ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Ведущий производитель электромоторов для HDD нацелился на тяговые двигатели для электромобилей

На днях японская компания Nidec назвала себя «Теслой» среди производителей двигателей для электромобилей. По словам руководителя Nidec, всё больше и больше компаний нуждаются в совершенных электродвигателях для электрического транспорта. Компания Nidec как никто разбирается в электродвигателях и готовится начать выпускать сравнительно недорогие и качественные электродвигатели.

Пример автомобильного тягового электродвигателя Nidec (изображение компании)

Имя компании Nidec стало широко известно около десяти лет назад, когда очередное наводнение в Таиланде затопило заводы производителей жёстких дисков, а заодно и заводы Nidec, на которых собирались электродвигатели для жёстких дисков. Тогда выяснилось, что свыше 70 % электродвигателей для HDD выпускает именно эта японская компания, что не отменяет того факта, что у неё это очень хорошо получается. Поэтому действительно можно ожидать, что электродвигатели для электромобилей она тоже сможет выпускать на очень высоком уровне качества по адекватной цене.

Важно отметить, что Nidec, вопреки современным тенденциям, не боится инвестировать в Китай. В частности, недавно она открыла в Китае новый центр разработок. Более того, основными потребителями тяговых двигателей Nidec для электромобилей сегодня являются китайские компании. По словам производителя, свыше 10 из её 15 клиентов во всём мире ― это китайцы.

Компания Nidec собирается конкурировать с соперниками не только инновациями и качеством двигателей, но также и ценой. Она обещает в два раза снизить себестоимость производства электродвигателей для электромобилей и уже добилась 30-процентного снижения себестоимости. В конечном итоге Nidec собирается выпускать электродвигатели, которые будут существенно дешевле конкурирующих предложений без ухудшения эксплуатационных характеристик.

Пандемия коронавируса SARS-CoV-2 сократила спрос на электродвигатели для электромобилей, что затронуло Nidec так же, как и других производителей, но она обещает достойно выйти из кризиса.

«Производство автомобилей прекратилось. Но тенденция к электрификации продолжается. Все больше и больше компаний хотят производить электромобили», ― заявил глава компании Шигенобу Нагамори (Shigenobu Nagamori).

«Мы как Tesla в бизнесе электромоторов для автомобилей», ― сказал Нагамори. Отметив, что Tesla недавно обогнала Toyota Motor по капитализации и стала самым дорогим автопроизводителем в мире, он пояснил: «Это потому что инвесторы ожидают перехода на электромобили. Мы должны подготовиться к радикальному сдвигу».

Впрочем, пандемия даже помогла Nidec. Удалённая работа увеличила спрос на ноутбуки и электродвигатели для систем охлаждения мобильных ПК. Также стали востребованы электродвигатели для масок медицинского назначения. Эти направления позволяют Nidec в целом неплохо оценивать выручку в текущем финансовом году, хотя она прогнозируется на пару процентов меньше, чем в прошлом.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Сравнение характеристик электромобиля и автомобиля с двигателем внутреннего сгорания — РОССИЙСКАЯ АКАДЕМИЯ ТРАНСПОРТА

Интерес к электромобилям в последние годы превращается в стойкую тенденцию не только на фоне бурного развития технологий, но и благодаря заверениям автомобилестроительных корпораций в высокой степени экологичности такого транспорта. Как заверяют современные производители электромобилей, главным преимуществом является высокая экологичность, поскольку отсутствуют выхлопы, не используются нефтепродукты, антифризы, масла — как моторные, так и трансмиссионные. Несомненно, с таким доводом можно согласиться, однако многие эксперты призывают быть рациональными в данном вопросе и учитывать все факторы, влияющие на экологию на всем жизненном цикле электромобиля.

Александр Павлов, заведующий кафедрой «Двигатели внутреннего сгорания» Ярославского государственного технического университета, кандидат технических наук, рассказывает, почему электротранспорт не исключает загрязнение атмосферы: «Многие из средств массовой информации слышали — жизнь легкового и грузового автомобиля с ДВС фактически прекращается. Анонсируется, что к 2030 году в странах ЕС продажи автомобилей с ДВС будут запрещены. Активно продвигается тема электромобилей. Однако в данной теме не все так просто и век двигателя внутреннего сгорания далеко еще не исчерпан.

Чтобы разобраться в этом вопросе, следует обратиться к схеме распределения энергии от двигателя до колес обычного легкового автомобиля. Схема легкового автомобиля с механической трансмиссией состоит из источника энергии, которым является ДВС, сцепления, коробки переменных передач, главной передачи и колес. У электромобиля источник энергии — аккумуляторная батарея, система БМС — менеджер батареи, который управляет зарядкой и разрядкой, контроллер, который управляет электродвигателем, сам электродвигатель, главная передача и колеса. КПД фрикционной передачи сцепления порядка 0,95, КПД коробки передач порядка 0,92, КПД главной передачи также — 0,9 . Перемножив эти значения, КПД передачи от двигателя к колесам составит порядка 0,76. Если перемножить все КПД устройств преобразования энергии электромобиля, мы получим всего порядка 0,56 КПД передачи энергии в электромобиле.

Говоря про экологический аспект, внедрением электромобиля нагрузка по выбросам просто перераспределяется: она уходит с дороги и концентрируется близ электростанций. Тем не менее, экологический ущерб будет осуществляться, в том числе при производстве и утилизации батарей. Для производства литий-ионных батарей требуется добыча редко-земельных металлов, требуется затратить энергию на их обработку. Экологический ущерб при производстве аккумуляторных батарей также необходимо учитывать, хотя многие популяризаторы электромобилей об этом умалчивают. Срок службы батареи при активном ее использовании составляет 7 лет, а далее ее необходимо утилизировать. Страны запада надеются продавать уже почти отработанные батареи в менее развитые страны, чьей головной болью и станет их утилизация. Необходимо относиться критически к таким нововведениям. В 2018 году в Центральном научно-исследовательском автомобильном и автомоторном институте НАМИ под руководством Владимира Федоровича Кутенева, профессора, выпускника кафедры двигателей внутреннего сгорания Ярославского технологического института, была выполнена научная работа, в которой доказывается, что износ покрышек, асфальтобетонного покрытия и износ тормозных механизмов по выбросам твердых частиц равносилен выбросам твердых частиц дизельным двигателем. Поэтому, про полную экологичность электромобилей следует забыть и относиться к этому критически, воспринимая информацию к сведению».

Несмотря на уверенные заверения ряда исследователей о существовании проблем для окружающей среды, связанных с использованием электромобилей, споры в научной сфере относительно последствий производства и работы электротранспорта не прекращаются. Против внедрения автомобилей на электрической тяге в целом пока не выступают ни учёное сообщество, ни власти государств. В силу дороговизны и несовершенства технических характеристик электромобилей единственным их преимуществом перед автомобилями с двигателем внутреннего сгорания является отсутствие загрязняющих выхлопов. Очевидно, что если явных экологических преимуществ электромоторов перед двигателями внутреннего сгорания не окажется, то они не смогут остаться долго на пике тренда и утратят шанс вытеснить бензиновые двигатели. 

Читайте далее:

Новый прорыв в создании двигателей для электромобилей

В связи с популярностью и экологичностью электромобилей, электроскутеров, промышленных квадрокоптеров и других электрических машин рынок электродвигателей в двадцать первом веке быстро растет. На конец 2019 года только на внутреннем рынке Китая насчитывается больше 400 производителей электромобилей. На рынок приходят новые технологии производства электродвигателей и аккумуляторных батарей – такой прорыв делает электротранспорт всё более доступным.

 

Класcика

 

Казалось бы, что можно придумать новое, отличное от существующего? Ведь работа современного электродвигателя основана на известном принципе электромагнитной индукции, в основе которого лежит получение электродвижущей силы в замкнутом контуре с изменением магнитного потока. Традиционно агрегат состоит из недвижимого элемента – статора, и вращающегося – ротора. Статор имеет ряд обмоток, на которые поступает электрический ток, что приводит к появлению магнитного поля, за счет которого и вращается ротор. Скоростные показатели ротора определяются частотой, с которой происходит переключение тока с одной обмотки статора на другую. Технология не нова, однако современные достижения науки и техники позволили развить ее до невероятных высот

Анализ существующих отечественных и зарубежных разработок

 

Анализ существующих отечественных и зарубежных разработок показал, что практическое применение в электромобилях получили электроприводы следующих типов: вентильные электродвигатели, асинхронные частотно-управляемые, электродвигатели постоянного тока с независимым возбуждением и электродвигатели постоянного тока с последовательным возбуждением. Сопоставление достоинств и недостатков этих двигателей с учетом эксплуатационных требований дает следующие результаты. Наиболее высокий КПД имеют вентильные электродвигатели. КПД электродвигателей постоянного тока и асинхронных электродвигателей примерно равны, однако в последнее время асинхронные частотно-управляемые двигатели, имеющие электрические машины с малым скольжением и более точное электронное управление на основе специализированных быстродействующих микроконтроллеров с набором соответствующих датчиков (векторное управление), достигают КПД, сравнимый с КПД вентильных электродвигателей.

 

 

Что имеем

 

На сегодняшний день наиболее популярным из существующих электродвигателей для электромобилей остается асинхронный двигатель, созданный ещё в XIX веке. Его конструкция оказалась гениально простой и настолько удачной, что все дальнейшие преобразования не касались принципа действия, затрагивая лишь технологию изготовления тех или иных деталей. Например, модифицироваться могли подшипники, на которых крепился вал двигателя, менялась форма обмоток ротора и статора, однако принцип работы асинхронного двигателя оставался прежним.

К преимуществам двигателей такого типа относятся простота обслуживания и отсутствие подвижных контактов. Здесь нет щеток и контактных колец, питание подается только на неподвижную трехфазную обмотку статора, что и делает этот двигатель весьма удобным для самых разных сфер применения, практически универсальным. Такой двигатель прост в изготовлении и сравнительно дешев, затраты при эксплуатации минимальны, а надежность высока.

 

Если говорить о недостатках асинхронных двигателей с короткозамкнутым ротором, то их несколько. При включении двигателя в сеть пусковой ток довольно велик, при этом пусковой момент значительно меньше номинального. В основном этот недостаток как и проблема регулировки оборотов, преодолевается применением частотного преобразователя, позволяющего плавно повышать обороты, и таким образом обеспечить достаточно высокий пусковой момент. Это достигается тем, что скорость вращения такого электродвигателя зависит от частоты переменного тока, т. е. изменив частоту тока, можно изменить скорость вращения ведущих колёс, что позволяет легко контролировать скорость электромобиля.

Еще одним недостатком асинхронных двигателей с короткозамкнутым ротором является их низкий коэффициент мощности, особенно при малой нагрузке и на холостом ходу, что снижает эффективность данной электрической системы в целом.

 

Сам электродвигатель — это достаточно совершенное устройство, но, поскольку стремительное развитие отрасли экоавтомобилей только входит в начальную стадию, кардинального изменения принципа работы, улучшение показателей (удельной мощности и экономичности) и его устройства можно ожидать уже в ближайшее время.

 

Традиционно электродвигатели для автомобилей должны отвечать следующим требованиям:

  • иметь безопасное и удобное для эксплуатации устройство;
  • обладать высокой удельной мощностью и экономичностью;
  • обладать высокой надежностью и безопасностью при длительной эксплуатации;
  • иметь компактные габариты;
  • работать в широком диапазоне частот вращения с высокими показателями, что позволит электромобилю обходиться без коробки передач.

Новый прорыв

 

Для электромобиля важна надёжность конструкции и ещё более – высокий кпд электродвигателя. От эффективности работы электродвигателя зависит величина расстояния пробега электромобиля от одной зарядки аккумуляторов, поэтому: чем выше кпд, — тем лучше.

 

Мировой рынок сбыта электродвигателей стремительно развивается. Согласно новому отчету Grand View Research, Inc. к 2025 году, как ожидается, он достигнет 214,5 млрд. долларов США. Именно быстрые технологические достижения являются основным драйвером роста рынка.

 

С целью достижения высоких технико-экономических показателей электродвигателя, прежде всего получения максимальной мощности и крутящего момента, при минимальном потреблении энергии необходимо уменьшить ее внутренние потери.

 

 

В России запатентован высокопроизводительный оригинальный электродвигатель американской компании Buddha Energy Inc. Примечателен тот факт, что автор электродвигателя является россиянином. В США электродвигатели продаются под торговой маркой HELV Motors. Компания Buddha Energy Inc. занимается разработкой инновационных электронных контроллеров и электродвигателей. Компания имеет патенты на разработку в крупнейших индустриальных странах. Их разработки ориентированы на зеленые технологии и охрану окружающей среды, сокращение использования природных ресурсов.

Особенностью электродвигателя HELV является его форма. Он спроектирован в виде шара таким образом, что полная площадь магнитного поля статора взаимодействует с полной площадью магнитного ротора при минимальном рассеивании магнитного поля, что дает высокий крутящий момент при небольшом размере двигателя.

 

В ходе стендовых испытаний, сила на валу тестового двигателя массой 2,8 кг и диаметром 119 мм  составила 80 Нм. Примечательно, что сам двигатель может развить и большую мощность, но на текущий момент контроллер для его управления рассчитан только на 6 кВт. Таким образом при напряжении в 60 вольт и токе 100 ампер, двигатель показал статический крутящий момент в 80 Ньютон метров при оборотах 3900 об/м. Максимальная мощность двигателя может быть увеличена в несколько раз. Компания работает над созданием контроллера на 22 кВт.

 

Обычно с целью уменьшения воздействия токов Фуко на металл электродвигателя, а, соответственно, уменьшения потерь на нагрев, статоры синхронных и асинхронных электрических машин изготовлены из набора изолированных между собой пластин из тонкого железа. На электродвигателях марки «HELV Motors» компании Buddha  Energy Inc. корпус статора выполнен из композитов, что позволило уменьшить его вес и максимально сократить потери от эффекта токов Фуко. В двигателях HELV не используются металлические сердечники, это позволяет значительно снизить вес двигателя без потери мощности. Особенно это важно для квадрокоптеров и вертолетов.

 

Благодаря специальному корпусу (крышке) диамагнитного статора все магнитные поля ротора и катушек концентрируются на небольшой площади и не выходят за пределы двигателя, что позволяет создавать высокую мощность при низком потреблении электроэнергии.

 

Композит статора дает возможность легко придавать ему нужную форму без использования дорогостоящего оборудования для обработки металла. Это позволит дополнительно снизить стоимость готовых электродвигателей.

Статор изготовлен таким образом, что двигатель может быть установлен как вертикально, так и горизонтально.

 

К преимуществам электродвигателя HELV следует также отнести:

  • небольшие габариты и малый вес;
  • максимальный крутящий момент, который доступен с момента включения (при нулевых оборотах) двигателя;
  • возможность получения рекуперативной энергии;
  • экологически чистая работа;
  • минимум движущихся деталей, требующих замены или ремонта;
  • отсутствие необходимости в коробке передач автомобиля.

Компания Buddha Energy Inc. предлагает ряд высокоэффективных низковольтных электродвигателей нового поколения на основе оригинально расположенных магнитных полей под торговой маркой «HELV Motors» мощностью от 5,6 кВт до 75 кВт

 

Так электродвигатель HELV мощностью 5,6 кВт при макс. 5600 об / мин, требует напряжения 75 В и потребляет ток до 100 А, в зависимости от нагрузки. В зависимости от модели двигателя обороты составляют от 65 до 75 оборотов на Вольт.

 

В целом к преимуществам электродвигателей компании «HELV Motors» следует отнести: малый вес и компактный размер, низкое потребление напряжения, умеренный нагрев при работе и большой крутящий момент вала в сравнении с низким энергопотреблением. Сферические катушки статора имеют низкое сопротивление, что позволяет создавать сильные магнитные поля внутри катушек при низком напряжении.

 

По имеющейся информации можно предположить, что авторы разработки изобрели нечто уникальное, которое может осуществить новый виток в энергетике, в понимании использования сил природы на благо человечества.

 

 

В целом изобретателям удалось решить сложную техническую задачу — смоделировать точное взаимодействие магнитных полей в пространстве, в том числе внутри композитов. Они также проверили магнитные взаимодействия полей на практике. С этой целью на 3D принтере был напечатан лабораторный стенд для проверки взаимодействия магнитных полей ротора и статора. После проверки нескольких десятков вариантов обмоток статора был найден вариант, при котором взаимодействие полей статора и ротора происходило наилучшим образом. Всё остальное было делом техники. На этом же принципе сконструирован шарообразный электродвигатель HELV.

 

Как утверждают авторы разработки, моторы HELV с их соотношением размеров и мощности — это нечто фантастическое. Реализация данного изобретения стала возможной благодаря новым доступным материалам и новым идеям, которые стали ключевым фактором успеха прорывного эксперимента — изобрести что-то новое, что-то важное. При доводке конструкции синхронизировать контроллер с электродвигателем HELV было достаточно непросто. Контролировать его на высоких нагрузках еще сложнее. Но на сегодняшний день изделие почти готово к массовому производству.

 

Компания утверждает, что двигатель рассчитанный на мощность 40 кВт будет весить не больше 9,7 кг, а диаметр будет не больше 22 сантиметров. Такие характеристики дадут возможность устанавливать данный двигатель на электрические автомобили, лодки, электромотоциклы и квадрокоптеры. В 2019 году компания заявила, что скорость вращения топовой модификации двигателя составляет 30 000 оборотов в минуту при напряжении в 400 вольт, а пиковая мощность электродвигателя в линейке продукции составляет 95 кВт. Данная модель еще не представлена в линейке продукции компании.

 

Таким образом, произведен прорыв в создание самых современных и эффективных электродвигателей. Остаётся только правильно подобрать его мощность для достижения заданных технических характеристик автомобиля. Требуемая мощность, во многом зависит от типа трансмиссии. Если электродвигатель будет подключен к колёсам через коробку передач, — то достаточно и небольшой мощности, а если напрямую к дифференциалу, – тогда потребуется двигатель более мощный.

 

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Нет, мир не перейдёт на электромобили: 5 главных препятствий

Добыча кадмия, теллура, галлия, германия, индия, селена и, конечно, кремния, без которого не обходится ни одна солнечная панель, провоцирует токсическое загрязнение почвы, воздуха и воды в наиболее уязвимых природных зонах: значительную часть этих материалов получают в районах Азии, Африки и Южной Америки с хрупкой экосистемой. Разведка и выработка соответ­ствующих месторождений разрушают флору и фауну эндемичных районов. Результатом становятся не только отравленные реки, но и исчезновение целых популяций.

Даже если не брать в расчёт способ получения электроэнергии, много вопросов возникает к самим аккуму­ляторам — будь то никель-кадмиевые или литий-ионные батареи. Всё та же добыча кадмия и лития не только убивает животных, которым не повезло оказаться поблизости, но и загрязняет подземные воды, а также приводит к опустыниванию.

Яркий пример — Атакама в Чили. Площадь этой пустыни растёт, а оазисы исчезают из-за добычи лития. При извлечении этого вещества компании выкачи­вают гигалитры воды, что иссушает почву и лишает местных животных пищи. Отраслевой портал LithiumMine утверждает, что на добычу лития в Атакаме уходит две трети всей местной пресной воды. По аналогичному сценарию разви­вается ситуация в Боливии, Тибете, Австралии и других регионах, добывающих литий. А люди, непосред­ственно занятые этим промыслом, подвер­жены развитию отёка лёгких и плеврита из-за вдыхания литиевой пыли и щелочных соединений лития.

Электромобили — ключевая причина этих процессов. За десять лет, с 2008 по 2018 год, мировая добыча лития увели­чилась в восемь раз; тенденцию спровоци­ровал бум электро­мобилей. К такому выводу пришли учёные Дату Буйунг Агусдината, Вэньцзюань Лю, Хейли Икин и Хьюго Ромеро в научной статье, которую опубликовал издательский дом IOP Publishing.

Существует и сугубо обыватель­ский подход, пред­лагающий не обращать внимания на абсолютные значения урона для экологии. Сторон­ники такой трактовки хотят сосредо­точиться на том, что при использо­вании электро­мобилей источник загрязнения окружающей среды пере­носится из городов куда-то ещё. И даже если это «куда-то ещё» означает саванну, нетронутую сибирскую тайгу или пампасы Южной Америки, преимущества от чистого воздуха в городах остаются на месте.

Приложения: Последние новости России и мира – Коммерсантъ Информационные технологии (133665)

Крупные технологические компании — Apple, Xiaomi, Baidu, Huawei — объявили о планах выйти на рынок электромобилей самостоятельно или с помощью сторонних производителей оборудования. Одновременно традиционные автогиганты — Ford, Volvo, General Motors — инвестируют миллиарды долларов, чтобы полностью перейти на продажи машин с нулевым уровнем выбросов в ближайшее время. Конкуренция в сфере электрокаров будет становиться все более высокой, прогнозируют аналитики. Почему IT-компании решили выйти на новый рынок и смогут ли они перехватить лидирующие позиции у производителей авто?

Новые игроки

За последнее время несколько крупных IT-игроков объявили о планах выйти на рынок электромобилей с собственным продуктом напрямую или через сотрудничество с OEM (original equipment manufacturer) — компанией, производящей детали и оборудование, которые можно продавать под собственной торговой маркой.

Китайский IT-гигант Xiaomi объявил 30 марта, что планирует инвестировать $10 млрд в течение следующих десяти лет в небольшую дочернюю компанию по производству электромобилей. Xiaomi является третьим по величине производителем смартфонов в мире после Apple и Samsung. Первоначальные инвестиции в проект по выпуску электрокаров составят $1,5 млрд — пока компания не объявила, будет она выпускать бюджетные модели авто или выйдет в премиум-сегмент.

В январе другая китайская компания, предоставляющая веб-сервисы, Baidu объявила, что станет партнером китайского автопроизводителя Geely для производства электромобилей. Baidu инвестирует в партнерство программные технологии, а Geely возьмет на себя проектирование и производство.

Кроме того, в апреле Huawei объявила о начале продаж электрокара SF5, который она разработала совместно с брендом электромобилей SERES. SF5 оснащен решением Huawei HiCar для подключения к сети: разработка будет доступна во флагманских магазинах Huawei по всему Китаю. Наконец, по сообщению Bloomberg, Apple вела переговоры с автопроизводителями Hyundai Motor и Kia Motor о производстве электрокара Apple Car к 2024 году, но приостановила обсуждение в феврале.

Конкуренция в сфере электромобилей будет становиться все более высокой. Несколько традиционных производителей авто недавно объявили о планах более быстрого перехода к продажам электрокаров, лидер отрасли Tesla продолжает масштабироваться, а новые участники стремятся выйти на рынок, отмечают аналитики Goldman Sachs (GS).

Крупные IT-компании в принципе активно интересуются новыми отраслями, указывает аналитик ИК «Велес Капитал» Артем Михайлин. «У IT-гигантов уже есть достойная финансовая, технологическая и экспертная база, что позволяет постоянно тестировать новые направления вне основного бизнеса»,— говорит он. По его словам, производство электромобилей является интересной областью с большим потенциалом роста и во многих моментах пересекается с производством гаджетов.

По данным Canalys, в мире продажи электромобилей составили 3,1 млн штук в 2020 году. Эксперты компании рассчитывают, что к 2028 году продажи электромобилей вырастут до 30 млн штук. Больше половины мировых продаж легковых транспортных средств в 2026 году будет приходиться на электрифицированные автомобили, прогнозирует Boston Consulting Group. В 2020 году ее эксперты утверждали, что этого показателя (51%) удастся достигнуть только к 2030 году, однако они пересмотрели свои прогнозы из-за ускорившегося перехода на электродвигатели в пандемию.

О том, есть ли потенциал заработать на этом рынке, спорить не приходится. В конце марта на биржу NASDAQ вышел стартап по производству электромобилей Arrival, который создал экс-глава Yota Денис Свердлов. Компания выбрала способ стать публичной через слияние со SPAC — американской CIIG Merger. В результате инвесторы оценили Arrival, которая еще не начала массового производства, в $13,8 млрд — рекордную сумму для проектов из Великобритании.

Чем отвечают традиционные игроки в борьбе за лидерство?

Признанные лидеры

Традиционные производители автомобилей стараются как можно быстрее переключиться на электрокары. Например, Ford недавно объявил о планах увеличить свои инвестиции в электромобили как минимум до $22 млрд до 2025 года, General Motors (GM) поставила себе цель достичь 100% продаж автомобилей с нулевым уровнем выбросов к 2035 году, а Volvo хочет продавать только электромобили к 2030 году. К концу 2025 года BMW собирается поставить клиентам около 2 млн электромобилей, а к 2030 году на них будет приходиться не менее 50% мировых поставок BMW. Японская Toyota хочет, чтобы к 2025 году на электрифицированные авто приходилось 40% продаж новых автомобилей, а в 2030-м — до 70%.

«Это знак для целой индустрии по всему миру»,— считает партнер Фонда развития интернет-инициатив Дмитрий Калаев. Электрокар — символ прогресса, знак того, что владелец бережет природу, заботится об экологии, согласен сооснователь «Лаборатории умного вождения» Никита Касьяненко. Сейчас это основной двигатель спроса, поэтому почти каждый уважаемый производитель уже представил свои электрокары, добавляет он.

Автоконцерны инвестируют миллиарды долларов в исследования, разработки и электрификацию автопарка: обязательства только GM, Ford и Volvo могут достичь примерно $100 млрд к 2025 году, полагают аналитики GS. Эти инвестиции также поддерживают разработку программного обеспечения, поскольку «начинка» автомобиля может содержать более 100 млн строк кода, указывают они.

В течение следующих двух лет автомобильные бренды и новые участники планируют вывести на рынок несколько моделей электромобилей, что неизбежно повысит конкуренцию. Например, в 2022 году начнутся поставки китайского электрокара Nio ET7 с суперкомпьютером Nvidia внутри, а Tesla в это же время начнет производство бюджетной версии электромобиля на базе Tesla Model 3 за $25 тыс. К 2024 году шесть новых моделей электромобилей представит компания Jaguar Land Rover.

На текущем этапе ни один автопроизводитель не запланировал до 2030 года полностью убрать авто с двигателями внутреннего сгорания из производства, поэтому пока рано говорить о том, что автомобильные бренды перестанут зарабатывать на сервисе, считает консультант SBS Consulting Дмитрий Бабанский. По его словам, автопроизводители диверсифицируются и начинают выпускать электромобили, производители электроники делают то же самое. «Поэтому тут критически важен вопрос выбора стратегических ниш, доходы от которых заменят выручку от сервиса и запчастей для автомобилей»,— считает он. Такими нишами могут стать компоненты для электромобилей (батареи, электродвигатели), инфраструктура для подзарядки электрокаров, а также финансовые продукты, которые будут в эту инфраструктуру встроены.

Традиционные автопроизводители и IT-компании существуют в разных измерениях, говорит Никита Касьяненко: «На стороне первых пока лучшее «железо», но с финансовыми возможностями Apple, Google или Huawei этот вопрос тоже можно решить». По его мнению, происходящее сейчас проще всего представить себе как гонку: IT-компании и автопроизводители движутся к одной цели, но с разных сторон, пытаясь по пути найти компаньонов, которые ускорят их темп.

«Автомобиль сейчас становится сложным девайсом, поэтому стоит ожидать в долгосрочной перспективе переход от конкуренции на рынке авто/электромобилей к конкуренции экосистем. Именно поэтому традиционные автопроизводители идут в производство батарей и инвестируют в зарядочные станции»,— рассуждает консультант SBS Consulting.

Но кто же первым приблизится к финишу?

Захват рынка

Сейчас крупные технологические компании задаются вопросом, куда им двигаться дальше и как увеличить свою выручку, рассуждает Дмитрий Калаев. По его словам, если посмотреть на топ-10 индустрий по выручке, автомобили войдут в него три раза: продажа автомобилей, запчастей и их производство. «Авторынок достаточно большой, но пока на нем еще никто не успел разгуляться»,— подчеркивает он. Однако с точки зрения захвата рынка у технологических компаний есть большой потенциал: сейчас Tesla стоит дороже, чем все автогиганты, но Apple стоит дороже Tesla, указывает эксперт.

С ним согласен сооснователь «Лаборатории умного вождения». По его словам, экономическая модель IT-компаний выглядит как минимум более стабильной. Это означает, что в условиях очередного кризиса, которые преследуют автопромышленность всю ее историю, какой-то крупный автопроизводитель может сдать в аренду свое производство IT-гиганту, открыв тем самым ящик Пандоры для других производителей автомобилей, рассуждает Никита Касьяненко.

Apple и другие бренды из IT-индустрии очень хорошо знают свою аудиторию и могут всерьез посоревноваться с автопроизводителями, которые продают свой продукт через дистрибуторов или сайт и больше ничего не знают о своих покупателях, продолжает Дмитрий Калаев. IT-гиганты больше знают про потребителей, лучше умеют доставлять контент, чем это делают автоконцерны. «Проблема автогигантов в том, что они не знают, кто и что у них покупает: производители отдают товар дистрибуторам, а дальнейшая судьба продукта им, как правило, неизвестна, как и информация о его владельце»,— говорит он.

При этом IT-гиганты знают, что пользователи покупают, как часто, куда они ездят благодаря таргетированию. Например, «Яндекс.Драйв» знает о водителе намного больше, чем не оснащенные специальным софтом машины — в каршеринге приложение открывает профиль пользователя и подбирает подходящую музыку. «Электромобили будут работать еще проще — отсутствие топливной системы превратит машину в гаджет, подключиться к которому и настроить все процессы через телефон будет еще проще»,— прогнозирует партнер ФРИИ.

Производители автомобилей в любом случае сохранят часть своего заработка: ремонт кузова, подвески, трансмиссии и т. д., полагает исполнительный директор аналитического агентства «Автостат» Сергей Удалов. По его мнению, автомобильные бренды оставляют за собой традиционный кусок бизнеса, и туда вряд ли кто-то придет, но в то же время стремятся занять новые ниши. «Основной заработок IT-компаний в автомобильной сфере — в телематике, то есть в сборе данных, их продаже. Поэтому производители не хотят отдавать этот кусок и по возможности хотят сами его начать монетизировать»,— говорит господин Удалов.

Перспективы и будущее эксперт видит в таких сегментах, как connected car (подключенных к сети машинах), обмене данными между автомобилями, безопасностью и автомобилях с автопилотами. Но в этих нишах есть конкуренты — это как раз IT-компании, указывает директор «Автостата». «Ситуация похожа на то, что происходит в банковской сфере, где финтех-сервисы серьезно отгрызают часть рынка у банков. При этом банки стараются сопротивляться, как, например, «Сбер», который строит экосистему. В автомобильной отрасли сейчас происходит похожая история»,— констатирует он.

Пока сложно говорить о перспективах технологических гигантов на этом поприще, так как примера успешных продуктов здесь, по сути, нет, указывает Артем Михайлин из «Велес Капитал». «Мы больше верим в развитие партнерств, когда IT-компании и автомобильные бренды будут кооперироваться и дополнять экспертизу друг друга»,— заключает он.

Александр Филимонов


Выбор электродвигателей для электромобилей и гибридных автомобилей Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

УДК 539.3

ВЫБОР ЭЛЕКТРОДВИГАТЕЛЕЙ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ И ГИБРИДНЫХ

АВТОМОБИЛЕЙ

В. Д. Мигаль, проф., д.т.н., В. Я. Двадненко, доц., к.т.н., Харьковский национальный автомобильно-дорожный университет

Аннотация. Представлен анализ преимуществ и недостатков тяговых электродвигателей следующих типов: вентильные электродвигатели, частотно управляемые асинхронные электродвигатели, электродвигатели постоянного тока с независимым возбуждением и постоянного тока с последовательным возбуждением.

Ключевые слова: электромобиль, гибридный автомобиль, электропривод, преимущества и недостатки.

ВИБ1Р ЕЛЕКТРОДВИГУН1В ДЛЯ ЕЛЕКТРОМОБ1Л1В I Г1БРИДНИХ

АВТОМОБ1Л1В

В.Д. Мигаль, проф., д.т.н., В.Я. Двадненко, доц., к.т.н., Харкчвський нацюнальний автомобшьно-дорожнш ушверситет

Анотаця. Подано анал1з переваг i недолМв електропривода таких титв: вентильм електро-двигуни, асинхронт двигуни — частотно кероват, посттного струму iз двигуном незалежного збудження та посттного струму iз двигуном по^довного збудження.

Ключов1 слова: електромобть, гiбридний автомобть, електропривiд, переваги i недолти.

SELECTION OF ELECTRIC MOTORS FOR ELECTROMOBILES AND HYBRID

VEHICLES

V. Migal, Prof., D. Sc. (Eng.), V. Dvadnenko, Assoc. Prof., Cand. Sc. (Eng.), Kharkiv National Automobile and Highway University

Abstract. An analysis of the advantages and disadvantages of traction motors of the following types: BLDC motors, variable frequency driven asynchronous motors, DC motors with separate excitation, DC motors with series excitation is presented.

Key words: electromobile, hybrid car, electric drive, advantages and disadvantages.

Введение

Эксплуатация электромобиля в городских условиях характеризуется произвольным чередованием режимов разгона, торможения и движения с установившейся скоростью, преодоления подъемов и спусков, кратковременных стоянок (заторы, светофоры, перекрестки) и «случайной» нагрузки на систему тягового электропривода. В этих условиях электромобиль работает практически при постоянном изменении управляющего воздействия на системы автоматического регулирования (САР), которые взаимодействуют

с аккумуляторной батареей, преобразователями частоты и напряжения и с электрической машиной.

На рис. 1 приведены экспериментально снятые параметры движения электромобиля в городских условиях. САР позволяют уменьшить неблагоприятное воздействие на электромобиль переходных процессов и имеющихся нелинейных характеристик, обусловленных наличием ферромагнитных материалов в электродвигателе. Кроме того, возможность рекуперативного торможения с помощью электрической машины позволяет вернуть некоторую часть.

Рис. 1. Параметры движения электромобиля в городских условиях

энергии торможения в тяговый аккумулятор и существенно уменьшить как нагрев, так и износ тормозных колодок, тормозных дисков или тормозных барабанов.

Анализ публикаций

Анализ существующих отечественных и зарубежных разработок показал [1-4], что практическое применение в электромобилях получили электроприводы следующих типов: вентильные электродвигатели (ВЭД), асинхронные частотно-управляемые (АЧУЭД), ЭД постоянного тока с независимым возбуждением (ПН) и ЭД постоянного тока с последовательным возбуждением (ПП). Сопоставление достоинств и недостатков этих двигателей с учетом эксплуатационных требований дает следующие результаты. Наиболее высокий КПД имеют ВЭД. КПД ЭД постоянного тока и асинхронных ЭД примерно равны, однако в последнее время АЧУЭД, имеющие электрические машины с малым скольжением и более точное электронное управление на основе специализированных быстродействующих микроконтроллеров с

набором соответствующих датчиков (векторное управление), достигают КПД, сравнимый с КПД ВЭД.

Цель и постановка задачи

Целью исследования является выбор электропривода электромобиля или гибридного автомобиля, позволяющего получить заданные технические, экологические и эксплуатационные качества электромобиля. Методами исследований являются: анализ, сопоставление и обобщение.

Выбор тягового электродвигателя для электромобиля и для гибридного автомобиля

Вентильные электродвигатели применяют в большинстве современных гибридных автомобилей и электромобилей. ВЭД представляет собой синхронную электрическую машину, снабженную датчиками положения ротора, запитываемую через инвертор на основе современных силовых электронных ключей и управляемую по оптимальным алгоритмам с помощью микроконтроллера с использованием минимум двух САР: по положению ротора и по предельному фазному току. Иногда добавляют САР по угловой скорости (круиз-контроль).

Синхронные электрические машины бывают с возбуждением от постоянных магнитов и с электромагнитным возбуждением. Наиболее широко применяют ВЭД на основе синхронной электрической машины с высококоэрцитивными постоянными магнитами на роторе. Такие ВЭД имеют более высокий КПД и лучшие электрические характеристики. Однако они имеют высокую стоимость. Кроме того, недостатком таких ВЭД является малый диапазон скоростей вращения ротора. Поскольку скорость идеального холостого хода пропорциональна напряжению питания якоря и обратно пропорциональна магнитному потоку возбуждения ротора, для расширения скоростного диапазона, при невозможности управлять магнитным потоком, требуется увеличение напряжения питания.

Относительно недорогими и широко распространенными являются синхронные электрические машины с электромагнитным возбуждением, поскольку они применяются в качестве генераторов переменного тока, в

том числе и в качестве автомобильных генераторов. Именно этот тип электрических машин был выбран для изготовления ВЭД тягового электропривода базового автомобиля, переоборудованного в гибридный [5].

Несмотря на несколько худшие значения КПД, ВЭД на основе синхронной электрической машины с электромагнитным возбуждением, помимо невысокой стоимости, имеет ряд других важных преимуществ. Среди них — возможность организовать регулирование оборотов во второй зоне электродвигателя посредством управления потоком возбуждения. При фиксированном напряжении питания это позволяет расширить рабочий диапазон скоростей вращения ротора, а значит, увеличить передаточное число от ВЭД к ведущим колесам. В результате удаётся повысить пусковой вращающий момент и сохранить требуемую максимальную скорость. Вторым преимуществом использования ВЭД с электромагнитным возбуждением является существенно меньший тормозной момент в обесточенном состоянии, что улучшает накат гибридного автомобиля. Третье преимущество — возможность простого и эффективного управления ВЭД в режиме генератора путем регулировки сравнительно небольшого тока возбуждения. Четвертое преимущество -возможность работы без перенапряжения силовой электроники при угловой скорости, намного превосходящей угловую скорость идеального холостого хода. Такой режим необходим в гибридных автомобилях во время принудительного холостого хода ВЭД при движении автомобиля с помощью ДВС на высокой скорости. Действительно, ВЭД с постоянными магнитами имеет ЭДС вращения, пропорциональную угловой скорости, следовательно, ВЭД с постоянными магнитами должен иметь силовые ключи с рабочим напряжением, в 3-4 раза большим, чем напряжение тяговой батареи. Это приводит к существенному увеличению стоимости инвертора и снижению его КПД. В ВЭД с электромагнитным возбуждением при выключении тока обмотки возбуждения перенапряжение не возникает, поэтому рабочее напряжение ключей должно быть только примерно на 20 % выше рабочего напряжения тяговой батареи [6].

Следовательно, выбор параметров тяговых ЭД не может рассматриваться изолированно вне всей энергетической системы: аккумуля-

торная батарея — преобразователь-инвертор частоты — двигатель.

При проектировании тяговых электродвигателей используют различные критерии оптимальности, например: минимум стоимости, минимум массы, минимум проводниковых материалов, минимум потерь или максимум КПД, минимальные виброшумовые характеристики и др. Для тягового двигателя электромобиля или гибридного автомобиля критерием оптимальности могут быть минимальные потери, так как таким образом увеличивается пробег электромобиля в течение одного цикла разряда аккумуляторной батареи (АБ). Решающим критерием при выборе типа электропривода является наиболее полное использование энергии АБ. Электрическое торможение с рекуперацией энергии в АБ наиболее просто и эффективно достигается в ВЭД и ПН. В АЧУЭД осуществление этого режима затруднено, особенно в области низких частот вращения. В транспортных средствах с ПП рекуперацию не применяют.

Для оптимизации регулирования требуется возможность независимого изменения тока и потока ЭД. В полной мере такая возможность имеется в ПН, а также в ВЭД с электромагнитным возбуждением. В АЧУЭД независимое изменение тока и напряжения возможно в весьма ограниченных пределах, а в ПП связано с техническими трудностями. ВЭД и АЧУЭД имеют существенные преимущества по сравнению с ЭД постоянного тока, по массогабаритным показателям имеют существенно меньшую стоимость электрической машины, во много раз больший ресурс и надежность, практически не нуждаются в обслуживании, имеют возможность перехода двигателя в генераторный режим (режим рекуперативного торможения электромобиля). Однако СУ АЧУЭД по показателям регулирования может уступать СУ ВЭД и имеет пока более высокую стоимость. Несколько меньшую стоимость имеют СУ ПН и ПП, но у них более сложно осуществляется реверс. Наиболее сложным является выбор оптимальных параметров элементов тягового электродвигателя электромобиля. Критерием оптимальности служит, как правило, достижение максимального пробега L или максимальной полезной транспортной работы А = L•mn, где тп — масса перевозимого груза, а также оптимизация закона регулирования ЭД с целью возврата возможно

большей части запасенной при разгоне электромобиля кинетической энергии в АБ в ходе электрического рекуперативного торможения. Асинхронный двигатель с короткоза-мкнутым ротором при работе от статического преобразователя частоты-напряжения сочетает достоинства наиболее простой тяговой электрической машины переменного тока с хорошими пусковыми и регулировочными свойствами двигателя постоянного тока. Для этого он должен быть спроектирован с соблюдением всех требований, предъявляемых к тяговым электрическим машинам: обеспечением защиты от воздействия окружающей среды, с современными подшипниками, не требующей замены или добавления смазки в течение 30000-50000 часов. Асинхронный двигатель позволяет практически полностью исключить техническое обслуживание в течение назначенного безопасного ресурса автомобиля. При питании электродвигателя от аккумуляторной батареи через преобразователь частоты и напряжения (инвертор) в выражении М/Р (минимальная масса/электромагнитная мощность) необходимо учитывать массу электронного блока и потери в этом блоке. Увеличение массы двигателя обычно не служит препятствием при проектировании электропривода электромобиля, так как масса двигателя обычно не превышает 2-5 % полной массы электромобиля и несоизмеримо меньше массы аккумуляторной батареи. КПД новых серий тяговых двигателей повышают по сравнению с выпускаемыми ранее двигателями за счет увеличения расхода меди и стали в том же объеме, уменьшения воздушного зазора в системе ротор-статор, повышения коэффициента заполнения пазов якоря медью. Дальнейшее совершенствование ТАБ, а также тягового электропривода позволит значительно улучшить технико-

эксплуатационные характеристики электромобилей и обеспечит их широкое распространение.

Выводы

Выбор электродвигателей для электромобилей и гибридных автомобилей должен рассматриваться с учетом всей энергетической системы и условий эксплуатации автомобиля. Тяговые коллекторные двигатели постоянного тока в новых разработках электромобилей и гибридных автомобилей не

применяют, поскольку их высокая стоимость и эксплуатационные недостатки не могут быть компенсированы несколько более низкой стоимостью силового электронного управляющего блока. По сравнению с ними ВЭД и АЧУЭД имеют значительные преимущества по массогабаритным показателям, КПД и затратам на техническое обслуживание.

Литература

1. Косой Ю.М. Некоторые особенности проектирования асинхронных двигателей для электромобилей / Ю.М. Косой // Труды ВНИИЭМ. Вопросы проектирования и исследования специальных машин. — 1984. — Том 5. — С. 64-69.

2. Богдан Н.В. Троллейбус. Теория, конструирование, расчет / Н.В. Богдан, Ю.Е. Атаманов, А.И. Сафонов. — Минск: Ураджай, 1999. — 262 с.

3. Доржинкевич И.Б. Особенности применения тягового электродвигателя в системе электропривода электромобиля / И.Б. Доржинкевич, А.А. Максимчук,

A.С. Ройтман // Труды ВНИИЭМ. Вопросы проектирования и исследования специальных машин. — 1984. — Том 5. -С.70-75.

4. Пбридш автомобш / О.В. Бажинов, О.П. Смирнов, С.А. Серков та ш.; за заг. ред. О.В. Бажинова. — Х.: ХНАДУ, 2008. — 328 с.

5. Синергетичний автомобшь. Теорiя и практика / О.В. Бажинов, О.П. Смирнов, С.А. Серков, В.Я. Двадненко; за заг. ред. О.В. Бажинова. — Х.: ХНАДУ, 2011. — 236 с.

6. Двадненко В. Я. Особенности двухзоно-вого регулирования вентильного электропривода гибридного автомобиля /

B. Я. Двадненко, С. А. Сериков // Перспективы развития автомобилей. Развитие транспортных средств с альтернативными энергоустановками: материалы 75-ой Международной научно-технической конференции ААИ 14.1115.11.2011. — Тольятти, Россия. — 2011.

Рецензент: А.В. Бажинов профессор, д.т.н., ХНАДУ.

Статья поступила в редакцию 3 октября 2016 г.

Jeep представил концепт электрического Wrangler

Марка Jeep, которая принадлежит автоконцерну Stellantis, представила 22 марта концепт электромобиля Wrangler Magneto. Он будет участвовать в 54-м ежегодном Пасхальном сафари в окрестностях города Моаб (штат Юта, США), которое в 2021 г. пройдет с 27 марта по 4 апреля. Решение о серийном производстве руководство Jeep будет принимать после оценки потенциального спроса.

Jeep Wrangler Magneto построен на основе классического рамного внедорожника Wrangler версии Rubicon в двухдверной комплектации, которая выпускается уже более 30 лет и считается одним из лучших автомобилей для бездорожья в мире. При этом в Jeep приняли довольно необычное решение: сохранить оригинальную трансмиссию, заменив бензиновый двигатель под капотом Rubicon на электромотор. Во многом это объясняется тем, что у Jeep нет самостоятельной платформы для электрокаров.

В большинстве электромобилей нет коробки передач, потому что электродвигатель в отличие от бензинового дает максимальную мощность на любых оборотах, включая самые малые. Но у Magneto сохранилась полноценная шестиступенчатая механическая коробка передач, а также двухступенчатая раздаточная коробка. Представители Jeep объяснили это решение желанием сохранить «выдающиеся внедорожные характеристики Rubicon» и обеспечить владельцам «такое же удовольствие, как и при управлении традиционным Wrangler с двигателем внутреннего сгорания». Батарею внедорожника емкостью 70 кВт ч инженеры разделили на четыре части, которые разместились во всех доступных для этого местах: под капотом, в багажнике и по бокам от коленвала.

До 6000 об./мин

раскручивается электродвигатель концепта, имеет мощность 285 л. с. и крутящий момент 370 Нм, что соответствует значениям бензинового V6 объемом 3,6 л под капотом Rubicon

Концепт обут в 35-дюймовые внедорожные покрышки и оснащен усиленной подвеской с амортизаторами Fox и увеличенным дорожным просветом. Ходовые свойства на бездорожье обеспечивает пониженная передача. Электродвигатель концепта раскручивается до 6000 об./мин, имеет мощность 285 л. с. и крутящий момент 370 Нм, что соответствует значениям бензинового V6 объемом 3,6 л под капотом Rubicon. До 100 км/ч Magneto разгоняется за 6,8 с. Запас хода пока не сообщается.

У Jeep еще нет ни одной серийной полностью электрической модели, только гибридные варианты бензиновых моделей. Так, осенью прошлого года в линейке появился гибридный Wrangler 4xe, в котором батарея расположена под задним сиденьем, из-за чего модель доступна только в четырехдверной версии. Хотя модель Wrangler версии Rubicon, на основе которой сделан концепт Magneto, имеет как двухдверную, использованную для концепта, так и четырехдверную модификации, аналитики предполагают, что, если дело дойдет до серийного производства Magneto, выпускаться будет именно четырехдверный вариант.

Мировые продажи гибридных и электрических автомобилей хоть и растут впечатляющими темпами – в 2020 г., как отмечает The Wall Street Journal, было продано 3,24 млн таких машин, что на 43% больше, чем в предыдущем году, – но их доля в общих продажах остается низкой: в 2020 г. она составила около 4,2%. К 2030 г., по разным прогнозам, доля зеленого транспорта в общих продажах легковых автомобилей может достичь всего 15–25%. Основные причины невысокой востребованности электромобилей – высокая стоимость, небольшой запас хода, неразвитая инфраструктура станций зарядки.

Западные эксперты автомобильной отрасли считают, что у Magneto есть большие шансы пойти в серию. Jeep нужно сокращать отрыв от конкурентов, которые уже либо продают электрические версии своих внедорожников, либо объявили дату начала производства таких версий. К примеру, General Motors начнет продажи электрической версии своего культового пикапа Hummer осенью 2021 г.

Как на самом деле работают двигатели электромобилей и чем они отличаются?

Когда вы в последний раз задумывались о том, как на самом деле работают электромобили? Мы, супер-фанаты автомобильного бизнеса, по большей части выработали разумное понимание того, как работают силовые агрегаты внутреннего сгорания. Большинство из нас может визуализировать, как топливо и воздух входят в камеру сгорания, взрываются, толкают поршень вниз и вращают коленчатый вал, который в конечном итоге поворачивает колеса. Обычно мы понимаем разницу между рядными, плоскими, V-образными и, возможно, роторными двигателями внутреннего сгорания Ванкеля.

Такие концепции машиностроения сравнительно легко понять. Но, вероятно, справедливо поспорить, что только меньшинство людей, читающих это, может объяснить на салфетке для бара, как именно невидимые электроны вращают колеса автомобиля или чем двигатель с постоянными магнитами отличается от двигателя индукционного переменного тока. Электротехника может показаться автомобильным фанатикам черной магией и колдовством, так что пришло время развенчать этот смелый новый мир электромобильности.

Как работают электромобили: двигатели

Это связано с магнетизмом и естественным взаимодействием между электрическими полями и магнитными полями.Когда электрическая цепь замыкается, позволяя электронам двигаться по проводу, эти движущиеся электроны создают электромагнитное поле с северным и южным полюсами. Когда это происходит в присутствии другого магнитного поля — либо от другой партии ускоряющихся электронов, либо от гигантского подковообразного магнита ACME Wile E. Coyote, эти противоположные полюса притягиваются, и подобные полюса отталкиваются друг от друга.

Просмотреть все 12 фотографий

Электродвигатели работают путем установки одного набора магнитов или электромагнитов на вал, а другого набора — на корпусе, окружающем этот вал.Периодически меняя полярность (меняя местами северный и южный полюса) одного набора электромагнитов, двигатель усиливает эти притягивающие и отталкивающие силы для вращения вала, тем самым преобразуя электричество в крутящий момент и, в конечном итоге, поворачивая колеса. И наоборот, как и в случае рекуперативного торможения, эти магнитные / электромагнитные силы могут преобразовывать движение обратно в электричество.

Как работают электромобили: переменный или постоянный ток?

Электроэнергия, подаваемая в ваш дом, поступает в виде переменного тока (AC), так называемого, потому что полярность север / юг или плюс / минус питания меняется (чередуется) 60 раз в секунду.(То есть в Соединенных Штатах и ​​других странах, работающих при напряжении 110 вольт; страны со стандартом 220 вольт обычно используют переменный ток 50 Гц.) Постоянный ток (DC) — это то, что входит и выходит из полюсов + и — каждую батарею. Как отмечалось выше, двигателям для вращения требуется переменный ток. Без этого электромагнитная сила просто соединила бы их северный и южный полюса вместе. Это цикл постоянного переключения между севером и югом, который заставляет мотор вращаться.

Посмотреть все 12 фото

Современные электромобили предназначены для управления как переменным, так и постоянным током на борту.Аккумулятор накапливает и распределяет постоянный ток, но, опять же, двигателю нужен переменный ток. При подзарядке аккумулятора энергия поступает в бортовое зарядное устройство в виде переменного тока во время зарядки Уровня 1 и Уровня 2 и в виде постоянного тока высокого напряжения на Уровне 3 «быстрых зарядных устройств». Сложная силовая электроника (которую мы не будем пытаться здесь объяснять) обрабатывает многочисленные встроенные преобразования переменного / постоянного тока, повышая и понижая напряжение от 100 до 800 вольт зарядной мощности до напряжения системы батареи / двигателя от 350-800 вольт для многих освещение автомобиля, информационно-развлекательная система и функции шасси, для которых требуется электричество 12–48 В постоянного тока.

Как работают электромобили: какие типы двигателей?

Двигатель постоянного тока (матовый): Да, мы только что сказали, что переменный ток заставляет двигатель вращаться, и эти двигатели старого образца, которые приводили в действие первые электромобили 1900-х годов, ничем не отличаются. Постоянный ток от батареи подается к обмоткам ротора через подпружиненные «щетки» из углерода или свинца, которые приводят в действие вращающиеся контакты, подключенные к обмоткам проводов. Каждые несколько градусов вращения щетки активируют новый набор контактов; это постоянно меняет полярность электромагнита на роторе по мере вращения вала двигателя.(Это кольцо контактов называется коммутатором).

Корпус, окружающий электромагнитные обмотки ротора, обычно имеет постоянные магниты. («Последовательный двигатель постоянного тока» или так называемый «универсальный двигатель» может использовать электромагнитный статор.) Преимущества заключаются в низкой начальной стоимости, высокой надежности и простоте управления двигателем. Изменение напряжения регулирует скорость двигателя, а изменение тока регулирует его крутящий момент. К недостаткам можно отнести меньший срок службы и стоимость обслуживания щеток и контактов.Сегодня этот двигатель редко используется на транспорте, за исключением некоторых индийских железнодорожных локомотивов.

Бесщеточный двигатель постоянного тока (BLDC): Щетки и их обслуживание устраняются путем перемещения постоянных магнитов к ротору, размещения электромагнитов на статоре (корпусе) и использования внешнего контроллера двигателя для попеременного переключения различных обмоток возбуждения. от плюса к минусу, создавая вращающееся магнитное поле.

Преимущества — долгий срок службы, низкие эксплуатационные расходы и высокая эффективность.Недостатками являются более высокая начальная стоимость и более сложные регуляторы скорости двигателя, которые обычно требуют трех датчиков Холла для правильной фазировки тока обмотки статора. Такое переключение обмоток статора может привести к «пульсации крутящего момента» — периодическому увеличению и уменьшению передаваемого крутящего момента. Этот тип двигателя популярен для небольших транспортных средств, таких как электрические велосипеды и скутеры, и используется в некоторых вспомогательных автомобильных приложениях, таких как электрический усилитель рулевого управления.

Просмотреть все 12 фотографий

Синхронный двигатель с постоянным магнитом (PMSM): Физически двигатели BLDC и PMSM выглядят почти одинаково.Оба имеют постоянные магниты на роторе и обмотки возбуждения в статоре. Ключевое отличие состоит в том, что вместо использования постоянного тока и периодического включения и выключения различных обмоток для вращения постоянных магнитов, PMSM работает на непрерывном синусоидальном переменном токе. Это означает, что в нем отсутствует пульсация крутящего момента, и для определения скорости и положения ротора требуется только один датчик на эффекте Холла, поэтому он более эффективен и тише.

Слово «синхронный» означает, что ротор вращается с той же скоростью, что и магнитное поле в обмотках.Его большие преимущества — удельная мощность и высокий пусковой момент. Основным недостатком любого двигателя с вращающимися постоянными магнитами является то, что он создает «обратную электродвижущую силу» (ЭДС), когда он не работает на скорости, что вызывает сопротивление и тепло, которые могут размагнитить двигатель. Этот тип двигателя также используется в усилителях рулевого управления и тормозных системах, но он стал предпочтительной конструкцией двигателя в большинстве современных аккумуляторных электрических и гибридных транспортных средств.

Просмотреть все 12 фотографий

Обратите внимание, что большинство двигателей с постоянными магнитами всех типов ориентируют свою ось север-юг перпендикулярно выходному валу.Это создает «радиальный (магнитный) поток». Новый класс двигателей с «осевым потоком» ориентирует оси N-S магнитов параллельно валу, обычно на парах дисков, между которыми расположены неподвижные обмотки статора. Компактная ориентация аксиального потока с высоким крутящим моментом этих так называемых «двигателей-блинов» может быть применена к двигателям типа BLDC или PMSM.

Посмотреть все 12 фотографий

Индукция переменного тока: В этом двигателе мы убираем постоянные магниты на роторе (и их редкоземельные материалы, которые становятся все более редкими) и поддерживаем переменный ток, протекающий через обмотки статора, как в двигателе PMSM выше.

Замена магнитов — это концепция, запатентованная Никола Тесла в 1888 году: поскольку переменный ток течет через различные обмотки статора, обмотки создают вращающееся поле магнитного потока. Когда эти магнитные линии проходят через перпендикулярные обмотки ротора, они индуцируют электрический ток. Затем это создает другую магнитную силу, которая заставляет ротор вращаться. Поскольку эта сила индуцируется только тогда, когда силовые линии магнитного поля пересекают обмотки ротора, ротор не будет испытывать крутящего момента или силы, если он вращается с той же (синхронной) скоростью, что и вращающееся магнитное поле.

Это означает, что асинхронные двигатели переменного тока по своей природе асинхронны. Скорость ротора регулируется изменением частоты переменного тока. При небольших нагрузках инвертор, управляющий двигателем, может снизить напряжение, чтобы уменьшить магнитные потери и повысить эффективность. Отключение асинхронного двигателя во время крейсерского движения, когда в этом нет необходимости, устраняет сопротивление, создаваемое двигателем с постоянными магнитами, в то время как двухмоторные электромобили, использующие двигатели PMSM на обеих осях, всегда должны приводить в действие все двигатели. Пиковая эффективность может быть немного выше для конструкций BLDC или PMSM, но асинхронные двигатели переменного тока часто достигают более высокого среднего КПД.Еще один небольшой компромисс — это немного более низкий пусковой момент, чем у PMSM. GM EV1 середины 1990-х годов и большинство Tesla использовали асинхронные двигатели переменного тока.

Просмотреть все 12 фотографий

Электродвигатель сопротивления: Думайте о «сопротивлении» как о магнитном сопротивлении: степени, с которой объект противодействует магнитному потоку. Статор реактивного двигателя имеет несколько полюсов электромагнита — концентрированные обмотки, образующие сильно локализованные северный или южный полюса. В реактивном реактивном электродвигателе (SRM) ротор изготовлен из магнитомягкого материала, такого как слоистая кремнистая сталь, с множеством выступов, предназначенных для взаимодействия с полюсами статора.Различные полюса электромагнита включаются и выключаются почти так же, как обмотки возбуждения в двигателе с BLDC. Использование неравного количества полюсов статора и ротора гарантирует, что одни полюса выровнены (для минимального сопротивления), а другие находятся прямо между противоположными полюсами (максимальное сопротивление). При переключении полярности статора ротор вращается с асинхронной скоростью.

Просмотреть все 12 фотографий

Синхронный реактивный двигатель (SynRM) не зависит от этого дисбаланса в полюсах ротора и статора.Скорее, двигатели SynRM имеют более распределенную обмотку, питаемую синусоидальным переменным током, как в конструкции PMSM, со скоростью, регулируемой частотно-регулируемым приводом, и ротор сложной формы с пустотами в форме линий магнитного потока для оптимизации сопротивления.

Последняя тенденция заключается в размещении небольших постоянных магнитов (часто более простых ферритовых) в некоторых из этих пустот, чтобы использовать преимущества как магнитного, так и реактивного крутящего момента при минимизации затрат и неэффективности высокой скорости обратной ЭДС (или противоэлектродвижущей силы), которая страдают двигатели с постоянными магнитами.

Преимущества включают меньшую стоимость, простоту и высокую эффективность. К недостаткам можно отнести шум и пульсацию крутящего момента (особенно для реактивных реактивных двигателей). Toyota представила внутренний синхронный реактивный двигатель с постоянными магнитами (IPM SynRM) на Prius, а Tesla теперь объединяет один такой двигатель с асинхронным двигателем переменного тока на своих моделях с двумя двигателями. Tesla также использует IPM SynRM в качестве единственного двигателя для своих моделей с задним приводом.

Посмотреть все 12 фото

Электродвигатели никогда не могут петь, как малоблочный или плоскопанельный Ferrari.Но, возможно, через десять лет или около того мы будем относиться к трансмиссии Tesla Plaid с такой же любовью, как и к этим двигателям, и каждый автолюбитель сможет подробно описать, какие двигатели он использует.

Как работает двигатель электромобиля — Easy Electric Life

Что такое электродвигатель?

Двигатель электромобиля работает с использованием физического процесса, разработанного в конце 19 века. Он заключается в использовании тока для создания магнитного поля в неподвижной части машины («статоре»), смещение которого приводит в движение вращающуюся часть («ротор»).Мы более подробно рассмотрим эти две части и многое другое ниже.

Принцип электродвигателя

В чем разница между двигателем и двигателем? Эти два слова часто используются как синонимы. Поэтому важно с самого начала различать их. Несмотря на то, что в настоящее время термин «двигатель» используется как почти синоним, в автомобильной промышленности термин «двигатель» относится к машине, которая преобразует энергию в механическую энергию (и, следовательно, в движение), в то время как «двигатель» делает то же самое, но специально использует тепловую энергию. энергия.Поэтому, говоря о преобразовании тепловой энергии в механическую, мы имеем в виду горение, а не электрическое.

Другими словами, двигатель — это тип двигателя. Но мотор — это не обязательно двигатель. В случае с электромобилями, поскольку механическая энергия создается из электричества, мы используем слово «двигатель» для описания устройства, которое заставляет электромобиль двигаться (также известного как тяга).

Как двигатель электромобиля работает внутри электромобиля?

Теперь, когда мы знаем, что мы говорим о двигателях, а не двигателях, как двигатель работает внутри электромобиля?

В наши дни электродвигатели можно встретить во многих бытовых устройствах.Те, которые используют двигатели постоянного тока (DC), имеют довольно простые функции. Двигатель подключен непосредственно к источнику энергии, и его скорость вращения напрямую зависит от силы тока. Хотя эти электродвигатели просты в производстве, они не соответствуют требованиям к мощности, надежности или размеру электромобиля, хотя вы можете обнаружить, что они приводят в действие дворники, окна и другие более мелкие механизмы внутри автомобиля.

Статор и ротор

Если вы хотите понять, как работает электромобиль, вам необходимо ознакомиться с физическими элементами его электродвигателя.И он начинается с понимания принципов работы двух его основных частей: статора и ротора. Разницу между ними легко запомнить: статор неподвижен, а ротор вращается. В двигателе статор использует энергию для создания магнитного поля, которое затем вращает ротор.

Итак, как работает двигатель, когда дело доходит до привода электромобиля ? Для этого мы должны обратиться к двигателям переменного тока (AC), которые требуют использования схемы преобразования для преобразования постоянного тока (DC), подаваемого батареей.Давайте подробнее рассмотрим два разных вида тока.

Электромобиль: переменный ток и постоянный ток

Прежде всего, если вы хотите понять, как работает электродвигатель электромобиля, вам необходимо знать разницу между переменного и постоянного тока (электронные токи).

Электричество движется по проводнику двумя способами. Переменный ток (AC) описывает электрический ток, при котором электроны периодически меняют направление. Постоянный ток (DC), как следует из названия, течет в одном направлении.

Аккумулятор в электромобиле работает от постоянного тока. Но когда дело доходит до главного двигателя электромобиля (который обеспечивает тягу к транспортному средству), эта энергия постоянного тока должна быть преобразована в переменный ток через инвертор.

Итак, что происходит, когда эта энергия достигает двигателя? Это зависит от того, используется ли в автомобиле синхронный или асинхронный двигатель.

Типы электродвигателей

В автомобильной промышленности существуют два типа электродвигателей переменного тока: синхронные и асинхронные.Когда дело доходит до электромобиля, у синхронных и асинхронных двигателей есть свои сильные стороны — один не обязательно «лучше» другого.

Синхронные и асинхронные двигатели

Асинхронный двигатель, также называемый асинхронным двигателем, основан на статоре с электрическим приводом для создания вращающегося магнитного поля. Это влечет ротор в бесконечную погоню, как если бы он безуспешно пытался догнать магнитное поле. Асинхронный двигатель часто используется в электромобилях, которые в основном используются для движения на повышенных скоростях в течение длительных периодов времени.

В синхронном двигателе ротор сам действует как электромагнит, активно участвуя в создании магнитного поля. Таким образом, его скорость вращения прямо пропорциональна частоте тока, который питает двигатель. Это делает синхронный двигатель идеальным для городского движения, которое обычно требует регулярной остановки и запуска на низких скоростях.

И синхронные, и асинхронные двигатели работают в обратном порядке, что означает, что они могут преобразовывать механическую энергию в электричество во время замедления.Это принцип рекуперативного, , торможения, , который происходит от генератора.

Части электродвигателей

Давайте теперь подробнее рассмотрим некоторые из различных частей двигателя электромобиля: от магнитов электродвигателей или синхронных двигателей с внешним возбуждением (EESM) до силового агрегата в целом.

Постоянные магниты

В некоторых синхронных двигателях в качестве ротора используется двигатель с постоянными магнитами. Эти постоянные магниты встроены в стальной ротор, создавая постоянное магнитное поле.Преимущество постоянного электромотора в том, что он работает без источника питания, но требует использования металлов или сплавов, таких как неодим или диспрозий. Эти «редкоземельные элементы» являются ферромагнитными, что означает, что они могут быть намагничены, чтобы стать постоянными магнитами. Они используются в различных промышленных целях: от ветряных генераторов, аккумуляторных инструментов и наушников до велосипедных динамо-машин и… тяговых двигателей для некоторых электромобилей!

Проблема в том, что цены на эти «редкие земли» очень волатильны.Несмотря на свое название, на самом деле они не обязательно такие редкие, но встречаются почти исключительно в Китае, который, следовательно, имеет квазимонополию на их производство, продажу и распространение. Это объясняет, почему производители упорно трудятся над поиском альтернативных решений для двигателей электромобилей.

Синхронные двигатели с внешним возбуждением

Одно из этих решений, используемое Renault для New ZOE, включает изготовление магнита электродвигателя из медной катушки. Это требует более сложного производственного процесса, но позволяет избежать проблем с питанием при сохранении отличного соотношения между массой двигателя и передаваемым крутящим моментом.

Гийом Фори, руководитель отдела проектирования на заводе Renault Cléon во Франции, дает представление о сложности и изобретательности двигателя New ZOE: «Производство EESM требует специальных процессов намотки катушек и пропитки. Ограничения ожидаемых характеристик продукта, цель снижения отношения веса к мощности и высокая скорость производства требуют от нас эффективного использования самых современных технологий для выполнения этих процессов ».

Электрическая трансмиссия

В электромобиле двигатель, состоящий из ротора и статора, является частью более крупного блока, электрической трансмиссии , ансамбля, который заставляет электродвигатель работать.

Также в этом блоке Power Electronic Controller (PEC) объединяет всю силовую электронику, отвечающую за управление питанием двигателя и зарядку аккумулятора. Наконец, он включает в себя редукторный двигатель, часть, отвечающую за регулировку крутящего момента и скорости вращения, передаваемых двигателем на колеса.

Вместе эти элементы обеспечивают плавную и эффективную работу электродвигателя. И результат? Ваш электромобиль бесшумный, надежный, дешевле и приятно водить!

Авторские права: Pagecran

Читайте также

Электромобиль

Различные способы хранения энергии

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о подключаемом к сети гибридном автомобиле

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о зарядке гибридного автомобиля

09 июня 2021

Посмотреть больше

Все, что нужно знать о двигателе электромобиля

Мощность электродвигателя: как это работает?

Как работает мотор электромобиля? В электромобиле, когда водитель нажимает на педаль акселератора, аккумулятор в автомобиле подает электричество на статор, заставляя ротор вращаться, а затем обеспечивает механическую энергию для поворота шестерен автомобиля.Когда шестерни вращаются, вращаются и колеса. Все это происходит в мгновение ока и без сжигания ископаемого топлива!

Какой тип двигателя используется в электромобилях?

Какие типы двигателей электромобилей и как они работают?

Электромоторы для автомобилей: переменного или постоянного тока?

Переменный ток (AC) и постоянный ток (DC) — это два разных типа электрического потока . Как следует из их названий, постоянный ток — это когда электрический заряд течет только в одном направлении, а переменный ток периодически меняет направление.

Двигатели, приводимые в действие постоянным током, можно найти в электромобиле, но только в виде небольших мини-двигателей, используемых, например, для дворников и электрических стеклоподъемников, но не для привода самого транспортного средства. Для тяги электромобиля используется электродвигатель переменного тока.

Типы электродвигателей: асинхронные и синхронные

Существует два типа электродвигателей переменного тока, используемых для создания тяги для электромобиля: асинхронные (также известные как индукционные) и синхронные.

В асинхронном или асинхронном двигателе ротор вращается, постоянно пытаясь «догнать» вращающееся магнитное поле, создаваемое статором. Этот тип двигателя электромобиля известен своей высокой выходной мощностью и является обычным двигателем в транспортных средствах.

В синхронном двигателе, с другой стороны, ротор вращается с той же скоростью, что и магнитное поле. Это обеспечивает высокий крутящий момент на низкой скорости, что делает его идеальным для езды по городу. Еще одно преимущество — габариты: двигатель синхронного электромобиля может быть компактным и иметь небольшой вес.

Как приводится в действие электродвигатель?

Прежде чем ваш асинхронный или синхронный электродвигатель электромобиля сможет вращаться, необходимое ему электричество должно пройти несколько этапов, прежде чем оно достигнет своего конечного пункта назначения в качестве тяги.

Где еще в электромобиле встречаются переменный и постоянный ток?

Не путайте электромотор переменного тока с типами электромобилей; которые могут использовать переменный или постоянный ток в зависимости от того, подключаетесь ли вы напрямую к сети или используете определенный тип зарядной станции.В то время как двигатель вашего электромобиля использует переменный ток, аккумулятор должен получать электричество от постоянного тока. Поэтому требуется переход от альтернативного к постоянному току на борту или вне транспортного средства.

Питание от сети всегда переменного тока. Затем он проходит через бортовое зарядное устройство вашего электромобиля (представьте его как преобразователь переменного тока в постоянный), которое затем отправляет энергию на аккумулятор. Но станции быстрой зарядки, которые вы можете найти на шоссе, парковках и городских улицах, сами выполняют процесс преобразования переменного тока в постоянный ток , то есть энергия для аккумулятора поступает прямо в автомобиль в виде постоянного тока.Они быстрее, чем розетки переменного тока, но занимают гораздо больше места.

Как автомобиль затем превращает постоянный ток в переменный для двигателя? Использование инвертора, устройства в трансмиссии…

Трансмиссия внутри электромобиля

В электромобиле электродвигатель является лишь частью более крупного блока, называемого трансмиссией. Здесь мы также находим силовой электронный контроллер (PEC) , отвечающий за электронику, которая управляет питанием двигателя и зарядкой аккумулятора, и мотор-редуктор, который регулирует крутящий момент (усилие поворота) и скорость вращения.

Для создания различных элементов электромотора требуется настоящий опыт. Руководитель компании Renault Татьяна Суэр объясняет: «Например, для создания статора нам нужно было найти способ намотать 2 километра медной проволоки в маленькие выемки в листовом металле, не повредив изолирующую керамику, которая их покрывает».

Эффективность трансмиссии постоянно повышается, что мы видели в Renault с техническими инновациями в силовом агрегате ZOE, которые приводят к повышению универсальных характеристик автомобиля и внедрению большего количества функций.

Ожидаемый срок службы двигателя электромобиля

Ожидаемый срок службы двигателя электромобиля зависит от стольких переменных, что его трудно оценить. Было высказано предположение, что в идеальных условиях оптимальная продолжительность жизни составляет 15-20 лет. По сравнению с двигателем внутреннего сгорания, двигатель электромобиля состоит из меньшего количества деталей, что означает меньшее количество деталей и упрощение обслуживания.

Какая мощность у электромобиля?

Когда дело доходит до электромобиля, выходная мощность включает в себя разницу между поставленной электроэнергией (вход) и «полезной» механической энергией, приводящей в действие двигатель (выход), соотношение, известное как эффективность преобразования энергии.Тепло и трение могут привести к потере части этой мощности по пути, а это означает, что двигатель не получает выгоду от всего электричества, поступающего от аккумулятора электромобиля.

Выходная мощность электромобиля зависит от объема его двигателя и мощности входящего тока. ZOE, например, развивает мощность 100 кВт с улучшенным крутящим моментом 245 Нм. Благодаря запасу хода по WLTP * 395 километров благодаря аккумулятору на 52 кВтч новый ZOE особенно хорошо показывает себя с точки зрения энергоэффективности.

Какой тип двигателя используется в гибридных электромобилях?

В гибридном электромобиле используется как двигатель внутреннего сгорания, так и двигатель переменного тока, работающий от батареи. Традиционно аккумуляторы на гибридных транспортных средствах можно было заряжать только посредством рекуперативного торможения , или замедления, что означает, что большая часть работы выполнялась двигателем внутреннего сгорания.

Сегодня, однако, доступна новая разновидность гибридных моделей: Plug-in Hybrid Electric. Эти автомобили, такие как Renault Captur E-TECH Plug-in, оснащены специальной зарядной розеткой, двумя электродвигателями и двигателем внутреннего сгорания, что является лучшим из обоих миров.

* WLTP: Всемирная согласованная процедура испытаний легковых автомобилей. Стандартный цикл WLTP соответствует 57% поездок по городу, 25% поездок в пригород и 18% поездок по автомагистралям.

Авторские права: Jean-Christophe MOUNOURY, Pagecran

Читайте также

Электромобиль

Различные способы хранения энергии

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о подключаемом к сети гибридном автомобиле

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о зарядке гибридного автомобиля

09 июня 2021

Посмотреть больше

Как работают электромобили? | Объяснение электрических двигателей

Как работает двигатель электромобиля?

Электромобили работают за счет подключения к зарядной точке и получения электроэнергии из сети.Они хранят электричество в аккумуляторных батареях, которые приводят в действие электродвигатель, который вращает колеса. Электромобили ускоряются быстрее, чем автомобили с традиционными топливными двигателями, поэтому им легче управлять.

Как работает зарядка?

Электромобиль можно зарядить, подключив его к общественной зарядной станции или к домашнему зарядному устройству. В Великобритании есть множество зарядных станций, чтобы оставаться полностью заряженными, пока вы в пути. Но чтобы получить лучшую сделку для домашней зарядки, важно выбрать правильный тариф на электроэнергию для электромобилей, чтобы вы могли тратить меньше денег на зарядку и больше экономить на своих счетах.

Электромобили и их ассортимент

Как далеко вы можете проехать с полной зарядкой, зависит от автомобиля. У каждой модели разный диапазон, размер батареи и эффективность. Идеальный электромобиль для вас — это тот, который вы можете использовать в обычных поездках, не останавливаясь и не заряжаясь на полпути. Изучите наши варианты лизинга электромобилей.

Какие типы электромобилей бывают?

Есть несколько различных типов электромобилей (EV). Некоторые работают исключительно на электричестве, это называется чистыми электромобилями.А некоторые также могут работать на бензине или дизельном топливе, это называется гибридными электромобилями.

  • Подключаемый к электросети — это означает, что автомобиль работает исключительно на электричестве и получает всю свою мощность, когда подключается к сети для зарядки. Этому типу не нужен бензин или дизельное топливо для работы, поэтому он не производит никаких выбросов, как традиционные автомобили.
  • Подключаемый гибрид — Эти автомобили в основном работают на электричестве, но также имеют традиционный топливный двигатель, поэтому вы также можете использовать бензин или дизельное топливо, если они разрядятся.Когда они работают на топливе, эти автомобили будут производить выбросы, но когда они работают на электричестве, они не будут. Подключаемые гибриды могут быть подключены к источнику электричества для подзарядки их батареи.
  • Гибрид-электрический — Они работают в основном на топливе, таком как бензин или дизельное топливо, но также имеют электрическую батарею, которая заряжается за счет рекуперативного торможения. Они позволяют переключаться между использованием топливного двигателя и режимом «EV» одним нажатием кнопки. Эти автомобили нельзя подключить к источнику электричества и использовать бензин или дизельное топливо для получения энергии.

Какие внутренние части у электромобиля? У электромобилей

на 90% меньше движущихся частей, чем у автомобилей с двигателем внутреннего сгорания. Вот разбивка деталей, которые обеспечивают движение электромобиля:

  • Электродвигатель / Moto r — Обеспечивает вращение колес. Это может быть тип DC / AC, однако чаще встречаются двигатели переменного тока.
  • Инвертор — преобразует электрический ток в форме постоянного тока (DC) в переменный ток (AC)
  • Трансмиссия — электромобили имеют односкоростную трансмиссию, которая передает мощность от двигателя на колеса.
  • Батареи — Накопите электроэнергию, необходимую для работы электромобиля. Чем выше мощность батареи, тем выше диапазон.
  • Зарядка — Подключите к розетке или зарядному устройству электромобиля для зарядки аккумулятора.

Аккумуляторы для электромобилей — объяснение емкости и кВтч

Киловатт (кВт) — это единица мощности (сколько энергии требуется устройству для работы). Киловатт-час (кВтч) — это единица измерения энергии (показывает, сколько энергии было использовано), т.е.грамм. 100-ваттная лампочка потребляет 0,1 киловатта каждый час. В среднем дом потребляет 3 100 кВтч энергии в год. Электромобиль потребляет в среднем 2000 кВтч энергии в год.

Зарядка электромобиля

Как заряжать электромобиль?

Зарядить электромобиль можно, подключив его к розетке или подключив к зарядному устройству. В Великобритании есть множество зарядных станций, чтобы оставаться полностью заряженными, пока вы в пути. Есть три типа зарядных устройств:

Трехконтактный штекер — стандартный трехконтактный штекер, который можно подключить к любой розетке на 13 ампер.

Socketed — точка зарядки, к которой можно подключить кабель типа 1 или типа 2.

На привязи — точка зарядки с кабелем, подключенным к разъему типа 1 или типа 2.

Сколько времени нужно для зарядки электромобиля?

Существует также три скорости зарядки электромобилей:

  • Медленная — обычно до 3 кВт. Часто используется для зарядки ночью или на рабочем месте. Время зарядки: 8-10 часов.
  • Fast — обычно мощностью 7 кВт или 22 кВт. Обычно устанавливаются на автостоянках, в супермаркетах, развлекательных центрах и в домах с парковкой во дворе. Время зарядки: 3-4 часа.
  • Rapid — обычно от 43 кВт. Совместим только с электромобилями с возможностью быстрой зарядки. Время зарядки: 30-60 минут.

Зарядка в разные сезоны

Погода влияет на то, сколько энергии потребляет ваш электромобиль.У вас есть больший диапазон летом и меньший диапазон зимой.

Зарядка в пути

Не забудьте загрузить приложение Zap-Map, чтобы найти ближайшую зарядную станцию, когда вы в пути.

Как далеко вы можете путешествовать на одной полной зарядке?

Диапазон электромобилей зависит от емкости аккумулятора (кВтч). Чем выше мощность аккумулятора электромобиля, больше мощности, тем дальше вы путешествуете. Вот примеры того, как далеко пойдет зарядка некоторых электромобилей:

Электродвигатели для рынка электромобилей | Рост, тенденции и прогноз (2020 г.

Обзор рынка

Период обучения: 2018 — 2026 гг.
Базовый год: 2020 г.
Самый быстрорастущий рынок: Азиатско-Тихоокеанский регион
Крупнейший рынок: Азиатско-Тихоокеанский регион
CAGR: 28.63%

Нужен отчет, отражающий влияние COVID-19 на этот рынок и его рост?

Скачать бесплатно Образец

Обзор рынка

Ожидается, что среднегодовой темп роста электродвигателей для рынка электромобилей превысит 28,63% в течение прогнозируемого периода (2020-2025 гг.).

  • Некоторые из основных факторов, способствующих росту исследуемого рынка, — это введение строгих норм по выбросам и экономии топлива, государственные стимулы и улучшение инфраструктуры зарядки, что привело к все большему распространению электромобилей.Внедрение электромобилей может стимулировать спрос на электродвигатели в течение прогнозируемого периода.
  • Ожидается, что в ближайшем будущем массовые инвестиции в электромобили со стороны крупных автомобильных компаний, таких как Toyota, Honda, Tesla, General Motors и Ford, будут стимулировать рынок электромоторов. Кроме того, ожидается, что развивающиеся партнерские отношения между производителями двигателей и автомобильными компаниями приведут к расширению производства электродвигателей для рынка электромобилей во всем мире.
  • Ожидается, что рынок электродвигателей столкнется с проблемами в виде закупок редкоземельных металлов, используемых в постоянных магнитах для синхронных двигателей, поскольку металлы, используемые в этих двигателях, подлежат экспортным ограничениям и рискам поставки.
  • Электромоторы для рынка электромобилей в основном доминируют некоторые из основных игроков автомобильной отрасли, такие как Tesla, BYD, Toyota, Nissan, Honda.

Объем отчета

Электродвигатели, которые в основном используются для приведения в движение / тяги электромобилей, были рассмотрены в рамках рыночного охвата.Электродвигатели для рынка электромобилей были сегментированы по применению, типу двигателя, типу транспортного средства и географии.

Применение
Легковые автомобили
Коммерческие автомобили
9035 9040
Тип двигателя
Двигатель переменного тока Тип транспортного средства
Гибридный электромобиль (HEV)
Подключаемый гибридный электромобиль (PHEV)
Чистый электромобиль (PEV)
9 География
Северная Америка
Соединенные Штаты
Канада
Мексика
Остальная часть Северной Америки
905 9 Европа Германия Соединенное Королевство Франция Италия Норвегия Остальная Европа 904 6 905 -Тихоокеанский Китай Индия Япония Остальная часть Азиатско-Тихоокеанского региона Южная Африка Аргентина Другие страны

Объем отчета может быть настроены в соответствии с вашими требованиями.Кликните сюда.

Ключевые тенденции рынка

Рост продаж электромобилей

Электромобиль стал неотъемлемой частью автомобильной промышленности. Это путь к достижению энергоэффективности, наряду с сокращением выбросов загрязняющих веществ и других парниковых газов. Растущие экологические проблемы в сочетании с благоприятными государственными инициативами являются основными факторами, способствующими этому росту. Согласно прогнозам, годовой объем продаж легковых электромобилей превысит отметку в 5 миллионов единиц к концу 2025 года, и ожидается, что к концу 2025 года он составит 15% от общего объема продаж автомобилей.

Рынок электромобилей в последние годы демонстрирует здоровые темпы роста: до третьего квартала 2019 года общие продажи электромобилей достигли около 1 614 048 единиц по сравнению с 1 279 527 единиц в третьем квартале 2018 года. Этот всплеск продаж является результатом повышение регулирующих норм различными организациями и правительствами для контроля уровней выбросов и распространения транспортных средств с нулевым уровнем выбросов.

Приведенные выше нормы побудили автопроизводителей увеличить свои расходы на исследования и разработки электромобилей, что в конечном итоге позволило им продавать электромобили в будущем.Эта стратегия оказала сильное влияние на людей, поскольку произошли значительные изменения в структуре покупок с обычных автомобилей с двигателями внутреннего сгорания на электромобили. Это изменение не привело к снижению продаж автомобилей с двигателями внутреннего сгорания, а скорее создало многообещающий рынок электромобилей как в настоящем, так и в будущем. Ожидается, что рост электромобилей увеличит спрос на электродвигатели в течение прогнозируемого периода.

Чтобы понять основные тенденции, загрузите образец Отчет

Азиатско-Тихоокеанский регион продолжает доминировать на рынке электромоторов

В мировом масштабе Азиатско-Тихоокеанский регион захватил самую большую долю электромоторов для рынка электромобилей благодаря высоким продажам электромобилей, в основном из Китая.Китай — крупнейший производитель и потребитель электромобилей в мире. Внутренний спрос поддерживается национальными целевыми показателями продаж, благоприятными законами и муниципальными целевыми показателями качества воздуха. Например, Китай ввел квоту для производителей электромобилей или гибридных автомобилей, которые должны составлять не менее 10% от общего объема новых продаж. Кроме того, город Пекин выдает только 10 000 разрешений на регистрацию автомобилей с двигателями внутреннего сгорания в месяц, чтобы побудить своих жителей перейти на электромобили.

Поскольку рынок электромобилей неуклонно растет, рынок электромоторов для электромобилей, вероятно, вырастет по сравнению с прогнозом, поскольку большинство OEM-производителей запускают производство, устанавливают партнерские отношения с производителями электромобилей, совместными предприятиями и т. Д. Например, в марте 2020 года , Wolong Electric Group Co., Ltd (Wolong Electric) подписала соглашение о создании совместного предприятия с ZF (China) Investment Co. Ltd. (ZF China). Wolong Electric Group Co., Ltd. (Wolong Electric) подписала соглашение о создании совместного предприятия с ZF (China) Investment Co.Ltd (ZF Китай). Компания будет базироваться в городе Шаосин, провинция Чжэцзян, и может в основном заниматься проектированием, производством и продажей автомобильных тяговых двигателей для применения в электромобилях (электромобилях), гибридных транспортных средствах с подзарядкой от сети (PHV) и легкогибридных автомобилях ( HV).

Чтобы понять тенденции в географии, загрузите образец Отчет

Конкурентная среда

Мировой рынок электродвигателей для электромобилей сильно фрагментирован из-за присутствия многих региональных и международных игроков.Однако на рынке доминируют некоторые крупные автомобильные игроки, такие как Toyota, Tesla, Nissan, Honda, BYD, BAIC и BMW, в том числе Toyota, Tesla и BYD,

Toyota имеет огромное присутствие на японском рынке и собственное производство двигателей, которое охватило значительную часть рынка, изученного в 2019 году. Toyota Prius была первым в мире серийным гибридным автомобилем, и компания продала 13 миллионов гибридных автомобилей. авто с момента его появления.

Большинство автопроизводителей, таких как Toyota, Nissan, Honda и Subaru, производят большую часть своих тяговых двигателей собственными силами.

Содержание

  1. 1. ВВЕДЕНИЕ

    1. 1.1 Предположения исследования

    2. 1.2 Объем исследования

  2. 2. МЕТОДОЛОГИЯ ИССЛЕДОВАНИЯ

  3. 9013

  4. 4.1 Движущие силы рынка

  5. 4.2 Ограничения рынка

  6. 4.3 Привлекательность отрасли — анализ пяти сил Портера

    1. 4.3.1 Угроза новых участников

    2. 4.3.2 Торговая сила покупателей / потребителей

    3. 4.3.3 Торговая сила поставщиков

    4. 4.3.4 Угроза замещающих товаров

    5. 4.3.5 Интенсивность конкуренции Соперничество

  • 5. СЕГМЕНТАЦИЯ РЫНКА

    1. 5.1 Приложение

      1. 5.1.1 Легковые автомобили

      2. 5.1.2 Коммерческие автомобили

      903.2 Тип двигателя

      1. 5.2.1 Двигатель переменного тока

      2. 5.2.2 Двигатель постоянного тока

    2. 5.3 Тип транспортного средства

      1. 5.3.1 Гибридный электромобиль (HEV)

      2. 5.3.2 Подключаемый гибридный электромобиль (PHEV)

      3. 5.3.3 Чистый электромобиль (PEV)

    3. 5.4 География

      1. 5.4.1 Северная Америка

        1. 5.4.1.1 США

        2. 5.4.1.2 Канада

        3. 5.4.1.3 Мексика

        4. 5.4.1.4 Остальная часть Северной Америки

      2. 5.4.2 Европа

        1. 5.4.2.1 Германия

        2. 5.4.2.2 Великобритания

        3. 5.4.2.3 Франция

        4. 5.4.2.4 Италия

        5. 5.4.2.5 Норвегия

        6. 5.4.2.6 Остальные страны Европы

      3. 5.4.3 Азиатско-Тихоокеанский регион 33

            5.4.3.1 Китай

          1. 5.4.3.2 Индия

          2. 5.4.3.3 Япония

          3. 5.4.3.4 Остальной Азиатско-Тихоокеанский регион

        1. 5.4.4 Остальной мир

          1. 5,4 .4.1 Бразилия

          2. 5.4.4.2 Южная Африка

          3. 5.4.4.3 Аргентина

          4. 5.4.4.4 Другие страны

    4. 6. КОНКУРЕНТНЫЙ ЛАНДШАФТ1 Доля на рынке поставщика

    5. 6.2 Профили компании

      1. 6.2.1 Aisin Seiki Co. Ltd

      2. 6.2.2 Toyota Motor Corporation

      3. 6.2.3 Hitachi Automotive Systems

      4. 6.2.4 DENSO Corporation

      5. 6.2.5 Honda Motor Company Ltd

      6. 6.2.6 Mitsubishi Electric Corp.

      7. 6.2.7 Magna International

      8. 6.2.8 Robert Bosch GmbH

      9. 6.2.9 BMW AG

      10. 6.2.10 Nissan Motor Co. Ltd

      11. 6.2.11 Tesla Inc.

      12. 6.2.12 Toshiba Corporation

      13. 6.2. 13 BYD Co. Ltd

  • 7. РЫНОЧНЫЕ ВОЗМОЖНОСТИ И БУДУЩИЕ ТЕНДЕНЦИИ

  • 8. ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ

  • ** При наличии

    Вы ​​также можете приобрести части этого отчета.Вы хотите проверить раздел мудрый прайс-лист?
    Получить разбивку цен Теперь

    Часто задаваемые вопросы

    Каков период изучения этого рынка?

    Рынок электромоторов для рынка электромобилей исследуется с 2018 по 2026 год.

    Каковы темпы роста электромоторов для рынка электромобилей?

    Рынок электродвигателей для электромобилей растет в среднем на 28,63% в течение следующих 5 лет.

    В каком регионе наблюдается самый высокий темп роста рынка электромоторов для электромобилей?

    Азиатско-Тихоокеанский регион демонстрирует самый высокий среднегодовой темп роста в период с 2021 по 2026 год.

    Какой регион имеет наибольшую долю на рынке электромоторов для электромобилей?

    Наибольшая доля в 2020 году принадлежит Азиатско-Тихоокеанскому региону.

    Кто являются ключевыми игроками на рынке электромоторов для электромобилей?

    Toyota Motor Corporation, Aisin Seiki Co Ltd, BYD Co.Ltd, Tesla Inc., BAIC — основные компании, работающие на рынке электродвигателей для электромобилей.

    80% наших клиентов ищут отчеты на заказ. Как ты хотите, чтобы мы адаптировали вашу?

    Пожалуйста, введите действующий адрес электронной почты!

    Пожалуйста, введите правильное сообщение!

    РАЗМЕСТИТЬ

    Загружается …

    электромобилей 101 | NRDC

    Это девятый блог в серии о нашем приключении на Среднем Западе с электромобилем.

    Отправляясь в путешествие на электромобилях по Среднему Западу, мы были хорошо осведомлены о многочисленных преимуществах, которые могут дать электромобили: они становятся только лучше для окружающей среды, чем их жадные аналоги, растущая отрасль поддерживает множество видов транспорта. новые рабочие места и отсутствие выхлопных газов могут принести существенную пользу здоровью в наших наиболее уязвимых сообществах.После десяти дней за рулем и многочисленных разговоров с владельцами, защитниками и производителями электромобилей мы покинули поездку, ошеломленные бесчисленными дополнительными льготами и преимуществами вождения электромобиля. Позвольте нам объяснить:

    Что такое электромобили? Эффективно, на одного

    Прежде чем мы погрузимся в подробности, что такое электромобиль и как он работает? Электромобиль — это автомобиль, работающий от электричества, и эта категория шире, чем вы думаете. Он включает в себя подключаемые гибридные и гибридные электромобили, а также электромобили на топливных элементах, но в этом блоге особое внимание будет уделено электромобилям с аккумуляторной батареей, иногда называемым BEV.В этих электромобилях нет выхлопных газов, так как электричество от аккумулятора приводит в действие электродвигатель, который затем вращает колеса и отправляет ваш автомобиль вперед.

    Так же, как энергоэффективность привела к снижению выбросов в энергетическом секторе, эффективность также является основным фактором очистки транспортного сектора. Электродвигатели делают автомобили значительно более эффективными, чем двигатели внутреннего сгорания (ДВС). Электродвигатели преобразуют более 85 процентов электрической энергии в механическую энергию или движение по сравнению с менее чем 40 процентами для двигателя внутреннего сгорания на газе.Этот КПД еще ниже, если учесть потери как тепло в трансмиссии, которая представляет собой набор компонентов, которые передают мощность, создаваемую электродвигателем или двигателем внутреннего сгорания, на колеса. По данным Министерства энергетики (DOE), в электромобиле около 59-62 процентов электроэнергии из сети идет на вращение колес, в то время как автомобили, работающие на газе, преобразуют только около 17-21 процент энергии от сжигания топлива в движение. машина. Это означает, что электромобиль примерно в три раза эффективнее автомобиля с ДВС.Потребление меньшего количества энергии для питания вашего автомобиля также помогает снизить стоимость.

    Электромобили чисты и становятся только чище

    Когда дело доходит до качества воздуха и изменения климата, электромобили являются особенно эффективным инструментом для обезуглероживания и минимизации образования сажи и смога, поскольку их выбросы связаны с сектором энергетики — по мере того, как сеть продолжает становиться чище, растет и ваш автомобиль. Критики ошибочно задаются вопросом, действительно ли электромобили сегодня чище, но моделирование на основе EPRI-NRDC и анализ жизненного цикла, проведенный Союзом обеспокоенных ученых (UCS), окончательно демонстрируют, что они уже являются чистыми.В среднем электромобиль выделяет примерно вдвое меньше углекислого газа, чем автомобиль, работающий на газе. Для электромобилей это включает не только выбросы от электростанции, на которой производится электричество, приводящее в действие электромобиль, но и выбросы, связанные с производством самой батареи. Анализ UCS показывает, что даже электромобили, работающие от угольной сети, по-прежнему чище, чем их аналоги с ДВС. Сеть может и должна продолжать добавлять чистые возобновляемые источники энергии, такие как ветер и солнце. В этом случае мы поступим хорошо для планеты, детей, пожилых людей и людей с уже существующими респираторными заболеваниями, одновременно очистив транспортный сектор и поощряя широкое внедрение электромобилей.

    Ездить на EV

    веселее

    Не бери у меня. Возьмите это у Криса, профессионального автогонщика, которого мы встретили недалеко от Чикаго. Она знает все, что нужно знать об автомобилях, и они с мужем решили купить Chevrolet Spark EV, потому что ни одна другая машина на рынке не доставляла столько острых ощущений. Или возьмите это у Джейн, трехкратной владелицы электромобиля, которая по собственному признанию жаждала скорости, с которой мы познакомились за пределами Индианаполиса.

    Так что же делает электромобили предпочтительным выбором для автолюбителей? Одним словом, крутящий момент.В электромобиле мгновенный крутящий момент создается электрическим током и магнитными полями в электродвигателе, тогда как в газовом двигателе требуется гораздо больше времени, чтобы сжечь газ и повернуть коленчатый вал. Этот мгновенный крутящий момент в электромобиле отбрасывает вас назад на сиденье, когда вы ускоряетесь со светофора, оставляя всех в пыли. Насколько хорош крутящий момент у электромобиля? Что ж, вы можете купить подержанный Chevy Spark EV менее чем за 10000 долларов, и он даст вам больше крутящего момента, чем Ferrari. Неплохая сделка, если вы спросите меня.

    EV также обычно имеют низкий центр масс и равномерно распределенный вес из-за их «скейтборда». Это предпочтительный термин производителей электромобилей для обозначения шасси или базовой рамы транспортного средства, которая включает в себя аккумуляторную батарею, расположенную по дну. Аккумулятор — один из самых тяжелых компонентов электромобиля, который заменяет громоздкий бензиновый двигатель более легким электродвигателем. Наличие такого веса у земли помогает автомобилю держаться на дороге и умело маневрировать в поворотах и ​​поворотах.

    Трансмиссия, или «скейтборд», от старой версии электрического грузовика средней грузоподъемности Workhorse

    .

    Жизнь проще с EV

    В то время как оппоненты часто считают необходимость зарядки электромобиля недостатком, а возникающие в результате изменения в поведении — препятствием для внедрения электромобиля, владение электромобилем на самом деле становится даже более удобным для водителей.

    Сегодня примерно 80 процентов зарядки электромобилей происходит дома из-за удобства и более низких затрат по сравнению с большинством общественных зарядок, не говоря уже о ценах на газ, которые уже делают электромобили наиболее экономически выгодным вариантом для некоторых.Поскольку запасы электромобилей продолжают расти, даже водителям-дальнобойщикам, таким как мы, нужно будет делать меньше пит-стопов, чтобы у их автомобилей было достаточно энергии, чтобы добраться до места назначения. Для водителей, которые переходят с бензинового автомобиля на электромобиль, одной задачей меньше, поскольку они навсегда покидают заправочную станцию.

    Но посещение заправочной станции — не единственное техническое обслуживание, необходимое для большинства автомобилей на дорогах сегодня: есть регулярные визиты к механику для замены жидкостей и различных движущихся частей.Если вы так же боитесь этих поездок, как и мы, думали ли вы о переходе на электромобиль? В электромобиле нет двигателя внутреннего сгорания, топливного бака или топливных насосов. Вам не нужно будет менять масло, и благодаря использованию рекуперативного торможения вам не нужно будет менять тормоза так часто. Многие электромобили даже не нуждаются в трансмиссии. Те, которые имеют гораздо более простую односкоростную систему, в отличие от многоскоростных коробок передач в транспортных средствах, работающих на газе.

    Фактически, согласно Tesla, их трансмиссия имеет только около 17 движущихся частей по сравнению с 200 или около того в типичной трансмиссии для автомобиля с двигателем внутреннего сгорания (ДВС).Разница становится еще более заметной, если учесть сложность детали, которая приводит в движение автомобиль: двигатель ДВС имеет сотни движущихся частей, тогда как электродвигатель обычно имеет только 2. Повышенная сложность приводит к увеличению затрат — не только начальных, но и дополнительных. снова, когда вам нужно потратить деньги на обслуживание сложных машин, которыми являются автомобили с ДВС. Электромобиль может сэкономить деньги на топливе в краткосрочной перспективе и сделать жизнь еще более удобной в долгосрочной перспективе при техническом обслуживании.

    электромобили коварные

    Когда мы впервые включили наш Chevy Bolt, мы сразу заметили, насколько он бесшумный.По общему признанию, поначалу это может немного нервировать — мы даже не были уверены, что он включен! Но это беспокойство вскоре переросло в возбуждение, так как мы могли легко слушать музыку или разговаривать во время вождения, не крича.

    И преимущества бесшумной перевозки выходят далеко за рамки удобства для пассажиров. Шумовое загрязнение от транспортных средств, в том числе автобусов, в городских кварталах — это не просто неприятность, это один из факторов, вызывающих множество заболеваний. Поскольку тенденция к урбанизации продолжается, становится все более важным эффективно бороться с шумовым загрязнением.Электрификация автомобилей, автобусов, грузовиков и других шумных транспортных средств может помочь уменьшить загрязнение многих типов и помочь всем нам лучше спать по ночам.

    EV технология продолжает совершенствоваться

    Законная критика электромобилей заключается в том, что их запас хода может существенно уменьшиться в чрезвычайно холодную погоду. Это была проблема, которую мы неоднократно слышали во время нашей поездки по Среднему Западу, когда электрические автобусы в таких городах, как Индианаполис, испытывали сокращение дальности более чем на 40 процентов по сравнению с указанным диапазоном при 0 градусах по Фаренгейту.В этом случае производитель автобусов согласился предоставить Индианаполису инфраструктуру беспроводной зарядки, чтобы автобусы могли завершить свой маршрут даже в самые холодные зимние дни, но эту проблему можно решить с помощью новых химических компонентов аккумуляторов, которые не так чувствительны к холодным, или просто батареями с большим радиусом действия.

    Вот так наш Bolt показал нам, сколько заряда батареи осталось, а также внутреннюю и внешнюю температуру. Как видите, погода в тот день не требовала особого охлаждения, поэтому большая часть энергии батареи была потрачена на вождение автомобиля.

    Исследования показывают, что основной причиной уменьшения дальности действия в холодную погоду на самом деле является использование обогрева помещения в автомобиле. Ранее в этом году AAA опубликовало исследование, которое показало сокращение диапазона на 12 процентов на холоде (20 градусов по Фаренгейту) без включения HVAC, но после включения нагревателя диапазон уменьшился на 41 процент. Это говорит о том, что есть много возможностей для улучшения, чтобы сделать обогрев автомобилей более эффективным. Фактически, несколько производителей автомобилей уже работают над инновационными решениями.Многие электромобили, в том числе наш Chevy Bolt, оснащены подогревом рулевого колеса и сиденья с подогревом. Оказывается, это на самом деле гораздо более эффективный способ согреть пассажиров, чем вдувать горячий воздух в пространство вокруг них. Попав на улице под дождем во время грозы на Среднем Западе, мы опробовали эти функции обогрева и обнаружили, что действительно предпочитаем их.

    Другие производители, в том числе Nissan, заменили компонент электрического резистивного нагрева на гораздо более эффективный тепловой насос.Эта конструкция использует то же оборудование, которое используется для кондиционирования воздуха в автомобиле, для его обогрева, и было обнаружено, что этот процесс снижает потребление энергии, необходимое для обеспечения комфорта пассажиров в автомобиле, на 50 процентов. Поскольку для обогрева и охлаждения пассажира требуется меньше энергии от батареи, больше ее можно использовать для доставки туда, куда им нужно.

    Тебе действительно стоит попробовать

    После 10 дней в нашем электромобиле мы были впечатлены не только опытом вождения и всеми чемпионами по электромобилям, которых мы встретили по пути, но также любопытством и интересом людей к нашей машине и нашей поездке.Когда мы заряжались, к нам подходили незнакомцы и задавали вопросы о том, на чем мы ехали, как далеко это могло уйти или сколько времени потребуется на зарядку. Понятно, что в эти первые дни внедрения электромобилей каждый сталкивается с тысячами вопросов, от того, как они работают, до того, как их получить? Электромобили новые. Они классные. Они загадочно молчат. Важно, чтобы производители электромобилей, дилерские центры, руководители городов и, да, водители электромобилей ответили на эти вопросы и помогли привлечь больше людей.Когда вы сядете за руль, у вас возникнет единственный вопрос: когда я смогу сделать это снова?


    Мы отправились в поездку на электромобиле на Среднем Западе, чтобы поговорить о транспортной политике, подчеркнуть и без того процветающие преимущества электромобилей для местной экономики и разрушить стереотипы о том, что значит быть водителем электромобиля. Мы публикуем в блогах свои выводы, включая советы для других начинающих путешественников и рекомендации по дальнейшему развитию.

    Другие блоги, связанные с нашим электрическим приключением, включают:

    Вождение (на) чистой энергии: Путешествие по Среднему Западу на электромобиле
    Государство в Штатах: Электромобили и политика электромобилей на Среднем Западе
    Отчет о поездке: Как жители Огайо покупают электромобили (должно быть проще)
    Как избежать беспокойства по поводу дальности с помощью дороги для электромобилей Контрольный список поездки
    Отчет о поездке: города Среднего Запада передвигают мультимодальные перевозки
    Электромобили на Среднем Западе на 5 картах
    Зарядка электромобилей 101
    Отчет о поездке: о сторонниках зарядки и государственной политике

    электромобилей | Университет Теннесси в Чаттануге

    Преимущества электромобилей (включая электрические автобусы)
    Система привода
    Сравнение электродвигателя
    Характеристики двигателя
    Системы управления
    Аккумуляторные системы
    Как работает Сотовая работа?
    Производительность аккумуляторных систем автомобиля
    Память аккумулятора
    Типы зарядки
    Расположение зарядного устройства / варианты подключения
    Способы зарядки
    Уровни заряда
    Управление аккумулятором
    Аксессуары (электрические стеклоподъемники, обогрев, воздушный, гидроусилитель руля и т. д.)

    Использование электромобилей дает множество преимуществ. Во-первых, отсутствует запах топлива, поскольку автомобили работают от батарей, а не от бензина, дизельного топлива или какого-либо другого горючего топлива. Электромобили тихие … езда практически бесшумна. Правильно используя рекуперативное торможение, электромобили увеличивают срок службы тормозов, а также вырабатывают энергию за счет кинетической энергии. Благодаря использованию высокотехнологичной композитной технологии электромобили могут быть намного легче, чем их аналоги с ДВС, что также помогает снизить износ тормозов наряду с износом дороги.

    Электромобили намного более энергоэффективны. Электродвигатели преобразуют практически всю свою топливную энергию в полезную мощность. Двигатель внутреннего сгорания (ДВС) имеет КПД менее 20%.

    Стоимость технического обслуживания, включая стоимость топлива, у электромобиля намного ниже. Нет необходимости в настройке или замене масла. Если исключить из контрольного списка технического обслуживания автомобиля все, что относится к ДВС, он становится довольно коротким. А за счет зарядки в ночное время «топливо» для электромобилей снижается до четверти стоимости бензина или дизельного топлива.

    Электромобили, особенно электрические автобусы, приносят большую пользу связям с общественностью. Общественность и СМИ любят ездить на автомобиле и говорить об электромобилях с нулевым уровнем выбросов.

    Однако у электромобилей и гибридно-электрических транспортных средств есть два основных преимущества. Электрические и гибридно-электрические транспортные средства могут помочь нашей стране сократить использование иностранной нефти и уменьшить загрязнение, которое отрицательно сказывается на здоровье и благополучии.

    Электромобиль — это транспортное средство, такое как автомобиль, грузовик или автобус, в котором в качестве топлива используется аккумуляторная батарея, заменяющая бензин, дизельное топливо или другие виды горючего топлива.Исчезли двигатель внутреннего сгорания и трансмиссия. В электромобиле используется электродвигатель или, в некоторых случаях, более одного двигателя для приведения в движение транспортного средства.

    Электромобили во многом схожи с транспортными средствами с двигателями внутреннего сгорания. Шасси или кузов многих электромобилей, используемых сегодня на дорогах, представляют собой автомобили, которые когда-то были оснащены двигателем внутреннего сгорания (ДВС). В большинстве электромобилей даже интерьер автомобиля не изменился, и почти все электромобили содержат те же аксессуары, что и их собратья внутреннего сгорания.

    Энергия, хранящаяся в аккумуляторной батарее электромобиля, обеспечивает питание контроллера мотора. Контроллер мотора — это устройство, которое регулирует мощность, подаваемую на электродвигатель (-ы) электропривода, в зависимости от положения педали акселератора. Электроэнергия, подаваемая на электродвигатель (электродвигатели), используется для создания электродвижущей силы, которая вращает вал электродвигателя (электродвигателей). Этот вал соединен с колесами транспортного средства и вызывает движение вперед или назад, в зависимости от направления вращения вала.

    Заправка электромобиля заключается в подключении автомобильного зарядного устройства к розетке, специально предназначенной для зарядки электромобиля. Время зарядки зависит от типа батареи, емкости и выходного напряжения / тока зарядного устройства. Большинство электромобилей можно зарядить примерно за 6 часов.

    Основная цель электромобилей — уменьшить количество вредных газов, которые выбрасываются в воздух из-за процесса сгорания двигателя внутреннего сгорания.Электромобиль производит нулевые выбросы. Некоторые критики индустрии электромобилей будут утверждать, что сокращение выбросов загрязняющих газов не произошло из-за выбросов, которые образуются при производстве электроэнергии на электростанциях. Хотя это правда, что электростанции действительно производят некоторые загрязнители, правительство имеет очень строгие правила в отношении выбросов электростанций. А поскольку электростанции производят избыток мощности в ночное время, когда спрос невелик, владельцы электромобилей могут использовать избыток энергии, заряжаясь ночью.Это делает электростанции более эффективными.

    Кроме того, электромобили намного более энергоэффективны, чем автомобили с ДВС. Мало того, что сама двигательная установка намного более эффективна, но и потери энергии через трансмиссию, и холостой ход просто не существуют. Поскольку трансмиссии нет, ускорение происходит «плавно»; без рывков и шума …. просто красиво и плавно.

    К началу

    Преимущества электромобилей (включая электробусы)

    Электромобиль имеет много преимуществ перед транспортными средствами, в которых используется двигатель внутреннего сгорания.Электромобиль очень чистый. Нет газообразных выбросов. Также устранены другие проблемные загрязнители, такие как масло, трансмиссионная жидкость и жидкость для радиаторов. В некоторых электромобилях единственным используемым углеводородным веществом является консистентная смазка для подшипников.

    Электромобили очень упрощены. Двигательная установка в автомобиле с ДВС состоит из сотен движущихся частей. В силовой установке электромобиля есть только один: электродвигатель. Помимо снижения затрат на техническое обслуживание и экономии смазочных материалов и масел, снижение потерь на трение способствует повышению энергоэффективности электромобилей.

    Электромобили очень энергоэффективны. На каждые 100 единиц топлива, расходуемых автомобилем с ДВС, только 16 фактически приводят к движению. Однако электромобиль будет использовать почти 85 единиц из 100 для управления транспортным средством.

    У электромобилей есть еще одно существенное преимущество перед автомобилями с ДВС: рекуперативное торможение. Когда электромобиль замедляется, двигатель становится генератором и обеспечивает энергией батареи. Дополнительным преимуществом этого процесса является тормозящее воздействие двигателя на транспортное средство, что снижает износ тормозов.

    Электромобиль очень тихий. Проблема для инженеров, проектирующих эти автомобили, заключается не в том, чтобы заглушить двигатель, а в том, чтобы заглушить шум других систем, таких как кондиционер, гидроусилитель руля или воздушные компрессоры.

    В большинстве электромобилей трансмиссия не используется. Двигатели обычно односкоростные, а ускорение плавное, без толчков или толчков, как у трансмиссий в современных автомобилях.

    Электромобиль можно подзарядить дома, сэкономив на остановке на заправке.Единственным недостатком этого является время, необходимое для полной зарядки «разряженной» батареи. В некоторых случаях это может длиться до 6 часов. Технология зарядных устройств стремительно совершенствуется, и в настоящее время можно зарядить «пустую» батарею до 80% всего за 20 минут.

    Основным препятствием, с которым сегодня сталкиваются электромобили, является способность аккумуляторов аккумулировать энергию. Емкость аккумулятора ограничивает дальность поездки автомобиля. Много различных типов аккумуляторов проходят испытания для использования в электромобилях.К ним относятся свинцово-кислотные, никель-кадмиевые, никель-железные, никель-цинковые, никель-металлогидридные, натрий-никелевый хлорид, бром цинка, сера натрия, литий, воздух цинка и воздух алюминия. Эти усовершенствованные батареи, хотя и намного более дорогие, со временем позволят электромобилю достичь того же запаса хода, что и современные автомобили, работающие на ископаемом топливе.

    К началу

    Приводная система

    Система привода электромобиля выполняет те же функции, что и система привода автомобиля с двигателем внутреннего сгорания.Система привода — это та часть электромобиля, которая передает механическую энергию на ведущие колеса, заставляя электромобиль двигаться. Компоненты, используемые в электромобиле, сильно отличаются от стандартного автомобиля. В электромобиле передача не требуется. Трансмиссия в стандартном транспортном средстве используется для передачи автомобилю определенного крутящего момента или мощности на определенных скоростях путем изменения передаточного отношения входной / выходной передачи в трансмиссии. Изменение передаточного числа зависит от скорости вращения (об / мин) силовой установки или двигателя транспортного средства.Поскольку происходит механическое переключение с одной передачи на другую, пассажиры обычно ощущают толчок при увеличении или уменьшении скорости и переключении трансмиссии на большую или меньшую передачу.

    В

    электромобилях используется электродвигатель для вращения колес транспортных средств. Сегодня используется несколько различных конструкций приводных систем. К ним относятся автомобили с одним большим электродвигателем, соединенным с задними колесами через корпус дифференциала. В других конструкциях используются два двигателя меньшего размера для приведения в действие каждого колеса отдельно через независимые приводные валы.

    В самой эффективной на сегодняшний день конструкции используются двигатели, прикрепленные непосредственно к колесу. Их называют «колесными двигателями». За счет исключения приводных валов и дифференциалов механические потери между двигателем и колесами сведены к минимуму. Система питания электромобиля включает в себя как систему привода, так и систему управления. Контроллер подает питание на двигатель от аккумуляторов. Двигатель, в свою очередь, передает мощность для перемещения транспортного средства на ведущие колеса через коробку передач..

    Электродвигатели преобразуют электрическую энергию в механическую. В электромобилях используются два типа электродвигателей для обеспечения привода колес. Двигатель постоянного тока (DC) и двигатель переменного тока (AC). Двигатели постоянного тока состоят из трех основных компонентов:

    1. Набор катушек возбуждения по периметру двигателя, создающих магнитные силы, обеспечивающие крутящий момент.
    2. Ротор или якорь, установленные на подшипниках, которые вращаются внутри магнитного поля, создаваемого катушками возбуждения.
    3. Коммутационное устройство, которое меняет магнитные силы на противоположное и заставляет якорь вращаться, создавая механическую силу, используемую для поворота ведущих колес.

    Двигатель переменного тока похож на двигатель постоянного тока в том, что он также имеет набор катушек возбуждения и ротор или якорь, однако, поскольку существует непрерывное реверсирование тока (переменный ток), коммутирующее устройство не требуется. На данном этапе развития ни один двигатель не может считаться лучше другого. У них обоих есть преимущества и недостатки, перечисленные ниже.

    К началу

    Сравнение электродвигателей

    Двигатель переменного тока Двигатель постоянного тока
    Односкоростная коробка передач Многоскоростная коробка передач
    Легкий Тяжелее при эквивалентной мощности
    Дешевле Дороже
    95% КПД при полной нагрузке 85-95% КПД при полной нагрузке
    Контроллер дороже Простой контроллер
    Мотор / контроллер / инвертор дороже Мотор / контроллер дешевле

    Как показано в сравнении, двигатель переменного тока дешевле, чем двигатель постоянного тока, система переменного тока дороже из-за стоимости сложной электроники, связанной с инвертором переменного тока и контроллером двигателя.Электродвигатели переменного тока — наиболее часто используемые электродвигатели в бытовых приборах и станках. Эти двигатели очень надежны, и, поскольку они содержат единственную движущуюся часть, они должны прослужить весь срок службы автомобиля при минимальном техническом обслуживании или вообще без него. Типичные характеристики двигателя перечислены в таблице ниже.

    Характеристики двигателя

    л.с.
    Тип щетки постоянного тока Бесщеточный постоянный магнит постоянного тока Индукция переменного тока
    Пиковая эффективность

    85-89

    95-97

    94-95

    КПД при нагрузке 10%

    80-87

    73-82

    93-94

    Макс.Обороты

    4,000-6,000

    4 000–10 000

    9,000-15,000

    Стоимость вала

    100–150 долларов США

    100–130 долл. США

    50–75 долларов США

    Относительная стоимость контроллера по сравнению с щеткой постоянного тока

    1

    3-5

    6-8

    1 л.с. = 746 Вт

    Контроллер электромобиля — это устройство, которое работает между батареями и двигателем для управления скоростью и ускорением.Контроллер преобразует постоянный ток батареи в переменный ток для двигателей переменного тока или просто регулирует ток для двигателей постоянного тока. Контроллер также может реверсировать обмотки возбуждения двигателя, так что в режиме торможения двигатель становится генератором, а энергия возвращается в батареи. Это называется рекуперативным торможением, и в течение одной зарядки может возвращаться до 10% или более энергии, потребляемой системой привода, в батареи.

    К началу

    Одним из широко известных преимуществ электромобиля является рекуперативное торможение.В настоящее время рекуперативное торможение распространено почти на всех автомобилях, но, похоже, мало кто понимает, что происходит. Следующий абзац представляет собой попытку объяснить, как это работает.

    В схеме, показанной выше, изображена выходная пара полевых МОП-транзисторов (металл-оксид-полупроводниковые полевые транзисторы) с приводом двигателя. Выходной сигнал контроллера — чистый постоянный ток. Напряжение. Двигатель будет генерировать противоэдс. который пропорционален его скорости вращения. При нулевой нагрузке или отсутствии разгона это назад эл.м.ф. поднимется до уровня выходного сигнала контроллера.

    MOSFET — это двунаправленный переключатель, который резистивно проводит (когда он включен) для обоих направлений тока. Итак, рассмотрим ситуацию, когда ток равен нулю, а мощность контроллера теперь уменьшена. Задняя э.д.с. мотора. теперь выше, чем выходное напряжение контроллера, поэтому двигатель будет пытаться подавать ток обратно в контроллер. Если это удастся, мотор затормозится — у нас будет рекуперативное торможение.

    Этот тип цепи (где верхняя сторона включена, когда нижняя сторона выключена) может обеспечивать ток или понижать его. Это работает следующим образом: обратный ток двигателя теперь является прямым током к полевому МОП-транзистору маховика, поэтому, когда он включен, он замыкает двигатель, тормозной ток которого возрастает в течение этого периода (стрелка B, перевернутая). Теперь полевой МОП-транзистор с маховиком отключается, но этот ток должен продолжать течь — из-за индуктивности двигателя. Таким образом, он течет как обратный ток через приводной полевой МОП-транзистор, при этом заряжая батарею.Дополнительное напряжение для этого получается из энергии, запасенной в индуктивности двигателя. Процесс переключения с привода на торможение полностью автоматический. Более того, это полностью достигается за счет того, что скорость двигателя превышает напряжение привода, и без каких-либо изменений состояния или переключений в контроллере. Регенеративное торможение — это, если хотите, побочный продукт конструкции контроллера и почти полная авария.

    Если транспортное средство движется по слишком крутому склону (или требуемая скорость внезапно снижается, что приводит к очень резкому торможению), ток, генерируемый двигателем, может превысить ток, с которым могут безопасно работать полевые МОП-транзисторы.Так как это приведет к выходу из строя полевых МОП-транзисторов, они должны быть защищены от этого, поэтому все контроллеры, обеспечивающие рекуперативное торможение, также оснащены ограничителем тока для предотвращения такого отказа.

    В гибридных электромобилях эта проблема становится еще более сложной из-за неиспользованного тока от вспомогательного источника питания. Поскольку приводные двигатели не потребляют ток от вспомогательного источника питания, этому току все же нужно куда-то идти. Контроллер мотора должен контролировать и учитывать избыточный ток от вспомогательного источника питания, так что в определенных ситуациях, когда слишком большой ток присутствует при работе регенерации и APU, регенерационный MOSFET также должен быть выключен.для защиты контроллера мотора.

    В ранних версиях электромобилей с двигателями постоянного тока простой контроллер с переменным резистором управлял ускорением и скоростью транспортного средства. Полный ток и мощность потреблялись от батареи все время. На более низких скоростях, когда требовалась небольшая мощность, использовалось высокое сопротивление, чтобы уменьшить ток, подаваемый на двигатель. Это привело к тому, что большая часть энергии батареи тратится впустую на тепло, рассеиваемое резистором. Современные контроллеры регулируют скорость и ускорение с помощью электронного процесса, называемого широтно-импульсной модуляцией (ШИМ).Переключающие устройства, такие как IGBT (очень быстрые транзисторы с высоким номинальным током), быстро прерывают, при необходимости включают или выключают поток электричества к двигателям. Высокая мощность достигается, когда интервалы (время между импульсами) очень короткие. Увеличивая время между импульсами, ограничивают ток.

    Показанный выше колесный двигатель изготовлен компанией Technologies M4.

    Как упоминалось выше, одна из наиболее интересных конструкций двигателей — это интеграция двигателя непосредственно в колесо.Это так называемые колесные двигатели, и они вполне могут когда-нибудь стать нормой, поскольку они удаляют огромное количество механических устройств из транспортного средства, обеспечивая движение колеса … в колесе!

    Мотор-колесо в сборе представляет собой элегантную интеграцию электродвигателя и других компонентов в корпус, который помещается в шину обычного размера.

    Узел мотор-колесо состоит из высокоэффективного электродвигателя, ведомого контроллера мотор-колеса (MWSC), включая силовую и управляющую электронику, тормоз, колесные подшипники, управляемый интерфейс передней подвески и радиатор, встроенный в статор.Конфигурация трехфазного синхронного двигателя состоит из центрального статора, который поддерживает обмотки, и инвертора, окруженного внешним ротором, который поддерживает постоянные магниты.

    Колесо установлено непосредственно на роторе для прямой передачи крутящего момента и улучшенного свободного хода. Узел двигателя имеет жидкостное охлаждение, что обеспечивает постоянную высокую потребляемую мощность.

    Производители автобусов

    оценят преимущества упаковки и взаимозаменяемость задней оси мотор-колеса, которая легко помещается в существующие колесные арки.Поперечина с глубоким смещением оси обеспечивает более широкую зону прохода в полу в конфигурации с низким полом.

    Выбор двигателя для электромобиля включает множество переменных. Ни один тип двигателя не может считаться лучшим. При проектировании электромобиля необходимо ответить на вопрос, прежде чем выбирать конкретный тип двигателя. Сколько мощности вам нужно, нужны ли вам переменные скорости, какое рабочее напряжение аккумуляторной системы, какой крутящий момент вам нужен и с какой скоростью, сколько физического пространства может занимать двигатель, сколько это может стоить, в какой среде будет работать двигатель? Как только на эти вопросы будут даны ответы, вы сможете сделать свой выбор двигателя.После идентификации двигателя необходимо разработать систему управления, обеспечивающую работу двигателя.

    К началу

    Системы управления

    Самая сложная и важная система электромобиля — это система управления. Система управления отвечает за управление работой электромобиля. Система управления получает входные данные от оператора, сигналы обратной связи контроллера от контроллера двигателя и двигателя, а также сигналы обратной связи от других систем внутри электромобиля.Скорость, с которой система управления должна получать данные от других систем, обрабатывать данные в алгоритме и выводить ответ на заданные условия, должна составлять миллисекунды. Это требует, чтобы система управления имела микропроцессор, как и компьютер, для выполнения своих задач. Хотя нет двух идентичных систем управления, большинство сигналов обратной связи схожи. В таблице ниже перечислены общие компоненты системы управления и сигналы обратной связи, которые отправляются на микропроцессор.


    Контроллер мотора.

    Компонент Сигнал обратной связи
    Электродвигатель (двигатели) Температура обмотки
    Скорость ротора (об / мин)
    Аккумулятор Напряжение
    Выходной ток
    Температура
    Контроллер двигателя

    Ток (и направление тока)

    Напряжение
    Температура

    Ток утечки

    Педаль акселератора Напряжение в зависимости от положения педали
    Селектор переключения ПЕРЕДНИЙ / РЕД.
    Выбор диапазона

    Система управления должна постоянно отслеживать сигналы обратной связи, перечисленные выше.Например, если температура обмоток в двигателе становится слишком высокой, магнитные свойства этого двигателя могут быть необратимо изменены или обмотки могут расплавиться. Подавая сигнал обратно на микропроцессор, система управления может ограничить мощность двигателя, если обнаружит повышение температуры. Такое же ограничение или отключение любой системы может иметь место, если возникла или возникла нежелательная ситуация. Другие сигналы обратной связи предоставляют микропроцессору информацию для управления скоростью автомобиля.Педаль акселератора работает так же, как и в обычных автомобилях. Когда педаль нажата, на микропроцессор отправляется возрастающее напряжение сигнала (не напряжение тягового аккумулятора), который дает команду контроллеру двигателя увеличить величину тока в обмотках двигателя, заставляя двигатель вращаться быстрее. По мере уменьшения напряжения сигнала от педали акселератора двигатель вращается медленнее.

    В некоторых усовершенствованных системах управления можно ограничить величину тока, протекающего к двигателю, на основе выбора переключателя.Это позволяет оператору приспособиться к стилю вождения, соответствующему конкретной ситуации. Например, если водителю требуется определенный диапазон (в милях) от одной зарядки, выбор диапазона может быть установлен таким образом, чтобы микропроцессор ограничивал величину выходного тока от контроллеров двигателя до заданного предела. Если предварительно установленный предел составляет 100 ампер, микропроцессор не позволит току, превышающему этот предел, течь к двигателям. В этом режиме способность к ускорению приносится в жертву дальности полета. Если водитель находится в зоне, где транспортному средству необходимо подниматься по крутым склонам, переключатель диапазонов можно настроить так, чтобы можно было использовать максимальный ток, допустимый для контроллера мотора и мотора.Функция выбора диапазона — ценная функция, которая повышает эффективность контроллера мотора. Конечная цель системы управления — максимизировать энергию, запасаемую в тяговом аккумуляторе, и предотвратить возникновение небезопасных условий внутри электромобиля.

    К началу

    Аккумуляторные системы


    Аккумулятор электромобиля,
    с видимыми элементами.

    Аккумулятор электромобиля определяет запас хода, способность к ускорению и время перезарядки автомобиля.Поскольку аккумулятор содержит энергию для питания электромобиля, и поскольку современные аккумуляторы не обеспечивают электромобилей с таким же потенциалом дальности, как у автомобилей с ДВС, аккумуляторы и альтернативные варианты, такие как маховики и сверхконденсаторы, являются наиболее изученными областями в области электромобилей. Аккумуляторная автомобильная технология.
    Элемент батареи обычно состоит из 4 основных компонентов, показанных слева. Ячейка содержит положительный и отрицательный электрод, электролит и сепаратор.Положительный электрод принимает электроны от внешней цепи, когда ячейка разряжена. Отрицательный электрод отдает электроны внешней цепи по мере разряда ячейки. Электролит обеспечивает механизм прохождения заряда между положительным и отрицательным электродами. Сепаратор электрически изолирует положительный и отрицательный электроды.

    К началу

    Как работает клетка?


    Электронный поток, восстановление и окисление
    реакция, разрез.

    Когда батарея или элемент вставляются в цепь, она замыкает цикл, который позволяет заряду равномерно течь по цепи. Во внешней части цепи поток заряда — это электроны, в результате чего возникает электрический ток. Внутри ячейки заряд течет в виде ионов, которые переносятся от одного электрода к другому. Поток обусловлен реакциями восстановления и окисления, происходящими на каждом электроде. На каждый электрон, генерируемый в реакции окисления на отрицательном электроде, приходится один электрон, потребляемый в реакции восстановления на положительном электроде.Реакция разряда на положительном электроде, имеющем потенциал 1,685 В, определяется выражением:

    Реакция на отрицательном электроде, который имеет потенциал 0,356 В, определяется выражением:

    Это означает, что общее напряжение свинцово-кислотного элемента составляет 2,04 вольт. Это значение известно как стандартный электродный потенциал. Другие факторы, такие как концентрация кислоты, также могут влиять на напряжение свинцово-кислотного элемента. Типичное напряжение холостого хода (без нагрузки) составляет около 2.15 вольт.

    В то время как напряжение ячейки фиксируется ее химическим составом, емкость ячейки варьируется в зависимости от количества содержащихся в ней активных материалов. Размер отдельных ячеек может составлять от долей ампер-часа до тысяч ампер-часов. Емкость ячейки — это, по сути, количество электронов, которые могут быть получены из нее. Поскольку ток — это количество электронов в единицу времени, емкость ячейки — это ток, подаваемый ячейкой с течением времени, и выражается в ампер-часах.

    Приложения

    EV требуют огромного количества энергии.Тяговая батарея электромобилей состоит из множества ячеек, которые электрически соединены для обеспечения необходимой емкости накопления энергии. Батареи могут быть соединены вместе в последовательной или параллельной конфигурации.

    В последовательной конфигурации отрицательная клемма одной батареи подключается к положительной клемме следующей и так далее, пока не будут достигнуты желаемое напряжение и энергоемкость батареи. Общее напряжение блока можно найти, умножив количество батарей в цепи на напряжение отдельной ячейки.

    В параллельной конфигурации положительный полюс одной батареи соединяется с положительным полюсом следующей, и то же самое относится к отрицательной клемме. В этом случае вы можете достичь желаемой емкости аккумуляторов энергии. Параллельная емкость батареи, но общее напряжение блока равно напряжению отдельной ячейки. Аккумуляторная система состоит не только из аккумулятора. В этой системе есть множество других компонентов, которые контролируют все соответствующие переменные, касающиеся аккумулятора и метода подзарядки.

    Аккумуляторная система состоит не только из аккумулятора. В этой системе есть множество других компонентов, которые контролируют все соответствующие переменные, касающиеся аккумулятора и метода подзарядки.

    Сегодня в электромобилях используется много различных типов аккумуляторов. Наиболее распространенными сегодня являются заливные свинцово-кислотные, герметично-гелевые свинцово-кислотные, никель-кадмиевые (Ni Cad) и никель-металлогидридные (NiMH). Типы, размеры и конфигурации аккумуляторов охватывают широкий спектр вариантов.Когда производитель электромобилей находится в процессе проектирования, перед выбором батареи необходимо ответить на несколько вопросов. Сюда будут входить такие вопросы, как: сколько места доступно для аккумуляторов, сколько они могут весить, каков желаемый диапазон, каков вес транспортного средства, какова целевая стоимость транспортного средства, как будут заряжаться аккумуляторы и что Требуются требования к системе привода. Это необходимые вопросы из-за разнообразия доступных типов батарей и различий между ними.В таблице ниже перечислены характеристики наиболее распространенных типов батарей.

    К началу

    Производительность аккумуляторных систем автомобиля

    Каждый конкретный тип аккумулятора имеет характеристики, которые делают его более или менее желательным для использования в конкретном приложении. Стоимость всегда является основным фактором, и никель-металлгидридные батареи возглавляют список по цене, а свинцово-кислотные батареи с заливной жидкостью являются самыми недорогими. Что теряется при переводе стоимости, так это тот факт, что NiMH батареи дают почти вдвое большую производительность (плотность энергии на вес батареи), чем обычные свинцово-кислотные батареи.Еще один фактор, который необходимо учитывать при сравнении батарей, — это время зарядки. Свинцово-кислотные батареи требуют очень длительного периода перезарядки, от 6 до 8 часов. Свинцово-кислотные батареи из-за своего химического состава не могут постоянно выдерживать высокий ток или напряжение во время зарядки. Свинцовые пластины внутри батарей быстро нагреваются и очень медленно охлаждаются. Слишком много тепла приводит к состоянию, известному как «выделение газа», когда водород выделяется из вентиляционной крышки батареи. Со временем выделение газов снижает эффективность батареи, а также увеличивает потребность в обслуживании батареи.Батареи, такие как NiCad и NiMH, не так чувствительны к нагреву и могут быть перезаряжены очень быстро, что позволяет производить заряды высокого тока или высокого напряжения, которые могут вывести аккумулятор из состояния заряда 20% до состояния заряда 80% всего за несколько секунд. 20 минут.

    Тип батареи

    Плотность энергии Вт · ч / кг

    Плотность мощности Вт / кг

    Срок службы батареи

    Стоимость по шкале от 1 до 10

    Свинцово-кислотный

    35

    150

    500

    1

    Свинцово-кислотный улучшенный

    48

    150

    800

    3

    GM Овоник NiMH

    70

    220

    > 600

    8

    SAFT NiMH

    70

    150

    1,500

    8

    SAFT литий-ионный

    120

    230

    600

    9

    Литий-полимерный

    150

    350

    <600

    10

    Зебра хлорид натрия и никеля

    86

    150

    <1000

    4

    Влияние на характеристики автомобиля

    Диапазон

    Разгон

    Стоимость жизненного цикла, стоимость замены

    Первоначальная стоимость, стоимость замещения

    Общее напряжение аккумуляторной батареи варьируется от автомобиля к автомобилю.В настоящее время ведутся обсуждения с производителями электромобилей в попытке стандартизировать номинальное напряжение аккумуляторной батареи автомобиля. Провидцы электромобилей надеются, что станции подзарядки автомобилей будут доступны на стоянках по всему городу. Если электромобили имеют заданный диапазон напряжения аккумуляторной батареи, все автомобили смогут использовать одни и те же зарядные устройства. Производители зарядных устройств в настоящее время разрабатывают «умные» зарядные устройства на базе микропроцессоров. «Умное» зарядное устройство получит доступ к базе данных конкретного автомобиля и сможет соответствующим образом регулировать заряд.

    Новые аккумуляторные системы также управляются микропроцессором. Микропроцессор получает данные от датчиков в аккумуляторной батарее. Температура, выходной ток, напряжение батареи и обнаружение неисправностей передаются обратно в микропроцессор, который затем может рассчитать, сколько энергии осталось в батарее, а также сколько было потреблено. Контроль температуры и сопротивления земли автомобиля защищает аккумулятор и пассажиров от опасности.

    Конфигурации батарей

    также сильно различаются в зависимости от автомобиля и желаемого резервирования системы.Батарейные блоки могут быть соединены вместе в одну длинную последовательную цепь, так что общее напряжение блока является суммой всех ячеек в серии. В других системах используется несколько блоков с одинаковым напряжением, параллельных нескольким блокам. Это обеспечивает избыточность системы. Если элемент в одном блоке выходит из строя, система управления батареями может отключить вывод этого блока, и автомобиль может продолжать движение с оставшимися блоками батарей. Транспортное средство потеряет энергию из-за неисправного блока, и это повлияет на дальность действия.

    Слева показан аккумуляторный блок, состоящий из 27 отдельных 2-вольтовых ячеек,
    в конфигурации последовательной схемы для формирования блока с напряжением 54 вольт.

    Факторы, влияющие на выбор батареи для конкретных приложений:

    Для чисто электрических транспортных средств выбор аккумулятора в первую очередь зависит от плотности энергии. Плотность энергии определяется как количество энергии, хранящейся в элементе или батарее, в зависимости от веса или объема.Поэтому идеальной батареей была бы батарея, которая дает больше всего энергии, занимает наименьшее пространство и наименьший вес (без учета стоимости). Наиболее перспективными технологиями аккумуляторов, доступных сегодня, являются свинцово-кислотные (Pb-acid), никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литий-полимерные и литий-ионные аккумуляторы. Сравнение плотностей энергии показано на диаграмме выше. Помимо плотности энергии, существует множество факторов, которые влияют на тип батареи, выбранной для использования в электромобиле.К ним относятся стоимость, срок службы (количество циклов зарядки-разрядки до того, как емкость уменьшится с исходных 100% до 80%), быстрое или быстрое время зарядки и удельную мощность (максимальный ток нагрузки, который аккумулятор может обеспечить в течение очень короткого промежутка времени. ). Еще одним критерием выбора типа батареи, который тесно связан с плотностью энергии, является удельная энергия батареи.

    Удельная энергия — это плотность энергии как функция времени, измеряемая в ватт-часах на единицу массы. Удельная энергия важна, потому что она влияет на количество аккумуляторов, необходимых для конкретного применения, и, в свою очередь, на массу или вес аккумуляторов, которые транспортному средству необходимо иметь на борту, чтобы в конечном итоге работать в определенном электрическом диапазоне.Это наиболее важный фактор для электромобилей, поскольку он определяет их общий диапазон, но не столь критичный для электромобилей, которые несут большую часть своей энергии в виде газообразного или жидкого топлива. Вместо этого для HEV критическим параметром при выборе батареи становится удельная мощность батареи.

    Поскольку HEV используют два разных источника энергии, потребности в энергии от батарей намного меньше, чем у электромобилей. Поскольку гибриды обычно зависят только от электрической энергии, хранящейся на борту, для обеспечения мощности для ускорения и подъема на холмы, ищутся батареи, которые имеют высокую удельную мощность и меньшую массу.Удельная мощность — это мощность на единицу массы, поэтому способность батареи обеспечивать высокое потребление тока в течение коротких периодов времени с меньшим весом является желаемой целью для HEV. Справа показана диаграмма, в которой сравнивается удельная мощность батарей разных типов. В настоящее время информация о литиевых батареях отсутствует.

    Зарядные устройства для аккумуляторов восполняют энергию, потребляемую электромобилем, так же, как бензонасос заправляет бензобак. Одно существенное отличие состоит в том, что оператор электромобиля может полностью зарядить автомобиль за ночь дома, а не заправляться на заправочной станции.Зарядное устройство для аккумуляторов — это устройство, которое преобразует переменный ток, распределяемый электрическими предприятиями, в постоянный ток, необходимый для подзарядки аккумулятора.

    К началу

    Батарейная память

    Часто слышно, что у батарейки есть память. Когда о «памяти» говорят в одном предложении с батареями, это означает, что батарея не достигла заявленной емкости. Если заявленная емкость аккумулятора составляет 100 ампер-часов, а напряжение отсечки постоянно достигается, когда после зарядки было израсходовано только 80% или 80 ампер-часов, это часто называют эффектом памяти.Есть много мнений по поводу того, есть ли у батареек память. Использование термина «память» для описания потери емкости, вероятно, является источником путаницы. Батарея может работать постоянно плохо, ее разрядная емкость находится в пределах от 2% до 3% во время каждого цикла разрядки. А вот батарейки из «памяти» так не достают. Это несколько разных причин плохой работы, и, как правило, ответственность за этот эффект лежит на смотрителе аккумулятора.

    Некоторые из наиболее распространенных причин проблем с производительностью, которые приписываются эффекту «памяти»:

    1.Неправильная зарядка, т. Е. Постоянная перезарядка или недозаряд
    2. Превышение пороговых значений температуры аккумулятора во время зарядки или разрядки

    Так что же случилось с аккумулятором, который испытывает эффект «памяти»? Из-за различных типов батарей и используемых химикатов не существует единого общего термина, который можно было бы применить, чтобы описать причины плохой работы всех батарей. Однако известно, что высокие температуры изменяют молекулярные структуры задействованных химикатов, что может привести к более высокому внутреннему сопротивлению внутри батареи, что приводит к снижению напряжения.Недозаряд может привести к накоплению сульфата свинца на пластинах свинцово-кислотных аккумуляторов, что также увеличивает внутреннее сопротивление аккумулятора, поскольку токи сужаются и не могут проходить через всю поверхность пластин. Перезарядка может иметь тот же эффект, что и высокая температура, изменяя кристаллическую структуру химических веществ внутри батареи.

    Можно ли стереть «память» батареи? В большинстве случаев ответ — «да». При правильном выполнении нескольких циклов зарядки / разрядки эффект памяти может быть разрушен, и емкость аккумулятора вернется к исходному значению.Однако в некоторых случаях, если батарея плохо обслуживалась в течение длительного периода времени (месяцев), возможно, что произошло необратимое повреждение, а срок службы и емкость батареи определены и не могут быть исправлены.

    Типы зарядки

    Существует несколько различных типов зарядных устройств в зависимости от способа управления скоростью зарядки.

    Постоянное напряжение

    Приложено постоянное напряжение, и ток течет в батарею (максимальный ток возникает, когда батарея полностью разряжена, и снижается до низкого, когда батарея почти заряжена.) Электроника на зарядках постоянного напряжения относительно проста, поэтому эти типы зарядных устройств, как правило, дешевле.

    К началу

    Комбинация постоянного тока / постоянного напряжения

    Цикл заряда начинается с высокого постоянного тока до тех пор, пока напряжение не достигнет установленного значения, затем переходит в режим управления постоянным напряжением. Это наиболее совершенный из основных типов зарядных устройств для аккумуляторов, который обычно увеличивает срок службы аккумулятора за счет уменьшения нагрева во время процесса зарядки.Эти зарядные устройства также имеют тенденцию повышать производительность аккумулятора.

    Импульсная зарядка

    Один из передовых методов зарядки, оцениваемых в настоящее время, исключает необходимость постоянного тока и / или постоянного напряжения с помощью «пульсирующего» напряжения. Применяется серия очень сильных импульсов тока и напряжения до тех пор, пока напряжение батареи не достигнет заданного значения. Основным преимуществом импульсного зарядного устройства является значительное снижение тепловыделения, что позволяет зарядному устройству работать при высоком уровне напряжения, даже когда аккумулятор почти полностью заряжен.Кроме того, уменьшение тепла приводит к уменьшению «потерянной» энергии. Таким образом, импульсная зарядка может значительно сократить время зарядки и более энергоэффективна.

    Несмотря на то, что существует множество типов зарядных устройств для аккумуляторов, производитель транспортного средства предоставит или порекомендует подходящее зарядное устройство для аккумуляторов в электромобиле.

    К началу

    Расположение зарядного устройства / варианты соединения

    Зарядные устройства для аккумуляторов электромобилей могут быть бортовыми (в электромобиле) или вне (в фиксированном месте).Как и у многих других вариантов, у обоих типов есть свои преимущества и недостатки. Если зарядное устройство установлено на борту, аккумуляторы можно заряжать в любом месте, где есть электрическая розетка. Недостатком бортовых зарядных устройств является ограничение их выходной мощности из-за ограничений по размеру и весу, продиктованных конструкцией транспортного средства. Выходная мощность внешних зарядов ограничена только способностью аккумуляторов принимать заряд. Хотя владелец электромобиля может сократить время, необходимое для зарядки аккумуляторов с помощью мощного внешнего зарядного устройства, возможность зарядки в разных местах ограничена.

    К началу

    Способы зарядки

    Существует два основных метода соединения, используемых для завершения соединения между электросетью, зарядным устройством и автомобильным разъемом. Первый — это традиционная вилка (называемая токопроводящей муфтой). При таком подключении оператор электромобиля подключает свой автомобиль к соответствующей розетке (например, на 110 или 220 вольт), чтобы начать зарядку. Этот тип сцепления может использоваться с зарядным устройством в автомобиле (на борту) или вне автомобиля (вне автомобиля).

    Второй тип связи называется индуктивной связью. В этом типе сцепления используется лопасть, которая вставляется в розетку на автомобиле. Вместо того, чтобы передавать мощность по прямому проводному соединению, мощность передается за счет индукции, которая представляет собой магнитную связь между обмотками двух отдельных катушек, одна в лопасти, а другая установлена ​​в транспортном средстве.

    Индуктивная зарядка

    Индуктивное зарядное устройство не имеет прямого электрического соединения с автомобилем.Атмосферостойкая лопасть передает энергию на порт зарядки автомобиля через магнитное поле. Зарядные устройства для внедорожников Delco представляют собой безопасную и простую в использовании систему зарядки электромобилей. Вставка зарядного устройства — это все, что требуется для начала зарядки. Зарядку можно прекратить в любой момент, сняв переходник. Двунаправленная связь и встроенная диагностика обеспечивают безопасное соединение и предотвращают движение автомобиля при подключении.

    Проводящая зарядка

    В проводящем зарядном устройстве энергия передается в автомобиль через контакт металл-металл.Разъем, например AVCON (слева), надежно соединяет источник питания и порт зарядки автомобиля.

    К началу

    Уровни заряда

    Зарядные устройства

    также классифицируются по уровню мощности, которую они могут обеспечить аккумуляторной батарее:

    Уровень 1 — Обычный бытовой тип цепи, рассчитанный на 120 вольт / переменный ток и на 15 ампер.

    Зарядные устройства

    уровня 1 используют стандартное бытовое трехконтактное соединение и обычно считаются портативным оборудованием.

    Уровень 2 — Постоянно подключенное оборудование для электропитания электромобилей, используемое специально для зарядки электромобилей и рассчитанное на напряжение до 240 вольт / переменного тока, до 60 ампер и до 14,4 киловатт.

    Уровень 3 — Постоянно подключенное к электросети оборудование для электропитания, используемое специально для зарядки электромобилей и имеющее номинальную мощность более 14,4 киловатт. Зарядные устройства для быстрой зарядки относятся к уровням 3. Однако не все зарядные устройства уровня 3 считаются устройствами быстрой зарядки. Это зависит от размера аккумуляторной батареи, которую необходимо зарядить, и от того, сколько времени требуется для зарядки аккумуляторной батареи.Зарядное устройство можно считать быстрым зарядным устройством, если оно способно заряжать аккумуляторную батарею среднего электромобиля за 30 минут или меньше.

    К началу

    Управление батареями

    При таком большом количестве зарядных устройств и способов зарядки существовала необходимость контролировать состояние заряжаемых и разряженных аккумуляторов. Были разработаны системы управления батареями (BMS), которые управляются микропроцессором, что позволяет программировать алгоритмы заряда в системе практически для всех различных типов батарей.Эти системы контролируют энергию, потребляемую транспортным средством во время движения, а также температуру, напряжение отдельных ячеек и общее напряжение блока. Тот же самый процесс контролируется в обратном порядке во время зарядки, создавая страховочную сетку в случае проблем с одной ячейкой в ​​аккумуляторном блоке.

    При существующих электромобилях и зарядных устройствах для зарядки аккумуляторной батареи электромобиля обычно требуется от нескольких часов до ночи. Время, необходимое для перезарядки аккумуляторов электромобилей, зависит от общего количества энергии, которое может храниться в аккумуляторной батарее, а также от напряжения и тока (т.е., мощность) от зарядного устройства.

    Новые разработки в области подзарядки аккумуляторов сокращают время, необходимое для зарядки аккумуляторов электромобилей, до 10-15 минут. Например, импульсные зарядные устройства для аккумуляторов продемонстрировали, что аккумуляторный блок электромобиля можно зарядить менее чем за 20 минут, не повредив его. Когда эта технология будет полностью развернута, электрические зарядные станции, аналогичные заправочным станциям, позволят оператору электромобиля быстро перезарядить аккумуляторную батарею.

    Эта новая технология зарядного устройства в сочетании с усовершенствованными батареями с запасом хода до 200 миль между подзарядками предоставит водителю электромобиля такую ​​же свободу передвижения по дороге, которой в настоящее время пользуются современные водители автомобилей с бензиновым двигателем.

    К началу

    Аксессуары (электрические стеклоподъемники, обогреватель, воздушный, гидроусилитель руля и т. Д.)

    Электромобиль поддерживает те же дополнительные функции, что и транспортное средство с двигателем внутреннего сгорания. Эти аксессуары включают радио, освещение, отопление и кондиционер, гидроусилитель руля, а для более крупных транспортных средств, таких как грузовики и автобусы, — воздушную систему.Однако способ, которым эти устройства получают питание, очень отличается. Двигатель внутреннего сгорания оборудован генератором на 12 вольт. Источником тепла для автомобиля является система охлаждения двигателя. Кондиционер и гидроусилитель руля выполняются с помощью системы ремня и шкивов, которая взаимодействует с насосом для гидроусилителя руля и компрессором для кондиционирования воздуха. Поскольку в электромобилях не используется двигатель, были разработаны альтернативные методы работы с электромобилями.

    Вспомогательная система на 12 В, которая подает питание на такие устройства, как фонари, радио, стеклоочистители и системы омывателей, электрические стеклоподъемники и дверные замки или любое другое электрическое устройство на транспортном средстве, потребляет энергию от основной тяговой батареи.Вспомогательная система не работает на том же уровне напряжения, что и тяговая система (система, которая обеспечивает питание колес), а вместо этого понижается с диапазона напряжения 324-216 В постоянного тока до 12 В постоянного тока с помощью устройства, называемого Преобразователь постоянного тока в постоянный.

    Существует несколько различных методов обогрева электромобиля. Один из первых применявшихся методов был известен как нагрев «сопротивлением». Сопротивление нагрева осуществляется с помощью нагревательного элемента, подобного нагревательным элементам на плите или в духовке.Нагревательный элемент нагревается, когда подается электричество, и вентилятор обдувает элемент, чтобы рассеять тепло. К недостаткам этого метода можно отнести безопасность и эффективность. Тепловые элементы потребляют большое количество энергии. Другие альтернативные методы нагрева включали использование нагревателей, которые сжигали чистое топливо, такое как жидкий пропан или сжатый природный газ. В прошлом для охлаждения электромобилей использовалась стандартная технология кондиционирования воздуха, аналогичная домашним кондиционерам, устанавливаемым на окна.Эти кондиционеры были эффективны, хотя и неэффективны. Последние разработки в области силовой электроники позволили производителям автомобилей установить в электромобили эффективный реверсивный тепловой насос, который может охлаждать или нагревать.

    Усилитель рулевого управления на электромобиле достигается путем добавления односкоростного двигателя постоянного тока и контроллера двигателя. Двигатель соединен с насосом гидроусилителя рулевого управления через шестерни или систему ремня и шкива. Задача контроллера мотора — поддерживать постоянную скорость вращения мотора при различных нагрузках.В воздушной системе на больших грузовиках и автобусах используется та же самая методология с двигателем постоянного тока, вращающим вал воздушного компрессора. Здесь важно понимать, что двигатели постоянного тока включаются и остаются включенными только в том случае, если транспортному средству требуется пневматический или усилитель рулевого управления. Если автомобиль остановлен, усилитель рулевого управления не нужен, и двигатель рулевого управления с усилителем отключится. Когда воздушные баллоны полны, этот двигатель также отключается.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *