ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

генераторы для автомобилей| Valeo Service

Роль генератора заключается в поставке постоянного заряда аккумуляторной батарее при работе двигателя. Данная постоянная поставка мощности предотвращает разрядку аккумулятора и обеспечивает необходимую мощность электронным устройствам автомобиля. Генератор подключается и получает питание с помощью коленчатого вала через приводной ремень. При работе двигателя приводной ремень вращает генератор, преобразующий кинетическую энергию в электрический ток. Основной принцип — преобразовать движение, инициируемое маховым колесом, в электричество. Надежность, безопасность и высочайшее качество новых продуктов обеспечиваются постоянными инновациями и строгими критериями испытаний. Благодаря значительной составляющей оригинального оборудования компания Valeo может предложить генераторы для новейших моделей автомобилей через небольшое время после их выхода на рынок, это такие модели как Audi A6, Mercedes C Class, Renault Clio IV и Volkswagen Golf VII.

Линейка новых устройств состоит из самых лучших продуктов благодаря требовательными стандартам испытаний оригинального оборудования Valeo.

 

Измерение тока и напряжение, испытание при электрической и циклической нагрузках продолжаются до 1000 часов. Кроме того, машины подвергаются испытаниям в экстремальных условиях, таких как солевой туман, температурные удары и вибрации до разрушения, чтобы соответствовать высочайшим требованиям. Valeo является новатором, имеющим более 100 лет опыта работы с вращающимися машинами, от Dynastar 1912 года до микрогибридного решения i-StARS® 2013 года.

 

Valeo удовлетворяет всем потребностям рынка и технологической эволюции, демонстрируя исторически сильное лидерство в области оригинального оборудования: однофазный генератор переменного тока, технология на основе водного охлаждения до современного производства эффективных и удобных генераторов, таких как генераторы EG. Valeo прокладывает путь к лучшим технологиям для производства генераторов: постоянное повышение мощности и эффективности при компактном дизайне.

Генератор EG («Эффективное преобразование») использует специальные модули, которые на 10 очков более эффективны, чем традиционные диоды, и потому представляют собой революционную технологию. Данная технология подходит для автомобилей многих производителей, таких как Volkswagen, BMW и Mercedes. Генератор Standard Exchange Линейка генераторов Valeo Standard Exchange высшего класса насчитывает более 1500 наименований и потому подходит практически для всех моделей автомобилей на рынке, как европейском, так и азиатском.

 

Специальный процесс восстановления генераторов позволяет Valeo предлагать лучшие в своем классе продукты в отношении качества. После сбора генераторы отправляются в специальное производственное подразделение, где проходят через различные этапы процесса восстановления:

1. Все детали разбираются, и компоненты промываются, кроме ротора, который очищается с помощью проволочной щетки. Подшипники систематически заменяются новыми.

2. Ротор проходит испытание электричеством и покрывается краской для предотвращения коррозии. После промывки статор обрабатывается проволочной щеткой для удаления следов коррозии, а затем покрывается краской. Внутренний диаметр с высокой точностью калибруется, а концы фаз покрываются оловом и проходят испытание электричеством.

3. Шкивы проверяются, покрываются краской и хромом, шкивы шестерни холостого хода систематически заменяются.

4. Стеклоподъемники моются, высушиваются и подвергаются пескоструйной очистке. Щетки и пружины меняются.

5. Диоды выпрямительного моста проходят испытание по отдельности и, при необходимости, заменяются.

 

Перед окончательной окраской все обновленные компоненты собираются, и каждый готовый продукт проходит проверку на соответствующем испытательном стенде (измерение скорости и температуры, условия перенапряжения и испытание до разрушения). В течение всего процесса неукоснительно соблюдаются стандарты оригинального оборудования, а для проверки продукции в более чем 40 контрольных точках используются испытательные стенды и измерительные приборы, предназначенные для оригинального оборудования. После сборки 100% деталей проходят повторную проверку, после чего маркируются и упаковываются. Все произведенные компанией Valeo генераторы не содержат асбест.

Генератор электрического тока или динамо машина

  • Главная
  • блог
  • Генератор электрического тока или динамо машина

Динамо-машина, или генератор электрического тока, — это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую. До сегодняшнего дня остаются популярными велосипедные генераторы, питающие фары и задние фонари.

Принцип работы генератора электрического тока

Динамо-машина генерирует электрическую энергию благодаря принципу электромагнитной индукции. Обычно такое устройство конвертирует именно механические воздействия прямо в электрические импульсы. В его составе — ротор (открытая проволочная обмотка) и статор, в котором расположены полюса магнита. Ротор, не прекращая движения, все время вращается в силовом магнитном поле, что неизбежно приводит к возникновению тока в обмотке.

Схему своего устройства динамо-машина представляет следующую. Вращающийся проводник, или ротор, пересекает магнитное поле и в нем генерируется ток. Концы ротора подведены к кольцу (коллектор), через них и прижимные щётки ток перемещается в электрическую сеть. 

Электрический ток в динамо-машине

Образующийся ток в проводнике будет иметь наибольшее значение при условии, если ротор располагается перпендикулярно магнитным линям. Чем больше поворот проводника, тем сила тока будет меньше. И наоборот. То есть, процесс вращения проводника в магнитном поле вынуждает генерируемый электрический ток менять направление за один оборот ротора два раза. Благодаря этому свойству такой род тока стали называть переменным.
Динамо-машина для выработки постоянного тока построена на таком же принципе, как и для переменного тока. Разницу можно заметить лишь в деталях, когда концы металлического провода закрепляют не к кольцам, а подсоединяют к полукольцам. Такие полукольца обязательно изолируются между собой, что при вращении проводника делает возможным контактировать со щёткой переменно то одно полукольцо, то другое. Значит, в щётки вырабатываемый ток будет поступать исключительно в одном направлении, одним словом — ток будет постоянным.

Как собрать динамо-машину?

Динамо-машина своими руками собирается быстро. Основанием для будущего генератора будет служить деревянная доска толщиной около 30 мм и площадью 150 на 200 мм. Двумя шурупами на неё крепится корпус так, чтобы электромагниты располагались по горизонтали, один против другого. Затем, сквозь прикреплённый к корпусу подшипник продевается ось якоря, который закрепляется на своём месте между электромагнитами. С внутренней стороны подшипниковой стойки продевают щётки, вставляют второй конец оси якоря. На этом конце закрепляют коллектор.

Перед прикреплением подшипниковой стойки к основанию, якорь нужно выровнять таким образом, чтобы его вращение между электромагнитами не задевало их. Щётки должны располагаться поперёк башмаков электромагнитов и закрепляться на подшипнике. На свободном конце ротора прикрепляется небольшой шкив.
Электромонтаж устройства заключается в соединении концов обмоток для электромагнитов со щётками. Также к ним соединяют отрезки гибкого провода для сообщения устройства с внешней цепью.

Генератор и велосипед

Свою мощность динамо-машина для велосипеда демонстрирует в зависимости от скорости вращения. Например, недостаточно быстрое вращение или остановка велосипеда прекращает питать фонарь или иное устройство. Но при высокой скорости лампочки способны перегореть раньше срока выработки ресурса.
Различают несколько разновидностей велосипедных электрических генераторов:
Втулочный тип встраивается во втулку колеса.

Конструктивно состоит из статичного сердечника на оси и обращающегося многополюсного магнита в форме кольца. Их стоимость больше, она компенсируется бесшумной работой и эффективностью.
Бутылочный тип наиболее популярный. Схожее с формой бутылки устройство оснащено небольшим колёсиком, что приводится в движение посредством трения о боковину резиновой покрышки колеса.
Кареточный генератор устанавливается рядом с кареточным стаканом, ниже перьев рамы. Движение подпружиненного ролика осуществляется благодаря трению о протектор покрышки. Следует упомянуть, что кареточная и бутылочная динамо машина перестают работать, попадая в мокрые условия.

Устройство, принцип действия и конструкция синхронного генератора, режимы работы

Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.

Основные конструктивные элементы

Основные части синхронного генератора: неподвижная — статор, вращающаяся — ротор, представляющая собой электромагнит, и две основные обмотки.
  1. Одна обмотка статора («обмотка возбуждения») запитывается от источника постоянного тока, функцию которого выполняет электронный регулятор напряжения. Регулятор используется в генераторах с самовозбуждением. Принцип самовозбуждения основан на том, что первоначальное возбуждение осуществляется с использованием остаточного магнетизма магнитопровода СГ. При этом энергия переменного тока поступает от обмотки статора СГ. Комплекс из понижающего трансформатора и полупроводникового выпрямителя-преобразователя трансформирует ее в энергию постоянного тока.
  2. Ток, протекающий в обмотке возбуждения статора, наводит ЭДС на обмотке возбуждения якоря генератора. Статор возбудителя, как конструкционный элемент может отсутствовать, и тогда его функции выполняют постоянные магниты.
  3. Обмотка ротора, в которой индуцируется ЭДС, называется обмоткой возбуждения якоря, или якорем возбудителя.
  4. Переменное напряжение, возникающее на обмотке якоря возбудителя, выпрямляется в блоке вращающихся диодов, которые так же называются словосочетанием «диодный мост», и превращает силовую обмотку ротора во вращающийся электромагнит, который наводит ЭДС в силовой обмотке статора СГ.
  5. Силовые обмотки и обмотки возбуждения монтируются в пазы якоря и ротора.
  6. Генераторы по типу выходного напряжения делятся на одно-, или трехфазные. Основное распространение в промышленности имеют трехфазные синхронные генераторы, а в быту — однофазные.

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

  • Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
  • Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».

Определение скорости вращения

Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:

  • n — скорость вращения, об/мин;
  • f — частота, в бытовой электрической сети она равна 50 Гц;
  • p — количество пар полюсов.

Принцип работы СГ

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

назначение, устройство и принцип работы

Многие из вас знакомы с общим устройством автомобиля и знают, что некоторые устройства «жизненно» необходимы для полноценной работы всех систем транспортного средства. К таким устройствам относится и автомобильный генератор, основное назначение которого превращение механической энергии в электрическую. Электричество необходимо для вращения стартера при запуске двигателя, за что отвечает аккумуляторная батарея, зажигания топливной смеси внутри цилиндров и приведения в рабочее состояние всех систем и электроприборов автомобиля.

ДЕТАЛЬНО ПРО ⇒ АВТОМОБИЛЬНЫЕ ГЕНЕРАТОРЫ

Немного истории

Как вы уже поняли, всего существует два источника автомобильного питания – это аккумулятор и генератор, при этом первый из них накапливает электричество, получаемое от генератора и передаёт полезную энергию на приборы в качестве постоянного тока ровно до того момента, как будет запущен мотор, и тогда в дело вступает второй источник питания.

Все знают автомобильные генераторы как компактные устройства, имеющие связь с двигателем посредством ременной передачи, но они не всегда были такими. До 1960 года обычный генератор представлял собой громоздкую конструкцию очень большого веса. При этом коэффициент полезного действия в устройствах начала второй половины прошлого столетия оставлял желать лучшего и точно никак не удовлетворял новым потребностям современных автомобилей, которые уже рвались на мировой рынок, заряженные небывалым энтузиазмом их разработчиков. Миру требовалось что-то более простое и лёгкое, что давало бы больше энергии при том же крутящем моменте, и это случилось в виде обновлённого генератора, работающего по технологии полупроводниковых выпрямителей.

ЧИТАЙТЕ ТАКЖЕ ПРО ⇒ УСТРОЙСТВО И ПРИНЦИП РАБОТЫ КАРБЮРАТОРА

Генераторы старого типа, поставляющиеся на рынок с шунтовой схемой параллельного возбуждения, обмоткой, имеющей связь с АКБ, либо со схемой стартера, последовательно подключённого к обмоткам якоря, нашли всеобщее признание у производителей гибридных и электрических автомобилей как основной силовой агрегат. Мир же полностью перешёл на генераторы переменного тока, обладающие известными преимуществами, такими, компактность, повышенный КПД, усиленная мощность и сила тока при неизменной частоте вращения ротора. Внимание читателя заслуживают оба типа генератора, и в последующих частях мы рассмотрим, как устроены генераторы постоянного и переменного тока и разберём принцип их работы.

Как устроен генератор постоянного тока?

Оба устройства призваны вырабатывать электричество, используя механическую силу двигателя. Массивность генераторов постоянного тока объясняется тем, что в качестве статора там используется сам корпус устройства, и чем он больше, тем лучше, поэтому для достижения наиболее высоких показателей мощности, например, для грузовых автомобилей, такие генераторы должны быть поистине гигантских размеров.

Как же происходит выработка электричества генератором постоянного тока?

  1. После подключения генератора независимым, параллельным или смешанным способом, становится возможна его дальнейшая работа по превращению механической энергии в электрическую;
  2. Полюсное размещение обмоток со смещёнными пазами обеспечивает выработку переменного тока, при этом работа генератора практически бесшумная;
  3. Якорь, как токосъемная часть генератора, крепится на подшипники крышек, рабочая часть находится между обмотками и при вращении отдаёт накопленный переменный ток щёткам;
  4. Коллектор преобразует переменный ток в постоянный, который и становится «конечным продуктом» деятельности генератора постоянного тока и обеспечивает весь автомобиль электричеством.

При необходимости генераторы оснащают дополнительным комплектом обмоток, который предполагает наличие ещё одной пары щёток.

Как устроен генератор переменного тока?

Стандартный или компактный трёхфазный генератор переменного тока имеет намного меньшие габариты за счёт изменения конструкции статора, в качестве которого выступает отдельный модифицированный элемент и более эффективный ротор вместо якоря. В связи с этим у производителей отпала необходимость создавать массивные и тяжёлые корпуса, а токосъёмные свойства генератора при этом увеличились в несколько раз. Несмотря на разительные перемены в конструкции устройств разных поколений генераторов, принцип их работы практически ничем не различается.

Генератор переменного тока состоит из ротора, статора, трёхфазных медных намоток в качестве магнитопровода, шкива, являющегося продолжением ротора, принимающего крутящий момент от двигателя, графитовых щёток, регулятора напряжения и силового выпрямителя. Каждый из элементов компактно размещён в лёгком корпусе, представляющем собой парные алюминиевые крышки, соединённые болтами. Корпус крепится к кронштейнам двигателя через проушины так, чтобы шкив находился со стороны привода.

Рассмотрим устройство элементов генератора переменного тока более детально:

  1. Статор изготавливается из стальных листов, каждая его часть сваривается или клепается так, чтобы получилось 36 пазов, которые изолируются плёнкой, либо эпоксидной смолой. Обмотка статора осуществляется между пазами;
  2. Ротор представляет из себя две разнополюсные части с клинообразными выступами, у каждой из которых имеется как минимум шесть полюсов, закреплённых на валу. В случае фиксации на концах вала закалённой цапфы и подшипников, его изготовление предполагает использование твёрдой стали, при этом шкив фиксируется при помощи резьбы и паза;
  3. Электрографитные или меднографитовые щётки имеют пружинный способ прижатия. Первый вариант с более долгим сроком эксплуатации, контактируя с кольцом, значительно снижает напряжение в цепи;
  4. Диодные мосты в виде таблеток, надёжно закреплённых на охлаждающих элементах пайкой, или силовых диодов, размещённых в пластинах, выполняют функцию отвода тепла;
  5. Выпрямление переменного тока осуществляется вспомогательным узлом диодов, заключённых в герметичный блок, который имеет подключение в виде шины. Узел защищён от короткого замыкания специальным составом;
  6. Система охлаждения генератора выполняет важную функцию, влияющую на регулировку напряжения, которая напрямую зависит от температуры окружающего воздуха. Также регулятор справляется со скачками напряжения, которые неизбежно появляются в связи с изменением числа оборотов двигателя.

Как работает автомобильный генератор?

Работа генератора невозможна без приводной силы двигателя. Индукция электродвижущей силы, возникающая в области действия магнитного поля, создаёт напряжение на полукольцах, которое снимается напрямую и далее поступает по схеме в качестве постоянного тока до конечных потребителей.

Система зажигания двигателя: 1 – генератор;
2 – выключатель зажигания;
3 – распределитель зажигания;
4 – кулачок прерывателя;
5 – свечи зажигания;
6 – катушка зажигания;
7 – аккумуляторная батарея[/caption]

Особенности расположения генератора на картере в подкапотном пространстве предполагает наличие шкивов на самом генераторе и коленчатом валу, соединённых ременной передачей. Для такого типа соединения требуется система натяжения ремня, которая осуществляется при помощи опоры.

Современные генераторы переменного тока способны давать напряжение от 7 до 28 вольт и соответствующую мощность в районе 1380 ватт, хорошим показателем КПД в этом случае будет считаться отметка в 50-60%.

Пуск двигателя ознаменовывается повышенным током статора до значений в несколько сотен ампер, поэтому все приборы и сам двигатель до установления рабочих параметров генератора работают благодаря питанию аккумуляторной батареи.

Сразу после передачи вращающегося момента на шкив генератора, вращающийся якорь начинает создавать электромагнитное поле, которое в свою очередь запускает процесс движения переменного тока с обмоток на контактные кольца, щётки, и далее через выпрямитель постоянный ток поступает на аккумулятор и приборы, нуждающиеся в электричестве. Не всегда обороты двигателя могут обеспечить достаточную мощность генератора для питания особо мощных приборов, поэтому в случае недостатка электроэнергии в дело вступает аккумулятор.

Способ подключения генератора имеет решающее значения для автомобилей с разным потреблением электричества. Если на транспортном средстве установлено мощное оборудование, используется схема подключения «Треугольник». В стандартных моделях современных автомобилей генераторы подключаются по схеме «Звезда». Выходной ток в этом случае будет в 1,7 раза меньше, чем в первом случае, но со своей работой без дополнительной нагрузки он справляется отлично.

Основные неисправности

Механические, либо электрические неисправности неизбежно возникнут на определённом сроке эксплуатации генератора, ведь любое техническое устройство подвергается износу. Несмотря на надёжность и износоустойчивость в целом, в генераторе могут случаться поломки разного характера, как внешние, так и внутренние, определить которые на ранней стадии сможет только профессионал.

  1. Аккумулятор разряжается быстрее, чем заряжается, при этом может гореть лампа разряда аккумулятора;
  2. Слабый ток на приборы, который характеризуется тусклым горением ламп;
  3. Посторонние звуки в подкапотном пространстве должны служить косвенными признаками неисправности автомобильного генератора;
  4. Характерное пищание или вой, доносящиеся из генератора.

Нет необходимости говорить, что все эти признаки должны стать причиной для проведения срочной диагностики, которая может выявить неисправность:

  • Ременно-приводной системы, либо корпуса со всеми внешними составляющими;
  • Шкива, щёток, колец, или подшипников;
  • Регулятора напряжения;
  • Обмоток ротора или статора;
  • Выпрямителя;
  • Реле.

Любая неисправность устраняется исключительно заменой на новую запчасть. Проверка генератора на наличие поломок происходит по стандартной схеме – предохранитель, корпус, ремень, проводка, ротор, кольца и щётки.

Из наиболее трудоёмких работ считается замена подшипников и ремня. Менять эти детали необходимо до наступления их критического состояния.

Обмотки ротора должны иметь сопротивление в пределах от 1,8 до 5 ом, в противном случае они подлежат замене, как и обмотки ротора, главным признаком неисправности которых являются нереальные цифры на мультиметре. Выпрямитель подлежит замене, если показания на приборе не меняются в зависимости от расположения щупов. Окисленные контакты так же повод для полной замены диодного моста.

Итог

Некоторые неисправности в генераторе определяются лишь на специализированных стендах профессиональными мастерами. Несмотря на кажущуюся простоту, генератор сложен и непредсказуем даже для опытных автолюбителей. Залог долгой и нормальной работы генератора – это своевременное обслуживание в проверенных автосервисах и замена деталей на оригинальные запчасти.

Источник https://vaznetaz.ru/

, где можно обсудить события гонки в кругу единомышленников и сообщить обо всех багах и ошибках сайта/группы ВК. Параллельно создан

Инверторные генераторы что это? Основные понятия, преимущества, область применения

01.12.15


  • Инверторный генератор (инверторная электростанция) – генераторная мини установка, вырабатывающая максимально высокое качество электричества, оптимально преобразующее его в напряжение без падений. Такие электростанции ещё называют «цифровыми электрогенераторами» за счет оснащения электронными схемами управления.
  • Инверторный электрогенератор используется для подключения электроники или чувствительной техники в отсутствие центрального электроснабжения. Инверторную электро станцию можно смело рекомендовать как резервный генератор для дачи, так и для путешествий, мелких ремонтных работ.

Кто и как использует инверторный генератор?



  • Рыбаки, охотники, туристы, музыканты, путешественники, дачники — потому, что компактные и тихие.
  • В гараже или в дороге пригодится для питания ламп и мощных фонарей, электроплиток, радиоприемников. У Вас появится возможность заряжать свои смартфоны и ноутбуки, не заводя машину. Инверторный генератор питает бытовые домашние приборы и электроинструмент, используется в загородных поездках – генератор для активного отдыха.

Почему выгодно использовать инверторный генератор?


Основные преимущества инверторных электрогенераторов – это их компактность, благодаря небольшому размеру и весу; мобильность (портативные станции), а также, снабжение током высокого качества , благодаря инверторной технологии электростанции, которое необходимо для подключения электронных приборов, требующих идеальной электроподачи без перебоев.

Именно эти качества наиболее востребованы в походных условиях, на рыбалке, охоте, на даче, в мастерских, для различных спасательных служб и т.д. Особенно незаменим инверторный генератор для подключения электронных гаджетов, медицинского оборудования и другой техники жизнеобеспечения в полевых, походных и различных экстремальных условиях, где нет возможности запитаться от центральной электросети. В быту такие станции также находят незаменимое применение. Инверторный генератор для дачи поможет снабдить резервным электричеством в моменты отключения света. В путешествии такая электростанция может стать хорошим помощником (зарядить компьютер, телефон, подключить освещение, электроплитку и другие приборы без использования стабилизатора). Благодаря своему компактному размеру и весу (станция почти в 2 раза легче традиционного портативного генератора), инверторный генератор удобно поместится в багажнике машины.

Важный аспект инверторной станции – это тихая работа генератора, за счёт усиленных шумоглушителей, а также, шумопоглащающих кожухов, конструкции которых специально разработаны для супер тихой эксплуатации генераторной установки.

Какие главные критерии при выборе инвертора?

Основными критериями при выборе инверторного генератора являются: мощность и производитель.

Современный рынок силовой техники предлагает огромный ассортимент генераторного оборудования различного ценового диапазона. Наш совет, не стоит стремиться за покупкой самого дешёвого генератора. Многие производители для удешевления своей продукции, используют самые низкокачественные комплектующие, которые в свою очередь также изготовлены из самых низкосортных материалов, имеющих очень малый ресурс и непродолжительный срок использования. Такие станции могут подвести Вас в самый неподходящий момент!

Как определить мощность инверторного генератора?


Для определения необходимой мощности инверторного генератора, Вам нужно продумать , какие приборы будут подключаться одновременно. К примеру, Вам в поездке необходимо подключить компьютер (500 Вт) + 2 лампочки (60 Вт х2) + запас мощности 50% = 832 Вт. Не забудьте взять с собой удлинитель и тройник. Важно! При подключении техники через удлинитель, Вам необходимо учитывать ещё запас мощности 10% на удлинитель до 3 м. Итого: 915 Вт. Вам потребуется инверторный генератор 1 кВт.



Разделы / Помощь в выборе генераторов и электростанций

Электрический генератор. Основное оборудование электрических станций и подстанций.

Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.



Устройство и принцип работы генератора переменного тока

Генератор тока— это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В прошлой статье Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы  и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях .

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея— электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении  электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из  двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Блок автоматики и управления следит за работой электростанции и  при необходимости корректирует и защищает в аварийных ситуациях.

В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.

Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».

Электрогенератор

| инструмент | Британника

электрический генератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый при сжигании ископаемого топлива или в результате ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Encyclopædia Britannica, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрические машины — Генераторы — Описание и применение

Первичный источник всей электроэнергии в мире вырабатывается трехфазными синхронными генераторами, использующими машины с номинальной мощностью до 1500 МВт или более. Хотя разнообразие электрических генераторов не так велико, как большое разнообразие доступных электродвигателей, они подчиняются схожим правилам проектирования, и большинство принципов работы, используемых в электродвигателях различных классов, также применимы к электрическим генераторам.Подавляющее большинство генераторов — это машины переменного тока (генераторы переменного тока) с меньшим количеством генераторов постоянного тока (динамо).

Для большинства генераторов требуется какой-то способ управления выходным напряжением, а в случае машин переменного тока — метод управления частотой. Регулирование напряжения и частоты обычно осуществляется в очень больших машинах, несущих очень высокие токи, путем управления возбуждением генератора и скоростью первичного двигателя, который приводит в действие генератор.

Как и в случае с электродвигателями, максимальная мощность генератора определяется его максимально допустимой температурой.

Регулировка напряжения и частоты верна для незначительных отклонений в выходной мощности генератора, как указано выше, но большие изменения в нагрузке (токе) могут быть компенсированы только путем регулировки крутящего момента первичного двигателя, приводящего в действие генератор, поскольку обычно в электрических машинах крутящий момент пропорционально току или наоборот.

  • Стационарный полевой синхронный генератор переменного тока
  • В генераторе стационарного поля статор в виде фиксированных постоянных магнитов (или электромагнитов, питаемых постоянным током) создает магнитное поле, и в обмотках ротора генерируется ток.

    Когда катушка ротора вращается с постоянной скоростью в поле между полюсами статора, ЭДС, генерируемая в катушке, будет приблизительно синусоидальной, фактическая форма волны зависит от размера и формы магнитных полюсов. Пиковое напряжение возникает, когда движущийся проводник проходит центральную линию магнитного полюса. Он уменьшается до нуля, когда проводник находится в пространстве между полюсами, и увеличивается до пика в противоположном направлении, когда проводник приближается к центральной линии противоположного полюса магнита.Частота сигнала прямо пропорциональна скорости вращения. Величина волны также пропорциональна скорости до тех пор, пока магнитная цепь не насыщается, когда скорость увеличения напряжения при увеличении скорости резко замедляется.

    • Скорость и частота генератора
    • Выходная частота пропорциональна количеству полюсов на фазу и скорости ротора так же, как у синхронного двигателя.См. Таблицу скорости двигателя.

    Выход переменного тока, генерируемый в роторе, может быть подключен к внешним цепям через контактные кольца и не требует коммутатора.

    Типичное применение — портативные генераторы переменного тока с выходной мощностью до 5 киловатт.

    Небольшие недорогие устройства, такие как домашние ветряные генераторы, обычно предназначены для работы на высокой скорости.Для заданных требований к управляемой мощности чем выше скорость, тем ниже требуемый крутящий момент. Это означает, что генератор может быть меньше и легче. Кроме того, высокоскоростному генератору требуется меньше полюсов, что упрощает конструкцию и снижает затраты.

  • Синхронный генератор переменного тока с вращающимся полем
  • Допустимая мощность щеточной машины обычно ограничена пропускной способностью токопроводящих колец в машине переменного тока (или даже в большей степени коммутатором в машине постоянного тока).Поскольку ток нагрузки генератора обычно намного выше, чем ток возбуждения, обычно желательно использовать ротор для создания поля и отключения питания генератора от статора, чтобы минимизировать нагрузку на контактные кольца.

    Путем замены неподвижных и подвижных элементов в приведенном выше примере создается генератор вращающегося поля, в котором вместо этого ЭДС генерируется в обмотках статора. В этом случае, в простейшей форме, поле создается постоянным магнитом (или электромагнитом), который вращается внутри фиксированной проволочной петли или катушки в статоре.Движущееся магнитное поле из-за вращающегося магнита ротора затем вызовет синусоидальный ток, протекающий в неподвижной катушке статора, когда поле движется мимо проводников статора. Если поле ротора создается электромагнитом, ему потребуется возбуждение постоянного тока, подаваемого через контактные кольца. Коммутатор не нужен.

    Если вместо одной катушки используются три независимых катушки или обмотки статора, разнесенные на 120 градусов по периферии машины, то на выходе этих обмоток будет трехфазный переменный ток.

    • Генератор обмоток серии
    • Классифицируются как генераторы с постоянной частотой вращения, они плохо регулируют напряжение и мало используются.

    • Шунтирующий генератор
    • Классифицируется как генератор постоянного напряжения, выходным напряжением можно управлять путем изменения тока возбуждения.У них достаточно хорошее регулирование напряжения во всем диапазоне скоростей машины.

    • Бесщеточное возбуждение
    • Машины с вращающимся полем используются на электростанциях большой мощности в большинстве национальных электросетевых систем мира. Мощность возбуждения поля, необходимая для этих огромных машин, может достигать 2,5% выходной мощности (25 кВт в 1.0 МВт), хотя это уменьшается по мере того, как эффективность увеличивается с увеличением размера, так что генератору 500 МВт требуется 2,5 МВт (0,5%) мощности возбуждения. Если напряжение возбуждения составляет 1000 Вольт, требуемый ток возбуждения будет 2500 Ампер. Обеспечение такого возбуждения с помощью контактных колец представляет собой техническую проблему, которую удалось преодолеть путем выработки необходимой мощности внутри самой машины с помощью пилотного трехфазного стационарного генератора поля на том же валу. Переменный ток, генерируемый в обмотках пилотного генератора, выпрямляется и подается непосредственно на обмотки ротора для возбуждения основной машины.

    • Охлаждение
      КПД очень большого генератора может достигать 98% или 99%, но для генератора мощностью 1000 МВт потеря эффективности всего на 1% означает, что необходимо рассеять 10 мегаватт потерь, в основном в виде тепла. Чтобы избежать перегрева, необходимо соблюдать особые меры предосторожности при охлаждении, и обычно одновременно используются два вида охлаждения. Охлаждающая вода циркулирует через медные стержни в обмотках статора, а водород проходит через корпус генератора.Преимущество водорода состоит в том, что его плотность составляет всего около 7% от плотности воздуха, что приводит к меньшим потерям на ветер из-за того, что ротор взбивает воздух в машине, а его теплоемкость в 10 раз больше, чем у воздуха, что обеспечивает превосходный отвод тепла.
  • Генераторы переменного тока с постоянными магнитами
  • Меньшие версии обеих вышеперечисленных машин могут использовать постоянные магниты для создания магнитного поля машины, и поскольку для создания поля не используется энергия, это означает, что машины проще и эффективнее.Однако недостатком является то, что нет простого способа управления такими машинами. Синхронные генераторы с постоянными магнитами (PMSG) обычно используются в недорогих «генераторных установках» для обеспечения аварийного питания.

    Выходное напряжение и частота генератора с постоянными магнитами пропорциональны скорости вращения, и хотя это может не быть проблемой для приложений, работающих от механических приводов с фиксированной скоростью, для многих приложений, таких как ветряные турбины, требуется фиксированное выходное напряжение и частота, но приводятся в действие первичными двигателями с регулируемой скоростью.В этих случаях могут потребоваться сложные системы управления с обратной связью или внешнее регулирование мощности для обеспечения желаемого стабилизированного выхода.

    Обычно выходной сигнал выпрямляется, а изменяющееся выходное напряжение подается через промежуточный контур на повышающий-понижающий стабилизатор, который обеспечивает фиксированное напряжение, соединенное с инвертором, обеспечивающим фиксированную выходную частоту.

  • Генераторы переменного / переключаемого сопротивления
  • Генератор, аналогичный по конструкции вентилируемому реактивному двигателю, представляет собой машину с двумя выступами без магнитов и щеток.Поскольку инертные железные полюса ротора генератора реактивного сопротивления проходят мимо полюсов статора, изменяющееся сопротивление магнитной цепи генератора сопровождается соответствующим изменением индуктивности полюсов статора, что, в свою очередь, вызывает индуцирование тока в цепи. обмотки статора. Таким образом, на каждом полюсе статора появляется импульсный сигнал. В многофазных машинах выходные сигналы каждой фазы подаются на преобразователь, который последовательно переключает каждую фазу на звено постоянного тока, чтобы обеспечить напряжение постоянного тока.Системе требуется определение положения на валу ротора для управления синхронизацией срабатывания переключателей преобразователя. Эти датчики положения также позволяют контролировать ток, изменяя углы включения и выключения выходного тока в зависимости от положения ротора. Как и в случае с генератором на постоянных магнитах, повышающие-понижающие регуляторы также используются для управления выходом.

    К сожалению, машина не является самовозбуждающей по своей природе, и для запуска были приняты различные методы, в том числе обеспечение постоянного тока возбуждения от резервной батареи через обмотки статора во время запуска или использование небольших постоянных магнитов, встроенных в некоторые полюсов ротора.

    • Характеристики
    • Компактная, прочная конструкция.

      Работа с переменной скоростью.

      Фазы генератора полностью независимы.

      Недорого в изготовлении.

      Поскольку они имеют простые инертные роторы без обмоток или встроенных магнитов, они могут приводиться в движение с очень высокой скоростью и могут работать в условиях высоких температур окружающей среды.

      Подходит для конструкций мощностью до мегаватт и скоростью более 50 000 об / мин.

    • Приложения
    • Системы привода гибридных электромобилей (HEV), автомобильные стартер-генераторы, вспомогательная электроэнергетика для самолетов, ветряные генераторы, высокоскоростные газотурбинные генераторы.

      См. Также Встроенный стартер-генератор

  • Индукционные генераторы
  • Асинхронные генераторы — это, по сути, асинхронные двигатели, скорость вращения которых немного превышает синхронную скорость, связанную с частотой питающей сети.См. Объяснение того, как работают асинхронные двигатели, на странице «Двигатели переменного тока». Однако индукционные генераторы не имеют средств производства или генерации напряжения, если они не подключены к внешнему источнику возбуждения. Конструкция с короткозамкнутым ротором используется для малой энергетики, поскольку она проста, прочна и недорога в производстве.

    Как и в случае с асинхронным двигателем, когда обмотки статора многофазного индукционного генератора подключены к сети переменного тока, под действием трансформатора напряжение индуцируется в обмотках ротора или проводящих стержнях ротора с короткозамкнутым ротором с частота этого индуцированного напряжения в роторе равна частоте приложенного напряжения статора.Когда отдельные обмотки ротора закорочены или соединены друг с другом через внешний импеданс (проводящие стержни ротора с короткозамкнутым ротором уже замкнуты накоротко), через катушки протекает большой ток, создающий магнитное поле, которое по закону Ленца имеет полярность, противоположную полю статора. Это заставляет ротор вращаться, увлекаемый магнитным притяжением за вращающимся полем, созданным статором. Величина крутящего момента на роторе зависит от величины относительной скорости между вращающимся ротором и вращающимся полем, создаваемым статором, обычно называемым скольжением.Таким образом, ротор ускоряется до синхронной скорости, установленной частотой питания сети, достигая максимума, когда величина индуцированного тока ротора и крутящего момента уравновешивают приложенную нагрузку, в то же время частота токов, индуцируемых в роторе. обмотки уменьшены в соответствии с частотой скольжения. Но чем быстрее вращается ротор, тем меньше результирующая относительная разница скоростей между корпусом ротора и вращающимся полем статора или скольжение и, следовательно, напряжение, индуцированное в обмотке ротора.Когда ротор приближается к синхронной скорости, его крутящий момент уменьшается в соответствии со скольжением, уменьшая ускорение, поскольку ослабляющее магнитное поле ротора недостаточно для преодоления потерь на трение ротора в режиме холостого хода. В результате ротор продолжает вращаться медленнее, чем синхронная скорость. Это означает, что в двигательном режиме асинхронная машина никогда не сможет достичь своей синхронной скорости, потому что на этой скорости не будет тока, индуцированного в короткозамкнутом роторе, магнитного поля и, следовательно, крутящего момента.

    Однако в режиме генератора статор по-прежнему подключен к сети, обеспечивающей необходимое вращающееся поле, но вал ротора приводится в движение внешними средствами со скоростью, превышающей синхронную скорость, так что электромагнитные реакции меняются на противоположные, поскольку ротор будет вращаться быстрее. чем вращающееся магнитное поле статора, так что полярность скольжения меняется на противоположную, а полярность напряжения и тока, индуцируемых в роторе, также меняется на противоположную.В то же время под действием трансформатора ток в роторе будет индуцировать ток в катушках статора, которые теперь обеспечивают выходную энергию генератора на нагрузку. По мере увеличения скорости ротора выше синхронной скорости индуцированное напряжение и ток в стержнях ротора и катушках статора будут увеличиваться по мере того, как относительная скорость между ротором и вращающимся полем статора и, следовательно, увеличивается скольжение. Это, в свою очередь, потребует более высокого крутящего момента для поддержания вращения.

    Выходное напряжение генератора регулируется величиной тока возбуждения.

    Следующая диаграмма иллюстрирует характеристики многофазной асинхронной машины, когда она сконфигурирована как двигатель или как генератор.

    Поскольку ток ротора пропорционален относительному движению между вращающимся полем статора и скоростью ротора, известному как «скольжение», ток ротора и, следовательно, крутящий момент прямо пропорциональны скольжению в стабильной рабочей области вокруг синхронной скорость машины и частота тока ротора такая же, как частота скольжения.

    При синхронной скорости скольжение равно нулю, и электричество не будет потребляться двигателем или производиться генератором. Хотя обе машины работают на скоростях в пределах нескольких процентов от синхронной скорости, они являются асинхронными машинами.

    Увеличение нагрузки на генератор снижает его скорость и, следовательно, его выходную частоту, в то время как увеличение крутящего момента на приводном валу увеличивает его скорость и выходную частоту. Уменьшение нагрузки и крутящего момента имеет противоположный эффект.

    • Индукционный генератор с фиксированной скоростью
    • Асинхронные генераторы с фиксированной скоростью, подобные описанному выше, на самом деле работают в небольшом диапазоне скоростей, связанном с проскальзыванием генератора. Они получают возбуждение от электросети и могут работать только параллельно с этим источником. При использовании в сети они подходят для возврата энергии в сеть, из которой они получают ток возбуждения, но бесполезны в качестве резервных генераторов, когда электрическая сеть выходит из строя.Их ограниченный диапазон скоростей ограничивает возможные применения.

    • Самовозбуждающийся индукционный генератор с регулируемой скоростью (SEIG)
    • Маломасштабные системы производства электроэнергии довольно часто представляют собой автономные приложения, удаленные от электросети, в которых в качестве источника энергии используются сильно колеблющиеся источники энергии, такие как энергия ветра и воды. Индукционный генератор с фиксированной скоростью не подходит для таких применений.Индукционным генераторам с регулируемой скоростью требуется некоторая форма самовозбуждения, а также регулировка мощности, чтобы иметь возможность практического использования их нерегулируемого выходного напряжения и частоты.

      • Эксплуатация
      • Самовозбуждение достигается подключением конденсаторов к клеммам статора генератора. При возбуждении от внешнего первичного двигателя в катушках статора будет индуцироваться небольшой ток, поскольку магнитный поток из-за остаточного магнетизма в роторе разрезает обмотки, и этот ток заряжает конденсаторы.Когда ротор вращается, поток, пересекающий обмотки статора, будет меняться в противоположном направлении, поскольку ориентация остаточного магнитного поля изменяется вместе с ротором. Индуцированный ток в этом случае будет иметь противоположное направление и будет стремиться к разрядке конденсаторов. В то же время заряд, высвобождаемый из конденсаторов, будет стремиться усилить ток, увеличивая магнитный поток в машине. Поскольку ротор продолжает вращаться, наведенная ЭДС и ток в обмотках статора будет продолжать расти до тех пор, пока установившееся состояние достигается в зависимости от насыщения магнитной цепи в машине.В этой рабочей точке напряжение и ток будут продолжать колебаться при заданном пиковое значение и частота определяются характеристиками машины, воздушным зазором, скольжением, нагрузкой и выбором размеров конденсатора. Комбинация этих факторов устанавливает максимальные и минимальные пределы диапазона скоростей, в котором происходит самовозбуждение. В рабочее скольжение обычно невелико и изменение частоты зависит от рабочей скорости диапазон.

        Если генератор перегружен, напряжение будет быстро разрушаются (см. диаграмму выше), обеспечивая некоторую встроенную самозащиту.

      • Контроль
      • При работе с регулируемой частотой вращения индукционному генератору требуется преобразователь частоты для адаптации выходной частоты переменного тока генератора к фиксированной частоте приложения или электросети.Во время работы в самовозбуждающемся индукционном генераторе есть только контролируемый фактор, влияющий на выходную мощность, — это механический вход от первичного двигателя, поэтому система не поддается эффективному управлению с обратной связью. Для обеспечения регулируемого выходного напряжения и частоты внешний AC / DC / AC конвертеры требуются. Трехфазный диодный мост используется для выпрямления выходного тока генератора, обеспечивая звено постоянного тока на трехфазный тиристорный инвертор, который преобразует мощность от Линия постоянного тока на необходимое напряжение и частоту.

      См. Также примеры и описание асинхронных индукционных генераторов с двойным питанием (DFIG) и линейного управления частотой синхронного генератора с фиксированной скоростью, которые используются для обеспечения регулируемой частоты и напряжения на выходе с регулируемым крутящим моментом и приводами с регулируемой скоростью в применениях ветряных генераторов.

    Пульсации выходного напряжения можно минимизировать, используя многополюсные конструкции.

    Конструкция генератора постоянного тока очень похожа на конструкцию двигателя постоянного тока.

    Ротор состоит из электромагнита, обеспечивающего возбуждение поля. Ток к ротору поступает от статора или, в случае очень больших генераторов, от отдельного возбудителя, вращающегося на том же валу ротора. Подключение к ротору осуществляется через коммутатор, так что направление тока в обмотках статора меняет направление, когда полюса ротора проходят между чередующимися северным и южным полюсами статора.Ток ротора очень мал по сравнению с током в обмотках статора, и большая часть тепла рассеивается в более массивной конструкции статора.

    В самовозбуждающихся машинах при запуске из состояния покоя ток для запуска электромагнитов происходит из небольшого остаточного магнетизма, который существует в электромагнитах и ​​окружающей магнитной цепи.

    Автомобильный генератор — это машина переменного тока с регулируемой скоростью, обеспечивающая постоянный выходной сигнал фиксированного уровня.

    Типичный генератор представляет собой самовозбуждающую машину переменного тока.Используя генератор переменного тока, а не генератор постоянного тока, можно избежать использования коммутатора и его потенциальных проблем с надежностью. Однако постоянный ток требуется для всех нагрузок в автомобиле, включая аккумулятор, и, кроме того, выходное напряжение постоянного тока должно быть постоянным независимо от частоты вращения двигателя или текущей нагрузки. Поэтому система зарядки должна включать в себя выпрямитель для преобразования переменного тока в постоянный и регулятор для поддержания генерируемого напряжения в проектных пределах независимо от частоты вращения двигателя.

    Ротор приводится в движение двигателем и обеспечивает возбуждение поля. Его скорость напрямую связана с частотой вращения двигателя и зависит от передаточных чисел зубчатой ​​передачи или приводных шкивов. Выходной ток снимается со статора.

    Автомобильные генераторы переменного тока обычно представляют собой трехфазные машины для обеспечения компактной конструкции и в то же время снижения тока в обмотках статора путем распределения его между тремя наборами обмоток. Это также снижает пульсации напряжения после выпрямления.

    Генератор | Encyclopedia.com

    Принцип работы

    Генераторы переменного тока

    Коммерческие генераторы

    Генераторы постоянного тока

    Ресурсы

    Генератор — это машина, с помощью которой механическая энергия преобразуется в электрическую. Генераторы можно разделить на две основные категории, в зависимости от того, является ли производимый ими электрический ток переменным (AC) или постоянным (DC) током. Оба типа генераторов работают по одному и тому же основному принципу, хотя детали их конструкции различаются.Генераторы также можно классифицировать по источнику механической энергии (или первичному двигателю), которым они приводятся в действие, например, по мощности воды или пара.

    Научный принцип, на котором работают генераторы, был открыт почти одновременно примерно в 1831 году английским химиком и физиком Майклом Фарадеем (1791–1867) и американским физиком Джозефом Генри (1797–1878). Представьте, что катушка с проволокой помещена в магнитное поле, а концы катушки присоединены к некоторому электрическому устройству, например, измерителю тока.Если катушка вращается в магнитном поле, измеритель тока показывает, что в катушке наведен ток. Величина индуцированного тока зависит от трех факторов: силы магнитного поля, длины катушки и скорости, с которой катушка движется в поле.

    На самом деле, не имеет значения, вращается ли катушка в магнитном поле или магнитное поле заставляет вращаться вокруг катушки. Важным фактором является то, что провод и магнитное поле движутся по отношению друг к другу.Как правило, большинство генераторов постоянного тока имеют стационарное магнитное поле и вращающуюся катушку, в то время как большинство генераторов переменного тока имеют стационарную катушку и вращающееся магнитное поле.

    В электрическом генераторе вышеупомянутый измеритель тока должен быть заменен каким-либо электрическим устройством. Например, в автомобиле электрический ток от генератора используется для управления фарами, автомобильным радиоприемником и другими электрическими системами в автомобиле

    . Концы катушки прикрепляются не к гальванометру, а к контактным кольцам или собирающим кольцам.Каждое контактное кольцо, в свою очередь, прикреплено к щетке, через которую электрический ток передается от контактного кольца во внешнюю цепь.

    Когда металлическая катушка проходит через магнитное поле в генераторе, вырабатываемая электрическая мощность постоянно изменяется. Сначала генерируемый электрический ток движется в одном направлении (слева направо). Затем, когда катушка достигает положения, параллельного магнитным силовым линиям, ток вообще не возникает. Позже, когда катушка продолжает вращаться, она прорезает магнитные силовые линии в противоположном направлении, и генерируемый электрический ток распространяется в противоположном направлении (справа налево).

    Таким образом, вращающаяся катушка в фиксированном магнитном поле описанного здесь типа будет производить переменный ток, который течет в одном направлении в течение некоторого момента времени, а затем в противоположном направлении в следующий момент времени. Скорость, с которой ток переключается вперед и назад, называется его частотой. Например, ток, используемый для большинства бытовых устройств, составляет 60 герц (60 циклов в секунду).

    КПД генератора можно повысить, заменив описанную выше проволочную катушку якорем.Якорь состоит из цилиндрического железного сердечника, вокруг которого намотан длинный кусок проволоки. Чем длиннее кусок провода, тем больший электрический ток может генерировать якорь.

    Одним из наиболее важных практических применений генераторов является производство большого количества электроэнергии для промышленного и бытового использования. Двумя наиболее распространенными первичными двигателями, используемыми в генераторах переменного тока, являются вода и пар. Оба этих первичных двигателя могут приводить в движение генераторы на очень высоких скоростях вращения, при которых они работают наиболее эффективно, обычно не менее 1500 оборотов в минуту.

    Гидроэнергетика (энергия, обеспечиваемая проточной водой, как в больших реках) является особенно привлекательным источником энергии, поскольку ее производство ничего не стоит. Однако у него есть недостаток, заключающийся в том, что должны быть построены довольно прочные надстройки, чтобы использовать механическую энергию движущейся воды и использовать ее для приведения в действие генератора.

    Промежуточным устройством, необходимым для выработки гидроэлектроэнергии, является турбина. Турбина состоит из большого центрального вала, на котором установлен ряд лопаток в форме вентилятора.Когда движущаяся вода ударяется о лопасти, она

    КЛЮЧЕВЫЕ УСЛОВИЯ

    Переменный ток —Электрический ток, который течет сначала в одном направлении, затем в другом; сокращенно AC.

    Якорь — часть генератора, состоящая из железного сердечника, вокруг которого намотана проволока.

    Коммутатор — Разъемное кольцо, которое служит для изменения направления электрического тока в генераторе на противоположное.

    Постоянный ток (DC) —Электрический ток, который всегда течет в одном и том же направлении.

    Первичный двигатель —Источник энергии, приводящий в действие генератор.

    Контактное кольцо — устройство в генераторе, которое обеспечивает соединение между якорем и внешней цепью.

    приводит во вращение центральный вал. Если центральный вал затем присоединяется к очень большому магниту, он заставляет магнит вращаться вокруг центрального якоря, генерируя электричество, которое затем может передаваться для промышленных и жилых помещений.

    Электрогенерирующие установки также обычно работают на пару.На таких установках сжигание угля, нефти или природного газа или энергия, полученная из ядерного реактора, используется для кипячения воды. Произведенный таким образом пар затем используется для привода турбины, которая, в свою очередь, приводит в движение генератор.

    Генератор переменного тока может быть модифицирован для производства электроэнергии постоянного тока (DC). Для замены требуется коммутатор. Коммутатор — это просто контактное кольцо, разрезанное пополам, причем обе половины изолированы друг от друга. Щетки, прикрепленные к каждой половине коммутатора, расположены так, что в момент изменения направления тока в катушке они скользят от одной половины коммутатора к другой.Следовательно, ток, который течет во внешнюю цепь, всегда течет в одном и том же направлении.

    См. Также Электромагнитное поле; Электрический ток; Электроснабжение; Эффект Фарадея.

    КНИГИ

    Маколей, Дэвид и Нил Ардли. Как все работает . Бостон: Компания Houghton Mifflin, 2004.

    Гросс, Чарльз А. Электрические машины. Нью-Йорк: CRC, 2006.

    Дэвид Э. Ньютон

    Синхронный генератор — обзор

    9.3.1 Синхронные генераторы

    Синхронные генераторы особенно используются в прямых приводах (т. Е. Без механического умножителя). Синхронные генераторы очень выгодны, когда они имеют большое количество полюсов, однако в этом случае частота становится несовместимой с частотой сети, поэтому требуется инвертор. Следовательно, все машины с прямым приводом имеют регулируемую скорость. На рис. 9.20 показана базовая структура WECS на основе синхронного генератора с постоянными магнитами (PMSG).

    Рисунок 9.20. Синхронный генератор (с фазным ротором) и преобразователь частоты.

    Синхронные генераторы с прямым приводом имеют индуктор (ротор) и требуют щеточных колец для подачи постоянного тока. PMSG становятся все более и более популярными для приложений с регулируемой скоростью и, как ожидается, будут приобретать все большее значение в будущем.

    Аэродинамическая ось ротора ветряной турбины и генератора могут быть соединены напрямую (т. Е. Без редуктора). В этом случае генератор представляет собой многополюсный синхронный генератор, рассчитанный на малую скорость.В качестве альтернативы они могут быть соединены через коробку передач, что позволяет использовать генератор с большим числом полюсов. Для работы с переменной скоростью синхронный генератор подключается к сети через два преобразователя мощности для регулировки частоты, которая полностью разделяет скорость генератора и частоту сети. Следовательно, частота генератора будет изменяться в зависимости от скорости ветра, тогда как частота сети останется постоянной.

    Система силового преобразователя состоит из двух преобразователей, со стороны сети и со стороны генератора, соединенных между собой промежуточным звеном постоянного тока.

    Основным недостатком этого метода является размер двунаправленного преобразователя, который должен соответствовать мощности генератора переменного тока. Кроме того, необходимо устранить искажения, вызванные гармониками из-за двунаправленного преобразователя, с помощью системы фильтров. Другой недостаток состоит в том, что многополюсная машина требует большого количества полюсов, что увеличивает размер машины по сравнению с генераторами с трансмиссионной муфтой.

    Управление активной и реактивной мощностью для PMSG было изучено в работах.[22–28]. В исх. В [22] автор предложил метод управления ветроэнергетической системой, которая подключена к ГЭС в условиях неисправности сети. Авторы предложили использовать конденсатор на стороне постоянного тока для кратковременного накопления энергии для компенсации колебаний крутящего момента и скорости, а также для обеспечения стабильной работы ветряной турбины при сбоях в сети. Автор в работе Ref. [23] предложили стратегию управления током, чтобы ограничить сетевой ток, подаваемый на инвертор, и снизить выходную мощность машины во время сбоев в сети.

    Стратегия инверторного управления ветроэнергетической системой на основе PMSG при несимметричном трехфазном напряжении была изучена в работе. [24]. Ток короткого замыкания обратной последовательности раскладывается и добавляется к току, рассчитанному контуром фазовой автоподстройки частоты (ФАПЧ). Этот метод управления обеспечивает трехфазный синусоидальный сбалансированный ток для стороны сети, однако управление напряжением промежуточного контура не рассматривается. Модель, предложенная в [5]. [25–27] не учитывает обмен энергией с индукторами. Таким образом, для случая сильно разбалансированной системы или для системы с высоким значением индуктивности этот метод не эффективен.В исх. В [28] автор предложил стратегию управления с двумя режимами настройки для раздельного управления током короткого замыкания прямой и обратной последовательности. В первом режиме достигаются сбалансированные токи на стороне сети, а во втором режиме уменьшаются пульсации напряжения промежуточного контура при несимметричных условиях сети.

    Используя преобразование Парка, фактическое напряжение и ток статора преобразуются в их эквиваленты d – q , как показано на рис. 9.21.

    Рисунок 9.21. Парковая модель синхронной машины.

    Величины статора выражаются в системе отсчета Парка, связанной с ротором:

    (9.12) {vsd = Rsisd + dφsddt − ωgφsqvsq = Rsisq + dφsqdt − ωgφsd

    Аналогично, потоки статора:

    (

    )

    φsd = Ldisd + φfφsq = Lqisq

    L d и L q являются составляющими индуктивности на прямой и квадратурной оси. Предполагается, что у станка гладкие полюса, поэтому L d = L q , а φ f представляет собой взаимный поток.

    Подставляя уравнение. (9.12) в уравнение. (9.13) дает:

    (9.14) {vsd = Rsisd + Lddisddt − ωgLqisqvsq = Rsisq + Lqdisqdt + ωg (Ldisd + φsd)

    Произведенный электромагнитный момент равен:

    (9.15) Tem = 3 Lq ( ) isdisq + φfisq)

    Окончательные формы уравнений PMSG в системе отсчета d q следующие:

    (9.16) {disddt = −RsLdisd + LqLdωgisq + 1Ldvsddisqdt = + LdLφsqisqs = 32P ((Ld − Lq) isdisq + φfisq) Tem − Tm − fΩg = JdΩgdt

    Бесплатная машина для цитирования: точная и простая в использовании

    Как мне цитировать мои источники с помощью машины цитирования Cite This For Me?

    Генератор цитирования

    Cite This For Me является наиболее точной из имеющихся машин цитирования, поэтому независимо от того, не знаете ли вы, как отформатировать цитаты в тексте, или ищете надежное решение для автоматизации полностью отформатированного списка цитируемых работ, эта машина цитирования будет решить все ваши потребности в реферировании.

    Ссылка на исходный материал не только предохраняет вас от потери ценных оценок за плагиат, но и предоставляет всю информацию, которая поможет вашему читателю найти для себя книгу, статью или другой элемент, который вы цитируете. Доступный интерфейс этого конструктора цитирования позволяет легко идентифицировать использованный вами источник — просто введите его уникальный идентификатор в строку поиска машины цитирования. Если эта информация недоступна, вы можете вместо этого выполнить поиск по названию или автору, а затем выбрать из результатов поиска, которые появляются под генератором цитирования.

    Хорошая новость заключается в том, что с помощью таких инструментов, как Cite This For Me, которые помогут вам работать эффективнее, вам не нужно ограничивать свое исследование источниками, на которые обычно ссылаются. Фактически, нет никаких ограничений на то, на что вы можете ссылаться, будь то видео YouTube, веб-сайт или твит.

    Чтобы использовать генератор, указанный в работе, просто:

    • Выберите один из стилей APA, MLA, Chicago, ASA, IEEE или AMA *.
    • Выберите тип источника, который вы хотите процитировать (например, веб-сайт, книга, журнал, видео).
    • Введите URL , DOI, ISBN, название или другую уникальную информацию об источнике в генератор цитирования, чтобы найти свой источник.
    • Нажмите кнопку «Cite» на машине для цитирования.
    • Скопируйте новую ссылку из генератора цитирования в библиографию или список цитируемых работ.
    • Повторите эти действия для каждого источника, внесшего свой вклад в вашу работу.

    * Если вам требуется другой стиль ссылок для вашей статьи, эссе или другой академической работы, вы можете выбрать один из более чем 1000 стилей, создав бесплатную учетную запись Cite This For Me.

    Создав учетную запись Cite This For Me, вы сможете использовать машину для цитирования для создания нескольких ссылок и сохранения их в проекте. Используйте высоко оцененные приложения для iOS или Android, чтобы мгновенно создавать ссылки с помощью камеры смартфона, экспортировать всю библиографию за один раз и многое другое.

    Основная конструкция и работа генератора постоянного тока.

    Генератор постоянного тока

    Генератор постоянного тока — это электрическая машина, преобразующая механическую энергию в электричество постоянного тока .Это преобразование энергии основано на принципе создания динамически индуцированной ЭДС. В этой статье описывается базовая конструкция и работа генератора постоянного тока .

    Конструкция машины постоянного тока:

    Примечание: Теоретически генератор постоянного тока можно использовать в качестве двигателя постоянного тока без каких-либо конструктивных изменений, и наоборот. Таким образом, генератор постоянного тока или двигатель постоянного тока можно в широком смысле назвать машиной постоянного тока . Эти основные конструктивные особенности также действительны для конструкции двигателя постоянного тока .Следовательно, давайте назовем эту точку конструкцией машины постоянного тока , а не просто «конструкцией генератора постоянного тока».

    На приведенном выше рисунке показаны детали конструкции простой 4-полюсной машины постоянного тока . Машина постоянного тока состоит из двух основных частей; статор и ротор. Основные конструктивные части машины постоянного тока описаны ниже.

    1. Хомут: Внешняя рама машины постоянного тока называется хомутом. Он сделан из чугуна или стали. Он не только обеспечивает механическую прочность всей сборки, но и переносит магнитный поток, создаваемый обмоткой возбуждения.
    2. Столбы и полюсные наконечники: Столбы соединяются с ярмом с помощью болтов или сварки. Они несут обмотки возбуждения и к ним крепятся полюсные наконечники. Полюсные туфли служат двум целям; (i) они поддерживают катушки возбуждения и (ii) равномерно распределяют поток в воздушном зазоре.
    3. Обмотка возбуждения: Обычно они изготавливаются из меди. Катушки возбуждения предварительно намотаны и размещены на каждом полюсе и соединены последовательно. Они намотаны таким образом, что под напряжением образуют чередующиеся северный и южный полюса.
    4. Сердечник якоря (ротор)
    5. Сердечник якоря: Сердечник якоря — это ротор машины постоянного тока. Он имеет цилиндрическую форму с прорезями для размещения обмотки якоря. Якорь состоит из тонких многослойных круглых стальных дисков для уменьшения потерь на вихревые токи. Он может быть снабжен воздуховодами для осевого воздушного потока с целью охлаждения. Якорь прикреплен к валу шпонкой.
    6. Обмотка якоря: Обычно это бывшая намотанная медная катушка, которая находится в пазах якоря.Жилы якоря изолированы друг от друга, а также от сердечника якоря. Обмотку якоря можно намотать одним из двух способов; намотка внахлест или волновая намотка. Обычно используются двухслойные нахлесточные или волновые обмотки. Двухслойная обмотка означает, что каждый паз якоря будет иметь две разные катушки.
    7. Коммутатор и щетки: Физическое соединение с обмоткой якоря осуществляется через устройство коллектор-щетка. Функция коммутатора в генераторе постоянного тока состоит в том, чтобы собирать ток, генерируемый в проводниках якоря.В то время как в случае двигателя постоянного тока коммутатор помогает подавать ток на проводники якоря. Коммутатор состоит из набора медных сегментов, изолированных друг от друга. Количество сегментов равно количеству витков якоря. Каждый сегмент подключен к катушке якоря, а коммутатор прикреплен к валу шпонкой. Щетки обычно делают из углерода или графита. Они опираются на сегменты коммутатора и скользят по сегментам, когда коммутатор вращается, сохраняя физический контакт для сбора или подачи тока.

    Коммутатор

    Принцип работы генератора постоянного тока:

    Согласно законам электромагнитной индукции Фарадея, всякий раз, когда проводник помещается в изменяющееся магнитное поле (ИЛИ проводник перемещается в магнитном поле), в проводнике индуцируется ЭДС (электродвижущая сила). Величину наведенной ЭДС можно рассчитать из уравнения ЭДС генератора постоянного тока. Если в проводнике предусмотрен замкнутый путь, индуцированный ток будет циркулировать внутри пути.В генераторе постоянного тока катушки возбуждения создают электромагнитное поле, а проводники якоря вращаются в поле. Таким образом, в проводниках якоря возникает ЭДС электромагнитного поля. Направление индуцированного тока определяется правилом правой руки Флеминга.


    Потребность в коммутаторе с разъемным кольцом:

    Согласно правилу правой руки Флеминга, направление индуцированного тока изменяется всякий раз, когда изменяется направление движения проводника. Рассмотрим якорь, вращающийся по часовой стрелке, а проводник слева движется вверх.Когда якорь совершит половину оборота, направление движения этого конкретного проводника изменится на нисходящее. Следовательно, направление тока в каждом проводнике якоря будет переменным. Если вы посмотрите на приведенный выше рисунок, вы узнаете, как меняется направление индуцированного тока в проводнике якоря. Но в коммутаторе с разъемным кольцом соединения проводов якоря также меняются местами, когда происходит реверсирование тока. А значит, на выводах получаем однонаправленный ток.

    Типы генератора постоянного тока:

    Генераторы постоянного тока можно разделить на две основные категории, а именно; (i) отдельно возбужденный и (ii) самовозбужденный.
    (i) С отдельным возбуждением : В этом типе катушки возбуждения получают питание от независимого внешнего источника постоянного тока.
    (ii) Самовозбуждающийся : В этом типе катушки возбуждения получают питание от тока, производимого самим генератором. Первоначальная генерация ЭДС происходит из-за остаточного магнетизма в полюсах поля. Генерируемая ЭДС заставляет часть тока течь в катушках возбуждения, тем самым усиливая поток поля и тем самым увеличивая генерацию ЭДС.Генераторы постоянного тока с самовозбуждением можно разделить на три типа —
    (а) Последовательная обмотка — обмотка возбуждения последовательно с обмоткой якоря
    (б) Шунтирующая обмотка — обмотка возбуждения параллельно обмотке якоря
    (c) Составная обмотка — комбинация последовательной и параллельной обмоток

    Вы можете узнать больше о типах генераторов / машин постоянного тока здесь.

    Miller Welder Generators — Сварочные аппараты и машины с приводом от двигателя

    Сварочные аппараты с приводом от двигателя

    включают двигатель, работающий на бензине, дизельном или пропановом топливе, соединенный с электрическим генератором для выработки энергии для сварки Stick, TIG, MIG и порошковой порошковой сваркой.Сварочные аппараты с приводом от двигателя обычно перевозятся на грузовике или трейлере для использования на открытом воздухе. Электроэнергия, вырабатываемая сварочным аппаратом с приводом от двигателя, приводит в действие вентиляторы, насосы, воздушные компрессоры или другие электрические инструменты, которые обычно встречаются на стройплощадках.

    Усовершенствованный Bobcat 200 Air Pak — это бесшумное, экономичное устройство «все в одном», обеспечивающее высокую мощность при компактном и легком корпусе, а также ведущую в отрасли надежность и производительность.

    Fusion 160 обеспечивает плавную и стабильную дугу либо от двигателя, либо от электросети 120/240 В, обеспечивая уникальное сочетание универсальности и производительности в легком корпусе.

    Для операторов сервисных грузовиков классов 3-5, которые хотят консолидировать или повысить надежность своего силового оборудования, Bobcat 200 Air Pak Diesel представляет собой бесшумное, экономичное устройство «все в одном», которое поддерживает возможности мощности в компактном, легком месте, которое поддерживается благодаря лучшей в отрасли надежности и производительности, которую ожидают клиенты.

    Надежный наружный источник питания! Отлично подходит для фермы, ранчо, технического обслуживания и любителей.

    Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, стандартного для сварочных аппаратов / генераторов Bobcat 225. С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине.Сварочный аппарат / генератор Bobcat 225 отлично подходит для сварки штангой и генераторов. Предназначен для фермы / ранчо, технического обслуживания и ремонта, работы с грузовиками и использования в качестве автономного генератора.

    Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, входящего в стандартную комплектацию сварочных аппаратов / генераторов Bobcat 260. С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине.Сварочный аппарат / генератор Bobcat 260 отлично подходит для сварки штангой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, грузовых автомобилей, строительства, фермы / ранчо и использования генераторов.

    Возьмите под свой контроль, снизьте уровень шума и снизьте эксплуатационные расходы с помощью дистанционного запуска / остановки, входящего в стандартную комплектацию сварочных аппаратов / генераторов Bobcat 260. С легкостью включайте и выключайте машину удаленно, чтобы она работала только тогда, когда вам это нужно. Делайте больше с каждым баком топлива, увеличивайте интервалы между техобслуживанием и работайте, не возвращаясь к своей машине.Сварочный аппарат / генератор Bobcat 260 отлично подходит для сварки палкой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, грузовых автомобилей, строительства, фермы / ранчо и использования генераторов.

    Прочный сварочный аппарат / генератор отлично подходит для сварки штангой и порошковой проволокой и предназначен для операций по техническому обслуживанию / ремонту, строительства, фермы, ранчо и использования генераторов.

    Предназначен для владельцев ферм и ранчо, которым требуется одно- и трехфазное питание для работы трехфазных поворотных оросительных систем на 480 В или обеспечения резервного питания для дома, фермы и ранчо.

    Сварочные аппараты / генераторы

    Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивная технология Auto-Speed ​​™ компании Trailblazer обеспечивает превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора. Никакая другая компактная машина в классе 300 А не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

    Сварочные аппараты / генераторы

    Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивные технологии Trailblazer — Auto-Speed ​​™ и дополнительная мощность Excel ™ — обеспечивают превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора. Никакая другая компактная машина в классе 300 А не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

    Сварочные аппараты / генераторы

    Trailblazer® обеспечивают непревзойденную производительность дуги, обеспечивая самую плавную и стабильную дугу в отрасли. Эксклюзивная технология Auto-Speed ​​™ компании Trailblazer обеспечивает превосходное время работы, повышенную топливную экономичность и улучшенные характеристики сварочного аппарата / генератора. Никакая другая компактная машина в классе 300 А не обеспечивает большей сварочной мощности или большей вспомогательной мощности с лучшей топливной экономичностью и меньшим уровнем шума — для продуктивных, прибыльных и более тихих рабочих мест.

    Мощный универсальный инструмент, предназначенный для ремонта и строительства, с непревзойденным качеством сварных швов, встроенным ротационным винтовым воздушным компрессором, мощностью генератора 13 000 Вт для инструментов и запуском от внешнего источника для зарядного устройства.

    Созданный для профессионалов, Big Blue 400 Pro — лучшее решение с точки зрения простоты использования, надежности и экономии топлива.

    Надежный низкооборотный дизельный сварочный аппарат / генератор нового поколения, разработанный для подрядчика по трубопроводу.

    Big Blue 450 Duo CST — прочный, компактный, экономичный дизельный сварочный аппарат / генератор, который обеспечивает 2 дуги превосходного качества в одном экономичном корпусе.

    Чистый, бесшумный, многопроцессорный аппарат обеспечивает сварочную мощность до 500 ампер с двигателем, соответствующим стандарту EPA Tier 4 Final, который идеально подходит для тяжелых условий эксплуатации.

    Этот сварочный аппарат / генератор на 600 А, соответствующий стандарту Tier 4 Final Агентства по охране окружающей среды, выполняет тяжелые работы, требующие высокой мощности для сварки, строжки и вспомогательного питания.

    Big Blue 600 Air Pak является наиболее надежным и универсальным аппаратом для полевых работ, требующих усилий одного оператора для сварки, строжки угольной дугой, вспомогательного питания или запуска воздушного компрессора для выполнения критически важных функций ремонта и технического обслуживания. поддерживайте работоспособность оборудования на рабочем месте и повышайте продуктивность в течение дня.

    Укомплектованный многопроцессорный сварочный аппарат / генератор с несколькими операторами, который обеспечивает две независимые дуги качества трубы в одном полном комплекте. Оснащенный технологией ArcReach®, операторы могут изменять настройки сварки с устройства подачи ArcReach или удаленно. Возможности сварки RMD® и импульсной MIG-сваркой добавлены с помощью ArcReach Smart Feeder.

    Наш самый мощный Air Pak обеспечивает производительность двух операторов и гибкость в многопроцессорном режиме.Чистые двигатели, соответствующие требованиям EPA T4i и T4F, снижают выбросы.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.