Электронные регуляторы напряжения
Большинство двигателей с внешним ротором компании ZIEHL-ABEGG имеют переменное напряжение. Для простой и экономичной регулировки частоты вращения этих двигателей и вентиляторов можно приобрести регуляторы напряжения. ZIEHL-ABEGG предлагает широкий спектр электронных регуляторов напряжения (устройств с контролем фазового угла) и контроллеров на базе трансформаторов.
Acontrol
Технические характеристики:
Изменение скорости вращения по принципу регулировки фазы. Индивидуальное или параллельное управление 1-фазными двигателями или вентиляторами.
Характеристики и специальные функции:
Возможность оптимального использования в комбинации с двигателями с внешним ротором и вентиляторами ZIEHL-ABEGG.
Исполнение:
Диапазон производительности:
- 1-фазный модуль Acontrol, от 2,5 до 20 ампер
Диапазон функций:
- Acontrol, в качестве регулятора скорости вращения. Простота настройки скорости вращения посредством встроенной поворотной кнопки или сигнала 0–10 В.
- Acontrol со встроенными функциями управления. От простых регуляторов температуры и давления до универсальных устройств управления. Встроенные дополнительные входы и выходы
- Специальные отраслевые исполнения, например, для сельского хозяйства (1-фазный модуль Acontrol в качестве компьютера для вентиляционных устройств)
Dcontrol + Ucontrol
Технические характеристики:
Изменение скорости вращения по принципу регулировки фазы. Индивидуальное или параллельное управление 3-фазными двигателями или вентиляторами.
Характеристики и специальные функции:
Возможность оптимального использования в комбинации с двигателями с внешним ротором и вентиляторами ZIEHL-ABEGG.
Исполнение:
Диапазон производительности:
- 3-фазный модуль Dcontrol, от 2 до 80 ампер
Диапазон функций:
- Dcontrol, в качестве регулятора скорости вращения. Простота настройки скорости вращения посредством сигнала 0–10 В.
- Dcontrol со встроенными функциями управления, например простыми в использовании регуляторами давления и температуры
- Ucontrol – универсальное устройство с простым выбором предварительно настроенных режимов работы. Встроенные дополнительные входы и выходы.
Электронный регулятор напряжения с выносным потенциометром
Валл |Двигатель от стиральной машины 600вт тянет без нагрева во всем диапазоне напряжений. Подключена турбина от пылесоса к двигателю от стиралки.
Олег |до Твери за 12 дней СУПЕР !!! молодцы , все бы так работали . Товар соответствует описанию. Спасибо !!!
Ирина Соколова |регулятор хороший, удобный в монтаже, регулировка плавная без рывков и провалов. приобретал для регулировки оборотов электро инструмента с коллекторными двигателями. рекомендую.
замечательная вещь.работает прекрасно. брал для болгарки. но можно всё что угодно использовать
Вася |Заказ пришел довольно быстро. По самому диммеру: все выполнено аккуратно. подключал нагрузку 2 кВт, работает без нареканий. Нужно понимать, диммирует НЕ от нуля, т.е. есть начальное напряжение, это отмечено в описании. Радиатор очень сильно греется, поэтому, если помещать диммер в кофр или коробку, надо продумать достаточную вентиляцию. Сам не рассчитал этот момент и один из диммеров сгорел
Написать отзыв
Ваше имя:Ваш отзыв: Примечание: HTML разметка не поддерживается! Используйте обычный текст.
Оценка: Плохо Хорошо
Все товары, представленные в нашем магазине, могут быть доставлены в любой регион России. В большинстве случаев, срок прибытия заказа составляет 3-7 недель в зависимости от скорости работы почты и таможни РФ.
Товары поставляются почтой напрямую от поставщика. Заказы отправляются после полной предоплаты.
Оплата товаров принимается любым из популярных способов, использовать которые сейчас не составит труда ни для кого!
— карта Сбербанк — оплатить можно в отделении Банка, либо другими способами.
— qiwi кошелёк — оплата производится через любой терминал Qiwi, салоны связи, через банки и др. способами.
— webmoney
— yandex деньги — оплата производится через терминалы, салоны связи и др. способами.
— на номер Билайн — любым способом, поддерживающим пополнение мобильного телефона. Подробнее: http://ntsale.ru/dostavka.html
СА350 Электронный регулятор напряжения
Электронный регулятор напряжения
Электронный регулятор напряжения СА350 предназначен для генерирования и регулирования синусоидального испытательного напряжения на частотах равных или отличных от частоты промышленной сети в составе испытательных установок и измерительных систем.
СА350 применяется производителями трансформаторов тока и напряжения, поверочными и калибровочными лабораториями.
Прибор обеспечивает на выходе регулируемое напряжение синусоидальной формы в диапазоне от 1 В до 220 В частотой от 45 до 65 Гц.
Регулятор позволяет работать на емкостную, индуктивную и активную нагрузки.
В конструкции СА350 предусмотрена автоматическая защита от перегрева, автоматическая защита от короткого замыкания нагрузки.
В приборе предусмотрена установка пороговых значений напряжения и тока, что обеспечивает защиту от некорректных действий оператора.
Управлять работой можно:
• вручную при помощи дисплея с сенсорной панелью и энкодера на передней панели блока управления, или дистанционного пульта управления с кнопками регулирования напряжения и кнопкой аварийного отключения.
• дистанционно при помощи персонального компьютера.
Оператор может задавать время установки и снятия напряжения.
Также, конструкция прибора предусматривает совместимость с внешним блокирующим устройством типа «концевой выключатель».
СА350 – напрямую от производителя
Являясь производителем измерительного оборудования для энергетики, мы можем предложить благоприятные условия для закупки наших приборов. Вы можете рассчитывать на лучшую цену, услуги по обучению персонала, качественный сервис.
Чтобы узнать больше о приборе, получить прайс и купить Электронный регулятор напряжения СА350, обращайтесь к специалистам компании «ОЛТЕСТ Русь».
- Возможность изменения частоты выходного напряжения
- Автоматическая или ручная установка требуемого значения напряжения
- Высокая точность установки требуемого значения напряжения
- Управление временем установки и снятия напряжения
- Возможность работы на емкостную, индуктивную и активную нагрузки
- Возможность установки пороговых значений напряжения и тока, для защиты от некорректных действий оператора
- Защита от перегрева и короткого замыкания
- Блокировка подачи выходного напряжения по результатам контроля внешних концевых выключателей
- Учет сопротивления кабеля (по материалу, длине и сечению проводников) при установке требуемого напряжения непосредственно на зажимах нагрузки
- Возможность подключения дополнительных силовых блоков для увеличения мощности нагрузки
- Возможность управления через интерфейс RS-232 для использования в автоматизированных системах
СА350 используется:
- Производителями ТТ и ТН
- Стационарными и мобильными поверочными лабораториями
Наименование величины | Значение |
---|---|
Полная мощность нагрузки | 5 кВ·А* |
Выходное напряжение (синусоидальное) | 1…220 В |
Частота выходного напряжения | 45…200 Гц |
Нестабильность выходного напряжения | Не более 0,5 % |
Коэффициент искажения синусоидальности кривой выходного напряжения | Не более 5 % |
Пределы относительной погрешности установки выходного напряжения | ±1 % |
Время непрерывной работы при максимальной нагрузке (Imax = 24 А) | 30 минут |
* возможно увеличение мощности нагрузки при подключении дополнительных силовых блоков по согласованию с заказчиком | |
Рабочие условия применения Температура окружающего воздуха Относительная влажность воздуха | -10. ..40 °C до 90 % при температуре 25 °C без конденсации |
Электропитание Номинальное напряжение Номинальная частота | 180…250 В 50/60 Гц |
Мощность потребления от сети питания при максимальной нагрузке, не более | 5,6 кВ·А |
Размеры Блока силового Блока управления | 465 × 500 × 195 мм 465 × 420 × 150 мм |
Масса Блока силового Блока управления | 22 кг 5 кг |
Гарантия | 18 месяцев |
№ | Наименование | Кол-во, шт. | Номер для заказа | |
---|---|---|---|---|
Базовая комплектация: | ||||
1 | Блок силовой БС | 1 | СА350. 200 | |
2 | Блок управления БУ | 1 | СА350.300 | |
3 | Кабель питания КП(БС) | 1 | СА350.500 | |
4 | Кабель силовой | 1 | СА350.510 | |
5 | Пульт дистанционного управления | 1 | СА350.610 | |
6 | Кабель интерфейсный | 1 | СА350.530 | |
7 | Светозвуковая сигнализация | 1 | СА350.600 | |
8 | Кабель для подключения датчика закрытой двери | 1 | СА350. 540 | |
9 | Имитатор датчика закрытой двери | 1 | СА350.541 | |
10 | Кабель питания КП(БУ) 10 A EU (CEE 7/XVII — C13) | 1 | ― | |
11 | Электронный регулятор напряжения СА350. Руководство по эксплуатации | 1 | СА350 РЭ | |
12 | Электронный регулятор напряжения СА350. Паспорт | 1 | СА350 ПС | |
Дополнительный заказ: | ||||
13 | Кабель аварийного выключения | 1 | СА350.520 |
Вас также могут заинтересовать
СА7400, СА7400М1
Установки поверочные трансформаторов напряжения
CA3600
Источник тока
СА920
Трансформаторы напряжения эталонные
СА910-10-T
Трансформатор повышающий
СА921
Трансформаторы напряжения эталонные
СА911
Трансформаторы повышающие
СА7100М1
Мост переменного тока высоковольтный автоматический
Опубликовано в рубрике Вся продукция, Поверка трансформаторов напряжения, Поверка трансформаторов токаОтмечено СА350 [an error occurred while processing the directive]Электронный регулятор напряжения
Многие автолюбители доступными им средствами стремятся улучшить работу различных узлов своей машины. Немалую помощь в этом оказывает им электроника. Взять хотя бы разнообразные системы электронного зажигания, о которых “М-К” не раз уже рассказывал. Сегодня мы предлагаем владельцам “Жигулей” и “Запорожцев” построить несложный электронный регулятор напряжения (ЭРН), сконструированный харьковчанином Б. Крутаневым. У него отсутствуют механически размыкаемые электрические контакты, в момент запуска генератор не нагружает двигатель и аккумулятор. Тем самым облегчается запуск мотора заводной ручкой при слабо заряженном аккумуляторе. Применение подобного устройства исключает импульсные перенапряжения в бортовой сети, оно не создает помех радиоприему. Кроме того, ЭРН позволяет контролировать систему давления масла. Устройство имеет четыре вывода для подключения к системе электропитания автомобиля.
“ДДМ” — к датчику давления масла, “15”— и положительному полюсу бортовой сети, “67” — н обмотке возбуждения генератора, “М” — к массе автомобиля (минусу источника питания). Работает устройство следующим образом. Когда включают зажигание (S1), через клемму “15” поступает положительное напряжение на резисторный делитель R1, R2, к которому подсоединен стабилитрон VI, выполняющий функции порогового элемента. Приложенное к стабилитрону напряжение ниже уровня его отпирания — ток базы транзистора V2 отсутствует: полупроводниковый триод заперт. Однако транзисторы V3—V5 остаются закрытыми, поскольку давление масла У неработающего двигателя отсутствует и контакт S2 датчика давления масла замыкает коллекторную цепь V2 на массу автомобиля (через клемму “ДДМ”). Ток в обмотке возбуждения генератора отсутствует (в штатном регуляторе напряжения в этом случае протекает ток около 2,5 А), о чем сигнализирует лампа h2 давления масла. Такое состояние ЭРН сохраняется до тех пор, пока после запуска двигателя давление масла не вызовет размыкания контакта S2.
Теперь на коллектор V2 через погасшую лампу h2 подается положительное напряжение и транзисторы V3, V4 проводят ток. В результате транзистор V5 открывается, и через разъем “67” в обмотку возбуждения (0В) генератора Г1 поступает питание от аккумуляторной батареи GB1. Генератор начинает заряжать аккумулятор СВ1. По мере возрастания оборотов двигателя (генератора) и увеличения заряда батареи напряжение бортовой сети повышается. Одновременно возрастает и напряжение, приложенное н стабилитрону VI. Как только око превысит напряжение отпирания V1, возникает базовый ток транзистора V2 и он начнет открываться, а транзисторы V3 — V5 закрываться, уменьшая тем самым ток в обмотке возбуждения до 0,5—0,7 А: напряжение и ток, отдаваемый генератором в бортовую сеть и аккумулятор, падают.
Когда нагрузка возрастает (например, при включении осветительных приборов), потребление тона увеличивается, напряжение сети снижается, транзистор V2 слегка закрывается и ток, протекающий через полупроводниковый триод V5 по обмотке возбуждения, возрастает. Генератор отдает больший ток в бортовую сеть автомобиля, поддерживая постоянным напряжение в ней. К примеру, в автомобиле “Жигули” при полностью включенных осветительных приборах, на малых оборотах двигателя через транзистор V5 и обмотку возбуждения протекает ток около 1,5 А. С увеличением оборотов он снижается до 0,9 А. Рассеиваемая на транзисторе V5 мощность может достигать 8 Вт.
В случае применения ЭРН включение сигналов поворота вызывает большие изменения тока возбуждения генератора, чем при штатном регуляторе напряжения. Это указывает на то, что ЭРН успевает “следить” за всеми изменениями нагрузки бортовой сети автомобиля, не вызывая существенных перенапряжений на обмотке возбуждения, имеющей большую индуктивность. Объясняется это тем, что в момент запирания транзистора V5 ЭДС обмотки возбуждения приложена к его эмиттеру в отрицательной полярности, не допускающей резкого запирания V5. Тем самым не происходит перенапряжения коллектора и надежность работы выходного транзистора возрастает.
Сопротивления резистора R1 и R2 подобраны из расчета, чтобы ЭРН поддерживал напряжение на аккумуляторе (в бортовой сети электропитания автомобиля) равным 13,5—13,8 в независимо от изменения нагрузки. При таком напряжении аккумуляторная батарея не заряжается выше допустимой нор-‘ мы, не “выкипает” электролит. Чтобы повысить напряжение генераторa, достаточно уменьшить сопротивление резистора R2 или R4 до 1 кОм.
Проверяют исправность ЭРН, измеряя напряжение на клеммах “15” и “67”. При включением зажигании н неработающем двигателе напряжение на первой такое же, как и у аккумулятора, а на второй оно равно О В. Когда двигатель работает, напряжение на клемме “15” при любых оборотах должно составлять 13,8—14,2 В (в зависимости от настройки ЭРН). При выходе из строя контрольной лампы или датчика давления масла транзисторы V3—V5 запираются и загорается лампа контроля генератора. К такому же результату приводит снижение давления масла ниже нормы. Тем самым уменьшается возможность работы двигателя с неисправной системой смазки.
В электронном регуляторе напряжения в качестве элемента V5 допустимо применить транзисторы серии КТ803, KT805, КТ817, а вместо двух полупроводниковых триодов V3 и V4 можно установить един п-р-п проводимости с током коллектора не менее 150 мА и напряжением на нем выше 15 В (например, серии КТ503, КТ815). Транзистор V2 (КТ315А) можно заменить на КТ312Б,В. Стабилитрон Д818Г заменяет аналогичный прибор марки Д814Б, Д818Д или Д818Е.
Элементы ЭРН размещены на плате, изготовленной из одностороннего фольгированного стеклотекстолита методом прорезания фольги на токопроводящие участки. Контактные лепестки разъема изготовлены из листовой латуни. Через отверстия в них плату крепят к гетинаксовому кронштейну (основание ЭРН). Два других отверстия служат для установки радиатора транзистора V5. Радиатор — ребристый, размером 35х40х45 мм. Сверху к нему привинчен пластмассовый корпус от штатного регулятора напряжения с вентиляционными отверстиями в нижнем и верхней частях боковых стенок. Можно использовать и любой другой контейнер с близкими размерами.
Источник: shems.h2.ru
Автоматические регуляторы напряжения AVR
26.09.2020Автоматические регуляторы напряжения AVR
Автоматические регуляторы напряжения AVRВ настоящее время во многих дизель-генераторных установках большой мощности используются синхронные генераторы бесщеточного типа. Технической и конструктивной особенностью таких генераторов является отсутствие коллекторно-щеточного узла, а обмотка возбуждения располагается во вращающемся роторе. Для обеспечения работы генератора нужно, чтобы индуцированный и протекающий по обмотке возбуждения ток имел необходимую амплитуду и полярность.
Чтобы выпрямить наведенное напряжение, обмотка возбуждения выполняется из двух частей, которые соединены через диод, а амплитуда индуцированного ЭДС зависит от взаимодействия магнитных полей основной и дополнительной обмоток статора. Регулируя наведенную ЭДС в обмотке возбуждения, можно гибко управлять работой генератора. Этот принцип лег в основу создания специальных управляющих электронных устройств, которые стали неотъемлемой частью современных синхронных генераторов (СГ).
Назначение
Чтобы запитать обмотку возбуждения и стабилизировать вырабатываемое генератором напряжение, используются различные способы и устройства, но наибольшее распространение получили микропроцессорные автоматические регуляторы напряжения AVR. Устройство AVR – своеобразное «сердце» системы возбуждения синхронного генератора. Адаптивно регулируя ток, наведенный в обмотку возбуждения, регулятор напряжения осуществляет стабилизацию параметров на выходе СГ.
Таким же способом удается обеспечить защиту от перегрузок, которые очень опасны для всех типов генераторов, а также защиту от критичного снижения частоты. Электронный корректор напряжения запитан от одной из трехфазных обмоток статора, являющего выходом синхронного генератора, параметры которого устройство контролирует. При помощи автоматического регулятора AVR удается управлять работой генераторной станции в переходном и аварийном режиме.
Кроме того, электронный регулятор напряжения AVR способен поддерживать совместную работу нескольких СГ сходной мощности, подключенных параллельно. От настройки и точности регулировки этого устройства зависят параметры работы всей дизель-генераторной станции.
Принцип работы регуляторов AVR
Стабилизация выходного напряжения до заданного номинального значения производится посредством соответствующего увеличения или уменьшения тока в обмотке возбуждения. Таким же образом удается минимизировать колебания напряжения генератора в процессе работы, а также обеспечить быстрое достижение заданных параметров после запуска станции, необходимых для подключения и энергоснабжения потребителей.
Чтобы вовремя распознать опасность и предупредить аварию генератора, устройство контролирует изменения частоты выходного напряжения, и в случае ее критичного снижения может оперативно уменьшить, либо вообще отключить подачу напряжения на обмотку возбуждения. Эти же действия производятся при плановой или аварийной остановке двигателя. Порог частоты, при котором происходит отключение обмотки возбуждения, обычно установлен в заводских настойках на уровне 45 Гц.
Техническая реализация
Внешний вид и схемное решение устройств AVR, выпущенных различными компаниями для совместной работы с определенными моделями генераторов, могут значительно отличаться, но основные принципы их построения одинаковы. На начальном этапе создания подобных приборов типичный регулятор напряжения AVR выполнялся в виде отдельного устройства, помещенного в специальный металлический «шкаф». Сегодня в основном используются автоматические регуляторы напряжения AVR, представляющие собой небольшую плату, которая монтируется в блок возбуждения синхронного генератора.
ЭЛЕКТРОННЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ | МОДЕЛИСТ-КОНСТРУКТОР
В случае применения ЭРН включение сигналов поворота вызывает большие изменения тока возбуждения генератора, чем при штатном регуляторе напряжения. Это указывает на то, что ЭРН успевает «следить» за всеми изменениями нагрузки бортовой сети автомобиля, не вызывал существенных перенапряжений на обмотке возбуждения, имеющей большую индуктивность. Объясняется это тем, что в момент запирания транзистора V5 ЭДС обмотки возбуждения приложена к его эмиттеру в отрицательней полярности, не допускающей резкого запирания V5. Тем самым не происходит перенапряжения коллектора и надежность работы выходного транзистора возрастает.
Сопротивления резисторов R1 и R2 подобраны из расчета, чтобы ЭРН поддерживал напряжение на аккумуляторе (в бортовой сети электропитания автомобиля) равным 13,5—13,8 В независимо от изменения нагрузки. При таком напряжении аккумуляторная батарея не заряжается выше допустимой нормы, не «выкипает» электролит. Чтобы повысить напряжение генератора, достаточно уменьшить сопротивление резистора R2 или R4 до 1 кОм.
Проверяют исправность ЭРН, измеряя напряжение на клеммах «15» и «67». При включенном зажигании и неработающем двигателе напряжение на первой такое же, как и у аккумулятора, а на второй оно равно 0 В. Когда двигатель работает, напряжение на клемме «15» при любых оборотах должно составлять 13,8—14,2 В (в зависимости от настройки ЭРН).
Монтажная плата ЭРН со схемой расположения деталей.
В электронном регуляторе напряжения в качестве элемента V5 допустимо применить транзисторы серии КТ803, KT805, КТ817. а вместо двух полупроводниковых триодов V3 и V4 можно установить один n-p-n проводимости с током коллектора не менее 150 мА и напряжением’ на нем выше 15 В (например. серии КТ503, КТ815). Транзистор V2 (КТ315А) можно заменить на КТ312Б, В. Стабилитрон Д818Г заменяет аналогичный прибор марки Д814Б, Д818Д или Д818Е.
Элементы ЭРН размещены на плате, изготовленной из одностороннего фольгированного стеклотекстолита методом прорезания фольги на токопроводящие участки. Контактные лепестки разъема изготовлены из листовой латуни. Через отверстия в них плату крепят к гетинаксовому кронштейну (основание ЭРН). Два других отверстия служат для установки радиатора транзистора V5, Радиатор — ребристый, размером 35 40×45 мм. Сверху к нему привинчен пластмассовый корпус от штатного регулятора напряжения с вентиляционными отверстиями в нижней и верхней частях боковых стенок. Можно использовать и любой другой контейнер с близкими размерами.
При виходе из строя контрольной лампы или датчика давления масла транзисторы V3—V5 запираются и загорается лампа контроля генератора. К такому же результату приводит снижение давлення масла ниже нормы. Тем самым уменьшается возможность работы двигателя с неисправной системой смазки.
Рекомендуем почитать
- ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ
Это устройство предназначено для защиты источника питания постоянного тока от токовых перегрузок и коротких замыканий. Техническая характеристика прибора: Напряжение питания, В … - ОТВЕРТКА С ДЕРЖАТЕЛЕМ
Много интересного и полезного нахожу в журнале. Откликаясь на ваш призыв быть не только читателем, но и автором, посылаю два совета. Уже несколько лет пользуюсь очень удобной отверткой…
Регуляторы напряжения | Полезные статьи TEPLOCOM
09-03-2013
Типы регуляторов напряжения
Термин регулятор напряжения имеет достаточно широкое трактование.
Свободная энциклопедия «Википедия» определяет регулятор напряжения как электронное устройство дающее возможность менять значение напряжения на выходе.
Более точное определение приводим ниже.
К основным типам регуляторов напряжения относятся:
- регулятор напряжения переменного тока;
- регулятор напряжения постоянного тока;
- делитель напряжения.
Сетевой стабилизатор напряжения, как один из видов регуляторов напряжения
Самым распространенным видом регулятора напряжения является стабилизатор напряжения. Обычно именно сетевой стабилизатор является предметом поискового запроса «регулятор напряжения».
Свободная энциклопедия «Википедия» даёт следующее определение стабилизатора напряжения.
Таким образом стабилизатор напряжения является частным случаем более общего понятия «регулятор напряжения».
Принято различать следующие типы стабилизаторов напряжения:
- релейный стабилизатор;
- симисторный стабилизатор;
- сервоприводный (электромеханический) стабилизатор;
- феррорезонансный стабилизатор.
Компания БАСТИОН является одним из лидеров в производстве стабилизаторов напряжения в России. Компания производит большой ассортимент стабилизаторов напряжения для инженерных систем и бытового использования. Подробнее о стабилизаторах компании БАСТИОН смотрите в разделе Стабилизаторы напряжения.
На следующем видео представлены стабилизаторы напряжения серии TEPLOCOM и SKAT.
Стабилизаторы напряжения компании БАСТИОН производятся в соответствии с требованиями российских ГОСТов и международных стандартов качества ISO 9001.
Заводской срок гарантии — 5 лет!
ЛАТР — лабораторный регулятор напряжения
ЛАТР — лабораторный автотрансформатор, используется для ручного регулирования напряжения. Автотрансформаторы — это специальные трансформаторы, в которых обмотки катушек подключены напрямую, в этом случае используется эффекты магнитной и электрической индукции. Такие приборы имеют более высокий уровень коэффициента полезного действия.
Кроме использования для лабораторных целей, ранее такие устройства использовались для ручного регулирования значения напряжения в быту. В советское время массово выпускались РНО (регуляторы напряжения однофазные), эти простые и дешёвые устройства позволяли вручную регулировать напряжение для питания телевизора. Такие устройства часто использовались в качестве повышающего «стабилизатора» в домах, где напряжение в сети было пониженным.
Цифровой регулятор напряжения для систем управления
В системах автоматизации на промышленных объектах используется ещё один тип регулятора напряжения. Это цифровой регулятор напряжения для изменения скоростей вращения электромоторов путём регулирования значения подаваемого напряжения. Такое устройство используется, как правило, в сложном инженерном оборудовании. Примером может служить устройство для регулирования скорости вращения вентиляторов системы вентилирования в условиях воздействия внешних факторов. В этом случае на скорость вращения будет влиять несколько факторов, в том числе скорость ветра, перепад давления, температура воздуха в помещении и вне помещения. Задача регулирования скорости потока становится многокомпонентной, здесь и используются цифровые регуляторы напряжения.
Фазовый регулятор напряжения
Фазовые регуляторы напряжения предназначены для регулирования уровня напряжения, подаваемого на электрический прибор с помощью механического или электронного управления. Фазовые регуляторы напряжения достаточно широко используются в быту, примером такого использования могут быть светильники с плавным регулированием яркости свечения лампочек. В основе принципа работы таких устройств лежит принцип задержки запускающего импульса с помощью управляемого ждущего мультивибратора. Применяются и схемы с применением цифровых устройств, которые позволяют выполнять задержку импульсов. Возможно использование инверторных схем, в этом случае входное сетевое напряжение на первом этапе преобразовывается в постоянный ток, а на втором этапе моделируется синусоидальное напряжение нужного значения.
Делитель напряжения
Делитель напряжения — это один из видов регуляторов напряжения, позволяюющий разделить входное напряжение на несколько значений. При этом сумма напряжений на выходе устройства равна значению напряжения на входе прибора. Как правтло делители напряжения используются для подведения к различным элементах электрической схемы необходимого напряжения от одного источника питания. На основе использования регуляторов напряжения производятся такие приборы как: электрические фильтры, усилители входного напряжения и параметрические стабилизаторы напряжения.
Читайте также по теме:
Тех. поддержка
Бастион в соц. сетях
Канал Бастион на YouTube
Основы электроники: регулятор напряжения
Создание регулятора напряжения
Теория предыстории: как работает регулятор напряжения?
Название говорит само за себя: регулятор напряжения. Аккумулятор в вашем автомобиле, который заряжается от генератора, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, все они требуют определенного напряжения, чтобы функция. Колеблющиеся выходы, превышающие ± 2 В, могут привести к неэффективной работе и, возможно, даже к повреждению ваших зарядных устройств.Существует множество причин, по которым могут возникать колебания напряжения: состояние электросети, включение и выключение других устройств, время суток, факторы окружающей среды и т. Д. Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.
Стабилизатор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.
Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают в качестве регуляторов напряжения в низковольтных приложениях.
В зависимости от приложения, регулятору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсации напряжения на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум. Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».
Указания по применению для регулятора 7805T
Afrotechmods также имеет информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.
Проект
Комплект регулятора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать диапазон входного напряжения от 6 до 18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с 0. Расстояние 1 дюйм.В комплект входит:
(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) Монолитный конденсатор 0,1 мкФ
(1) Резистор 1 кОм
(1) Красный источник питания светодиодный индикатор
(1) Разъемы контактов
(1) Руководство пользователя
Вам понадобятся:
• Паяльник
• Припой
• Фрезы
• Блок питания настенного адаптера 6-18В (Mean Well GS06U-3PIJ)
Комплект стабилизатора напряжения макетной платы Solarbotics 34020
Направление:
1.Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1. Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены — они не поляризованные .
2. Регулятор напряжения и цилиндрический домкрат:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе — обратное направление не сработает! Затем обрежьте лишние провода.Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, проверив, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку.Вы можете подтвердить, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).
4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее — они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпадали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все на одном уровне.
5. Настройка шин питания:
ЭТО ВАЖНО. Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.
Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. Не оставляйте капли на подушечках, если вы это сделаете. Обратите внимание, что это не рекомендуемая модификация.
Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В — не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.
Шаг 5
SWT7 Навесной
Вопросы для обсуждения
1.Какое влияние на выход цепи окажут тепло и шум?
2. Как конденсаторы помогают отфильтровывать помехи?
3. Каковы преимущества и недостатки линейных и импульсных регуляторов?
Типы регуляторов напряжения: работа и их ограничения
В электроснабжении регуляторы напряжения играют ключевую роль. Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы? Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является важной частью для работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы. В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей. Источники питания бывают двух типов, такие как источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей. Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.
Что такое регулятор напряжения?
Стабилизатор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения.Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.
Регулятор напряженияСуществует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения — самый простой тип регулятора напряжения.Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.
Основными компонентами , используемыми в регуляторе напряжения , являются
- Цепь обратной связи
- Стабильное опорное напряжение
- Цепь управления проходным элементом
Процесс регулирования напряжения очень прост благодаря использованию трех вышеуказанных компонентов. Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока.На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.
Здесь проходной элемент — это один из видов твердотельного полупроводникового устройства, похожий на BJT-транзистор, PN-Junction Diode в противном случае MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.
Работа регулятора напряжения
Схема регулятора напряжения используется для создания и поддержания постоянного выходного напряжения даже при изменении входного напряжения в противном случае условия нагрузки.Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов. Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.
Типы регуляторов напряжения и их работа
Эти регуляторы могут быть реализованы посредством интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения. Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.
Типы регуляторов напряженияВ основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.
- Линейные регуляторы напряжения бывают двух типов: последовательные и шунтовые.
- Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
Линейные регуляторы напряжения
Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения — это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.
Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе по транзистору, чтобы поддерживать постоянный выход. Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.
Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.
- Положительный Регулируемый
- Отрицательный Регулируемый
- Фиксированный выход
- Отслеживание
- Плавающий
Преимущества
К преимуществам линейного регулятора напряжения относятся следующие.
- Обеспечивает низкую пульсацию выходного напряжения
- Быстрое время отклика на нагрузку или изменение линии
- Низкие электромагнитные помехи и меньший шум
Недостатки
К недостаткам линейного регулятора напряжения относятся следующие.
- КПД очень низкий
- Требуется большое пространство — необходим радиатор
- Напряжение выше входа не может быть увеличено
В последовательном регуляторе напряжения используется регулируемый элемент, подключенный последовательно с нагрузкой. Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.
Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения.Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.
Шунтирующие регуляторы напряжения
Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор. Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.
Применение шунтирующих регуляторов
Шунтирующие регуляторы используются в:
- Импульсные источники питания с низким выходным напряжением
- Цепи источника и стока тока
- Усилители ошибок
- Регулируемые линейные и импульсные источники питания напряжения или тока
- Напряжение Мониторинг
- Аналоговые и цифровые схемы, требующие точных эталонов
- Прецизионные ограничители тока
Импульсные регуляторы напряжения
Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.
Импульсный регулятор напряжения быстро включается и выключается, чтобы изменить выход.Он требует управляющего генератора, а также заряжает компоненты накопителя.
В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся частотой, постоянным рабочим циклом и спектром шума, налагаемым PRM; отфильтровать этот шум труднее.
Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном регуляторе постоянный ток через индуктор никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.
В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.
Топологии коммутации
Имеет два типа топологий: диэлектрическая изоляция и неизолированная.
Изолированный
Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи подразделяются на два типа, в том числе следующие.
- Обратные преобразователи
- Прямые преобразователи
В перечисленных выше изолированных преобразователях обсуждается тема импульсных источников питания.
Без изоляции
Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — увеличивает входное напряжение; Step Down (Бак) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.
Опять же, неизолированные преобразователи подразделяются на разные типы, однако наиболее важными из них являются
- Понижающий преобразователь или понижающий регулятор напряжения
- Повышающий преобразователь или повышающий регулятор напряжения
- Понижающий или повышающий преобразователь
Преимущества топологий коммутации
Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.
Недостатки топологий коммутации
- Повышенное пульсирующее напряжение на выходе
- Более медленное переходное время восстановления
- EMI производит очень шумный выходной сигнал
- Очень дорогой
Повышающие переключающие преобразователи, также называемые повышающими импульсными регуляторами более высокое выходное напряжение за счет увеличения входного напряжения. Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления гирляндой светодиодов используется повышающий импульсный регулятор напряжения.
Повышающие регуляторы напряженияПредположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)
Затем V в I in = V out I out ,
I out / I in = (1-D)
Отсюда следует, что в этой цепи
- мощности остаются прежними
- Напряжение увеличивается
- Ток уменьшается
- Эквивалентно трансформатору постоянного тока
Понижающее (понижающее) напряжение Регулятор
Понижает входное напряжение.
Понижающие регуляторы напряженияЕсли входная мощность равна выходной мощности, тогда
P на входе = P на выходе ; V вход I вход = V выход I выход ,
I выход / I вход = V вход / V выход = 1 / D
Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент передачи находится в диапазоне 0-1.
Повышение / Понижение (повышение / понижение)
Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.
- Выходное напряжение имеет полярность, противоположную входной.
- Это достигается за счет прямого смещения диода VL с обратным смещением во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
- Используя этот тип импульсного стабилизатора, можно достичь эффективности 90%.
Регуляторы напряжения генератора
Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства при работе двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор переменного тока может производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.
Регулятор напряжения генератора Статор — Это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукция (ii) постоянные магниты (iii) с помощью возбудителя.
Электронный регулятор напряжения
Простой регулятор напряжения может быть изготовлен из резистора, соединенного последовательно с диодом (или серией диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.
Электронный регулятор напряженияТранзисторный регулятор напряжения
Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного напряжения пробоя. Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.
Основные параметры регуляторов напряжения
- Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают в себя напряжение i / p, напряжение o / p, а также ток o / p. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
- Другие параметры этого регулятора: частота коммутации, ток покоя; напряжение обратной связи тепловое сопротивление может применяться на основе требования
- Ток покоя является значительным, если эффективность во всех режимах ожидания или небольшая нагрузка является основной проблемой.
- Если частота коммутации рассматривается как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, тепловое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
- Если контроллер имеет полевой МОП-транзистор, после этого все кондуктивные, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
- Наиболее важным параметром является напряжение обратной связи, поскольку оно определяет меньшее напряжение включения / выключения, которое может выдержать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.
Как правильно выбрать регулятор напряжения?
- Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
- Когда разработчик описал эти потребности, используйте таблицу параметрического поиска, чтобы найти лучшее устройство для удовлетворения предпочтительных потребностей.
- Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
- Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
- Эта таблица данных в основном помогает в измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выхода и т. Д.
- Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, разнообразными эффективными и переключаемыми типами, такими как семейство MP171x, семейство HF500-x, MPQ4572-AEC1, MP28310, MP20056 и MPQ2013-AEC1.
Ограничения / недостатки
Ограничения регуляторов напряжения включают следующее.
- Одним из основных ограничений регуляторов напряжения является их неэффективность из-за рассеивания большого тока в некоторых приложениях.
- Падение напряжения на этой ИС похоже на падение напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
- Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
- В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоком входном напряжении рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
- Еще одно ограничение состоит в том, что они просто способны к понижающему преобразованию по сравнению с типами переключения, поскольку эти регуляторы обеспечивают понижение и преобразование.
- Регуляторы, подобные импульсным, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут генерировать больше шума, если их внешние компоненты не выбраны осторожно.
Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам, касающимся этой статьи или любой помощи в реализации проектов в области электротехники и электроники, вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?
Типы регуляторов напряжения и принцип работы | Статья
.СТАТЬЯ
Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.
Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.
Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсатор для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторы могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов включают то, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать предполагаемое рассеивание мощности линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторыочень эффективны, но к их недостаткам относится то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Однако стабилизатор LDO рассчитан на работу с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Регулятор напряжения
Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи через резистор. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторовобычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применения линейного регулятора и импульсного регулятора
Линейные регуляторы часто используются в приложениях, которые чувствительны к стоимости, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, V IN , V OUT , I OUT ).г. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронике
_________________________Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!
Получить техническую поддержку
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Вероятно, более 90% продуктов требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения. Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья — ваше руководство по выбору регулятора (ов) напряжения для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : выводит напряжение ниже входного
- Повышающий : выдает напряжение, превышающее входное
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторы намного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определение рассеиваемой мощности
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в приведенном выше случае, если вы теперь используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на напряжение до 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? »
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала вычислите, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте рассчитанную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей среды (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° С.
- ½ ватта нагреется до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся, прежде чем причинят какой-либо ущерб.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.
Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это ни в коем случае не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания проходит прямо через выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, у популярных регуляторов серии 7800 значение падения напряжения составляет 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный регулятор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Разница между входным и выходным напряжением мала
- У вас низкий ток нагрузки
- Вам требуется исключительно чистое выходное напряжение
- Дизайн должен быть максимально простым и дешевым
Как мы обсудим дальше, импульсные стабилизаторы создают на выходе много шума и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Регуляторы переключения
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF. 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату с использованием простого линейного регулятора, а в этом более глубоком курсе я проектирую индивидуальную плату с использованием более сложного импульсного регулятора.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторы очень эффективны даже при очень высоких разностях входа и выхода.
КПД равен выходной мощности, деленной на входную. Это отношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности такое же для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (Уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор на 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе катушка индуктивности используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Регуляторы понижающего давления
Допустим, вы получаете питание от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Вы можете использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот), чтобы решить эту проблему.Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник питания clean 5 В.
Для этого вы должны использовать повышающий регулятор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также очищает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутируемый шум, обязательно обратите внимание на коэффициент подавления источника питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Таким образом, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 — Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный стабилизатор с повышенным и понижающим током.
Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте загрузить бесплатный PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
Общие сведения о том, как работает регулятор напряжения
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.
В линейном регуляторе используется активное (BJT или MOSFET) устройство прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.
Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.
Каковы некоторые топологии импульсных регуляторов?
Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.
Как влияет на конструкцию регулятора частоты коммутации?
Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.
Какие потери происходят с импульсным регулятором?
Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.
Каковы обычные области применения линейных и импульсных регуляторов?
Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может составлять 50% или даже меньше.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.
Как импульсный регулятор управляет своим выходом?
Импульсным регуляторам требуется средство для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов — использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.
Какие проектные характеристики важны для ИС регулятора напряжения?
Среди основных параметров — входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.
использованная литература
Загрузить средства проектирования управления питанием
Регуляторы напряжения, цепь регулятора напряжения, линейный регулятор напряжения
Успешно стабилизируйте цепь с помощью высококачественного регулятора напряжения.Они являются неотъемлемой частью большинства повседневных продуктов и систем, в которых используется электрическая цепь. Фактически, в большинстве случаев необходимо несколько таких регуляторов напряжения.
Если вы ищете конкретный регулятор напряжения 5 В или 12 В или вам нужен автоматический регулятор напряжения для работы, над которой вы работаете, просмотрите ассортимент здесь, в Allied Electronics. Мы храним продукцию ведущих мировых производителей, и каждый регулятор изготовлен по высочайшим стандартам.
Прочтите, чтобы узнать больше о регуляторах напряжения и их использовании.
Что такое регулятор напряжения?
Регулятор напряжения — это интегральная схема (ИС), которая используется для создания и поддержания постоянного выходного напряжения. Они делают это, преобразуя входное напряжение в фиксированное выходное. Это выходное напряжение остается фиксированным независимо от любых изменений, которые вносятся в условия входа или нагрузки. Это означает, что регулятор будет поддерживать выходной сигнал, на котором он установлен.
Стабилизаторы напряжения используются по двум причинам. Первый — регулировать — или, в некоторых случаях, изменять — выходное напряжение в цепи.Второй — поддерживать постоянное выходное напряжение при требуемом токе.
Как работают регуляторы напряжения?
Для поддержания выходного напряжения регуляторы сравнивают этот выходной сигнал с точным опорным напряжением. Это сравнение используется для настройки пропускного устройства, которое управляет и поддерживает выходную величину. Этот процесс контролирует и поддерживает напряжение, проходящее через цепь в точках, где размещены регуляторы напряжения.
Знание того, какие входные и выходные напряжения вам нужны, поможет вам решить, какой тип регулятора вам нужен.Это либо понижающие регуляторы, которые предлагают выходной сигнал ниже входного напряжения, либо повышающие, когда выходное напряжение выше входного.
Самый распространенный тип регулятора напряжения — понижающий, поэтому выходной сигнал должен быть меньше входного напряжения. Например, если ваш регулятор напряжения вводит 12 В и выдает 5 В, ваш регулятор напряжения является типичной конфигурацией.
Какие бывают типы регуляторов напряжения?
Следует знать два типа регуляторов напряжения:
- Линейные регуляторы напряжения
Они идеально подходят для тех, кто хочет понизить напряжение.Это экономичный вариант, который к тому же бесшумный, что делает их популярным выбором.
Они используются как для повышения, так и для понижения напряжения и обеспечивают высокую энергоэффективность, поэтому они распространены среди тех, кто работает с усовершенствованными схемами.
Где используются регуляторы напряжения?
Если питание не может работать от напряжения батареи или внешнего адаптера переменного / постоянного тока, необходимы регуляторы напряжения. Они являются ключевым компонентом в электрических цепях, которым требуется определенное входное и выходное напряжение.Входное и выходное напряжение, а также выходной ток являются ключевыми факторами при выборе регулятора напряжения.
Они используются во многих повседневных приложениях, а также в промышленных условиях. Они используются в компьютерах, зарядных устройствах и автомобилях, обычно в генераторе переменного тока автомобиля. В более промышленных масштабах регуляторы напряжения используются в электростанциях в ситуациях, когда схема управляет выходной мощностью установки.
Почему стоит выбрать Allied Electronics для регуляторов напряжения?
В Allied Electronics есть ряд регуляторов напряжения, предназначенных для стабилизации цепи.Вы обнаружите, что мы являемся ведущим авторизованным дистрибьютором в Северной Америке и имеем на складе продукцию известных производителей, включая Microchip Technology Inc., ON Semiconductor и NTE Electronics.
Если у вас возникнут вопросы, наша команда всегда готова помочь. Свяжитесь с нами, и мы поможем вам познакомиться с продуктами. Вы также можете найти совет в нашем центре содержания для экспертов.
Регуляторы напряжения, схемы, типы, принцип работы, конструкция, применение
Регулятор напряжения предназначен для автоматического «регулирования» уровня напряжения.Он в основном понижает входное напряжение до желаемого уровня и поддерживает его на том же уровне во время подачи питания. Это гарантирует, что даже при приложении нагрузки напряжение не падает.
Таким образом, регулятор напряжения используется по двум причинам: —
- Для регулирования или изменения выходного напряжения цепи.
- Для поддержания постоянного выходного напряжения на желаемом уровне, несмотря на колебания напряжения питания или тока нагрузки.
Чтобы узнать больше об основах этого предмета, вы также можете обратиться к Регулируемый источник питания .
Регуляторы напряжения находят свое применение в компьютерах, генераторах переменного тока, электростанциях, где схема используется для управления мощностью установки. Регуляторы напряжения можно разделить на электромеханические и электронные. Его также можно классифицировать как регуляторы переменного тока или регуляторы постоянного тока.
Мы уже рассказали о IC регуляторах напряжения .
Электронный регулятор напряженияВсе электронные регуляторы напряжения будут иметь стабильный источник опорного напряжения, который обеспечивается рабочим диодом обратного напряжения пробоя, называемым стабилитроном.Основная причина использования регулятора напряжения — поддержание постоянного выходного напряжения постоянного тока. Он также блокирует пульсации переменного напряжения, которые не могут быть заблокированы фильтром. Хороший регулятор напряжения может также включать дополнительные схемы защиты, такие как короткое замыкание, схему ограничения тока, тепловое отключение и защиту от перенапряжения.
Электронные регуляторы напряжения разработаны на основе любого из трех или комбинации любого из трех регуляторов, указанных ниже.
1. Транзисторный стабилизатор напряжения с стабилитроном
Стабилизатор напряжения, управляемый стабилитроном, используется, когда эффективность регулируемого источника питания становится очень низкой из-за высокого тока.Существует два типа транзисторных стабилизаторов напряжения с стабилитроном.
Стабилизатор напряжения серии управляемых транзисторов на стабилитронах
Такую схему еще называют регулятором напряжения с эмиттерным повторителем. Он назван так потому, что используемый транзистор подключен по схеме эмиттерного повторителя. Схема состоит из транзистора N-P-N и стабилитрона. Как показано на рисунке ниже, выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой. Таким образом, в этом регуляторе есть именная серия.Используемый транзистор представляет собой транзистор с последовательным проходом.
Стабилизатор напряжения на управляемых стабилитронах серии транзисторовВыходной сигнал выпрямителя, который отфильтрован, затем подается на входные клеммы, и на нагрузочном резисторе Rload получается регулируемое выходное напряжение Vload. Опорное напряжение обеспечивается стабилитроном, а транзистор действует как переменный резистор, сопротивление которого изменяется в зависимости от рабочих условий тока базы Ibase.
Основной принцип работы такого регулятора заключается в том, что большая часть изменения напряжения питания или входного напряжения возникает на транзисторе, и, таким образом, выходное напряжение имеет тенденцию оставаться постоянным.
Таким образом, выходное напряжение можно записать как
Ваут = Взенер — Вбе
Напряжение базы транзистора Vbase и напряжение стабилитрона Vzener равны, поэтому значение Vbase остается почти постоянным.
Эксплуатация
Когда входное напряжение питания Vin увеличивается, выходное напряжение Vload также увеличивается. Это увеличение Vload вызовет снижение напряжения Vbe эмиттера базы транзистора, поскольку напряжение стабилитрона Vzener является постоянным.Это уменьшение Vbe вызывает снижение уровня проводимости, что дополнительно увеличивает сопротивление коллектор-эмиттер транзистора и, таким образом, вызывает увеличение напряжения коллектор-эмиттер транзистора, и все это вызывает уменьшение выходного напряжения Vout. Таким образом, выходное напряжение остается постоянным. Работа аналогична при уменьшении входного напряжения питания.
Следующим условием будет влияние изменения выходной нагрузки на выходное напряжение. Рассмотрим случай, когда ток увеличивается за счет уменьшения сопротивления нагрузки Rload.Это вызывает уменьшение значения выходного напряжения и, таким образом, вызывает увеличение напряжения эмиттера базы транзистора. Это вызывает уменьшение сопротивления коллектора-эмиттера из-за увеличения уровня проводимости транзистора. Это приводит к небольшому увеличению входного тока и, таким образом, компенсирует уменьшение сопротивления нагрузки Rload.
Самым большим преимуществом этой схемы является то, что изменения тока стабилитрона уменьшаются в β раз, и, таким образом, эффект стабилитрона значительно снижается, и получается гораздо более стабильный выходной сигнал.
Выходное напряжение последовательного регулятора Vout = Vzener — Vbe. Ток нагрузки Iload схемы будет максимальным током эмиттера, который может пройти транзистор. Для обычного транзистора, такого как 2N3055, ток нагрузки может доходить до 15 А. Если ток нагрузки равен нулю или не имеет значения, то ток, потребляемый от источника питания, можно записать как Izener + Ic (min). Такой регулятор напряжения с эмиттерным повторителем более эффективен, чем обычный стабилизатор напряжения. Обычный стабилитрон, в котором есть только резистор и стабилитрон, должен обеспечивать ток базы транзистора.
Ограничения
Ограничения, перечисленные ниже, доказали, что использование этого последовательного регулятора напряжения подходит только для низких выходных напряжений.
- С повышением температуры в помещении значения Vbe и Vzener имеют тенденцию к уменьшению. Таким образом, выходное напряжение нельзя поддерживать постоянным. Это еще больше увеличит напряжение эмиттера базы транзистора и, следовательно, нагрузку.
- Нет возможности изменить выходное напряжение в цепи.
- Из-за небольшого процесса усиления, обеспечиваемого только одним транзистором, схема не может обеспечить хорошее регулирование при высоких токах.
- По сравнению с другими регуляторами, этот регулятор имеет плохую регулировку и подавление пульсаций в отношении изменений на входе.
- Рассеиваемая мощность проходного транзистора велика, потому что она равна Vcc Ic, и почти все изменения возникают при Vce, а ток нагрузки приблизительно равен току коллектора. Таким образом, при прохождении больших нагрузочных токов транзистор должен рассеивать много энергии и, следовательно, нагреваться.
Транзисторный стабилизатор шунтирующего напряжения с стабилитроном
На изображении ниже показана принципиальная схема шунтирующего регулятора напряжения.Схема состоит из NPN-транзистора и стабилитрона, а также последовательного резистора Rseries, подключенного последовательно с входным источником питания. Стабилитрон подключен к базе и коллектору транзистора, который подключен к выходу.
Шунтирующий стабилизатор напряжения на транзисторах с стабилитрономOperation
Поскольку в последовательном сопротивлении Rseries наблюдается падение напряжения, вместе с ним уменьшается и нерегулируемое напряжение. Величина падения напряжения зависит от тока, подаваемого на нагрузку Rload.Величина напряжения на нагрузке зависит от стабилитрона и напряжения эмиттера базы транзистора Vbe.
Таким образом, выходное напряжение можно записать как
Vout = Vzener + Vbe = Vin — I.Rseries
Выход остается почти постоянным, поскольку значения Vzener и Vbe почти постоянны. Это условие объясняется ниже.
Когда напряжение питания увеличивается, выходное напряжение и напряжение база-эмиттер транзистора увеличивается и, таким образом, увеличивается базовый ток Ibase и, следовательно, увеличивается ток коллектора Icoll (Icoll = β.Ibase).
Таким образом, напряжение питания увеличивается, вызывая увеличение тока питания, который, в свою очередь, вызывает падение напряжения на последовательном сопротивлении Rseries и тем самым снижает выходное напряжение. Этого уменьшения будет более чем достаточно, чтобы компенсировать первоначальное увеличение выходного напряжения. Таким образом, выпуск остается почти постоянным. Работа, описанная выше, происходит в обратном порядке, если напряжение питания снижается.
Когда сопротивление нагрузки Rload уменьшается, ток нагрузки Iload увеличивается из-за уменьшения токов через базу и коллектор Ibase и Icoll.Таким образом, на Rseries не будет падения напряжения, а входной ток останется постоянным. Таким образом, выходное напряжение останется постоянным и будет разницей между напряжением питания и падением напряжения на последовательном сопротивлении. Это происходит наоборот, если увеличивается сопротивление нагрузки.
Ограничения
Последовательный резистор вызывает огромные потери мощности.
1. Ток питания через транзистор будет больше, чем через нагрузку.
2. В цепи могут быть проблемы, связанные с перенапряжением.
2. Дискретный транзисторный регулятор напряжения
Дискретные транзисторные регуляторы напряжения можно разделить на два. Они объясняются ниже. Эти две схемы способны производить регулируемое выходное постоянное напряжение, которое регулируется или поддерживается на заданном уровне, даже если входное напряжение изменяется или нагрузка, подключенная к выходному зажиму, изменяется.
Стабилизатор напряжения на дискретных транзисторах
Блок-схема дискретного стабилизатора напряжения транзисторного типа приведена ниже.Элемент управления размещен для сбора нерегулируемого входа, который контролирует величину входного напряжения и передает его на выход. Затем выходное напряжение возвращается в схему выборки, затем сравнивается с опорным напряжением и отправляется обратно на выход.
Последовательный регулятор напряжения на дискретных транзисторахТаким образом, если выходное напряжение имеет тенденцию к увеличению, схема компаратора выдает управляющий сигнал, чтобы заставить элемент управления уменьшать величину выходного напряжения, пропуская его через схему выборки и сравнивая его, тем самым поддерживая постоянное значение. и стабильное выходное напряжение.
Предположим, что выходное напряжение имеет тенденцию к снижению, схема компаратора выдает управляющий сигнал, который заставляет последовательный элемент управления увеличивать величину выходного напряжения, таким образом поддерживая стабильность.
Шунтирующий стабилизатор напряжения на дискретных транзисторах
Блок-схема дискретного транзисторного шунтирующего стабилизатора напряжения приведена ниже. Как следует из названия, регулирование напряжения обеспечивается за счет отвода тока от нагрузки. Элемент управления шунтирует часть тока, возникающего в результате входного нерегулируемого напряжения, подаваемого на нагрузку.Таким образом, напряжение регулируется на нагрузке. Из-за изменения нагрузки, если есть изменение выходного напряжения, оно будет скорректировано путем подачи сигнала обратной связи в схему компаратора, которая сравнивается с опорным напряжением и передает выходной управляющий сигнал на элемент управления для корректировки величины. сигнала, необходимого для отвода тока от нагрузки.
Шунтирующий стабилизатор напряжения на дискретных транзисторахЕсли выходное напряжение увеличивается, ток шунта увеличивается и, таким образом, создается меньший ток нагрузки и поддерживается регулируемое выходное напряжение.Если выходное напряжение уменьшается, ток шунта уменьшается и, таким образом, создается больший ток нагрузки и поддерживается постоянное регулируемое выходное напряжение. В обоих случаях важную роль играют схема выборки, схема компаратора и элемент управления.
Ограничения транзисторных регуляторов напряжения
Устойчивое и стабилизированное выходное напряжение, получаемое от регулятора, ограничено диапазоном напряжения (30-40) вольт. Это связано с малым значением максимального напряжения коллектор-эмиттер транзистора (50 Вольт).Это ограничивает использование транзисторных источников питания.
3. Электромеханический регуляторКак следует из названия, это регулятор, сочетающий в себе электрические и механические характеристики. Процесс регулирования напряжения осуществляется спиральным измерительным проводом, который действует как электромагнит. Магнитное поле создается соленоидом в соответствии с протекающим через него током. Это магнитное поле притягивает движущийся материал сердечника из железа, который связан с натяжением пружины или силой тяжести.Когда напряжение увеличивается, ток усиливает магнитное поле, поэтому сердечник притягивается к соленоиду. Магнит физически связан с механическим переключателем. Когда напряжение уменьшается, магнитное поле, создаваемое сердечником, уменьшается, поэтому натяжение пружины заставляет сердечник втягиваться. Это замыкает механический переключатель и позволяет току течь.
Если конструкция механического регулятора чувствительна к небольшим колебаниям напряжения, к соленоиду может быть добавлен селекторный переключатель в диапазоне сопротивлений или обмотки трансформатора, чтобы постепенно повышать и понижать выходное напряжение или изменять положение подвижного элемента. катушка регулятора переменного тока.
Ранее автомобильные генераторы и генераторы переменного тока содержали механические регуляторы. В регуляторах такого типа процесс выполняется одним, двумя или тремя реле и различными резисторами, чтобы установить выходную мощность генератора чуть выше 6 или 12 вольт, и этот процесс не зависит от частоты вращения двигателя или нагрузки, изменяющейся на транспортном средстве. электрическая система. Реле используются для выполнения широтно-импульсной модуляции для регулирования выходной мощности генератора и управления током возбуждения, проходящим через генератор.
Регулятор, используемый для генераторов постоянного тока, отключается от генератора, когда он не работает, чтобы предотвратить обратный поток электричества от батареи к генератору. В противном случае он будет работать как мотор.
4. Автоматический регулятор напряжения (АРН)
Этот активный системный регулятор в основном используется для регулирования выходного напряжения очень больших генераторов, которые обычно используются на кораблях, нефтяных вышках, больших зданиях и т. Д. Схема AVR сложна и состоит из всех активных и пассивных элементов, а также микроконтроллеров.Основной принцип работы AVR такой же, как и у обычного регулятора напряжения. Входное напряжение возбудителя генератора регулируется АРН, и когда напряжение генератора увеличивается или уменьшается, выходное напряжение генератора автоматически увеличивается или уменьшается. Будет предопределенная уставка, по которой АРН определяет величину напряжения, которое должно передаваться на возбудитель каждую миллисекунду. Таким образом регулируется выходное напряжение. Та же операция становится более сложной, когда только один АРН используется для регулирования нескольких генераторов, подключенных параллельно.
5. Трансформатор постоянного напряжения (CVT)
В некоторых случаях вариатор также используется в качестве регулятора напряжения. CVT состоит из резонансной обмотки высокого напряжения и конденсатора, который производит регулируемое выходное напряжение для любого типа входного переменного тока. Как и у обычного трансформатора, вариатор имеет первичную и вторичную обмотки. Первичная обмотка находится на стороне магнитного шунта, а вторичная обмотка — на противоположной стороне с настроенной цепью катушки. Регулирование поддерживается за счет магнитного насыщения вторичных обмоток.Чтобы узнать больше о вариаторах, ознакомьтесь с нашей статьей — Трансформатор постоянного напряжения.