Плюсы и минусы моторов с прямым впрыском
«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.
Снова те же грабли, но в XXI веке
Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.
Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.
На дизельных моторах непосредственный впрыск и ТНВД появился существенно раньше, и ресурс узлов был не таким уж низким. У бензиновых все получилось иначе: насосы оказались весьма недолговечными. Почему? Потому что дизтопливо имеет более высокие смазочные свойства, чем бензин, и без специальных смазывающих присадок ресурс всех узлов трения очень мал.
Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.
С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.
Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.
Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.
Статьи / История
Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском
Битва в воздухе Так уж получилось, что первые двигатели внутреннего сгорания были рассчитаны на работу на газовоздушной смеси, а вовсе не на жидкости. И именно возможность создания простейшего устройства испарения…
14853 3 5
Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.
Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.
Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».
Что же делать?
Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.
Под капотом 2015–н.в. Toyota Camry XLE
Статьи / Практика
Миллионники: самые надежные двигатели современности
У автовладельцев есть легенда. О двигателе, который-не-ломается. И даже не одна, а множество. Легенды эти обрастают со временем удивительными жизнеописаниями, порождают неутихающие споры…
768059 26 145
С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.
Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.
Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.
www.kolesa.ru
Бензиновый двигатель с непосредственным впрыском топлива: устройство и особенности
Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.
По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.
Читайте в этой статье
Прямой впрыск топлива: устройство системы непосредственного впрыска
Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.
Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.
Система непосредственного впрыска: конструктивные особенности
Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:
- контур высокого давления;
- бензиновый ТНВД;
- регулятор давления;
- топливную рампу;
- датчик высокого давления;
- инжекторные форсунки;
Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.
РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.
Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.
Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.
Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу и распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.
Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.
Как работает система непосредственного впрыска топлива
Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.
Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.
- Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
- Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
- Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.
За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».
Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).
В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.
Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.
Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.
Что в итоге
Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.
Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.
Читайте также
krutimotor.ru
Непосредственный впрыск топлива
Специально для тех, кто не знаком или плохо понимает, что же такое система непосредственного впрыска топлива на бензиновом моторе. Рассмотрим в этой статье устройство двигателей, принцип работы такой системы и ее отличия от обычного инжектора. Подробнее читайте далее.
Принцип действия
Суть системы заложена в ее названии, топливо (в нашем случае бензин) впрыскивается форсунками непосредственно в камеру сгорания.
Вы скажете: «а в «обычном» моторе оно куда впрыскивается, в выхлопную трубу?»
- В двигателях с обычным распределенным впрыском бензин попадает сначала во впускной коллектор, перед впускными клапанами, незадолго до их открытия.
Во впускном коллекторе он смешивается с воздухом и уже в таком состоянии поступает в цилиндры через впускные клапана.
- А вот в системе непосредственного впрыска бензин из форсунки распыляется прямо в цилиндр, а впускные клапана запускают в цилиндры только воздух.
Первый походу автомобиль с такой системой был мерседес 54 года выпуска, но в наше время более широкую известность получили первые моторы фирмы Mitsubishi.
У японцев они получили аббревиатуру GDI, что в России незатейливо окрестили «ДжеДАй», ну и моторы с таким типом впрыска в сервисах называют Джедаевскими .
[box type=»bio»] Итак, топливо у двигателей GDI впрыскивается прямо в цилиндр. Но это не единственное отличие от распределенного впрыска.[/box]
Джедаевские движки имеют обычно 2 топливных насоса, один насос находится в топливном баке (это обычный электронасос), а другой в большинстве случаев устанавливают на двигателе (это ТНВД, топливный насос высокого давления).
Ведь чтобы впрыснуть топливо во впускной коллектор то много силы не надо, а вот для впрыска бензина в цилиндр, да еще и на такте сжатия, нужна сила богатырская. Эту силу нам и дает насос высокого давления.
Давление на его выходе может достигать 30-110 бар, в зависимости от конкретного мотора. ТНВД в бензиновых моторах аналогичен по принципу действия насосам в дизелях.
Конечно же форсунки при непосредственном впрыске тоже имеют некоторые особенности, помогающие им функционировать при высоком давлении. В частности на той части, что вставляется в цилиндр есть специальное тефлоновое уплотнительное кольцо.
Что мы выяснили о системе непосредственного впрыска на данный момент?
[box type=»bio»] Топливо впрыскивается прямо в цилиндры и уже там смешивается с воздухом Давление впрыска высокое — 30-110 бар Два бензонасоса, электрический в баке и ТНВД Специальные форсунки, работающие при высоком давлении и температуре[/box]
Если в моторах распределенного впрыска в цилиндры поступает топливно — воздушная смесь (то есть смесь воздуха с топливом), то в системе прямого впрыска топливо и воздух поступают в цилиндры раздельно и смешиваются уже там.
Причем прямой впрыск топлива применяет несколько способов образования смеси. Смесь может быть однородной (гомогенной) и неоднородной (послойной).
В отличие от «обычных» впрысковых движков в двигателях GDI разное смесеобразование может применяться в одном двигателе. В зависимости от нагрузки двигателя и режима его работы блок управления переходит на то или иное смесеобразование.
Послойное смесеобразование
- Тут все просто: слои — это как лук . Общий смысл такой: Впускной коллектор разделен на две части, в нем имеются специальные дополнительные заслонки, которые могут перекрывать нижнюю часть коллектора.
- В результате перекрытия нижней части воздух поступает только через верхнюю часть и закручивается внутри цилиндра.
- Причем воздух в цилиндры поступает, как и положено, на такте впуска. То есть впускной клапан открыт и поршень идет вниз.
- А вот бензин впрыскивается уже на такте сжатия (поэтому и нужно высокое давление чтобы впрыск вообще произошел).
- На такте впуска поршень идет вниз, а поднимаясь вверх (это уже такт сжатия), он создает дополнительное завихрение воздуха.
Незадолго до момента искрообразования происходит впрыск бензина, воздушными завихрениями топливо сносит к свече зажигания.
На тот момент когда происходит искра, облако бензина находится как бы в воздушной оболочке. И в этой оболочке оно и сгорает. То есть сгорание происходит в окружении чистого воздуха.
Благодаря этому вокруг места горения образуется воздушная прослойка, которая снижает тепловые потери, создавая защитный слой между сгорающей смесью и стенками цилиндра.
В результате повышается КПД двигателя и соответственно уменьшается расход топлива.
Гомогенное смесеобразование
Здесь все немного проще, впрыск топлива происходит практически одновременно с впуском воздуха. Все это делается на такте впуска, то есть когда впускной клапан открыт и поршень идет вниз. Пока поршень сделает путь вниз и обратно вверх, смесь воздуха и бензина успеет перемешаться.
Так как топливо все-таки впрыскивается под высоким давлением, то улучшается смесеобразование, а это позволяет использовать бОльшее количество воздуха. Поэтому для таких моторов доступно применение турбокомпрессоров и нагнетателей. Тут прочитайте про основные неисправности инжектора.
Компоненты систем непосредственного впрыска
Здесь уже применяются некоторые дополнительные датчики. Топливо в систему подает электробензонасос в баке автомобиля, этот насос управляется своим собственным блоком управления и создает различное давление в зависимости от потребностей двигателя.
Давление электронасоса регулируется по показаниям датчика низкого давления. Он располоагается на трубопроводе, подводящем топливо к ТНВД.
- Давление топлива после ТНВД регулируется исходя из показаний датчика высокого давления, который устанавливается обычно в топливную рампу. Показания всех датчиков поступают в блок управления двигателем.
На насосе высокого давления расположен регулятор давления топлива, именно он и изменяет давление в зависимости от режима двигателя.
- Сам насос ТНВД приводится в движение при помощи кулачка на распредвалу.
В целом можно сказать что система прямого впрыска более продвинутая чем распределенный впрыск. Она позволяет получить гораздо лучшие характеристики при меньших затратах топлива. Но в нашей стране многие боятся двигателей GDI и им подобных как огня. Обосновывая свои страхи якобы дорогим ремонтом и высокими требованиями к качеству бензина.
Похожие статьи
www.em-grand.ru
Как работает непосредственный (прямой) впрыск топлива и чем он лучше?
Если Вы читали статью о том, как работает двигатель, то знаете, что бензиновые двигатели работают, высасывая смесь бензина и воздуха в цилиндр, сжимая его поршнем, когда тот движется вверх, и поджигая его искрой от свечи зажигания; в результате взрыва происходит сильное увеличение давления в камере сгорания, что приводит к движению поршня вниз, производя энергию — в конечном счёте вращательную.
Традиционная (непрямая) система впрыска топлива предварительно смешивает бензин и воздух в камере в непосредственной близости от цилиндра — камера эта называется впускным коллектором. В системе непосредственного впрыска, однако, воздух и бензин не смешиваются предварительно. Воздух поступает в камеру сгорания через впускной коллектор, в то время как бензин впрыскивается непосредственно в цилиндр. Именно так работает непосредственный впрыск топлива и поэтому он так называется.
Топливо-воздушная смесь в камере сгорания, клапаны, форсунка прямого впрыска и свеча зажигания
Плюсы прямого впрыска топлива
В сочетании с ультраточным управлением с помощью компьютера прямой впрыск обеспечивает более точное управление дозировкой топлива (количество впрыскиваемого топлива) и воздуха. Расположение инжектора также способствует более оптимальному распылению, которое разрушает струю жидкого бензина на более мелкие капельки и превращая его, можно сказать, в пыль. В результате обеспечивается более полное сгорание бензина, что очень важно, когда для сгорания этого выделяется так мало времени на высоких оборотах. Проще говоря, при непосредственном впрыске топлива больше бензина сжигается, что приводит к большей мощности и уменьшению загрязнения в расчёте на каждую каплю бензина.
Минусы непосредственного впрыска топлива
Основными недостатками двигателей с прямым впрыском бензина являются сложность этой системы и, как следствие, её конечная стоимость. Системы прямого впрыска дороже производить, потому что их компоненты должны быть более прочными и точными — они обращаются с топливом при значительно более высоких давлениях, чем косвенные системы впрыска, и, кроме того, сами форсунки должны быть в состоянии выдержать высокую температуру сгорания и разрушительное давление в цилиндре.
Насколько лучше прямой впрыск, чем непрямой?
Для примера, General Motors для автомобилей Cadillac CTS производит два аналогичных двигателя с прямым и косвенным впрыскиванием — 3,6-литровый двигатель V6. Двигатель с непрямым впрыском производит 263 лошадиных силы, в то время как версия с непосредственным впрыском топлива развивает 304 лошадиные силы. Несмотря на увеличенную мощность, двигатель с непосредственным впрыском в то же время более экономичен — 18 миль на галлон против 17 миль на галлон бензина в условиях города и равный расход в условиях трассы. Ещё одно преимущество двигателей с непосредственным впрыском топлива — это то, что в силу особенности своей технологии они менее требовательны к октановому числу бензина.
Технология прямого впрыска далеко не новая — она известна ещё примерно с середины 20-го века. Однако, тогда всего несколько автопроизводителей приняли её для массового производства автомобилей. Тогда, из-за дороговизны производства и отсутствия должного ассистирования компьютера, механический карбюратор был доминирующим в системах подачи топлива — вплоть до 1980-х годов. Тем не менее, давние и непрекращающиеся циклические события, такие как резкий рост цен на топливо и ужесточения в законодательстве по экономии топлива и экологичности выбросов, привели многих автопроизводителей к началу разработки системы прямого впрыска топлива. Вы, скорее всего, будете видеть больше и больше автомобилей, использующих непосредственный впрыск топлива, в ближайшем будущем.
Более того, практически все дизельные двигатели используют прямой впрыск топлива. Впрочем, дизели используют немного другой процесс сжигания топлива: бензиновые двигатели сжимают смесь бензина и воздуха и поджигают его искрой, в то время как дизели сжимают воздух, и только затем распыляют топливо в камеру сгорания, которое воспламеняется от температуры сжатого воздуха и его давления.
howcarworks.ru
Непосредственный впрыск
В последние годы даже на рынке подержанных автомобилей с пробегом по России все реже встречаются машины с бензиновыми моторами, оснащенные карбюраторами. Впрысковые силовые агрегаты позволяют избежать многих неприятностей, связанных с запуском, регулировкой и расходом топлива. Но все чаще на дорогах нашего региона появляются автомобили Mitsubishi с системой непосредственного впрыска GDI, о которой слышны самые противоречивые отзывы. Вслед за ней Toyota стала оснащать свои автомобили подобной – D4, а Nissan – NEO DI. Что же это за системы?
Система GDI стала результатом 15-летней деятельности концерна Mitsubishi по внедрению немецкой разработки для авиации на автомобильный двигатель, и стала применяться с 1995 года. Она позволяет сочетать плюсы бензинового и дизельного моторов: отменную динамику и высокую топливную экономичность соответственно. А так как компания запатентовала более 200 решений, это позволило создателям назвать ее именно «Прямым впрыском топлива» (Gasoline Direct Injection) – GDI. Обычные двигатели с распределенной электронной системой не имеют возможности работать на столь бедной смеси, на которой разработка MMC нормально функционирует в режиме холостого хода – отношение воздуха и бензина составляет 30:1 или даже 40:1. Кроме того, за счет эффекта охлаждения воздуха при его подаче, улучшается наполнение цилиндров, предотвращается детонация, что в свою очередь позволяет повысить степень сжатия двигателя и его удельную мощность (например, у двигателя Pajero 1998 степень сжатия составляет 10,4, а на модели 2006 года — 11).
Теперь немного подробнее о конструкции четырех ключевых технологий впрыска GDI, отличающих его от классической распределенной системы: прямые вертикальные впускные каналы обеспечивают обратное вихревое движение воздушного заряда. Кроме того, их форма и длина улучшают наполнение цилиндров воздухом. Вогнутое днище поршня уникальной формы направляет воздушную смесь прямо к свече зажигания, обеспечивая тем самым работу мотора на сверхбедных смесях. Топливный насос высокого давления (ТНВД), оснащенный датчиком давления для точного дозирования поступления бензина, нагнетает его под давлением 5 МПа. Задачей форсунок высокого давления является создание формы топливного факела в соответствии с режимом работы двигателя. В мощностном режиме ра
autooboz.info
Непосредственный впрыск.
Непосредственный впрыск GDI — революция на границе тысячелетий.
Уже более 100 лет на автомобили устанавливают бензиновый и дизельный ДВС. Мы давно к ним приспособились, и хорошо зная их достоинства и недостатки, применяем тот или иной по обстоятельствам.
Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит «покушать», причем недешево. Поэтому мы его чаще видим на легковых и небольших грузовых автомобилях.
Дизель и сам по себе стоит дороже, и дороже в обслуживании, не столь быстроходен, выдает меньшую мощность с литра рабочего объема, имеет повышенный уровень шума и хуже пускается. Зато, и это главное, потребляет куда меньше топлива, причем более дешевого. Понятно, что практически весь тяжелый и комерческий транспорт «ездит» на дизелях.
Но лишних денег не бывает, и покупатели легковых автомобилей, причем не только в Европе, все чаще задумываются о том, какой двигатель им предпочесть. И довольно часто выбирают дизель. Хотя еще лучше , если бы два в одном… И быстрый , и тихий, и с легким пуском, и чтобы топливо зимой не застывало, да и мощность повыше не помешает, но вот только бы «ел» поменьше.
Но чудес не бывает. Есть теория двигателей…
Простыми словами. Чтобы топливо сгорало, нужен воздух. Но надо смешать с воздухом столько топлива, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим, и оно, конечно же , давно известно. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14.7 : 1 то есть на 1 грамм бензина нужно 14.7 грамма воздуха. Смесь в которой воздуха больше, чем нужно, называют «бедной», а там, в которой воздуха меньше, чем нужно, называется «богатой». Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает» в трубу и растет выброс угарного газа.
Но воздух нужен не только для сгорания . Чем выше давление в цилиндре перед воспламенением смеси, тем больше отдача двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска; тем больше потом будет давление.
А теперь разберемся, почему дизель экономичнее.
Вспомним, как работает двигатель внутреннего сгорания. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем он сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и при этом еще и нагревается. В конце сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя. Для современного безнаддувного дизеля вполне нормальна степень сжатия 20, а у серийных бензиновых, даже самых «зажатых», едва достигает 11. А выше давление в цилиндре, выше и эффективность. Поднять выше степень сжатия в бензиновом моторе мешают такие явления как детонация и калильное зажигание.
Детонация — очень быстрое сгорание топлива в точках удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук, мы слышим , когда например, на «Жигулях» пытаемся резко разогнаться после заправки низкооктановым бензином.
Калильное зажигание — преждевременное, (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания (например от того же электрода свечи). Длительная работа с детонацией и калильным зажиганием недопустима для двигателя и ведет к его разрушению.
Детонация и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (98). но выше степени 11 и этого «не хватает».
Теперь посмотрим, что происходит при малых нагрузках. Вот мы убавили газ и поехали медленнее. Что это значит для бензинового мотора? Когда мы отпускаем педаль акселератора, на впуске перекрывается дроссельная заслонка, а это значит, что мы уменьшаем не только количество подаваемого топлива, но и количество воздуха. Меньше воздуха в цилиндре — меньше давления в конце сжатия.
А как же бензиновый двигатель с впрыском топлива? Ведь там то можно уменьшить подачу топлива, не уменьшая количество воздуха. Можно, но до определенного предела. Потому, что слишком бедная смесь не будет поджигаться искрой, и чтобы смесь не обеднилась слишком сильно, дроссель все же придется прикрыть, и давление снизится. Меньше давление в цилиндре — меньше момент на выходе.
А что значит отпустить педаль у дизеля? Это значит, что в цилиндр будет подаваться меньше топлива. Но количество всасываемого воздуха останется прежним, и давление в конце такта впуска не изменится. Да, смесь в цилиндре станет бедной , но дизель благополучно работает и на бедной смеси, ведь там другой принцип воспламенения и другое топливо..
И дизель остается эффективным и при малых нагрузках.
Вот, мы и дошли до главного, если мы хотим сделать бензиновый двигатель экономичным, и при этом более мощным, то мы должны избавить его от детонации и научить питаться бедной смесью.
На некалорийной пище. Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем 17:1. Но ведь можно заполнить чилиндр более бедной смесью, а непосредственно к свече подавать более богатую,которая загорится. В форкамерном двигателе эта идея и была заложена.
Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование внешнее — форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалась непосредственно в цилиндр….
Бензиновые двигатели с непосредственным впрыском появились довольно давно и применялись в авиации уже в годы Второй Мировой войны. Двигатели для автомобилей тоже разрабатывались, по крайней мере в нашей стране их испытывали уже в конце 40-х. Однако еще долгое время не удавалось справиться с серьезными недостатками непосредственного впрыска, в частности — «дизельным» дымлением на мощностных режимах. Да и мотор получался довольно дорогим, а потому экономически невыгодным. И непосредственным впрыском практически перестали заниматься.
Но не японцы. На Mitsubishi раньше других осознали, какую пользу может принести непосредственный впрыск в условиях ожесточения экологических норм, а бензин в Японии дешевым никогда не был. 15 лет усилий увенчались успехом, первые доведенные до готовности моторы с непосредственным впрыском бензина были представлены публике на Фракфуртском и Токийском автосалонах осенью 1995 года. Их обозначили GDI (Gasoline Direct Injection — непосредственный впрыск бензина). Спустя год на японском рынке появился серийный Mitsubishi Galant 1.8 GDI и наконец, в 1997 году европейцам была предложена Carusma с двигателем 1.8 GDI.
Как устроен GDI. Действительно, этот двигатель напоминает по конструкции обычный бензиновый и дизель. В каждом цилиндре присутствует и свеча зажигания и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм). Форсунка обеспечивает два режима впрыска топлива.
Обратим внимание на следующие особенности . Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке ( такая организация воздушного потока позволяет достичь оптимальныой концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количество воздуха входит по инерции.
Поршень необычный , сверху есть выемка сферической формы. Форма поршня обеспечивает три важных функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.
Как работает GDI. В работе GDI различают три возможных режима в зависимости от режима движения.
Работа на сверхбедных смесях. Этот режим используется на малых нагрузках: при спокойной городской езде и загородном движении на скорости до 120 км/час. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия. Топливо впрыскивается компактным факелом и смешиваясь с воздухом, направляется сферической выемкой поршня. В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.
Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Но поскольку было бы желательно повысить степень сжатия, то важным становится недопустить детонацию и калильное зажигание. Впрыск топлива осущесвтляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и испаряясь, охлаждает воздух в цилиндре. Благодаря охлаждению снижается поверхность детонации и калильного зажигания.
И еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора.
Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации еще возрастает. Поэтому впрыск осущесвтляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр наполняется сверх бедной смесью (примерно 60:1), в котором детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, ктоторая доводит соотношение воздуха и топлива в цилиндре до 12:1. А на подготовку детонации времени уже не остается.
Итак, что в конце концов получается на выходе. Степень сжатия удалось поднять до 12-12.5, улучшилось наполнение воздухом. Двигатель устойчиво работает и на очень бедной смеси. Результат: по сравнению с «обычным» бензиновым двигателем GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа.
Но это в Японии. Из-за того, что бензин в Европе содержит больше серы, при подготовке европейской версии мотора, от одного из преимуществ, повышения мощности, пришлось отказаться…
Но это уже история. Сегодня двигатели с непосредственным впрыском топлива GDI успешно устанавливаются на многих моделях автомобилей разных марок и производителей…
www.gpmar.ru
gpmar.ru
Непосредственный впрыск топлива
В поисках способа усовершенствовать систему распределенного впрыска инженеры пришли к выводу, что для оптимизации сгорания топлива его лучше впрыскивать прямо в цилиндры, а не во впускной коллектор. Эта идея привела к появлению систем впрыска нового поколения.
История создания непосредственного впрыска топлива
Изобретателем системы непосредственного впрыска принято считать французского инженера и автопромышленника Леона Левассора. Он установил первую систему подобного рода на авиационный двигатель V8 в качестве экспериментальной, с целью решить основную проблему самолетных двигателей внутреннего сгорания — нарушения работы впрыска в момент переворота аэроплана. В 1907 году этим двигателем был оснащен моноплан Antoinette VII.
Первую автомобильную систему непосредственного впрыска разработала компания Bosch, а установлена она была впервые на автомобили ныне несуществующих немецких марок Goliath и Gutbrod в 1952 году.
Непосредственный впрыск топлива.В семидесятые годы, побуждаемая топливным кризисом, американская компания AMC занялась разработкой собственной системы непосредственного впрыска, которой впоследствии оснащали двигатели одноименных автомобилей. Система называлась SCFI. Примерно в те же годы концерн Ford выпустил на рынок собственную разработку под названием ProCo.
В современном автопроме первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году
Системы обладали рядом недостатков, и после окончания кризиса интерес к непосредсвенному впрыску снизился. Следующая волна разработок пришлась на середину девяностых.
Первой активно начала продвигать непосредственный впрыск компания Mitsubishi в 1996 году, установив систему GDI на четырехцилиндровый двигатель 4G93 автомобиля Galant.
В 2000 году появилась, вероятно, наиболее известная в наши дни система непосредственного впрыска FSI концерна Volkswagen-Audi group
Toyota выпустила собственную систему D4 на внутренний рынок Японии в 1998 году. В 1999 была представлена система IDE компании Renault.
В 2000 году появилась система FSI (и TFSI в случае установки на двигатель турбины) концерна Volkswagen-Audi group.
В дальнейшем в том или ином виде свои системы представили все крупнейшие мировые производители. Непосредственный впрыск остается крайне актуальной темой в связи с интересом к экономии и жестким экологическим нормам в современном автомобилестроении.
Принцип работы непосредственного впрыска топлива
Непосредственный впрыск топлива — разновидность распределенного впрыска, применяемая в наиболее современных двухтактных и четырехтактных двигателях внутреннего сгорания.
Наиболее широкое распространение система получила в современных дизельных двигателях, так как дизельное топливо тяжелее бензина, и проблема оптимизации сгорания для них более актуальна
В системах непосредственного впрыска топливо сначала аккумулируется в магистрали под высоким давлением (более высоким, чем в обыкновенных инжекторных системах), а затем при помощи форсунок впрыскивается непосредственно в цилиндры, то есть в камеру сгорания, куда заранее уже закачан воздух.
При непосредственном впрыске топливо-воздушная смесь преднамеренно обеднена, что способствует повышению экономичности двигателя. При этом проблема снижения мощности решается за счет более эффективного распрыскивания топлива. Одно и то же количество топлива в зависимости от размера капель при распрыскивании сгорает по разному. Мелкие капли, смешавшись с воздухом, образуют в камере сгорания туман, в котором пламя распространяется равномерно. Топливо при таком распрыскивании сгорает практически без остатка, и продуктов сгорания почти не остается. При таком сгорании меньшая доза топлива отдает столько же тепла, сколько отдает большая доза при распрыскивании относительно крупными каплями. В последнее время исследования по оптимизации сгорания продолжаются. Наиболее перспективным направлением считается развитие послойного впрыска. Топливо при послойном впрыске попадает в камеру сгорания несколькими частями с очень малым интервалом. Этот алгоритм позволил добиться дополнительной оптимизации сгорании топлива.
Единственный недостаток непосредственного впрыска — усложнение конструкции и увеличение себестоимости компонентов. Производителям приходится проводить отладку системы уже после начала продаж
Дополнительная экономия достигается за счет точной дозировки топлива и открытия форсунок в строго определенное время. Благодаря компьютерному управлению момент и период открытия форсунок могут оперативно изменяться в зависимости от текущей нагрузки на двигатель.
В системах непосредственного впрыска основной упор сделан на дозировку топлива, поэтому роль дроссельной заслонки в регулировке состава смеси постепенно сходит на нет. По сути, в системах, подобных Valvetronic компании BMW, VVEL фирмы Nissan, Valvematic фирмы Toyota или MultiAir производства Fiat, дроссельная заслонка перестала быть главным инструментом, регулирующим поток воздуха, попадающего в камеру сгорания. Помимо системы дозировки топлива, функцию дроссельной заслонки отчасти взяла на себя система интеллектуального контроля фаз газораспределения.
Непосредственный впрыск конструктивно сближает систему впуска бензинового и дизельного двигателей
Благодаря применению непосредственного впрыска топлива появилась возможность заложить в блок управления разные программы управления впрыском и зажиганием, регулирующие работу режима в основных режимах, как правило, в трех — холостые обороты (и близкие к ним), движение под большой нагрузкой, движение при малой нагрузке. В каждом из этих режимов количество топлива в смеси разное. В режиме преднамеренно обедненной смеси достигается наибольшая экономичность, в стехиометрическом (то есть близком к оптимальному) сохраняется уверенная тяга при средней нагрузке, в форсированном — двигатель развивает максимальную мощность. Во время движения автомобиля блок управления двигателем постоянно меняет эти режимы, в зависимости от ситуации.
Режимы работы непосредственного впрыска
Режим обедненной смеси используется, когда нагрузка на двигатель минимальна: при движении на постоянной или снижающейся скорости.
Обычное, так называемое стехиометрическое (оптимальное) соотношение масс воздуха и бензина в камере сгорания, необходимое для успешного зажигания и сгорания топливо-воздушной смеси — 14.7:1. Однако в вышеописанных ситуациях, то есть когда обороты двигателя быстро или постепенно замедляются, его можно без вреда для двигателя менять в пользу меньшего количества топлива. Таким образом, в режиме обедненной смеси количество долей воздуха может достигать 65 (а иногда и более) к одной доле топлива.
В сложной системе непосредственного впрыска повышается вероятность сбоя. Известны случаи отзыва автомобилей, оснащенных системами впрыска этого типа
Стехиометрический режим используется при равномерном движении с постоянной нагрузкой на двигатель. В этом режиме воздух и топливо смешиваются в идеальной пропорции, что способствует полному сгоранию.
В форсированном режиме содержание топлива в смеси слегка превышено. Это способствует развитию максимальной мощности, что целесообразно, к примеру, для нагруженного автомобиля, движущегося в гору.
blamper.ru