных батареях, наблюдается переход к твердотельным батареям. По словам Дуга Кэмпбелла, генерального директора и соучредителя Solid Power Inc., «Литий-ионный аккумулятор, который впервые был изобретен и коммерциализирован в 90-х годах, в целом остался прежним. У вас практически одинаковые комбинации электродов с небольшими изменениями. Промышленность спроектировала из технологий все, что могла.«Компания Solid Power экспериментировала с несколькими типами материалов, включая полимеры, оксиды и сульфиды. У каждого есть свои преимущества и недостатки. Благодаря своим исследованиям они решили продолжить разработку сульфидной технологии.

    Проверьте свои знания: Что вы знаете о электрификации сельских районов?

    Переход от батареи с жидким электролитом к твердотельной батарее может показаться выходящим за рамки традиционной конструкции, но он нацелен на скачок существующих возможностей в области плотности энергии.Металлический литий образует дендриты в системе жидких аккумуляторов, что снижает срок службы и безопасность аккумуляторов. Замена высокореактивного жидкого электролита твердотельным электролитом, который по своей природе более безопасен и механически более жесткий, увеличивает удельную энергию батареи без ущерба для безопасности.

    Технология твердотельных аккумуляторов включает в себя твердые металлические электроды, а также твердый электролит. Хотя химический состав в целом такой же, твердотельные конструкции предотвращают утечку и коррозию на электродах, что снижает риск возгорания и снижает затраты на конструкцию, поскольку устраняет необходимость в защитных приспособлениях.Конструкция с твердым электролитом также позволяет использовать меньший форм-фактор, что означает меньший вес. Что наиболее важно, ожидается, что твердотельные батареи преодолеют ограничения плотности энергии, существующие в настоящее время. Считается, что использование металлического лития теоретически удвоит емкость литий-ионных элементов, если они будут правильно спроектированы. Металлический литий имеет в 10 раз большую емкость, чем стандартные угольные аноды, используемые в современных литий-ионных батареях.

    Зачем переходить на твердотельные батареи
    В настоящее время промышленность переходит на твердотельные батареи по нескольким причинам.Прежде всего, стандартные литиевые батареи с жидким электролитом вышли за пределы теоретических пределов используемых комбинаций электродов, даже при точной настройке конструкции для получения большей плотности. Тем не менее, с точки зрения рынка, поскольку электромобили становятся все более популярными на рынке, существует значительный призыв к постоянному увеличению плотности энергии, причем каждое увеличение прямо пропорционально увеличению дальности полета автомобиля и времени автономной работы в целом. Потребность в электродах с гораздо большей емкостью, таких как твердый металлический литий, означает, что вы ожидаете от 50 до 100 процентов улучшения в ватт-часах на килограмм.Кроме того, некоторые дополнительные преимущества включают замену летучего и легковоспламеняющегося жидкого электролита на стабильный и твердый материал, который не будет демонстрировать проблему теплового разгона, наблюдаемую в прошлом, например, насколько твердый литий-ионный химический состав намного безопаснее.

    Тем не менее, есть еще вопросы, которые необходимо решить, например, какие материалы являются наиболее эффективными и какие методы производства обеспечивают наименьшую стоимость конечного продукта. В настоящее время твердотельные батареи, которые могут конкурировать на рынке, ограничиваются небольшими ячейками.Первые коммерчески доступные твердотельные батареи — это тонкопленочные батареи. Эти наноразмерные батареи состоят из слоистых материалов, которые действуют как электроды и электролиты. Тонкопленочные твердотельные батареи по структуре напоминают обычные аккумуляторные батареи, за исключением того, что они очень тонкие и гибкие. Помимо более легкого веса и небольшого размера, тонкопленочные батареи обеспечивают более высокую плотность энергии для небольших электронных устройств, таких как кардиостимуляторы, беспроводные датчики, смарт-карты и RFID-метки.

    Помимо решения проблем доступности и масштаба, твердотельные батареи также имеют технологические проблемы. Твердотельные батареи намного безопаснее, но все же существует проблема дендритов, образования корней, которое происходит на металлическом литии в анодах, которые образуются при зарядке и разрядке аккумулятора. Накопление дендритов снижает объем твердого электролита и, следовательно, накопленный заряд.

    Поиск подходящего материала сепаратора, который позволяет ионам лития протекать между электродами, одновременно блокируя дендриты, является самой большой проблемой для разработчиков.Согласно недавней статье «Стабильность интерфейса в твердотельных батареях », исследователи использовали такие материалы, как полимер, который широко используется в батареях с жидким электролитом, или твердую керамику. Полимер не блокирует дендриты, а большая часть используемой керамики является хрупкой и не выдерживает нескольких циклов зарядки. Ожидается, что после решения проблемы дендритов твердотельные батареи предложат потребителям некоторые заманчивые преимущества в производительности: более быструю зарядку, более высокую плотность энергии, более длительный жизненный цикл и большую безопасность.

    Другой разрабатываемый метод — это конструкция без анода. Когда батарея разряжается во время использования, литий течет с анода на катод. В этом случае толщина анода уменьшается. Этот процесс меняется на противоположный, когда батарея заряжается и ионы лития снова попадают в анод.

    Вам также может понравиться: Как пищевая сеть может поддерживать поток электроэнергии

    Другая компания, Sion Power, перешла с Li / S на свою литий-металлическую технологию Licerion.Согласно их технической информации, Sion Power преодолела проблемы, которые преследовали исторический химический состав металлического лития — плотность энергии (Вт · ч / л) и срок службы — путем разработки многогранного подхода к защите анода из металлического лития. Они включают три уровня защиты: химическая защита внутри ячейки, физическая защита внутри ячейки и физическая защита на уровне упаковки. В них используется запатентованная технология защищенного литиевого анода (PLA), при которой металлический литиевый анод физически защищен тонким, химически стабильным и ионопроводящим керамическим полимерным барьером.Это позволяет добавкам электролита на уровне элемента стабилизировать поверхность анода, что увеличивает срок службы и увеличивает энергию. Пакет включает в себя запатентованную систему сжатия ячеек и усовершенствованную систему управления батареями.

    Будущее накопителей энергии
    Гонка началась. В условиях стремительного роста продаж электромобилей потребность в батареях с высокой плотностью размещения, длительным сроком службы и недорогими батареями означает, что конкурентная среда для твердотельных батарей становится переполненной.Это отличная новость для исследований и разработок этих аккумуляторов, поскольку именно это необходимо для быстрого вывода твердотельных аккумуляторов на рынок. На данный момент исследуются несколько материалов и конструкций, и они демонстрируют значительный прогресс.

    Поскольку небольшие элементы уже доказали более высокие возможности, необходимые для твердотельных батарей, это лишь вопрос времени, когда производственные процессы встанут на место и для более крупных батарей. Некоторые компании предположили, что мы увидим эти батареи на рынке уже в следующем году для одних и к 2025 году для других.Когда производство догонит, как и литий-ионные аккумуляторы с жидким электролитом, технологические инновации подтолкнут нас вперед. Это означает, что мы, скорее всего, увидим изменения в материалах и подходах к дизайну, которые на долгие годы увеличат возможности аккумуляторов.

    Терри Персан — технический писатель из Порт-Таунсенд, штат Вашингтон.
    Зарегистрируйтесь для участия в нашей предстоящей серии веб-семинаров по чистой энергии: переход к экологической безопасности Свинцово-кислотные батареи

    | PVEducation

    5 свинцово-кислотных аккумуляторов

    Свинцово-кислотные батареи — наиболее часто используемый тип батарей в фотоэлектрических системах.Хотя свинцово-кислотные батареи имеют низкую плотность энергии, умеренный КПД и высокие требования к техническому обслуживанию, они также имеют длительный срок службы и низкие затраты по сравнению с батареями других типов. Одним из исключительных преимуществ свинцово-кислотных аккумуляторов является то, что они являются наиболее часто используемой формой аккумуляторов для большинства аккумуляторных батарей (например, для запуска двигателей автомобилей) и, следовательно, имеют хорошо зарекомендовавшую себя зрелую технологическую базу.

    Рисунок: Изменение напряжения в зависимости от степени заряда для нескольких различных типов батарей.

    Свинцово-кислотная батарея состоит из отрицательного электрода из губчатого или пористого свинца. Свинец пористый, что способствует образованию и растворению свинца. Положительный электрод состоит из оксида свинца. Оба электрода погружены в электролитический раствор серной кислоты и воды. В случае, если электроды входят в контакт друг с другом в результате физического движения батареи или изменения толщины электродов, два электрода разделяет электрически изолирующая, но химически проницаемая мембрана.Эта мембрана также предотвращает короткое замыкание через электролит. Свинцово-кислотные батареи накапливают энергию за счет обратимой химической реакции, показанной ниже.

    Общая химическая реакция:

    PbO2 + Pb + 2h3SO4⇔заряженный разряд2PbSO4 + 2h3O

    На минусовой клемме реакции заряда и разряда:

    Pb + SO42-зарядкаPbSO4 + 2e-

    На положительном выводе реакции заряда и разряда:

    PbO2 + SO42- + 4H ++ 2e-заряженный разрядPbSO4 + 2h3O

    Как показывают приведенные выше уравнения, разрядка батареи вызывает образование кристаллов сульфата свинца как на отрицательной, так и на положительной клеммах, а также высвобождение электронов из-за изменения валентного заряда свинца.Для образования этого сульфата свинца используется сульфат сернокислотного электролита, окружающего аккумулятор. В результате электролит становится менее концентрированным. Полный разряд приведет к тому, что оба электрода будут покрыты сульфатом свинца и водой, а не серной кислотой, окружающей электроды. При полном разряде два электрода выполнены из одного материала, и между двумя электродами отсутствует химический потенциал или напряжение. На практике, однако, разряд останавливается при напряжении отсечки, задолго до этого момента.Поэтому аккумулятор не должен разряжаться ниже этого напряжения.

    Между полностью разряженным и заряженным состояниями свинцово-кислотная батарея будет испытывать постепенное снижение напряжения. Уровень напряжения обычно используется для обозначения степени заряда аккумулятора. Зависимость аккумулятора от уровня заряда показана на рисунке ниже. Если аккумулятор остается на низком уровне заряда в течение длительного периода времени, могут вырасти крупные кристаллы сульфата свинца, что необратимо снижает емкость аккумулятора.Эти более крупные кристаллы не похожи на типичную пористую структуру свинцового электрода, и их трудно превратить обратно в свинец.

    В результате реакции зарядки сульфат свинца на отрицательном электроде превращается в свинец. На положительном конце реакция превращает свинец в оксид свинца. В качестве побочного продукта этой реакции выделяется водород. Во время первой части цикла зарядки преобладающей реакцией является превращение сульфата свинца в свинец и оксид свинца. Однако по мере того, как происходит зарядка и большая часть сульфата свинца превращается либо в свинец, либо в диоксид свинца, зарядный ток электролизирует воду из электролита, и выделяются водород и газообразный кислород, процесс, известный как «выделение газа» из батареи.Если ток подается в батарею быстрее, чем может быть преобразован сульфат свинца, то выделение газа начинается до того, как весь сульфат свинца будет преобразован, то есть до того, как батарея будет полностью заряжена. Газообразование создает несколько проблем в свинцово-кислотной батарее. Газовыделение батареи не только вызывает проблемы безопасности из-за взрывоопасной природы производимого водорода, но также уменьшает количество воды в батарее, которую необходимо заменять вручную, вводя в систему компонент для обслуживания.Кроме того, выделение газа может вызвать отделение активного материала от электролита, что приведет к необратимому снижению емкости аккумулятора. По этим причинам аккумулятор не следует регулярно заряжать выше напряжения, которое вызывает газообразование. Напряжение газовыделения изменяется в зависимости от скорости заряда.

    Сульфат свинца является изолятором, и поэтому способ образования сульфата свинца на электродах определяет, насколько легко можно разрядить аккумулятор.

    Для большинства систем возобновляемой энергии наиболее важными характеристиками батареи являются срок службы батареи, глубина разряда и требования к обслуживанию батареи.Этот набор параметров и их взаимосвязь с режимами зарядки, температурой и возрастом описаны ниже.

    Глубина разряда в сочетании с емкостью батареи является фундаментальным параметром при проектировании аккумуляторной батареи для фотоэлектрической системы, поскольку энергия, которая может быть извлечена из батареи, определяется умножением емкости батареи на глубину разряда. Батареи классифицируются как батареи глубокого или мелкого цикла. Глубина разряда батареи глубокого цикла может превышать 50%, а может достигать 80%.Чтобы достичь такой же полезной емкости, аккумуляторная батарея мелкого цикла должна иметь большую емкость, чем аккумуляторная батарея глубокого цикла.

    Помимо глубины разряда и номинальной емкости аккумулятора, мгновенная или доступная емкость аккумулятора сильно зависит от скорости разряда аккумулятора и рабочей температуры аккумулятора. Емкость аккумулятора падает примерно на 1% на градус ниже примерно 20 ° C. Однако высокие температуры также не идеальны для аккумуляторов, поскольку они ускоряют старение, саморазряд и расход электролита.На приведенном ниже графике показано влияние температуры и скорости разряда аккумулятора на емкость аккумулятора.

    Рисунок: Взаимосвязь между емкостью батареи, температурой и скоростью разряда.

    Со временем емкость аккумулятора снижается из-за сульфатации аккумулятора и выделения активного материала. Ухудшение емкости аккумулятора наиболее сильно зависит от взаимосвязи следующих параметров:

    • режим зарядки / разрядки аккумулятора
    • DOD батареи за весь срок ее службы
    • его подверженность длительным периодам низкого разряда
    • средняя температура батареи за весь срок службы

    На следующем графике показано изменение функции аккумулятора в зависимости от количества циклов и глубины разряда для свинцово-кислотных аккумуляторов с поверхностным циклом.Свинцово-кислотная батарея глубокого разряда должна иметь срок службы более 1000 циклов даже при глубине разряда более 50%.

    Рисунок: Взаимосвязь между емкостью батареи, глубиной разряда и сроком службы для батареи мелкого цикла.

    Помимо DOD, режим зарядки также играет важную роль в определении срока службы батареи. Перезарядка или недостаточная зарядка батареи приводит либо к потере активного материала, либо к сульфатированию батареи, что значительно сокращает срок ее службы.

    Рисунок: Влияние режима зарядки на емкость аккумулятора.

    Окончательное влияние на зарядку аккумулятора связано с температурой аккумулятора. Хотя емкость свинцово-кислотной батареи снижается при работе при низких температурах, работа при высоких температурах увеличивает скорость старения батареи.

    Рисунок: Взаимосвязь между емкостью батареи, температурой и сроком службы батареи глубокого цикла.

    Кривые разряда при постоянном токе для свинцово-кислотной батареи емкостью 550 Ач при различных скоростях разряда с предельным напряжением 185 В на ячейку (Mack, 1979). Более длительное время разряда увеличивает емкость аккумулятора.

    Производство водорода и кислорода из аккумуляторной батареи приводит к потере воды, поэтому в свинцово-кислотных аккумуляторных батареях необходимо регулярно заменять воду. Другие компоненты аккумуляторной системы не требуют регулярного обслуживания, поэтому потеря воды может стать серьезной проблемой. Если система находится в удаленном месте, проверка потери воды может увеличить затраты. Аккумуляторы, не требующие технического обслуживания, ограничивают потребность в регулярном внимании, предотвращая или уменьшая количество газа, выходящего из аккумулятора.Однако из-за коррозионной природы электролита все батареи в некоторой степени вносят дополнительный компонент для технического обслуживания в фотоэлектрическую систему.

    Свинцово-кислотные батареи обычно имеют кулоновский КПД 85% и КПД по энергии порядка 70%.

    В зависимости от того, какая из вышеперечисленных проблем является наиболее важной для конкретного приложения, соответствующие изменения базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:

    • Изменения в составе и геометрии электродов
    • замена раствора электролита
    • изменения корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

    Залитые свинцово-кислотные батареи характеризуются длительным циклом работы и длительным сроком службы. Однако залитые батареи требуют периодического обслуживания. Необходимо не только регулярно контролировать уровень воды в электролите, измеряя его удельный вес, но эти батареи также требуют «ускоренной зарядки».

    Ускоренная зарядка

    Ускоренная или выравнивающая зарядка включает в себя периодическую кратковременную перезарядку, при которой выделяется газ и смешивается электролит, предотвращая расслоение электролита в батарее. Кроме того, ускоренная зарядка также помогает поддерживать одинаковую емкость всех аккумуляторов. Например, если одна батарея развивает более высокое внутреннее последовательное сопротивление, чем другие батареи, тогда батарея с более низким SR будет постоянно недозаряжаться во время нормального режима зарядки из-за падения напряжения на последовательном сопротивлении.Однако, если батареи заряжаются более высоким напряжением, это позволяет полностью зарядить все батареи.

    Удельный вес (SG)

    В затопленной аккумуляторной батарее происходит потеря воды из электролита из-за выделения водорода и кислорода. Удельный вес электролита, который можно измерить ареометром, укажет на необходимость добавления воды в батареи, если батареи полностью заряжены. В качестве альтернативы ареометр точно покажет SOC батареи, если известно, что уровень воды правильный.SG периодически измеряется после ускоренной зарядки, чтобы убедиться, что в батарее достаточно воды в электролите. Удельный вес батареи должен быть предоставлен производителем.

    Особые требования для гелевых герметичных свинцово-кислотных аккумуляторов

    Свинцово-кислотные батареи

    в гелеобразном состоянии или AGM (которые обычно герметичны или регулируются с помощью клапана) имеют несколько потенциальных преимуществ:

    • они могут быть подвергнуты глубокому циклу с сохранением срока службы батареи
    • ускоренная зарядка не требуется
    • они требуют меньшего обслуживания.

    Однако эти батареи обычно требуют более точного режима зарядки и более низкого напряжения. Режим зарядки с более низким напряжением обусловлен использованием свинцово-кальциевых электродов для минимизации выделения газов, но требуется более точный режим зарядки, чтобы минимизировать выделение газов от батареи. Кроме того, эти батареи могут быть более чувствительными к колебаниям температуры, особенно если режим зарядки не компенсирует температуру или не предназначен для этих типов батарей.

    Аккумулятор для фотоэлектрической системы будет рассчитан на определенное количество циклов при определенном DOD, режиме зарядки и температуре.Однако батареи могут преждевременно терять емкость или внезапно выходить из строя по разным причинам. Внезапный отказ может быть вызван внутренним коротким замыканием батареи из-за отказа электрического разделителя внутри батареи. Короткое замыкание в батарее снизит напряжение и емкость всего блока батарей, особенно если секции батареи соединены параллельно, а также приведет к другим потенциальным проблемам, таким как перезаряд оставшихся батарей.Батарея также может выйти из строя из-за разрыва цепи (то есть может происходить постепенное увеличение внутреннего последовательного сопротивления), и любые батареи, подключенные последовательно с этой батареей, также будут затронуты. Замораживание аккумулятора, в зависимости от типа используемого свинцово-кислотного аккумулятора, также может вызвать необратимый выход аккумулятора из строя.

    Постепенное снижение емкости может усугубляться неправильной работой, в частности, ухудшением DOD. Однако работа одной части аккумуляторной батареи в условиях, отличных от другой, также приведет к снижению общей емкости и увеличению вероятности отказа батареи.Батареи могут непреднамеренно эксплуатироваться в разных режимах либо из-за колебаний температуры, либо из-за выхода из строя батареи в одной цепочке батарей, что приводит к неравномерной зарядке и разрядке в цепочке.

    Установка

    Батареи должны устанавливаться в соответствии с действующими стандартами страны, в которой они устанавливаются. В настоящее время существуют австралийские стандарты AS3011 и AS2676 для установки батарей. Существует также проект стандарта для батарей для приложений RAPS, который в конечном итоге станет австралийским стандартом.

    Среди других факторов, которые следует учитывать при установке аккумуляторной системы, являются вентиляция, необходимая для конкретного типа аккумуляторной батареи, условия заземления, на которых должна быть размещена аккумуляторная батарея, и меры, принятые для обеспечения безопасности тех, кто может иметь доступ к аккумуляторной батарее. Кроме того, при установке блока батарей необходимо следить за тем, чтобы температура батареи находилась в пределах допустимых условий эксплуатации батареи и чтобы температура батарей в большем блоке батарей была такой же.Батареи в очень холодных условиях могут замерзать при низком уровне заряда, поэтому зимой вероятность того, что батарея будет разряжена, будет более низкой. Чтобы предотвратить это, аккумуляторную батарею можно закопать под землю. Аккумуляторы, регулярно подвергающиеся воздействию высоких рабочих температур, также могут иметь сокращенный срок службы.

    Батареи потенциально опасны, и пользователи должны знать о трех основных опасностях: Серная кислота в электролите вызывает коррозию. При работе с батареями важна не только защита ног и глаз, но и защитная одежда.

    Батареи обладают способностью генерировать большой ток. Если металлический предмет случайно попадает на клеммы батареи, через этот предмет могут протекать большие токи. При работе с батареями следует свести к минимуму присутствие ненужных металлических предметов (например, украшений), а инструменты должны иметь изолированные ручки.

    Опасность взрыва из-за выделения водорода и кислорода. Во время зарядки, особенно при перезарядке, некоторые батареи, включая большинство батарей, используемых в фотоэлектрических системах, могут выделять потенциально взрывоопасную смесь водорода и кислорода.Чтобы снизить риск взрыва, используется вентиляция для предотвращения скопления этих газов, а потенциальные источники воспламенения (т. Е. Цепи, которые могут генерировать искры или дуги) исключаются из корпуса аккумуляторной батареи.

    Аккумуляторы вводят компонент периодического обслуживания в фотоэлектрическую систему. Для всех аккумуляторов, включая «необслуживаемые», требуется график технического обслуживания, который должен обеспечивать:

    • клеммы АКБ не корродированы
    • соединения аккумулятора затянуты
    • корпус аккумулятора не должен иметь трещин и коррозии.

    Залитые батареи требуют дополнительного и более частого обслуживания. Для залитых аккумуляторов уровень электролита и удельный вес электролита для каждой батареи необходимо регулярно проверять. Проверка удельного веса аккумулятора с помощью ареометра должна выполняться не менее чем через 15 минут после выравнивания или ускоренного заряда. В аккумуляторы следует добавлять только дистиллированную воду. Водопроводная вода содержит минералы, которые могут повредить электроды батареи.

    Свинец в свинцово-кислотных аккумуляторах представляет опасность для окружающей среды, если он не утилизируется надлежащим образом.Свинцово-кислотные батареи следует утилизировать, чтобы можно было восстановить свинец без ущерба для окружающей среды.

    Материалы, из которых изготовлены электроды, имеют большое влияние на химический состав батареи и, следовательно, влияют на напряжение батареи и ее характеристики зарядки и разрядки. Геометрия электрода определяет внутреннее последовательное сопротивление, а также скорость заряда и разряда.

    Основными материалами анода и катода в свинцово-кислотной батарее являются свинец и диксодий свинца (PbO2).Свинцовый электрод выполнен в виде губчатого свинца. Губчатый свинец желателен, поскольку он очень пористый, и поэтому площадь поверхности между свинцом и электролитом серной кислоты очень велика. Добавление небольших количеств других элементов в свинцовый электрод для образования сплавов свинца может уменьшить некоторые недостатки, связанные со свинцом. Основными типами используемых электродов являются свинец / сурьма (с использованием нескольких процентов сурьмы), сплавы свинец / кальций и сплавы свинец / сурьма / кальций.

    Аккумуляторы из свинцового сплава с сурьмой имеют несколько преимуществ перед электродами из чистого свинца.К этим преимуществам относятся: более низкая стоимость свинца / сурьмы; повышенная прочность свинцово-сурьмянистого электрода; и возможность получить глубокую разрядку на короткий период времени. Однако сплавы свинец / сурьма склонны к сульфатированию, и их не следует оставлять при низком уровне заряда в течение длительных периодов времени. Кроме того, сплавы свинец / сурьма увеличивают выделение газа в батарее во время зарядки, что приводит к значительным потерям воды. Поскольку в эти батареи необходимо добавлять воду, они требуют более серьезного обслуживания.Кроме того, свинцово-сурьмянистые батареи отличаются высокой скоростью разряда и коротким сроком службы. Эти проблемы (xx — проверьте, вызваны ли обе проблемы металлизацией)) вызваны растворением сурьмы с одного электрода и ее осаждением или осаждением на другом электроде. (xx повышенная адгезия PbO2 xx)

    Свинцово-кальциевые батареи — это технология со средней стоимостью. Как и сурьма, кальций также добавляет прочности свинцу отрицательного электрода, но, в отличие от сурьмы, добавление кальция снижает выделение газа в батарее, а также снижает скорость саморазряда.Однако свинцово-кальциевые батареи не следует сильно разряжать. Следовательно, эти типы аккумуляторов могут считаться «необслуживаемыми», но это только аккумуляторы мелкого цикла.

    Добавление сурьмы, а также кальция в электроды дает некоторые преимущества как сурьмы, так и свинца, но при более высокой стоимости. Такие батареи с глубокой разрядкой также могут иметь длительный срок службы. Кроме того, к электродам могут быть добавлены следовые количества других материалов для повышения производительности батареи.

    Помимо материала, из которого изготовлены электродные пластины, физическая конфигурация электродов также влияет на скорость заряда и разряда и на срок службы. Тонкие пластины обеспечивают более быструю зарядку и разрядку, но они менее прочные и более склонны к отслаиванию материала с пластин. Поскольку высокие токи зарядки или разрядки обычно не являются обязательной характеристикой аккумуляторов для систем возобновляемой энергии, можно использовать более толстые пластины, которые имеют меньшее время зарядки и разрядки, но также имеют более длительный срок службы.

    В открытой залитой батарее любой образующийся газ может улетучиваться в атмосферу, вызывая проблемы как с точки зрения безопасности, так и с обслуживанием. Герметичный свинцово-кислотный (SLA), свинцово-кислотный (VRLA) с регулируемым клапаном или рекомбинированный свинцово-кислотный аккумулятор предотвращает потерю воды из электролита, предотвращая или сводя к минимуму утечку газообразного водорода из аккумулятора. В герметичной свинцово-кислотной батарее (SLA) водород не улетучивается в атмосферу, а скорее перемещается или мигрирует к другому электроду, где он рекомбинирует (возможно, с помощью процесса каталитического преобразования) с образованием воды.Эти батареи не являются полностью герметичными, а имеют вентиляционное отверстие, предотвращающее накопление избыточного давления в батарее. Герметичные батареи требуют строгого контроля заряда, чтобы предотвратить накопление водорода быстрее, чем он может рекомбинировать, но они требуют меньше обслуживания, чем открытые батареи.

    Свинцово-кислотные батареи с клапанным регулированием (VRLA) по концепции аналогичны герметичным свинцово-кислотным (SLA) аккумуляторным батареям, за исключением того, что клапаны должны выделять водород почти полностью.Аккумуляторы SLA или VRLA обычно имеют дополнительные конструктивные особенности, такие как использование гелеобразных электролитов и использование свинцово-кальциевых пластин для сведения к минимуму выделения газообразного водорода.

    Несмотря на разнообразие типов батарей и областей применения, особенно важными характеристиками фотоэлектрических систем являются требования к обслуживанию батареи и способность глубоко заряжать батарею при сохранении длительного срока службы. Для обеспечения длительного срока службы при глубоком разряде батареи глубокого разряда могут быть либо открытого типа, с избытком электролитического раствора и толстыми пластинами, либо иммобилизованного электролитического типа.Герметичные гелевые батареи могут быть классифицированы как батареи глубокого разряда, но они обычно выдерживают меньшее количество циклов и меньшие разряды, чем специально разработанные батареи с заливной пластиной или батареи AGM. В аккумуляторах с мелким циклом обычно используются более тонкие пластины, изготовленные из свинцово-кальциевых сплавов, и обычно глубина разряда не превышает 25%.

    Батареи для фотоэлектрических или удаленных источников питания (RAPS)

    Строгие требования к батареям, используемым в фотоэлектрических системах, побудили нескольких производителей изготавливать батареи, специально разработанные для фотоэлектрических или других удаленных систем питания.В автономных фотоэлектрических системах чаще всего используются батареи свинцово-кислотного типа с глубоким циклом или необслуживаемые батареи с меньшим циклом. Батареи глубокого цикла могут быть батареями с открытым заливом (которые не требуют обслуживания) или батареями AGM с невыполненным электролитом, которые не требуют обслуживания (но которые требуют осторожности при выборе регулятора). Специальные необслуживаемые батареи с малым циклом работы, которые выдерживают нечастую разрядку, также могут использоваться в фотоэлектрических системах, и при условии, что аккумуляторная батарея спроектирована надлежащим образом, никогда не требуется DOD более 25%.Аккумулятор с длительным сроком службы в правильно спроектированной фотоэлектрической системе при правильном обслуживании может прослужить до 15 лет, но использование батарей, которые не предназначены для длительного срока службы, или условий в фотоэлектрической системе, или являются частью плохой конструкции системы может привести к выходу из строя аккумуляторного блока всего через несколько лет.

    Доступны несколько других типов батарей специального назначения, которые описаны ниже.

    Пусковые, осветительные батареи зажигания (SLI). Эти аккумуляторы используются в автомобилях и отличаются высокой скоростью разряда и заряда.Чаще всего используются электродные пластины, упрочненные либо свинцово-сурьмяной в затопленной конфигурации, либо свинцово-кальциевой в герметичной конфигурации. Эти батареи имеют хороший срок службы в условиях малого цикла, но имеют очень низкий срок службы в условиях глубокого цикла. Батареи SLI не следует использовать в фотоэлектрической системе, поскольку их характеристики не оптимизированы для использования в системе возобновляемых источников энергии, поскольку срок службы фотоэлектрической системы очень мал.

    Тяговые или тяговые аккумуляторные батареи. Тяговые или двигательные батареи используются для обеспечения электроэнергией небольших транспортных средств, таких как тележки для гольфа.По сравнению с батареями SLI, они обладают большей способностью выдерживать глубокий цикл при сохранении длительного срока службы. Хотя эта особенность делает их более подходящими для фотоэлектрической системы, чем та, в которой используются батареи SLI, двигательные батареи не должны использоваться в каких-либо фотоэлектрических системах, поскольку их скорость саморазряда очень высока из-за использования свинцово-сурьмяных электродов. Высокая скорость саморазряда фактически приведет к большим потерям мощности в батарее и сделает общую фотоэлектрическую систему неэффективной, если батареи не будут испытывать большой DOD на ежедневной основе.Способность этих аккумуляторов выдерживать глубокую цикличность также намного ниже, чем у настоящих аккумуляторов глубокого цикла. Поэтому эти батареи не подходят для фотоэлектрических систем.

    Жилые или морские батареи. Эти батареи обычно представляют собой компромисс между батареями SLI, тяговыми батареями и настоящими батареями глубокого цикла. Хотя они и не рекомендуются, в некоторых небольших фотоэлектрических системах используются двигательные и морские батареи. Срок службы таких батарей будет ограничен в лучшем случае несколькими годами, так что экономия на замене батарей означает, что такие батареи, как правило, не являются долгосрочным рентабельным вариантом.

    Стационарные аккумуляторы. Стационарные батареи часто используются для аварийного питания или источников бесперебойного питания. Это аккумуляторы мелкого цикла, предназначенные для того, чтобы оставаться почти полностью заряженными в течение большей части своего срока службы с лишь периодическими глубокими разрядами. Их можно использовать в фотоэлектрических системах, если размер аккумуляторной батареи не должен опускаться ниже DOD от 10% до 25%.

    Батареи глубокого разряда. Батареи глубокого разряда должны обеспечивать срок службы в несколько тысяч циклов при высокой глубине разряда (80% или более).Значительные различия в характеристиках цикла могут наблюдаться с двумя типами батарей глубокого разряда, поэтому следует сравнивать срок службы и степень разряда различных батарей глубокого разряда.

    Свинцово-кислотный аккумулятор состоит из электродов из оксида свинца и свинца, погруженных в раствор слабой серной кислоты. Возможные проблемы со свинцово-кислотными аккумуляторами:

    Газообразование: выделение водорода и кислорода. Выделение аккумулятора газом приводит к проблемам с безопасностью и потере воды из электролита.Потеря воды увеличивает требования к обслуживанию батареи, поскольку воду необходимо периодически проверять и заменять.

    Повреждение электродов. Вывод отрицательного электрода мягкий и легко повреждается, особенно в тех случаях, когда аккумулятор может постоянно или сильно двигаться.

    Расслоение электролита. Серная кислота — тяжелая вязкая жидкость. По мере разряда батареи концентрация серной кислоты в электролите снижается, а во время зарядки концентрат серной кислоты увеличивается.Это циклическое изменение концентрации серной кислоты может привести к расслоению электролита, когда более тяжелая серная кислота остается на дне батареи, а менее концентрированный раствор, вода, остается наверху. Непосредственная близость электродных пластин внутри батареи означает, что при физическом встряхивании серная кислота и вода не смешиваются. Однако контролируемое выделение газа электролита способствует смешиванию воды и серной кислоты, но его необходимо тщательно контролировать, чтобы избежать проблем безопасности и потери воды.В большинстве свинцово-кислотных аккумуляторов требуется периодическая, но нечастая подача газа в аккумулятор для предотвращения или обращения вспять расслоения электролита в процессе, называемом «ускоренной» зарядкой.

    Сульфатирование аккумулятора. При низком уровне заряда на свинцовом электроде могут расти крупные кристаллы сульфата свинца, в отличие от мелкозернистого материала, который обычно образуется на электродах. Сульфат свинца — изоляционный материал.

    Разлив серной кислоты. Если серная кислота вытечет из батарейного отсека, это представляет серьезную угрозу безопасности.Желирование или иммобилизация жидкой серной кислоты снижает вероятность разливов серной кислоты.

    Зависание АКБ при низком уровне разряда. Если аккумулятор находится на низком уровне разряда после превращения всего электролита в воду, то точка замерзания электролита также падает.

    Потеря активного материала электродов. Потеря активного материала электродов может происходить в результате нескольких процессов. Одним из процессов, который может вызвать необратимую потерю емкости, является отслаивание активного материала из-за изменения объема между xxx и сульфатом свинца.Кроме того, xxx. Неправильные условия зарядки и выделение газа могут вызвать отслоение активного материала с электродов, что приведет к необратимой потере емкости.

    В зависимости от того, какая из вышеперечисленных проблем является наиболее важной для конкретного приложения, соответствующие изменения базовой конфигурации батареи улучшают ее характеристики. В случае использования возобновляемых источников энергии указанные выше проблемы повлияют на глубину разряда, срок службы батареи и требования к техническому обслуживанию.Изменения в батарее обычно включают модификацию в одной из трех основных областей:

    • Изменения в составе и геометрии электродов
    • замена раствора электролита
    • изменения корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

    Коррозия состоит из областей набора или восстановления / окисления, в которых обе реакции происходят на одном и том же электроде. Для аккумуляторной системы коррозия приводит к нескольким пагубным последствиям.Один из эффектов заключается в том, что он превращает металлический электрод в оксид металла.

    Все химические реакции протекают как в прямом, так и в обратном направлении. Чтобы обратная реакция протекала, реагенты должны набирать достаточно энергии, чтобы преодолеть электрохимическую разницу между реагентами и продуктами, а также перенапряжение. Обычно в аккумуляторных системах вероятность возникновения обратной реакции мала, так как имеется несколько молекул с достаточно большой энергией. Однако некоторые частицы, хотя и маленькие, обладают достаточной энергией.В заряженной батарее существует процесс, с помощью которого батарея может быть разряжена даже при отсутствии нагрузки, подключенной к батарее. Количество разряда аккумулятора при стоянии называется саморазрядом. Саморазряд увеличивается с увеличением температуры, потому что у большей части продуктов будет достаточно энергии для протекания реакции в обратном направлении.

    Идеальным набором химических реакций для батареи является тот, в котором существует большой химический потенциал, который высвобождает большое количество электронов, имеет низкое перенапряжение, спонтанно протекает только в одном направлении и является единственной химической реакцией, которая может произойти.Однако на практике есть несколько эффектов, которые ухудшают характеристики батареи из-за нежелательных химических реакций, таких как изменение фазы объема реагентов или продуктов, а также физическое движение реагентов и продуктов внутри батареи.

    Во время химических реакций многие материалы претерпевают изменение либо в фазе, либо, если они остаются в одной и той же фазе, объем и плотность материала могут быть изменены в результате химической реакции. Наконец, материалы, используемые в батарее, в первую очередь анод и катод, могут изменить свою кристалличность или структуру поверхности, что, в свою очередь, повлияет на реакции в батарее.Многие компоненты в окислительно-восстановительных реакциях претерпевают изменение фазы во время окисления или восстановления. Например, в свинцово-кислотной батарее сульфат-ионы меняются с твердой формы (в виде сульфата свинца) на раствор (в виде серной кислоты). Если сульфат свинца перекристаллизовывается где-нибудь, кроме анода или катода, то этот материал теряется для аккумуляторной системы. Во время зарядки только материалы, соединенные с анодом и катодом, могут участвовать в электронном обмене, и поэтому, если материал не касается анода или катода, он больше не может заряжаться.Образование газовой фазы в батарее также представляет особые проблемы. Прежде всего, газовая фаза обычно имеет больший объем, чем исходные реагенты, что вызывает изменение давления в батарее. Во-вторых, если предполагаемые продукты находятся в газовом переходе, они должны быть ограничены анодом и катодом, иначе они не смогут заряжаться.

    Изменение громкости также обычно отрицательно сказывается на работе от батареи.

    В стандартной свинцово-кислотной батарее электроды погружены в жидкую серную кислоту.Несколько модификаций электролита используются для улучшения характеристик батареи в одной из нескольких областей. Ключевыми параметрами электролита, которые контролируют производительность батареи, являются объем и концентрация электролита, а также образование «плененного» электролита.

    Изменения объема электролита можно использовать для повышения надежности батареи. Увеличение объема электролита делает батарею менее чувствительной к потерям воды и, следовательно, делает регулярное техническое обслуживание менее критичным.Увеличение объема батареи также увеличит ее вес и снизит удельную энергию батареи.

    В батареях с «плененным» электролитом серная кислота иммобилизируется либо путем «гелеобразования» серной кислоты, либо с помощью «абсорбирующего стеклянного мата». Оба имеют меньшее выделение газа по сравнению с затопленными свинцово-кислотными аккумуляторами и, следовательно, часто встречаются в герметичных свинцово-кислотных аккумуляторах, не требующих обслуживания.

    Желирование. В «гелеобразной» свинцово-кислотной батарее электролит может быть иммобилизован путем гелеобразования серной кислоты с использованием силикагеля.Загустевший электролит имеет преимущество в том, что снижается газообразование, и, следовательно, батареи не требуют особого обслуживания. Кроме того, расслоение электролита не происходит в гелевых батареях, и поэтому ускоренная зарядка не требуется, а поскольку электролит загустевает, вероятность просыпания серной кислоты также снижается. Однако для того, чтобы еще больше снизить газообразование, в этих «гелевых» аккумуляторах также обычно используются свинцово-кальциевые пластины, что делает их непригодными для применения в условиях глубокого разряда.Еще один недостаток состоит в том, что условия зарядки гелеобразной свинцово-кислотной батареи необходимо более тщательно контролировать, чтобы предотвратить перезаряд и повреждение батареи.

    Абсорбирующее матирование стекла. Вторая технология, которая может быть использована для иммобилизации серной кислоты, — это «абсорбирующий стеклянный мат» или аккумуляторы AGM. В аккумуляторе AGM серная кислота поглощается матом из стекловолокна, который помещается между пластинами электродов. Аккумуляторы AGM обладают многочисленными преимуществами, включая возможность глубокого разряда без ущерба для срока службы, высокую скорость заряда / разряда и расширенный температурный диапазон для работы.

    Добавить комментарий

    Ваш адрес email не будет опубликован.