ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Основные характеристики аккумуляторных батарей — на что обратить внимание?

Категория: Поддержка по аккумуляторным батареям
Опубликовано 23.06.2015 13:56
Автор: Abramova Olesya

Аккумуляторная батарея – важнейшая составляющая систем резервного и автономного электроснабжения отдельных электрических приборов или целых объектов промышленного и бытового назначения. На сегодняшний день широкое применение получили аккумуляторы свинцово-кислотного типа (AGM VRLA и GEL VRLA), OPZS, OPZV, а также никель-кадмиевые (Ni-Cd) и литий-ионный типы (Li-ion, LiFePO4, Li-pol).

Возникновение химических источников питания началось еще в 1800 году, когда известный итальянский ученый Алессандро Вольта поместил пластины из меди и цинка в кислоту и получил непрерывное напряжение (Вольтов столб). Современные свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженным элементом является свинец, а отрицательно заряженным – оксид свинца.

Самая распространенная аккумуляторная батарея состоит из шести банок по 2В и имеет общее напряжение 12В.

Технические характеристики аккумуляторных батарей

Качество аккумуляторов можно определить по нескольким важным свойствам:

  • Емкость, Ампер/час;

  • Напряжение, Вольт;

  • Допустимая глубина разряда, %;

  • Срок службы, лет;

  • Диапазон рабочих температур, °С;

  • Саморазряд, %;

  • Габариты, мм;

  • Вес, кг;

  • Ток заряда, А;

Совет!strong> Обязательно учитывайте, что все приведенные производителем характеристики батарей указываются для температуры 20 – 25 °С, при снижении и повышении температуры окружающей среды, где будет эксплуатироваться аккумулятор, показатели характеристик изменяются, как правило, он снижаются.

Емкость аккумулятора

Данный параметр отражает количество энергии, которую может сохранить батарея, измерение производится в Ампер*часах.

На текущий момент в Украине можно купить аккумуляторы емкостью от 0,6 до 4000Ач. К примеру, батарея с емкостью 200Ач способна обеспечить электропитанием нагрузку током 2А в течение 100 часов, или током 8А в течение 25 часов и т. д. Обязательно учитывайте, что при увеличении потребляемого тока будет происходить снижение емкость аккумуляторной батареи, именно по этой причине производители указывают емкость с дополнительным параметром – С.

Дополнительная, но очень важная характеристика маркируемая латинской буквой «C» с числовым параметром, как правило от 1 до до 48 часов и указывает на емкость аккумуляторной батареи при разряде в определенный промежуток времени (C1, C5, C10, C20 и т.д.). Значение C10 принято считать стандартным значением и подавляющее количество производителей указывает емкость при 10-ти часовом разряде. К примеру, емкость 100Ач при C10 означает, что батарея обеспечит данную емкость при 10-ти часовом разряде, эта же батарея при C5 будет иметь меньшую емкость – 80Ач при C5, а если разряд будет происходить с течение 20 часов, то емкость возрастет и составит около 115Ач при С20.

Таким образом, при выборе емкости аккумуляторной батареи необходимо обязательно учитывать время в течение которого будет осуществляется разряд, это имеет большое значение.

Рисунок №1. Зависимость емкости аккумулятора AGM VRLA от времени разряда.

Совет! Обратите внимание, что некоторые производители и торгующие организации могут указывать значение емкости при C20. Это сделано для искусственного завышение показателя при неизменной стоимости аккумулятора.

В процессе эксплуатации емкость будет постепенно снижаться, это естественный процесс «старения» батареи, который возникает из-за снижения плотности свинцовых пластин и частичной потери первичного свинца положительных и отрицательных пластин. Высокая интенсивность использования и глубокие разряда приведут к быстрому износу положительных и отрицательных платин аккумулятора и выходу его из строя. Чтобы этого не происходило, необходимо предусматривать резервный запас емкости. Для увеличения емкости батарейного кабинета применяются несколько аккумуляторов с параллельным соединением.

Напряжение батареи

Уровень напряжения – ключевая характеристика по которой происходит выбор аккумулятора. На сегодняшний день распространены элементы и аккумуляторы со следующими значениями напряжения: 1.2, 2.4, 6, 12В. Батарейной банк с более высоким напряжением (24, 48, 96В и т. д.) собирается при помощи нескольких 12В аккумуляторов с последовательным типом подключения.

При помощи измерения уровня напряжения можно оценить степень заряженности и степень износа необслуживаемых типов батарей (AGM и GEL VRLA) Измерение напряжения производится в течение нескольких часов, когда аккумулятор полностью бездействует и отключен от зарядного устройства. Нормальный уровень для AGM батарей считается от 13 до 13,2В.

Допустимая глубина разряда

Различные типы и подтипы аккумуляторов имеют рекомендованные параметры глубины разряда. Ниже приведена таблица №1 в которой указаны наиболее распространенные характеристики аккумуляторов допустимой и рекомендованной глубины разряда.

Тип батареи

Допустимый разряд, %

Рекомендованный разряд, %

VRLA

70

40

AGM VRLA

80

50

GEL VRLA

90

50

OPZV

90

60

OPZS

90

60

Li-ion

100

90

Ni-Cd

100

70

Таблица №1. Значения допустимых и рекомендованных значений разряда аккумуляторов.

Уровень разряда является ключевым фактором в сроке службы аккумулятора на ряду с интенсивностью эксплуатации. Даже самую дорогую и качественную свинцово-кислотную батарею можно вывести из строя за 7-10 дней, если производить полный 100% разряд до напряжения 9В несколько раз подряд.

Наиболее стойким к глубоким разрядам являются литий-ионные и никель-кадмиевые, а также специализированные свинцово-кислотные батареи, которые были оптимизированы разработчиками для глубоких разрядов. Обычно такие серии содержат в названии слово «Deep», что в переводе означает «Глубоко».

Разряды в пределах рекомендованных значений обеспечат существенное увеличения срока службы.

Срок службы аккумулятора

Современные свинцово-кислотные батареи оптимизированы для разнообразных режимов работы. Одни имеют меньший срок службы, но обеспечивают более высокую разрядную характеристику, другие – больший, но подходят для редких разрядов и работы в буферном режиме и т. д. Поэтому если производителем указан срок службы 10 лет, это информация соответствует идеальному режиму эксплуатации, когда не превышается циклический ресурс и, что еще более важно, глубина разряда. Приведем пример: если производитель указал, что срок службы аккумулятора 10 лет и допускается число циклов заряд/разряд – 600 с глубиной 50%. Аккумулятор может отслужить указанный срок при идеальных условиях эксплуатации и не более чем пяти циклах в месяц. Этот режим полностью соответствует буферному типу.

Срок эксплуатации целиком зависит от количества совершенных циклов заряда и разряда, а также зависит от окружающей среды, где установлена батарея. Как уже отмечалось выше, чем сильнее разряжается аккумулятор и чем дольше он находятся разряженном состоянии, тем меньше он прослужит. Чем выше окружающая температура, тем активнее проходит химическая реакция и тем сильнее поддаются разрушению свинцовые пластины.

В таблице №2 приведены примерные значения срока службы и циклического ресурса аккумуляторов в зависимости от их типов. Данные соответствуют для оптимальной температуры эксплуатации 20 – 25°С.

Тип аккумулятора

Циклический ресурс при глубине разряда

Срок службы, лет

25%

50%

75%

100%

VRLA

700 – 1000

350 – 500

230 – 400

150 – 300

3 – 5

AGM VRLA

800 – 2100

500 – 1200

300 – 800

200 – 600

5 – 15

GEL VRLA

2500 – 3000

1200 – 1750

800 – 1000

600 – 800

10 – 15

OPzV

2500 – 3000

1200 – 1750

800 – 1000

600 – 800

10 – 15

OPzS

5000 – 6000

3000 – 3500

1500 – 1750

1000 – 1200

20 – 25

Ni-Cd

<6000

<4000

<2000

<1500

20 – 25

Li-ion

<7000

<5000

<2000

<1500

20 – 25

Таблица №2. Ресурс в зависимости от типа аккумуляторов.

Рисунок №2. Зависимость циклического ресурса от глубины разряда.

Диапазон рабочей температуры

За исключением литий-ионного типа, где используется минерал – литий, принцип работы аккумуляторов основан на химических элементах и взаимодействии между ними. Поэтому практически все основные характеристики аккумуляторов зависят от температуры окружающей среды. Как правило, при повышении температуры срок эксплуатации снижается, причем если температура выше ~35°С, срок службы свинцово-кислотные AGM батарей сократится вдвое.

Уровень температуры окружающей среды также оказывает влияние на доступную емкость аккумулятора. При снижении температуры происходит падение емкости. При –20°С емкость батареи снизится на 30 – 40% от номинального значения.

Рисунок №3. Зависимость срока службы аккумулятора AGM VRLA от температуры окружающей среды.

Рисунок №4. Зависимость емкости аккумулятора AGM VRLA от температуры окружающей среды.

Саморазряд аккумулятора

Саморазряд – характерное явления для аккумуляторов всех типов. Данный показатель отражает степень самопроизвольной потери емкости в процессе простоя после полного заряда. Характеристика саморазряда указывается в процентном соотношении за определенный промежуток времени, чаще всего в месяц.

В качестве примера можно рассмотреть 100Ач батарею AGM VRLA типа, которая была полностью заряжена и в течение месяца не использовалась. Среднее значение саморазряда для AGM VRLA типа составляет порядка 1,5%, соответственно через месяц емкость составит порядка 98,5Ач.

На показатели саморазряда оказывает влияние температура окружающей среды. При повышении температуры, показатель будет расти. Причиной возникновения саморазряда служит выделение молекул кислорода на электроде положительного заряда, а повышение температуры является катализатором данного процесса.

Рисунок №5. Саморазряд аккумуляторов AGM VRLA.

Ток заряда

Сила тока которым осуществляется заряд аккумуляторной батареи напрямую зависят от емкости заряжаемой батареи. Свинцово-кислотные АКБ заряжаются 10 – 30% током от номинальной емкости, в зависимости от системы, могут применяться и менее мощные зарядные устройства.

Внимание! Нельзя заряжать аккумуляторы высоким током, это ведет к необратимым химическим реакциями существенно снижает эксплуатационные характеристики батареи.

Рисунок №6. Зарядная характеристика AGM VRLA.

Габариты и вес батарей

В зависимости от емкости аккумуляторов размеры и вес изменяются, за редким исключением могут быть изменения размера при одинаковой емкости. Существуют общепризнанные размеры небольших аккумуляторов до 250Ач, которые применяются как встроенные источники питания для систем бесперебойного питания, детских игрушек, гольф-каров, поломоечных машин и т.  д. В зависимости от производителя присоединительные размеры могут отличаться от десятых до нескольких миллиметров.

Совет! Обращайте внимание на высоту аккумулятора без клемм и с клеммами, некоторые производители указывают два значения высоты.

Вес аккумулятора является дополнительным показателем его качества. Если проводить сравнение между характеристиками аккумуляторов разных серий или производителей, обращайте внимание на показатели массы, чем батарея тяжелее, тем больше в ней свинца. Это говорит о том, что пластины взаимодействующие с кислотой толще и химический источник питания обеспечит больший циклический ресурс и срок службы.

Параметры аккумуляторов

Разрядные характеристики аккумуляторных батарей

Наиболее важными показателями качества АБ являются: емкость, напряжение, габариты, вес, стоимость, допустимая глубина разряда, срок службы, КПД, диапазон рабочих температур, допустимый ток заряда и разряда. Также, необходимо учитывать, что все характеристики производитель дает при определенной температуре – обычно 20 или 25 °С. При отклонениях от этого напряжения, характеристики меняются, и обычно в худшую сторону.

Значения напряжения и емкости обычно входят в название модели батареи. Например: RA12-200DG – батарея напряжением 12 вольт и емкостью 200 ампер*часов, гелевая, глубокого разряда. Это значит, что батарея может выдать в нагрузку энергию 12 х 200 = 2400 Вт*ч при 10 часовом разряде током в 1/10 от емкости. При больших токах и быстром разряде емкость батареи понижается. При меньших токах – обычно увеличивается. Это можно видеть на графике разрядных характеристик аккумуляторных батарей. Также, нужно смотреть на разрядные характеристики на конкретные батареи. Иногда производители в названии пишут завышенную емкость аккумулятора, которая имеет место только в идеальных условиях – так, например, делает Haze (у аккумуляторов Haze реальная емкость процентов на 10-20 ниже, чем указано в названии батареи).

При разряде током в 0,1 С время работы составляет 10 часов и батарея полностью выдаст в нагрузку аккумулированную энергию. При разряде током 2 С (в 20 раз большим) время работы будет около 15 минут (1/4 часа) и при этом батарея выдаст в нагрузку только половину аккумулированной энергии. При больших токах разряда это значение еще меньше. Зачастую в источниках бесперебойного питания аккумуляторные батареи работают в еще более тяжелых режимах, при которых токи разряда достигают 4 С. При этом время разряда сравнимо с 5 минутами и батарея выдает в нагрузку менее 40% энергии.

Емкость батареи

Количество энергии, которое может быть сохранено в батарее, называется ее емкостью. Она измеряется обычно в ампер-часах, хотя правильнее приводить значения в ватт-часах.

Заряд-разрядные кривые

Емкость (Вт*ч) = U*I*t

где U – напряжение аккумулятора, В; I – ток, который он может отдавать в течение времени t.

Так как обычно принимается, что для различных аккумуляторов напряжение одинаковое, то из формулы убирается напряжение, и остается емкость в ампер-часах.

Одна АБ емкостью 100 Ач может питать нагрузку током 1 А в течение 100 часов, или током 4 А в течение 25 часов, и т.п., хотя емкость батареи снижается при увеличении разрядного тока. На рынке продаются батареи емкостью от 1 до 3000 Ач.

Другие статьи Руководства

Для увеличения срока службы свинцово-кислотной АБ желательно использовать только малую часть ее емкости до повторной зарядки. Каждый процесс разряда-заряда называется зарядным циклом, причем не обязательно полностью разряжать аккумулятор. Например, если вы разрядили аккумулятор на 5 или 10% и затем снова зарядили его – это тоже считается как 1 цикл. Конечно, количество возможных циклов будет сильно отличаться при различной глубине разряда (см. ниже). Если возможно использовать более 50% энергии, запасенной в АБ до ее заряда, без заметного ухудшения ее параметров, такая батарея называется батареей “глубокого разряда”.

Можно повредить батареи, если перезарядить их. Максимальное напряжение синцово-кислотных АБ должно быть 2,5 вольта на элемент, или 15 В для 12-ти вольтовой батареи. Многие фотоэлектрические батареи имеют мягкую нагрузочную характеристику, поэтому при увеличении напряжения ток заряда снижается значительно. Поэтому всегда необходимо использовать специальный контроллер заряда для солнечных батарей. В случае применения ветроэлектрических станций или микроГЭС, такие контроллеры также обязательны.

Напряжение

Напряжение на аккумуляторе зачастую является основным параметром, по которому можно судить о состоянии и степени заряженности аккумулятора. Особенно это относится к герметизированным аккумуляторам, у которых не возможно измерить плотность электролита.

Напряжение при заряде, разряде и отсутствии тока очень сильно отличаются. Для определения степени заряженности аккумулятора измеряют напряжение на его клеммах при отсутствии как зарядного, так и разрядного токов в течение как минимум 3-4 часов. За это время напряжение обычно успевает стабилизироваться. Значение напряжения при заряде или разряде ничего не скажет от состоянии или степени заряженности АБ. Примерная зависимость степени заряженности аккумулятора от напряжения на его клеммах в режиме холостого хода, приведена в таблице ниже. Это типичные значения для стартерных аккумуляторов с жидким электролитом. Для герметизированных аккумуляторов (AGM и гелевых) обычно эти напряжения немного выше (нужно запрашивать производителя) – например, AGM батареи полностью заряжены, если напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В).
Степень заряженности

Степень заряженности зависит от очень многих факторов, и точно ее могут определить только специальные зарядные устройства с памятью и микропроцессором, которые отслеживают как заряд, так и разряд конкретного аккумулятора в течение нескольких циклов. Этот метод наиболее точный, но и наиболее дорогой. Однако он сможет сэкономить много денег при обслуживании и замене аккумуляторов. Применение специальных устройств, контролирующих работу аккумуляторов по степени их заряженности, позволяет очень сильно повысить срок службы свинцово-кислотных аккумуляторов. Ряд предлагаемых нами контроллеров для солнечных батарей имеют встроенные устройства вычисления степени заряженности аккумулятора и регулируют заряд в зависимости от ее величины.

Для определения степени заряженности можно использовать также следующие 2 упрощенных метода.
  1. Напряжение на аккумуляторе. Этот способ наименее точный, но требует только наличия цифрового вольтметра, способного измерять десятые и сотые доли вольта. Перед измерениями нужно отсоединить от аккумулятора всех потребителей и все зарядные устройства и подождать как минимум 2 часа. Затем можно измерить напряжение на терминалах аккумулятора. Ниже в таблице приведены напряжения для аккумуляторов с жидким электролитом. Для полностью заряженной новой AGM или гелевой батареи напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В). По мере старения аккумуляторов это напряжение снижается. Можно измерять напряжение на каждой банке аккумулятора, чтобы найти неисправную банку (разделите напряжение для 12В на 6 для того, чтобы определить нужное напряжение на одной банке).
  2. Второй метод определения степени заряженности – по плотности электролита. Этот метод подходит только для аккумуляторов с жидким электролитом.

Также, нужно подождать 2 часа перед измерениями. Для измерения используется ареометр. Обязательно наденьте резиновые перчатки и защитные очки! Держите рядом пищевую соду и воду на случай, если вода попадет на кожу.

Степень заряженности Батарея 12В Батарея 24 В Плотность электролита
100 12.70 25.40 1.265
95 12.64 25.25 1.257
90 12.58 25.16 1.249
85 12.52 25. 04 1.241
80 12.46 24.92 1.233
75 12.40 24.80 1.225
70 12.36 24.72 1.218
65 12.32 24.64 1.211
60 12.28 24.56 1.204
55 12.24 24.48 1.197
50 12.20 24.40 1.190
40 12.12 24.24 1.176
30 12.04 24.08 1.162
20 11.98 23.96 1.148
10 11.94 23.88 1.134
Срок службы аккумуляторов 
[sociallocker id=”1616″] Срок службы аккумуляторных батарей в циклах

Неправильно определять срок службы аккумуляторов в годах или месяцах. Срок службы батареи определяется числом циклов заряд-разряд и значительно зависит от условий ее эксплуатации. Чем глубже разряжается батарея, чем большее время она находится в разряженном состоянии, тем меньшее число возможных циклов работы.

Само понятие «количество рабочих циклов «заряда-разряда» аккумулятора» относительное, так как сильно зависит от различных факторов. Кроме того, значение количества рабочих циклов, например для одного типа аккумулятора, не является универсальным понятием, так как зависит от технологии, различной у каждого из производителей.Срок службы аккумуляторов определяется в циклах, поэтому время работы в годах – приблизительное и рассчитано для типичных условий работы. Поэтому, если, например, в рекламе указано, что срок службы аккумуляторов составляет 12 лет, это значит, что производитель посчитал срок службы для буферного режима с средним числом циклов заряд-разряд 8 в месяц. Например, для AGM аккумуляторов Haze указывается срок службы 12 лет и максимальное число циклов 1200 при разряде на 20%. В год получается 100 таких циклов, в месяц – около 8.

Еще один важный момент – в процессе эксплуатации полезная емкость аккумулятора уменьшается. Все характеристики по количеству циклов обычно приводятся не до полной смерти аккумулятора, а до момента потери им 40% своей номинальной емкости. Т.е, если производителем приведено количество циклов 600 при 50% разряде, это значит, что через 600 идеальных циклов (т.е. при температуре 20С и разряде током одной величины, обычно 0,1С) полезная емкось аккумулятора будет 60% от начальной. При такой потере емкости уже рекомендуется замена аккумулятора.

Свинцово-кислотные АБ, предназначенные для использования в системах автономного электроснабжения имеют, срок службы от 300 до 3000 циклов в зависимости от типа и глубины разряда. В системах на базе ВИЭ батарея может разрядиться гораздо сильнее, чем при буферном режиме. Для обеспечения длительного срока службы, в типичном цикле разряд не должен превышать 20-30% емкости АБ, а глубокий разряд – не более 80% емкости. Очень важно сразу же после разряда заряжать свинцово-кислотные аккумуляторы. Длительное нахождение (более 12 часов) в разряженном или не полностью заряженном состоянии приводит к необратимым последствиям в аккумуляторах и снижению их срока службы.

[/sociallocker]

Как определить, что аккумулятор уже близок к окончанию своего срока службы? Очень просто – у аккумулятора повышается внутреннее сопротивление, это приводит к более быстрому росту напряжения при заряде (и, соответственно, снижению времени, требуемого для заряда), и более быстрому разряду аккумулятора. Если заряд производится током, близким к предельно допустимому, умирающий аккумулятор будет нагреваться при заряде сильнее, чем раньше.

Максимальные токи заряда и разряда

Токи заряда и разряда любой аккумуляторной батареи измеряются относительно ее емкости. Обычно для аккумуляторов максимальный ток заряда не должен превышать 0,2-0,3С. Превышение зарядного тока ведет к сокращению срока службы аккумуляторов. Мы рекомендуем устанавливать максимальный ток заряда не более 0,15-0,2С. Смотрите характеристики на конкретные модели аккумуляторов для определения максимального зарядного и разрядного токов.

Саморазряд

Явление саморазряда характерно в большей или меньшей степени для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены в отсутствие внешнего потребителя тока.

Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCD аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH – немного больше, а для Li-ION пренебрежимо мал и оценивается за месяц. Саморазряд в герметизированных свинцово-кислотных аккумуляторах значительно уменьшен и составляет 40% в год при 20 °С и 15% при 5 °С. При более высоких температурах хранения саморазряд увеличивается: при 40 °С батареи лишаются 40 % емкости за 4-5 месяцев.

Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается. Глубокий его разряд и последующий заряд увеличивают ток саморазряда.

Саморазряд аккумуляторов в основном обусловлен выделением кислорода на положительном электроде. Этот процесс еще больше усиливается при повышенной температуре. Так, при повышении окружающей температуры на 10 градусов по отношению с комнатной возможно увеличение саморазряда в два раза.

В некоторой степени саморазряд зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Потери емкости могут быть вызваны повреждением сепаратора, когда образования слипшихся кристаллов пробивают его. Сепаратором принято называть тонкую пластину, разделяющую положительный и отрицательный электроды. Это обычно происходит из–за неправильного обслуживания аккумулятора, его отсутствия или применения несоответствующих или некачественных зарядных устройств. У изношенного аккумулятора пластинки электродов разбухают, слипаясь друг с другом, что приводит к повышению тока саморазряда, при этом поврежденный сепаратор невозможно восстановить проведением циклов заряда/разряда.

Каргиев Владимир, “Ваш Солнечный Дом”
©При цитировании ссылка на эту страницу и на “Ваш Солнечный Дом” обязательна

Дополнительная информация по теме в Разделе “Библиотека“. Настоятельно рекомендуем почитать эту статью

ГЛОССАРИЙ

Емкость (С) – энергия, которую способен отдать аккумулятор в нагрузку, выражаемая в ампер-часах (А·ч, мA·ч). Она будет больше при следующих условиях: меньшем токе разряда, разряде с меньшими перерывами, более высокой температуре окружающей среды, а также более низком конечном напряжении.

Номинальная емкость – номинальное значение емкости: количество энергии, которую способен отдать полностью заряженный аккумулятор при разряде в строго определенных условиях.

Саморазряд – потеря емкости в отсутствие внешнего потребителя тока.

Срок службы батареи – наработка, при которой разрядная емкость сделается меньше определенной нормированной величины, обычно оценивается рабочим количеством циклов “заряд-разряд”.

Срок хранения – максимальный период времени, в течение которого батарея может храниться при оговоренных условиях, не требуя дополнительной зарядки.

Эта статья прочитана 120019 раз(а)!

Продолжить чтение

какие параметры аккумуляторных батарей нужно проверять и как это сделать?

При использовании аккумуляторных батарей на любых объектах, особенно в системах бесперебойного питания, за их состоянием нужно следить и регулярно проводить проверки. В этом материале мы рассмотрим основные параметры АКБ, а также рассмотрим, какими приборами и как можно провести их контроль и проверку!

Основная задача при проверке состояния любой аккумуляторной батареи – выяснить, обладает ли она достаточной емкостью, может ли обеспечить заявленные производителем характеристики в течение необходимого времени. Однако непосредственно средствами измерения определяются только несколько основных параметров – напряжение, сила тока. В обслуживаемых аккумуляторах можно также замерить плотность электролита. Измерения можно проводить неоднократно, фиксируя изменение значений с течением времени. Все остальные параметры и характеристики не измеряются напрямую, а выводятся по разработанной изготовителем методике, причем она зависит и от типа АКБ, и от рекомендаций производителя, и от вида подключенной нагрузки. При этом необходимо учитывать, что многие зависимости, характеризующие работу АКБ, носят нелинейный характер. Могут сказываться и другие факторы, например, влияние температуры.

При выполнении краткосрочных измерений при использовании даже самых совершенных методик тестирование носит не точный количественный, а качественный характер. Единственный достоверный способ измерения емкости АКБ – его полная разрядка в течение многих часов с тщательной фиксацией параметров в ходе всего процесса. Но использовать столь продолжительную процедуру на практике можно далеко не всегда, особенно если батарей много. Тем не менее, и краткосрочных оценочных измерений достаточно для того, чтобы отличить работоспособный аккумулятор от изношенного, утратившего емкость, и вовремя произвести замену АКБ.

Способы проверки АКБ

1. Подключение нагрузки

К АКБ на некоторое время подключается рабочая или второстепенная нагрузка той или иной величины. Вольтметром или мультиметром измеряется падение напряжения. Если процедура выполняется несколько раз, между измерениями выжидается определенное время, чтобы батарея восстановилась. Полученные данные сопоставляются с параметрами, заявленными производителем АКБ для данного типа батареи и данной величины нагрузки.

2. Измерения при помощи нагрузочной вилки

Строение простейшей нагрузочной вилки показано на схеме:

Устройство оснащено вольтметром, параллельно которому установлен большой по мощности нагрузочный резистор, и имеет два щупа. В старых моделях вольтметры аналоговые; новые модели, как правило, оснащены ЖК-дисплеем и цифровым вольтметром. Существуют нагрузочные вилки с усложненной схемой, использующие несколько нагрузочных спиралей (сменных сопротивлений), рассчитанные на разные диапазоны измерения напряжений, предназначенные для тестирования кислотных либо щелочных аккумуляторов. Есть даже вилки, которыми тестируют отдельные банки аккумуляторов. В состав продвинутых устройств помимо вольтметра может входить амперметр.

Получаемые при измерениях данные также необходимо сопоставлять с параметрами, заявленными производителями для данного типа батарей и данного сопротивления.

3. Измерения при помощи специальных устройств, тестеров анализаторов АКБ

Приборы Кулон

Принципиальным развитием идеи нагрузочной вилки можно считать семейство цифровых приборов-тестеров Кулон (Кулон-12/6f, Кулон-12m, Кулон-12n и другие) для проверки состояния свинцовых кислотных аккумуляторов, а также другие подобные устройства. Они позволяют проводить быстрые замеры напряжения, приближенно определять емкость АКБ без контрольного разряда и сохранять в памяти несколько сотен, а иногда и тысяч измерений.

Приборы Кулон питаются от аккумулятора, на котором проводятся измерения. Входящие в комплект провода с разъемами «крокодил» имеют части, изолированные друг от друга, что обеспечивает четырехзажимное подключение к аккумулятору и устраняет влияние на показания прибора сопротивления в точках подключения зажимов. По заявлению разработчика, прибор анализирует отклик аккумулятора на тестовый сигнал специальной формы, при этом измеряемый параметр примерно пропорционален площади активной поверхности пластин аккумулятора и, таким образом, характеризует его емкость. Фактически, точность показаний зависит от достоверности методики, разработанной производителем.

Емкость аккумулятора – электрический заряд, отдаваемый полностью заряженным аккумулятором – измеряется в ампер-часах и представляет собой произведение тока разряда на время. Для точного определения емкости необходимо произвести разряд батареи (процесс длительный, многочасовой), постоянно фиксируя величину заряда, отдаваемого батареей. При этом относительная емкость АКБ в зависимости от времени изменяется нелинейно. Например, для аккумуляторной батареи типа LCL-12V33AP относительная емкость меняется со временем следующим образом:

Время разряда, часы Относительная емкость, %
0,1 37
1,3 48
0,7 53
1,9 76
4,2 84
9,2 92
20 100

Прибор Кулон при помощи быстрого измерения ориентировочно определяет емкость полностью заряженного аккумулятора. Он не предназначен для оценки степени заряженности АКБ, все измерения необходимо проводить на полностью заряженной батарее. Устройство кратковременно подает тестовый сигнал, регистрирует отклик от батареи и через несколько секунд выдает ориентировочную емкость АКБ в ампер-часах. Одновременно на экран выводится измеренное напряжение. Полученные значения можно сохранять в памяти прибора.

Производитель подчеркивает, что устройство не является прецизионным измерителем, но позволяет оценочно определять емкость свинцовой кислотной батареи, особенно если пользователь самостоятельно откалибровал прибор при помощи аккумулятора такого же типа, что и тестируемый, но с известной емкостью. Процедура калибровки подробно изложена в инструкции к прибору.

Тестеры PITE

Следующая разновидность устройств для тестирования АКБ – тестеры PITE: модель PITE 3915 для измерения внутреннего сопротивления и модель PITE 3918 для оценки проводимости батарей.

Управление осуществляется при помощи цветного сенсорного экрана, но основные управляющие кнопки вынесены на клавиатуру в нижней части корпуса. Прибором можно тестировать батареи емкостью от 5 до 6000 А·ч, с элементами аккумулятора 1.2 В, 2 В, 6 В и 12 В. Диапазон измерения напряжения – от 0.000 В до 16 В, сопротивления – от 0.00 до 100 мОм. Прибор позволяет задать тип проверяемых батарей, выполнить измерение напряжения и сопротивления (модель 3915) или напряжения и проводимости (модель 3918), и на их основании судить о том, соответствует емкость батареи заявленной производителем или нет. При этом параметр Capacity (емкость батареи) выводится в процентах.

Интерфейс прибора позволяет проводить как одиночные измерения, так и последовательные (до 254 измерений в каждой последовательности, совокупное количество результатов более 3000), что удобно при проверке большого количества однотипных АКБ (в последнем случае результаты сохраняются автоматически, помимо данных в них фиксируется также порядковый номер измерения). В зависимости от настроек прибор может использовать для выдачи результата (статуса Good, Pass, Warning или Failed) собственные критерии либо значения, заданные пользователем. Результаты тестирования через порт USB могут быть перенесены на компьютер для просмотра и последующей подготовки отчетов.

Анализаторы Fluke

Более глубокое развитие той же идеи – приборы Fluke Battery Analyzer серии 500 (BT 510, BT 520, BT 521), которые позволяют измерять и сохранять в памяти напряжение, внутреннее сопротивление стационарной батареи, температуру минусовой клеммы, напряжение при разрядке. При наличии дополнительных аксессуаров можно измерять и сохранять в памяти и другие параметры. Тесты можно проводить как в режиме отдельных измерений, так и в последовательном режиме; используя настраиваемые профили. Есть возможность задать пороговые значения для различных параметров. Встроенный порт USB позволяет передавать собранные записи (до 999 записей каждого типа) на компьютер для подготовки отчетов с помощью программного обеспечения Analyze Software, входящего в комплект поставки.

Щупы прибора имеют специальную конструкцию: внутренний подпружиненный контакт предназначен для измерения тока, внешний – для измерения напряжения. Если на щуп надавить, внутренний наконечник смещается внутрь таким образом, что оба контакта каждого щупа касаются поверхности одновременно. В результате одни и те же щупы позволяют организовать как 2-проводное, так и 4-проводное подключение к полюсам батареи (последнее необходимо для измерения Кельвина).

  • Прибор позволяет измерять следующие параметры:

  • Внутреннее сопротивление батареи (измерение занимает менее 3 с).

  • Напряжение батареи (производится одновременно с измерением внутреннего сопротивления)

  • Температура минусовой клеммы (рядом с черным наконечником на щупе BTL21 Interactive Test Probe предусмотрен ИК-датчик)

  • Напряжение при разрядке (определяется несколько раз в ходе разрядки или во время теста на нагрузку)

Также возможно измерение пульсирующего напряжения, измерение переменного и постоянного тока (при наличии токовых клещей и адаптера), выполнение функций мультиметра. С анализаторами Fluke можно использовать интерактивный тестовый щуп BTL21 Interactive Test Probe со встроенным датчиком температуры. С приборами совместимо большое разнообразие дополнительных аксессуаров (токовые клещи, удлинители разного размера, съемный фонарик и т. п.).


 


 

Хотя прибор обладает богатым функционалом, ключевым этапом в определении состояния АКБ остается сопоставление измеренных показателей с расчетными или заданными изготовителем для данного конкретного типа батарей. Устройства Fluke Battery Analyzer серии 500 удобны для массовой инспекции состояния батарей. Последовательный режим и система профилей позволяют выполнять необходимые измерения одно за другим, результаты запоминаются прибором и хранятся в упорядоченной форме, последовательно пронумерованные и разбитые на группы. Но прибор не имеет функции прямого или косвенного измерения емкости АКБ в ампер-часах – хотя бы потому, что для батарей разного типа на сегодняшний день вряд ли возможно разработать единую точную методику такого определения.

Все перечисленные выше устройства, хоть и отличаются друг от друга по размеру, относятся к классу портативных. В отдельную группу можно выделить стационарные комплексы для проверки АКБ, которые могут проводить быстрые испытания с определением внутреннего сопротивления, контролировать все параметры, включая активную и реактивную составляющие сопротивления, управлять процессом разряда/заряда и т. п. Подобные комплексы адресованы скорее исследовательским лабораториям, промышленным производителям АКБ и разработчикам нового оборудования, чем конечным пользователям.

Анализаторы Vencon

Промежуточное положение занимает анализатор Vencon UBA5, предназначенный для работы с аккумуляторными батареями, используемыми в портативных средствах связи (мобильных телефонах, носимых радиостанциях, разнообразных гаджетах и т. п.), портативных инструментах и других устройствах напряжением до 18.5 В, емкостью от 10 мА·ч до 100 А·ч. Анализатор Vencon UBA5 совмещен с зарядным устройством и может использоваться в ремонтных мастерских, центрах обслуживания компьютерной техники, мобильной электроники и других устройств.

Прибор предназначен для различных типов АКБ (никель-кадмиевых, никель-металл-гидридных, литий-ионных, литий-полимерных, свинцовых кислотных и др.), позволяет задавать токи зарядки и разрядки, изменять алгоритмы работы устройства, тестировать емкость батарей при помощи однократных и многократных измерений, сохранять результаты измерений в памяти и выводить их через порт USB, готовить графические отчеты при помощи программного обеспечения.

Характерная особенность устройства – два измерительных канала (по 2 измерительных провода каждый), причем для проведения различных измерений их можно комбинировать, в том числе и от нескольких устройств UBA5. Дополнительно могут заказываться датчики температуры.
 

Прибор способен генерировать зарядный ток до 2А на каждом канале, ток нагрузки – до 3А (45 Вт) на каждом канале (в комплект входит адаптер питания). Более точные характеристики зависят от конкретной модели устройства – в серию UBA5 входит 5 различных моделей приборов.
 

В данном типе прибора, как и во всех описанных ранее, ключевым для определения состояния батареи является сопоставление измеренных показателей с параметрами, заявленными производителями АКБ.

4. Полная разрядка/зарядка

На сегодняшний день полная разрядка и зарядка – это единственный прямой и максимально достоверный способ определения емкости АКБ. Специализированные устройства контроля разряда/заряда батареи (УКРЗ) позволяют выполнить глубокую разрядку и последующую полную зарядку батареи с постоянным контролем емкости. Однако эта процедура занимает очень много времени: 15-17-20-24 часа, иногда и более суток, в зависимости от емкости и текущего состояния батареи. Хотя метод дает наиболее точные результаты, из-за временных затрат его применение ограничено.

5. Измерение плотности электролита

В обслуживаемых аккумуляторах для определения их состояния можно измерять плотность электролита, поскольку между этим параметром и емкостью АКБ существует непосредственная зависимость. Плотность электролита может меняться в силу разных причин, которые вдобавок взаимосвязаны (частый глубокий разряд батареи, сульфатация, неоптимальная плотность электролита, испарение и утечка раствора и т. д.). Аккумулятор начинает быстрее разряжаться, отдает меньше заряд. При этом необходимо понимать, что плотность электролита даже в исправном аккумуляторе, находящемся в идеальном состоянии – не константа, она меняется с температурой и степенью зарядки аккумулятора. Более того, для разных регионов рекомендованная плотность электролита отличается в зависимости от типовых климатических условий.

Результаты измерения плотности ареометром можно сопоставить со следующей диаграммой для кислотных аккумуляторов.

В зависимости от того, больше или меньше плотность электролита, чем требуемая (а для батареи вредно отклонение и в ту, и в другую сторону), можно частично или полностью заменить электролит, залить дистиллированную воду или раствор необходимой концентрации, обязательно обеспечив перемешивание. Как и при использовании всех ранее описанных способов проверки состояния АКБ ключевым является сопоставление измеренных значений с рекомендациями производителя батареи и следование всем предусмотренным процедурам обслуживания.

Выводы

Каждый способ определения текущего состояния аккумуляторной батареи имеет свои преимущества и недостатки. Каким из них пользоваться – зависит от ваших задач и возможностей. Сориентироваться вам поможет эта сводная таблица.

Способ определения состояния АКБ Преимущества Недостатки
Подкл ючение нагрузки Достаточно реалистичные результаты без использования специализированного оборудования Времязатратность при многократных измерениях Измеренные параметры документируются вручную
Нагрузочная вилка, специализированные анализаторы и тестеры

Портативность устройств

Простота использования

Быстрое проведение измерений, особенно многократных

Некоторые модели способны проводить измерения без выведения АКБ из режима эксплуатации

Специализированные модели позволяют сохранять результаты и переносить их на компьютер для подготовки отчетов

Часть параметров АКБ определяется по косвенным методикам Оценочная точность измерений
Полный разряд/заряд Единственный достоверный способ оценки емкости АКБ Очень продолжительная процедура – многие часы, иногда сутки
Измерение плотности электролита ρ Непосредственное определение состояния батареи по концентрации электролита Способ применяется только для обслуживаемых батарей
 

Материал подготовлен
техническими специалистами компании “СвязКомплект”.


См. также:

Аккумуляторные батареи: виды, принцип действия, характеристики

Данная статья посвящена описанию технических характеристик и принципа действия аккумуляторных батарей различных типов.


Содержание:

  • Принцип действия
  • Технические характеристики
  • Виды аккумуляторов
  • Правила эксплуатации

Аккумуляторные батареи являются источником постоянного тока, предназначенным для хранения и накопления электроэнергии. Большинство моделей современных аккумуляторов действуют по принципу циклического преобразования химической энергии в электрическую, что обеспечивает возможность многократной зарядки и разрядки. В настоящее время такие устройства используются во многих электротехнических приборах.

Принцип действия

Работа аккумуляторных батарей основана на взаимодействии жидкости и металлов. Данный процесс является обратимым и возникает в случае замыкания контактов отрицательных и положительных пластин. При разряде, который происходит при подключении к потребителям, активная масса электродов вступает в реакцию с электролитом. Для зарядки аккумуляторов применяется специальное устройство.

Заряд аккумуляторной батареи должен осуществляться при оптимальном уровне напряжения. Работа АКБ зависит от температуры окружающей среды. При ее повышении увеличивается отдаваемая мощность, но в то же время увеличивается коррозия электродов и саморазряд. Понижение температурного режима сопровождается снижением емкости, уменьшением плотности электролита и замедлением химических процессов.

Срок службы аккумуляторных батарей зависит от интенсивности эксплуатации и в среднем составляет 4-5 лет. Производители постоянно предлагают новые решения, целью которых является повышение эффективности. Среди наиболее перспективных направлений можно выделить:

  • Совершенствование конструкции (передовая AGM-технология).
  • Использование двух батарей, при этом одна из них предназначена только для запуска, а вторая — для всех остальных процессов и операций.
  • Система управления энергетическим балансом, регулирующая подключение потребителей.

Технические характеристики

При выборе аккумуляторов необходимо учитывать следующие параметры:

  • Емкость — показывает количество отдаваемого электролита в случае разрядки до минимально допустимого значения.
  • Ток холодной прокрутки — обеспечивает возможность запуска батареи при низких температурах.
  • Срок хранения — максимальный период, на протяжении которого аккумулятор может храниться при определенных условиях без необходимости дополнительной зарядки.
  • Саморазряд — потеря емкости в случае отсутствия потребителя.
  • Электродвижущая сила — показывает уровень напряжения на клеммах без внешней нагрузки. Для измерения данной величины используется вольтметр или мультиметр.
  • Полярность — влияет на расположение батареи под капотом авто или в корпусе другого устройства.

Виды аккумуляторов

Все многообразие моделей аккумуляторов можно разделить на несколько больших групп:

  • Свинцово-кислотные — наиболее распространенный вид АКБ, который применяется как источник бесперебойного питания и устанавливается автомобилях.
  • Никель-кадмиевые — в настоящее время они используются в качестве замены стандартным гальваническим элементам, а также в троллейбусах, трамваях и электрокарах.
  • Никель-металлогидридные — предназначены для использования в осветительной технике, радиоаппаратуре и электромобилях.
  • Литий-ионные — получили широкое распространение в современных строительных и бытовых приборах и мобильных устройствах.

Правила эксплуатации

С целью обеспечения безопасности и продления срока службы аккумуляторных батарей рекомендуется придерживаться следующих правил:

  • Не хранить аккумуляторы в разряженном состоянии, поскольку это ведет к сульфатации электродов и снижению емкости.
  • Не допускать создания цепей короткого замыкания между клеммами, так как электрический ток может расплавить контакты и нанести термический ожог.
  • Подключать батарею к устройству необходимо в соответствии с ее полярностью. При неправильном подсоединении приборы могут выйти из строя.
  • Запрещается вскрывать корпус аккумулятора. Воздействие расположенного внутри гелеобразного электролита на кожу может вызвать химический ожог.
  • Утилизация отслужившей свой срок аккумуляторной батареи должна осуществляться в соответствии с установленными правилами для устройств, содержащих тяжелые металлы.

Основные характеристики аккумуляторных батарей | АКБ

Коэффициент преобразования энергии

Энергия, которая подводится к батарее в процессе заряда, всегда больше энергии, отдаваемой ею при разряде. Превышение энергии заряда над энергией разряда объясняется необходимостью покрытия затрат на проведение электрохимических процессов при заряде. Чтобы зарядить батарею, необходимо подвести к ней энергию, величина которой составляет от 105 до 110% отданной ранее энергии. Это соотношение (равное от 1,05 до 1,10) называют коэффициентом преобразования энергии.

Емкость аккумуляторной батареей

Емкость батареи или отдельного аккумулятора равна отдаваемой ими электроэнергии, измеряемой в ампер-часах (А·ч). Емкость зависит от температуры и разрядного тока. Она уменьшается при увеличении разрядного тока и снижении температуры окружающей среды (особенно при минусовых ее значениях).

Номинальная емкость K20

Это указываемая изготовителем в А·ч емкость, которая определяется в режиме 20-часового разряда полностью заряженной батареи. Величина тока разряда рассчитывается по формуле K20 : 20 ч. Напряжение на выводах батареи при этом должно оставаться на уровне не ниже 10,5 В. Например, разрядный ток батареи емкостью 60 А·ч должен быть равен:

60 А·ч : 20 ч = 3 А

Таким образом батарея номинальной емкостью 60 А·ч должна отдавать ток силой 3 А в течение 20 часов, причем напряжение на ее выводах должно быть выше 10,5 В.

Ток холодной прокрутки

Ток холодной прокрутки (пусковой ток) характеризует способность аккумуляторной батареи обеспечивать пуск двигателя в холодное время года. Ток холодной прокрутки – это указанный производителем ток, который способна отдавать новая полностью заряженная батарея при температуре -18°C в течение установленного нормативом времени. При этом напряжение на ее выводах не должно падать ниже определенного значения, определяемого нормативными значениями.

Номинальное напряжение автомобильной батареи

Номинальное напряжение автомобильной батареи равно произведению номинального напряжения аккумулятора на число (последовательно включенных) аккумуляторов в батарее. В соответствии со стандартом номинальное напряжение свинцового аккумулятора равно 2 В, поэтому у аккумуляторной батареи оно должно составлять 12 В.

Напряжение начала газовыделения

Напряжение начала газовыделения – это напряжение аккумулятора, при котором начинается интенсивное выделение газов. Обычно газы начинают обильно выделяться при напряжении на клеммах более 14,4 В (или 2,4 В на выводах аккумулятора).


Основные характеристики аккумуляторных батарей

Товары Библиотека

РАДИОСТАНЦИИ

Инструкции
Программы
Сертификаты
Материалы VERTEX (англ.яз.)
Материалы YAESU (англ.яз.)
Другое
WIRES-II
Сравнение протоколов DMR TDMA и DMR FDMA
Краткое описания стандарта DMR

АНТЕННЫ И АНТЕННО-ФИДЕРНОЕ ОБОРУДОВАНИЕ

Инструкции и карты обрезки антенн
Инструкции к поворотным устройствам

УСИЛИТЕЛИ

Инструкции

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Инструкции к КСВ-метрам

ПРЕСЕЛЕКТОРЫ

Инструкции к Преселекторам

О СРЕДСТВАХ РАДИОСВЯЗИ

Порядок регистрации
Законы о радиосвязи
Особенности ремонта
Частотные сетки cb
Полосы частот

 

  Основные характеристики аккумуляторных батарей
Основные характеристики аккумуляторных батарейСвинцовые кислотные (Lead-Acid) аккумуляторные батареи  Аккумуляторные батареи этого типа широко применяются в системах связи и в тех случаях, когда требуется значительная ёмкость (например, в качестве резервных источников питания бесперебойного питания базовых станций). Существующие герметичные (гелевые) батареи и батареи с жидким электролитом (свинцовые) имеют примерно одинаковые электрические характеристики при низких температурах. В холостом ходу, при температуре окружающей среды 25 градусов , они длительно сохраняют до 95% от своей ёмкости. При низких температурах (ниже  минус 20 градусов) их ёмкость значительно уменьшается  Свинцовые батареи с жидким электролитом имеют более высокую плотность энергии относительно герметичных гелевых аккумуляторов, но проигрывают по этой характеристике другим типам АКБ. При номинальной температуре срок сохранности заряда в этих батареях составляет примерно 3 месяца (саморазряд  5% в месяц). Модифицированные свинцовые батареи (Absorption Glass Mat)  В  батареях AGM  электролитом пропитан из материала, напоминающим стекловату с очень тонкими стеклянными волокнами. По электрическим характеристикам они занимают промежуточное положение  между гелевыми батареями и батареями с жидким электролитом, и данный тип аккумуляторов практически лишён одного из самых неприятных недостатков гелевых батарей – необратимого увеличения внутреннего сопротивления батареи при и небрежной эксплуатации, когда в силикагеле, используемых для фиксации электролита, образуются разрывы из-за пузырьков газа. При номинальной температуре срок сохранности заряда в этих батареях составляет примерно 3 месяца (саморазряд  5% в месяц).Литий–ионные (Li-Ion) аккумуляторы  Литий-ионные аккумуляторы показывают неплохие характеристики при низких температурах. Большинство производителей гарантирует работу этого типа батарей при температуре окружающей среды до  минус 20 градусов. При этом, при комнатной температуре, при небольшой нагрузке они способны отдавать до 70% от своей ёмкости, а при больших токах нагрузки – до 40%. При температуре окружающего воздуха около 0 градусов уменьшение ёмкости мало заметно. Эти батареи имеют рабочее напряжение от 3,5 до 3,7 Вольт, хорошую плотность энергии по отношению к своей массе и габаритам и широко применяются в носимых радиостанциях. При номинальной температуре срок сохранности заряда в этих батареях составляет примерно 6 недель (саморазряд  10% в месяц).Литиевые (Li-Metal) аккумуляторные батареи  Этот тип батарей имеет напряжение на каждом элементе 3 Вольта и применяется до температуры окружающего воздуха  минус 30 градусов. В сравнении с другими типами аккумуляторов, они имеют наиболее высокую плотность энергии. Однако, это преимущество постепенно сходит на нет  при понижении температуры. Так, при температуре окружающей среды  около 0 градусов,  их ёмкость уменьшается примерно, до 70% от ёмкости при комнатной температуре; при минус 20 градусов  до 55%; при минус 30 градусов можно рассчитывать, примерно, на 40% от первоначальной ёмкости. Этот тип батарей считается небезопасным при разгерметизации, и производители продолжают усовершенствовать их конструкцию. Ввиду специфических требований к режиму заряда и по соображениям безопасной эксплуатации, литиевые аккумуляторы выпускаются с встроенными контроллерами заряда. Контроллер не допускает порчу батареи вследствие её перезаряда и её глубокий разряд. При наступлении опасности любого рода, выходные силовые контакты батареи будут отключены защитной схемой контроллера, что позволяет сохранить литиевые элементы батареи. «Эффект памяти», характерный для предыдущего поколения никель-кадмиевых батарей, у литиевых батарей отсутствует. Поэтому, заряжать такие батареи можно при любом остаточном уровне заряда, не опасаясь снижения её ёмкости. При номинальной температуре срок сохранности заряда в этих батареях составляет примерно 1 год.Никель-кадмиевые (Ni-Cd) аккумуляторы  Никель-кадмиевые аккумуляторные батареи предназначены для работы в условиях низких (до минус 20 градусов) температуры окружающего воздуха. Каждый элемент батареи имеет рабочее напряжение 1,2 Вольта. При небольшой нагрузке и температуре окружающей среды 0 градусов, элементы батареи отдают до 95% от своей ёмкости. При той же температуре и под большой нагрузкой, ёмкость батареи уменьшается до 90%. При понижении температуры до минус 20 градусов можно рассчитывать на 60% от первоначальной ёмкости, хотя при малых токах в нагрузке батарея способна отдать до 80% от своей ёмкости. При температуре минус 40 градусов можно ожидать до 40% ёмкости при малых токах нагрузки, но АКБ практически не способна отдавать большой ток (например, при переходе портативной радиостанции в режим передачи). Никель-кадмиевые батареи имеют маленькое внутреннее сопротивление, и ка следствие этого – умеренный саморазряд. При номинальной температуре срок сохранности заряда в этих батареях составляет примерно 3 недели (саморазряд  20% в месяц). Никель-гидридные (NI-MH) аккумуляторные батареи  Никель-гидридные (Nickel-Metal Hydride) аккумуляторы  сохраняют свою работоспособность до температуры окружающей среды минус 20 градусов. При комнатной температуре (25 градусов) и при  малых токах в нагрузке, они способны отдавать до 90 % от своей первоначальной ёмкости. Однако, при больших токах в нагрузке и при той же температуре окружающего воздуха, стоит рассчитывать только на 40% ёмкости. При температуре 0 градусов и небольшом токе в нагрузке, эти аккумуляторы отдают порядка 95% от своей первоначальной ёмкости. Несмотря на значительное снижение ёмкости при больших токах в нагрузке в условиях низких температур, никель-гидридные аккумуляторные батареи применяются для работы окружающего воздуха  до минус 30 градусов. Основной их недостаток – глубокий саморазряд  (до 30 % в месяц), а срок сохранности заряда при номинальной температуре составляет 2 недели.Перезаряжаемые щелочные батареи (Rechargeable Alkaline Battery)  Перезаряжаемые щелочные батареи (не путать с аккумуляторами, которые в старых публикациях до 1990 года назывались «никель-кадмиевыми щелочными батареями») имеют максимальный рекомендуемый ток разряда не более 400-500 мА. У них высокое внутреннее сопротивление, что приводит к серьёзному падению напряжения даже при комнатной температуре при работе в радиопередающей аппаратуре с выходной мощностью выше 0,1 Вт. Поэтому, применение этих батарей для работы в условиях низких температур не желательно. При низкой температуре окружающего воздуха эти батареи подходят только для работы в маломощных устройствах и при малых токах разряда. При положительной температуре они отдают около 75% от своей первоначальной ёмкости и менее 20% при температуре минус 20 градусов.  Основное достоинство этих батарей – небольшой ток саморазряда, а основной недостаток – малое количество циклов заряда-разряда, которые аккумуляторы способны обеспечить при  допустимой потере ёмкости.Купить батарей и аккумуляторы

Купить FNB-82Li

Купить FNB-V57 ---


Пожалуйста, включите JavaScript, чтобы иметь возможность комментировать в системе Disqus.

виды и технические параметры аккумуляторных батарей для автомобилей

При выборе и эксплуатации АКБ нужно обращать внимание на ее основные свойства. Технические характеристики автомобильных аккумуляторов позволят определить целесообразность использования устройств на конкретной модели транспортного средства.

Содержание

[ Раскрыть]

[ Скрыть]

Устройство и назначение аккумуляторных батарей в авто

Основная особенность конструкции любого типа АКБ заключается в том, что он состоит из нескольких батарей. Они называются банками и монтируются внутри конструкции. В 12-вольтных устройствах такие элементы рассчитаны примерно на 2 вольта, они соединяются друг с другом последовательным образом.

Конструкция АКБ включается в себя:

  1. Непосредственно банки. Данные компоненты выполнены в виде набора пластин различной полюсности. Друг от друга они изолированы посредством кислото-упорных сепараторов.
  2. Корпус конструкции. Обычно производится из эбонита либо кислото-упорного пластика. Внутри корпуса располагаются специальные отсеки, в которые монтируются банки.
  3. Сама полюсная пластина производится из свинца и выполнена в виде решетки. В ячейки, расположенные внутри, впрессовывается состав пористого типа, который предназначен для увеличения площади соприкосновения с рабочей жидкостью — электролитом. Данное активное вещество производится из свинцового порошка, в него также добавляется серная кислота, а в отрицательные пластины — сернокислый борий. При изготовлении батареи эти элементы заряжаются, что приводит к формированию диоксида свинца в плюсовых устройствах. В отрицательных образуется губчатый металл.
  4. Раствор электролита заливается в банки АКБ. Жидкость используется для передвижения заряженных элементов от отрицательного полюса к положительному. Рабочий раствор производится из дистиллята (очищенной воды), а также серной кислоты.

Сама по себе батарея является одним из основных компонентов в транспортном средстве. Функционируя в бортовой сети машины вместе с генераторным устройством, АКБ является источником электрической энергии.

О конструктивных особенностях автомобильных батарей рассказал пользователь Аккумуляторщик.

Функции, которые выполняет приспособление:

  1. Запуск силового агрегата. В момент, когда генераторный узел еще не запущен, напряжение от АКБ подается на стартерное устройство при пуске.
  2. Обеспечение питания током всего электрооборудования транспортного средства при выключенном двигателе.
  3. Возможность запитки приборов и устройств машины во время движения, когда генераторный узел перегружен.

Поскольку емкость АКБ ограничена, не рекомендуется длительно использовать устройство и включать все потребители энергии при отключенном моторе. Батарея, работая в паре с генераторной установкой, выполняет сглаживание пульсаций электротока в сети машины.

Основные типы АКБ

Устройства делятся между собой по таким параметрам:

  • состав внутренних пластин;
  • технологическое исполнение.

В мотоциклетной технике устанавливаются АКБ, рассчитанные на 6 вольт, в автомобильной — на 12 В, а в грузовых авто — на 24 В.

В зависимости от состава пластин

По этому свойству АКБ разделяются на:

  • малосурьмянистые;
  • гибридные;
  • кальциевые;
  • гелиевые;
  • щелочные;
  • литий-ионные.

Канал «Книга отзывов» вкратце рассказал о разновидностях автомобильных батарей и нюансах их выбора.

Малосурьмянистые аккумуляторы

В таких устройствах используются пластины с уменьшенным объемом сурьмы (менее 5 процентов), что дает возможность снизить интенсивность испарения жидкости из раствора электролита. Это позволяет автовладельцам не доливать постоянно дистиллированную воду в банки. Но это не значит, что такие АКБ не нуждаются в обслуживании (они считаются малообслуживаемыми). Частичная потеря раствора присутствует, поэтому периодически автовладельцам необходимо проверять уровень жидкости и добавлять ее.

Основные преимущества:

  1. Пониженная степень саморазряда устройства во время хранения, если сравнивать с традиционными сурьмянистыми моделями.
  2. Устойчивость к электрическим параметрам бортовой сети машины. При появлении скачков напряжения основные свойства АКБ не пострадают. Поэтому многие специалисты рекомендуют использовать подобный тип АКБ на транспортных средствах российского производства. Для таких авто характерно нестабильное напряжение в электросети.
  3. Доступная стоимость по сравнению с другими типами АКБ.
Гибридные аккумуляторы

Данный вид батарей маркируется символами Ca+ либо Ca/Sb на корпусе. Решеточные элементы электродов в них могут выполняться по разным методикам. Плюсовые составляющие производятся с добавлением сурьмы, а минусовые — по кальциевой технологии. Гибридный тип устройств был создан с целью объединить положительные характеристики других разновидностей батарей. Но в итоге все свойства получились средними.

По сравнению с устройствами малосурьмянистого типа расход рабочей жидкости в таких аккумуляторах меньше, но значительно больше, чем в кальциевых. Основным преимуществом данного вида батарей является высокая устойчивость к глубокому разряду, а также перепадам напряжения в бортовой сети машины.

Подробно о гибридных разновидностях устройств и особенностях их эксплуатации рассказал пользователь Аккумуляторщик.

Кальциевые аккумуляторы

Основное отличие данного типа заключается в использовании кальция в свинцовых решетках вместо сурьмы, это позволило снизить величину испарения жидкости. Такие аккумуляторы имеют на корпусе маркировку Ca/Ca. Это свидетельствует об использовании кальция в решетках обоих электродов — отрицательных и положительных.

В зависимости от производителя в состав приспособления может добавляться серебро, что позволяет:

  • снизить величину внутреннего сопротивления устройства;
  • повысить коэффициент полезного действия;
  • увеличить значение емкости.

Но одной из основных особенностей кальциевых батарей стало снижение интенсивности электролиза, в результате чего раствор рабочей жидкости практически не испаряется. Благодаря этому у автовладельца пропадает возможность периодической диагностики уровня и замера плотности. Кроме того, такие АКБ характеризуются пониженной степенью саморазряда. Данный параметр по сравнению с устаревшими сурьмянистыми устройствами меньше приблизительно на 70%.

Это позволяет аккумулятору намного дольше хранить эксплуатационные свойства, если он не используется. Замена сурьмы на кальций позволила повысить величину напряжения, которое требуется для запуска процесса электролиза — с 12 до 16 вольт. Соответственно, для таких устройств переразряд не критичен.

Недостатки, характерные для кальциевых приспособлений:

  1. Такие аккумуляторы более чувствительны к повышенному разряду по сравнению с традиционными АКБ. Батарее достаточно около трех сильных циклов, что приведет к необратимому снижению емкости. Соответственно, в итоге аккумулятор сможет накапливать меньше тока и будет менее мощным. Потребуется замена устройства.
  2. Из-за этого недостатка потребителю необходимо регулярно следить за состоянием бортовой сети машины. Кальциевые устройства более чувствительны к стабильности электрических параметров в авто. Перепады напряжения негативно отразятся на функционировании аккумуляторов в целом. Перед выполнением монтажа АКБ необходимо удостовериться, что генераторный узел исправен. Также требуется диагностика регуляторного приспособления и прочего оборудования, влияющего на величину напряжения.
  3. Стоимость кальциевых устройств значительно выше по сравнению с малосурьмянистыми. Такие АКБ обычно устанавливаются на современные иномарки, обладающие стандартными набором функций. Речь идет о транспортных средствах, в которых установлено качественное оборудование и гарантируется стабильность электрических параметров.

Покупая кальциевый аккумулятор, надо помнить, что при работе подобного устройства не допускается глубокий разряд.

Об особенностях зарядки такого типа автомобильных батарей рассказал канал «Avto-Blogger».

Гелевые аккумуляторы

Подобные устройства производятся по технологиям GEL и AGM, в них используется электролит в связанном виде. Данный тип батарей позволил решить проблему безопасного применения. В традиционных аккумуляторах рабочая жидкость может вытечь из конструкции при повреждении корпуса либо его переворачивании. А сама серная кислота — агрессивный состав, представляющий опасность для человеческого организма. В гелиевых устройствах раствор электролита помещается в связанное состояние, что способствует снижению его текучести.

Также данная технология позволила снизить величину осыпания активной составляющей пластин. Единственное различие между устройствами AGM и GEL состоит в методе связывания рабочей жидкости. В первом случае раствором пропитывается пористое стекловолокно, расположенное между пластинами. А во втором — жидкость переводится в гелеобразный вид посредством использования соединений кремния в составе.

В результате того, что жидкий электролит в конструкции практически не применяется, такие аккумуляторы не боятся использования в наклонном положении. Но все же эксплуатировать батареи в перевернутом состоянии не рекомендуется.

Основные преимущества гелевых устройств:

  1. Низкая величина саморазряда. Поэтому их можно хранить длительное время без необходимости подзарядки.
  2. Устойчивость к воздействию вибраций.
  3. Основное достоинство заключается в способности аккумулятора выдавать высокий пусковой ток независимо от заряда устройства. Причем практически при полном разряде. Это позволяет увеличить ресурс эксплуатации, поскольку после запуска двигателя аккумулятор все равно зарядится.
  4. Способность выдерживать большое число циклов заряда-разряда. В среднем этот показатель составляет около двухсот.

Основным недостатком АКБ является ее высокая чувствительность. Заряд данного типа устройств должен выполняться меньшей величиной тока, если сравнивать с традиционными кислотно-свинцовыми моделями. Для подзарядки аккумулятора должны использоваться ЗУ, обладающие специальными характеристиками. Также такой тип устройств очень требователен к стабильности параметров электрической сети транспортного средства.

При работе в условиях серьезных холодов значительно снижается проводимость гелеобразного раствора жидкости, поэтому АКБ может вести себя некорректно. В идеале ресурс эксплуатации таких устройств составляет около десяти лет, но по факту не стоит рассчитывать больше, чем на семь. В современных транспортных средствах такие аккумуляторы используются редко, что обусловлено их высокой стоимостью по сравнению с другими типами. Они нашли широкое применение в мотоциклетной технике, а также водных транспортных средствах.

Канал «Avto-Blogger» подробно рассказал о преимуществах и недостатках, характерных для гелиевых АКБ авто.

Щелочные аккумуляторы

В составе аккумулятора вместо кислоты используется щелочь. В автомобильных транспортных средствах они применяются редко, поскольку из всего многообразия есть только два типа стартерных АКБ. Устройства комплектуются плюсовыми и минусовыми пластинами, первые имеют покрытие из гидроксида или метагидроксида, а вторые — из кадмия и железа.

Сами пластинные элементы устанавливаются в специальные конверты, но они производятся из стали. Внутрь устройств запрессовывается активная масса, что позволяет увеличить устойчивость батареи к воздействию вибраций. Надо учитывать, что в щелочных АКБ используется разное количество плюсовых и минусовых электродных элементов. Обычно на один положительный компонент больше. Пластинные элементы устанавливаются по краям конструкции и подключаются к корпусу АКБ.

Основные достоинства щелочного типа батарей:

  1. Такие устройства проще переносят перезаряд. АКБ можно длительно хранить без эксплуатации, причем ее свойства не будут нарушены.
  2. Щелочные устройства лучше функционируют в условиях пониженных температур.
  3. Данный тип аккумуляторов характеризуется более низким саморазрядом по сравнению с кислотными устройствами.
  4. Вредные испарения в конструкции практически отсутствуют.
  5. Щелочные батареи позволяют накапливать большую емкость на единицу массы. В итоге при использовании в качестве тяговых АКБ они позволяют отдавать ток в течение длительного времени.

Минусы, характерные для щелочного типа устройств:

  1. Такие батареи обладают меньшим напряжением, по сравнению с кислотно-свинцовыми. В итоге для достижения необходимого параметра в конструкции устройства надо объединить большее количество банок. Это способствует увеличению габаритных размеров АКБ.
  2. Стоимость щелочных устройств намного больше по сравнению с кислотными.

На сегодняшний день щелочный тип АКБ производится только для некоторых моделей грузовых машин. Основная сфера их использования — тяговые батареи, какие устанавливаются в складскую технику, погрузчики. Применение щелочных устройств на легковых транспортных средствах пока не целесообразно.

Об особенностях обслуживания такого типа батарей рассказал канал «Nesh34».

Литий-ионные аккумуляторы

Подобный вид устройств считается перспективным в плане вспомогательного источника тока. В качестве носителей в них используются ионы лития. Сам материал электродных элементов может меняться с совершенствованием данной технологии. Изначально для этого использовался металлический литий, но со временем он был заменен графитом в результате повышенной взрывоопасности. В качестве положительных элементов на более старых АКБ применяются литийные оксиды с добавлением кобальта либо марганца.

Сегодня вместо этого состава используются литий-ферро-фосфатные сплавы. Это обусловлено их меньшей стоимостью и пониженной токсичностью. Такие составы проще перерабатываются.

Основные преимущества данного типа аккумуляторов:

  1. Высокая удельная электроемкость на единицу массы устройства.
  2. Напряжение отдельного компонента значительно выше по сравнению с традиционными кислотно-свинцовыми АКБ. Этот параметр составляет 4 вольта для каждой банки. У классических аккумуляторов — 2 В.
  3. Пониженная степень саморазряда.

Недостатки, присущие для литий-ионных аккумуляторов, не позволяют их массово устанавливать на транспортные средства:

  1. Такие батареи чувствительны к работе в условиях пониженных температур. Когда на улице мороз, ток в АКБ, который она отдает, уменьшается.
  2. Небольшое количество циклов заряда-разряда, составляющее около пятисот.
  3. Старение устройств. При длительном хранении ресурс эксплуатации аккумулятора падает в результате снижения емкости приспособления. За два года этот показатель может снизиться на 20%.
  4. Литий-ионные устройства более чувствительны к глубокому разряду.
  5. Такие батареи не могут похвастаться высокой мощностью. Этот показатель слишком низкий, чтобы устройство можно было использовать в качестве стартерного.

Игорь Цветков предоставил видеоролик, в котором подробно описана процедура производства литий-ионных АКБ.

В зависимости от технологического исполнения

В этом плане устройства делятся на:

  • необслуживаемые;
  • малообслуживаемые;
  • обслуживаемые.
Необслуживаемые

Такой тип АКБ появился на современных автомобилях еще в 80-х годах прошлого века. Эти аккумуляторы считаются наиболее дорогими, в их конструкции не предусмотрены отверстия для добавления раствора электролита. Они характеризуются наличием высокого пускового тока, а ресурс эксплуатации выше примерно на 20-30%. Для качественной работы необслуживаемым батареям необходимо стабильное напряжение в бортовой сети. Такие устройства плохо относятся к длительным попыткам запуска двигателя, когда в работе систем зажигания или питания имеются сбои.

Малообслуживаемые

Обладают доступом к каждой банке. Для эффективного функционирования требуют изредка контроля объема и плотности рабочего раствора. На практике такой тип батарей демонстрирует хорошие эксплуатационные свойства, хотя с технической точки зрения они устарели.

Обслуживаемые

Считается одним из наиболее дешевых типов устройств. Данный вид аккумуляторов нуждается в частой диагностике и контроле уровня рабочей жидкости. Из-за технических особенностей электролит в них быстро испаряется. Основным недостатком является разрушение битумной мастики, которая используется для фиксации корпуса. В результате этого конструкция теряет герметичность, увеличивается концентрация кислотных паров в моторном отсеке, что приводит к окислению клеммных зажимов.

Пользователь Аккумуляторщик подробно рассказал о нюансах технического обслуживания автомобильных батарей.

Технические характеристики АКБ

При покупке следует смотреть на следующие технические характеристики автомобильных аккумуляторов:

  • емкость;
  • электродвижущая сила;
  • ток холодной прокрутки;
  • внутреннее сопротивление и напряжение;
  • полярность;
  • степень заряженности;
  • особенности конструкции;
  • срок эксплуатации и хранения;
  • саморазряд батареи.

Емкость

Данный параметр дает возможность оценить количество электричества, которое отдает АКБ при разряде до минимального значения. Величина замеряется в Ампер-часах. Определить номинальный показатель емкости можно по специальной технологии. АКБ разряжается до момента, пока величина напряжения не составит 10,5 вольт, причем разряд происходит силой тока, которая составляет 4% от заявленного параметра. Процедура выполняется на протяжении двадцати часов, а температура рабочей жидкости при ее проведении должна составить в диапазоне 18-27 градусов.

Если емкость АКБ составляет 50 Ач, то к ее клеммам подсоединяется нагрузка током 2 ампера. Это может быть лампа, рассчитанная на 24 Ватта для использования в 12-вольтной сети. Устройство разряжается до 10,5 вольт. Общее время для выполнения задачи при идеальном состоянии АКБ составит около 25 часов. В ходе использования показатель емкости всегда снижается и концом эксплуатации можно считать момент, когда этот параметр составит 40% от заявленного.

Чтобы точно определить рабочую величину, потребуется нагрузочная вилка, которая включает в себя:

  • сопротивление;
  • вольтметр;
  • контактные элементы;
  • рукоятку;
  • корпус устройства.

Клеммы прибора соединяются с выводами АКБ, затем надо засечь время, когда величина напряжения упадет до 6 вольт. Если аккумулятор работает идеально, то этот параметр составит не меньше трех минут. Величина температуры рабочей жидкости должна быть около 25 градусов.

Пользователь Юрий Крым подробно рассказал об измерении данного параметра в домашних условиях.

Значение емкости батареи зависит от нескольких характеристик:

  • число пластин и тип конструкции, по которому они расположены;
  • значение температуры жидкости;
  • величина разрядного тока, а также режим разряда;
  • степень изношенности устройства.

Емкость является единственным параметром, который позволяет максимально охарактеризовать состояние аккумулятора. Для увеличения ресурса эксплуатации в кислотных АКБ следует использовать минимальную часть от общей величины до зарядки устройства. Если происходит глубокий разряд, срок использования батареи значительно падает.

Электродвижущая сила

Эта характеристика определяет величину напряжения на выводах приспособления без воздействия внешних нагрузок, при отсутствии утечки. Рабочий параметр замеряется с помощью тестера, в качестве которого можно использовать мультиметр либо вольтметр. На электродвижущую силу влияет две характеристики — плотность рабочего состава, а также температура жидкости. Чем больше первая величина, тем выше параметр ЭДС.

При температуре аккумулятора 18 градусов и значении плотности 1,27 г на см3 величина электродвижущей силы составит 2,12 вольт для одной банки. Соответственно, если батарея состоит из шести элементов, то общее значение будет 12,7 вольт. По параметру электродвижущей силы не получится точно определить состояние АКБ. Эта величина позволяет распознать критические проблемы в работе устройства, например, замыкание пластин.

Формула для расчета зависимости напряжения и ЭДС при зарядке АКБ Вычисление аналогичного параметра при разряде аккумулятора

Ток холодной прокрутки

Данная величина часто именуется пусковой. Параметр маркируется на корпусе аккумулятора рядом с показателем емкости. Для определения параметра холодной прокрутки АКБ надо охладить до температуры -18 градусов. Затем производится ее разрядка пусковым током на протяжении тридцати секунд. В соответствии с ГОСТом данная величина должна составить не меньше 8,4 вольт. После двух с половиной минут разряда этот параметр может опуститься на уровень не ниже 6 вольт.

Внутреннее сопротивление и напряжение

Данная величина включает в себя параметры:

  • пластинчатых элементов;
  • раствора рабочей жидкости;
  • сепараторных устройств;
  • крепежных соединений и т. д.

Величина внутреннего сопротивления снижается при росте показателя емкости аккумулятора. Этот параметр возрастает при падении температуры, а также заряда устройства. При регулярном использовании автомобиля АКБ не заряжается до конца приблизительно на 15-20%, поэтому специалисты рекомендуют периодически выполнять ее подзарядку. Это связано с функционированием генераторной установки. Данный узел может вырабатывать не более 14,5 вольт, но необходимый заряд устройство позволяет выдавать в случае, когда обороты коленвала составляют 2 тысячи в минуту.

Соответственно, процедура подзарядки оптимально выполняется при разгоне автомобиля либо когда машина движется на высокой скорости по трассе. В таком режиме работы полное восстановление емкости возможно только при функционировании на протяжении двенадцати часов. Величину напряжения, которое выдает генераторный узел, повысить не получится, поскольку это приведет к началу процесса электролиза и испарению жидкости.

Пользователь Misha343 рассказал о практическом вычислении внутреннего сопротивления АКБ автомобиля.

Полярность

Данная характеристика определяет расположение батареи в моторном отсеке машины. В продаже можно встретить аккумуляторы с прямой и обратной полярностью. Отличить их несложно. Повернув устройство клеммами на себя, в аккумуляторе с прямой полярностью отрицательный вывод находится справа, а положительный — слева. Если характеристика обратная, то будет наоборот.

Российские производители выпускают аккумуляторы с прямой полярностью, а зарубежные — преимущественно с обратной.

Непосредственно клеммы в АКБ могут иметь различные стандарты:

  1. Европейский Тип 1. Диаметр положительного вывода составляет 1,95 см, а отрицательного — 1,79 см.
  2. Азиатский стандарт 3. Положительный контакт имеет диаметр 1,27 см, а отрицательный — 1,11 см.

Степень заряженности

На данный технический параметр влияют различные характеристики, поэтому точно определить его значение будет проблематично. Узнать степень заряженности позволит только многофункциональное зарядное оборудование, оснащенное сложной электроникой. Но для использования батареи достаточно знать оценочные величины. Рабочий параметр можно определить по значению напряжения, а также плотности раствора. Первая характеристика для заряженной батареи с жидким электролитом составляет примерно 12,7 вольт, а для гелиевых устройств — в диапазоне 13-13,4 В.

Таблица взаимосвязи степени заряженности с другими параметрами АКБ

Особенности конструкции

Большинство современных устройств для легковых транспортных средств весят около 14-20 килограмм. Почти всегда производитель указывает точную массу на этикетке с другими свойствами и параметрами АКБ. В случае с типоразмерами ситуация обстоит иначе. В продаже можно найти аккумуляторы, выполненные в различных исполнениях.

Но почти все разновидности устройств относятся к одному из этих типоразмеров:

  1. Европейский. Приспособления, выполненные в таком корпусе, имеют высоту 19 см. Клеммные выводы устанавливаются в углублениях конструкции.
  2. Азиатский. В таких аккумуляторах высота корпуса может составить от 22 до 25 см. Клеммные зажимы выступают за саму конструкцию АКБ.
  3. Американский. В подобных устройствах контактные выходы располагаются сбоку. Но на российском рынке найти данные аккумуляторы проблематично.

В плане технологической конструкции все батареи можно разделить на три типа, о которых сказано выше:

  • необслуживаемые;
  • обслуживаемые;
  • малообслуживаемые.

Срок эксплуатации и хранения

Если аккумулятор не используется, то его ресурс сохранения будет небольшим. В полностью разряженном состоянии и без электролита устройство может пролежать до двух лет. Но гарантийный ресурс хранения АКБ составит только один год. Если будут соблюдаться основные правила применения, то общий срок эксплуатации увеличится на четыре года в среднем. При правильном и своевременном техническом обслуживании ресурс использования батареи может составить до восьми лет.

Пользователь Аккумуляторщик подробно рассказал о сроке эксплуатации АКБ и нюансах, которые влияют на его снижение.

Саморазряд батареи

Этот показатель представляет собой процесс снижения величины емкости приспособления, пока оно простаивает. Процедура происходит в результате появления окислительно-восстановительных процессов на электродных элементах различной полярности. Но минусовая часть устройства страдает больше, что обусловлено взаимодействием свинца от пластин с серной кислотой из рабочего раствора. Такой процесс приводит к выделению водорода. Степень растворения свинца увеличивается при возрастании параметра плотности рабочего раствора электролита.

Кроме того, процедура саморазряда может провоцироваться загрязнениями, образующимися на поверхности батареи. Рабочий раствор, вода и другие жидкости способствуют созданию неблагоприятных условий для функционирования АКБ, в частности, ее разряду. Это происходит благодаря образованию проводящей пленки между контактными выводами АКБ.

Особенности процедуры саморазряда, которые надо знать автовладельцу:

  1. Когда температура падает, этот параметр снижается, а если она составит 0 градусов, то он почти прекращается. Поэтому не рекомендуется хранение аккумуляторов в помещениях, где жарко. АКБ должна быть заряженной.
  2. Процедура саморазряда становится активной, когда ресурс эксплуатации батареи приближается к концу. Этому способствует подзарядка устройства при глубоком разряде.
  3. Данный параметр можно уменьшить, если вовремя заливать в АКБ чистую серную кислоту с дистиллятом. Эти вещества позволят сделать электролит.
  4. Процедура саморазряда происходит более активно на протяжении 24 часов после последней подзарядки аккумулятора.
  5. Если батарея теряет 1% емкости за сутки, это считается нормальным.

Канал «НИк86 авто-стройка» подробно рассказал о причинах саморазряда устройств.

Техника безопасности при эксплуатации и обслуживании АКБ

Чтобы обеспечить длительную работу приспособления, надо учитывать следующие нюансы использования:

  1. Устройство должно быть надежно зафиксировано в моторном отсеке машины.
  2. Если производится замер параметра плотности рабочей жидкости и ее замена, необходимо пользоваться средствами защиты. Речь идет об очках и резиновых перчатках. Если электролит попадет на кожу, пораженный участок необходимо обработать раствором воды с пищевой содой.
  3. Не допускается замыкание клемм АКБ друг с другом. Это может привести к выходу из строя электрооборудования и даже взрыву батареи.
  4. Прежде чем подзаряжать приспособление, необходимо открутить пробки из банок. Это нужно, когда батарея относится к категории обслуживаемых.
  5. Не допускается хранение аккумулятора, если он разряжен. Это приведет к быстрой сульфатации электродных элементов, в результате чего снизится емкость устройства.
  6. При подключении надо обязательно соблюдать полярность. Если батарея заряжена, то ее запас энергии высокий. Соответственно, при неправильном подсоединении клемм может произойти поломка АКБ.
  7. Не допускается самостоятельное вскрытие корпуса приспособления. Попадание раствора электролита на кожу приведет к химическому ожогу.

Видео «Нюансы проведения технического обслуживания АКБ»

Пользователь Аккумуляторщик подробно рассказал об особенностях профилактики автомобильных аккумуляторных батарей в домашних условиях.

 Загрузка ...

DoITPoMS - Батарейки библиотеки TLP

При выборе батареи необходимо учитывать следующие характеристики батареи:

1) Тип

См. Страницу первичных и вторичных батарей.

2) Напряжение

Теоретическое стандартное напряжение ячейки может быть определено из электрохимической серии с использованием значений E или :

E o (катодный) - E o (анодный) = E o (элемент)

Это стандартное теоретическое напряжение.Теоретическое напряжение ячейки модифицируется уравнением Нернста, которое учитывает нестандартное состояние реагирующего компонента. Нернтовский потенциал будет меняться со временем либо из-за использования, либо из-за саморазряда, посредством которого изменяется активность (или концентрация) электроактивного компонента в ячейке. Таким образом, номинальное напряжение определяется химией ячейки в любой момент времени.

Фактическое создаваемое напряжение всегда будет ниже теоретического напряжения из-за поляризации и потерь сопротивления (падения IR) батареи и зависит от тока нагрузки и внутреннего импеданса элемента.Эти факторы зависят от кинетики электрода и, таким образом, зависят от температуры, состояния заряда и возраста элемента. Фактическое напряжение, появляющееся на клеммах, должно быть достаточным для предполагаемого применения.

Типичные значения напряжения находятся в диапазоне от 1,2 В для никель-кадмиевых аккумуляторов до 3,7 В для литий-ионных аккумуляторов.

На следующем графике показана разница между теоретическим и фактическим напряжениями для различных аккумуляторных систем:

3) Кривая расхода

Кривая разряда представляет собой график зависимости напряжения от разряженной емкости в процентах.Желательна плоская кривая разряда, поскольку это означает, что напряжение остается постоянным по мере разряда батареи.

4) Вместимость

Теоретическая емкость батареи - это количество электричества, участвующего в электрохимической реакции. Обозначается Q и определяется как:

.

$$ Q = xnF $$

, где x = количество молей реакции, n = количество электронов, перенесенных на моль реакции и F = постоянная Фарадея

Вместимость обычно выражается в массе, а не в количестве молей:

\ [Q = {{nF} \ over {{M_r}}} \]

, где M r = молекулярная масса.Это дает емкость в единицах ампер-часов на грамм (Ач / г).

На практике полная емкость аккумулятора не может быть реализована, поскольку значительный вес составляют нереактивные компоненты, такие как связующие и проводящие частицы, сепараторы и электролиты, токосъемники и подложки, а также упаковка. Типичные значения варьируются от 0,26 Ач / г для Pb до 26,59 Ач / г для H 2 .

5) Плотность энергии

Плотность энергии - это энергия, которая может быть получена из единицы объема веса клетки.

6) Удельная энергия

Удельная плотность энергии - это энергия, которая может быть получена на единицу веса ячейки (или иногда на единицу веса активного электродного материала). Это произведение удельной емкости и рабочего напряжения за один полный цикл разряда. Как ток, так и напряжение могут изменяться в течение цикла разряда, и, таким образом, полученная удельная энергия рассчитывается путем интегрирования произведения тока и напряжения во времени.Время разряда связано с максимальным и минимальным порогом напряжения и зависит от состояния доступности активных материалов и / или предотвращения необратимого состояния аккумуляторной батареи.

7) Удельная мощность

Плотность мощности - это мощность, которая может быть получена на единицу веса элемента (Вт / кг).

8) Температурная зависимость

Скорость реакции в ячейке будет зависеть от температуры в соответствии с теориями кинетики.Внутреннее сопротивление также зависит от температуры; низкие температуры дают более высокое внутреннее сопротивление. При очень низких температурах электролит может замерзнуть, что приведет к снижению напряжения, поскольку движение ионов затруднено. При очень высоких температурах химические вещества могут разлагаться, или может быть достаточно энергии для активации нежелательных обратимых реакций, снижающих емкость.
Скорость уменьшения напряжения с увеличением разряда также будет выше при более низких температурах, как и емкость - это показано на следующем графике:

9) Срок службы

Срок службы аккумуляторной батареи определяется как количество циклов зарядки / перезарядки, которое может выполнить аккумуляторная батарея, прежде чем ее емкость упадет до 80% от первоначальной.Обычно это от 500 до 1200 циклов.

Срок годности батареи - это время, в течение которого батарею можно хранить в неактивном состоянии, прежде чем ее емкость упадет до 80%. Уменьшение емкости со временем вызвано истощением активных материалов из-за нежелательных реакций внутри ячейки.

Батареи также могут быть подвержены преждевременной смерти:

  • Чрезмерная зарядка
  • Перегрузка
  • Короткое замыкание
  • Потребляет больше тока, чем предусмотрено для производства
  • Воздействие экстремальных температур
  • Подвержены физическим ударам или вибрации

Задержка напряжения

Смерть батареи из-за старения

10) Физические требования

Это включает в себя геометрию ячейки, ее размер, вес и форму, а также расположение клемм.

11) Цикл зарядки / разрядки

Есть много аспектов цикла, которые требуют рассмотрения, например:

  • Напряжение, необходимое для зарядки
  • Время, необходимое для зарядки
  • Наличие источника заряда
  • Потенциальная угроза безопасности при зарядке / разрядке

12) Срок службы

Срок службы аккумуляторной батареи - это количество циклов разрядки / зарядки, которое она может пройти, прежде чем ее емкость упадет до 80%.

13) Стоимость

Сюда входит начальная стоимость самой батареи, а также стоимость зарядки и обслуживания батареи.

14) Возможность глубокого разряда

Существует логарифмическая зависимость между глубиной разряда и сроком службы батареи, таким образом, срок службы батареи может быть значительно увеличен, если она не разряжена полностью; Например, батарея мобильного телефона прослужит в 5-6 раз дольше, если перед подзарядкой она разрядится только на 80%.

Для приложений, где это может быть необходимо, доступны специальные аккумуляторы глубокого разряда.

Никель-кадмиевые батареи

15) Требования к приложению

Батареи должно хватить для предполагаемого применения. Это означает, что он должен иметь возможность производить правильный ток с правильным напряжением. Он должен иметь достаточную емкость, энергию и мощность. Он также не должен слишком сильно превышать требования приложения, поскольку это может привести к ненужным расходам; он должен обеспечивать достаточную производительность при минимально возможной цене.


предыдущая | следующий

Характеристики аккумуляторных батарей

% PDF-1.4 % 1 0 obj> поток application / pdf Характеристики аккумуляторных батарей

  • Примечания к применению
  • Texas Instruments, Incorporated [SNVA533,0]
  • iText 2.1.7 от 1T3XTSNVA5332011-12-08T02: 45: 55.000Z2011-12-08T02: 45: 55.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Рабочие характеристики батареи - Как определить и протестировать батарею

    Технические характеристики, стандарты и реклама

    Батареи могут рекламироваться как Long Life, High Capacity, High Energy, Deep Cycle, Heavy Duty, Fast Charge, Quick Charge, Ultra и другие, плохо определенные параметры, и существует несколько отраслевых или юридических стандартов, точно определяющих каждый из этих терминов. означает.Рекламные слова могут означать все, что хочет продавец. Помимо базовой конструкции батареи, производительность фактически зависит от того, как используются батареи, а также от условий окружающей среды, в которых они используются, но эти условия редко, если вообще когда-либо, указываются в рекламе для массового рынка. Для потребителя это может сбивать с толку или вводить в заблуждение. Однако сама аккумуляторная промышленность не использует такие расплывчатые термины для определения характеристик батареи, а технические характеристики обычно включают заявление, определяющее или ограничивающее условия эксплуатации или окружающей среды, в которых может быть достигнута заявленная производительность.

    В следующем разделе описаны основные параметры, используемые для характеристики элементов или батарей, и показано, как эти параметры могут изменяться в зависимости от условий эксплуатации.

    Кривые нагнетания

    Энергетические элементы

    были разработаны для широкого спектра применений с использованием множества различных технологий, что привело к широкому диапазону доступных рабочих характеристик.На графиках ниже показаны некоторые из основных факторов, которые разработчик приложений должен учитывать при выборе батареи для соответствия требованиям к производительности конечного продукта.

    Клеточная химия

    Номинальное напряжение гальванического элемента определяется электрохимическими характеристиками активных химических веществ, используемых в элементе, так называемой химией элемента. Фактическое напряжение, появляющееся на выводах в любой конкретный момент времени, как и в любой ячейке, зависит от тока нагрузки и внутреннего импеданса ячейки, и это зависит от температуры, состояния заряда и возраста элемента.

    На приведенном ниже графике показаны типичные кривые разряда-разряда для элементов с различным химическим составом элементов при разряде со скоростью 0,2 ° C. Обратите внимание, что химический состав каждой ячейки имеет свои собственные характеристические номинальное напряжение и кривую разряда. Некоторые химические вещества, такие как литий-ионный, имеют довольно плоскую кривую разряда, в то время как другие, такие как свинцово-кислотная, имеют ярко выраженный наклон.

    Мощность, отдаваемая элементами с наклонной кривой разряда, постепенно падает на протяжении всего цикла разряда.Это может вызвать проблемы для приложений с большой мощностью ближе к концу цикла. Для приложений с низким энергопотреблением, которым требуется стабильное напряжение питания, может потребоваться установка регулятора напряжения, если наклон слишком крутой. Обычно это не вариант для приложений с большой мощностью, поскольку потери в регуляторе могут лишить аккумулятор еще большей мощности.

    Плоская кривая разряда упрощает конструкцию приложения, в котором используется батарея, поскольку напряжение питания остается достаточно постоянным в течение всего цикла разряда.Наклонная кривая облегчает оценку состояния заряда батареи, поскольку напряжение элемента может использоваться как мера оставшегося заряда в элементе. Современные литий-ионные элементы имеют очень плоскую кривую разряда, поэтому для определения состояния заряда

    необходимо использовать другие методы.

    По оси X показаны характеристики ячейки, нормированные в процентах от емкости ячейки, так что форма графика может быть показана независимо от фактической емкости ячейки.Если бы ось X была основана на времени разряда, длина каждой кривой разряда была бы пропорциональна номинальной емкости элемента.

    Температурные характеристики

    Производительность элемента может резко меняться в зависимости от температуры. В нижнем пределе, в батареях с водными электролитами, сам электролит может замерзнуть, задав нижний предел рабочей температуры. При низких температурах литиевые батареи страдают от литиевого покрытия анода, что приводит к необратимому снижению емкости.В крайнем случае активные химические вещества могут выйти из строя и разрушить аккумулятор. Между этими пределами характеристики элемента обычно улучшаются с повышением температуры. См. Также «Управление температурой» и «Срок службы батареи» для получения более подробной информации.

    На приведенном выше графике показано, как характеристики ионно-литиевых батарей ухудшаются при снижении рабочей температуры.

    Вероятно, более важным является то, что как для высоких, так и для низких температур, чем дальше рабочая температура от комнатной, тем больше сокращается срок службы.См. Неисправности литиевых батарей.

    Характеристики саморазряда

    Скорость саморазряда - это мера того, как быстро элемент теряет свою энергию, находясь на полке, из-за нежелательных химических воздействий внутри элемента. Скорость зависит от химического состава клеток и температуры.

    Клеточная химия

    Ниже показан типичный срок хранения некоторых первичных ячеек:

    • Цинк Углерод (Leclanché) от 2 до 3 лет
    • Щелочная 5 лет
    • Литий 10 лет и старше

    Типичные скорости саморазряда для обычных перезаряжаемых элементов следующие:

    • Свинцово-кислотный от 4% до 6% в месяц
    • Никель Кадмий от 15% до 20% в месяц
    • Никель-металлогидрид 30% в месяц
    • Литий от 2% до 3% в месяц

    Влияние температуры

    Скорость нежелательных химических реакций, которые вызывают внутреннюю утечку тока между положительным и отрицательным электродами элемента, как и все химические реакции, увеличивается с температурой, тем самым увеличивая скорость саморазряда батареи.См. Также Срок службы батареи. На приведенном ниже графике показана типичная скорость саморазряда литий-ионной батареи.

    Внутреннее сопротивление

    Внутренний импеданс ячейки определяет ее пропускную способность по току. Низкое внутреннее сопротивление допускает большие токи.

    Схема эквивалента батареи

    На схеме справа показана эквивалентная схема для энергетической ячейки.

    • Rm - сопротивление металлического пути через ячейку, включая клеммы, электроды и межсоединения.
    • Ra - сопротивление электрохимического тракта, включая электролит и сепаратор.
    • Cb - емкость параллельных пластин, которые образуют электроды ячейки.
    • Ri - нелинейное контактное сопротивление между пластиной или электродом и электролитом.

    Типичное внутреннее сопротивление порядка миллиомов.

    Влияние внутреннего импеданса

    Когда через элемент протекает ток, на внутреннем сопротивлении элемента возникает падение напряжения IR, которое снижает напряжение на выводах элемента во время разряда и увеличивает напряжение, необходимое для зарядки элемента, таким образом уменьшая его эффективную емкость, а также уменьшая его заряд. / эффективность разряда.Более высокие скорости разряда приводят к более высоким внутренним падениям напряжения, что объясняет более низкие кривые разряда напряжения при высоких скоростях C. См. «Скорость разряда» ниже.

    На внутренний импеданс влияют физические характеристики электролита: чем меньше размер гранул материала электролита, тем ниже полное сопротивление. Размер зерна контролируется производителем ячейки в процессе измельчения.

    Спиральная конструкция электродов часто используется для увеличения площади поверхности и, таким образом, уменьшения внутреннего импеданса.Это снижает тепловыделение и обеспечивает более быструю зарядку и разрядку.

    Внутреннее сопротивление гальванического элемента зависит от температуры и уменьшается с повышением температуры из-за увеличения подвижности электронов. График ниже является типичным примером.

    Таким образом, элемент может быть очень неэффективным при низких температурах, но эффективность улучшается при более высоких температурах из-за более низкого внутреннего импеданса, но также и из-за увеличения скорости химических реакций.Однако более низкое внутреннее сопротивление, к сожалению, также приводит к увеличению скорости саморазряда. Кроме того, срок службы ухудшается при высоких температурах. Для поддержания ячейки в ограниченном температурном диапазоне для достижения оптимальных характеристик в приложениях с большой мощностью может потребоваться какая-либо форма нагрева и охлаждения.

    Внутреннее сопротивление большинства химических элементов ячеек также имеет тенденцию значительно увеличиваться к концу цикла разряда, поскольку активные химические вещества переводятся в свое разряженное состояние и, следовательно, эффективно израсходуются.Это в основном отвечает за быстрое падение напряжения на элементе в конце цикла разряда.

    Кроме того, эффект джоулева нагрева I 2 R, потери во внутреннем сопротивлении элемента вызовут повышение температуры элемента.

    Падение напряжения и потери I 2 R могут быть незначительными для элемента емкостью 1000 мАч, питающего мобильный телефон, но для 100-элементного автомобильного аккумулятора на 200 Ач они могут быть значительными.Типичное внутреннее сопротивление литиевой батареи мобильного телефона емкостью 1000 мА составляет от 100 до 200 мОм и около 1 мОм для литиевой батареи емкостью 200 Ач, используемой в автомобильной батарее. См. Пример.

    При работе со скоростью C падение напряжения на элемент будет около 0,2 В в обоих случаях (немного меньше для мобильного телефона). Потери I 2 R в мобильном телефоне будут составлять от 0,1 до 0,2 Вт. Однако в автомобильной батарее падение напряжения на всей батарее будет 20 В, а потеря мощности, рассеиваемой в виде тепла внутри батареи, составит 40 Вт на элемент или 4 кВт для всей батареи.Это в дополнение к теплу, выделяемому в результате электрохимических реакций в ячейках.

    По мере старения элемента сопротивление электролита имеет тенденцию к увеличению. Старение также приводит к ухудшению качества поверхности электродов и увеличению контактного сопротивления, и в то же время эффективная площадь пластин уменьшается, уменьшая их емкость. Все эти эффекты увеличивают внутренний импеданс клетки, что отрицательно сказывается на ее работоспособности.Сравнение фактического импеданса ячейки с ее импедансом, когда она была новой, может быть использовано для измерения или представления возраста ячейки или ее эффективной емкости. Такие измерения намного удобнее, чем фактическая разрядка элемента, и их можно проводить без разрушения тестируемого элемента. См. «Испытания импеданса и проводимости»

    Внутреннее сопротивление также влияет на эффективную емкость ячейки.Чем выше внутреннее сопротивление, тем выше потери при зарядке и разрядке, особенно при более высоких токах. Это означает, что при высоких скоростях разряда доступная емкость ячейки ниже. И наоборот, если он разряжается в течение длительного периода, емкость в ампер-часах выше. Это важно, потому что некоторые производители указывают емкость своих батарей при очень низкой скорости разряда, что делает их намного лучше, чем они есть на самом деле.

    Скорость разряда

    Приведенные ниже кривые разряда литий-ионного элемента показывают, что эффективная емкость элемента уменьшается, если элемент разряжается с очень высокой скоростью (или, наоборот, увеличивается с низкой скоростью разряда).Это называется смещением емкости, и этот эффект характерен для большинства химических составов ячеек.

    Нагрузка аккумулятора

    Время разряда батареи зависит от нагрузки, которую она должна обеспечивать.

    Если разрядка происходит в течение длительного периода в несколько часов, как в некоторых высокопроизводительных приложениях, таких как электромобили, эффективная емкость аккумулятора может быть вдвое больше указанной емкости при коэффициенте C.Это может быть наиболее важным при выборе дорогой батареи для использования с высокой мощностью. Емкость маломощных аккумуляторов бытовой электроники обычно указывается для разряда со скоростью C, тогда как SAE использует разряд в течение 20 часов (0,05 ° C) в качестве стандартного условия для измерения емкости автомобильных аккумуляторов в ам-часах. График ниже показывает, что эффективная емкость свинцово-кислотных аккумуляторов с глубокой разрядкой почти удваивается, поскольку скорость разряда снижается с 1,0 ° C до 0.05C. При времени разряда менее одного часа (высокие значения C) эффективная емкость резко падает.

    На эффективность зарядки аналогичным образом влияет скорость зарядки. Объяснение причин этого приведено в разделе «Время зарядки».

    Из этого графика можно сделать два вывода:

    • Следует проявлять осторожность при сравнении характеристик емкости аккумуляторов, чтобы обеспечить сопоставимые скорости разряда.
    • В автомобильной промышленности, если высокие значения тока используются регулярно для резкого ускорения или для подъема на холм, дальность действия транспортного средства будет уменьшена.

    Рабочий цикл

    Рабочие циклы различаются для каждого приложения. Приложения EV и HEV накладывают особые переменные нагрузки на аккумулятор. См. Пример нагрузочного тестирования. Стационарные батареи, используемые в распределенных сетевых накопителях энергии, могут иметь очень большие изменения SOC и много циклов в день.

    Важно знать, сколько энергии используется за цикл, и рассчитывать на максимальную пропускную способность и мощность, а не на средний уровень.

    Примечания: Для информации

    • Типичный небольшой электромобиль будет потреблять от 150 до 250 Втч энергии на милю при нормальной вождении. Таким образом, для диапазона 100 миль при 200 Вт-час на милю потребуется аккумулятор емкостью 20 кВт-ч.
    • В гибридном электромобиле используются батареи меньшего размера, но они могут потребоваться для работы при очень высокой скорости разряда до 40 ° C. Если в автомобиле используется рекуперативное торможение, аккумулятор также должен выдерживать очень высокую скорость зарядки, чтобы быть эффективным. См. В разделе о конденсаторах пример того, как это требование может быть выполнено.

    Уравнение Пойкерта

    Уравнение Пойкерта - удобный способ характеристики поведения ячейки и количественного определения смещения емкости в математических терминах.

    Это эмпирическая формула, которая приблизительно определяет, как доступная емкость батареи изменяется в зависимости от скорости разряда. C = I n T, где «C» - теоретическая емкость аккумулятора, выраженная в ампер-часах, «I» - ток, «T» - время, а «n» - число Пейкерта, постоянная для данного аккумулятор. Уравнение показывает, что при более высоких токах в батарее меньше доступной энергии. Число Пейкерта напрямую связано с внутренним сопротивлением батареи.Более высокие токи означают больше потерь и меньшую доступную мощность.

    Значение числа Пейкерта показывает, насколько хорошо батарея работает при длительных сильных токах. Значение, близкое к 1, указывает на то, что аккумулятор работает нормально; чем выше число, тем больше емкость теряется при разряде аккумулятора при больших токах. Число Пейкерта батареи определяется эмпирически. Для свинцово-кислотных аккумуляторов это число обычно составляет от 1,3 до 1,4

    График выше показывает, что эффективная емкость аккумулятора снижается при очень высокой скорости непрерывной разрядки.Однако при периодическом использовании батарея успевает восстановиться в периоды покоя, когда температура также возвращается к уровню окружающей среды. Из-за этой возможности восстановления емкость меньше уменьшается, а эффективность работы выше, если аккумулятор используется с перерывами, как показано пунктирной линией.

    Это обратное поведение двигателя внутреннего сгорания, который наиболее эффективно работает при непрерывных устойчивых нагрузках.В этом отношении электроэнергия - лучшее решение для средств доставки, которые подвержены постоянным перебоям.

    Участки Рагон

    График Рагона полезен для характеристики компромисса между эффективной мощностью и управляемой мощностью. Обратите внимание, что графики Рагона обычно основаны на логарифмических шкалах.

    На приведенном ниже графике показана превосходная гравиметрическая плотность энергии литий-ионных элементов.Также обратите внимание, что литий-ионные элементы с анодами из титаната лития (Altairnano) обеспечивают очень высокую плотность мощности, но пониженную плотность энергии.

    Энергия и плотность мощности - участок Рагона

    Источник Альтаирнано

    На графике Ragone ниже сравниваются характеристики ряда электрохимических устройств.Это показывает, что ультраконденсаторы (суперконденсаторы) могут обеспечивать очень высокую мощность, но емкость хранилища очень ограничена. С другой стороны, топливные элементы могут хранить большое количество энергии, но имеют относительно низкую выходную мощность.

    Рагон Участок электрохимических устройств

    Наклонные линии на графиках Ragone показывают относительное время, необходимое для того, чтобы зарядить устройство или выйти из него.С одной стороны, мощность может накачиваться или извлекаться из конденсаторов за микросекунды. Это делает их идеальными для сбора энергии рекуперативного торможения в электромобилях. С другой стороны, топливные элементы имеют очень плохие динамические характеристики, требуя часов для выработки и передачи энергии. Это ограничивает их применение в электромобилях, где они часто используются вместе с батареями или конденсаторами для решения этой проблемы. Литиевые батареи находятся где-то посередине и обеспечивают разумный компромисс между ними.

    См. Также Сравнение альтернативных хранилищ энергии.

    Производительность импульса

    Способность передавать сильноточные импульсы является требованием многих батарей. Пропускная способность ячейки по току зависит от эффективной площади поверхности электродов. (См. Компромисс между энергией и мощностью). Однако ограничение по току устанавливается скоростью, с которой происходят химические реакции в ячейке.Химическая реакция или «перенос заряда» происходит на поверхности электродов, и начальная скорость может быть довольно высокой, так как химические вещества, расположенные рядом с электродами, преобразуются. Однако, как только это произошло, скорость реакции ограничивается скоростью, с которой активные химические вещества на поверхности электрода могут пополняться путем диффузии через электролит в процессе, известном как «массоперенос». Тот же принцип применяется к процессу зарядки и более подробно описан в разделе «Время зарядки».Следовательно, импульсный ток может быть значительно выше, чем частота C, которая характеризует характеристики непрерывного тока.

    Срок службы

    Это один из ключевых параметров производительности ячейки, который указывает ожидаемый срок службы ячейки.

    Жизненный цикл определяется как количество циклов, которое может выполнить элемент, прежде чем его емкость упадет до 80% от первоначальной указанной емкости.

    Каждый цикл заряда-разряда и связанный с ним цикл превращения активных химикатов, который он вызывает, сопровождается медленным ухудшением химикатов в элементе, что будет почти незаметно для пользователя. Это ухудшение может быть результатом неизбежных нежелательных химических воздействий в ячейке, роста кристаллов или дендритов, изменяющих морфологию частиц, составляющих электроды. Оба эти события могут иметь эффект уменьшения объема активных химических веществ в элементе и, следовательно, его емкости, или увеличения внутреннего импеданса элемента.

    Обратите внимание, что элемент не умирает внезапно в конце указанного жизненного цикла, а продолжает свое медленное разрушение, так что он продолжает нормально функционировать, за исключением того, что его емкость будет значительно меньше, чем была, когда она была новой.

    Срок службы батареи, как он определен, является полезным способом сравнения батарей в контролируемых условиях, однако он может не дать наилучшего показателя срока службы батарей в реальных условиях эксплуатации.Элементы редко эксплуатируются в последовательных, полных циклах заряда-разряда, они с большей вероятностью будут подвергаться частичным разрядам различной глубины перед полной перезарядкой. Поскольку в частичных разрядах задействовано меньшее количество энергии, аккумулятор может выдерживать гораздо большее количество неглубоких циклов. Такие циклы использования типичны для гибридных электромобилей с рекуперативным торможением. Посмотрите, как продолжительность цикла зависит от глубины разряда (DOD) в разделе «Срок службы батареи».

    Срок службы также зависит от температуры, как от температуры эксплуатации, так и от температуры хранения.Более подробную информацию см. В разделе «Неисправности литиевых батарей».

    Общая пропускная способность энергии

    Более репрезентативный показатель срока службы батареи - это Lifetime Energy Throughput . Это общее количество энергии в ватт-часах, которое может быть вложено в аккумулятор и снято с него в течение всех циклов в течение срока его службы, прежде чем его емкость снизится до 80% от первоначальной емкости нового аккумулятора.Это зависит от химического состава клетки и условий эксплуатации. К сожалению, эта мера еще не используется производителями элементов питания и еще не принята в качестве отраслевого стандарта для аккумуляторов. Пока он не войдет в широкое использование, его нельзя будет использовать для сравнения производительности элементов от разных производителей таким образом, но, если он доступен, по крайней мере, он предоставляет более полезное руководство для инженеров по применению для оценки срока службы используемых аккумуляторов. в своих проектах.

    См. Также Состояние здоровья (SOH) и Расчетный срок службы батареи

    Глубокий разряд

    Срок службы в цикле уменьшается с увеличением глубины разряда (DOD) (см. Срок службы батареи), и многие химические элементы элементов не допускают глубокого разряда, и элементы могут быть необратимо повреждены при полной разрядке.Специальные конструкции ячеек и химические смеси необходимы, чтобы максимально увеличить потенциальную глубину разряда батарей глубокого разряда.

    Зарядные характеристики

    Кривые зарядки и рекомендуемые методы зарядки включены в отдельный раздел зарядки

    6.12: Характеристики батареи - Engineering LibreTexts

    При выборе батареи необходимо учитывать следующие характеристики батареи:

    Напряжение

    Теоретическое стандартное напряжение ячейки может быть определено из электрохимического ряда с использованием значений E или :

    E o (катодный) - E o (анодный) = E o (элемент)

    Это стандартное теоретическое напряжение. Теоретическое напряжение ячейки модифицируется уравнением Нернста, которое учитывает нестандартное состояние реагирующего компонента.Нернтовский потенциал будет меняться со временем либо из-за использования, либо из-за саморазряда, посредством которого изменяется активность (или концентрация) электроактивного компонента в ячейке. Таким образом, номинальное напряжение определяется химией ячейки в любой момент времени.

    Фактическое создаваемое напряжение всегда будет ниже теоретического напряжения из-за поляризации и потерь сопротивления (падения IR) батареи и зависит от тока нагрузки и внутреннего импеданса элемента.Эти факторы зависят от кинетики электрода и, таким образом, зависят от температуры, состояния заряда и возраста элемента. Фактическое напряжение, появляющееся на клеммах, должно быть достаточным для предполагаемого применения.

    Типичные значения напряжения находятся в диапазоне от 1,2 В для никель-кадмиевых аккумуляторов до 3,7 В для литий-ионных аккумуляторов.

    На следующем графике показана разница между теоретическим и фактическим напряжениями для различных аккумуляторных систем:

    Кривая нагнетания

    Кривая разряда представляет собой график зависимости напряжения от разряженной емкости в процентах.Желательна плоская кривая разряда, поскольку это означает, что напряжение остается постоянным по мере разряда батареи.

    Вместимость

    Теоретическая емкость батареи - это количество электричества, участвующего в электрохимической реакции. Обозначается Q и определяется как:

    .

    \ [Q = x n F \]

    , где x = количество молей реакции, n = количество электронов, перенесенных на моль реакции и F = постоянная Фарадея

    Вместимость обычно выражается в массе, а не в количестве молей:

    \ [Q = \ frac {n F} {M_ {r}} \]

    , где M r = молекулярная масса.Это дает емкость в единицах ампер-часов на грамм (Ач / г).

    На практике полная емкость аккумулятора никогда не может быть реализована, поскольку значительный вес составляют нереактивные компоненты, такие как связующие и проводящие частицы, сепараторы и электролиты, токосъемники и подложки, а также упаковка. Типичные значения варьируются от 0,26 Ач / г для Pb до 26,59 Ач / г для H 2 .

    Плотность энергии

    Плотность энергии - это энергия, которая может быть получена равной единице объема веса ячейки.

    Удельная энергия

    Удельная плотность энергии - это энергия, которая может быть получена на единицу веса ячейки (или иногда на единицу веса активного электродного материала). Это произведение удельной емкости и рабочего напряжения за один полный цикл разряда. Как ток, так и напряжение могут изменяться в течение цикла разряда, и, таким образом, полученная удельная энергия рассчитывается путем интегрирования произведения тока и напряжения во времени. Время разряда связано с максимальным и минимальным порогом напряжения и зависит от состояния доступности активных материалов и / или предотвращения необратимого состояния аккумуляторной батареи.

    Плотность мощности

    Плотность мощности - это мощность, которая может быть получена на единицу веса элемента (Вт / кг).

    Температурная зависимость

    Скорость реакции в ячейке будет зависеть от температуры в соответствии с теориями кинетики. Внутреннее сопротивление также зависит от температуры; низкие температуры дают более высокое внутреннее сопротивление. При очень низких температурах электролит может замерзнуть, что приведет к снижению напряжения, поскольку движение ионов затруднено. При очень высоких температурах химические вещества могут разлагаться, или может быть достаточно энергии для активации нежелательных обратимых реакций, снижающих емкость.
    Скорость уменьшения напряжения с увеличением разряда также будет выше при более низких температурах, как и емкость - это показано на следующем графике:

    Срок службы

    Срок службы аккумуляторной батареи определяется как количество циклов зарядки / перезарядки, которое может выполнить аккумуляторная батарея, прежде чем ее емкость упадет до 80% от первоначальной. Обычно это от 500 до 1200 циклов.

    Срок годности батареи - это время, в течение которого батарею можно хранить в неактивном состоянии до того, как ее емкость упадет до 80%.Уменьшение емкости со временем вызвано истощением активных материалов из-за нежелательных реакций внутри ячейки.

    Батареи также могут быть подвержены преждевременной смерти:

    • Чрезмерная зарядка
    • Перегрузка
    • Короткое замыкание
    • Потребляет больше тока, чем предусмотрено для производства
    • Воздействие экстремальных температур
    • Подверженность ударам или вибрации

    Задержка напряжения

    В некоторых аккумуляторных системах может происходить пассивация .Пассивация - это процесс, при котором образующийся восстановленный продукт (часто оксид) не растворяется в электролите и не отпадает от электрода, а вместо этого образует пленку на поверхности электрода. Это может значительно затруднить реакцию, так как электрический контакт внутри ячейки уменьшается. Это может существенно продлить срок хранения батареи, однако, когда батарея разряжается, начальное напряжение может быть ниже ожидаемого до тех пор, пока покрытие не будет разрушено. Это известно как задержка напряжения .

    Смерть батареи из-за старения

    За время жизни клетки морфология компонентов будет меняться, что пагубно сказывается на функционировании клетки.

    • Кристаллы в ячейке растут, увеличивая импеданс,
    • Металлические дендриты растут на клетках, вызывая набухание электродов, заставляя их сближаться и увеличивая саморазряд,
    • Дендриты могут проникать в сепаратор, вызывая очень высокий саморазряд или даже короткое замыкание.

    В конце концов, внутренний импеданс и саморазряд станут настолько высокими, что аккумулятор больше не будет использоваться.

    Металлические дендриты (подробности смотрите на микрофотографии)

    Физические требования

    Это включает в себя геометрию ячейки, ее размер, вес и форму, а также расположение клемм.

    Цикл зарядки / разрядки

    Есть много аспектов цикла, которые требуют рассмотрения, например:

    • Напряжение, необходимое для зарядки
    • Время, необходимое для зарядки
    • Наличие источника заряда
    • Потенциальная угроза безопасности при зарядке / разрядке

    Срок службы

    Срок службы аккумуляторной батареи - это количество циклов разрядки / зарядки, которое она может пройти, прежде чем ее емкость упадет до 80%.

    Стоимость

    Сюда входит начальная стоимость самой батареи, а также стоимость зарядки и обслуживания батареи.

    Возможность глубокой разрядки

    Существует логарифмическая зависимость между глубиной разряда и сроком службы батареи, таким образом, срок службы батареи может быть значительно увеличен, если она не разряжена полностью; Например, аккумулятор мобильного телефона прослужит в 5-6 раз дольше, если перед подзарядкой он разрядится только на 80%.

    Для приложений, где это может быть необходимо, доступны специальные аккумуляторы глубокого разряда.

    Никель-кадмиевые батареи

    Исключением являются никель-кадмиевые батареи, поскольку их частичный разряд вызывает «эффекты памяти»; батарея, кажется, «запоминает», какой уровень заряда используется, и будет перезаряжать только это количество, а не полный заряд.

    Фактически, повторяющаяся неглубокая зарядка вызывает изменение кристаллической структуры в батарее: кристаллы в ячейке становятся больше, увеличивая импеданс и тем самым уменьшая ее емкость.

    Требования к приложению

    Батареи должно хватить для предполагаемого применения. Это означает, что он должен иметь возможность производить правильный ток с правильным напряжением. Он должен обладать достаточной емкостью, энергией и мощностью. Он также не должен слишком сильно превышать требования приложения, поскольку это может привести к ненужным расходам; он должен обеспечивать достаточную производительность при минимально возможной цене.

    Емкость аккумулятора - обзор

    20.2.3 Емкость батареи

    Емкость батареи соответствует количеству электрического заряда, который может быть накоплен во время заряда, сохранен во время пребывания в разомкнутой цепи и высвобожден во время разряда обратимым образом. Он получается путем интегрирования тока разряда, начиная с полностью заряженной батареи и заканчивая процесс разряда при определенном пороговом напряжении, часто обозначаемом как напряжение отсечки или U cut_off , достигнутом в момент t cut_off .В этом случае она обозначается как разрядная емкость или C d , а в случае электрохимии свинцово-кислотных аккумуляторов она может быть выражена как

    (20,5) Cd = ∫0tcut_offIdt = −2FMPbO2 (mPbO2initial − mPbO2cut_off ) = - 2FMPb (mPbinitial − mPbcut_off)

    Уравнение (20.5) показывает, что емкость батареи пропорциональна количеству активных материалов, которые могут быть преобразованы электрохимически, пока напряжение батареи не достигнет порогового значения напряжения U cut_off .Знак разрядной емкости отрицательный; однако на практике его значение рассматривается как модуль. Когда батарея разряжается постоянным током, ее емкость определяется формулой C d = I · t d , где t d - продолжительность разряда. Когда последнее выражается в часах, типичной единицей измерения емкости аккумулятора является ампер-час.

    Разрядная емкость новой батареи (т. Е. До заметного начала деградации батареи) является функцией температуры и профиля тока разряда.Основным этапом разработки каждого алгоритма управления батареями является оценка зависимости разрядной емкости от тока и температуры. Обычно это делается путем подвергания одной или нескольких идентичных батарей или элементов нескольких циклов заряда / разряда при постоянной температуре с использованием гальваностатического разряда с разными токами разряда и фиксированным режимом полной перезарядки. Процедура повторяется при нескольких разных температурах. При разработке такого плана экспериментов следует учитывать типичную скорость разрушения батареи при циклическом включении.Для аккумуляторов, скорость старения которых в режиме глубокого цикла высока (например, свинцово-кислотные аккумуляторы с тонкими пластинами и решетками, не содержащими сурьмы), количество таких глубоких циклов определения характеристик должно быть меньше и ограниченное количество экспериментальных точек на батарею. может быть компенсировано тестированием большего количества батарей.

    Зависимость разрядной емкости от тока разряда часто соответствует уравнению Пейкерта [2]:

    (20.6a) Cd = K · I1 − n

    , где K и n - эмпирические константы.Коэффициент n сильно зависит от конструкции электродов. Например, свинцово-кислотные батареи с толстыми пластинами имеют значение n в диапазоне 1,4 [3], а для конструкций с более тонкими пластинами n находится в диапазоне 1,20–1,25 [4]. Для таких технологий, как литий-ионные батареи, где пластины очень тонкие (в диапазоне 0,2–0,3 мм), значение n близко к 1 [5]. В этом случае уравнение Пойкерта и соответствующие экспериментальные данные могут быть представлены с использованием продолжительности разряда t d вместо емкости:

    (20.6b) td = K · I − n

    Когда экспериментальные данные t d (I) построены в двойных логарифмических координатах, уравнение (20.6b) преобразуется в прямую линию с наклоном, равным к коэффициенту n . Уравнение Пойкерта демонстрирует одну и ту же тенденцию почти для всех типов первичных и аккумуляторных батарей - чем выше ток разряда, тем меньше емкость. Последнее с электрохимической точки зрения соответствует меньшему количеству активных материалов, превращающихся в продукты разряда.В технологии аккумуляторов степень этого преобразования обозначается как «использование активных материалов». Уменьшение использования активных материалов при высоких токах разряда очень часто можно приписать эффектам диффузии. Например, в случае разряда свинцово-кислотной батареи (уравнения (20.1a) и (20.1b)) серная кислота, необходимая для преобразования PbO 2 и Pb в PbSO 4 , должна диффундировать из объема электролита. к геометрической поверхности электрода, а затем внутрь его пористого объема.При высоких токах разряда электролит из объема элемента, расположенного между пластинами батареи, не успевает диффундировать внутри объема пластин, где он быстро истощается из-за электрохимических реакций. Это приводит к развитию локальных градиентов концентрации и появлению диффузной поляризации [6]. Последнее вызывает быстрое снижение напряжения разряда ячейки. По логике вещей, мы можем достичь большей емкости при более высоких токах только в аккумуляторных технологиях, использующих конструкции ячеек с более тонкими пластинами, где диффузия происходит быстрее.

    Уравнение Пейкерта имеет различный диапазон применимости для каждой аккумуляторной технологии - для очень высокого и очень низкого тока разряда оно больше не действует. Следует отметить, что точный алгоритм BMS должен также полагаться на набор параметров n и K , измеренных для конкретного типа батареи, используемой в энергетической системе, т. Е. Пара «батарея плюс BMS» ведет себя как ключ и замочная скважина.

    Уравнение (20.6b) может использоваться для объяснения терминов «номинальная емкость» и «номинальный ток», которые часто используются в аккумуляторной практике.Здесь «номинальный» соответствует выбору тока, который соответствует заданной продолжительности разряда (или желаемой автономности), или наоборот - как долго мы будем работать от батареи при приложенном токе разряда. Таким образом, ток, соответствующий 20-часовому разряду, обозначается как 20-часовой номинальный ток или I 20 (или I 20h ). Когда последнее умножается на 20 часов, произведение обозначается как 20-часовая номинальная производительность C 20 (C 20h ).

    Еще одним термином, связанным с емкостью батареи, является «номинальная емкость» (или емкость, указанная на паспортной табличке), обозначаемая как C n . Определение C n часто связано с определенным приложением или стандартом тестирования батарей. Например, номинальная емкость свинцово-кислотных аккумуляторов для запуска, освещения и зажигания обычно совпадает с 20-часовой номинальной емкостью C 20h . Номинальная емкость может использоваться для выражения плотности тока заряда и разряда в виде рейтинга C, представленного как отношение между номинальной емкостью и `` целевой '' длительностью разряда или заряда (последняя отличается от реальной продолжительности заряда или продолжительности заряда). увольнять).Таким образом, для тока, предназначенного для зарядки или разрядки аккумулятора в течение 10 часов, плотность тока выражается как C n /10 час. Более высокие токи, такие как C n /1 ч, обозначаются как 1 C, C n /30 мин как 2 C, C n /15 мин как 4 C и т. Д. позволяет применять одинаковые условия тестирования к батареям разного размера и надежно сравнивать полученные результаты. Удобство такого подхода связано с большой разницей между возможностями тестирования аккумуляторов в лаборатории, на которую возложена задача разработки BMS, и фактическими размерами установки для аккумулирования энергии.Обычно стенды для проверки аккумуляторных батарей предназначены для проверки ячеек в диапазоне напряжений 0–5 В и тока ± 5–50 А (чем выше ток, тем дороже оборудование). Во многих реальных аккумуляторных установках для хранения возобновляемой энергии и поддержки сети типичный диапазон постоянного напряжения составляет 400 В, а токи могут достигать 500–1000 А в случае использования огромных аккумуляторных элементов, что свидетельствует о том, что BMS фактически экстраполирует лабораторные характеристики элементов и батарей меньшего размера, чтобы контролировать и прогнозировать работу крупногабаритных аккумуляторов энергии.

    Как работают электромобили?

    Полностью электрические транспортные средства (электромобили), также называемые аккумуляторными электромобилями, имеют электродвигатель вместо двигателя внутреннего сгорания. В транспортном средстве используется большая тяговая аккумуляторная батарея для питания электродвигателя, и его необходимо подключать к сетевой розетке или зарядному оборудованию, также называемому питающим оборудованием для электромобилей (EVSE). Поскольку он работает на электричестве, автомобиль не выпускает выхлопных газов из выхлопной трубы и не содержит типичных компонентов жидкого топлива, таких как топливный насос, топливопровод или топливный бак.Узнайте больше об электромобилях.

    Изображение в высоком разрешении

    Ключевые компоненты полностью электрического автомобиля

    Батарея (полностью электрическая вспомогательная): В транспортном средстве с электрическим приводом вспомогательная батарея обеспечивает электроэнергией аксессуары транспортного средства.

    Порт зарядки: Порт зарядки позволяет автомобилю подключаться к внешнему источнику питания для зарядки тягового аккумулятора.

    Преобразователь постоянного тока в постоянный: Это устройство преобразует мощность постоянного тока высокого напряжения от тягового аккумуляторного блока в мощность постоянного тока низкого напряжения, необходимую для работы аксессуаров автомобиля и зарядки вспомогательной аккумуляторной батареи.

    Тяговый электродвигатель: Этот электродвигатель приводит в движение колеса автомобиля, используя питание от тягового аккумулятора. В некоторых транспортных средствах используются мотор-генераторы, которые выполняют функции привода и регенерации.

    Бортовое зарядное устройство: Принимает входящую электроэнергию переменного тока, подаваемую через порт зарядки, и преобразует ее в мощность постоянного тока для зарядки тягового аккумулятора.Он также обменивается данными с зарядным оборудованием и отслеживает характеристики аккумулятора, такие как напряжение, ток, температуру и состояние заряда, во время зарядки аккумулятора.

    Контроллер силовой электроники: Этот блок управляет потоком электроэнергии, подаваемой тяговой батареей, регулируя скорость электрического тягового двигателя и создаваемый им крутящий момент.

    Тепловая система (охлаждение): Эта система поддерживает надлежащий диапазон рабочих температур двигателя, электродвигателя, силовой электроники и других компонентов.

    Тяговый аккумулятор: Накапливает электроэнергию для использования тяговым электродвигателем.

    Трансмиссия (электрическая): Трансмиссия передает механическую энергию от тягового электродвигателя для привода колес.

    % PDF-1.5 % 4 0 obj > эндобдж xref 4 82 0000000016 00000 н. 0000002241 00000 п. 0000002349 00000 п. 0000003069 00000 н. 0000003612 00000 н. 0000003943 00000 н. 0000004513 00000 н. 0000004963 00000 н. 0000004998 00000 н. 0000006549 00000 н. 0000006688 00000 н. 0000008126 00000 н. 0000008697 00000 н. 0000009084 00000 н. 0000009245 00000 н. 0000009404 00000 н. 0000009975 00000 н. 0000011420 00000 п. 0000011767 00000 п. 0000011926 00000 п. 0000012378 00000 п. 0000013426 00000 п. 0000013797 00000 п. 0000013956 00000 п. 0000014169 00000 п. 0000014554 00000 п. 0000014713 00000 п. 0000015788 00000 п. 0000016001 00000 п. 0000016416 00000 п. 0000017350 00000 п. 0000017791 00000 п. 0000019132 00000 п. 0000020272 00000 н. 0000022921 00000 п. 0000023034 00000 п. 0000023145 00000 п. 0000023214 00000 п. 0000023298 00000 п. 0000026657 00000 п. 0000026927 00000 н. 0000027097 00000 п. 0000027122 00000 п. 0000027428 00000 н. 0000027512 00000 п. 0000030361 00000 п. 0000030771 00000 п. 0000031287 00000 п. 0000031407 00000 п. 0000032783 00000 п. 0000033138 00000 п. 0000033545 00000 п. 0000035402 00000 п. 0000035749 00000 п. 0000036050 00000 п. 0000036332 00000 п. 0000039916 00000 н. 0000040381 00000 п. 0000043211 00000 п. 0000043611 00000 п. 0000046186 00000 п. 0000046578 00000 п. 0000047064 00000 п. 0000047624 00000 п. 0000048017 00000 п. 0000048319 00000 п. 0000048604 00000 п. 0000088044 00000 п. 0000088081 00000 п. 0000127570 00000 н. 0000127607 00000 н. 0000166508 00000 н. 0000166545 00000 н. 0000206572 00000 н. 0000206609 00000 н. 0000237445 00000 н. 0000237482 00000 н. 0000289586 00000 н.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *