ООО «Центр Грузовой Техники»

8(812)244-68-92

Электронная система управления двигателем

Система управления двигателем (ЭСУД) – это электронная система, задача которой обеспечить правильную работу одной и более систем двигателя. Электронная система управления двигателем – это своеобразный компьютер, который отвечает за контроль и выполнение необходимых задач для правильного функционирования. Толчок в развитии электронная система управления получила благодаря поиску и решению технических задач системы впрыска и системы зажигания. Но в процессе совершенствования, электронная система управления отвечает не только за работу вышеупомянутых систем, но и управляет топливной системой, системой охлаждения, системой впуска топливной смеси и выпуска отработавших газов, системой тормозов, системой улавливания паров бензина и др.

Электронный блок управления считывает данные с различных датчиков двигателя и управляет его системами. Контроль работы двигателя и управление его системами позволяет работать в оптимальном режиме и сохранять требуемые нормы токсичности и расхода топлива. Лидирующие позиции в производстве электронных систем управления занимают компании Bosch и General Motors.

Работа электронного блока управления происходит во взаимодействии с блоками управления автоматической коробки передач (АКПП), электроусилителя рулевого колеса, системой ABS, системы безопасности.

Устройство электронной системы управления двигателем

1– адсорбер; 2- запорный клапан системы управления паров бензина; 3 – датчик давления во впускном коллекторе; 4 — топливный насос высокого давления; 5 — датчик давления топлива в контуре низкого давления; 6 — датчик давления топлива в контуре высокого давления; 7 – форсунка впрыска; 8 — клапан регулирования фаз газораспределения; 9 — катушка зажигания; 10 — датчик Холла; 11 — датчик температуры воздуха на впуске; 12 — блок управления дроссельной заслонкой с датчиком положения; 13 — управляющий клапан  системы рециркуляции отработавших газов; 14 — потенциометр заслонки впускного коллектора; 15 — датчик детонации; 16 — датчик частоты вращения коленчатого вала; 17 — кислородный датчик; 18 — датчик температуры охлаждающей жидкости; 19 — блок управления; 20 — диагностический интерфейс; 21 – датчик положения педали акселератора; 22 – топливный насос; 23 — кислородный датчик; 24 — датчик температуры отработавших газов; 25 — датчик оксидов азота.

Как работает электронная система управления двигателем

Принцип работы электронной системы управления двигателем заключается в комплексном управлении величины крутящего момента двигателя. Если говорить проще, система управления двигателем регулирует величину крутящего момента в зависимости от режима работы двигателя.

Изменение величины крутящего момента производиться путем регулирования наполнения цилиндров воздухом и регулированием  угла опережения зажигания.

www.autoezda.com

Электронная система управления двигателем: функции и назначение

Электронная система управления двигателем (далее будем употреблять аббревиатуру ЭСУД для экономии текста) – это бортовой компьютер автомобиля, который управляет объединёнными системами впрыска, выпуска и всеми электронными системами в машине. Как правило, современный бензиновый и дизельный моторы не обходятся без блока управления. Раньше же автомобили обходились полностью без него, но они работали хуже, не так экономично и не позволяли раскрыть всего потенциала автомобиля с двигателем внутреннего сгорания.

Виды систем

Делятся компьютеры, что управляют мотором на несколько видов. Основным классификатором является то, какие функции в каком конкретном автомобиле возлагаются на компьютер. Условно все их можно поделить на:

  • ECM (Engine Control Module) – отдельно блок управления мотором.
  • ECU (Electronic Control Unit) – совместный блок управления, в котором объединено управление двигателем, электронной подвеской и прочим.

Так на сегодняшний день чаще всего применяется объединённый блок для всего: от электронной подвески до системы управления безопасностью. Это удобно так, как устанавливается один компьютер, к которому уже подходят провода со всех датчиков и элементов. В то время как при иной компоновке происходит разделение ролей и приходится продумывать как прокладывать проводку в машине. Хотя, с другой стороны, если один блок выйдет из строя, то все остальные останутся в рабочем состоянии и помогут остановить машину. Так, если вышел блок управления двигателем, то тормозная система, контролируемая иным компьютером действительно может спасти жизнь. Единый контроллер включает в себя несколько модулей:

  • Моторно-трансмиссионный.
  • Блок контроля тормозной системой.
  • Центральный модуль управления.
  • Синхронизационный модуль.
  • Контроллер кузова.
  • Модуль контроля подвески.

Каждый контроллер может выполнять некие совмещенные функции, но, как правило, ранее блок управления автоматической коробки переключения передач выполнен отдельно, чтобы не нагружать его иной работой и обеспечивать быстрое и синхронное переключение передач. Далее, когда начали использовать более мощные микропроцессорные устройства, то создали моторно-трансмиссионный модуль, в котором объединили функции, для более компактного размещения в машине. Такая компоновка позволяет минимизировать потери пространства. Так, в автомобилях ВАЗ, в первых инжекторных моделях, компьютер занимал половину бардачка. То есть, в предыдущих моделях блока не было, а когда пришли к его использованию, то не нашли лучшего места для его размещения, чем положить в бардачок, и занять им свободное пространство хозяина машины. Позже для компьютера нашли отдельное место между подкапотным пространством и салоном автомобиля. В общем, компьютер всегда располагают так, чтобы к нему можно было легко получить доступ, так как для его диагностики нужно подключаться к нему, чтобы увидеть ошибки и исправить их.

Устройство ЭСУД

В этом разделе мы рассмотрим то, что входит в состав контроллера, как он работает и за счет чего происходит контроль над мотором и прочими элементами. Если же брать как пример электронных систем максимально простой автомобиль, те же самые первые инжекторные автомобили ВАЗ, где компьютер управляет только мотором, то здесь все остальные элементы машины чисто механические. А блок выглядит чуть больше коммутатора от бесконтактного зажигания.

 

Устройство контроллера

Электронная система управления двигателем включает в себя массу различных элементов, главным из которых, конечно же, является бортовой компьютер. Представляет он из себя микропроцессорное устройство имеющие специальное назначение. Внутри располагается почти то же самое, что и у обычного настольного компьютера: оперативное запоминающие устройство (ОЗУ) и программируемое постоянное устройство запоминания (ППЗУ). ОЗУ необходимо компьютеру, чтобы хранить постоянно изменяющуюся информацию, например, характер работы двигателя в определенный момент. Здесь же храниться и все ошибки, что возникают в процессе работы машины, отсюда берутся эти показания и высвечиваются на приборной панели водителя в виде специальных ламп, или же, при наличии экрана, пишется непосредственно кода ошибки. При отключении питания все, что было записано в ОЗУ стирается.

Постоянная память хранит в себе заложенную программу по управлению двигателем на все случаи жизни. Это программа представляет собой алгоритм команд для правильно работы мотора, все калибровочные настройки. Это своеобразный жесткий диск компьютера, который независимо от наличия питания хранит всю заложенную информацию в себе. К слову, неоднозначный чип-тюнинг занимается именно изменением программы машины на более комфортабельную. Так, в зависимости от пожеланий клиента может быть установлена программа, которая бы увеличивала мощность мотора, но при этом повышался бы расход. С другой стороны, посредство замены программы можно добиться повышения экономичности автомобиля, но упадет тяга. Это очень удобно: можно подкорректировать работу мотора в зависимости от насущных потребностей.

Принцип работы

В свое работе компьютер использует показания с датчиков, основываясь на них, формируется задача для всех исполнительных устройств. В их число входят такие элементы, как топливный насос, форсунки в головке блока, система зажигания и прочее. К тому же. В задачи контроллера входит и диагностика правильности работы всех систем машины. Так называемая система самодиагностики. Если же находится какая-то неисправность, то загорается соответствующая лампа на приборной панели, или же просто запоминается код ошибки.

Говоря о контроле над мотором, то здесь главной задачей является непосредственно управление впрыском топлива. Происходить это должно в точный момент и в определённой последовательности, в зависимости от порядка работы двигателя и от нагрузки на двигатель в этот момент. Среди датчиков можно обнаружить такие: датчик положения распределительного и коленчатого вала, датчик массового расхода воздуха, датчик положения педали акселератора, датчик положения дроссельной заслонки, и масса прочих. Все они вкладывают свою лепту в процесс смесеобразования и момента впрыска топлива в цилиндры. К слову, консистенция топлива также регулируется компьютером. Топливно-воздушная смесь образовывается во впускном коллекторе, и она всегда готова к впрыску. Впрыск происходит посредством форсунок. Система зажигания также контролируется блоком управления, искра подается точно в момент, когда поршень находится в верхней мертвой точке, топливо уже впрыснуто, а все клапана закрыты.

 

Сигналы о неисправности

Отдельного абзаца заслуживает система самодиагностики бортового компьютера. Когда она находит некоторые неисправности, то она выдает сигнал на одну из ламп или дисплей в комбинации приборов у водителя перед глазами. Однако, нужно еще быть уверенным, что и сама система исправна. Когда водитель включает зажигание, то все лампы сигнализатора должны загореться одновременно. В этот момент вся ЭСУД проверяет правильность работы диагностического механизма, активность сигнализатора и всей управляющей цепи. После того как двигатель запускается все лампы должны немедленно погаснуть. Как правило, если при движении автомобиля снова загораются какие-то лампы сигнализатора, то это обозначает, что возникли некие нарушения в работе двигателя, и работа машины происходит в аварийном режиме, когда система готова в любой момент отключить мотор. Желательно перестать эксплуатировать машину, когда лампы постоянно горят или мигают уже очень долго. Конечно, если лампочки загорелись, когда вы едите за сотню километров от цивилизации и СТО, то прекращать движение не стоит, нужно доехать до места, где можно хотя бы вызвать эвакуатор или вам смогут оказать любую помощь, и вы не останетесь на улице.

Конечно, доехать до станции технического обслуживания самостоятельно можно, каких-то сверх неполадок это не вызовет, но лучше все же минимизировать движение автомобиля. В случае движения машины в аварийном режиме может упасть экономичность двигателя или максимальная скорость, но, главное, в этом случае доехать. После того как устранится неполадка все лампы должны будут погаснуть через определенное время. За этот период контроллер самостоятельно удостоверится в том, что неполадки исчезли бесследно и тогда лампочки на приборной панели окончательно погаснут. Хорошим подспорьем при ремонте машины могут стать коды неисправностей, которые можно считать с блока управления и изучить. Также сигнализатор может подать свой голос, если просто произошел сбой в системе работы блока управления, так что в любом случае паниковать и думать, что вашей машине пришел конец однозначно не стоит. Все неполадки устраняются на СТО, конечно, это потребует денег, но благодаря ЭСУД хотя бы не займет много времени.

autodont.ru

что это такое в автомобиле и как работает

Одним из главных элементов современного автомобиля является ЭСУД – электронная система управления двигателем. Именно она обеспечивает работу двигателя в оптимальном режиме мощности и, потребления топлива, кроме того, на нее возложена функция управления многочисленными функциями и рабочими процессами, протекающими в автомобиле. В общем смысле ЭСУД представляет собой компьютер ДВС, в котором обрабатываются показания датчиков и в соответствии с ними подаются те или иные команды на прочие системы и агрегаты. Однако это определение слишком общее, поэтому для понимания сущности и роли данного элемента следует разобраться в тонкостях его работы.

Что такое ЭСУД в автомобиле

Данная система объединяет в себе большое количество различных компонентов:

  • датчики и подсистемы, фиксирующие показания и рабочее состояние различных агрегатов двигателя;
  • передающие провода;
  • электронный блок управления – центральный элемент ЭСУД и своеобразный «мозг» автомобиля, в котором данные, получаемые с датчиков, обрабатываются и интерпретируются.

Необходимость внедрения электронной системы управления рабочими параметрами двигателя стала очевидной в процессе оптимизации процессов зажигания и впрыска – механическая регулировка и контроль не обеспечивали достаточной точности и эффективности, в результате чего КПД использовавшихся ранее ДВС был низким. На современных же моделях широко используются электронные контрольные модули, которые отвечают не только за вышеназванные параметры, но и за многие другие: впуск топливной смеси в цилиндры, охлаждение двигателя, выпуск отработанных газов, улавливание паров бензина и т.д.

Как правило, ЭСУД объединяется в единый комплекс с другими системами автомобиля, включая блок управления КПП, рулевой электроуситель, ABS, систему активной безопасности и т.д.

Из чего состоит ЭСУД

В состав электронной системы управления двигателем входят самые разные компоненты, в совокупности обеспечивающие комплексную регулировку рабочих параметров ДВС. К основным ее элементам относятся следующие:

  • электронный контроллер – основная часть всей системы, именно здесь анализируются показания датчиков, проводятся вычисления и формируются команды исполнительным агрегатам и подсистемам;
  • датчик массового расхода воздуха – фиксирует количество поступающего в цилиндры воздуха и в соответствии с этими данными изменяет объем подаваемого топлива;
  • датчик скорости – фиксирует текущую скорость и преобразует полученное значение в электронный сигнал;
  • кислородные датчики – определяет количество кислорода в выхлопных газах до и после стадии нейтрализации;
  • датчик неровной дороги – важный элемент современных электронных подвесок, анализирует силу вибрации кузова и преобразует полученное значение в сигнал;
  • датчик фаз – подает на контроллер сигнал при поднятии первого поршня в высшую точку на такте сжатия;
  • датчик температуры жидкости в системе охлаждения;
  • датчик положения коленчатого вала – фиксирует величину угла при повороте вала;
  • датчик дроссельной заслонки – определяет угол открытия заслонки;
  • датчик детонации – определяет интенсивность детонационных процессов в двигателе по уровню поступающих шумов;
  • модуль зажигания – в нем аккумулируется энергия, необходимая для поджигания топливовоздушной смеси, а также обеспечивает требуемое напряжение свечей;
  • форсунки – отвечают за распределение топлива между цилиндрами;
  • регулятор топливного давления – поддерживает требуемое давление при подаче топлива;
  • модуль бензонасоса – отвечает за избыточное давление в питающей двигатель системе;
  • адсорбер – необходим для улавливания бензиновых испарений;
  • нейтрализатор – уменьшает токсичность выхлопа двигателя за счет каталитических реакций;
  • датчик холостого хода – регулирует питание двигателя при холостой работе;
  • диагностический сигнал – лампа на приборной панели, загорание которой свидетельствует о той или иной неисправности в работе двигателя;
  • диагностический интерфейс – позволяет подключать к ЭСУД специализированное диагностическое оборудование.

Как видно, электронная система управления двигателем включает в себя внушительное количество самых разных датчиков и регуляторов. При этом все поступающие с них данные анализируются в едином электронном блоке, который представляет собой полноценный микрокомпьютер.

Читайте также: Что такое CAN шина в автомобиле и для чего она нужна.

Какие задачи выполняет ЭСУД

Большое количество компонентов, входящий в состав электронной системы управления, обусловливает и широкое разнообразие выполняемых ей задач. По большому счету, она полностью управляет работой двигателя, оперативно изменяет его параметры и фиксирует его состояние. К наиболее важным функциям ЭСУД можно отнести следующие:

  • расчет оптимального объема топлива и момента его подачи в камеру сгорания;
  • определение момента генерации искры, воспламеняющей ТВС;
  • регулировка угла опережения зажигания;
  • контроль положения коленвала;
  • самодиагностика системы, всех ее подсистем и исполнительных механизмов.

Все элементы ЭСУД работают в комплексе, что позволяет достигать оптимальной производительности мотора. Если в ходе диагностики выявляются какие-либо неисправности, то на экран либо приборную панель выводится соответствующее уведомление. Если обнаруженные нарушения создают угрозу двигателю и автомобилю в целом, то система управления отдает команду на его отключение. Если поломка не такая серьезная, то можно временно продолжать движение – но в любом случае нужно как можно скорее обратиться на автосервис.

Для определения действительной неисправности необходимо использовать специальное диагностическое оборудование. При подключении к соответствующему разъему оно считает информацию, расшифрует код ошибки и предоставит точные сведения о выявленной неполадке.

В этом выражается еще одна важная функция ЭСУД – сокращение затрат времени и денег на ремонтные работы. Работникам СТО будет достаточно только получить код ошибки, после чего можно сразу же приступать к устранению поломки. 

Похожие статьи

avtonov.com

Электронная система управления двигателем: оптимизация процессов

Друзья, вы наверняка, неоднократно замечали, что в статьях посвящённых мотору автомобиля, а также и другим важным узлам, зачастую упоминается электронная система управления двигателем.

А вот что это за устройство, к сожалению, объясняется не всегда. Восполним этот пробел и разберёмся с секретами, которые таит в себе данный блок.

С чего всё началось?

Точкой отсчёта в истории электронных систем управления двигателем автомобиля можно считать середину 60-х годов минувшего столетия. Именно тогда компания Bosch предложила заменить механический способ контроля зажигания транзисторным.

Дальше электронная система управления двигателем развивалась семимильными шагами, и через несколько лет, а если быть точнее, то в 1979 году эта же немецкая фирма представила объединённую систему впрыска и зажигания.

Современные блоки контроля мотора машины наблюдают и управляют гораздо большим количеством параметров и узлов. Помимо этого, существуют системы, власть которых не ограничивается двигателем – это так называемые совместные блоки управления. Под их началом работают практически все агрегаты авто, например, тормоза, адаптивная подвеска, трансмиссия и т.д.

Электронная система управления двигателем — мозг, глаза и руки системы

Нужно отметить, что подобные системы управления используются и у бензиновых двигателей, и у дизельных агрегатов. В этот раз уделим внимание первым. Итак, современный блок контроля мотора управляет такими узлами:

  • впрыск;
  • зажигание;
  • топливная система;
  • впуск и выпуск;
  • система охлаждения;
  • вакуумный усилитель тормозов;
  • рециркуляция выхлопных газов;
  • устройства улавливания паров бензина.

Электронный мозг, заключённый в блоке где-то между мотором и салоном автомобиля – это лишь часть системы. Чтобы обеспечить контроль и управление параметрами силового агрегата, нужны ещё кое-какие приспособления – датчики и исполнительные устройства. Датчики являются глазами и ушами системы управления двигателем и их поистине огромное количество.

Так, к примеру, у технологии MED-Motronic (технология непосредственного впрыска), презентованной компанией Bosch в 2000 году, используется их более 13, расположившихся во всех уголках мотора. Среди них такие: датчик давления горючего в контуре низкого давления, положения педали газа, оборотов силового агрегата, температуры масла, воздуха во впускном коллекторе и охлаждающей жидкости, кислородные датчики и множество других.

На основе информации, поступившей от них и в соответствии с программами, заложенными в памяти, электронный блок принимает решение о тех или иных действиях и посылает сигналы на исполнительные устройства.

Если датчики – это глаза и уши, то исполнительные устройства – это руки электронной системы управления двигателем. Подчиняются ей самые разные элементы, например, топливный насос, катушки зажигания, форсунки цилиндров мотора, дроссельная заслонка, термостаты охлаждающей  системы, вентилятор и ещё много, много других.

Может, обойдёмся без электроники?

Так ради чего затеяны все эти сложности с электроникой?

Во-первых, эффективный контроль над параметрами двигателя обеспечивает его надёжную и долговечную работу. Во-вторых, появилась возможность создавать поистине экономичные и экологичные агрегаты.

Достигаются эти плюшки путём комплексного и всеобъемлющего управления величиной крутящего момента мотора. В зависимости от того, в каком режиме функционирует двигатель (запуск, холостой ход, агрессивное движение, переходной режим во время переключения передачи и т.д.) формируется различное наполнение цилиндров воздушно-топливной смесью, а также регулируются углы опережения зажигания.

По всей видимости, уважаемые читатели, электроника в дальнейшем будет лишь усложняться и усложняться, а забот у водителя наоборот – со временем становиться всё меньше. Наверное, такие перспективы могут только радовать, или нет?

Оставляйте ваши комментарии, подписывайтесь на рассылку и изучайте автомобили вместе с нами!

 

auto-ru.ru

Система управления двигателем

12.05.2010

Система впрыскивания топлива

Система впрыскивания топлива состоит из трех подсистем, которые, работая вместе, управляют процессом сгорания и обеспечивают обратную связь по рабочей эффективности. Эти подсистемы:

1.    Воздухозабор
2.    Подача топлива
3.    Управление расходом топлива

Система воздухозабора обеспечивает подачу воздуха, необходимого для процесса сгорания, и измеряет количество воздуха, входящего в двигатель. Типичные элементы включают в себя воздухозаборник, воздушный фильтр, впускные каналы, измеритель (или датчик) расхода (или массы) воздуха и другие специальные элементы системы воздухозабора.

Система подачи топлива подает бензин из топливного бака, фильтрует его и подает под высоким давлением к двигателю. В число элементов системы входит топливный насос, топливный фильтр, топливный коллектор, топливные форсунки, регулятор давления и гаситель пульсаций. На двигателях с замкнутым топливным контуром система также включает в себя топливопровод, который возвращает неиспользованное топливо в бак (возвратный топливопровод).

В системе управления расходом топлива имеются входные датчики, которые выполняют непрерывные измерения и передают эту информацию к компьютеру управления двигателем. Компьютер определяет количество топлива для впрыскивания и использует выходные исполнительные устройства для активизации топливных форсунок на точный промежуток времени. Работа компьютера управления двигателем более подробно обсуждается дальше.

Компьютер делает несколько тысяч вычислений в минуту и постоянно регулирует количество топлива по мере изменения условий движения. Эти процессы идут непрерывно с момента запуска двигателя. Впрыскивание топлива основывается на чрезвычайно точном измерении количества впускаемого воздуха. Любой сбой, который не позволит получить эту информацию, приведет к тому, что компьютер даст неверную оценку параметров впрыскивания топлива.

Компьютер вычисляет количество впрыскиваемого топлива, основываясь на получаемых им входных сигналах, сообщающих о расходе воздуха, его массе и температуре воздухозабора.

Система управления двигателем

Система управления двигателем управляется бортовым компьютером, который различными изготовителями называется по разному. Ниже даются два самых распространенных названия этого компьютера:

•    Модуль управления силовым агрегатом (РСМ)
•    Модуль управления двигателем (ЕСМ)

В настоящей публикации контроллер двигателя упоминается, как РСМ.

РСМ — это сердце современной системы управления двигателем. Он управляет системой зажигания, системой впрыскивания топлива и другими элементами. РСМ предназначается для увеличения эффективности двигателя и уменьшения токсичности отработавших газов

РСМ сохраняет стехиометрическое соотношение «воздух / топливо» в условиях движения с экономичной скоростью. Однако, условия движения изменяются, и стехиометрическая воздушно-топливная смесь не будет идеальной для всех условий. В зависимости от рабочих условий РСМ делает воздушно-топливную смесь более богатой или более бедной.

РСМ получает информацию от входных датчиков и посылает управляющие сигналы соответствующим выходным устройствам, таким как топливные форсунки. Расположение РСМ и датчиков зависит от модели и изготовителя. За информацией по расположению элементов всегда обращайтесь к Руководству для станций технического обслуживания.

Входные устройства РСМ

Входные датчики непрерывно подают подробную информацию, связанную с различными аспектами работы автомобиля. В следующем разделе описываются датчики, характерные для современных систем управления силовым агрегатом.

Сигнал импульса зажигания

РСМ получает сигнал импульса зажигания от катушки зажигания и на основании этого сигнала задает количество и опережение впрыскивания топлива.

Датчик температуры охлаждающей жидкости двигателя

Более богатые воздушно-топливные смеси компенсируют плохую испаряемость топлива при низкой температуре. РСМ контролирует температуру охлаждающей жидкости и увеличивает объем впрыскивания топлива, чтобы улучшить общие динамические характеристики автомобиля при холодном двигателе.

Датчик температуры охлаждающей жидкости двигателя (ЕСТ) измеряет температуру охлаждающей жидкости по изменению электрического сопротивления. Терморезистор изменяет свое электрическое сопротивление в соответствии с изменением температуры.

Датчик температуры воздухозабора

Датчик температуры воздухозабора (IAT) — это терморезистор. Он располагается в системе воздухозабора двигателя и служит для определения температуры входящего воздуха. Датчик IAT подает сигнал напряжения, изменяющийся в зависимости от сопротивления. Сопротивление датчика и результирующее напряжение датчика высокие, когда датчик холоден. При повышении температуры сопротивление и напряжение датчика уменьшаются.

Датчик положения коленчатого вала (СКР)

РСМ использует частоту вращения коленчатого вала двигателя, чтобы помочь задать базовое количество впрыскивания. Датчик положения коленчатого вала (СКР) может располагаться на коленчатом вале или внутри распределителя.

Около датчика быстро вращается специальный ротор (импульсное колесо), снабженный выступами или зубьями и расположенный на коленчатом вале. Датчик регистрирует изменение напряженности магнитного поля при каждом прохождении выступа рядом с ним.

Датчик частоты вращения коленчатого вала двигателя

Датчик частоты вращения коленчатого вала двигателя, установленный в распределителе, или датчик угла поворота коленчатого вала может быть дискового типа или устройством, работа которого базируется на эффекте Холла.

В датчике дискового типа используется диск с прорезями, установленный на вале распределителя, два светодиода и два фотодиода. Один светодиод указывает на угол поворота коленчатого вала, в то время как второй светодиод указывает на положение цилиндра.

Датчик положения распределительного вала (СМР)

РСМ использует датчик положения распределительного вала (СМР) для отслеживания положения всех цилиндров и управления топливной системой и системой зажигания. Датчик регистрирует положение в.м.т. на ходе сжатия для цилиндра 1 1 и может располагаться в распределителе или около распределительного вала. Датчик СМР регистрирует изменения напряженности магнитного поля, вызванные выступами на шкиве распределительного вала.

Датчик скорости автомобиля

Датчик скорости автомобиля (VSS) указывает скорость движения автомобиля. Имеются три распространенных типа датчика VSS — датчики типа герконового реле и типа оптропары находятся в спидометре, а датчик электромагнитного типа находится на вторичном вале коробки передач.

Некоторые изготовители автомобилей для получения информации о скорости автомобиля также используют датчик скорости колеса, который является частью антиблокировочной системы тормозов.

Кислородные датчики

Передний кислородный датчик измеряет плотность кислорода в отработавших газах и подает соответствующий сигнал к РСМ. Передний кислородный датчик располагается перед каталитическим нейтрализатором. РСМ использует входной сигнал от переднего кислородного датчика для расчета изменений в соотношении «воздух/ топливо».

Кроме того, имеется и задний кислородный датчик, устанавливаемый за каталитическим нейтрализатором. РСМ сравнивает сигналы от двух кислородных датчиков для контроля эффективности каталитического нейтрализатора и определения,правильно ли работает каталитический нейтрализатор.

Датчик положения дроссельной заслонки (TPS)

Датчик положения дроссельной заслонки (TPS) -это варистор (потенциометр), установленный на дроссельной заслонке. Корпус дроссельной заслонки открывается и закрывается посредством троса, который соединяется с педалью акселератора. Когда дроссельная заслонка закрыта, компьютер снимает сигнал низкого напряжения. Когда дроссельная заслонка широко открыта, компьютер снимает сигнал высокого напряжения.

Датчик массового расхода воздуха/ расхода воздуха

Датчик массового расхода воздуха (MAF) измеряет объем и плотность входящего воздуха. При выполнении измерений датчик MAF способен принимать во внимание температуру, плотность и влажность воздуха. Все эти параметры, взятые вместе, определяют «массу» входящего воздуха. Компьютер использует информацию о фактическом массовом расходе воздуха, что помогает рассчитывать соотношение «воздух/топливо».

Прочие входные устройства

В зависимости от изготовителя автомобиля имеется несколько других входных устройств. В число прочих входных устройств могут входить следующие:

•    Датчик абсолютного давления во впускном коллекторе (MAP) — измеряет изменения в давлении воздуха во впускном коллекторе.
•    Датчик детонации — посылает РСМ сигнал на уменьшение угла опережения зажигания в случае повышенной детонации.
•    Переключатель парковочной передачи/нейтрального положения (P/N) — сообщает РСМ, находится ли коробка передач в положении ПАРКОВОЧНОЙ передачи или в НЕЙТРАЛЬНОМ положении или на одной из передач движения.
•    Реле давления усилителя рулевого управления (при частоте вращения коленчатого вала в режиме холостого хода) — используется  для регистрации высокого давления рабочей жидкости в системе усилителя рулевого управления.
•    Реле высокого давления А/С — посылает к РСМ «запрос» на включение А/С, чтобы РСМ мог включить компрессор А/С.
•    Переключатель круиз-контроля — когда РСМ получает сигнал круиз-контроля, он сохраняет желаемое значение скорости в памяти, что позволяет обеспечить сохранение этой скорости.

Выходные исполнительные устройства открывают и закрывают клапаны, впрыскивают топливо и выполняют другие задачи, реагируя на управляющие сигналы, поступающие от РСМ. Некоторые исполнительные устройства управляются, в то время как другие просто включаются или выключаются. Отрезок времени, в течение которого работает исполнительное устройство, — это его рабочий цикл. РСМ управляет рабочими циклами и в зависимости от необходимости может или удлинять или сокращать их.

Топливные форсунки

Топливо подается к двигателю посредством топливных форсунок. Топливными форсунками управляет РСМ. Непрерывная подача топлива под давлением в топливную форсунку выполняется топливным насосом. Топливная форсунка — это электромагнитный клапан, который активизируется при обеспечении компьютером электрической цепи на «массу», и после этого топливо под давлением «впрыскивается» во впускной коллектор. Компьютер управляет расходом топлива посредством широтно-импульсной модуляции времени включенного состояния форсунки. Время включенного состояния форсунки определяется комбинацией ранее описанных входных сигналов РСМ.

Клапан управления подачей воздуха в режиме холостого хода

Клапан управления подачей воздуха в режиме холостого хода (IAC) располагается в корпусе дроссельной заслонки. Клапан IAC состоит из подвижной иглы, которая управляется маленьким электродвигателем, называемым шаговым электродвигателем. Шаговый электродвигатель способен перемещаться, выполняя очень точные, отмеренные «шаги». Компьютер использует клапан IAC для управления частотой вращения коленчатого вала в режиме холостого хода. Клапан IAC изменяет положение иглы в канале воздуха холостого хода в корпусе дроссельной заслонки. Тогда характер потока входящего воздуха около дроссельной заслонки, когда она закрыта, изменяется.

Электрический топливный насос

В большинстве систем впрыскивания топлива используется встроенный в бак, управляемый реле электрический топливный насос. Когда включается переключатель зажигания, компьютер, прикладывая напряжение аккумулятора, возбуждает реле, которое управляет топливным насосом. Реле остается включенным до тех пор, пока двигатель не начнет проворачивать двигатель или последний не начнет работать и компьютер не получит базовые импульсы. Если базовые импульсы отсутствуют, компьютер выключает реле.

Электрический вентилятор охлаждения

При определенных условиях, для охлаждения радиатора и/или конденсатора А/С, используются одиночные или двойные электрические вентиляторы охлаждения. На большинстве вариантов вентиляторы охлаждения управляются РСМ. В вариантах с компьютерным управлением используются реле вентилятора охлаждения. Компьютер обеспечивает заземление реле вентилятора охлаждения на «массу», подавая напряжение системы к электродвигателю вентилятора охлаждения при соблюдении некоторых или всех нижеперечисленных условий:

•    Датчик температуры охлаждающей жидкости указывает высокую температуру охлаждающей жидкости
•    Запрашивается включение системы А/С •    А/С включена, а скорость автомобиля ниже заданной
•    Давление на стороне высокого давления А/С выше заданного значения, возможно размыкание реле высокого давления

Контрольная лампа неправильной работы

Контрольная лампа необходимости обслуживания двигателя или контрольная лампа неправильной работы (MIL) горит, когда ключ зажигания поворачивается во включенное положение (ON) при неработающем двигателе. Не волнуйтесь по этому поводу, потому что это только быстрая проверка лампы. Когда двигатель работает, обычно MIL не горит. Если в памяти сохраняется код неисправности, или компьютер входит в резервный режим, MIL загорается, что означает наличие заземления компьютером электрической цепи MIL. Если состояние изменяется и код (или коды) неисправности больше не присутствуют, лампа может погаснуть, но код остается в памяти компьютера.

Бортовая диагностика

РСМ содержит диагностическое программное обеспечение, которое контролирует работу автомобиля и регистрирует возникающие неисправности. Это программное обеспечение именуется бортовой диагностикой (OBD).

В 1994 году изготовители начали оборудовать автомобили РСМ, содержащими систему бортовой диагностики второго поколения (OBD II) или EOBD для Европы. Программное обеспечение контролирует те параметры в системах впрыскивания топлива и понижения токсичности выхлопа, которые могут вызвать рост токсичности выхлопа. В дополнение к проверке на наличие неисправности элементов, OBD II проверяет и тестирует правильность работы подсистем. Кроме того, она следит за ухудшением работы датчиков и исполнительных устройств.

Управление регулятором давления топлива

В некоторых двигателях РСМ увеличивает давление топлива, чтобы предотвратить образование «паровой пробки» (закипания), когда температура двигателя при повторном запуске высока. Например, если температура охлаждающей жидкости при запуске равняется 212°F (100 °С) или выше, РСМ активизирует электромагнитный клапан управления регулятором давления.

Когда электромагнитный клапан работает, подача вакуума к регулятору давления уменьшается, заставляя давление топлива становиться выше чем для обычных рабочих условий двигателя. Электромагнитный клапан остается активизированным в течение короткого времени после запуска двигателя.

Система базового холостого хода

Байпас позволяет некоторому количеству впускаемого воздуха входить во впускной коллектор при работе двигателя в режиме холостого хода, потому что дроссельная заслонка почти полностью закрыта. Клапан IAC управляет «байпасным» воздухом, необходимым для стабилизации частоты вращения коленчатого вала в режиме холостого хода при различных нагрузках (А/С, электрическая нагрузка, усилитель рулевого управления и т.д.). Клапан IAC, который является исполнительным устройством электромагнитного типа, активизируется РСМ. Этот клапан обеспечивает точное управление количеством воздуха, который обходит дроссельную заслонку.

В некоторых автомобилях для управления базовым холостым ходом используется комбинация из двух клапанов: механического и электромагнитного. При запуске из холодного состояния открыты оба клапана, что обеспечивает дополнительное поступление воздуха при запуске и прогреве. По мере увеличения температуры охлаждающей жидкости до нормальной, механический клапан постепенно закрывается, а воздух проходит только через электромагнитный клапан.

Так же рекомендуем прочитать Вам интересную статью Кузовные детали

www.mskjapan.ru

Системы электронного управления двигателем автомобиля

Как и все остальные электронные системы автомобиля, состоит из датчиков, блока управления и исполнительных механизмов. Датчики измеряют текущие физические и химические величины и преобразуют их в электрический сигнал, который передают блоку управления. Блок управления, получая сигналы от датчиков, по заложенной программе формирует управляющие сигналы для исполнительных механизмов.

Существует несколько режимов работы двигателя: запуск, прогрев, движение во время прогрева, холостой ход, режим максимальной мощности, торможение двигателем. О том, в каком режиме работы в настоящий момент находится двигатель, блок управления «узнает» по датчикам. Кроме того, по датчикам он также определяет в какой режим нужно перевести двигатель в соответствии с пожеланиями водителя (датчики положения педали акселератора, педали тормоза, скорости движения…).

Датчики: датчик положения коленвала, датчик положения педали акселератора, датчик температуры двигателя, кислородный датчик, расходомер воздуха и так далее. Исполнительные механизмы: форсунки, катушки зажигания, дроссельная заслонка, регулятор холостого хода и так далее.

Электронный блок управления двигателем (ЭБУ) – электронный «мозг» автомобиля, который обеспечивает правильную работу двигателя на всех режимах с учетом экономичности, экологичности и динамичности автомобиля.

Система управления двигателем контролирует правильную работу остальных систем двигателя (системы питания, охлаждения,…).

Система управления имеет функцию самодиагностики, которая регистрирует ошибки в работе элементов системы и оповещает водителя о наличии неисправностей посредством контрольной лампы на панели приборов. Ошибки в работе элементов ЭБУ регистрирует следующим образом: блок определяет, входят ли полученные от датчиков значения в диапазоны значений, заложенных в нём для каждого датчика (скажем, для температуры двигателя этот диапазон составляет от -50 до 140 градусов Цельсия). Кроме того, значения, переданные датчиками, сравниваются между собой по определенным соотношениям (например, холостому ходу соответствует определенный расход воздуха). Блок управления регистрирует «неправильные» уровни напряжений для всех элементов, в том числе, и для исполнительных механизмов.
После регистрации неисправности блок принимает решение о дальнейшей работе двигателя (останов двигателя, перевод в аварийный режим или бездействие). Для некоторых датчиков в блоке заложены значения по умолчанию (например, при неисправности датчика температуры двигателя, температура двигателя для расчетов принимается равной 80 градусам Цельсия).

Некоторые неисправности критичны, то есть при их наличии работа двигателя невозможна. При наличии некоторых неисправностей система управления переводит работу двигателя в аварийный режим, в котором двигатель не развивает полной мощности. Аварийный режим работы обеспечивает возможность автомобиля доехать до ближайшего автосервиса.

Система управления двигателем самостоятельно определяет наличие неисправности, корректирует работу двигателя и включением контрольной лампы даёт указание водителю посетить СТОА.

EOBD – Euro On Board Diagnostic европейская система бортовой самодиагностики. Это европейский стандарт обмена данными – потомок американских стандартов OBD и OBD-II, которые изначально создавались для контроля токсичности выбросов автомобиля. Со временем возможности OBD значительно расширились, и с его помощью стало возможным диагностировать все электронные системы автомобиля.
Все производители при производстве автомобилей придерживаются этого стандарта, в котором оговорен перечень возможных неисправностей (коды отказов) электронных систем автомобиля. Существуют однако и некоторые отличные от стандартных коды, обусловленные спецификой конкретных моделей автомобилей.

Стандарт EOBD подразумевает наличие одинаковых диагностических разъемов на автомобилях разных марок. Это позволяет универсальным диагностическим прибором (сканером) просмотреть основные неисправности и параметры работы отдельных элементов электронных систем.

Производители автомобилей предлагают оригинальные диагностические приборы, которые имеют гораздо больше функций (например, возможность прописать дополнительный ключ зажигания в систему иммобилайзера) и предусматривают возможность работы только с конкретными марками автомобилей.

 

 

Поделиться ссылкой:

salecar.pro

Система управления двигателем

Конструкция

Рис. 2.30. Структурная схема системы управления двигателем

На рисунке 2.30 показана конфигурация электронной системы управления двигателем.

Основные узлы системы управления двигателем

Рис. 2.31. Расположение основных компонентов системы управления двигателей 1ZZ-FE И 3ZZ-FE

В состав систем управления двигателей 1ZZ-FE и 3ZZ-FE входят узлы перечисленные в таблице 2.6.

ЭБУ двигателя

ЭБУ двигателя выполнен на основе 32-битного процессора.

Кислородный датчик и датчик состава топливовоздушной смеси

Рис. 2.32. Кислородный датчик и датчик состава топливовоздушной смеси

Малогабаритный кислородный датчик и датчик состава топливовоздушной смеси небольшой массы устанавливается во впускной трубопровод. Часть воздуха, поступающего в двигатель, проходит через зону измерения датчика (рис. 2.32). Благодаря тому, что масса и расход потока воздуха, поступающего в двигатель, измеряются непосредственно, повышена точность измерения и уменьшено сопротивление, которое создает датчик во впускном трубопроводе.

В датчике имеется встроенный датчик температуры воздуха.

Датчик положения коленчатого вала

Рис. 2.33. Датчик положения коленчатого вала

На задающем роторе коленчатого вала имеется 34 зуба и участок, на котором 2 зуба пропущено. Датчик положения коленчатого вала посылает сигнал через каждые 10°, а по участку с пропущенными зубьями определяется верхняя мертвая точка (рис. 2.33).

Датчик положения распредвала

Рис. 2.34. Датчик положения распредвала

Для определения положения на распредвале впускных клапанов установлен задающий ротор, с помощью которого формируются 3 импульса на каждые два оборота коленчатого вала (рис. 2.34).

Датчик детонации (плоского типа)

Рис. 2.35. Диаграмма рабочих характеристик датчиков детонации

В обычных датчиках детонации (резонансного типа) имеется пластина, резонансная частота колебаний которой совпадает с частотой детонации двигателя. Она позволяет регистрировать колебания вблизи частоты резонанса.

В отличие от такой конструкции плоский датчик детонации (нерезонансного типа) позволяет регистрировать вибрацию в более широком диапазоне частот (примерно 6–15 кГц) и обладает следующим преимуществами.

Частота детонации двигателя слегка изменяется в зависимости от частоты вращения коленчатого вала. Датчик детонации плоского типа позволяет регистрировать вибрацию даже при изменении частоты детонации двигателя. Таким образом, по сравнению с традиционными датчиками детонации, расширены возможности по регистрации вибрации, что позволяет более точно регулировать угол опережения зажигания.

Конструкция

Рис. 2.36. Конструкция обычного и плоского датчиков детонации

Датчик детонации плоского типа крепится к двигателю при помощи шпильки, ввернутой в блок цилиндров (рис. 2.36). Отверстие под шпильку проходит через центр датчика.

Внутри датчика, в верхней его части, установлен стальной грузик, который через изолятор опирается на пьезоэлектрический элемент.

В датчик встроен резистор регистрации разомкнутой/короткозамкнутой цепи.

Принцип работы

Вибрация детонации двигателя передается на стальной грузик, который давит на пьезоэлектрический элемент. В результате образуется электродвижущая сила.

Резистор регистрации разомкнутой/ короткозамкнутой цепи

Рис. 2.37. Блок-схема резистора регистрации разомкнутой/короткозамкнутой цепи

Если зажигание включено, резистор регистрации разомкнутой/короткозамкнутой цепи датчика детонации и резистор в ЭБУ двигателя поддерживают постоянное напряжение на клемме KNK1. Напряжение на клемме постоянно контролирует интегральная микросхема ЭБУ двигателя. Если цепь между датчиком детонации и ЭБУ двигателя размыкается или замыкается накоротко, напряжение на клемме KNK1 изменяется, и ЭБУ двигателя регистрирует размыкание/короткое замыкание цепи, записывая при этом в память электронный код DTC P0325.

Рекомендация по техническому обслуживанию

В связи с вводом в схему резистора разомкнутой/короткозамкнутой цепи изменена методика проверки датчика.

Рис. 2.38. Схема установки датчика детонации

Во избежание накопления влаги в разъеме следует устанавливать датчик детонации плоского типа, как показано на рисунке 2.38.

Датчик положения дроссельной заслонки

Рис. 2.39. Блок-схема и диаграмма работы датчика положения дроссельной заслонки

Датчик положения дроссельной заслонки установлен на корпусе дроссельной заслонки. Он предназначен для определения угла открытия дроссельной заслонки. Датчик положения дроссельной заслонки (датчик Холла) состоит из интегральной микросхемы с датчиками Холла и постоянных магнитов, вращающихся вокруг нее. Магниты установлены вокруг оси дроссельной заслонки и поворачиваются синхронно с ней.

Когда дроссельная заслонка открывается, магниты поворачиваются вместе с ней. Датчики Холла распознают изменение магнитного потока и генерируют выходное напряжение соответствующей величины на клеммах VTA1 и VTA2. Данный сигнал используется для формирования сигнала открытия дроссельной заслонки в ЭБУ двигателя.

Такая конструкция не только обеспечивает высокую точность определения положения дроссельной заслонки, но также отличается простотой и надежностью, поскольку использует бесконтактный принцип. Кроме того, в целях повышения надежности работы датчика для формирования выходных сигналов используются две системы с различными выходными характеристиками.

Рекомендация по техническому обслуживанию

Так как в датчике используется микросхема с датчиком Холла, методика проверки отличается от методики проверки обычного датчика положения дроссельной заслонки.

Датчик положения педали акселератора

Рис. 2.40. Блок-схема и диаграмма работы датчика положения педали акселератора

Датчик положения педали акселератора преобразует ход педали в электрические сигналы с двумя различными характеристиками и передает их в ЭБУ двигателя. Сигнал VPA1 имеет линейную характеристику и подается на протяжении всего хода педали акселератора. Сигнал VPA2 имеет смещенную характеристику напряжения.

Электронный впрыск EFI

Рис. 2.41. Диаграмма синхронного и асинхронного впрысков

Система EFI L-типа непосредственно определяет массу воздуха, поступающего в двигатель, с помощью расходомера воздуха с проволочным элементом.

Используется распределенная система впрыска (когда топливо впрыскивается в каждый цилиндр один раз за два оборота коленчатого вала).

Существует два типа впрыска топлива:

– первый способ представляет собой синхронный впрыск, когда в основную длительность впрыска вносится поправка, основанная на сигналах с датчиков. в этом случае впрыск осуществляется в одном и том же положении коленчатого вала;

– второй способ является асинхронным впрыском, когда единый момент впрыска для всех форсунок определяется по сигналам от датчиков, безотносительно положения коленчатого вала. чтобы уменьшить износ двигателя и расход топлива, система включает подачу топлива при определенных условиях движения.

При низкой температуре охлаждающей жидкости и во время работы двигателя на малых оборотах система обеспечивает впрыск дополнительного топлива.

Интеллектуальная электронная система управления дроссельной заслонкой ETCS-i

Рис. 2.42. Структурная схема системы

Система ETCS-i обладает исключительными возможностями регулирования положения дроссельной заслонки на любых режимах работы двигателя. В новых двигателях 1ZZ-FE и 3ZZ-FE механическое управление дроссельной заслонкой отсутствует, а на педали акселератора установлен датчик положения педали.

В системе с корпусом дроссельной заслонки традиционной конструкции угол открытия дроссельной заслонки определяется ходом педали акселератора. В отличие от этого в системе ETCS-i ЭБУ двигателя рассчитывает оптимальное положение дроссельной заслонки, исходя из условий движения, и устанавливает его, управляя электродвигателем привода.

Система ETCS-i обеспечивает управление системой холостого хода ISC, системой круиз-контроля, противопробуксовочной системой TRC и системой курсовой устойчивости VSC.

В случае выявления неисправностей в работе система переходит в аварийный режим.

Принцип работы

Рис. 2.43. Диаграмма работы системы управления при разгоне и замедлении

В зависимости от режима эксплуатации ЭБУ двигателя определяет требуемый угол открытия дроссельной заслонки и управляет электродвигателем привода дроссельной заслонки. Режимы за которые отвечает ЭБУ двигателя перечислены ниже.

Нелинейный режим.

Режим холостого хода.

Управление дроссельной заслонкой при работе противопробуксовочной системы (TRC).

Режим координации с системой VSC.

Круиз-контроль.

Нелинейный режим

Система устанавливает дроссельную заслонку в оптимальное положение, соответствующее условиям движения, то есть положению педали акселератора и частоте вращения двигателя, обеспечивая точное управление дроссельной заслонкой и комфортный ход автомобиля на всех режимах.

Режим холостого хода

ЭБУ двигателя регулирует положение дроссельной заслонки, постоянно поддерживая оптимальную частоту вращения на холостом ходу.

Управление дроссельной заслонкой

при работе противопробуксовочной системы (TRC)

Если включена противопробуксовочная система (TRC), при значительной пробуксовке ведущего колеса ЭБУ системы противоскольжения посылает сигнал на закрывание дроссельной заслонки, помогая тем самым сохранить управляемость автомобиля и тяговое усилие на колесах.

Режим координации с системой VSC

Для повышения эффективности работы системы VSC положение дроссельной заслонки регулируется совместно с ЭБУ системы противоскольжения.

Круиз-контроль

ЭБУ двигателя со встроенным ЭБУ круиз-контроля непосредственно регулирует положение дроссельной заслонки, поддерживая постоянную скорость движения.

Работа датчика положения педали акселератора в аварийном режиме

Рис. 2.44. Схема работы датчика положения педали акселератора в аварийном режиме

Для передачи сигнала датчика положения педали акселератора предусмотрено две цепи (основная и вспомогательная). При неисправности одной из цепей датчика ЭБУ двигателя определяет неправильную разность напряжения сигналов в двух цепях и переключается в аварийный режим. чтобы сохранить возможность управления автомобилем в аварийном режиме, для определения положения педали акселератора используется неповрежденная цепь.

Если неисправны обе цепи датчика, ЭБУ двигателя распознает неправильные напряжения сигналов в обеих цепях и отключает систему управления дроссельной заслонкой. В таком режиме автомобиль может двигаться с частотой вращения коленчатого вала, равной частоте вращения холостого хода.

Для передачи сигнала датчика положения дроссельной заслонки предусмотрено две цепи (основная и вспомогательная). При неисправности одной из цепей датчика ЭБУ двигателя определяет неправильную разность напряжения сигналов в обеих цепях, отключает питание электродвигателя привода дроссельной заслонки и переключается в аварийный режим. При этом под воздействием возвратной пружины дроссельная заслонка устанавливается в предварительно заданное приоткрытое положение. Таким образом, автомобиль может двигаться в аварийном режиме. Мощность двигателя при этом регулируется изменением объема впрыскиваемого топлива и изменением угла опережения зажигания, в зависимости от положения педали акселератора.

В таком же режиме будет осуществляться управление, если ЭБУ определит неисправность электродвигателя привода дроссельной заслонки.

Электронная система изменения фаз газораспределения WT-i

Рис. 2.45. Схема работы электронной системы изменения фаз газораспределения WT-i

Система VVT-i предназначена для регулирования угла поворота распределительного вала впускных клапанов в диапазоне 40° (по углу поворота коленчатого вала) и установки фаз газораспределения, оптимально соответствующих режимам работы двигателя. Система позволяет увеличить крутящий момент при любой частоте вращения коленчатого вала, а также помогает сократить расход топлива и уменьшить содержание вредных веществ в отработавших газах (рис. 2.45).

Рис. 2.46. Блок-схема электронной системы изменения фаз газораспределения WT-i

По частоте вращения коленчатого вала, объему воздуха, поступающего в двигатель, положению дроссельной заслонки и температуре охлаждающей жидкости ЭБУ двигателя определяет оптимальные фазы газораспределения для любых режимов работы двигателя и управляет гидравлическим клапаном изменения фаз. Кроме того, обрабатывая сигналы датчиков положения распределительного и коленчатого валов, ЭБУ двигателя определяет фактически установленные фазы газораспределения, обеспечивая обратную связь в управлении фазами газораспределения (рис. 2.46).

Блок управления WT-i

Рис. 2.47. Результат работы системы WT-i

Блок управления состоит из корпуса с приводом от цепи клапанного механизма и направляющего аппарата, соединенного с распределительным валом впускных клапанов.

Масло под давлением поступает по каналу впускного распределительного вала в гидравлический клапан, управляемый ЭБУ двигателя. Затем клапан перераспределяет масло в зависимости от команд ЭБУ либо в канал опережения, либо в канал запаздывания открытия впускных клапанов, что в свою очередь приводит к повороту направляющего элемента WT-i, обеспечивая при этом бесступенчатое изменение фаз газораспределения впускных клапанов.

Когда двигатель не работает, распределительный вал впускных клапанов занимает положение наибольшего запаздывания, обеспечивающее наилучшие пусковые характеристики двигателя.

Если сразу после запуска двигателя в блок управления VVT-i не подается масло под давлением, стопорный штифт блокирует вращение блока управления VVT-i, предотвращая детонацию.

Гидравлический клапан изменения фаз

Гидравлический клапан изменения фаз управляет положением золотникового клапана в соответствии с циклическими командами ЭБУ двигателя. В результате масло под давлением подается в контроллер WT-i, чтобы повернуть распределительный вал в сторону опережения или запаздывания. Когда двигатель не работает, гидравлический клапан изменения фаз газораспределения занимает положение наибольшего запаздывания.

Принцип работы (опережение)

Рис. 2.48. Блок управления WT-i

Если гидравлический клапан изменения фаз под воздействием сигналов опережения с ЭБУ двигателя расположен так, как изображено на рисунке 2.48, результирующее давление масла подается в направляющий элемент со стороны опережения, при этом распределительный вал поворачивается в направлении опережения угла открытия клапанов.

Принцип работы (запаздывание)

Рис. 2.49. Схема изменеия фаз золотникового клапана

Если гидравлический клапан изменения фаз под воздействием сигналов запаздывания с ЭБУ двигателя расположен так, как изображено на рисунке 2.49, то масло под давлением подается в направляющий элемент со стороны запаздывания, при этом распределительный вал поворачивается в направлении запаздывания угла открытия клапанов.

Рис. 2.50. Направление опережения угла открытия клапанов

Рис. 2.51. Направление запаздывания угла открытия клапанов

Фиксация вала в установленном положении

После установки распредвала в требуемое положение гидравлический клапан изменения фаз занимает нейтральное положение, фиксируя распредвал до тех пор, пока не изменятся условия движения. Таким образом, регулируются фазы газораспределения, и предотвращается ненужное в данный момент вытекание моторного масла.

Управление топливным насосом

Рис. 2.52. Блок-схема управления топливным насосом

На случай срабатывания подушки безопасности при фронтальном или боковом столкновении предусмотрена функция выключения подачи топлива с выключением топливного насоса. Функция активизируется по сигналу срабатывания подушки безопасности с блока датчиков подушек безопасности, который регистрируется ЭБУ двигателя; ЭБУ двигателя выключает реле размыкания цепи. После выключения подачу топлива можно возобновить и запустить двигатель поворотом ключа в замке зажигания из положения OFF в положение ON.

Управление отключением кондиционера воздуха

Рис. 2.53. Схема подключения на моделях без кондиционера

Рис. 2.54. Схема подключения на моделях с кондиционером

На моделях без кондиционера ЭБУ двигателя регулирует скорость вращения вентилятора системы охлаждения по сигналам датчика температуры охлаждающей жидкости.

На моделях с кондиционером предусмотрено две скорости вращения вентилятора системы охлаждения: низкая и высокая. ЭБУ двигателя дает команду на включение высокой скорости в зависимости от сигналов датчика температуры жидкости в системе охлаждения и датчика давления кондиционера. Управление низкой скоростью осуществляется блоком управления кондиционером.

Функция управления стартером «Полуавтоматический запуск»

Рис. 2.55. Блок-схема работы системы управления стартером

На новой модели автомобиля используется функция управления стартером «Полуавтоматический запуск». При нажатии кнопки запуска двигателя данная функция действует до тех пор, пока двигатель не запустится. При этом должна быть нажата педаль тормоза (на моделях с мультимодальной механической коробкой передач М-МТ) или педаль сцепления (на моделях с МКП). Таким образом, повышается надежность запуска двигателя и исключается возможность работы стартера после запуска двигателя.

Если ЭБУ двигателя получает с ЭБУ системы электропитания сигнал запуска, система следит за сигналом частоты вращения коленчатого вала (NE) и не выключает стартер до момента запуска двигателя. Кроме того, если ЭБУ двигателя получает с ЭБУ системы электропитания сигнал запуска, но определяет, что двигатель уже работает, он не включит стартер.

Принцип работы

Рис. 2.56. Диаграмма работы системы управления стартером

Как показано на рисунке 2.56, в момент получения ЭБУ двигателя сигнала запуска (STSW) от ЭБУ системы электропитания ЭБУ двигателя подает сигналы STAR и ACCR на ЭБУ системы электропитания. Последний в свою очередь подает сигнал на реле стартера для включения стартера. Если двигатель уже работает, ЭБУ двигателя не подает сигналы STAR и ACCR на ЭБУ системы электропитания. Поэтому ЭБУ системы электропитания не подает питание на реле стартера.

После включения стартера и после того, как частота вращения коленчатого вала превысит примерно 500 мин–1, ЭБУ двигателя определяет, что двигатель запущен, и выключает стартер.

Если в двигателе имеется неисправность, и он не заводится, стартер работает в течение максимально допустимого времени, после чего автоматически выключается. Максимальное время работы стартера составляет примерно от 2 до 25 с, в зависимости от температуры охлаждающей жидкости. Если температура охлаждающей жидкости очень низкая, стартер работает около 25 с, а при достаточно прогретом двигателе стартер работает не более 2 с.

Чтобы устранить дополнительную нагрузку при нестабильном напряжении во время запуска двигателя, на это время система отключает питание вспомогательного оборудования.

В системе предусмотрены следующие ступени защиты:

– если двигатель уже работает, стартер не включится, даже если повернуть ключ зажигания в положение START;

– даже если водитель удерживает ключ в замке зажигании в положении START, после того, как двигатель запускается с полуоборота, ЭБУ двигателя выключит стартер, когда частота вращения коленчатого вала достигнет значения примерно 1200 мин–1 или более;

– даже если водитель удерживает ключ в замке зажигании в положении START, и двигатель не запускается, ЭБУ двигателя выключит стартер примерно через 30 с;

– в случае если ЭБУ двигателя не получает сигнал частоты вращения двигателя при работающем стартере, он немедленно прекращает подачу сигналов STAR и ACCR.

Диагностика

Система диагностики типа EURO-OBD (Европейская система бортовой диагностики), используемая на двигателях 1ZZ-FE и 3ZZ-FE, удовлетворяет требованиям Европейских норм.

Если ЭБУ двигателя обнаруживает неисправность, он диагностирует и регистрирует в памяти неисправный узел. Кроме того, для информирования водителя на щитке приборов включается постоянно или начинает мигать контрольная лампа двигателя Chk Eng.

ЭБУ двигателя регистрирует в памяти также электронные коды DTC всех неисправностей. Эти коды можно считать с помощью микропроцессорного тестера П.

Все диагностические электронные коды DTC соответствуют кодам SAE. Некоторые DTC разбиты на более мелкие подразделы, чем ранее, подразделам присвоены новые коды DTC.

Рекомендация по техническому обслуживанию

Чтобы стереть хранящиеся в памяти ЭБУ двигателя электронные коды DTC, следует воспользоваться микропроцессорным тестером II, или отсоединить клемму аккумуляторной батареи, или извлечь предохранитель EFI не менее чем на минуту.

Работа системы в аварийном режиме

При обнаружении неисправности ЭБУ двигателя выключает или переводит двигатель в аварийный режим работы по данным, записанным в память.

carmanz.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *