ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году

[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.

[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».

[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

dic.academic.ru

дизель — это… Что такое дизель?

  • ДИЗЕЛЬ-Е — ДИЗЕЛЬ … Первая часть сложных слов со знач. относящийся к дизелю, дизельный, напр. дизель поезд, дизель электроход, дизель мотор. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • дизель-… — ДИЗЕЛЬ … Первая часть сложных слов со относящийся к дизелю, дизельный, напр. дизель поезд, дизель электроход, дизель мотор. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ДИЗЕЛЬ — (Diesel engine) см. Двигатель внутреннего сгорания. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 Дизель двигатель внутреннего сгорания (че …   Морской словарь

  • дизель — ДИЗЕЛЬ, я, м. 1. Дурак, придурок. Полный дизель! Одни дизеля собрались! 2. Дисциплинарный батальон, дисбат, а также солдат, находящийся в дисбате. 2. из арм …   Словарь русского арго

  • ДИЗЕЛЬ — ДИЗЕЛЬ, поршневой двигатель внутреннего сгорания с воспламенением от сжатия. Работает на дизельном топливе, экономичен. Применяется в основном на судах, тепловозах, грузовых автомобилях, тракторах и других сельскохозяйственных машинах, дизельных… …   Современная энциклопедия

  • ДИЗЕЛЬ — поршневой двигатель внутреннего сгорания с воспламенением от сжатия. Работает на дизельном топливе, экономичен. Применяется в основном на судах, тепловозах, грузовых автомобилях, тракторах, дизельных электростанциях. Назван по имени Р. Дизеля …   Большой Энциклопедический словарь

  • ДИЗЕЛЬ — (Diesel) Рудольф (1858 1913), немецкий инженер, изобретатель ДИЗЕЛЬНОГО ДВИГАТЕЛЯ. Разработал, запатентовал и сконструировал этот двигатель на протяжении 1890 х гг. Впоследствии организовал завод по производству двигателей в Аугсбурге (Германия) …   Научно-технический энциклопедический словарь

  • ДИЗЕЛЬ — ДИЗЕЛЬ, дизеля, муж. (тех.). Двигатель внутреннего сгорания, работающий на нефти. (По имени изобретателя, нем. инженера.) Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ДИЗЕЛЬ — ДИЗЕЛЬ, я, мн. и, ей и (разг.) я, ей, муж. Поршневой двигатель внутреннего сгорания, работающий на жидком топливе. | прил. дизельный, ая, ое. Дизельное топливо. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • дизель — сущ., кол во синонимов: 5 • авиадизель (1) • агрегат (34) • газодизель (1) • …   Словарь синонимов

  • дизель — 1) тип движка; 2) авто с дизельным двиглом; 3) блатное название автобуса. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • dic.academic.ru

    Как работает дизельный двигатель автомобиля

    Согласно сложившимся представлениям, дизельные двигатели производят много шума, неприятно пахнут и не дают нужной мощности. Считается, что они пригодны лишь для грузовых автомобилей, фургонов и такси. Возможно, в 1980-х гг. все было так, однако с тех пор ситуация в корне поменялась. Дизельные двигатели и органы управления системами впрыска топлива стали гораздо более совершенными. В 1985г. в Великобритании было продано почти 65 000 автомобилей с дизельными двигателями (примерно 3,5% от общего количества проданных автомобилей). Для сравнения, в 1985г. было продано всего 5380. (данные, вероятно, для рынка США).

    Основные части дизельного двигателя должны быть прочнее, чем части двигателя, работающего на бензине.

    Зажигание. Для зажигания не требуются искры, т.к. смесь воспламеняется под действием компрессии.

    Запальные свечи. Нагревают камеру сгорания при холодном старте.

    Многие дизельные двигатели были созданы на основе бензиновых двигателей, однако их основные детали обладают повышенной прочностью и способны выдерживать высокое давление.

    Топливо попадает в двигатель за счет нагнетательного насоса с дозатором, который обычно прикреплен к боку блока цилиндров.  В системе не используется электрическое зажигание.

    Основным преимуществом дизельных двигателей перед бензиновыми является снижение эксплуатационных расходов. Дизельные двигатели обладают большей эффективностью за счет сильной компрессии и низкой стоимости топлива. Разумеется, цены на дизель могут варьироваться, поэтому автомобиль с дизельным двигателем обойдется вам дорого, если вы живете в регионе с высокими ценами на дизельное топливо. Кроме того, таким автомобилям реже требуется техобслуживание, однако замена масла для них организуется чаще, чем для автомобилей, которые работают на бензине.

    Повышение мощности

    Основным недостатком дизельных двигателей является их малая мощность по сравнению с бензиновыми двигателями равного объема.

    Эту проблему можно решить, просто увеличив объем двигателя, однако зачастую это приводит к значительному утяжелению автомобиля.

    Некоторые производители снабжают свои двигатели турбонагнетателями, чтобы повысить их конкурентоспособность. К примеру, производством турбодизелей занимаются Rover, Mercedes, Audi и VW.

    Как работают дизельные двигатели

    Впуск

    При движении поршня вниз по цилиндру открывается впускной клапан, впускающий воздух.

    Компрессия

    Когда поршень доходит до нижнего основания цилиндра, впускной клапан закрывается. Поршень поднимается, сжимая воздух.

    Зажигание

    Топливо впрыскивается в цилиндр, когда поршень доходит до верхнего основания. При этом топливо воспламеняется и снова приводит поршень в движение.

    Выпуск

    На обратном пути поршень открывает клапан выпуска, и отработанный газ выходит из цилиндра.

    Четырехтактные дизельный и бензиновый двигатели работают по-разному, несмотря на то, что в их состав входят одинаковые компоненты. Основное отличие заключается в способе зажигания топлива и управления получаемой в результате энергией.

    В двигателе, работающем на бензине, смесь воздуха и топлива зажигается от искры. В дизельном двигателе топливо воспламеняется под действием сжатого воздуха. В дизельных двигателях воздух сжимается в среднем в соотношении 1/20, в то время для бензиновых двигателей — это соотношение в среднем равно 1/9. Такое сжатие сильно нагревает воздух до температуры, достаточной для мгновенного воспламенения топлива, поэтому при использовании дизельного двигателя нет нужды в искрах или других способах зажигания.

    Бензиновые двигатели поглощают очень много воздуха за один такт поршня (конкретный объем зависит от степени открытия отверстия дросселя). Дизельные двигатели всегда поглощают один и тот же объем, который зависит от скорости, при этом воздухопровод не оснащен дросселем. Его перекрывает один впускной клапан, а в двигателе отсутствует карбюратор и дисковый затвор.

    Когда поршень достигает нижнего основания цилиндра, впускной клапан открывается. Под действием энергии от других поршней и импульса от махового колеса поршень отправляется к верхнему основанию цилиндра, сжимая воздух примерно в двадцать раз.

    Как только поршень достигает верхнего основания, в камеру сгорания впрыскивается тщательно отмеренный объем дизельного топлива. Нагретый при сжатии воздух мгновенно воспламеняет топливо, которое расширяется при сгорании и снова отправляет поршень вниз, поворачивая коленчатый вал.

    Когда поршень двигается вверх по цилиндру на такте выпуска, выпускной клапан открывается, позволяя отработанным и расширившимся газам выйти в выхлопную трубу. В конце такта выпуска цилиндр снова готов к новой порции свежего воздуха.

    Конструкция дизельного двигателя

    Дизельный и бензиновый двигатель состоят из одинаковых частей, которые выполняют одни и те же функции. Тем не менее, части дизельного двигателя обладают повышенной прочностью, т.к. они призваны выдерживать большую нагрузку.

    Стенки блока дизельного двигателя обычно намного толще стенок блока бензинового двигателя. Они укреплены дополнительными решетками, которые блокируют импульсы. Помимо этого, блок дизельного двигателя эффективно поглощает шумы.

    Поршни, шатуны, валы и крышки корпуса подшипников изготавливаются из самых прочных материалов. Головка цилиндра дизельного двигателя имеет особый вид, связанный с формой форсунок, а также формами камеры сгорания и вихрекамеры.

    Впрыск

    Для плавной и эффективной работы любого двигателя внутреннего сгорания требуется правильная смесь воздуха и топлива. Для дизельных двигателей эта проблема особенно актуальна, т.к. воздух и топливо подаются в разное время, смешиваясь внутри цилиндров.

    Впрыск топлива в двигатель может быть прямым и непрямым. По сложившейся традиции чаще используется непрямой впрыск, т.к. он позволяет создавать вихревые потоки, которые смешивают топливо и сжатый воздух в камере сгорания.

    Прямой впрыск

    При прямом впрыске топливо опадает прямо в камеру сгорания, расположенную в головке поршня. Такая форма камеры не позволяет смешивать воздух с топливом и поджигать получившуюся смесь без жесткого стука, характерного для дизельных двигателей.

    В двигателе с непрямым впрыском обычно присутствует небольшая спиральная вихрекамера (форкамера). Перед попаданием в камеру сгорания топливо проходит через вихрекамеру, и в нем образуются вихревые потоки, обеспечивающие лучшее смешивание с воздухом.

    Недостатком такого подхода является то, что вихрекамера становится частью камеры сгорания, а значит, вся конструкция приобретает неправильную форму, вызывает проблемы при сгорании и негативно влияет на эффективность работы двигателя.

    Непрямой впрыск

    При непрямом впрыскивании топливо попадает в небольшую форкамеру, а оттуда — в камеру сгорания. В результате конструкция приобретает неправильную форму.

    Двигатель с прямым впрыском не оборудован вихрекамерой, и топливо прямиком попадает в камеру сгорания. При проектировании камер сгорания в головке поршня инженеры должны уделять особое внимание их форме, чтобы обеспечить достаточную силу вихрей.

    Запальные свечи

    Чтобы разогреть головку блока цилиндров и блок цилиндров перед холодным стартом, в дизельных двигателях используются запальные свечи. Короткие и широкие свечи являются составной частью электросистемы автомобиля. При включении питания элементы в свечах очень быстро нагреваются.

    Запальные свечи включаются при особом повороте колонки рулевого управления или с помощью отдельного переключателя. В последних моделях свечи выключаются автоматически, как только двигатель разогревается и разгоняется до скорости, превышающей скорость холостого хода.

    Управление скоростью

    В отличие от бензиновых двигателей, в дизельных двигателях отсутствует дроссель, поэтому объем потребляемого ими воздуха остается неизменным. Частота вращения двигателя определяется только объемами топлива, впрыскиваемого в камеру сгорания. Чем больше топлива, тем больше энергии выделяется при сгорании.

    Педаль газа подключена к датчику в система зажигания, а не к дросселю, как в автомобилях, которые работают на бензине.

    Для остановки дизельного двигателя по-прежнему необходимо повернуть ключ зажигания. В бензиновом двигателе при этом исчезает искра, а в дизельном — отключается соленоид, отвечающий за подачу топлива в насос. После этого двигатель расходует оставшееся в нем топливо и останавливается. По факту, дизельные двигатели останавливаются быстрее, чем бензиновые, потому что высокое давление сильно замедляет ход.

    Как заводится дизельный двигатель

    Дизельные двигатели, подобно бензиновым, заводятся при включении электромотора, запускающего цикл сжатия и воспламенения. Тем не менее, при низкой температуре дизельные двигатели заводятся с трудом, потому что сжатый воздух не разогревается до температуры, необходимой для воспламенения топлива.

    Для решения этой проблемы производители изготавливают запальные свечи. Запальные свечи представляют собой питаемые от батареи электроотопители, которые включаются за несколько секунд до запуска двигателя.

    Дизельное топливо

    Топливо, используемое в дизельных двигателях, сильно отличается от бензина. Оно не проходит очистку, а потому представляет собой вязкую тяжелую жидкость, которая испаряется довольно медленно. Благодаря этим физическим свойствам дизельное топливо иногда называют дизельным маслом или мазутом.  В сервисных центрах и на заправках автомобили, работающие на дизельном топливе, часто называют дервами (от diesel-engined road vehicles).

    В холодную погоду дизельное топливо быстро густеет или даже замерзает. Кроме того, в нем содержится небольшое количество воды, которая также может замерзнуть. Все виды топлива поглощают из атмосферы воду. Более того, она нередко проникает в подземные резервуары. Допустимое содержание воды в дизельном топливе — 0,00005-0,00006%, т.е. четверть стакана воды на 40 литров топлива.

    Лед или водяная пробка может заблокировать топливопроводы и форсунки, что делает невозможной работу двигателя. Именно поэтому в холодную погоду можно увидеть водителей, которые пытаются подогреть топливопровод с помощью паяльника.

    В качестве превентивной меры можно возить с собой дополнительный бак, однако современные производители уже добавляют в топливо примеси, которые позволяют использовать его при температуре выше -12-15°C.

    17koles.ru

    Дизельный двигатель

    В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

    Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

    Содержание статьи

    Принцип работы

    На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

    В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

    Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

    Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

    Конструкция

    Особенности

    Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

    Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

    Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

    Поршни и свечи дизеля

    Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

    Типы камер сгорания

    Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.

    Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

    Камеры сгорания дизельного двигателя

    При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

    Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

    Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

    Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в
    цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

    Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

    Системы питания

    Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

    Система питания дизельного двигателя

    Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

    Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

    Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

    Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

    Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

    Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

    Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

    В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

    Насос-форсунка дизельного двигателя

    В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

    Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

    Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

    Система питания Common Rail

    Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

    Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

    Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

    Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

    Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

    Турбодизель

    Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

    Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

    На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

    В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

    Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

    avtonov.info

    Как работает дизельный двигатель?

    История дизельного двигателя

    История дизеля начинается почти с изобретения бензинового двигателя. Николаус Август Отто изобрел и запатентовал бензиновый двигатель в 1876 году, который использовал принцип четырёхтактного сгорания, также известный на западе как «цикл Отто«, и это основная предпосылка для большинства автомобильных двигателей сегодня. В своей ранней стадии, однако, бензиновый двигатель был крайне неэффективным в своей работе, поэтому в те времена ещё долгое время широко использовался паровой двигатель для транспортировки всего, что было нужно транспортировать. Главным недостатком в работе обоих двигателей было то, что они эффективно использовали только около 10 процентов топлива из всего поступающего топлива в эти типы двигателей. Остальная часть просто превращалась в бесполезное тепло, а бензин выходил с выхлопом не сгоревшим.

    Дизельный двигатель Porsche Cayenne S 2013 модельного года

    Уже через 2 года — в 1878 году — Рудольф Дизель во время посещения политехнической средней школы в Германии (эквивалент инженерного университета в России) узнал о низкой эффективности работы бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя, который мог бы работать с более высокой эффективностью, и он посвятил бóльшую часть своего времени на развитие такой технологии, которая бы позволила расходовать природные ресурсы нашей планеты гораздо эффективнее. И вот, наконец, только к 1892 году Дизель получил патент за то, что мы сегодня называем дизельным двигателем.

    Рудольф Дизель и изобретённый им дизельный двигатель

    Но если дизельные двигатели работают настолько эффективно, почему бы нам не использовать их чаще? Почему бы нам, в конце концов, не использовать только их? Вы можете увидеть слова «дизель», «солярка» и подумать о здоровенных грузовых автомобилях, извергающих из длинной выхлопной трубы чёрный, закопчённый дым при работе двигателями и создавая при этом довольно громкий гремящий шум. Этот негативный образ дизельных грузовиков сделал дизель менее привлекательным для обычных водителей в нашей стране, хотя дизель отлично подходит для перевозки крупных партий на большие расстояния, он практически никогда не был лучшим выбором для легковых автомобилей. Тем не менее, на сегодняшний день ситуация начинает меняться, и дизелем комплектуются даже заряженные версии легковых авто и изредка даже спортивные машины, так как современные технологии значительно улучшили дизельный двигатель, сделав его намного чище (экологичнее) и менее шумным.

    А это дизельный двигатель большого теплохода мощностью около 10 000 лошадиных сил

    Объясняя, как работает дизельный двигатель, мы будем опираться на то, что Вы уже знаете, как работает бензиновый четырёхтактный двигатель. Поэтому, если Вы ещё не сделали этого, Вам, вероятно, будет лучше прочитать сначала соответствующую статью, чтобы получить ряд знаний и азов по основам двигателя внутреннего сгорания.

    Дизель против бензина

    (Основная статья-сравнение бензинового и дизельного двигателей)

    В теории дизельный и бензиновый двигатели очень похожи. Они оба являются двигателями внутреннего сгорания, предназначенными для преобразования химической энергии топлива в доступную для дальнейшего движения автомобиля механическую энергию. Эта механическая энергия получается за счёт движения поршней вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом через шатуны, а сам коленвал имеет форму зигзага — получается, что линейное движение поршней создаёт вращательное движение коленвала, необходимое, чтобы повернуть колёса автомобиля и привести его (авто) в движение.

    При этом, и дизельный, и бензиновый двигатели превращают топливо в механическую энергию через серию небольших взрывов, которые выталкивают поршни, заставляя их двигаться. Основное различие между дизелем и бензиновым «движком» заключается в том, что провоцирует эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и возгорается от искры, которая появляется от свечей зажигания. В дизельном двигателе, однако, сначала поршнем сжимается воздух, и только затем топливо впрыскивается. Так как воздух нагревается, когда он сжимается, топливо воспламеняется.

    Как работает дизельный двигатель?

    Анимация ниже показывает, как работает дизельный двигатель, в действии — также 4 цикла работы. Вы можете сравнить его с анимацией работы бензинового двигателя и увидеть различия.

    Дизельный двигатель использует четырёхтактный цикл сгорания:

    1. Такт впуска — когда открывается впускной клапан, впуская воздух. В это время поршень движется вниз, засасывая воздух.
    2. Такт сжатия — поршень движется вверх и сжимает воздух, которому некуда деваться, так как впускной клапан закрылся.
    3. Такт воспламенения — когда поршень достигает вершины (верхней мёртвой точки, ВМТ), топливо впрыскивается в нужное время и воспламеняется, сильно толкая поршень вниз.
    4. Такт выпуска отработавших газов — поршень снова движется вверх, выталкивая выхлопные газы, созданные при сгорании топливо-воздушной смеси, из выпускного клапана.

    Вот все 4 цикла работы дизельного двигателя, но ещё проще:

    Следует помнить, что дизельный двигатель, в отличие от бензинового, не имеет свеч зажигания, а также впускает в цилиндры сначала воздух, а затем солярку (в цилиндры бензинового двигателя топливо-воздушная смесь поступает уже готовой). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе.

    Интересный момент: при своей работе топливо-воздушная смесь в дизельном двигателе сжимается гораздо сильнее, чем в бензиновом — если бензиновый двигатель сжимает топливо и воздух в соотношении от 8:1 до 12:1, то дизельный двигатель сжимает воздух в соотношении от 14:1 до более, чем 25:1.

    Инжектор (форсунки) в дизеле

    Одна большая разница между дизельным двигателем и бензиновым двигателем заключается в процессе впрыска топлива. Большинство автомобильных двигателей используют инжектор для этого (или в редких уже на сегодняшний день случаях карбюратор). Инжектор впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух поступает в цилиндр. В двигателе автомобиля, таким образом, все топливо загружается в цилиндр во время такта впуска, а затем сжимается поршнем. Сжатие топливо-воздушной смеси ограничивает степень сжатия двигателя — если сжать слишком много воздуха, то смесь топлива и воздуха спонтанно воспламенится и испортит двигатель, так как такт воспламенения начнётся раньше того момента, когда поршень достигнет верхней точки.

    Дизельные двигатели используют непосредственный впрыск топлива — дизельное топливо впрыскивается непосредственно в цилиндр уже после того, как туда попадёт воздух. Инжектор или, как правильнее, топливные форсунки в дизельном двигателе является наиболее сложным компонентом и, нужно отметить, предметом большой доли экспериментов — в каждом конкретном двигателе инжектор может быть расположен в самых различных, а иногда и неожиданных местах. Инжектор должен быть способен выдерживать температуру и давление, которое создаётся внутри цилиндра, а ещё он должен смочь доставить топливо в виде мелкодисперсного тумана. Сделать так, чтобы этот туман, попадая в цилиндр, равномерно распределялся по нему, является большой проблемой, вот почему ряд дизельных двигателей используют специальные индукционные клапаны, камеры предварительного сгорания или другие устройства, чтобы создать завихрение воздуха в камере сгорания или иначе улучшить процесс зажигания и горения.

    Работа топливной форсунки

    Некоторые дизельные двигатели всё же содержат свечу. Когда дизельный двигатель холодный, процесс сжатия может не поднять до достаточно высокой температуры для воспламенения топлива сжатый воздух. Специальная свеча накаливания в дизеле по сути является проводом для электрического подогрева (представьте горячие проводки, которые Вы видели в тостере), который нагревает камеру сгорания и повышает, тем самым, температуру воздуха, когда двигатель холодный, так чтобы двигатель мог завестись.

    Все функции в современном дизельном двигателе контролируются компьютером и продуманным набором датчиков, измеряющих практически всё: от оборотов коленчатого вала до системы охлаждения двигателя и температуры масла и даже положение двигателя относительно горизонта. Свечи накаливания используются редко сегодня на более мощных двигателях. Вместо них используются другие технологии, самая распространённая из которых — это более сильное сжатие воздуха (для большего нагрева) и более поздний впрыск топлива.

    Тем не менее, в ряде дизельных двигателей не представляется возможным решить проблему запуска в холодную погоду указанным выше способом. Кроме того, есть двигатели, которые не имеют такие продвинутые технологии управления компьютером. Потому использование свечей накаливания для двух случаев выше решает проблему холодного запуска.

    Дизельное топливо

    Любое нефтяное топливо берёт своё начало из сырой нефти, которая, естественно, добывается из земли. Далее сырая нефть перерабатывается на нефтеперерабатывающих заводах и может быть разделена на несколько разных видов топлива, в том числе бензин, реактивное топливо, керосин и, конечно же, дизельное топливо (солярку).

    Если Вы хоть раз пытались сравнить дизельное топливо и бензин, то Вы знаете, что они сильно разные. Даже их запах сильно отличается. Дизельное топливо тяжелее и более жирное. Оно испаряется значительно медленнее, чем бензин, а температура его кипения на самом деле выше, чем температура кипения воды. Вы, вероятно, часто слышали, что дизельное топливо называют «соляркой» — это потому что оно такое жирное (есть такое вещество — соляровое масло, и его раньше часто сравнивали с дизельным топливом).

    Дизельное топливо испаряется медленнее, потому что оно тяжелее. Оно содержит больше углеродоатомов в длинных цепочках, чем бензин (бензин, как правило, имеет химическую формулу C9h30 (но может иметь и другую в зависимости от марки, октанового числа и т.п.), в то время как дизельное топливо, как правило, характеризуется формулой C14h40). Требуется меньшее время и количество этапов переработки для создания дизельного топлива, и поэтому оно как бы должно быть дешевле, чем бензин. Но в последние годы, однако, спрос на дизель поднялся по нескольким разным причинам, в том числе из-за повышенной индустриализации и строительства в нашей стране, и потому на сегодняшний день дизельное топливо стоит дороже бензина.

    Дизельное топливо имеет более высокую так называемую плотность энергии, чем бензин. В среднем, 1 галлон (3,8 л) дизельного топлива содержит около 155×106 джоулей энергии, в то время как 1 галлон бензина содержит 132×106 джоулей. Это, в сочетании с повышенной эффективностью дизельных двигателей за счёт большей степени сжатия, объясняет, почему дизельные двигатели расходуют намного меньше топлива, нежели эквивалентные им бензиновые двигатели.

    Дизельное топливо используется для питания широкого спектра транспортных средств и другой техники. Сюда, прежде всего, нужно включить, конечно же, дизельные грузовики, которые Вы видите крейсерящими по шоссе, но также дизель помогает двигаться лодкам, школьным автобусам, поездам, кранам, сельскохозяйственному оборудованию и тракторам, генераторам электричества и многой-многой другой технике. Подумайте о том, насколько важен дизель в экономике — без высокой эффективности дизельного топлива строительная индустрия и сельскохозяйственные предприятия страдали бы от требуемых инвестиций в топлива с низким энергопотреблением и эффективностью. Около 94 процентов грузов во всём мире — будь то отправленные грузовиками, поездами или кораблями — доставляются в конечные точки именно за счёт дизельного топлива.

    Улучшение дизельного двигателя и дизельного топлива

    С точки зрения окружающей среды дизель имеет и плюсы, и минусы. Плюс — дизель испускает очень небольшое количество угарного газа, углеводородов и углекислого газа — выбросов, более всего приводящих к глобальному потеплению. Минус — большие количества соединений азота и твёрдых частиц (сажи) высвобождаются во время сжигания дизельного топлива, что приводит к выпадению кислотных дождей, смогу и неудовлетворительному состоянию здоровья.

    Во время большого нефтяного кризиса в 1970-х годах, европейские автомобильные компании начали рекламировать дизельные двигатели для коммерческого использования в качестве альтернативы бензину. Однако, те, кто попробовал их, были разочарованы — двигатели были очень громкими, и, когда потребители дизеля осматривали свои машины, то могли обнаружить их покрытыми чёрной копотью — той же сажи, ответственной за смог в больших городах.

    За последние 30 до 40 лет, однако, огромные улучшения были сделаны в работе дизельного двигателя и чистоты дизельного топлива. Прямые впрыскивающие устройства в настоящее время контролируются передовыми компьютерами, которые контролируют сгорание топлива, повышение эффективности сокращения выбросов. Гораздо лучше рафинированные виды дизельного топлива, такие как дизтопливо с ультра низким содержанием серы в топливе (ULSD) снижает количество вредных выбросов. А модернизации двигателей, чтобы сделать их совместимыми с чистым топливом, становятся простой задачей. Другие технологии, такие как фильтры твёрдых частиц и каталитические нейтрализаторы, сжигают сажу и сокращают выбросы твёрдых частиц, оксида углерода и углеводородов на целых 90 процентов. Постоянно совершенствуя стандарты для экологически чистого топлива, Европейский Союз также будет толкать автоотрасль работать усерднее над снижением выбросов.

    Вы может также слышали такой термин как «биодизель«. Это то же самое, что дизельное топливо? Биодизель является альтернативой или добавкой к дизельному топливу, которая может использоваться в дизельных двигателях практически без модернизации самих двигателей. При этом, как видно из названия, биодизель изготавливается не из нефти, вместо этого он приходит к нам из растительных масел или животных жиров, которые были химически изменены. Интересный факт: сам Рудольф Дизель изначально рассматривал растительное масло в качестве топлива для своего изобретения.

    Биодизель может быть использован либо в сочетании с обычным дизельным топливом, либо полностью самостоятельно. Вы можете прочитать больше об альтернативных видах топлива.

    howcarworks.ru

    Дизельные двигатели

    Французский ученый С. Карно в 1824 году создал основы термодинамики. В этой работе он, в числе многого другого, утверждал, что заставить тепловую машину работать наиболее экономично можно, доводя рабочее тело до температуры вспышки топлива сжатием. Фактически он сформулировал принцип, на котором работают дизельные двигатели. Оставалось только взять и сделать такой двигатель. Но этого пришлось ждать еще несколько десятков лет.

    В 1892 году немецкий инженер Рудольф Дизель получает патент на первый двигатель (показан на рисунке), работающий на сжатии воздуха до температуры вспышки. В 1987 году первый «дизель-мотор» (так немцы называют двигатель с воспламенением от сжатия) заработал и доказал свою эффективность.

    По сравнению с «отто-мотором» (бензиновый двигатель со свечами зажигания) новый двигатель был более тяжелым и поначалу не внушал большого энтузиазма. Но только поначалу. Устройство дизельного двигателя первых образцов включало воздушный компрессор для впрыскивания топлива.

    Сам Дизель вначале предполагал применить совсем уж экзотический вариант: угольная пыль. Смесь угольной пыли и воздуха, конечно, способна работать в двигателе, но за сколько часов абразивные частицы съедят кольца, поршни, седла и тарелки клапанов, об этом как-то не подумали. Да и саму угольную пыль получить не так просто.

    Из-за тяжелого компрессора двигатель оказывалось невозможно применить на наземном транспорте. Но в работе он расходовал так мало горючего и работа его была настолько устойчивой, что отказаться от него было уже невозможно. Расчеты показывали, что от двигателя можно ожидать значительно большую мощность, если решить проблему с подачей топлива.

    У инженеров возникла идея заменить компрессор плунжерным насосом. Качать топливо в жидком виде было чрезвычайно выгодно, на это уходит гораздо меньше энергии, а насос можно сделать совсем небольшим. Однако, изготовить плунжерную пару было не так просто. Дело в особой точности изготовления — расстояние между деталями составляет 2-3 микрона.

    Все же дизелям нашлась работа. Впервые они были установлены на немецких подводных лодках еще при кайзере Вильгельме. (Возможно, с этим как раз связано темная история исчезновения самого изобретателя, утонувшего в Ла-Манше по дороге в Англию.)

    В 1920 году Роберт Бош наконец, получает качественный плунжерный насос. В цилиндры двигателя научились подавать больше топлива. Теперь обороты дизельного двигателя и его удельная мощность, становятся достаточными для установки на автотранспорте. Вместе с насосом Бош разрабатывает и очень удачную форсунку для топлива.

    Сгорание топлива в дизельном двигателе

    Проще всего понять, как работает дизельный двигатель, если посмотреть на сгорание топлива в нем. В дизелях используется тяжелое топливо. Это означает, что двигатель внутреннего сгорания такого типа может работать на керосине (известном как солярка), мазуте, сырой нефти, и даже на некоторых растительных маслах.

    Все эти виды топлива более калорийны, чем бензин. Так что, рабочая температура дизельного двигателя заметно выше, чем у бензинового. Но тяжелые виды топлива горят хуже, чем бензин, медленнее и трудно поджигаются. Для их воспламенения требуется большая степень сжатия, воздушно-топливная смесь должна нагреваться до 700-800°С.

    Вязкость любого из дизельных видов топлива, даже в подогретом состоянии, выше бензиновой, а распылять его необходимо до мельчайшего состояния, особенно в быстроходных дизелях. Еще экспериментальный двигатель Дизеля работал при впрыске топлива под давлением не менее 50 бар (атм), а практический двигатель требует 100-200 бар.

    Однако, у тяжелых калорийных топлив есть свое преимущество перед бензином. Давление в цилиндре дизеля практически постоянно на всем такте расширения, поэтому крутящий момент у них весьма значителен и стабилен. Благодаря постоянному давлению, угол опережения зажигания также остается постоянным и регулировки не требует. Ресурс дизельного двигателя больше, чем у бензинового. Есть области, где дизель практически незаменим, например в сельскохозяйственном тракторе.

    Разновидности дизельных двигателей

    Принцип действия дизельного двигателя для всех из них одинаков: сначала производится сжатие свежего заряда рабочего тела (воздуха), затем впрыскивается топливо. От высокой температуры смесь воспламеняется и сгорает, поднимая давление. Под его действием поршень двигается обратно и в нижней точке выпускной клапан цилиндра открывается, выпуская отработанный газ. В основном, это углекислый газ, дизельные двигатели экологически чище бензиновых.

    Камеры сгорания дизелей могут выполняться непосредственно в днище поршня — там делается выемка особой формы — или в ряде случаев используют предкамеры (или форкамеры, как это говорят на родине двигателя). Первый вариант — самый экономичный, второй считался оптимальным в прежние годы. Сейчас, когда экономичность, во многих случаях, считается решающей, от предкамерных вариантов снова отказываются.

    Рабочий процесс в дизеле может протекать, как и в бензиновом двигателе, в два или четыре такта. Подавляющее большинство дизелей — четырехтактные. Двухтактные проще реверсировать, поэтому они распространены на морских судах, где применяется жесткая связь с гребным валом. Камеры сгорания в двухтактных дизелях не разделяются из-за очевидных проблем с продувкой форкамеры.

    Конструкция дизельного двигателя зависит от его мощности и назначения. Наиболее мощные двигатели, применяемые на судах и некоторых электростанциях, имеют крейцкопф — устройство для снижения боковых сил на поршень. Все мощные дизели имеют сложно устроенное дно, потому, что подвергаются высокой температуре.

    Часть, обращенная в цилиндр, делается стальной, а остальная часть поршня (юбка) — алюминиевой. Кроме того, в поршне сделаны канавки для системы масляного охлаждения.

    Типы дизельных двигателей различаются и по расположению цилиндров. Бывает рядовое, V-образное и даже такое, при котором цилиндры располагаются с разворотом на 180 градусов. Это зависит от тех условий, которые имеются на месте установки двигателя. Например, на современном грузовике или автобусе, скорее всего, будет применен двухрядный дизель, установленный под полом кабины водителя. Как устроен дизельный двигатель, будет зависеть и от наличия наддува.

    Турбонаддув дизелей

    Мощность дизельного двигателя, без увеличения расхода топлива, можно повысить при помощи турбокомпрессора. Тогда можно использовать еще неплохой кусочек диаграммы цикла Карно. Эксплуатация дизельного двигателя с турбокомпрессором имеет то преимущество, что используя энергию выхлопных газов можно раскрутить турбину, и на том же валу установить другую турбину — компрессор.

    Этот компрессор будет нагнетать воздух, поступающий через впускной коллектор, увеличится заряд воздуха в цилиндрах, и, таким образом, мощность двигателя заметно возрастет. (Работу таких двигателей легко узнать по характерному свисту в момент раскручивания турбины.)

    Плюсы и минусы дизелей

    Преимущества дизельного двигателя — это высокий и постоянный крутящий момент в сочетании с высокой экологичностью выхлопных газов (это относится, правда, только к современным двигателям). Также вне конкуренции их высокий КПД, самый высокий среди ДВС. Известны дизели (MAN) дающие свыше 50%, (что считалось «теоретическим» максимумом). Там использован максимум всех современных достижений. Экономичность достигает до 40%, если провести сравнение с бензиновыми.

    Проблемы дизельных двигателей, а без них техники не бывает, заключаются в тяжелом пуске, из-за высокой степени сжатия (до 25 в современных двигателях), на автомобилях приходится ставить мощный стартер и аккумулятор. Большая точность изготовления деталей насосов высокого давления и форсунок затрудняет обслуживание.

    Дизели крайне чувствительны к механическим загрязнениям топлива, для очистки которого приходится применять даже центрифугу в составе топливной аппаратуры. При равном объеме в литрах, дизельный двигатель уступает бензиновому по мощности, при равной мощности дизель тяжелее. Дизельный двигатель требует более качественных сплавов для своего изготовления и заметно дороже бензинового.

    И все же, сравнивая преимущества и недостатки дизельного двигателя, можно сделать выбор в пользу дизеля. Особенно этому способствует технический прогресс в области электроники и блоков управления двигателями. Система «общая магистраль» (common rail) и электромагнитные форсунки позволяет сильно упростить ТВНД, а блок управления доводит экономию топлива до максимума, поскольку работает на любых переходных режимах и успевает все отследить.

    avtodvigateli.com

    Кто изобрел дизельный двигатель? Дизель! | Биографии

    Патент

    На основании собственных расчетов Дизель написал небольшую брошюру о принципе работы предлагаемого им двигателя и принес в патентное ведомство заявку на свою идею. Через год заявка была удовлетворена.

    С патентом и брошюрой в руках Дизель принялся искать предприятие для реализации своих замыслов. Наиболее благоприятные условия предложило предприятие Машиненфабрик Аугсбург-Мюнхен, или сокращенно MAN.

    Предприятие обязалось нести все расходы по реализации патента, да еще платить Дизелю чрезвычайно высокую зарплату, пока он проводит испытания, — 800 марок в месяц. MAN приобрел права на производство, но без права переуступать другим.

    Двигатель

    Дизель сразу окунулся в работу. Первоначальная идея была такой: в цилиндры впрыскивают угольную пыль, воспламеняющуюся от тепла сжатия. Двигатель должен работать в соответствии с циклом Карно, то есть у него не будет внешнего охлаждения.

    Уже при первой попытке Дизель обнаружил, что некоторые из его идей практически невыполнимы. Угольная пыль содержала минеральные частицы, оседавшие на поршневых кольцах и приводящие к катастрофическому абразивному износу цилиндров. Отсутствие внешнего охлаждения приводило к заклиниванию поршня в цилиндре.

    Дизель — гений, он сразу же обнаружил недостатки разработки и предложил новый циклический процесс, носящий теперь его имя. Не буду утомлять читателя техническими подробностями, скажу лишь, что уже самый первый двигатель, работавший согласно этому процессу, показал удивительные результаты.

    Профессор Герлах и его ассистенты из Политеха в Мюнхене измерили эффективный коэффициент полезного действия (КПД) дизельного двигателя и получили поразительный результат: эффективный КПД нового двигателя составил почти 27%, в то время как у парового двигателя он был равен 3−5%, а у бензинового двигателя Отто — 10−12%.

    Кроме того, дизельный двигатель работал на более дешевом и труднее воспламеняемом топливе.

    Зенит

    После такого успеха Альфред Нобель приобрел патент на двигатель за 100000 марок. Производители двигателей бросились покупать патент Дизеля. Изобретатель начал буквально купаться в золоте.

    Но именно тогда Дизель разминулся с реальностью. Он достиг зенита своих возможностей и уже не мог сделать ничего лучше. Он создал самую экономичную тепловую машину. И через сто, и через миллиард лет никто не сможет превзойти ее эффективность, поскольку, как показывают теоретические расчеты, цикл Дизеля является наиболее экономичным в тепловых двигателях.

    Именно этого Дизель не захотел понять. Он решил, что всегда будет превосходить всех, что его патенты никогда не перестанут продаваться. Но патент можно в большей или меньшей степени обойти, и в этом случае все развивается по другому сценарию. Никто не крадет идеи Дизеля, но все их усовершенствуют.

    Роберт Бош создает топливный насос, впрыскивающий топливо без использования сжатого воздуха, как это делал Дизель, и процесс невероятно упрощается.

    Метрополитен-Виккерс, огромный военно-промышленный комплекс в Великобритании, создает такие улучшения в конструкции двигателя для кораблей, что тот коренным образом отличается от прототипа, продаваемого компанией Дизеля.

    Каждое улучшение патентуется и становится гораздо более ценным, чем основная идея, патентная защита которой быстро истекает.

    Закат

    Рудольф Дизель дал зеленый свет мощным дизельным двигателям, но заработал ненависть как коллег, инженеров-создателей двигателей, так и наиболее влиятельной силы на то время — угольных компаний.

    За период 1904—1905 годов цена на нефть выросла в 2,5 раза, а доходность увеличилась более чем в 7 раз. Это напрямую повлияло на множество интересов. Наиболее сильно пострадали немецкие промышленники, владевшие самыми большими запасами угля в то время. Германия потеряла свое превосходство над Англией, и Дизель был объявлен виновником этого.

    Промышленники начали подрывную войну против изобретателя: привели его предприятия к банкротству, и он потерял огромную часть своих вложений. Враги пытались уничтожить его и морально, вкладывая огромные средства в пропаганду, утверждая, что он не был отцом своего изобретения, а заимствовал чужие идеи.

    Финансово противники его победили, но Дизелю осталось признание в научном мире, опровергшее клевету против него.

    Солидаризм

    Примерно в то же время Дизель начал заниматься социальными теориями, создал труд «Солидаризм. Естественное экономическое освобождение людей». В нем объясняется возможность возникновения общества, в котором большинство членов будут иметь свой собственный малый бизнес. Такое общество избежит революций, мятежей, беспорядков, жертв и обречено на процветание, думал Дизель. Фото: wikipedia.org

    Эта теория не нашла большой поддержки в бурные годы перед Первой мировой войной и грядущей революцией. На пропаганду своей теории Дизель растратил большую часть денег, полученных в результате изобретения дизельного двигателя.

    Конец

    Таким образом, после нескольких лет изнурительной борьбы Рудольф Дизель зашел в тупик. Надо было выдавать замуж дочь, но денег на приданое не было.

    19 сентября 1913 года он сел на корабль, чтобы поехать в Англию, и исчез. Три дня спустя в Северном море в рыболовные сети попал труп, опознанный как Дизель.

    Убийство? Вряд ли — нет мотивов. Самоубийство? Может быть. Причин предостаточно: полный финансовый крах, огромные неоплаченные обязательства. Тем не менее смерть Рудольфа Дизеля остается одной из самых больших загадок современного мира. Раскроет ли ее кто-либо, мы можем только гадать.

    Может, вы возьметесь?


    Что еще почитать по теме?

    Чьё имя пишут с маленькой буквы?
    Как пощупать «пульс» у дизеля?
    Плюсы и минусы дизеля. Стоит ли выбирать его как опцию при покупке машины?

    shkolazhizni.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *