Шесть мифов о «воздушниках»: чем воздушное охлаждение круче жидкостного
Моторы-«воздушники» получили отставку совершенно зря. Достоинств у них столько, что любой новомодный турболитр с даунсайзингом в придачу позавидуют. И о многих плюсах воздушного охлаждения некоторые сегодня даже не догадываются.
На первый взгляд – взгляд потребителя, владельца семейной легковушки или целого коммерческого автопредприятия – преимущества двигателей с воздушным охлаждением лежат на поверхности:
- «воздушник» конструктивно проще мотора с жидкостным охлаждением
- он надежнее;
- он дешевле в эксплуатации.
О минусах воздушного охлаждения все тоже как будто наслышаны, и напомнить о них здесь стоило бы лишь для соблюдения баланса аргументов. Но на самом деле есть только один значимый для потребителя недостаток мотора с воздушным охлаждением:
- «воздушник» более шумный.
Все остальные минусы или давно потеряли актуальность, или всегда были досужими сказками. Так что есть повод поговорить об этих незаслуженно подзабытых агрегатах подробнее.
Из истории «воздуха»
Двигатель Porsche 911 Carrera 4
Да, было время, когда автомобильные моторы с воздушным охлаждением проигрывали собратьям с охлаждением жидкостным (тогда говорили – водяным, поскольку антифризы были понятием чисто теоретическим). Двигатели-«воздушники» получались менее мощными, перегревались летом и не прогревались зимой. Из-за температурных проблем ресурс такого двигателя был меньше, часто случались отказы. Но все эти вопросы были решены к 1950-м годам, когда воспрянувшая после Второй мировой Европа начала пересаживаться с велосипедов на компактные автомобильчики. Дешевые и неприхотливые «воздушники» начали массово применять не только на VW Beetle, но и на Citroen 2CV, Fiat 500, NSU Prinz и прочих автомобилях. И это мы еще не говорим о целой плеяде серийных заднемоторных спорткаров Porsche, 4-, 6- и 8-цилиндровые моторы которых вплоть до 1998 года охлаждались воздухом!
Двигатель ЗАЗ-968А «Запорожец»
В то время как немецкий «Жук» с его обдуваемым воздухом оппозитником во всем мире мигом стал образцом простоты и безотказности, в нашей стране сложилось устойчивое и по сей день не искорененное предубеждение против моторов воздушного охлаждения. Дескать, они и греются безбожно, и ломаются через день, да и силенок у них маловато. Виноват во всем бедолага «Запорожец», которому пришлось отдуваться за честь всех «воздушников» перед лицом целого СССР. Вместе с сомнительным качеством сборки ЗАЗикам досталась мизерная по масштабам СССР сервисная сеть. Сам по себе мелитопольский силовой агрегат МеМЗ был неплох, но обслуживаемый в кустарных условиях, заправляемый «автолом» и ремонтируемый «на коленке», он в самом деле не был примером надежности. Поэтому прежде чем продолжить повествование, хочу попросить читателя ассоциировать понятие «воздушник» не с «Запором», а с «Жуком» или хотя бы с «Ситроен де шво». Так будет честнее.
Двигатель «Запорожец» МеМЗ-968
1. Он греется – неправда
На самом деле, температурные особенности моторов-«воздушников» можно отнести не к минусам, а к плюсам. Да, из-за меньшей теплоемкости и теплопроводности воздух не может так быстро отобрать тепло, как вода или антифриз. Но с другой стороны разница температур между стенками цилиндров и забортным воздухом больше, чем между теми же стенками и циркулирующей в системе охлаждающей жидкостью. Поэтому тепловой режим «воздушника» меньше зависит от погоды – то есть вероятность перегрева двигателя-«водянки» даже с самым большим радиатором в жару намного выше.
Схемы систем воздушного охлаждения
Еще одно очень важное преимущество «воздушника» – в три-четыре раза более быстрый прогрев после холодного пуска. Отсюда – и экономия топлива, и продление ресурса, и лучшая экология, и, наконец, удобство для водителя. Только у самых сложных «жидкостных» моторов образца 2010-х годов, имеющих три контура системы охлаждения, получается достигнуть подобных показателей прогрева.
2. Он громоздкий – неправда
Внешне «воздушник» может казаться более массивным, поскольку его цилиндры и головки со всех сторон окружены кожухами-воздуховодами, да и вентилятор обдува с дефлектором обычно выглядит более чем внушительно. Но предметное сравнение габаритов двух моторов с одинаковыми диаметром цилиндров и ходом поршня, но разными системами охлаждения, говорит о том, что габариты если и отличаются, то как раз в пользу «воздушника» – зачастую он оказывается чуть компактнее. Но главное даже не это.
Двигатель VW Beetle
Что касается размеров, справедливо будет принимать во внимание габариты не одного только двигателя, но и тех его неотъемлемых компонентов, которые крепятся отдельно, на кузове. Вот тут и проявляется неопровержимое преимущество «воздушника»: говоря современным языком, он выполнен в форм-факторе «моноблок», в то время как «водянка» имеет вынесенный на кузов громоздкий радиатор с вентилятором и системой шлангов. Которые, естественно, компактности силовому агрегату не добавляют.
3. Он ненадежный – неправда
На самом деле надежность двигателя с воздушным охлаждением существенно выше, ведь по статистике система жидкостного охлаждения служит причиной 20% всех отказов двигателя. А у «воздушника» как раз отсутствуют компоненты, обладающие низкой отказоустойчивостью: радиатор, термостат, помпа, трубопроводы, сальники и прочие уплотнения. Вентилятор и дефлекторы для обдува цилиндров воздухом устроены существенно проще, поэтому вероятность их отказа мизерна. Кстати, по этой же причине затраты на обслуживание «воздушников» также ниже.
Двигатель Porsche 911
4. Он шумный – правда
Что есть, то есть – шумит. И поделать с этим ничего нельзя. Точнее, идеи есть, но воплотить все их очень сложно. Беда в том, что у «воздушника» нет такой эффективной шумоизоляции, как двойные стенки рубашки охлаждения, заполненной водой или антифризом. И более того, все шумы мотора (механические, газообмена, горения) порой усиливаются ребрами цилиндров и головок. Поэтому конструкторы борются в первую очередь с источниками шумов, повышая жесткость деталей и применяя подпружиненные разрезные шестерни приводов, гидрокомпенсаторы клапанов, материалы с точно подобранным коэффициентом температурного расширения. Аэродинамические шумы вентилятора можно значительно уменьшить, но это дело нелегкое – нужны серьезные усилия конструкторов и технологов.
Двигатель Fiat 500
5. Малый ресурс – неправда
В первые 50 лет автомобильной эры к воздушному охлаждению конструкторы относились легкомысленно – дует мощный вентилятор на оребренные цилиндры, да и ладно. Но такое охлаждение часто было неравномерным, с застойными зонами и местными перегревами. Цилиндры деформировались, нарушались установленные зазоры цилиндропоршневой группы, масло коксовалось и выгорало. В результате детали изнашивались более интенсивно, чем у моторов с водяной «рубашкой», которая более равномерно распределяла выделяемое через стенки цилиндров тепло и отбирала его. Но организовать ровный обдув воздухом всех горячих зон двигателя оказалось не так уж сложно, и со временем двигатели-«воздушники» получили рациональное распределение тепла.
Еще один нюанс, уже из области высоких материй: при воздушном охлаждении проще организовать более высокую температуру стенок цилиндров (независимо от их головок). «Лишние» 15-20 °C снижают потери на трение колец о цилиндры (масло-то на стенках более жидкое!), а также уменьшают их износ (в том числе и коррозионный) и замедляют старение масла за счет его меньшего окисления. Выше уже было сказано о том, что мотор с воздушным охлаждением работает в холодном состоянии в несколько раз меньшее время, чем мотор с водяным – а значит, и время интенсивного износа трущихся пар намного меньше.
Двигатель Porsche 911 GT2
6. Он хилый – неправда
Причина для подобного обвинения есть, но суть проблемы такова, что ею можно пренебречь. Дело в том, что при увеличении нагрузки температура охлаждаемых воздухом цилиндров и их головок быстро повышается, а значит, повышается температура воздуха, поступающего в цилиндры. Отсюда – худшее весовое наполнение цилиндров рабочей смесью и кратковременное падение отдачи двигателя. Но исследования ученых-моторостроителей показывают, что разница коэффициента наполнения цилиндров у «воздушников» и «водянок» не превышает 3,5%. И это при 2 000 об/мин, а с ростом оборотов разница вообще стремится к нулю. Таким образом, теоретически существующую особенность эффективного наполнения цилиндров конструкторы решают за счет повышения рабочих оборотов двигателя. И, разумеется, данный вопрос вообще не касается наддувных двигателей воздушного охлаждения.
Так почему же?
Каждый, кто дочитал эту не самую простую статью до конца, вслух или мысленно уже задался вопросом: и по какой же причине от такого замечательного типа охлаждения отказались даже спецы из Porsche, которые одних только 911-х с «воздушниками» выпустили более 400 000 экземпляров? Причин много, и мы их рассмотрим в следующей статье. Но сразу скажем: мотор не виноват. Не все ведь в этом мире зависит от технарей и техники…
Читайте также:
www.kolesa.ru
Воздух нам не нужен: почему воздушное охлаждение проиграло «водянкам»
Комплекса подобных трудностей можно избежать, если… обратиться к жидкостному охлаждению. Вода, как теплоноситель с высокой теплопроводностью и хорошей теплоемкостью, легко сглаживает температурные неравномерности блока цилиндров и их общей головки – поэтому нет потребности в столь сложных конструкторских изысканиях, расчетах и испытаниях.
Причина №2
Сложнее создавать модификации и проводить апгрейд
В отличие от 1950-60-х годов, времен расцвета «воздушников», нынешние конструкторы (а точнее – маркетологи) любят создавать несколько версий одного двигателя – с разным рабочим объемом и степенью форсировки. В случае с воздушным охлаждением это означает не только перерасчет параметров системы обдува, но и каждый раз полную переделку самих цилиндров и головок, которым при изменении объема и степени форсировки требуется новое оребрение – соответственно, с полным циклом новых расчетов и испытаний.
Между тем при изменении мощности мотора с жидкостным охлаждением бывает достаточно вдобавок к расточному блоку просто доработать систему питания, помпу и радиатор.
Причина №3
Сложнее решать вопрос отопления
Излишков тепла, которые можно направить на отопление салона, у моторов с воздушным охлаждением в принципе достаточно. Но рационально использовать их оказалось сложнее, чем в случае с «тосольным» радиатором. Приходилось делать оребренными выхлопные патрубки, «обнимать» их кожухами-рубашками для теплообмена с потоком воздуха, направляемым в салон – да еще принимать меры, чтобы в этот воздух не попали выхлопные газы. Но для серьезных зим подобный вариант был недостаточно эффективен. Поэтому, чтобы наладить в машине с мотором-«воздушником» действительно комфортный микроклимат, в иных случаях оказалось проще использовать автономный бензиновый отопитель – как у наших «Запорожцев». Такая печка получалась сложной и трудно контролируемой. Сегодня, в эпоху компьютеризированного климат-контроля, этот нюанс «воздушников» оказался весьма весомым аргументом «против».
Причина №4
Сложнее решить вопрос шумоизоляции
По своей сути двигатель с оребренными цилиндрами и большим вентилятором более шумный, чем тот, который закрыт «экраном» водяной рубашки системы охлаждения. В особенности – в диапазоне высоких частот, которые наиболее заметны для уха человека. Но еще в прошлом веке инженеры нашли несколько путей решения: малошумные центробежные вентиляторы, слой виброгасящего материала на направляющем кожухе, уменьшенные (за счет тщательно подобранных материалов) зазоры в клапанном механизме и паре поршень-цилиндр. А если совсем по-честному, то при теперешних материалах автохимии и технологиях электронного шумоподавления «заглушить» любой двигатель не было бы проблемой. Но зачем городить огород, если можно просто занести излишнюю шумность «воздушника» в его пассив и засчитать еще одно очко в пользу «водянок»?
Причина №5
Трудоемкость сборки двигателя
Один из самых существенных факторов, повлиявших на отставку моторов с воздушным охлаждением – их низкая технологичность, то есть неважная по сравнению с «водянками» приспособленность к массовому конвейерному производству. Причина в том, что каждый цилиндр охлаждаемого воздухом мотора обычно выполнен отдельно, а не в привычном нам едином блоке. (Исключения конечно были – например, четырехцилиндровые моторы Honda 1300.) Во-первых, очень непросто поштучно отливать цилиндры и головки с их длинными тонкими ребрами, у каждого из которых – строго определенное сечение и зачастую замысловатая форма. В некоторых случаях цилиндры делали из двух металлов – чугунная гильза и алюминиевая ребристая рубашка, заливаемая на чугун после соответствующей подготовки.
www.kolesa.ru
Двигатель воздушного охлаждения: особенности, принцип работы
Чтобы уберечь двигатель от перегрева, тем самым увеличивая срок безотказной эксплуатации автомобиля, необходима действенная система охлаждения. Предстоящее исследование посвящено «воздушникам», их устройству, а также достоинствам и недостаткам. Изучив предлагаемую информацию, можно сравнить принудительное охлаждение воздухом с жидкостным, чтобы сделать правильный выбор системы.
Чем привлекателен двигатель воздушного охлаждения
В функционирующем моторе температура цилиндров способна достигать 2000 градусов, тогда как оптимально допустимым считается режим 80-90 градусов. Разумеется, в таких экстремальных условиях ни одна деталь не прослужит долго. Для сохранности рабочих фрагментов автомашины двигатель нуждается в достаточно надежной системе охлаждения. Подобные конструкции имеют две разновидности:
- система, использующая воздушное охлаждение. Здесь в качестве защиты работающего агрегата от перегрева выступает воздух;
- жидкостное охлаждение ранее, в былые времена осуществлялось обычной водой. Технический прогресс отразился на создании специального вещества, названного антифризом. Также для снижения температуры мотора применяется тосол.
В настоящей публикации подробно рассматривается первая разновидность систем, оберегающих функционирующий двигатель от чрезмерного перегрева. Это позволит несведущему автолюбителю ознакомиться с устройством и принципом работы сложного технологического механизма.
Функции охлаждающих систем
Следует отметить, что поддержание оптимального температурного режима в двигателе автомобиля требует защиты не только от непомерного перегревания, но также от промерзания. Переохлаждение агрегата способно вызвать конденсацию топливно-воздушной смеси, вызванную соприкосновением горючего с прохладной поверхностью цилиндров.
Попадая в картер силовой установки, она приводит к разжижению смазочного вещества, что отражается потерей большинства его полезных характеристик.
Смешивание топлива с маслом вызывает досадное падение мощности мотора. Функционально важные детали двигателя быстрее изнашиваются. Также отрицательным моментом является загустевание масла в переохлажденном агрегате. Ухудшение своевременной подачи смазочного вещества в цилиндры приводит к непомерной растрате горючего, функциональная способность двигателя существенно понижается.
Помимо выполнения основной функции, системы охлаждения дополнительно обеспечивают:
- понижение температуры отработанных газов в системе рециркуляции;
- вентиляцию и кондиционирование воздуха в салоне автомобиля. Также они отвечают за отопление;
- своевременное охлаждение моторного масла;
- поддержание оптимального температурного баланса в турбокомпрессорных агрегатах;
- охлаждение рабочей жидкости, заполняющей коробку-автомат.
Назначение и принцип действия системы воздушного охлаждения
Установлено, что перегревающийся двигатель вызывает непомерный расход топлива, также тратится большое количество машинного масла. Важные для нормального функционирования автомобиля детали быстро выходят из строя вследствие скорого износа. К тому же, нарушение температурного режима может привести к необоснованной потере мотором необходимой мощности.
С помощью воздушной системы охлаждения в двигателе поддерживается оптимальная температура. Также ее предназначением является контроль подогрева воздуха в салоне автомобиля. Она следит за своевременным охлаждением смазочных материалов, снижает температуру рабочей жидкости, заполняющей коробку-автомат, а порой поддерживает оптимальный режим в дроссельном узле и приемном коллекторе.
Принцип действия системы заключается в отведении тепла потоком воздуха от чрезмерно нагревающихся деталей работающего двигателя. Таким путем охлаждаются цилиндры, головки блока и масляного радиатора.
Воздушный поток к двигателю нагнетается принудительно алюминиевыми лопастями вентилятора, защищенного специальной сеткой от нежелательного попадания случайных предметов, способных повредить агрегат. Дефлекторы равномерно распределяют воздух, поступающий через ребра охлаждения, между всеми деталями функционирующего мотора.
Конструкция вентилятора
Следует отметить, что принудительное воздушное охлаждение невозможно без специального устройства. Вентилятор, являющийся необходимым звеном рассматриваемой системы, состоит из следующих деталей:
- направляющего диффузора, оснащенного по окружности стационарными, радиально расположенными лопастями переменного сечения, влияющими на равномерное распределение воздушного потока;
- ротора, имеющего восемь особых лопаток, размещенных по радиусу;
- алюминиевых лопастей, нагнетающих поток воздуха в требуемом направлении;
- кожуха, предотвращающего попадание тепла из внешнего пространства;
- защитной сетки, предохраняющей механизм от случайного проникновения посторонних предметов внутрь устройства.
Лопастями диффузора изменяется направление воздушного потока, и он устремляется в сторону, противоположную вращению ротора. Это способствует увеличению атмосферного давления, вызывая лучшее охлаждение двигателя.
Преимущества и недостатки системы охлаждения двигателя воздухом
Отдельно следует заметить, что иногда для обеспечения нормального температурного режима вполне достаточно естественной циркуляции атмосферных потоков. Внешняя поверхность цилиндров мопедов, мотоциклов, поршневых и прочих простейших двигателей оснащается специальными ребрами, способствующими отдаче тепла во внешнюю среду.
Сложная конструкция автомобильного мотора требует принудительного охлаждения. Воздушному потоку необходимо придать определенное направление. Для этой цели используются вентиляторы.
Двигатели с воздушным охлаждением обладают следующими достоинствами:
- чрезвычайной простотой конструкции, значительно упрощающей процесс ремонта или замены пришедших в непригодность деталей;
- сравнительно небольшим весом;
- основательной надежностью;
- приемлемой стоимостью;
- хорошими характеристиками холодного запуска мотора.
Однако, прежде чем выбрать автомобиль, имеющий двигатель воздушного охлаждения, следует ознакомиться и с недостатками рассматриваемых систем. Они характеризуются:
- непомерным шумом, который создается работающим вентилятором;
- увеличением размера двигателя в связи с необходимостью дополнительного пространства для размещения обдувающего устройства;
- неравномерностью направленности воздушных потоков, что определяет возможность локального перегрева;
- чрезмерной чувствительностью к качеству горючего, смазочных материалов, а также повышенными требованиями к состоянию запчастей.
Тем не менее, воздушное охлаждение приобрело свою нишу в автомобилестроении. Такими моторами оснащают грузовики, сельскохозяйственную технику и машины с дизельными ДВС.
Распространенные мифы о «воздушниках», истина или вымысел
К сожалению, недостатки «Запорожца» окончательно подорвали доверие отечественных автолюбителей к воздушной системе охлаждения двигателя. Ее обвиняли в сильном нагревании, недостаточной мощности и быстром выходе из строя. В то время, как немецкий «Жук», оснащенный подобной системой, пользуется неизменной популярностью у потребителей, радуя производителя постоянным повышенным спросом.
Равняясь на характеристики германского автомобиля, подробно исследуем некоторые довольно распространенные легенды, преследующие двигатели, охлаждаемые воздухом.
Утверждение 1. «Воздушник» проигрывает жидкостной системе за счет сильного нагревания
Отнюдь не является непреложной истиной. В действительности температурные особенности, наоборот, можно считать достоинством двигателя, охлаждаемого воздушным потоком. Разумеется, пониженная теплопроводность не позволяет воздуху отбирать тепло с достаточной скоростью, обеспечиваемой водой или антифризом.
Однако, отличие температур на поверхности цилиндров и во внешней среде значительно больше разницы между стенками и жидкостью, перемещающейся внутри системы. Поэтому, погодные условия в меньшей степени влияют на тепловой режим «воздушника». Возможность перегрева мотора с жидкостным охлаждением в жару намного выше.
Утверждение 2. Большие габариты
Также весьма спорно. При сравнении размеров двух двигателей, имеющих равные диаметры цилиндров и одинаковый ход поршня, но оснащенные разными системами охлаждения, преимущество зачастую оказывается на стороне «воздушника».
Несмотря на довольно внушительный вид вентилятора с дефлектором и достаточно громоздкие кожухи, окружающие цилиндры с головками, его параметры оказываются несколько компактнее, чем у жидкостного агрегата.
К тому же, «водянка» занимает значительно большее пространство за счет дополнительного оборудования, выносимого за пределы двигателя. На кузове находится весьма громоздкий радиатор, оснащенный вентилятором. Также большое количество всевозможных шлангов отнюдь не добавляют компактности.
Утверждение 3. Воздушные системы проигрывают жидкостным в надежности
Не соответствует действительности. Статистические исследования утверждают, что в одном из пяти случаев отказа двигателя вина ложится на жидкостное охлаждение. Причиной являются отказоопасные детали наподобие термостата, радиатора, помпы и пр.
Простота конструкции обеспечивает надежность вентилятора с дефлектором, объясняемую низкой вероятностью поломки. Кроме того, привлекательным моментом, свидетельствующим в пользу «воздушника», считается снижение расходов на обслуживание системы.
Утверждение 4. Воздушное охлаждение слишком громкое
К сожалению, является истинным. Конструктивными особенностями воздушной системы не предусмотрены эффективные звукопоглощающие устройства, которыми располагает жидкостной двигатель. Кроме того, ребра цилиндров и головок «воздушника» иногда, наоборот, усиливают шумы, производимые функционирующим мотором.
Конструкторы предусмотрели звукоизоляцию жидкостной системы, осуществляемую благодаря удвоенным стенкам рубашки охлаждения, внутри которой циркулирует антифриз или вода. Поэтому на этой позиции «воздушник» действительно оказался в проигрыше.
Утверждение 5. Воздушные двигатели быстрее изнашиваются
Является правильным применительно к устаревшим системам. Вентилятор просто нагнетал потоки воздуха на ребра цилиндров, не обеспечивая достаточной равномерности обдува. Современные двигатели характеризуются рациональным распределением тепла.
К тому же, более высокая температура на стенках цилиндров «воздушников» способствует сокращению потерь, вызываемых трением колец о цилиндры благодаря лучшему разжижению смазочных материалов. Это объясняет меньший износ деталей. Масло меньше подвергается окислению, что замедляет его старение, позволяя экономить на частой замене.
Утверждение 6. Недостаточная мощность
Не совсем верно. Причиной подобного обвинения является ухудшение весового наполнения цилиндров рабочей жидкостью, вызывающее непродолжительное падение мощности двигателя. Это происходит благодаря повышению температуры цилиндров и головок с увеличением нагрузки, что ведет к нежелательному нагреванию воздуха внутри системы.
Однако, при большем количестве оборотов разница в коэффициенте наполнения у воздушных двигателей и жидкостных моторов становится меньше 3,5%, установленных исследованиями, практически устремляясь к нулю. Поэтому, бороться с потерей отдачи можно, увеличивая обороты.
Заключение
Итак, проведенное исследование доказало, что охлаждение воздухом ничуть не хуже жидкостного, а по некоторым параметрам и вовсе превосходит его. Не пора ли производителям задуматься о возобновлении выпуска автомобилей с воздушными системами? Спрос потребителей будет расти, несмотря на печальный опыт злосчастного «Запорожца».
avtodvigateli.com
Принудительное воздушное охлаждение электроники. Матчасть. Воздушное сопротивление РЭА / Habr
Принудительное охлаждение электроники это часто применяемая практика. У вас есть мощный элемент на плате? Нет проблем! Поставьте радиатор побольше, да вентилятор помощнее и вот вам решение вашей задачи. Но оказывается не все так просто. Мало того, что мощные вентиляторы создают высокий уровень шума, так ведь и у самого электронного устройства есть сопротивление воздушному потоку. Здесь не работает правило «больше, значит лучше». Почему, будет рассказано в этой статье. Кроме того, на самые крутые из вентиляторов, которые ввозятся из-за рубежа, нужно получать лицензию на импорт.Скажем, вы нашли мощный вентилятор постоянного тока с объемным расходом воздуха порядка 30фт3\мин. Вашей радости нет предела, ведь чем больше расход воздуха, тем больше скорость потока воздуха внутри устройства, что в свою очередь дает возможность лучше охладить элементы. Однако 30фт3\мин – это тот расход воздуха, который мы бы получили, если бы на пути потока воздуха не было никаких воздушных сопротивлений, что, скорее всего, не реалистично.
Наверняка вы видели такие (Рис.1) кривые в даташитах на вентиляторы (если вы, конечно, когда-нибудь заглядывали в них. Дует и дует). Попробую объяснить ее значение. По оси ординат отложен гидравлический напор (hydraulic heads в англ. литературе) в мм (или чаще в дюймах) водяного столба, а по оси абсцисс — поток в кубофутах в минуту. Максимальное значение давления можно получить, если закрыть, скажем, ладонью, вентилятор. В этом случае потока воздуха не будет, а вся энергия пойдет на создание давления. Если препятствий воздушному потоку нет, то у нас разовьется максимальный объемный расход, что есть хорошо.
Рис. 1. Типичная кривая производительности вентилятора PMD1204PQB1-A.(2).U.GN.
Реальность же обычно такова, что система имеет конечное воздушное сопротивление и нужно выбрать точку на кривой, чтобы получить реальное значение объемного расхода. Зависимость в системе имеет квадратичный вид.
R – общее воздушное сопротивление системы. G – объемный расход воздуха. Сопротивление обычно складывается из потерь на взаимодействие воздушного потока с печатной платой, корпусом, входными и выходными отверстиями, различными расширениями и сужениями в корпусе. Для всех для таких элементов в специальной литературе имеются приближенные формулы для расчета сопротивления.
Рис. 2. Кривая производительности вентилятора и сопротивление системы.
Часто, для охлаждения системы используются несколько вентиляторов. Есть разница в том, как вы собираетесь их поставить – параллельно или последовательно. Параллельно – это когда вы ставите два вентилятора рядом, а последовательно – это два вентилятора друг за другом. Последовательная установка увеличивает статическое давление и больше подходит к системам с высоким внутренним сопротивлением (например, когда у вас очень плотная установка элементов в корпусе и вентиляционная перфорация не впечатляет)(Рис.3), а параллельная )(Рис.4), наоборот, для систем с низким сопротивлением воздушному потоку и используется для увеличения массового расхода.
Рис. 3. Включение вентиляторов последовательно
Рис. 4. Включение вентиляторов параллельно
На графике (Рис. 4) видно, что при установке в параллель мы увеличиваем объемный расход, чтобы получить конечный результат мы просто должны прибавить к объемному расходу первого вентилятора объемный расход второго и перестроить график. Ситуация для последовательного включения та же самая, но тут мы складываем давления. Хочу отметить, что лучше использовать два одинаковых вентилятора (особенно в случае с последовательном включении). В противном случае, вы можете столкнуться с неприятными явлениями, например с тем, что воздух у вас пойдет в обратную сторону. Замечу, что использование дополнительных вентиляторов не приведет к N-кратной производительности системы охлаждения.
Для характеристики отклика устройства на воздушный поток можно воспользоваться аналогией с электрической цепью (тут применяется метод аналогий). Воздушное сопротивление – электрическое сопротивление. Воздушный поток – электрический ток. Падение напряжения – потери в давлении. Есть еще емкости и индуктивности, но они нам не нужны в данном случае. Поэтому для того, чтобы описать систему, нужно выделить отдельные части, которые оказывают существенное влияние на поток воздуха, записать для каждой выражение воздушного сопротивления. Они достаточно просты. Затем, записывается цепь сопротивлений воздушного потока, ищется общее сопротивление и, наконец, строится характеристическая кривая вашего устройства. Этим мы и займемся на основе примера. Но для начала я приведу основные составные элементы, на которые можно разложить ваше устройство, и записать для них воздушные сопротивления.
На следующем рисунке представлено выражение для перфорированной стенки. Или просто для отверстия. Можно описывать входные вентиляционные стенки.
Рис. 5. Перфорированная стенка и выражение для нее.
Часто, в устройстве есть отсеки с разными объемами. Так вот, да, они тоже имеют воздушное сопротивление.
Рис. 6. Расширение объема.
Резкий поворот.
Рис. 7. Поворот.
Взаимодействие между двумя поверхностями будь то ПП или поверхность корпуса.
Рис. 8. Трение
Возникает вопрос, а как нам описать воздушное сопротивление ПП с расположенными на ней элементами? Неужели плату нужно описывать подробно, разбивая ее на подэлементы? Нет, не нужно. В нашем случае умными людьми было проделано множество опытов, расчетов и моделирования. В принципе, все платы можно свести к тому или иному типовому случаю с точки зрения обтекаемости воздухом. Для каждого из них существует более или менее точная эмпирическая формула для расчета. В следующей таблице показаны эти формулы для различных конфигураций и расположений ПП внутри корпуса. Нам нужен случай (a) – одиночная ПП.
Для примера запишем воздушное сопротивление для следующего корпуса с расположенной в ней ПП.
Рис. 9. Пример устройства, для которого был произведен расчет.
В данном случае присутствуют следующие воздушные сопротивления: входная перфорация, расширение на выходе вентилятора, сопротивление ПП, сопротивление между ПП и верхней крышкой корпуса, сопротивление выходной перфорации. Все эти сопротивления записываются последовательно, и тут нет ничего сложного. Расчет приведен в приложенном файле MathCAD, поэтому кому надо, может заглянуть и воспользоваться наработками. Вам нужно использовать свои геометрические размеры элементов, перфорации. Кроме того в этом файле приводится расчет воздушного сопротивления радиаторов, которые установлены на ЦП1 и ЦП2. Здесь я не привожу их расчет. Все расчеты взяты из книги Gordon N. Elison Thermal Calculations for Electronics.
Приведу получившиеся результаты. На графике (Рис. 9) показано красным воздушное сопротивление и включение дополнительного вентилятора последовательно, а на рисунке 10, параллельно.
Рис. 9. Результаты расчета для включенных последовательно вентиляторов
Рис. 10. Результаты расчета для включенных параллельно вентиляторов
Система получилось с низким воздушным сопротивлением, следовательно больший эффект даст параллельное включение вентиляторов. Теперь, зная параметры системы можно приступать к расчету теплового режима Вашего электронного устройства. Как это сделать при помощи инженерных приближений описано здесь, а также подтверждение результата здесь при помощи моделирования в Autodesk CFD.
Данная статья была написана при помощи книги Gordon N. Elison Thermal Calculations for Electronics.
Ссылка на файл MathCAD для расчетов.
habr.com
Как устроен ДВС с воздушным охлаждением?
Для нормальной работы двигателя необходима температура 80 – 90 градусов. А температура в цилиндре в рабочем состоянии может расти до 2000 градусов, что разрушительно влияет на детали. Система охлаждения в машине позволяет мотору не перегреваться в жару и не промерзать в мороз. Нарушение температурного режима чревато быстрым износом деталей, повышенным расходом топлива и масла, падением мощности двигателя.
Таким образом, система охлаждения контролирует температурные пределы для идеальной работы автомобиля.
Предназначение воздушного охлаждения
Прямое предназначение системы охлаждения – поддерживать оптимальную температуру для работы двигателя. Система охлаждения отвечает и за нагрев воздуха в салоне, за охлаждение моторного масла и рабочей жидкости коробки-автомат, иногда охлаждается приемный коллектор и дроссельный узел. В результате сгорания топлива рассеивается 35% тепла.
Знаете ли Вы? Первая система охлаждения появилась в 1950 году.
Принцип работы воздушной системы охлаждения
Название говорит само за себя – поток воздуха главный в воздушной системе охлаждения. С воздухом отводится тепло от цилиндров, головки блока и масляного радиатора. Вся система состоит из вентилятора (приводится в движение от шкива коленчатого вала ремнем), охладительных ребер цилиндров и головки, съемного кожуха, дефлекторов и контрольных приборов. На вентиляторе стоит защитная сетка, чтобы исключить попадание посторонних предметов.Воздушный поток принудительно поступает к двигателю при помощи алюминиевых лопастей вентилятора. Движется воздух между ребрами охлаждения, а потом равномерно распределяется с помощью дефлекторов на все детали мотора.
Вентилятор состоит из направляющего диффузора (по окружности в нем имеются неподвижные радиально расположенные лопасти переменного сечения, чтобы направлять поток воздуха) и ротора с 8 радиально расположенными лопатками. Лопасти диффузора меняют направление потока воздуха, и он движется в противоположную от вращения ротора сторону. Это увеличивает давление воздуха и лучше охлаждает двигатель.
Интересно знать! В 1997 году был установлен двигатель воздушного охлаждения с двумя турбинами в 400 лошадиных сил. Он считается самым мощным.
Чтобы увеличить площадь поверхности для контакта с воздухом, на блок и головку блока цилиндров установлены дополнительные ребра. В минуту вентилятор может подать 30 кубов воздуха, что позволяет двигателю работать при температуре от –40° до +40°. Термостаты и заслонки позволяют регулировать интенсивность охлаждения двигателя.
Естественное воздушное охлаждение
Самым простым способом охлаждения двигателя является естественное воздушное охлаждение. На внешней поверхности цилиндров стоят ребра, через которые и отдается тепло. Такая система охлаждения стоит на мотоциклах, мопедах, поршневых двигателях и др.
Принудительное воздушное охлаждение
В системе принудительного воздушного охлаждения есть вентилятор и ребра охлаждения. Кожух покрывает вентилятор и ребра. Это способствует направлению воздушного потока и препятствует проникновению тепла извне.
Это интересно! Примерно 44% избыточного тепла уходит через выхлопную трубу.
Преимущества и недостатки
Преимущества двигателей с воздушным охлаждением:
1. Простота конструкции. Легко ремонтировать.
2. Незначительный вес.
3. Надежность.
4. Недорого.
5. Хорошие показатели холодного запуска мотора.
Недостатки:
1. Создает шум.
2. Увеличиваются размеры мотора.
3. Неравномерность обдува и локальный перегрев.
4. Чувствительность к качеству топлива, масла и запчастей.
Внимание! Даже тонкий слой грязи на корпусе мотора снижает продуктивность охлаждения. Поэтому нужно тщательно следить за чистотой корпуса двигателя.
Распространённые поломки
Датчик показывает повышение температуры масла в картере – охлаждающая система дает сбой в работе. Немедленно заглушите мотор и выясните причину. На приборной панели загорается лампа, которая сигнализирует о неполадках. Причина может быть в обрыве ремня вентилятора. Очень редко случаются проблемы в работе термостата.
Где применяются двигатели з воздушной системой охлаждения
Двигатели с воздушной системой охлаждения применяются все меньше (их вытесняет жидкостное охлаждение) в машиностроении (компактные малолитражки, дизельные ДВС, грузовики, техника сельского хозяйства).
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
auto.today
Воздушное охлаждение | Мото-мануалы и инструкции
Вопрос,конечно,не злободневный,но некоторых всё таки интересует.Так что же лучше?Скажу сразу:однозначно сказать нельзя.Понятно,что вроде бы как “водянка” будет по-веселее,но и “воздушка” при нормальной эксплуатации тоже ничего.Для начала в двух словах расскажу для чего ставят жидкостное охлаждение и почему к этому пришли конструкторы.Единственная и самая фундаментальная цель жидкостного охлаждения-увеличить площадь теплоотдачи с мотора,поскольку по отношению к жидкостному охлаждению,воздушное ограничено площадью рёбер охлаждения.Разложу всё по полкам,а что уже лучше,Вы будете решать сами.Начну с более распространённого варианта:воздушного охлаждения. Отличается относительной простотой конструкции по отношению к его оппоненту.Менее прихотливо к обслуживанию(если вообще прихотливо) и не просит следить за собой очень уж пристально.Скажу,что,например,двигатель естественного воздушного охлаждения выигрывает у “водянки” в скорости раскрута,поскольку нифига кроме коленвала ему крутить не надо,а у “водянки” ещё есть помпа,которую тоже нужно крутить.Да,конечно есть ещё электропомпы,но они тоже способный создать лишнюю нагрузку в виде электромагнитной нагрузки в генераторе.Ну да ладно.К плюсам так же можно приписать тот факт,что никогда ничего нигде не будет течь,тут нету километров шлангов,глючащих датчиков температуры и т.д. Понятное дело,что минусов тоже хватает.Ничто так не граеется,как “воздушка” при вваливании фитилей ей ездоком.Систематический перегрев сводит на нет любой ресурс,”усаживает” цементационный слой,каким бы козырным он ни был.Не редко случается,что температура мотора при “прохватах с пристрастием” заваливает за 200○С.При такой температуре ни какое масло уже ничего не смазывает.При фиговом к ней отношении,”воздушка” чаще звенит,гремит,стучит.Максимальный ресурс,который довелось мне видеть лично:64000 км,но о способности заводиться с эл.стартера и речи не шло. Разбирая мёртвую ЦПГ нередко можно наблюдать синий и съеденный поршневой палец. С жидкостным охлаждением тоже хватает приколов и соотношение минусов и плюсов тут такое же,как и у воздушного охлаждения. Из плюсов конечно же главным является практически полная невозможность теплового прихвата.При наличии добротного,не забитого радиатора на полтинишном моторе можно шпарить хоть 200 километров без остановки с полностью открытой ручкой газа и с ним абсолютно ничего не случится.Я такое наблюдал лично.Дело в том,что часто температура такого мотора выше ста градусов не поднимается,а при ста градусах с железом ничего случиться не может.Ресурс такого мотора нередко превышает ресурс “воздушника” в два и более раз,но при этом всё равно обязывает:следить за состоянием помпы,наличием и качеством охлаждающей жидкости,работоспособностью датчиков температуры и целостностью всей магистрали.В общем данный тип охлаждения не для криворуких и не для колхозников-раздолбаев,которые в скорости начинают лить туда всё,что угодно,но только не тосол и не антифриз.Поскольку происходит нагрев определенных областей двигателя, для предотвращения деформации рассматриваемых узлов и возможного заклинивания необходимо обеспечить отвод и рассеивание тепла. Тепло естественным образом перераспределяется от горячих к холодным областям; таким образом, тепло, полученное поршнем и клапанами, естественным образом отводится к внешним поверхностям цилиндра и головки цилиндра. Лишнее тепло от этих поверхностей необходимо отвести в воздух (помня, что не всё тепло является лишним, поскольку рабочая температура двигателя должна поддерживаться в оптимальных пределах).
Наилучшим способом организации теплоотвода является оптимизация площади наружной поверхности деталей, так чтобы в воздух отводилось необходимое количество тепла. Этого добиваются путем введения ребер охлаждения на нагретых областях. Если посмотреть на любой двигатель с воздушным охлаждением, то можно сразу заметить, что основная, сильно оребренная область находится в районе головки цилиндра. Поверхность картера не находится в непосредственном контакте с теплом, выделяющимся при сгорании, а следовательно, ей достаточно небольшого оребрения или вообще оно не требуется. В этом случае исключением являются четырехтактные двигатели с «мокрым картером», в которых ребра используются для охлаждения масла, находящегося в поддоне. Принципы воздушного охлаждения были заложены одновременно с первыми мотоциклами, и не сильно изменились за прошедшие годы. Конструктор должен вычислить площадь оребрения для соответствия ее величине отводимого тепла, поэтому оребрение одного двигателя может сильно отличаться от другого. Например, охлаждению двигателя дорожной машины способствует ее движение по отношению к окружающему воздуху. Для спортивных внедорожных мотоциклов это справедливо в меньшей степени, потому что они часто работают в тяжелых условиях и при этом очень медленно двигаются; именно по этому у многих двигателей внедорожных машин сильное оребрение. Вот почему дорожные машины перегреваются, попадая в «пробку». Кроме того, имеется существенное различие в степени оребрения между двухтактными и четырехтактными двигателями: число рабочих ходов в двухтактных двигателях в два раза больше, следовательно, им необходимо более развитое охлаждение. Другой способ реализации воздушного охлаждения — тот, что применяется на двигателях, расположенных вне набегающего потока воздуха, то есть на скутерах Он состоит в том, что над оребренной поверхностью устанавливается кожух, в который по каналу от вентилятора подается воз дух, охлаждающий ребра. Несмотря на то, что часть мощности затрачивается на привод вентилятора, этот способ связывает эффективность охлаждения с частотой вращения двигателя, а не со скоростью движения; следовательно, он более соответствует требованиям охлаждения двигателя. Главный недостаток воздушного охлаждения — широкий диапазон температур воздуха, при которых должна обеспечиваться работа двигателя. При изменении температуры изменяется эффективность охлаждения (коэффициент теплопередачи меняется с изменением перепада температур: чем больше перепад, тем он выше). Проблема изменения степени линейного расширения различных узлов двигателя означает, что допуски при изготовлении должны быть чрезмерно большими. Кроме того, величина тепловыделения больших или форсированных двигателей может иногда оказаться такой, что воздушному охлаждению будет трудно с ней справляться.
Принудительное воздушное охлаждение, в котором используется приводной вентилятор, в данном случае подходит несколько лучше, но использование вентилятора для охлаждения большого двигателя приводит к излишнему увеличению его веса.
[kkstarratings]Статью прочитали: 641
moto-manual.com
Перспективы воздушного охлаждения процессоров. Предложения по доработке традиционных схем охлаждения
В последнее время складывается такая ситуация, что развитие существующих средств охлаждения микропроцессоров не успевает за увеличением выделяемой ими тепловой мощности. Модернизация технологических процессов, влияющих на потребляемую отдельным транзистором мощность, на практике не позволяет эффективно «термокомпенсировать» всевозрастающее количество этих самых транзисторов на кристалле. И традиционные процессорные кулеры уже едва справляются с охлаждением новых горячих «камней».
По сложившимся стандартам все полупроводниковые приборы, которые характеризуются выделяемой мощностью менее 3 Вт, могут функционировать без дополнительных теплоотводов. Приснопамятные микропроцессоры 8080, 8086, мертворожденный 80186, 80286 и 80386, прекрасно работали без каких-либо кулеров благодаря тому, что выделяемая ими мощность была порядка тех же 3 Вт, и они намертво впаивались в материнскую плату, используя ее в качестве дополнительного теплоотвода. i80486 стал первым «сокетным» процессором для РС, и он же первым потребовал специализированного охлаждения (впрочем, тогда было достаточно маленького кулера, примерно соответствующего габаритам систем охлаждения современных low-end видеокарт).
С появлением Pentium II, Intel заявила, что наступил конец света для сокета, на нем нельзя сделать много дешевого кэша, он не обеспечивает должного охлаждения, и теперь всем миром пора переходить на слоты. Дескать, сделаем огромный теплоотвод, поставим два вентилятора и т.д. и т.п. AMD пошла следом и после сокетных 486, К5, К6, К6-2, К6-3 стала делать первые слотовые К7, то бишь Athlon. С точки зрения отвода тепла идея была, в общем-то, неплохая, однако в силу ряда причин через пару лет все вернулось к старым добрым сокетам. Выделяемая процессорами мощность неуклонно повышалась, кулеры худо-бедно эволюционировали: росла полезная площадь теплоотводов, увеличивались — диаметр вентилятора, скорость его вращения и, естественно, шум, но ничего принципиально нового так и не появилось.
От современных топовых процессоров (а тем более разогнанных) запросто можно ожидать 100 Вт выделяемого тепла. Если вы когда-либо имели дело с паяльником, то представляете себе, что такое 40 Вт мощности, особенно опробовав эти ватты на пальцах. 🙂 Теперь попробуем представить паяльник уже на 100 Вт, и поставим задачу охладить его с «обычных» 300°C до приемлемых 60°C. Проблема не из легких!
Итак, для начала сформулируем основные принципы эффективного отвода тепла от источника. Это:
- Эффективный подвод холодного теплоносителя к источнику тепла.
- Эффективный теплообмен между источником тепла и теплоносителем.
- Эффективный отвод горячего теплоносителя от источника тепла.
И посмотрим, как они реализуются в существующих традиционных системах охлаждения, условно классифицируя последние по типу применяемого теплоносителя.
Нитрогенные системы (жидкий азот)
Самый «хардкорный», самый недоступный, самый неудобный и самый эффективный на сегодня подход «нитрогенное охлаждение». В емкость, закрепленную на кристалле, наливается сжиженный газ азот, имеющий температуру далеко ниже нуля по Цельсию. Здесь вопрос эффективного подвода холодного теплоносителя не стоит, потому что он либо есть (и имеет свои -196°C), либо его нет. Теплообмен также не является проблемой по той же причине емкость на кристалле имеет фактически ту же температуру -196°C, пока там есть жидкий азот.
Фото 1. Система охлаждения на жидком азоте (иллюстрация сайта Muropaketti.com)
И отвод горячего теплоносителя тоже не является проблемой, поскольку все происходит само собой азот быстро и с шумом испаряется. Но в этом подходе при массе его достоинств остается одна непроходимая проблема собственно сам жидкий азот, который нужно будет покупать в огромных количествах и регулярно доливать в ту ужасную, покрытую инеем и туманом конструкцию, бывшую когда-то вашим персональным компьютером.
Гидрогенные системы (водяное охлаждение)
На кристалле процессора монтируется герметично закрытый теплоотвод, имеющий входную и выходную трубки (так называемые штуцеры). Вне корпуса или в его свободной области устанавливается теплообменник с вентилятором, похожий на автомобильный радиатор. Вместе с водяным насосом эти устройства трубками соединяются в замкнутую цепь, которая заполняется теплоносителем (водой). Насос прокачивает холодную воду через теплоотвод на процессоре, где она забирает тепло и нагревается. Этим обеспечивается поступление холодного теплоносителя и теплообмен с источником тепла. По трубкам вода поступает далее в теплообменник вне корпуса, где охлаждается и возвращается опять к теплоотводу (фото 2).
Фото 2. Система водяного охлаждения Thermaltake Aquarius II
В целом здесь соблюдены все принципы эффективного теплоотвода, однако опять же количество теплоносителя является ограниченным, поэтому возникает необходимость его повторного использования, то есть предварительного охлаждения. Вот если бы входную трубку теплоотвода воткнуть в холодную трубу водопроводных коммуникаций, а выходную трубку в канализацию… 🙂 Водяное охлаждение позволяет, образно говоря, вынести кулер на процессоре из корпуса, при некотором падении КПД. При цене порядка $100, системы водяного охлаждения дают выигрыш примерно в 10°C по сравнению с продвинутыми кулерами с нормально организованной системой продува воздуха внутри корпуса.
Криогенные системы (фреон)
Эти системы отличаются от «водянок» только тем, что в качестве теплоносителя вместо воды используется «прирожденный» термальный агент фреон. Соответственно, контур полностью и обязательно герметичен, а насос и теплообменник отличаются улучшенным качеством.
Фото 3. Система испарительного охлаждения Asetek Vapochill (иллюстрация сайта Extreme Overclocking)
В итоге получается своего рода минихолодильник на процессоре. При стандартном тепловыделении 70 Вт температура может поддерживаться в районе 5°C. Эффективность выше, но и стоимость — как минимум, несколько сотен долларов.
Аэрогенные системы с элементами Пельтье (воздух)
Элемент Пельтье это небольшая пластинка, играющая роль «прокладки» между кристаллом процессора и кулером. Не вдаваясь в физические основы явления Пельтье, можно отметить, что эта пластинка позволяет поддерживать разность температур сторон пластинки в районе 40°C при отдаваемых кристаллом процессора десятках ватт тепла (фото 4).
Фото 4. Кулер с термоэлектрическим модулем Пельтье — Thermaltake SubZero4 (иллюстрация сайта 3DVelocity)
Это не означает, что добавление элемента Пельтье автоматически снижает температуру процессора на эту величину. Эти элементы в некоторой степени повышают КПД кулера за счет увеличения эффективности теплообмена между теплоносителем (воздухом) и теплоотводом, нагретым на дополнительные 40°C. Ведь, как известно, эффективность теплообмена зависит от разности температур холодного теплоносителя и горячего источника тепла. С другой стороны, и здесь есть один существенный недостаток теплоотвод кулера нагревается сильнее, чем кристалл процессора, поэтому в случае отключения элемента (выключение компьютера или выход из строя самого элемента) теплоотвод сам начинает разогревать кристалл и может в принципе его «испечь». Поэтому без дополнительных систем контроля исключено применение массивных теплоотводов, что в свою очередь понижает КПД кулера. В целом элементы Пельтье, применительно к системам охлаждения, направлены на улучшение соблюдения второго принципа эффективного теплообмена.
Традиционные схемы воздушного охлаждения
Перейдем теперь к традиционному аэрогенному (воздушному) охлаждению. При всех его недостатках, оно обладает главным преимуществом простотой и дешевизной реализации. Определенные же доработки позволяют по-новому взглянуть на дальнейшие перспективы воздушного охлаждения применительно к охлаждению все более мощных процессоров.
Итак, на рис.1 приведена традиционная схема отвода тепла от микропроцессора, отражающая положение вещей в подавляющем большинстве системных блоков.
Рис.1. Традиционная схема отвода тепла от процессора
Самые распространенные корпуса сегодня различные xTower, в которых материнская плата расположена вертикально. Находящийся сверху вентилятор (установленный в блоке питания) высасывает воздух из корпуса, и создающееся разрежение заполняется воздухом, поступающим из отверстий внизу корпуса (если нет других отверстий). Этим создается элементарное поступление потока холодного воздуха внутрь корпуса. Вентилятор на процессоре нагнетает воздух в теплоотвод, подсасывая его из внутрикорпусного пространства. Игольчатые теплоотводы практически не применяются в кулерах, гораздо более распространены пластинчато-ребристые теплоотводы, и их ребра направлены либо вертикально (как в нашем случае), либо горизонтально.
В случае вертикального расположения (рис.1) имеет место очевидное короткое замыкание воздушных потоков. Выдуваемый вниз теплоотвода теплый воздух под действием конвекции поднимается вверх и опять засасывается вентилятором (имеет место так называемая рециркуляция). В этом случае не выполняются два необходимых условия — подвод и отвод теплоносителя. Соответственно, КПД кулера существенно падает. Элементарное перекрытие нижнего потока на теплоотводе позволяет выиграть пару градусов, однако остается открытым вопрос: почему производители печатных плат все-таки продолжают делать сокеты с таким расположением? Горизонтальное расположение несколько улучшает ситуацию, и на данный момент является оптимальным при прочих равных условиях.
Thermaltake в свое время вышла на рынок, предложив радиальное расположение ребер весьма интересное решение для горизонтального расположения материнской платы в корпусе. Но опять же, в GoldenOrb вентилятор был расположен внутри теплоотвода, отъедая львиную долю его полезной площади, поэтому, даже несмотря на дикий шум, эффективность его была очень далека от революционной. Странным оказалось решение этой проблемы в DragonOrb: вентилятор вынесли наружу, но вместо того чтобы продолжить обрубки теплоотвода вовнутрь, там расположили круговой ряд убогих торчащих медных пластинок. Многие производители подхватили инициативу и предложили вполне приличные кулеры с радиальными медными ребрами (т.е. расходящимися от центра к краям). Хотя, в последнее время подобных решений не так уж и много, а нынешние флагманские кулеры от Thermaltake и вовсе забросили былые начинания.
Компания Zalman, известная в кругах компьютерных энтузиастов, предложила идею псевдопассивного кулера с веерным расположением ребер, обдуваемых вентилятором на отдельном кронштейне. Опять же для традиционного корпуса с вертикальным расположением кулера решение спорное, но его вполне приличная эффективность подтверждается практикой. С другой стороны, и цена кусается. 🙂
Подытоживая рассмотрение ситуации, которая сложилась на сегодняшний день, хочется отметить, что принципиально ничего не изменилось. Все старания производителей систем воздушного охлаждения процессоров направлены в сторону второго принципа эффективного охлаждения улучшения теплообмена теплоносителя с источником тепла. В то же время задача подвода холодного воздуха (теплоносителя) и отвода отработавшего воздуха целиком возлагается на остальные компоненты вентилятор в блоке питания, а также системный выдувной и системный вдувной вентиляторы (если таковые вообще имеются). Установка вентиляторов в места, предусмотренные в корпусе, дает зачастую только усиление шума вместо ожидаемого охлаждения перегретого процессора. А иногда, за счет смещения воздушных потоков внутри корпуса, температура процессора становится даже выше. Производители системных блоков стараются вовсю, подготавливая по 2-3 вентиляторных места на вдув и выдув, вырезая дырки в корпусах напротив процессорного кулера. Но толку обычно мало…
Предложения к усовершенствованию систем охлаждения
Теперь хотелось бы предложить читателям несколько новых вариантов решения проблем воздушного охлаждения центральных процессоров, основанных на описанных выше принципах.
Первое и очевидное решение дать возможность процессорному кулеру забирать холодный воздух извне системного блока (рис.2). В принципе, отводом горячего воздуха можно здесь особо не обременяться, если стоит дополнительный вентилятор на выдув вкупе с вентилятором в блоке питания.
Рис.2. Система охлаждения с подающим патрубком
Небольшой патрубок квадратного сечения герметично закрепляется на процессорном кулере. В боковой панели системного блока вырезается отверстие соответствующих габаритов (как правило, нечто подобное уже имеется, и даже, возможно, с посадочным местом под вентилятор). Патрубок монтируется горизонтально, и на другом его торце обеспечивается воздушная герметизация при установке панели корпуса в нормальное положение. Это может быть полоска поролона, приклеенная по периметру торца патрубка, либо что-то еще. Из рисунка ясно, что воздух в кулер поступает только из внекорпусной среды, где температура, как правило, на 10-20°C ниже, чем внутри системного блока. Таким манером осуществляется эффективный подвод холодного теплоносителя к процессорному кулеру.
Претензией на абсолютное решение для воздушного охлаждения процессора может быть следующая конструкция (рис. 3).
Рис.3. Система охлаждения с подсосом и выхлопом воздуха
В корпусе прорезается отверстие прямоугольного сечения, в которое вставляется патрубок, один конец которого упирается (или закрепляется с некоторым промежутком, см. ниже) в системную плату, а на другом конце закрепляется большой тихий вентилятор на выдув (предполагается типоразмер 120х120 мм) с небольшим наклоном вверх. Коаксиально (т.е. внутри патрубка) монтируется уже известная нам труба с вентилятором на вдув, герметично нахлобученная на кулер. Она загибается на выходе из корпуса и выходит вниз в специализированное отверстие основного патрубка.
Таким образом, холодный воздух подсасывается снизу за счет процессорного кулера и вспомогательного вентилятора. Засасыванию способствует и выдувной большой вентилятор, создающий воздушное разрежение в основной трубе. Это же разрежение заставляет отработавший воздух активно выходить наружу. Поскольку выдувной вентилятор достаточно мощный, можно оставить промежутки между материнской платой и основной трубой, и тогда он будет подсасывать воздух еще и с материнской платы, способствуя охлаждению преобразователя напряжения питания процессора и других теплонагруженных элементов.
В целом такая конструкция соблюдает все правила эффективного охлаждения, и в промышленном исполнении будет выглядеть весьма привлекательно, заслуженно став предметом внимания моддеров. Можно сказать, получится нечто вроде гипердвигателя, торчащего из-под капота фордовского «Мустанга». 🙂
Несколько менее эффективной (из-за возможных замыканий воздушных потоков), но более практичной конструкцией, без выступающих из корпуса элементов, может стать следующая схема (рис. 4).
Рис.4. Система охлаждения с подсосом и выхлопом воздуха (рабочие вентиляторы монтируются заподлицо с панелью корпуса)
Здесь для подвода холодного воздуха используется отдельное отверстие в боковой крышке корпуса, расположенное ниже выхлопного раструба. То есть, и вдувной, и выдувной вентиляторы расположены заподлицо с корпусом. Естественно, отверстия для вдува и выдува должны располагаться как можно дальше друг от друга, чтобы исключить замыкание входящих и выходящих потоков воздуха. При этом не следует слишком опускать отверстие для вдува, так как наряду с более холодным воздухом в кулер будет засасываться и больше пыли, сконцентрированной на поверхности, где стоит системный блок.
Если говорить об эффективности подобных конструкций, то следует вспомнить, что основная их цель заключается в нормализации поступления и отвода теплоносителя (воздуха) от теплоотвода. В принципе, того же можно добиться извлечением материнской платы с процессором из корпуса и расположением ее на горизонтальной поверхности в вентилируемом пространстве (стол в комнате с открытой форточкой вполне подойдет). Ведь, как известно, подобные меры могут привести к понижению температуры процессора на 10-15% в зависимости от текущих условий. Но здесь нужно вспомнить и о другом установка материнской платы с «горячим» процессором в плохо вентилируемый корпус может привести к повышению температуры процессора на эти 15%. Предложенные конструкции систем воздушного охлаждения процессора как раз и будут наиболее эффективны именно в таких «запущенных» случаях, причем, скорее всего, их эффективность будет значительно лучше того результата, что можно получить установкой нескольких дополнительных вентиляторов внутри корпуса. Таким образом, если вы хотите ориентировочно оценить эффективность применения одной из предложенных схем охлаждения в каком-то конкретном случае, просто извлеките материнскую плату из корпуса и протестируйте систему при прочих равных условиях.
В заключение отмечу, что лично я хоть и люблю побаловаться разгоном, но ни одну из предложенных систем на практике пока не опробовал, поскольку системный блок в закрытом состоянии у меня никогда не «парится», и проблема «бани» в нем как-то сама собой рассасывается. 🙂 Тем не менее, скромно надеюсь, что эта статья станет хорошим стимулом для ваших творческих размышлений. А может, и прямым побудителем к действию. Ведь не исключено, что очень скоро подобные охлаждающие конструкции придется устанавливать вместе с новыми процессорами уже в обязательном порядке.
www.ixbt.com