ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Инжекторный двигатель - это... Что такое Инжекторный двигатель?

Двигатель АШ-82 в музее в Праге

Инжекторная система подачи топлива — система подачи топлива, устанавливаемая на современных бензиновых двигателях взамен устаревшей карбюраторной системы. Двигатели, имеющие такую систему, называют инжекторными двигателями.

Устройство

В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками. В зависимости от их количества и расположения системы впрыска делятся на:

  • Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается.
  • Распределённый впрыск — на каждый цилиндр приходится отдельная изолированная форсунка во впускном коллекторе.
  • Прямой впрыск — форсунки расположены непосредственно возле цилиндров и впрыск топлива происходит непосредственно в него.

По методу управления:

  • Механический
  • Электронный — решение о времени и длительности открытия форсунок принимает микроконтроллёр, основываясь на данных датчиков.

Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения, и т. п.

Достоинства

Инжекторная система позволяет улучшить эксплуатационные и мощностные показатели двигателя (такие как динамика разгона, расход топлива, экологические характеристики и т. д.). Основным преимуществом по сравнению с карбюраторной системой является самонастройка по датчику кислорода. Это позволяет длительное время соблюдать высокие экологические стандарты без ручных регулировок.

Недостатки

Основные недостатки инжекторных двигателей по сравнению с карбюраторными:

  • Высокая стоимость ремонта,
  • Высокая стоимость узлов,
  • Неремонтопригодность элементов,
  • Высокие требования к качеству топлива,
  • Необходимость в специализированном оборудовании для диагностики, обслуживания и ремонта.

История

Появление и применение систем впрыска в авиации

Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Инжекторная система питания авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционной системе впрыска в силу конструкции безразлично рабочее положение (вверх ногами или как обычно).

Первый мотор с системой впрыска был изготовлен в России в 1916 году Микулиным и Стечкиным. Он же стал первым авиационным двигателем, перешагнувшим 300-сильный рубеж мощности.

К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz 601. Именно этими моторами объемом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л.

с., то «шестьсот первый» с впрыском позволял поднять мощность до 1100 сил и более. Чуть позже в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — тот самый лицензионный авиадвигатель Pratt&Whitney Hornet, который на BMW делали с 1928 года и который устанавливался, к примеру, на транспортники Junkers Ju-52. Авиамоторы в Англии, США и СССР в те времена оставались ещё исключительно карбюраторными. Японская же система впрыска на истребителях «Зеро» требовала промывки после каждого полета, и поэтому не пользовалась популярностью в войсках.

Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиамоторов с впрыском, работы по созданию отечественных инжекторных систем питания получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2.

Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.

К концу войны довели до серии свой вариант впрыска и американцы. Например, моторы «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.

Применение систем впрыска в автомобилестроении

Впрыск топлива в автомобилестроении начал применяться с 1951 года когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного небольшой фирмой Goliath из Бремена. В 1954 году появилось легендарное купе Mercedes-Benz 300 SL («крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch.[1] Тем не менее, до эпохи появления дешёвых микропроцессоров и введения в странах Запада жёстких требований к экологической безопасности автомобилей идея инжекторного впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.

Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel («Бунтарь») 1957 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объемом 5,4 л в карбюраторном варианте развивала 255 л.с., а в заказной версии Electrojector уже 290 л.с. Разгон до 100 км/ч у такого седана занимал менее 8 с.

К концу первого десятилетия 21 века системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.

См. также

Ссылки

Примечания

  1. http://www.autoreview.ru/archive/2008/01/injection/

Wikimedia Foundation. 2010.

Типы инжекторного двигателя

Инжекторный двигатель - это следующая (после карбюраторного) эволюционная ступень развития двигателя внутреннего сгорания. Такой двигатель имеет ряд значительных преимуществ, благодаря чему практически вытеснил карбюраторный.

Основное отличие инжекторного двигателя заключается в системе подачи топлива прямо в впускной коллектор или цилиндр двигателя при помощи форсунки (инжектора).

По количеству форсунок, месту их размещения, а так же принципу действия инжекторная система впрыска топлива делится на следующие типы.

Центральная подача топлива или моновпрыск. Данный тип использует одну форсунку, расположенной на впускном коллекторе, которая осуществляет подачу топлива сразу во все цилиндры мотора.

Распределенная подача топлива, здесь за каждый цилиндр отвечает своя форсунка. В свою очередь такая система имеет следующие типы:

  1. прямой – подача топлива происходит непосредственно в камеру сгорания
  2. одновременный – все форсунки синхронно подают топливо во все цилиндры
  3. фазированный – впрыск топлива из форсунок происходит перед тактом впуска
  4. попарно параллельный – одна половина инжекторов открывается на начале цикла (впуске), другая на его завершении (выпуске).

Несмотря на то, что инжекторная система имеет больший КПД, более экологически чиста и ее использование ведет к экономии топлива, эксплуатация таких двигателей имеет ряд недостатков. Поскольку работа инжекторного двигателя управляется при помощи микропроцессора и большого количества специализированных датчиков, самостоятельно провести ремонт и диагностику крайне сложно. Для этого необходимо особое оборудование и квалифицированные навыки. Другим минусом является высокая требовательность инжекторного двигателя к составу и качеству топлива. При использовании некачественного топлива с примесью твердых частиц и различных смол инжектор быстро засоряется и приходит в негодность. Поэтому, для долгой корректной работы двигателя стоит чаще менять топливные фильтры и периодически очищать форсунки, не стоит забывать и о бензобаке в котором может появиться ржавчина.

Как работает инжекторный двигатель, принцип работы и преимущества

Вместо недавно повсеместно распространенных карбюраторных двигателей сейчас в основном используются инжекторные или впрысковые двигатели. Принцип их работы относительно прост и чрезвычайно экономичен. Однако, чтобы оценить преимущество инжектора, нужно сначала разобраться, почему они пришли на смену карбюраторам.

Карбюратор служит для подачи топлива во впускной коллектор, где оно уже смешивается с воздухом, а оттуда распределяется в камеры сгорания поршней. На подачу и смешивание топлива с воздухом израсходуются силы двигателя – до десяти процентов. Бензин всасывается в коллектор благодаря разнице в давлении в атмосфере и коллекторе, а чтобы поддерживать нужный уровень давления, как раз и расходуются ресурсы двигателя.

Кроме этого у карбюратора есть и масса других недостатков, например, когда через карбюратор проходит слишком много топлива, он просто физически не успевает направить его через узкую горловину в коллектор, в результате чего карбюратор начинает коптить. Если же топливо ниже определенного уровня, то двигатель попросту не тянет и глохнет – знакомая многим ситуация.

Принцип работы инжектора

Инжектор, в принципе, исполняет в двигателе ту же работу, что и карбюратор – подает топливо в камеры сгорания поршней.

Однако происходит это не из-за всасывания бензина в коллектор, а методом впрыска топлива через форсунки непосредственно в камеры сгорания или в коллектор, и здесь же происходит смешивание топлива с воздухом.

Мощность инжекторных двигателей в среднем на 10 процентов выше, чем карбюраторных.

Инжекторы делятся на два основных вида:

  • моновпрыск – топливо подается через форсунки в коллекторе, а затем распределяется непосредственно в камеры сгорания;
  • распределенный впрыск – в головке цилиндров имеется форсунка для каждого поршня и смесь топлива с воздухом происходит в камере сгорания.

Инжекторные двигатели с распределенным впрыском являются самыми экономичными и мощными. Подача бензина происходит в момент открытия впускного клапана.

Преимущества инжектора

Система впрыска незамедлительно реагирует на любые изменения нагрузки на двигатель, как только увеличиваются обороты, впрыск производится чаще.

Автомобили с впрысковой системой легче заводятся, увеличивается динамический момент двигателя. Инжектор меньше реагирует на погодные условия, ему не требуется длительное прогревание при минусовых температурах воздуха.

Инжекторы более “дружелюбны” к экологии, уровень выбросов вредных веществ на 50-70 процентов ниже, чем у карбюратора.

Также они более экономны, поскольку топлива расходуется ровно столько, сколько нужно для бесперебойной работы двигателя в данный момент.

Недостатки впрысковых систем

К недостаткам можно отнести тот факт, что для нормальной работы двигателя требуется слаженная работа нескольких электронных датчиков, которые контролируют разные параметры и передают их на главный процессор бортового компьютера.

Высокие требования к чистоте топлива – узкие горлышки форсунок очень быстро будут забиваться, если пользоваться некачественным бензином.

Ремонт обходится очень дорого, а некоторые элементы вообще не подлежат восстановлению.

Как видим, ни одна система не лишена недостатков, однако преимуществ у инжектора значительно больше и именно из-за этого инжекторные двигатели пришли на замену карбюраторным.

Очень наглядное видео, в 3D, о принципе работы инжекоторного двигателя.

В данном видео вы узнаете о принципе работы системы питания инжекторного двигателя.

Загрузка...

Поделиться в социальных сетях

Инжекторный двигатель | Vincast.ru - запчасти

Инжекторный двигатель . Общий обзор.

На сегоднящний день инжектор ый двигатель практически полностью заменил устаревшую карбюратор ную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

В инжекторном двигателе впрыск топлива в воздушный поток осуществляется специальными форсунками, расположенными либо на месте карбюратора (впускном коллекторе) — «моновпрыск», либо недалеко от впускного клапана каждого цилиндра (как правило, конструктивно во впускном коллекторе) — «распределённый впрыск» (он же многоточечный "коллекторный"), либо в головке цилиндров, и впрыск происходит в камеру сгорания — «прямой впрыск». К форсункам инжектора топливо подаётся под давлением, а бортовой компьютер автомобиля в нужные моменты времени подаёт импульсы тока, открывающие форсунки .

Количество впрыснутого топлива при этом определяется длительностью импульса тока. Эта длительность расчитывается на основании информации от набора датчиков, контролирующих различные параметры двигателя . Важнейшие параметры: обороты двигателя, его температура, угол открытия дроссель ной заслонки, данные о разрежении в задроссельном пространстве и (или) данные о расходе воздуха двигателем. Для достижения оптимальных параметров количество датчиков на современном двигателе в реальности значительно больше.

Существуют также и инжекторные двигатели с впрыском, управляемым механическими устройствами. В наиболее общем случае идея управления таким впрыском заключается в дозировании количества топлива специальным клапаном. Клапан же, в свою очередь, управляется через систему рычагов воздушным потоком, воздействующим на легкую «тарелочку», стоящую на пути потока. В настоящее время впрыски с механическим управлением практически вытеснены впрысками с управлением электронным.

Инжекторный двигатель. Основные достоинстава.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально "на лету", так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т. п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Источник: injector.ua

Преимущество инжектора перед карбюратором на скутерах

Сегодня много техники оснащено бензиновыми двигателями, которые можно разделить на два типа. К первому типу относятся моторы, в которых топливовоздушная смесь приготавливается с помощью карбюратора. На второй тип двигателей устанавливается инжектор, который также служит для питания двигателя. Данные типы силовых установок устанавливаются не только на грузовых и легковых автомобилях, но также на мотоциклах и скутерах.

Что лучше

Системы подачи топлива карбюраторного типа применяются очень давно, в то время как инжекторные системы появились сравнительно недавно. Если сравнить скутер с объёмом двигателя 50 кубических сантиметров, который оснащен карбюратором, и такой же скутер с инжекторным мотором, то второй вариант будет более предпочтительным. В карбюраторном моторе бензин с воздухом смешиваются непосредственно в карбюраторе, а система подачи топлива инжекторного типа работает на таком принципе, где топливо впрыскивается непосредственно во впускной коллектор или в цилиндры двигателя. Всё зависит от типа впрыска.

В карбюраторном 50 кубовом двигателе скутера, как и, впрочем, в других аналогичных моторах, на приготовление топливовоздушной смеси требуется определенное усилие. Всё дело в том, что поршень должен создать некоторое разряжение во впускном коллекторе, чтобы его хватило на распыление топлива через жиклёры. В инжекторном моторе такого разряжения создавать не нужно, и, следовательно, инжекторный двигатель работает более рационально и с более высоким КПД. Инжекторный мотор от скутера объемом 50 сантиметров кубических обладает еще массой других преимуществ, в перечень которых входит:

  1. Низкий расход топлива.
  2. Инжекторный мотор более приемистый.
  3. У инжекторного двигателя больший межремонтный ресурс.
  4. Данный двигатель обладает меньшей вибрацией.
  5. Инжекторный мотор более рационально снабжается горючей смесью во всём диапазоне оборотов.
  6. Эти моторы обладают меньшей токсичностью.
  7. Пуск инжекторного двигателя осуществляется гораздо легче (особенно актуально в холодный период года).

Ни для кого не секрет, что система управления принудительным впрыском включает в себя электронный блок управления. Эта особенность существенно усложняет конструкцию инжекторного двигателя, но её нельзя отнести к минусам данной системы, поскольку электроника 50 кубовых двигателей для скутера работает довольно надежно.

Вывод

Четырехтактный инжекторный двигатель (например Honda Dio AF68) для скутера от любого производителя будет работать гораздо эффективнее, нежели его карбюраторный собрат. Чтобы мотор с принудительным впрыском функционировал стабильно и чётко, нужно следить за качеством топлива, а также за состоянием топливных форсунок. Электронный блок управления инжекторной силовой установки не требует какого-либо дополнительного обслуживания. Главное – не подвергать данное устройство долговременному воздействию воды, а также следить за напряжением в бортовой электросети скутера.

Дизельный двигатель, инжекторный двигатель. Система охлаждения

Двигатель – самая важная часть автомобиля. Именно благодаря этому агрегату машина приводится в движение. Нет двигателя – машина превращается в обычную повозку. Телегу. Только в эту телегу лошадей не запрячь.

При помощи двигателя энергия сгорания топлива или энергия электрическая преобразуются в механическую энергию, которая необходима для движения.

Традиционно на автомобилях применяются двигатели внутреннего сгорания на бензине или дизельном топливе, используются также газовые двигатели, всё чаще начинают применять гибридные двигатели, которые представляют собой симбиоз двигателя внутреннего сгорания и электродвигателя. Очень много разработок в области электрических двигателей. Однако, данный тип двигателя пока не получил широкого распространения.

Двигатели внутреннего сгорания

Бензиновые двигатели внутреннего сгорания

В цилиндрах таких двигателей сжатая воздушно-топливная смесь воспламеняется искрой. Мощность двигателя регулируется путем регулирования потока воздуха, при помощи дроссельной заслонки.

В автомобилях, возраст которых составляет 10 лет и старше, управление дросселем осуществлялось путем нажатия на педаль газ. На современных автомобилях тоже нужно нажимать на газ, но только для того, чтобы послать сигнал ЭБУ (электронному блоку управления, «мозгам»), управляющему дроссельной заслонкой.

Виды бензиновых двигателей

Бензиновые двигатели могут быть карбюраторными и инжекторными. Бензиновые двигатели различаются по числу и расположению цилиндров, по способу охлаждения (воздушное и масляное охлаждение), по способу наполнения цилиндров воздухом (атмосферные, с наддувом, компрессорные) и другие.

Карбюраторные бензиновые двигатели 

В карбюраторном двигателе горючая смесь приготавливается, собственно в карбюраторе. Основных видов карбюратора три:

  • поплавковый;
  • мембранно-игольчатый;
  • барботажный.

Барботажный карбюратор выполнен в виде бензобака с поднятой над топливом глухой доской, оснащенной двумя патрубками, подающей воздух в бак и отбирающей смесь в двигатель. Как видно из конструкции, данный карбюратор очень примитивен. Он является достаточно громоздким, малоэффективным и сильно зависящим от погодных условий. Кроме того, его применение небезопасно. Может случиться взрыв паров топливно-воздушной смеси.

Барботражный карбюратор
1 — дроссельная заслонка

Мембранно-игольчатый карбюратор создан как самостоятельная часть, элемент автомобиля. Устройство состоит из нескольких камер, которые разделены мембранами и соединенны штоком с иглой на конце, которая запирает седло клапана подачи бензина. Достоинством данного карбюратора является то, что его можно размещать в любом положении, относительно поверхности земли. Недостаток – сложность настройки. Обычно такой карбюратор устанавливается на газонокосилки, бензорезы и т.п. Но в качестве вспомогательного устройства, его можно обнаружить на автомобиле ЗИЛ-138.

Поплавковые карбюраторы составляют подавляющее большинство существующих в природе карбюраторов. Именно поплавковые карбюраторы устанавливаются на автомобили. Стоит заметить, что модификаций данного типа карбюратора огромное множество. Но, в обязательном порядке, в его состав входит поплавковая камера и смесительная камера.

Инжекторные двигатели

Инжекторная система впрыска топлива стала активно применяться в 80-х годах прошлого века. Инжекторные двигатели отличаются от карбюраторных тем, что в инжекторной системы происходит принудительный впрыск топлива во впускной коллектор или цилиндр.

В настоящее время в большинстве инжекторных двигателей используется электронная система впрыска. А происходит это так: в контроллер с датчиков собирается всевозможная информация, в том числе о положении коленвала, положении дросселя, скорости автомобиля, температуры охлаждающей жидкости и входящего воздуха. На основании этих данных контроллер подает сигналы форсункам, системе зажигания, регулятору холостого хода и другим системам.

Инжектор, по сравнению с карбюратором имеет ряд преимуществ:

  • уменьшение расхода топлива;
  • упрощение запуска двигателя;
  • уменьшение вредных выбросов;
  • отсутствие необходимости в ручной настройке системы.

Но есть и недостатки:

  • постоянная необходимость в напряжении питания;
  • нужда в специальных познаниях, в случае ремонта.

По большому счету, именно требования к понижению количества выброса вредных веществ, заставило автопроизводителей перейти от карбюратора к инжектору. Катализаторы, которые ставят на инжекторные автомобили, способны работать при достаточно узком диапазоне химического состава веществ, выходящих через выхлоп. А обеспечить такой диапазон может только современная система впрыска.

Особенности современных бензиновых двигателей

Во многих моделях современных автомобилей применяется для каждой свечи своя отдельная катушка зажигания. Особенно характерно это для японских автомобилей.

Чтобы решить проблему «зависания» заслонок, во многих «больших» двигателях используют по два впускных и выпускных клапана на цилиндр.

Как уже было отмечено, в большинстве современных автомобилей используется электронная педаль газа.

Дизельный двигатель

Как и бензиновый, дизельный двигатель является агрегатом внутреннего сгорания. Только в качестве топлива в таком двигателе можно использовать широкий диапазон жидкостей: от керосина и мазута до пальмового и рапсового масла.

Принцип работы четырехтактного дизельного двигателя

1-й такт: открывается впускной клапан, «всасывая» в цилиндр воздух, после этого впускной клапан начинает закрываться, а выпускной – открываться.

2-й такт: поршень сживает воздух.

3-й такт: поршень двигается к верхней мертвой точке, в горячий воздух распыляется топливо, которое воспламеняется, а продукты сгорания двигают поршень вниз.

4-й такт: поршень идет вниз, продукты сгорания удаляются через выпускной клапан.

С некоторыми особенностями, но по такому принципу работают практически все ДВС с поршневой системой.

Особенности дизельного двигателя, топлива и автомобилей с дизельным двигателем:

  • — двигатель имеет КПД до 50 процентов;
  • — дизельный двигатель не имеет возможности набирать высоких оборотов. Топливо не успевает за короткое время догореть. По причине высокой механической напряженности детали дизельного двигателя дорогостоящие и массивные.
  • — дизельный автомобиль более экономичен и отзывчив в движении.
  • — дизельное топливо нелетучее, а следовательно более безопасное. Кстати, вредных веществ дизель выбрасывает меньше, чем бензиновый двигатель. Но, катализаторы, установленные на инжекторных автомобилях, нивелируют разницу.
  • — дизельное топливо при низких температурах часто застывает и парафинируется, что может означать одно: дизель труднее завести зимой.
  • — современные дизельные двигатели чаще всего идут в комплекте с турбинами и интеркуллерами.
Рекорды дизеля

В 2006 году автомобиль JCB Dieselmax, оснащенный дизельными двигателями развил скорость в 563 километра в час. Каждый из дизелей имел объем 5 литров и мощность 750 лошадиных сил.э

Самым большим дизельным двигателем является 14-ти цилиндровый судовой Wärtsilä-Sulzer RTA96-C, рабочий объем которого более 25 литров, мощностью 108920 лошадиных сил.

Wärtsilä-Sulzer RTA96-C

Самый мощный «грузовой» дизель MTU 20V4000 устанавливается на карьерные самосвалы «Либхерр». Он имеет конфигурацию V20, объем – 95,4 литра и мощность 4023 лошадиных силы.

Самый большой «легковой» дизель устанавливается на Ауди Кью 7. Его рабочий объем – 6 литров, он имеет V-образную форму и 12 цилиндров. Мощность двигателя – 500 лошадиных сил.

Газовый двигатель

В газовом двигателе в качестве топлива используются углеводороды. Он тоже относится к ДВС.

Газовое топливо, как правило, закачивается в баллон, установленный на автомобиле, под высоким давлением. Газовый редуктор понижает давление газовой жидкости или паров до атмосферного, через форсунки смесь впрыскивается в двигатель, где воспламеняется при помощи искры.

Комбинированные ДВС

Данный тип двигателя называется так потому, что он представляет собой комбинацию поршневого и лопаточного устройств.

Наиболее распространен среди комбинированных – поршневой двигатель с турбонагнетателем. Принцип действия такой: в результате действия выхлопных газов на лопатки турбины раскручивается её ротор, вал, а также ротор компрессора, нагнетающего кислород в двигатель. Таким образом, энергия выхлопных газов, которая без турбонагнетателя не использовалась бы, нашла свое применение.

Дополнительные системы, необходимые для ДВС

Двигатель автомобиля сравнивают с человеческим сердцем. Сердце не может функционировать без взаимодействия с другими органами в организме. Так и двигателю для нормальной работы нужно несколько дополнительных систем.

Конечно же, большинство двигателей не может работать без трансмиссии, потому что эффективен ДВС только в узком диапазоне оборотов. Впрочем, сейчас активно ведутся разработки по созданию гибридных двигателей, которые всегда должны работать в оптимальном режиме.

Двигателю нужны система зажигания, выхлопа и охлаждения. О последней стоит поговорить более подробно.

Система охлаждения двигателя внутреннего сгорания

Система охлаждения представляет собой набор устройств, которые подводят к конкретным элементам двигателя охлаждающую среду, отводящую от них в атмосферу лишнюю теплоту. Система охлаждения двигателя имеет целью поддержание температуры двигателя в рабочих параметрах.

Когда в цилиндре сгорает топливная смесь, температура достигает 2000 градусов. Охлаждающая жидкость обязана поддерживать температуру двигателя в пределах 80-90 градусов.

Система охлаждения двигателя может быть воздушной, жидкостной и гибридной.

Воздушное охлаждение

Воздушное охлаждение – самое простое из типов охлаждения двигателя. Оно может быть естественным и принудительным. Оно осуществляется путем установки развитого оребрения на внешней поверхности цилиндров. Такое охлаждение имеет значительные недостатки. Так воздух не может отводить значительные массы тепловой энергии. А некоторые участки двигателя подвергаются опасности локального перегрева. Воздушное охлаждение устанавливается на мопеды, мотоциклы, скутеры.

Принудительное воздушное охлаждение осуществляется путем установки вентиляторов, оребрения и помещения системы в защитный кожух. Здесь также существует опасность локального перегрева участков двигателя, которые недостаточно обдуваются воздухом. Кроме того, повышается уровень шума агрегата. В Советском союзе системой воздушного охлаждения был оснащен автомобиль Запорожец.

Дизельный грузовой автомобиль Татра до 2010 года оснащался системой принудительного воздушного охлаждения. Многие трактора, преимущественно легкие и средние используют аналогичную систему охлаждения.

Двигатель Lombardini 11LD 626-3NR — 4-х тактный трёхцилиндровый дизельный двигатель с горизонтальным расположением вала отбора мощности и воздушным охлаждением.

Жидкостное охлаждение

В данном типе систем охлаждения двигателей охлаждающая жидкость перемещается по замкнутому контуру. А тепло выдувается при помощи радиатора, установленного под капотом авто.

Жидкостная система охлаждения предусматривает следующие составные части:

  1. Рубашка охлаждения – полость, которая охватывает части двигателя нуждающиеся в охлаждении. По этой полости циркулирует охлаждающая жидкость.
  2. Помпа, которая обеспечивает циркуляцию жидкости по контуру.
  3. Термостат – устройство поддерживающее рабочую температуру жидкости. Если температура не достигла рабочей, то термостат направляет жидкость по малому кругу циркуляции.
  4. Радиатор. Он выводит тепло из системы.
  5. Вентилятор, создающий поток воздуха, направленный на радиатор для ускорения вывода тепла из системы.
  6. Расширительный бак.

Охлаждение масла

Очень часто, особенно в случаях с двигателями большой мощности, нуждается в охлаждении и масло. Масло охлаждается при помощи охлаждающей жидкости, или же при помощи воздуха, с использование отдельного радиатора.

Испарительная система охлаждения

При такой системе охлаждения охлаждающая жидкость или вода доводятся до кипения, в результате чего теплонагруженные элементы двигателя охлаждаются. Испарительная система охлаждения до сих пор применяется для понижения температуры мощных дизельных агрегатов в Китае.

История создания

Известно, что в 1807 году француз де Ривас сконструировал первый поршневой двигатель. Несмотря на то, что устройство, которое получило название «машина де Риваса», работала на сжиженном водороде, оно имело ряд признаков двигателя внутреннего сгорания. В частности, шатунно-поршневую группу, зажигание с искрой. Француз Ленуар в 1860 году сконструировал двухтактный газовый двигатель внутреннего сгорания. Мощность этого устройства составляла около 12 лошадиных сил, искра подавалась от внешнего источника, а коэффициент полезного действия не превышал 5 процентов. Между тем, двигатель Ленуара имел практическое применение. Его устанавливали некоторое время на лодки.

Немец Отто, изучив устройство Ленуара, построил в 1863 году атмосферный двухтактный одноцилиндровый двигатель, который имел КПД уже 15 процентов. При этом, топливо воспламенялось при помощи открытого пламени. В 1876 году все тот же Отто построил четырехтактный газовый ДВС.

А вот первый карбюраторный двигатель внутреннего сгорания был сконструирован в России в 1880-х годах. Его создателем стал О.С. Костович.

В 1885 году Даймлер и Майбах создали карбюраторный бензиновый двигатель. Сдела двигатель был для мотоцикла. Но в 1886 году его установили на автомобиль.

В 1897 году Дизель усовершенствовал двигатель Даймлера-Майбаха, оснастив его зажиганием. Через год в России на заводе «Людвиг Нобель» Г. Тлинкер доработал двигатель Дизеля, превратив его в двигатель высокого сжатия с воспламенением. Но широкое применение данный двигатель получил не как силовой агрегат автомобиля, а как стационарный тепловой двигатель. Мощность устройства составляла около 20 лошадиных сил. Главным его преимуществом была экономичность.

В начале 20-го века Коломенский завод выкупил у «Людвиг Нобель» лицензию на выпуск «русских дизелей». В 1908 году главный инженер этого завода патентует двухтактный дизельный двигатель с двумя коленвалами и противоположно-движущимися поршнями.

Параллельно происходила разработка бензиновых двигателей. В США изобретатели Харт и Парр разработали двухцилиндровый бензиновый двигатель. Он имел мощность в 30 лошадиных сил.

Так наступила эра автомобилей, самолетов, теплоходов и тепловозов. Королем в этой эре выбрали двигатель внутреннего сгорания.

АЛГОРИТМ АДАПТИВНОГО УПРАВЛЕНИЯ КРУТЯЩИМ МОМЕНТОМ ИНЖЕКТОРНОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Ключевые слова: адаптивное управление, нелинейная система, инжекторный двигатель, крутящий момент двигателя.

Благодарности. Работа выполнена при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01) и поддержке Министерства образования и науки Российской Федерации (проект 14.Z50.31.0031)

Список литературы

1. Двигатели внутреннего сгорания. Кн. 1. Теория рабочих процессов / Под ред. В.Н. Луканина, М.Г. Шатрова. М.: Высшая школа, 2005. 479 с.

2. Герасимов Д.Н., Джавахериан Х., Ефимов Д.В., Никифоров В.О. Инжекторный двигатель как объект управления: I. Схема двигателя и синтез математической модели // Известия РАН. Теория и системы управления. 2010. № 5. С. 135–147.

3. Stefanopoulou A.G., Grizzle J.W., Freudenberg J.S. Engine air-fuel ratio and torque control using secondary throttles // Proc. of IEEE Conf. on Decision and Control. 1994. V. 3. P. 2748–2753.

4. Jankovic M., Frischmuth F., Stefanopoulou A., Cook J.A. Torque management of engines with variable cam timing // IEEE Control Systems Magazine. 1998. V.18. N 5. P. 34–42. doi: 10.1109/37.722251

5. Jankovic M., Magner M., Hsieh S., Koncsol J. Transient effects and torque control of engines with variable cam timing // Proceedings of the American Control Conference. 2000. V. 1. P. 50–54.

6. Karnik A.Y., Buckland J.H., Freudenberg J.S. Electronic throttle and wastegate control for turbocharged gasoline engines // Proceedings of the American Control Conference. 2005. V. 7. P. 4434–4439.

7. Ali A., Blath J.P. Nonlinear torque control of a spark-ignited engine // Proceedings of the American Control Conference. 2006. P. 3266–3271.

8. Ali A., Blath J.P. Application of modern techniques to SI-engine torque control // Proc. of the IEEE International Conf. on Control Applications. Munich, Germany, 2006. P. 2405–2410. doi: 10.1109/CACSD-CCAISIC. 2006.4777017

9. Hong M., Ouyang M., Shen T., Li J. Model-based PI feedback control of engine torque // IEEE International Conference on Control and Automation. Xiamen, China, 2010. P. 12–15. doi: 10.1109/ICCA.2010.5524184

10. Kolmanovsky I.V., Druzhinina M., Sun J. Speed-gradient approach to torque and air-to-fuel ratio control in DISC engines // IEEE Transactions on Control Systems Technology. 2002. V. 10. N 5. P. 671–678. doi:

10.1109/TCST.2002.801803

11. Hong M., Shen T., Ouyang M. Nonlinear observer-based torque control for SI engine // Proc. ICROS-SICE International Joint Conference. Fukuoka, Japan, 2009. P. 4114–4119.

12. Vermillion C., Butts K., Reidy K. Model predictive engine torque control with real-time driver-in-the-loop simulation results // Proceedings of the 2010 American Control Conference. Baltimore, USA, 2010. P.1459– 1464.

13. Sakai Y., Kanai M., Yamakita M. Torque demand control by nonlinear MPC with constraints for vehicles with variable valve lift engine // Proceedings of the IEEE International Conference on Control Applications. Yokohama, Japan, 2010. P. 1642–1647. doi: 10.1109/CCA.2010.5611240

14. Javaherian H., Liu D., Kovalenko O. Automotive engine torque and air-fuel ratio control using dual heuristic dynamic programming // IEEE International Conference on Neural Networks. Vankuver, Canada, 2006. Art. 1716137. P. 518–525.

15. Zweiri Y.H., Seneviratne L.D. Diesel engine indicated torque estimation based on artificial neural networks // Proc. IEEE/ACS Int. Conf. on Computer Systems and Application (AICCSA 2007). Amman, Jordan, 2007. Art. 4231051. P. 791–798. doi: 10.1109/AICCSA.2007.370723

16. Huang K., Wang S., Jin Z., Jiang D. Feedforward method of engine torque estimation // IEEE International Conference on Vehicular Electronics and Safety (ICVES). Shanghai, China, 2006. P. 246–249. doi: 10.1109/ICVES.2006.371592

17. Nagata T., Tomizuka M. Robust engine torque control by iterative learning control // Proceedings of the American Control Conference. 2009. P. 2064–2069. doi: 10.1109/ACC.2009.5159841

18. Колюбин С.А., Ефимов Д.В., Никифоров В.О., Бобцов А.А. Двухканальное адаптивное гибридное управление соотношением воздух-топливо и крутящим моментом автомобильных двигателей // Автоматика и телемеханика. 2012. № 11. С. 42–59.

19. Герасимов Д.Н., Колюбин С.А., Никифоров В.О Адаптивное управление соотношением воздух- топливо и крутящим моментом в инжекторных двигателях внутреннего сгорания // Научно-технический вестник СПбГУ ИТМО. 2009. № 1 (59). С. 14–21.

20. Герасимов Д.Н., Джавахериан Х., Ефимов Д.В., Никифоров В.О. Инжекторный двигатель как объект управления. Часть II: Задачи автоматического управления двигателем // Известия РАН. Теория и сис- темы управления. 2010. № 6. С. 170–181.

21. Герасимов Д.Н., Никифоров В.О. Адаптивное управление крутящим моментом в инжекторных двига- телях внутреннего сгорания // Мехатроника, автоматизация, управление. 2013. № 3. С. 47–55.

22. Герасимов Д.Н., Никифоров В.О., Парамонов А.В., Серов Д.С. Адаптивное управление крутящим моментом в инжекторных двигателях с переменными фазами газораспределения // Изв. вузов. Прибо- ростроение. 2014. Т. 57. № 12. С. 28–33.

23. Никифоров В.О., Герасимов Д.H. Адаптивный регулятор стабилизации простой структуры // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 5 (81). С. 48–52.

24. Gerasimov D.N., Nikiforov V.O. Simple adaptive output control of linear systems // Proc. IEEE Int. Conf. on Intelligent Control (ISIC 2014). Juan Les Pins, France, 2014. P. 566–571. doi: 10.1109/ISIC.2014.6967606

25. Ginoux S., Champoussin J. Engine torque determination by crankangle measurements: state of the art, future prospects // SAE Technical Paper. 1997. Report 970532. doi: 10.4271/970532

26. Park S., Sunwoo M. Torque estimation of spark ignition engines via cylinder pressure measurement // Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2003. V. 217. N 9. P. 809−817.

Что означает прямой впрыск топлива?

Direct Fuel Injection - это не что иное, как инжектор, подающий топливо непосредственно в цилиндр двигателя внутреннего сгорания. Это относительно новый концепт , который впервые появился в середине 90-х годов в дизельных двигателях, но в последнее время получил широкое распространение в бензиновых двигателях. Возможность подачи топлива непосредственно в цилиндр позволяет снизить выбросы, снизить температуру головки блока цилиндров, увеличить мощность и улучшить экономию топлива.Скорее всего, если вашему автомобилю всего несколько лет, он оснащен двигателем с прямым впрыском.

Желтый компонент на этих фотографиях - топливные форсунки

Традиционный метод подачи топлива представлял собой впрыск топлива через порты, при котором топливные форсунки помещались во впускные каналы и распылялось топливо через заднюю часть клапанов перед подачей в цилиндр. Это было стандартом с тех пор, как был введен впрыск топлива, заменивший карбюраторы в начале 90-х годов. Так зачем же производителям переходить с впрыска через порт на прямой впрыск? Прямой впрыск обеспечивает больший контроль во время процесса подачи топлива за счет распыления распыляемого топлива в цилиндре, обеспечивая лучшее распределение топлива по камере сгорания и позволяя реализовать расширенные протоколы управления двигателем, такие как Variable Valve Timing.

Хотя на бумаге прямой впрыск звучит прекрасно, у него есть некоторые недостатки. Наиболее распространенная проблема, связанная с прямым впрыском, - это агрессивное количество углерода, которое накапливается во впускных каналах и на задней части клапанов. Ранее мы упоминали, что предшествующим методом подачи топлива был впрыск через каналы, при котором топливо распылялось во впускных каналах, а затем поступало в цилиндры. В системах подачи топлива этого поколения не наблюдалось такого большого накопления углерода, потому что моющие средства в бензине помогали поддерживать эти отверстия и клапаны в чистоте.

Углерод, скопившийся на задней части этих впускных клапанов

Другая проблема с прямым впрыском заключается в том, что тонко распыленное топливо не любит более низких температур сгорания, поэтому производительность и эффективность сильно снижаются, пока двигатель не достигнет идеальной рабочей температуры. Последний недостаток - сложность, которую эти системы добавляют к производственному движку. Для прямого впрыска требуется дополнительный топливный насос высокого давления, а также более мощные форсунки большего размера.Дополнительный топливный насос - это еще одна потенциальная точка отказа, когда дело касается топливной системы. Замена форсунок для тяжелых условий эксплуатации также может быть немного дороже, чем замена стандартных.

При всем вышесказанном, транспортная отрасль - это игра в числа, которая вращается вокруг выбросов и топливной экономичности, поэтому есть несколько автомобильных компаний, которые начали производить двигатели как с портовым, так и с топливным впрыском. Эти двигатели сочетают в себе оба метода подачи топлива и позволяют еще больше настраивать двигатель, охлаждение, эффективность и выбросы.Впрыск через порт помогает свести накопление углерода к минимуму. Инъекция через порт также поможет при холодном пуске и последующих периодах прогрева. Эти механизмы обеспечат лучшее из обоих миров для преимуществ каждого метода доставки; единственное предполагаемое падение - это потенциальные точки отказа, добавленные к топливной системе.

Хотя идеальной конструкции двигателя не существует, достоинства двигателя с прямым впрыском намного перевешивают недостатки, поэтому не торопитесь обменивать свой автомобиль на автомобиль с впрыском в порт или с двойным впрыском.Есть еще кое-что, что вы можете сделать в краткосрочной перспективе, чтобы избежать некоторых долгосрочных головных болей, связанных с двигателем с прямым впрыском. Первый - использовать полностью синтетическое (не обычное или полусинтетическое) моторное масло в двигателе. Полностью синтетические масла сопротивляются разрушению и с меньшей вероятностью испаряются в картере двигателя - это испарение приведет к тому, что больше масла пройдет через систему выбросов и попадет во впускные отверстия в виде углерода. Другой мерой было бы запускать специализированный сервисный комплект для индукционного впрыска с прямым впрыском через ваш двигатель каждые 16 месяцев или 20 000 миль.Наша услуга индукции прямого впрыска (это полный рот), которую мы выбрали в Auto Stop, - это многогранный комплект BG. Первая часть набора состоит из распыления раствора для чистки портов в мелкий туман и его пропускания через верхнюю часть приемного отверстия транспортного средства в течение 45 минут. Следующая часть включает в себя очистку дроссельной заслонки на корпусе дроссельной заслонки от мусора или загрязнений. Наконец, в комплект входит моющее средство, которое покрывает топливный бак и очищает кончики форсунок во время нормального вождения.

Многие из этих нововведений в области выбросов хорошо звучат в теории и на бумаге, но после тысяч и тысяч миль эти высокотехнологичные двигатели могут оказаться менее прощающими, когда дело доходит до технического обслуживания. При ненадлежащем обслуживании эти механизмы могут, по иронии судьбы, препятствовать тому, для чего они были разработаны, - топливной эффективности, мощности и снижению выбросов. Если у вас есть какие-либо вопросы относительно обслуживания вашего двигателя прямого впрыска, не стесняйтесь обращаться к одному из наших опытных консультантов по обслуживанию в Арлингтоне или Фолс-Черч.Мы обслуживаем все марки и модели автомобилей с прямым впрыском и соблюдаем рекомендуемые производителем интервалы обслуживания.

Что такое двигатели с прямым впрыском?

Возможно, вы заметили, что некоторые производители рекламируют двигатели в своих новых автомобилях как более экономичные благодаря технологии прямого впрыска. Поскольку использование такой технологии становится стандартом в автомобильной промышленности, начинающим автомобильным техникам важно понимать, как работает технология прямого впрыска.

Определение прямого впрыска

Прямой впрыск включает технологию подачи топлива, которая оптимизирует бензиновые двигатели и позволяет им сжигать больше топлива более эффективно. В свою очередь, это улучшает экономию топлива двигателем и делает его более мощным.

Как это работает

Двигатель с прямым впрыском имеет отдельные коллекторы для воздуха и бензина. Двигатели нуждаются в этих двух областях для эффективной работы, а технология прямого впрыска разделяет их на впускной коллектор и бензиновый цилиндр.

Вместо того, чтобы разделять бензин и воздух на два разных воздухозаборника, обычные двигатели с впрыском объединяют их и сжимают поршнем. Газ и воздух предварительно смешиваются во впускном коллекторе, который находится сразу за цилиндром двигателя. Затем искра воспламеняет эту смесь, что приводит к взрыву, который толкает поршень вниз и производит мощность, которая затем передается в двигатель.

Основное различие между двигателями с обычным и прямым впрыском заключается в том, что вместо предварительного смешивания бензина и воздуха двигатель с прямым впрыском разделяет их.

Преимущества прямого впрыска

Двигатели, использующие метод прямого впрыска, будут лучше контролировать расход топлива. Эта технология использует компьютер для отслеживания точного количества топлива, которое необходимо впрыснуть в ваш двигатель, и когда именно это необходимо для достижения оптимальной эффективности. Форсунка расположена в идеальном месте вашего двигателя, что приводит к идеальной форме распыления бензина, которая разбивает газ на мелкие капли. Эти более мелкие капли сгорают и могут генерировать больше энергии и меньше вредных выбросов топлива.

Недостатки прямого впрыска

Двигатель с прямым впрыском является более совершенным по сравнению с двигателем с обычным впрыском. Это требует сложного ремонта и дорогостоящего монтажа. Поскольку дополнительные детали двигателя с прямым впрыском увеличивают расход топлива при значительно более высоком давлении, чем двигатели с обычным впрыском, они должны выдерживать давление и дополнительное тепло. Это вызывает необходимость в более дорогих и современных деталях и установке.

Хотя двигатели с прямым впрыском могут быть немного дорогими и сложными, нельзя отрицать, что эта технология приносит пользу как транспортным средствам, в которых они есть, так и окружающей среде.

Поскольку использование технологии прямого впрыска в автомобильных двигателях дает значительный положительный эффект, в ближайшем будущем они обязательно будут использоваться во все большем количестве автомобилей. Это означает, что автомобильные техники, которые знают, как работают эти двигатели и как их ремонтировать, будут востребованы. Начинающие автомобильные техники должны стремиться узнать как можно больше об этих двигателях.

Если вам нужна дополнительная информация о будущем двигателей, вы можете загрузить бесплатную электронную книгу Automotive Training Center: Clean Diesel: A New Model Comparison Study .

Что делает впрыск топлива?

Держим машину в дороге

В этой статье мы будем говорить про это применительно к автомобильным двигателям и как. Чтобы двигатель работал эффективно и плавно, необходимо обеспечить правильную смесь воздуха и топлива и автоматически адаптируется к диапазону требований двигателя.Это может быть карбюратором или системой впрыска топлива.

В то время как автомобиль отечественного производства обычно работает на карбюраторной системе. В этом сценарии есть поплавковая камера с резервуаром. С системой впрыска топлива топливная форсунка подает жидкое топливо во всасываемый воздух и зависит от подачи топлива непрерывно. Система впрыска топлива - это подача топлива в двигатель внутреннего сгорания с помощью инжектора. Мы используем впрыск топлива во всех дизельных двигателях, таких как 18-колесные и немецкие автомобили, иначе говоря, впрыск топлива - это по сути карбюратор.

Как работают системы впрыска топлива?

В системе впрыска топлива есть специальный насос, подает топливо под давлением в двигатель из топливного бака. В топливо находится под давлением и распределяется по каждому цилиндру индивидуально. В зависимости от конкретной системы он подает топливо во впускной коллектор. или входной порт с помощью инжектора.

Работает почти так же, как водяной шланг и форсунка, но с топливом вместо воды.Система впрыска топлива гарантирует, что топливо представляет собой мелкий туман, а не порыв топлива. Затем топливо и воздух смешиваются, когда воздух проходит через впускной коллектор, и затем смесь перемещается в камеру сгорания .

Нужен ли впрыск топлива?

Для двигателя, который спроектирован и настроить на основе системы впрыска топлива, да, впрыск топлива необходим. Если форсунки не работают должным образом, автомобиль не вращается, или иногда вообще не запускается.

Поэтому рекомендуется частое обслуживание уполномоченным опытным механиком по системе впрыска топлива. Единственным исключением из этого правила является то, что автомобиль работает идеально без проблем, таких как резкий холостой ход, торможение, плохое ускорение или высокий уровень выбросов. Если он не сломан, не связывайтесь с ним! Тем не менее, вы должны следовать рекомендациям дилера и производителя для проверки опытным механиком или дилером.

Впрыск топлива лучше карбюраторного?

Для автолюбителей споры между впрыском топлива или карбюратором, что лучше, являются извечными спорами, как и споры о том, что было раньше, курица или яйцо.Есть автолюбители «старой школы», которые считают, что карбюраторный двигатель работает лучше, чем система впрыска топлива. Точно так же есть автолюбители, которые либо изменились со временем, либо родились в мире с системой впрыска топлива, чтобы полагать, что система впрыска топлива - лучший выбор.

В чем преимущество впрыска топлива?

Существует множество преимуществ системы впрыска топлива, некоторые из которых изменили образ мышления автолюбителей «старой школы», отдавая должное системе впрыска топлива.Вот некоторые из этих преимуществ:

Меньше расход топлива

Топливо система впрыска требует меньшего расхода топлива, чем двигатель, который карбюраторный из-за «новой школы», известной как изощренность электронная система, которая контролирует соотношение воздух / топливо и регулирует его автоматически для поддержания оптимальных условий.

Превосходный запуск

Главное преимущество впрыска топлива системы - это их способность запускаться легче независимо от погоды или горячий.

Мощный

Поскольку впрыск топлива с управлением коробкой передач, двигатели с системой впрыска топлива обычно обеспечивают более высокую мощность и крутящий момент, чем карбюраторный двигатель, поскольку он может оптимизировать соотношение воздух-топливо и момент зажигания.

Повышенная надежность

Двигатели с системой впрыска топлива существенно надежнее карбюраторного двигателя. Система впрыска топлива есть менее подвержен обледенению и таким проблемам, как случайная остановка двигателя, смазка пропитанные свечи зажигания, и это устраняет другие проблемы, характерные для карбюраторных двигатели.

Какие признаки неисправной топливной форсунки?

Ниже приведены индикаторы, которые мы должен иметь автомобиль с топливом система впрыска проверена опытным механиком:

  • Проблемы с запуском
  • Неровные холостые обороты
  • Тесты на выбросы не пройдены
  • Плохая производительность на дороге
  • Двигатель не достигает полных оборотов в минуту
  • Используется больше топлива, чем обычно
  • Бакены и скачки при различных нагрузках на дроссель
  • Выхлоп выходит дым, создающий загрязнение
  • Стук в двигателе

Независимо от того, предпочитает ли автолюбитель карбюраторная система или система впрыска топлива, система впрыска топлива захватила мир автомобилестроения.Только передний привод заменил задний привод, который автолюбители «старой школы» предпочитают задний, потому что у автомобиля больше мощности «вставай и езжай».

В мире автогонок, где раньше не было ничего, кроме карбюраторной системы и заднего привода на трассе, новые автомобили постепенно проникли в систему. Хотя кузов автомобиля может выглядеть одинаково, то, что находится под капотом и под задней частью, определенно изменилось. По вопросам ремонта топливной форсунки в Атаскадеро, Калифорния, звоните сегодня по телефону (805) 466-3236.

Почему в некоторых двигателях используется прямой впрыск и впрыск через порт

В каждом новом автомобиле, продаваемом сегодня в США, используется впрыск топлива, но не все системы впрыска одинаковы. В некоторых автомобилях используется впрыск через порт, в других - прямой впрыск. Некоторые даже используют и то, и другое. Какая в этом польза? Джейсон Фенске из Engineering Explained разбирает это в сопроводительном видео.

Впрыск топлива - это более точный способ подачи топлива в цилиндры, чем его предшественник, карбюратор.Он получил широкое распространение в 1980-х годах благодаря развитию электронного управления. Портовый впрыск - впрыск топлива во впускной канал - был по умолчанию с того времени и до конца века.

Прямой впрыск впервые был использован в самолетах, а механическая версия использовалась в 1950-х годах на Mercedes-Benz 300SL. Но эта технология не получила широкого распространения до 2000-х годов, когда более строгие стандарты экономии топлива вынудили автопроизводителей искать новые способы повышения эффективности.EcoBoost от Ford и SkyActiv от Mazda - лишь несколько примеров семейств двигателей, в которых используется прямой впрыск. Как следует из названия, прямой впрыск включает впрыск топлива непосредственно в камеру сгорания цилиндра, и это делается при гораздо более высоком давлении, чем впрыск через порт.

Совсем недавно автопроизводители начали комбинировать две системы впрыска топлива. Toyota, например, использует свою систему D-4S на пикапе Tacoma и спорткаре 86.

Эти системы, как правило, используют впрыск через порт при более низких нагрузках и оборотах двигателя и прямой впрыск при более высоких оборотах, говорит Фенске.Но он отмечает, что это зависит от автопроизводителя.

Портовый впрыск обеспечивает более стабильную воздушно-топливную смесь при более низких оборотах двигателя, что приводит к более плавной работе при запуске. На более высоких оборотах прямой впрыск обеспечивает больший охлаждающий эффект, увеличивая мощность и снижая вероятность детонации.

Toyota D-4S работает в «стратифицированном» режиме, ориентированном на эффективность, и в «однородном» режиме для большей мощности. В стратифицированном режиме в основном используется впрыск через порт для создания различных топливно-воздушных смесей, в том числе обедненных смесей для быстрого нагрева двигателя и каталитических нейтрализаторов до рабочей температуры.

В гомогенном режиме всегда используется одна и та же более богатая топливно-воздушная смесь с использованием как прямой, так и портовой форсунок.

Уменьшение нагара - еще одна причина использовать оба типа впрыска. Исследования показали, что двигатели с прямым впрыском топлива, как правило, более склонны к образованию нагара, чем двигатели с прямым впрыском, особенно на впускных клапанах. Добавляя впрыск через порт, топливо может смыть эти клапаны, чтобы уменьшить нагар.

Чтобы узнать больше, нажмите на видео выше.

Общие сведения о прямом и портовом впрыске в двигателях - техническое обслуживание

Совершенно новые бензиновые двигатели объемом 6,6 л для Chevrolet Silverado HD оснащены технологией непосредственного впрыска.

Фото: General Motors

Грузовые двигатели немного изменились с тех пор, как появились первые автомобили, но основная предпосылка для бензиновых двигателей та же самая: вам нужно топливо, кислород и искра, чтобы заставить их работать. На основном уровне топливо доставляется путем впрыскивания его посредством рассчитанного выброса тонкой струи в камеру сгорания двигателя.

Первоначально способ смешивания топлива с воздухом был через карбюратор, запатентованный в 1872 году. С обновлением потребностей в каталитических нейтрализаторах карбюраторы перестали быть эффективными. Сегодня мы используем впрыск топлива, и есть два основных способа заставить эту смесь образоваться в двигателе внутреннего сгорания - прямой впрыск или впрыск в порт.

Fleet 101 с Work Truck : Прямое и портовое впрыскивание

Прямое впрыскивание существует уже довольно давно и используется в истребителях во время Второй мировой войны.Это метод подачи топлива, при котором топливо впрыскивается непосредственно в камеру сгорания.

«При непосредственном впрыске топливо распыляется за счет экстремального давления, используемого для его впрыска - до 2200 фунтов на квадратный дюйм (psi) в совершенно новых 6,6-литровых газовых двигателях V-8, предлагаемых на Chevrolet Silverado HD 2020 года. - объяснил Майк Кочиба, помощник главного инженера по двигателям Small Block компании General Motors.

Портовый впрыск топлива применяется с 1980-х годов и означает, что топливо подается в двигатель непосредственно во впускной коллектор или головку блока цилиндров.Топливо распыляется на клапан, который затем использует тепло клапана для дальнейшего распыления топлива.

«Обе системы ориентированы на распыление топлива для более эффективного сгорания топлива. Разница в том, как они распыляют топливо: при прямом впрыске используется очень высокое давление, и оно распыляется непосредственно в область свечи зажигания для воспламенения. Портовый впрыск топлива использует тепло от клапанов для распыления топлива перед попаданием в цилиндр при открытии клапана », - сказал Коциба.

Самым значительным преимуществом прямого впрыска является то, что он нагнетает более холодную воздушно-газовую смесь в цилиндр.У этого снижения тепла есть два преимущества.

«Во-первых, он обеспечивает более высокую степень сжатия, что обеспечивает более высокую производительность и эффективность. Во-вторых, это обеспечивает лучшую производительность двигателя при холодном пуске, что особенно важно в холодном северном климате », - отметил Кочиба.

Самым большим преимуществом порта впрыска топлива является то, что он естественным образом очищает клапаны при каждой струе топлива.

«Для двигателей с прямым впрыском мы разработали сложные системы, предотвращающие скопление клапанов, в том числе систему принудительной вентиляции картера, которая помогает предотвратить отложение масла на клапанах», - добавил он.

Одним из недостатков порта впрыска является то, что топливо может образовывать лужу и поглощаться окружающими областями, что затрудняет контроль.

General Motors использует прямой впрыск в своих двигателях более десяти лет.

«GM выбрала прямой впрыск, потому что он обеспечивает впечатляющий уровень производительности, эффективности и долговечности. Мы применили весь опыт, накопленный нами в течение нескольких поколений при разработке конструкций с прямым впрыском, в совершенно новых 6,6-литровых бензиновых двигателях Silverado HD », - заключил Кочиба.

Примечание редактора: изображение обновлено 02.12.19

Система впрыска топлива

- обзор

13.3.4 Впрыск топлива с пневмоприводом

Системы впрыска топлива незаменимы при усовершенствовании двухтактных двигателей с целью повышения их преимуществ в автомобильных двигателях. Имеется множество отчетов о разработках инжекторов [35–42], но очень немногие содержат достаточную информацию, относящуюся к подробным характеристикам распыляемых капель.Системы распыления и впрыска были тщательно исследованы, особенно в дизельных двигателях. Двухтактный двигатель включает в себя сложные процессы, такие как процесс продувки, циклическое изменение и пропуски зажигания, которые тесно связаны с распространением и отражением волны давления. Хотя процесс продувки был ключевой особенностью при разработке двухтактных двигателей [20,22–24,43–46], имеется очень мало экспериментальных данных, объясняющих взаимосвязь между испарением аэрозоля бензина, образованием смеси и продувкой. процесс [47–54].

Для небольших двухтактных двигателей прямой впрыск топлива рассматривается как способ решения проблем неполного сгорания и чрезмерной концентрации углеводородов в выхлопных газах. В частности, пневматический впрыск топлива был разработан как мощный инструмент для создания более горючей топливно-воздушной смеси при обедненных условиях сгорания. Пневматический впрыск использует сжатый воздух для распыления топлива в форсунке и улучшения проникновения мелких капель. В мире появилось много различных типов инжекторных механизмов.В формировании струи инжектора с подачей воздуха преобладает вспомогательный воздушный поток, поэтому следует понимать процесс диспергирования капель и их распыление, а также динамику капель.

Инструменты лазерной диагностики, такие как лазерный лист [55], эксиплекс [56] и LDV [14], могут предоставить информацию, касающуюся угла распыления, формы распыления, проникновения, области паров и т. Д., Но подробную информацию о распылении, такую ​​как капля Распределение диаметра и его скорости в двумерной плоскости пока не получено.Техника визуализации может предоставить достаточную пространственную, но очень скудную временную информацию о характеристиках распыления. Фазовый доплеровский анемометр (КПК) может измерять диаметр капли и ее скорость с очень высоким пространственным и временным разрешением, но это метод измерения по одной точке. Для определения двумерного изображения аэрозоля с подробными характеристиками капель требуется альтернативный метод.

В этом разделе доказана полезность среднего диаметра по Заутеру (SMD) [57,58] в периодическом инжекторе, и реализованы классы размеров капель, чтобы лучше понять передачу импульса между жидкой и газовой фазами.

Пневматическая форсунка, использованная в этом эксперименте, была коммерческой форсункой для двухтактного морского двигателя мощностью более 22 кВт (30 л.с.) на цилиндр, как показано на рисунке 13.21. Топливо сначала впрыскивается в полость, и воздушный инжектор приводится в действие путем открытия тарельчатого клапана. Соотношение воздух-топливо можно контролировать, изменяя период открытия клапана, когда разница давлений между воздухом и топливом установлена ​​на определенном уровне. Перед клапаном форсунка имеет прямую трубку длиной 36 мм, в которой проводится предварительная атомизация.Топливо с пневмоприводом впрыскивается через тарельчатый клапан диаметром 5 мм.

Рис. 13.21. Инжектор с пневмоприводом.

(перепечатано с разрешения SAE)

В качестве топлива вместо бензина использовался сухой растворитель с показателем преломления 1,427. Удельная плотность сухого растворителя составляет 0,77 г / см 3 , что очень похоже на плотность бензина (0,7–0,8 г / см 3 ). Угол рассеяния 68 ° определялся углом преломления первого порядка [59]. Для векторных измерений использовался однокомпонентный LDV с изменением угла падения луча на ± 45 °.

Прямые фотографии впрыснутого спрея показаны [60] на рисунке 13.22. Понятно, что грибовидный вихрь вызывается напряжением сдвига на распылительной оболочке. Скорость распылительного наконечника, рассчитанная по этим изображениям, составляет около 64 м / с. Лист лазера YAG был использован для получения двумерного изображения аэрозоля, как показано на том же рисунке. Эти кадры представляют собой прямые снимки определенного цикла. Хорошо известно, что в этом типе инжектора с пневмоприводом бывают вариации от цикла к циклу. На рисунке также показаны два изображения в разных циклах в одно и то же время.Эти фотографии указывают на важность и необходимость анализа брызг с помощью двухмерного изображения с высоким временным разрешением, поскольку визуализация лазерного листа не может предоставить информацию об изменении во времени и информацию о диаметре. Одноточечные измерения не выявляют вариаций от цикла к циклу и вариаций пространственной структуры. Однако, используя одноточечное измерение с усредненными по ансамблю данными, можно продемонстрировать двухмерное изображение брызг с его пространственной структурой, как показано [61] на рисунке 13.23. Также показаны средний диаметр по Заутеру (SMD) и соответствующие векторы скорости.

Рис. 13.22. Изображения структуры впрыснутого спрея.

(перепечатано с разрешения SAE)

Рис. 13.23. Векторы скорости капель и SMD.

(перепечатано с разрешения SAE)

Пространственная дисперсия капель лучше всего объясняется с использованием плоских источников информации, таких как фотография или изображение лазерного листа. Метод КПК предоставляет одноточечную информацию, но метод усреднения по ансамблю с фазовой синхронизацией может продемонстрировать двумерное изображение, как показано на рисунке 13.23. Осесимметрия струи была проверена путем измерения в противоположных точках до r = –3 мм. На этом рисунке показано изменение SMD и его пространственная структура в зависимости от времени. Длина вектора была рассчитана как длина траектории капли в пределах 0,25 мс, а цвет представляет собой SMD. Максимальный размер SMD составлял 130 микрон.

Через 1,6 мс после сигнала впрыска, который использовался в качестве сигнала вспомогательного пневмопривода, на оси наблюдалась первая капля. Через 0,25 мс скорость распылительного наконечника достигла примерно 65 м / с, и наблюдалось рассеяние капель в радиальном направлении.Скорость распылительного наконечника 65 м / с была почти такой же, как и рассчитанная по изображению прямого распыления. Размер SMD на наконечнике распылителя составлял около 25 микрон. На центральной оси направление капель было параллельно оси, в то время как направление капель в области оболочки распылителя было более 45 градусов в радиальном направлении.

Через 2,3 мс скорость распылительного наконечника на оси увеличилась, и следующая капля из сопла образовала группу капель большего размера. Область, в которую проникают капли, напоминала зонтик.Мелкие и быстрые капли существовали до 2,8 мс. Через 2,8 мс скорость распылительного наконечника уменьшилась, а SMD увеличился вблизи центральной оси. Более крупные капли догоняли и сталкивались с более мелкими каплями, и, следовательно, диаметр начал увеличиваться. Капли брызг во внешней области имели более низкую скорость из-за сильных сдвиговых потоков, и тогда направление капель показывало волнистую структуру брызг. Очень большая капля красного цвета возле сопла образовалась за 2,875 мс, когда размер капли распылительного наконечника составлял 30 микрон.

Кроме того, капли брызг, находящиеся под влиянием турбулентного воздуха, имели тенденцию следовать за движением воздуха, но большие капли с высоким импульсом проникали в области с высокой турбулентностью потока, такие как области рециркуляционного потока. Тогда эту динамику капель нельзя было продемонстрировать только по среднему диаметру по Затеру, но для этого требуются другие передовые методы, такие как анализ с классификацией по размеру.

Четыре вектора скорости капли, классифицированные по размеру, показаны замороженными на 2,875 мс на рисунке 13.24. Ясно, что в областях малых капель образуется грибовидный вихрь, вызванный сдвиговым потоком.На наконечнике распылителя мелкие капли демонстрируют больший градиент скорости, чем более крупные капли. Векторы капель большего размера имеют более прямые и более узкие углы впрыска. В области оболочки распылителя нет капель размером более 30 мкм м.

Рис. 13.24. Динамика капель по размеру при 2,875 мс.

(перепечатано с разрешения SAE)

Угол распыления для каждого размерного класса и затухание количества движения необходимо количественно определить, чтобы понять процессы испарения и образование смеси.Профили движения воздуха и турбулентной энергоемкости показаны на рисунке 13.25. Большая область турбулентной энергии, показанная темной областью на рисунке, указывает на наличие области сильного сдвигового потока. В начале периода закачки большее пятно находится в центре оси. На следующем этапе в области оболочки распылителя появляется темная область. Вектор скорости скольжения показывает большой угол вектора в области сильного сдвига.

Рис. 13.25. Движение воздушного потока, турбулентная кинетическая энергия и скорость скольжения маленькой капли.

(перепечатано с разрешения SAE)

Характеристики распыления бензинового инжектора с пневмоприводом были исследованы с помощью фазовых доплеровских измерений. Краткое изложение вышеизложенных результатов следует.

Двумерное плоское изображение капель, классифицированных по размеру, использовалось для демонстрации пространственной структуры образования брызг. Было обнаружено, что средний диаметр по Заутеру не является лучшим представительным значением в области ускорения, и что метод классификации по размеру очень полезен для понимания подробных характеристик распыления.Скорость скольжения и относительное число Рейнольдса были реализованы, чтобы показать область передачи импульса из-за сильной силы сопротивления. Грибовидный вихрь образовывался сильным сдвиговым потоком на распылительной оболочке и состоял из маленьких капель размером от 10 до 20 мкм мкм. Возле сопла была обнаружена структура с двойным распылительным наконечником, которая быстро уменьшалась с увеличением расстояния. Капли размером более 30 мкм м проникли почти прямо вниз по течению. Было обнаружено, что эта анимация брызг может быть самым мощным инструментом в понимании процессов передачи импульса.

Портовый впрыск топлива - обзор

1 ВВЕДЕНИЕ

Поскольку стандарты экономии топлива и выбросов становятся более строгими, производители двигателей и транспортных средств должны постоянно совершенствовать доминирующую конструкцию бензинового двигателя с впрыском топлива (PFI), чтобы соответствовать этим требованиям. нормативно-правовые акты. К сожалению, впрыск топлива через порт ограничивает работу бензинового двигателя со стехиометрическим искровым зажиганием (SI). Это приводит к значительному снижению расхода топлива при работе с частичной нагрузкой из-за насосных потерь из-за дросселирования потока всасываемого воздуха.Это побудило производителей двигателей разрабатывать и внедрять двигатели GDI из-за его потенциала для повышения экономии топлива, главным образом за счет уменьшения размера двигателя и, возможно, послойного сжигания заряда или управляемого самовоспламенения (CAI) при работе с частичной нагрузкой.

Контролируемое самовоспламенение (CAI), также известное как воспламенение от сжатия однородного заряда (HCCI), может быть достигнуто с помощью гомогенной смеси в цилиндре, а самовоспламенение происходит в нескольких точках около ВМТ.Способность горения CAI заключается в сжигании сильно разбавленной или бедной смеси воздуха и топлива, потери при перекачке сводятся к минимуму, а выбросы NO x поддерживаются на сверхнизком уровне [1]. Хотя сгорание CAI / HCCI может быть достигнуто в бензиновых двигателях PFI, GDI предоставляет дополнительные средства контроля образования смеси и процесса сгорания CAI посредством гибкой синхронизации впрыска в цилиндр [2].

Уменьшение размеров двигателя снижает расход топлива транспортного средства за счет смещения рабочих точек двигателя внутреннего сгорания в наиболее эффективную область при высокой нагрузке за счет использования двигателя меньшего размера.Чтобы поддерживать рабочие характеристики транспортного средства, уменьшенный двигатель обычно приводится в действие турбонаддувом и / или суперзарядным устройством, и двигатель продолжает работать в 4-тактном цикле. Прямой впрыск часто используется, чтобы воспользоваться его эффектом охлаждения заряда для операций с высокой степенью сжатия без детонационного сгорания. Кроме того, в целях достижения значительно уменьшенных размеров двигателя с превосходными характеристиками, как член консорциума, Университет Брунеля работал с Ricardo UK над разработкой технологий двигателей с переключением 2/4 такта в течение последних нескольких лет [3].

Между тем истощение запасов ископаемого топлива и растущее загрязнение окружающей среды, вызванное сжиганием ископаемого топлива, открыли путь для диверсификации топлива. Более чистое и возобновляемое топливо внедряется во всем мире. Использование этанола в качестве альтернативного транспортного топлива перспективно по нескольким причинам. Хотя этанол можно производить из нескольких типов биомассы, он обладает такими свойствами, как высокое октановое число, более высокое содержание кислорода и высокая теплота испарения, что делает его наиболее привлекательным альтернативным топливом, в частности, для бензиновых двигателей с прямым впрыском [3, 4].

Однако из-за ограниченного времени, доступного для полного испарения топлива и смешивания топливно-воздушной смеси в бензиновом двигателе с непосредственным впрыском, в процессе сгорания может присутствовать локально богатая топливом смесь или даже жидкое топливо. Это приводит к значительному увеличению выбросов твердых частиц (ТЧ) из бензиновых двигателей с прямым впрыском по сравнению с обычными бензиновыми двигателями с впрыском топлива. С расширением внедрения двигателей GDI выбросы ТЧ стали источником беспокойства для производителей двигателей и бензиновой промышленности [5].

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *