ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

что лучше использовать обычному пользователю

Последнее обновление — 24 мая 2020 в 16:31

Для охлаждения современных компьютеров и их компонентов придумано несколько основных типов и способов. В этой статье я рассмотрю основные виды охлаждения ПК. Давайте начинать …

Жидкостное

Принцип работы состоит в передаче тепла от нагревающегося элемента охлаждающему радиатору. Это происходит при помощи рабочей жидкости (обычно воды), которая циркулирует в системе по специальным трубкам.

Плюсы →

  • Эффективность охлаждения, лучше традиционного воздушного
  • Качественные системы работают очень тихо
  • Такая система может выглядеть очень красиво в прозрачном корпусе, если есть подсветка.

Минусы →

  • Водянка будет стоить всегда дороже, чем вентиляторы
  • Высокие требования к качеству сборки и установки. Необходим надежный компьютерный корпус
  • Постоянный контроль за работой системы и ее обслуживание, если что-то пойдет не так и будет протечка жидкости, то вы можете лишиться дорогостоящего оборудования.

Воздушное

Можно разделить на →

  • Пассивное
  • Активное

Принцип работы пассивного охлаждения заключается в передаче тепла от нагревающегося элемента на радиатор. Радиатор может быть сделан из алюминия или меди, а более продвинутые модели имеют тепловые трубки, которые помогают увеличить площадь рассеивания тепла.

Радиатор полученное тепло рассеивает в окружающее пространство, тем самым отводя его от нагревающихся компонентов.

Эффективность такого пассивного охлаждения, напрямую зависит от циркуляции воздуха и его температуры.

Чем больше объема воздуха, участвует в теплообмене и чем ниже его температура, тем лучше работает пассивное охлаждение.

Субъективно, полностью пассивную воздушную систему охлаждения создать невозможно, так как для создания потоков воздуха внутри замкнутого объема, так или иначе нужны вентиляторы.

Плюсы →

  • Относительная бесшумность
  • Меньше вентиляторов — выше надёжность, но надо просчитать, хватит ли возможностей вашей пассивной системы для охлаждения всех компонентов компьютера.

Минусы →

  • Заводское пассивное охлаждение дорогое удовольствие. В основном им занимаются моддеры и энтузиасты, для которых цена не важна
  • Требуется компьютерный корпус большого объема, для достаточной циркуляции воздуха и продуманную систему охлаждения всего системного блока
  • В таких условиях, к разгону компьютера нужно подходить очень осторожно.

Ну а теперь подробно разберем активное воздушное охлаждение. Оно самое распространенное и недорогое. Главное подойти к его организации с умом.

В этом способе используются вентиляторы совместно с радиаторами. Обычно их называют куллерами. Вентилятор обдувает радиатор, который отводит тепло от греющего его компонента компьютерной системы. Чем больше воздушный поток проходящий через радиатор и чем он холоднее, тем эффективнее происходит охлаждение.

Плюсы →

  • Дешевле и надежнее, чем жидкостное охлаждение
  • Большая гибкость в организации систем охлаждения ПК.

Минусы →

  • Шум от большого количества работающих вентиляторов. Если брать вентиляторы большего размера, хорошего качества и с небольшой скоростью вращения, можно сильно снизить издаваемый шум системным блоком. Нужен комплексный подход
  • В мощных системах, где большое энергопотребление и соответственно высокое выделение тепла, требуется грамотная организация воздушных потоков и обдуманного подхода к охлаждению каждого сильно греющегося компонента (видеокарта и процессор).

Фреоновые установки

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. Это холодильник в компьютере.

В замкнутом контуре циркулирует газ (фреон), который забирает тепло от центрального процессора или видеокарты. Двигаясь дальше по контуру, он охлаждается в специальном радиаторе. Дальше, охлажденный фреон под давлением, поступает к охлаждаемым компонентам и процесс повторяется снова.

Плюсы →

  • Можно добиться очень низких температур, что положительно скажется на возможностях разгона.

Минусы →

  • Сложность монтажа и обслуживания
  • При неправильном подходе, может образовываться конденсат, что приведет к выходу из строя электроники
  • Высокое энергопотребление и цена.

Криогенное или азотное

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, с температурой кипения -196 градусов по Цельсию!

Криогенные системы охлаждения с жидким азотом представляют из себя металлический (чаще всего медный) стакан. Такие стаканы делают в основном для охлаждения процессора и видеокарты. Они, как и радиаторы, плотно закрепляются с охлаждаемым элементом. Далее компьютер запускается и начинает вручную наливаться в стакан/ы азот. В процессе охлаждения он постепенно испаряется, поэтому его постоянно необходимо подливать.

На охлаждении азотом, ставятся все рекорды по разгону железа.

Криогенные установки используются только для экстремального охлаждения.

Плюс у данного вида охлаждения ПК только один — этот способ лучше всего охлаждает.

Остальное — одни минусы. Цена, неудобство, сложность и т.п.

Элемент Пельтье

Термоэлектрический преобразователь (термоэлектрический охладитель), принцип действия которого базируется на возникновении разности температур при протекании электрического тока.

В принципе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости.

В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если нагревающуюся сторону элемента Пельтье охлаждать при помощи радиатора и вентилятора, то температура холодной стороны станет ещё ниже. Разность температур может достигать 70 °C.

До азотного охлаждения, энтузиасты использовали модуль Пельтье для охлаждения процессоров при экстремальном разгоне.

Плюсы →

  • Небольшие размеры
  • Отсутствие движущихся частей, газов и жидкостей
  • Бесшумность.

Минусы →

  • Более низкий КПД, чем у установок на фреоне. Это ведёт к большой потребляемой мощности для достижения заметной разности температур.

Так же существуют различные комбинации всех перечисленных выше систем, но их практическая реализация очень сложна.

По совокупности всех положительных качеств, лучшим способом охлаждения компьютера и комплектующих, остается воздушное охлаждение.

Мне нравитсяНе нравится

Александр

Увлечен компьютерами и программами с 2002 года. Занимаюсь настройкой и ремонтом настольных ПК и ноутбуков.

Задать вопрос

Экзотические виды систем охлаждения процессоров и видеокарт для разгона | Жидкостное охлаждение | Блог

У большинства из нас на процессорах и видеокартах стоит обычное охлаждение из радиаторов и тепловых трубок. Однако если вы оверклокер и вам нужны более низкие температуры и серьезный разгон, то придется глядеть в сторону сборных систем водяного охлаждения, систем с элементами Пельтье, «фреонок» и даже азотных стаканов. Давайте вспомним самые экзотические системы охлаждения, дающие очень низкие температуры и позволяющие ставить рекорды разгона.

Бурный расцвет систем охлаждения произошел в конце 90-х годов, совпав с огромными темпами роста рынка процессоров и видеокарт. Оверклокинг тогда из нишевого хобби превратился в популярное занятие, приносившее видимый рост производительности. Многие покупатели новых процессоров и видеокарт стали пытаться «выжать» из них дополнительные мегагерцы. Тем более, что прирост частот при разгоне в 30-50% был в то время нормальным явлением.

Если вы пробовали разгонять видеокарту или процессор, то наверняка сталкивались с главным ограничивающим фактором разгона — ростом температур. Хороший разгон не обходится без повышения напряжения, которое вызывает не линейный, а квадратичный рост тепловыделения и энергопотребления. Первыми пасуют обычные кулеры, потом — кулеры с теплотрубками, и если вы хотите наращивать частоту дальше, то, скорее всего, начнете смотреть в сторону водяного охлаждения.

Сборные системы водяного охлаждения

Системы водяного (жидкостного) охлаждения (СЖО) обеспечивают гораздо более эффективный отвод тепла от комплектующих за счет того, что вода имеет более высокие, чем у воздуха, теплоемкость и теплопроводность. При этом есть возможность создать очень тихую систему за счет гораздо большей, чем у обычных кулеров, площади радиаторов.

В последние годы в продаже появилось много необслуживаемых СЖО, которые дают более высокую эффективность, чем обычные кулеры на теплотрубках. Однако у них есть минусы в виде ограниченного срока службы и невозможности вмешаться в конструкцию для чистки, ремонта или замены компонентов. Этих минусов лишены сборные или «кастомные» СЖО. 

В них вы можете гибко менять конфигурацию, добавляя, к примеру, водоблок на видеокарту, чипсет, память и даже на систему питания процессора. Можно ставить более мощную помпу и радиатор большей площади для увеличения производительности. 

Сборная СЖО имеет гибкость в монтаже и не привязана к определенному сокету, корпусу или видеокарте. Вы можете подстраивать ее под свои нужды, и при апгрейде смена креплений сокета не станет для вас неприятным сюрпризом.

СЖО может обеспечить очень эффективный отвод тепла от видеокарты. Водоблок типа «фулкавер» накрывает видеокарту целиком, отводя тепло и от видеопроцессора, и от чипов памяти, и от системы питания. При этом получается очень компактная система, идеально подходящая для построения ПК с двумя видеокартами.

Сборные СЖО начального уровня могут продаваться в наборах для сборки, например Thermaltake Pacific C240 DDC Soft Tube Water Cooling Kit или Alphacool Eissturm Hurricane Copper 45.


Более продвинутые компоненты СЖО приходится покупать уже в специализированных магазинах и здесь проявляется один из их минусов — высокая цена. Еще из минусов СЖО можно назвать потенциальный риск протечки жидкости, необходимость периодической чистки и перезаправки системы и довольно высокую сложность сборки.

Системы на элементах Пельтье

В СО на элементах Пельтье применяется термоэлектрический охладитель или термоэлектрический модуль, работа которого основана на эффекте Пельтье. Действие этого эффекта заключается в возникающей разнице температур в месте контактирования материалов при прохождении сквозь них электрического тока. В зависимости от направления тока, выделяется или поглощается дополнительное тепло, которое называется теплом Пельтье.

Модуль Пельтье состоит из термоэлектрического охладителя, сделанного из последовательно соединенных полупроводников p- и n-типа с радиаторами. Течение тока вызывает охлаждение и нагревание противоположных групп контактов, соединенных с радиаторами: один радиатор охлаждается, а другой — нагревается. С него и отводят тепло радиатором с вентилятором или водоблоком СЖО.

Для работы системе требуются довольно высокие мощности в пределах от 80 до 300 ватт. Например, одно из самых эффективных заводских решений — водоблок со встроенным элементом Пельтье Swiftech MCW6500-T — потребляло до 226 Вт. Температуры, которые он поддерживал, составляли от 0 градусов в простое и 20-30 под полной нагрузкой на процессоре уровня Core i7 965 Extreme Edition.

СО на элементах Пельтье начали активно развиваться в 90-е годы. Их начали производить компании KryoTech, Computernerd, DesTech Solutions и Step Thermodynamics для охлаждения процессоров Pentium и Pentium II.

А самые известные СО на элементах Пельтье появились в нулевые годы. Это было время их расцвета.

Thermaltake SubZero

Titan Elena

Cooler Master V10

И самый частый гость печатных изданий тех времен — суперкулер Titan Amanda.


Широкому распространению СО на элементах Пельтье помешали серьезные недостатки: очень высокое энергопотребление и цена.

Фреоновые системы охлаждения

Фреоновые СО оверклокеры начали активно применять в нулевых годах. Система состоит из пяти компонентов: компрессора, конденсатора, испарителя, осушителя и дросселя (капиллярной трубки).

 

По системе прокачивается хладагент — фреон. В основе фреонового цикла лежит эффект Джоуля-Томсона — понижение температуры рабочего тела (хладагента) при понижении его давления в ходе протекания через сужение в канале.

Грубо говоря, фреоновая СО — это обычный бытовой холодильник, который есть у каждого из нас на кухне, но построенный для охлаждения компонентов ПК. Температуры, получаемые в такой системе, уже ниже нуля и позволяют осуществлять экстремальный разгон. 

Даже само по себе сильное снижение температуры процессора или видеокарты серьезно повышает их разгонный потенциал. Это заметно по механизмам буста современных видеокарт и процессоров — чем ниже температура, тем выше частота.

А еще очень низкая температура позволяет сдержать огромное тепловыделение при серьезном повышении напряжения на чипе. За счет этого и достигаются экстремальные частоты в 6, 7 и даже 8 ГГц на современных процессорах и до 3 ГГц на видеокартах.

Серьезную проблему при минусовых температурах на комплектующих вызывает образование конденсата, который может легко вывести их из строя. Построение эффективной фреоновой СО — непростая задача даже для профессионала холодильного оборудования. Поэтому такие системы — удел энтузиастов и профессиональных оверклокеров. 

Но были и серийные корпуса с встроенной фреоновой СО, например — Xpressar RCS100 от Thermaltake. Корпус формата Super Tower и весом около 30 кг обеспечивает охлаждение процессора с автоматическим поддержанием температуры в пределах 20-45 градусов, что исключает появления конденсата.

Стоит упомянуть гибриды СЖО и фреоновой СО — чиллеры. В них фреоновая СО охлаждает хладагент, текущий по обычной СЖО. Они отличаются более простым монтажом, так как к компонентам ПК подводятся обычные водоблоки.

Минусы фреоновых СО исключили их широкое распространение: сложность изготовления и монтажа, высокая цена и громоздкость.

Азотные стаканы

Мы подошли к самым экстремальным системам охлаждения на основе жидкого азота, температура кипения которого составляет -196 градусов! Транспортируется жидкий азот в сосудах Дьюара и довольно дорог, при этом хранится очень недолго.  

Поэтому разгон с помощью жидкого азота используется для кратковременного экстремального охлаждения процессора и видеокарты для получения рекордов. Процедура разгона на первый взгляд довольно проста: на процессор или видеокарту устанавливается медный стакан, пространство вокруг стакана тщательно изолируется.

Подливая жидкий азот небольшими порциями в стакан, добиваются его охлаждения до 110-130 градусов ниже нуля.

Но оверклокера поджидают две проблемы, coldbug (CB) — потеря стабильности системы, ее зависание и отключение при определенной низкой температуре.
И cold boot bug (CBB) — невозможность запуска системы при определенной низкой температуре.

Разные процессоры имеют разные температуры, при которых возникают coldbug и cold boot bug, и от оверклокера требуется умение поддержать определенную температуру, сохраняя стабильность системы для прохождения тестов.

32-х ядерный Ryzen Threadripper 3970X на частоте в 5752,97 МГц

Практически все известные рекорды разгона процессоров и видеокарт получены с использованием жидкого азота. Но этот способ крайне сложен, дорог и не может использоваться долговременно.

Стоит отметить еще два способа охлаждения с помощью азотных стаканов. Один из них более дешев и доступен — это охлаждение с помощью сухого льда. Он представляет собой двуокись углерода, или углекислый газ, замороженный до температур около -78 градусов. Температуры, в результате получающиеся на процессоре, ниже, чем при охлаждении жидким азотом, но достаточны для получения любительских рекордов.

Второй способ — это использование в азотном стакане жидкого гелия. Температура его составляет 269 градусов ниже нуля, а стоимость в 15-20 раз выше, чем у жидкого азота. Обычно такой разгон проводится на спонсорские деньги и является довольно редким событием. 

Определенную трудность составляет подбор комплектующих, выдерживающих столь низкие температуры без появления coldbug.

Итоги

За последние годы рынок экзотических систем охлаждения изменился — СО на основе фреона и на элементах Пельтье стали уделом узкого круга энтузиастов. Найти их в продаже практически нереально. А азотные стаканы остаются нишевым решением для установки рекордов.

А вот рынок СЖО бурно развивается, и сегодня вы можете купить хорошую сборную систему водяного охлаждения за умеренную сумму. Тем более, что новые многоядерные процессоры требуют СЖО уже даже для небольшого разгона. 

Добавьте сюда возможность тихой работы и кастомизации под новые сокеты и видеокарты и вы получите почти идеальную систему охлаждения на сегодня.

А начать можно и с готового набора СЖО.

Как выбрать систему жидкостного охлаждения | Жидкостное охлаждение | Блог

Качественное охлаждение процессора является непременным условием его стабильной работы. Одним из лучших технических решений для охлаждения процессора являются системы жидкостного охлаждения (СЖО).

Как таковые СЖО начали производиться одновременно с появлением возможности разгонять процессоры. Сильное тепловыделение «кристаллов» превышало потенциал воздушных кулеров, энтузиасты стали мастерить самодельные СЖО. В обычном магазине ее было не так просто найти. Но, к счастью, производители систем охлаждения осознали потребности рынка, и освоили производство необслуживаемых СЖО, что послужило приобщению к жидкостному охлаждению широкой массы пользователей ПК.

Почему эффективность СЖО выше, чем у воздушного кулера

Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося жидкого теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора.

Скорость отвода тепла зависит не только от скорости движения жидкости, но и от теплоемкости жидкости, площади радиатора. В среднем СЖО обеспечивают примерно в три раза лучший теплосъем по сравнению с обычным воздушным охлаждением, в переводе на градусы это означает падение температуры на 15–25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Следующим параметром, на который следует обратить внимание при выборе СЖО — это типоразмер радиатора. Радиаторы изготавливают под размер, кратный числу установленных вентиляторв. Вам нужно заранее определиться с тем, радиатор какого размера сможет уместиться в корпусе.

На сегодняшний день в продаже имеется несколько типоразмеров радиаторов:

В процессе эксплуатации СЖО необходимо регулярно прочищать радиатор от пыли, иначе эффективность охлаждения резко снизится. Еще очень важно, чтобы водоблок на процессоре располагался ниже верхнего уровня шлангов. Это нужно для того, чтобы имеющийся небольшой пузырек воздуха, оставляемый для компенсации расширения жидкости, внутри системы не попал в водоблок.

Количество подключаемых вентиляторов не оказывает прямое влияние на эффективность СЖО, но чем их больше, тем можно сделать ниже скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при поддержании эффективности.

Минимальный уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении — негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания вентилятора и помпы. У простых СВО с вентиляторами без подсветки используется 2 коннектора – для помпы и для вентилятора. Если вентиляторы имеют подсветку, то добавляется еще третий коннектор для управления подсветкой и синхронизации смены цветов. Сегодня на рынке встречаются четыре типа коннектора питания помпы: 3-pin, 4-pin, SATA 15 pin и Molex.

3-pin коннектор на старых материнских платах не позволяет изменять скорость вращения вентилятора, но все новые материнские платы способны менять напряжение на таких коннекторах, меняя тем самым скорость.

Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать «реобас».

4-pin коннектор предполагает управление скоростью вращения двигателей с помощью широтно-импульсной модуляции (ШИМ). При этом питание подается полное — 12 вольт, но не постоянно, а импульсами, меняя продолжительность которых можно очень точно задавать частоту вращения двигателей. Кроме того, при таком способе нет ограничения на минимальную скорость вращения — регулируемый таким способом двигатель может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа — он сложнее в реализации, а, следовательно, — дороже, но не намного. Также, при использовании этого типа коннектора можно через программы мониторинга узнавать текущую скорость вращения вентиляторов. Примеры СЖО с питанием 4-pin можно увидеть здесь.

Коннекторы питания SATA 15 pin и MOLEX подойдут тем, у кого заняты все свободные 3- и 4-pin коннекторы материнской платы. Но в этом случае можно воспользоваться разветвителем питания вентиляторов. Примеры СЖО с питанием SATA.

Коннекторы типа MOLEX — это старейший вид компьютерного разъема питания, появившийся в начале 1960-х годов.  Примеры СЖО с питанием MOLEX. 

При выборе СЖО обязательно следует проверить ее совместимость с процессорным разъемом (сокет) вашей материнской платы. 

Чаще всего современные СЖО поддерживают широкий набор процессорных разъемов, вплоть до старых, образца 2011 года (LGA 775). Типичный набор поддерживаемых сокетов состоит из AM4, LGA 1151, LGA 2066, TR4, LGA 1151-v2, sTRX4, LGA 1200, FM2+, LGA 1156, AM3, LGA 1155, AM3+, LGA 775, LGA 1366, AM2+, AM2, FM1, LGA 2011, FM2, LGA 1150.

Крепление водоблока к материнской плате производится через отверстия для системы охлаждения в материнской плате. С обратной стороны крепится усиливающая пластина, а с лицевой стороны водоблок прижимается другой пластиной, они обе стягиваются через материнскую плату винтами, идущими в комплекте поставки СЖО.

Актуальными разъемами на сегодняшний день являются AMD AM4  и Intel LGA1200.

Еще одним немаловажным параметром является тепловыделение процессора. Узнать значение TDP вашего процессора можно в разделе процессоров на сайте DNS, в расширенных фильтрах, характеристика «Тепловыделение (TDP)» или на официальном сайте производителя, и в соответствии с этим значением нужно подобрать СЖО. Здесь есть прямая зависимость между TDP и ценой — чем больше тепла может отвести СЖО, тем она дороже.

*материал обновлен автором Duesenberg*

Система охлаждения

Содержание статьи

Назначение и классификация систем охлаждения

Температура газов в цилиндрах работающего двигателя достигает 1800-2000 градусов. Только часть выделенного при этом тепла преобразуется в полезную работу. Оставшаяся часть отводится в окружающую среду системой охлаждения, системой смазки и наружными поверхностями двигателя.

Чрезмерное повышение температуры двигателя приводит к выгоранию смазки, нарушению нормальных зазоров между его деталями следствием чего является резкое возрастание их износа. Возникает опасность заедания и заклинивания. Перегрев двигателя вызывает уменьшение коэффициента наполнения цилиндров, а в бензиновых двигателях еще и детонационное сгорание рабочей смеси.

Большое снижение температуры работающего двигателя также нежелательно. В переохлажденном двигателе мощность снижается из-за потерь тепла; вязкость смазки увеличивается, что повышает трение; часть горючей смеси конденсируется, смывая смазку со стенок цилиндра, повышая тем самым износ деталей. В результате образования серных и сернистых соединений стенки цилиндров подвергаются коррозии.

Система охлаждения предназначена для поддержания наивыгоднейшего теплового режима. Системы охлаждения подразделяются на воздушные и жидкостные. Воздушные в настоящее время на автомобилях встречаются крайне редко. Системы жидкостного охлаждения могут быть открытыми и закрытыми. Открытые системы – системы, сообщающиеся с окружающей средой через пароотводную трубку. Закрытые системы разобщены от окружающей среды, а поэтому давление охлаждающей жидкости в них выше. Как известно, чем выше давление, тем выше температура закипания жидкости. Поэтому закрытые системы допускают нагрев ОЖ до более высоких температур (до 110-120 градусов).

По способу циркуляции жидкости системы охлаждения могут быть:

  • принудительными, в которых циркуляция обеспечивается насосом, расположенным на двигателе;
  • термосифонными, в которых циркуляция жидкости происходит за счет разницы плотности жидкости, нагретой деталями двигателя и охлажденной в радиаторе. Во время работы двигателя жидкость в рубашке охлаждения нагревается и поднимается в верхнюю ее часть, откуда через патрубок поступает в верхний бачок радиатора. В радиаторе жидкость отдает теплоту воздуху, плотность ее повышается, она опускается вниз и через нижний бачок вновь возвращается в систему охлаждения.
  • комбинированными, в которых наиболее нагретые детали (головки блоков цилиндров) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Устройство системы охлаждения

Наибольшее распространение в автомобильных ДВС получили закрытые жидкостные системы с принудительной циркуляцией охлаждающей жидкости (ОЖ). В состав таких систем входят: рубашка охлаждения блока и головки цилиндров, радиатор, насос ОЖ, вентилятор, термостат, патрубки, шланги, расширительный бачок. В систему охлаждения также включается радиатор отопителя.

ОЖ, находящаяся в рубашке охлаждения, нагреваясь за счет тепла, выделяемого в цилиндре двигателя, поступает в радиатор, охлаждается в нем и возвращается в рубашку охлаждения. Принудительная циркуляция жидкости в системе обеспечивается насосом, а усиленное охлаждение ее – за счет интенсивного обдува воздухом радиатора. Степень охлаждения регулируется при помощи термостата и путем автоматического включения или выключения вентилятора. Жидкость в систему охлаждения заливают через горловину радиатора или расширительный бачок. Емкость системы охлаждения легкового автомобиля, в зависимости от объема двигателя – от 6 до 12 литров. Сливают ОЖ через пробки, расположенные обычно в блоке цилиндров и нижнем бачке радиатора.

Радиатор отдает воздуху тепло от ОЖ. Он состоит из сердцевины, верхнего и нижнего бачков и деталей крепления. Для изготовления радиаторов используются медь, алюминий и сплавы на их основе. В зависимости от конструкции сердцевины радиаторы бывают трубчатые, пластинчатые и сотовые. Наибольшее распространение получили трубчатые радиаторы. Сердцевина таких радиаторов состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему бачкам радиатора. Наличие пластин улучшает теплоотдачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее круглых, так как поверхность охлаждения их больше; кроме того, в случае замерзания ОЖ в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.

В пластинчатых радиаторах сердцевина устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются реже.

В сердцевине сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи ОЖ. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника. Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения.

В верхний бачок впаяны заливная горловина, закрываемая пробкой, и патрубок для подсоединения гибкого шланга, подводящего ОЖ к радиатору. Сбоку наливная горловина имеет отверстие для пароотводной трубки. В нижний бачок впаян патрубок отводящего гибкого шланга. Шланги прикреплены к патрубкам стяжными хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора. Горловину герметически закрывает пробка, изолирующая систему охлаждения от окружающей среды. Она состоит из корпуса, парового (выпускного) клапана, воздушного (впускного) клапана и запорной пружины. В случае закипания жидкости в системе охлаждения давление пара в радиаторе возрастает. При превышении определенного значения открывается паровой клапан и пар выходит через пароотводную трубку. После остановки двигателя жидкость охлаждается, пар конденсируется и в системе охлаждения создается разрежение. При этом возникает опасность сдавливания трубок радиатора. Для предотвращения этого явления служит воздушный клапан, который, открываясь, пропускает внутрь радиатора воздух.

Для компенсации изменения объема охлаждающей жидкости вследствие изменения температуры в системе устанавливается расширительный бачок. В некоторых радиаторах нет заливной горловины, и заполнение системы охлаждающей жидкостью осуществляется через расширительный бачок. В этом случае паровой и воздушный клапаны располагаются в его пробке. Метки, наносимые на расширительном бачке, позволяют контролировать уровень ОЖ в системе охлаждения. Проверка уровня проводится на холодном двигателе.

Насос ОЖ обеспечивает ее принудительную циркуляцию в системе охлаждения. Насос центробежного типа устанавливается в передней части блока цилиндров и состоит из корпуса, вала с крыльчаткой и сальника. Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. Привод насоса осуществляется ремнем от шкива коленвала двигателя. Под действием центробежной силы, возникающей при вращении крыльчатки, ОЖ из нижнего бачка радиатора поступает к центру корпуса насоса и отбрасывается к его наружным стенкам. Из отверстия в стенке корпуса насоса ОЖ попадает в отверстие рубашки охлаждения блока цилиндров. Вытеканию ОЖ между корпусом насоса и блоком препятствует прокладка, а в месте выхода вала – сальник.

Для усиления потока воздуха, проходящего через сердцевину радиатора, установлен вентилятор. Его монтируют либо на одном валу с насосом ОЖ, либо отдельно. Он состоит из крыльчатки с лопастями, привернутой к ступице. Для улучшения обдува воздухом двигателя и радиатора на последнем может быть установлен направляющих кожух. Привод вентилятора может осуществляться несколькими способами. Самый простой – механический, когда вентилятор жестко закрепляется на одной оси с насосом ОЖ. В этом случае вентилятор постоянно включен, что приводит к излишнему расходу мощности двигателя. Кроме того, вентилятор работает даже в неоптимальных режимах, например, сразу после запуска двигателя. Поэтому в современных двигателях такое подключение не используется, а вентилятор соединяется с приводом через муфту. Конструкция муфты может быть различной – электромагнитная, фрикционная, гидравлическая, вязкостная (вискомуфта), но все они обеспечивают автоматическое включение вентилятора при достижении определенной температуры ОЖ. Такое включение обеспечивает температурный датчик. Причем использование гидромуфты и вискомуфты делает возможным не только автоматическое включение и выключение вентилятора, но и плавное изменение частоты его вращения в зависимости от температуры.

Вентилятор может приводиться не от коленвала двигателя, а отдельным электродвигателем. Такое подключение используется наиболее часто, так как позволяет довольно просто осуществлять автоматическое регулирование моментов включения и выключения с помощью термисторного датчика (его электрическое сопротивление изменяется в зависимости от нагрева). Если же работой системы охлаждения управляет контроллер двигателя, то появляется возможность изменения и частоты вращения. Кроме того, вентилятор «реагирует» и на режимы движения. Например, он включается на холостом ходу при езде в пробках для предотвращения перегрева и выключается при загородной езде на высокой скорости, когда естественного обдува радиатора вполне достаточно для его охлаждения.

В период пуска двигателя для уменьшения износа необходимо быстрее прогреть его до рабочей температуры и при дальнейшей эксплуатации поддерживать эту температуру. Для ускорения прогрева двигателя и поддержания оптимальной его температуры служит термостат. Термостат устанавливают в рубашке охлаждения головки цилиндров на пути циркуляции жидкости из рубашки в верхний бачок радиатора. В системах охлаждения используются термостаты с жидкостным и с твердым наполнитетелем.

Термостат с жидкостным наполнителем состоит из корпуса, гофрированного латунного цилиндра, штока и двойного клапана. Внутри гофрированного латунного цилиндра налита жидкость, температура кипения которой 70-75 градусов. Когда двигатель не прогрет, клапан термостата закрыт и циркуляция происходит по малому кругу: насос ОЖ – рубашка охлаждения – термостат – насос.

При нагреве ОЖ до 70-75 градусов в гофрированном цилиндре термостата жидкость начинает испаряться, давление повышается, цилиндр, разжимаясь, перемещает шток и, поднимая клапан, открывает путь для жидкости через радиатор. При температуре жидкости в системе охлаждения 90 градусов клапан термостата полностью открывается, одновременно скошенной кромкой закрывает выход жидкости в малый круг, и циркуляция происходит по большому кругу: насос – рубашка охлаждения – термостат – верхний бачок радиатора – сердцевина – нижний бачок радиатора – насос.

Термостат с твердым наполнителем состоит из корпуса, внутри которого помещен медный баллон, заполняемый массой, состоящей из медного порошка, смешанного с церезином. Баллон сверху закрыт крышкой. Между баллоном и крышкой расположена диафрагма, сверху которой установлен шток, воздействующий на клапан. В непрогретом двигателе масса в баллоне находится в твердом состоянии, и клапан термостата закрыт под действием пружины. При прогреве двигателя масса в баллоне начинает плавиться, объем ее увеличивается и она давит на диафрагму и шток, открывая клапан.

Контроль температуры ОЖ осуществляется по указателю температуры и при помощи сигнальной лампы перегрева двигателя на щитке приборов. Управление сигнальной лампой и указателем осуществляют датчики, ввернутые в верхний бачок радиатора и в рубашку охлаждения головки цилиндров.

В качестве теплоносителя может применяться вода (в устаревших конструкциях двигателей) или антифриз. Качество ОЖ, применяемой для системы охлаждения двигателя, имеет не меньшее значение для долговечности и надежности его работы, чем качество топлива и смазочных материалов.

Антифризы — охлаждающие жидкости для системы охлаждения автомобиля, не замерзающие при отрицательной температуре. Даже если температура внешней среды будет ниже минимальной рабочей температуры антифриза, он превратится не в лед, а в рыхлую массу. При дальнейшем понижении температуры эта масса затвердеет, не увеличившись в объеме и не повредив при этом двигатель. Основа антифризов — водный раствор этиленгликоля или пропиленгликоля. Пропиленгликолевая основа применяется реже. Ее главное отличие – безвредность для человека и окружающей среды, но и более высокая цена при тех же потребительских качествах. Этиленгликоль агрессивен к материалам двигателя, поэтому в него добавляют присадки. Всего их может быть до полутора десятков – противокоррозионных, антивспенивающих, стабилизирующих. Именно комплектом присадок и определяется качество и область применения антифриза. По типу присадок все антифризы делятся на три большие группы: неорганические, органические и гибридные.

Неорганические (или силикатные) – наиболее «древние» жидкости, в которых в качестве ингибиторов коррозии применяются силикаты, фосфаты, бораты, нитриты, амины, нитраты и их комбинации. К этой группе антифризов относится и широко распространенный у нас Тосол (хотя многие ошибочно считают его особым типом ОЖ). Главный их недостаток – малый срок службы из-за быстрого разрушения присадок. Пришедшие в негодность компоненты присадок образуют отложения в системе охлаждения, ухудшая теплообмен. Также возможно образование силикатных гелей (сгустков) в ОЖ.

В наиболее современных органических (или карбоксилатных) антифризах используются присадки на основе солей карбоновых кислот. Такие антифризы, во-первых, образуют значительно более тонкую защитную пленку на поверхностях системы охлаждения, а во-вторых, ингибиторы действуют только в местах появления коррозии. Следовательно, присадки расходуются намного медленнее, тем самым существенно повышая срок службы антифриза.

Промежуточное положение между органическими и неорганическими антифризами занимают гибридные. Их пакет присадок в основном включает соли карбоновых кислот, но и небольшую долю силикатов или фосфатов.

Антифризы выпускаются либо в виде концентратов, либо в виде готовых к применению жидкостей. Концентрат перед применением нужно разбавить дистиллированной водой. Пропорция определяется необходимой минимальной температурой замерзания антифриза. Основа антифризов бесцветна, поэтому производители окрашивают их в разные цвета с помощью красителей. Это делается для облегчения контроля уровня антифриза и предупреждения о токсичности жидкостей. Совпадение цвета не всегда является свидетельством совместимости антифризов.

В современных двигателях система охлаждения двигателя может использоваться для охлаждения отработавших газов в системе их рециркуляции (EGR), охлаждения масла в автоматической коробке передач, охлаждения турбокомпрессора. Некоторые двигатели с непосредственным впрыском топлива и турбонаддувом имеют двухконтурную систему охлаждения. Один контур предназначен для охлаждения головки блока цилиндров, другой – блока цилиндров. В контуре, охлаждающем ГБЦ, поддерживается температура на 15-20 градусов ниже. Это позволяет улучшить наполнение камер сгорания и процесс смесеобразования, а также снизить риск возникновения детонации. Циркуляция жидкости в каждом из контуров регулируется отдельным термостатом.

Основные неисправности системы охлаждения

Внешними признаками неисправностей системы охлаждения является перегрев или переохлаждение двигателя. Перегрев двигателя возможен в результате следующих причин: недостаточное количество ОЖ, слабое натяжение или обрыв ремня насоса ОЖ, невключение муфты или электродвигателя вентилятора, заедание термостата в закрытом положении, отложение большого количества накипи, сильное загрязнение наружной поверхности радиатора, неисправность выпускного (парового) клапана пробки радиатора или расширительного бачка, неисправность насоса ОЖ.

Заедание термостата в закрытом положении прекращает циркуляцию жидкости через радиатор. В этом случае двигатель перегревается, а радиатор остается холодным. Недостаточное количество ОЖ возможно в случае ее утечки или выкипания. Если уровень ОЖ понизился в результате выкипания – следует долить дистиллированной воды, если жидкость вытекла – доливается антифриз. Открывать пробку радиатора или расширительного бачка можно только когда ОЖ достаточно остынет (10-15 минут после остановки двигателя). В противном случае находящаяся под давлением ОЖ может выплеснуться и причинить ожоги. Вытекание жидкости происходит через неплотности в соединениях патрубков, трещин в радиаторе, расширительном бачке и рубашке охлаждения, при повреждении сальника насоса ОЖ, пробки радиатора или повреждении прокладки головки блока цилиндров. При эксплуатации автомобиля необходимо следить не только за уровнем, но и за состоянием антифриза. Если его цвет становится рыже-бурым, значит, детали системы уже коррозируют. Такой антифриз подлежит немедленной замене.

Переохлаждение двигателя может происходить из-за заедания термостата в открытом положении, а также при отсутствии утеплительных чехлов в зимнее время. Если закрытая система охлаждения негерметична, то повышенное давление в ней не создается и двигатель не прогревается до рабочей температуры. А раз двигатель не прогревается, ЭБУ постоянно обогащает смесь. Таким образом, негерметичная система охлаждения увеличивает расход топлива. Систематическая работа двигателя на обогащенной смеси приводит к разжижению масла, увеличению нагарообразования, быстрому выходу из строя каталитического нейтрализатора.

Системы охлаждения двигателя: структура, принцип действия

Общие сведения

Сгорание топлива в цилиндрах двигателя сопровождается огромным выделением тепловой энергии, и только 25–40% от ее объема считается полезной составляющей. Температура газов в камере сгорания автомобильного силового агрегата может достигать 1900–2400°C. Проектируемое среднее значение этого параметра должно составлять 650–920°C. Дальнейшее увеличение теплового режима может нанести вред силовому агрегату. Поэтому лишние 60% тепла необходимо удалить из подкапотного пространства.

Перегрев двигателя может привести к следующим последствиям:

1. Увеличение силы трения в местах контакта соприкасающихся деталей.
2. Повышенный износ элементов конструкции.
3. Уменьшение допустимого теплового зазора между рабочими элементами.
4. Воспламенение моторного масла и др.

Для поддержания теплового баланса двигателя и эффективного отвода лишнего тепла в атмосферу предусмотрена система охлаждения. В задачи системы входит не только защита агрегата от перегрева. Чрезмерный отвод тепла также отрицательно сказывается на работе мотора: увеличивается вязкость масла, повышается коэффициент трения, влияющий на величину износа трущихся поверхностей.

Температура ОЖ, а значит и тепловой баланс двигателя должны находится в границах 85–95°C.
Тип структуры, ее конструктивные особенности зависят от мощности и условий эксплуатации мотора.

Характерные особенности

Основное предназначение оборудования, способствующее комплексному охлаждению мотора – это быстрый запуск двигателя, нагрев до нужной температуры, а впоследствии – сохранение этих параметров на протяжении всей работы агрегата. На всех современных ДВС устанавливают два типа устройств, которые по способу действия делятся на воздушные и жидкостные системы.

Воздушная схема для современного легкового и грузового транспорта применяется не часто. Все больше для сохранения теплового баланса применяют способ охлаждения двигателя с использованием низкозамерзающих жидкостей, это:

1. Открытый, где контакт с внешним контуром происходит посредством паровыпускного патрубка.
2. Закрытый. Смесь движется в замкнутом пространстве по кругу без контакта с атмосферным воздухом.

В зависимости от схемы циркуляции ОЖ способы охлаждения мотора разделяют на следующие виды:

1. Принудительные. Оборот охлаждающих жидкостей реализуется с помощью водяной помпы, размещенной на корпусе двигателя.
2. Термосифонные. Здесь перемещение охладителя осуществляется за счет разницы температур и изменения плотности ОЖ. В течение функционирования агрегата раствор, омывающий корпус двигателя в случае повышения температуры устремляется вверх и самопроизвольно перемещается в верхнюю емкость радиатора. Продвигаясь через сердцевину радиатора, она теряет тепловую энергию и попадает в нижнюю секцию, а затем самотеком возвращается в каналы охлаждения блока цилиндров.
3. Комбинированные. В этом случае головку мотора охлаждают по принудительной схеме, а сам корпус агрегата кондиционируется по термосифонной схеме.

Воздушные системы

Способ воздушного охлаждения мотора предусматривает оребрение поверхности головки и блока цилиндров двигателя. В этом случае излишки тепла выводятся в атмосферу при помощи мощного вентилятора, который создавая плотный воздушный поток для обдува ребер мотора, способствует стабилизации теплового баланса работающего агрегата.

Воздушное охлаждение отличается своей компактностью, так как в его конструкции отсутствует радиатор, помпа и подводящие патрубки. В результате получаем ряд преимуществ, это:

• снижение веса агрегата;
• простота обслуживания;
• из-за отсутствия жидкости, исключается риск размораживания агрегата.

Из недостатков такой схемы – это сравнительно сложный запуск мотора в случае низкой температуры воздуха, и падение производительности механизма в момент запуска вентилятора.

Сегодня обдув применяется только на отдельных моделях мотоциклов, лодочных моторов, мотоблоков и др.

Охлаждение жидкостное

Структура жидкостного охлаждения устроена следующим образом:

• рубашка охлаждения;
• вентилятор;
• диффузор;
• насос;
• отопитель салона;
• термостат;
• резиновые патрубки;
• расширительный бачок.

Нагретый антифриз по отводящим патрубкам перемещается в радиаторный отсек двигателя, где производится забор лишней тепловой энергии и затем, уже охлажденная смесь, подается в рубашку блока цилиндров. Кругооборот охладителя осуществляется благодаря присутствию перекачивающего устройства (помпы), а отвод тепла от сердцевины радиатора осуществляется за счет потока воздуха, проходящего через соты устройства. Эффективность отвода тепла контролируется термостатом и реле запуска вентилятора.

Для наполнения систем охлаждения применяют спиртосодержащие низкозамерзающие жидкости – антифризы. Количество заливаемого антифриза зависит от типа транспортного средства и производительности агрегата (2–15 л). Для слива антифриза в корпусе мотора предусмотрены заглушки, расположенные в теле блока цилиндров и нижней секции радиатора.

Радиатор

Присутствие радиатора в подкапотном пространстве сводится к его способности отводить лишнюю тепловую энергию от нагретых элементов двигателя. Оптимальные тепловые режимы для систем охлаждения находятся в границах 85–95°C. Поэтому, одна из главных задач устройства – поддержание расчетных показателей на протяжении всего рабочего цикла независимо от температуры атмосферного воздуха и условий эксплуатации механизма.

Каркас радиаторной секции производят из медного или алюминиевого сплава. Его конструкция комплектуется из следующих элементов:

• верхнего и нижнего бачка;
• сердцевины;
• отводов для соединительных патрубков;
• проушин для крепления корпуса.

Классифицируют радиаторы с учетом строения их средней части, это:

• трубчатая;
• пластинчатая;
• сотовая.

Устройство трубчатых моделей вмещает в себя квадратную или прямоугольную рамку, вверху и внизу которой размещаются емкости для приема нагретого раствора. Средняя секция собрана из вертикально установленных медных или алюминиевых профилей овального или круглого сечения, соединенных между собой горизонтально размещенными пластинами, выполненными из того же материала.

Концы профилей запаяны в верхнюю и нижнюю емкости. Установленные пластины способствуют усилению прочности конструкции, и повышения коэффициента теплоотдачи для протекающей сквозь профили ОЖ.

Средняя секция пластинчатого радиатора монтируется из вертикальных, полых внутри, пластинчатых профилей волнистой формы. Внутренняя часть устройства омывается антифризом, наружная – атмосферным воздухом. Верхние и нижние части плоского каркаса соединяются в единую конструкцию при помощи бачков для приема жидкости.

Сотовые радиаторы представляют собой набор шестигранных профилей с круглым внутренним сечением. Трубки в каркасе расположены горизонтально, навстречу движения автомобиля. Внутренняя круглая часть сердцевины обдувается проходящим атмосферным воздухом, а по каналам, расположенным в стенках профиля поступает нагретый антифриз.

Вверху радиатора находится горловина с заливным отверстием и впускным патрубком. Горловина оснащается крышкой, устройство которой включает в себя паровой и воздушный клапаны, пружину и паровыпускную трубку. При сильном нагреве двигателя антифриз начинает кипеть, напор в шлангах увеличивается, в это время срабатывает паровой дроссель, и выводит излишки пара наружу.

После удаления пара в каналах создается разряжение, способное отрицательно повлиять на состояние резиновых отводов. Для защиты подводящих трубок от повреждения служит воздухоспускной дроссель, который срабатывает в нужный момент, и поступающий внутрь воздух стабилизирует обстановку в магистрали.

Для регулирования объема ОЖ в двигателе предусмотрена расширительная емкость. Корпус бачка изготавливают из полимерных материалов. Вверху резервуара находится заливное отверстие с пробкой, конструкция которой аналогична устройству крышки радиатора.

С радиаторной секцией емкость соединяется посредством резиновой трубки, по которой добавленный антифриз попадает в общую систему. На боковую плоскость резервуара наносятся ограничительные метки (max, min), обозначающие оптимальный объем антифриза.

Помпа для антифриза

Насос, установленный в передней части мотора, предназначен для перекачивания ОЖ от двигателя к радиатору и затем – обратно. Структура насоса содержит в себе корпус, рабочий вал, опирающийся на подшипники и крыльчатку. В верхней части кожуха находится уплотнительное кольцо и приводное колесо, установленное на центральной оси. Кожух перекачивающего устройства выполнен из алюминиево-магниевого сплава, крыльчатка – из полимерного композита.

Запуск механизма производится посредством клинообразного ремня, соединяющим шкив устройства с приводным колесом, расположенным на коленчатом валу. Лопасти помпы захватывают антифриз из нижней емкости радиатора, и перекачивают его к блоку цилиндров, где он нагревается и переходит в верхний резервуар радиаторного отсека, там охлаждается и перетекает обратно.

Вентилятор

Для интенсификации восстановления теплового баланса мотора к радиатору подсоединяют электровентилятор с диффузором. Быстрое вращения лопастей увеличивает объем воздушной массы, проходящей через соты приспособления. Запуск вентилятора происходит при повышении температуры работающего мотора, вследствие этого срабатывает датчик, расположенный в корпусе блока цилиндров, и включает электродвигатель, вращающий лопасти прибора.

Современные модели автомобилей укомплектовываются электровентиляторами, работающими под управлением бортового компьютера. Время пуска электроприбора в этом случае зависит не только от температуры, но и от скорости движения. Если скорость автомобиля ниже 60 км/ч – электродвигатель отключается.

Термостат

Назначение устройства заключается в регулировании термических параметров силового агрегата, и форсирования нагрева мотора в случае запуска его в зимний период. Термостат устанавливается в рубашку охлаждения, перед отрезком, осуществляющим подачу охладителя в верхнюю емкость радиатора.

Устройства регулирования тепловых параметров двигателя изготавливаются двух видов – с жидким и твердым заполнителем. Модели, заполненные жидкостью, включают в себя следующие элементы:

• кожух;
• латунную гофрированную гильзу;
• клапан;
• шток.

Внутри гофры находится жидкое химическое вещество, которое может кипеть при +75°C. При пуске холодного мотора заслонка прибора закрыта, и смесь движется в замкнутом пространстве: помпа – рубашка блока – терморегулятор – помпа. Когда термические параметры ОЖ достигнут верхней границы со значением +75°C, состав в гильзе закипает, гофра разжимается и воздействует на стержень управления дросселем. Заслонка открывает проход, и раствор подается в верхнюю емкость радиатора.

Образец с твердым реагентом представляет собой кожух из алюминиево-магниевого соединения, внутри у него находится медный или латунный баллон, заполненный сухим раствором, состоящим из медной пудры и церезина (разновидность воска). Между емкостью и крышкой располагается резиновая мембрана с управляющим стержнем. Стержень верхним концом соединяется с клапаном. Над крышкой установлена прижимная пружина, фиксирующая тарелку дросселя в закрытом положении.

Разогретая ОЖ, омывающая баллон с реагентом, расплавляет церезин, который расширяясь воздействует на резиновую перепонку. Перепонка, изгибаясь поднимает стержень, и заслонка освобождает выпускное отверстие, что позволяет жидкой смеси перетекать в верхнюю емкость радиатора. С уменьшением температурного показателя до значения +65°C, воск кристаллизуется, дроссель закрывает окошко, и раствор продолжает уже двигаться по малой схеме.

Антифриз для автомобиля

Антифризы – это морозоустойчивые жидкие растворы, предназначенные для регулирования термического состояния двигателя, и сохраняющие свои эксплуатационные характеристики на протяжении всего срока службы. Основным преимуществом охлаждающих жидкостей является их способность в момент кристаллизации превращаться в пластичную массу, которая при расширении не разрушает каналы рубашки охлаждения.

Основой для производства антифризов служат одно- и двухатомные спиртовые соединения:

• этиленгликоль;
• пропиленгликоль;
• соли органических карбоновых кислот.

Для придания перечисленным веществам морозостойкости, их смешивают с дистиллированной водой и модифицирующими присадками. Применение модификаторов обусловлено приданием антифризу специальных свойств с учетом технических требований, предъявляемых к автомобилю в период эксплуатации. Тип добавок и их структурные составляющие определяют сферу использования ОЖ.

В зависимости от материала, на базе которого изготавливались реагенты, они делятся на три вида:

1. Органические.
2. Гибридные.
3. Неорганические.

Охлаждающие смеси на основе неорганических веществ – это составы с пакетом присадок, в которых присутствуют соли силикатных соединений. Примером низкозамерзающих жидкостей этой группы служит – Тосол. Применение «Тосола» допускается только для старых моделей автомобилей, укомплектованных медным радиатором.

Жидкость не рекомендуется применять для моторов, корпус и радиатор которых изготовлен из алюминиевых сплавов. Кроме того, ОЖ с неорганическими присадками быстро теряют свои свойства. Результатом таких изменений могут быть: помутнение раствора, появление осадка, кислотные или щелочные отложения на внутренних поверхностях рубашки охлаждения блока цилиндров.

Хорошей заменой неорганическим смесям служат карбоксилатные антифризы, изготовленные на основе производных органических карбоновых кислот. Отличие таких растворов в том, что они создают защитную пленку не по всей поверхности, а только на участках, где активно коррозионное воздействие. Это свойство жидкостей позволяет сократить расход модификаторов и тем самым увеличить срок использования ОЖ.

Средний вариант между органическими и неорганическими смесями занимают жидкости, изготовленные по гибридной технологии. Набор добавок у таких композитов может включать как соли силикатов, фосфатов, аминов, так и соли органических кислот.

Охлаждающие жидкости производятся в форме готовых к применению растворов, тарой для них служат емкости, изготовленные из химически стойких полимерных материалов. Отдельный вид антифриза составляют концентрированные составы, которые для приведения в рабочее состояние необходимо разбавить дистиллированной водой. Соотношение веществ рассчитывается заводом изготовителем и указывается на тыльной стороне резервуара.

Для удобства применения смесей, отличающихся между собой свойствами, их принято окрашивать в разные цвета. У каждого из производителей ОЖ может быть своя цветовая гамма, поэтому совпадение колера жидкости не может служить показателем совместимости растворов.

Виды систем охлаждения и принцип их работы

⇐ ПредыдущаяСтр 3 из 39Следующая ⇒

Система охлаждения служит для поддержания оптимального теплового режима двигателя путем принудительного отвода теп­лоты от нагретых деталей и передачи этой теплоты окружающей среде.

В современных двигателях в полезную работу превращается лишь 23… 42 % теплоты, выделяющейся в цилиндрах двигателя, осталь­ная теплота уносится отработавшими газами, охлаждающей жид­костью или воздухом и затрачивается на трение, рассеивание в окружающую среду внешними поверхностями двигаггеля и др.

Теплота, используемая на выполнение полезной работы, а также ее затраты на указанные виды потерь составляют тепловой баланс двигаггеля.

Так как сгорание в двигателе происходит при высоких темпе­ратурах, достигающих 2200…2300’С, то без принудительного ох­лаждения такие детали, как цилиндр, поршень и направляющие втулки клапанов, нагревались бы до температуры, значительно« превышающей температуру воспламенения (вспышки) масла. Поэтому для поддержания нормального теплового режима рабо-, ты узлов и механизмов необходимо принудительно отводить теп­лоту от взаимодействующих деталей, не допуская их перегрева. Количество теплоты, которое должна отводить система охлажде-‘ ния, зависит от мощности и режимов работы двигателя.

При перегреве двигателя увеличиваются силы трения и изна­шивание деталей, уменьшаются тепловые зазоры, происходит нагарообразование, ухудшается наполнение цилиндров карбюра­торных двигателей горючей смесью, а дизелей — очищенным воз­духом. Однако при чрезмерном отводе теплоты возникает перео­хлаждение двигателя, которое вызывает изменение вязкостных свойств масла, что приводит также к увеличению изнашивания деталей и механических потерь на трение, снижению мощности и экономичности двигателя. Поэтому независимо от нагрузки дви­гателя, следует поддерживать его тепловой режим в пределах 85…95 вС.

В современных двигателях применяют воздушное или жидкост­ное охлаждение. При воздушном охлаждении через оребренные поверхности блока и головки цилиндров излишняя теплота отводит­ся потоком воздуха, создаваемым многолопастным вентилятором с устройством, регулирующим интенсивность охлаждения.

В воздушной системе охлаждения отсутствует радиатор, жидкост­ный насос, каналы и трубопроводы для охлаждающей жидкости, поэтому к преимуществам такой системы относятся простота кон­струкции, уменьшение массы, удобство обслуживания и, кроме того, исключается опасность размораживания двигателя зимой. Размораживание, т.е. замерзание воды в системе водяного охлаж­дения, приводит к образованию трещин в блоке цилиндров.

Несмотря на то, что система воздушного охлаждения обеспе­чивает условия для необходимого отвода теплоты от сильно на­гретых деталей, требуется сравнительно большая мощность дви­гателя для приведения в действие вентилятора и затрудняется пуск двигателя при низкой температуре из-за отсутствия возможности прогрева его горячей водой. Поэтому наибольшее распростране­ние получили жидкостные системы с принудительной циркуля­цией охлаждающей жидкости. Такие системы более эффективны в работе и вместе с пусковыми устройствами обеспечивают легкий пуск двигателя при отрицательных температурах окружающего воздуха и создают меньший шум при его работе.

В качестве охлаждающих жидкостей применяется вода или ее эти- ленгликолевые смеси — антифризы. Широкое распространение полу­чили смеси, замерзающие при низкой температуре: Тосол А-40М, ОЖ-40 «Лена» и Тосол А-65. Антифризы получают разбавлением технического этиленлшколя водой. Например, Тосол А-40М пред­ставляет собой 50 %-ную смесь воды с этиленгликолем, которая при температуре — 40 *С превращается не в лед, а в густую массу, не вызывающую повреждения блока цилиндров или радиатора.

Принципиальные схемы жидкостной системы охлаждения дви­гателей показаны на рис. 5.1. В зависимости от теплового состоя­ния двигателя циркуляция жидкости в системе происходит по большому или малому кругу (рис. 5.1, а) и обеспечивается насосом <9, который приводится в действие от шкива 18, соединенного через клиноременную передачу со шкивом коленчатого вала. При нормаль­ном тепловом режиме работы двигателя охлаждающая жидкость циркулирует по большому кругу. При этом клапан термостата 9 открыт и жидкость через патрубок 11 подается к верхнему бачку 13 радиатора /б, откуда по трубкам сердцевины радиатора она по­ступает в его нижний бачок 20 (направление движения жидкости показано стрелками).

Жидкость, проходящая через радиатор, охлаждается воздухом, подаваемым под напором вентилятором /9, и потоком воздуха, возникающим при движении автомобиля и регулируемым при помощи жалюзи (пласгин-сгворок) 17. Охлажденная жидкость через нижний патрубок 22 радиатора подается снова к насосу 8 и далее в рубашку охлаждения 7 блока и головки цилиндров.

5 6 7 S 9 10 11 1213 14 15

 

» I л

22 21 20

 

При пуске и работе непрогретого двигателя, когда температура охлаждающей жидкости ниже 72 ее циркуляция происходит по малому кругу. В этом случае жидкость не поступает в радиатор, так как клапан термостата 9 закрыт, а проходит по рубашке ох­лаждения 7 блока и головки цилиндров и через перепускной ка­нал 10, омывая термостат, снова поступает к насосу, обеспечивая тем самым быстрый прогрев холодного двигателя. По мере повы­шения температуры охлаждающей жидкости клапан термостата открывается, и она начинает циркулировать по большому кругу.

В V-образных двигателях ЗИЛ-508, -5081, ЗМЗ-511 и других (рис. 5 Л, б) жидкость через приливы 23 корпуса насоса подается в раструбы рубашки охлаждения левого и правого рядов цилиндров и далее через полость 24 впускного газопровода и термостат по­ступает в радиатор 16, а затем к насосу. Одновременно из полости трубопровода по гибкому шлангу 25 жидкость также поступает в рубашку охлаждения компрессора, а по шлангу 26 возвращается в насос.

Для нормальной работы двигателя температура охлаждающей жидкости при входе в водяную рубашку должна составлять 75…80*С, а при выходе из нее 85…95*С.

Для повышения температуры кипения воды в современных двигателях применяют закрытую систему охлаждения, которая может сообщаться с атмосферой при помощи пароотводной труб­ки /5только через паровоздушный клапан, расположенный в проб­ке 14 радиатора или в пробке 27 расширительного бачка 28, име­ющего сливной кран 21.

Температуру охлаждающей жидкости в системах охлаждения контролируют с помощью дистанционных магнитоэлектрических термометров, состоящих из указателей 5 и встроенных термодат­чиков 6. О перегреве жидкости в системе охлаждения сигнализи­рует контрольная лампочка, установленная на щитке приборов (у автомобилей ЗИЛ-431410, ГАЗ-3307 и -3110 «Волга») и со­единенная с термодатчиком 12, ввернутым в верхний бачок ради­атора.

Рис. 5Л. Схемы жидкостных систем охлаждения двигателей:

а — ЗМЗ-402; б — ЗИЛ-5081; / — кран; 2 — шланги; 3 — радиатор отопителя салона; 4 — распределительная трубе; 5 — указатель температуры: 6, 12 — термо- ддгчики соответственно головки блока и верхнего бачка радиатора; 7 — рубашка охлаждения; насос; 9 — термостат, /0— перепускной канал; //, 22 — соот­ветственно верхний и нижний патрубки радиатора; /Л 20 — соответственно аерхний и нижний бачки радиатора; 14, 27 — пробки соответственно радиатора и расширительного бачков; 15 — пароотводная трубка; 16 — радиатор; 17 — жалюзи; 18 — шкив; 19 — вентилятор; 21 — сливной кран; 23 — приливы корпу­са насоса; 24 — полость впускного газопровода; 25, 26 — шланга компрессора;

28 — расширительный бачок; 29 — тяга

В связи с тем что насос расположен в передней части двигателя, теплоотдача от задних цилиндров и их камер сгорания и других деталей ухудшается, так как к ним поступает уже подогретая передними цилиндрами охлаждающая жидкость. Поэтому в от­дельных конструкциях двигателей предусматривается циркуляция жидкости через распределительную трубу 4 или продольный ка­нал с отверстиями, направленными к наиболее нагретым дета­лям (выпускные клапаны, стенки камеры сгорания, свечи зажи­гания и т.д.).

і утютнотельная; 18 — манжета

Кроме основного назначения, систему охлаждения двигателя используют для отопления пассажирского помещения кузовов легковых автомобилей и автобусов, а также кабин грузовых авто­мобилей. Для этой цели в отопительной системе имеются специ­ально встроенные в салон кузова или кабины радиаторы 39 к ко­торым через кран 1 и шланги 2 нагретая жидкость подается из системы охлаждения двигателя.



Читайте также:

 

3 типа систем охлаждения и принцип их работы

Охлаждение — это передача тепловой энергии от одной среды к другой. В промышленных приложениях охлаждение может иметь решающее значение для обеспечения того, чтобы процессы не приводили к перегреву оборудования или продуктов. Во многих системах охлаждения вода используется в качестве среды для поглощения тепла, поскольку вода имеет высокую температуру кипения и высокую удельную теплоемкость. Существует множество различных способов создания промышленной системы охлаждения, но три основных типа можно резюмировать, исследуя, как охлаждающая вода используется в каждой системе.

Прямоточная система охлаждения

При прямоточном охлаждении вода перекачивается из ближайшего источника и проходит через систему только один раз для поглощения технологического тепла. Затем он возвращается в исходный источник. Этим источником может быть река, озеро, океан или колодец.

Такая конструкция обычно используется там, где доступны большие объемы недорогой воды. Кроме того, эти системы типичны, когда потребность в охлаждении от низкой до умеренной, процессы не критичны и есть место для размещения большого оборудования и больших объемов воды.Одним из недостатков прямоточного охлаждения является восприимчивость к возмущениям из-за стохастических водных явлений, таких как наводнение. Более того, использование этих систем постепенно прекращается из-за опасений по поводу качества воды и ее сохранения.

Среднее изменение температуры: 5-10 ° F (3-6 ° C)
Количество использованной воды: Высокое
Примеры:

  • Системы питьевого водоснабжения
  • Технологическая вода
  • Общее обслуживание

Закрытая рециркуляционная система / Сухая градирня:

В закрытых рециркуляционных системах или сухих градирнях тепло, поглощаемое охлаждающей водой, либо передается второму хладагенту, либо выбрасывается в атмосферу.Слово «сухая» используется потому, что вода никогда не попадает в воздух, и в результате теряется очень мало воды. Автомобильный двигатель — хороший пример закрытой системы охлаждения.

Испарение не используется в закрытых рециркуляционных градирнях. Вместо этого холодный воздух проходит через серию небольших трубок, содержащих циркулирующую охлаждающую жидкость. Тепло передается от горячей жидкости внутри трубок холодному воздуху, в результате чего происходит охлаждение. Затем охлаждающая жидкость возвращается обратно в двигатель.

Среднее изменение температуры: 10-15 ° F (6-8 ° C)

Количество использованной воды: Незначительное

Примеры:

  • Автомобильный радиатор
  • Системы охлажденной воды
  • Температура пищевых продуктов Контроллеры

Открытая система рециркуляции / водяная градирня / испарительная градирня:

Открытые рециркуляционные системы охлаждения или мокрые градирни являются наиболее широко используемыми конструкциями в промышленности.Как и в закрытых рециркуляционных системах, в открытой системе снова и снова используется одна и та же вода. Его наиболее заметной особенностью является большая наружная градирня, в которой для отвода тепла от охлаждающей воды используется испарение. Из-за механизма этот тип градирни еще называют испарительной градирней. Эта система состоит из трех основных частей оборудования: рециркуляционного водяного насоса (ов), теплообменника (ов) и градирни.

Как работают мокрые градирни:

В системах охлаждения с открытой рециркуляцией используются «мокрые градирни», в которых охлаждающая вода напрямую контактирует с восходящим потоком воздуха.Вода из теплообменника равномерно перекачивается через верхнюю часть градирни. Он спускается каскадом вниз и разбивается на крошечные капельки, проходя через серию брызговиков, называемых заполнением градирни. Этим наполнителем могут быть гофрированные пластиковые листы, деревянные планки или другие устройства, которые увеличивают площадь поверхности, тем самым увеличивая испарение. Когда капли воды отскакивают от наполнителя градирни, самые горячие молекулы отделяются от воды и уносятся вверх и из градирни в виде «дрейфа».Оставшаяся охлажденная вода собирается в резервуаре на дне башни, который называется резервуаром. Охлажденную воду теперь можно перекачивать обратно в теплообменник.

Среднее изменение температуры: 10-30 ° F (6-17 ° C)

Количество использованной воды: Умеренное

Примеры:

  • Градирни
  • Брызговики

Градирня Качество воды

В системах охлаждения в качестве теплоносителя используется вода.Это означает, что качество воды становится важным для непрерывной работы любой системы охлаждения. Понимание типа системы охлаждения в вашем приложении поможет определить наиболее эффективный план очистки воды. Узнайте больше о водоподготовке градирни в нашей заметке по применению:

Поделитесь этой историей, выберите свою платформу!

Этот сайт использует Akismet для уменьшения количества спама. Узнайте, как обрабатываются данные вашего комментария.

5 различных типов систем охлаждения

Лето в Пембрук-Пайнс, штат Флорида, прекрасное, если вы можете сохранять прохладу и комфорт при повышении влажности.Если ваш кондиционер больше не охлаждается должным образом или подошел к концу срока службы, возможно, сейчас самое подходящее время, чтобы начать поиски замены. Вот пять различных систем кондиционирования воздуха для жилых помещений, которые стоит рассмотреть для вашего дома во Флориде.

Центральный кондиционер

Самый распространенный тип кондиционеров — центральная система охлаждения. Центральные системы охлаждения используют сеть каналов для подачи воздуха по всему дому. Обычно это двухкомпонентные системы с наружным блоком, который содержит змеевики компрессора и конденсатора, и внутренним блоком с змеевиками испарителя.Линии хладагента соединяют их вместе.

Для того, чтобы центральное кондиционирование воздуха работало эффективно, ваш специалист по HVAC должен провести расчет нагрузки в вашем доме, чтобы определить правильный размер системы для установки. Убедитесь, что этот шаг не пропущен при установке центрального кондиционера. Малогабаритный агрегат не будет достаточно охлаждать ваш дом. Негабаритная установка не осушит дом должным образом, и вы будете испытывать дискомфорт от влажности Флориды.

Бесконтактные мини-сплит-системы

Бесконтактные системы идеальны для домов и квартир.В этих системах также есть наружные и внутренние блоки, однако они требуют меньше места внутри и быстрее устанавливаются, чем центральные системы. Воздухоочистители для помещений устанавливаются на стенах или потолке комнат, в которых вы выбираете их для установки.

Преимущества бесканальных кондиционеров включают более тихую работу, равномерное распределение температуры и зональный контроль температуры. Имея отдельные блоки в разных частях дома, вы можете экономить энергию, отключая блоки в неиспользуемых комнатах.Кроме того, каждый член семьи может настроить температуру в своей комнате, чтобы все члены семьи были счастливы и комфортны.

Поскольку они не имеют воздуховодов, вы также будете наслаждаться лучшим качеством воздуха без пыли и грязи, которые скапливаются в воздуховодах. Это также означает меньшие затраты на обслуживание, так как не требуется чистка воздуховодов.

Тепловые насосы

Если вы ищете альтернативу центральному охлаждению, тепловой насос может удовлетворить ваши потребности. Зимой тепловые насосы извлекают тепло из воздуха или, в случае геотермальных тепловых насосов, из земли, чтобы распределять тепло по дому.Это делает их отличным выбором с низким энергопотреблением. Летом они работают в обратном направлении, удаляя тепло из воздуха внутри дома и передавая его наружу.

Тепловые насосы лучше подходят для южных штатов США с умеренными зимами.

Испарительные кондиционеры

Испарительные охладители, также называемые болотными охладителями, встречаются реже, чем кондиционеры с хладагентом. Однако они представляют собой недорогой и энергоэффективный способ охлаждения дома. Испарительные охладители лучше всего работают в жарком сухом климате, например, в юго-западных регионах США.В таких регионах, как Флорида, слишком много влаги для эффективного функционирования системы такого типа. В испарительных охладителях используется вентилятор, который втягивает наружный воздух и протягивает его через влажные подушки, где воздух охлаждается за счет испарения и затем циркулирует по птичнику. Этот простой процесс позволяет получить воздух на 20-30 градусов холоднее.

Кондиционер — это долгосрочное вложение. После того, как вы выбрали правильный тип кондиционера для своего дома, позвоните в службу кондиционирования воздуха Hi-Vac по номеру 954-246-4141 для быстрой установки кондиционера в Пембрук-Пайнс, Флорида, и прилегающих районах.

Изображение предоставлено Shutterstock

типов операционных систем — GeeksforGeeks

Операционная система выполняет все основные задачи, такие как управление файлом, процессом и памятью. Таким образом, операционная система действует как менеджер всех ресурсов, то есть менеджер ресурсов . Таким образом, операционная система становится интерфейсом между пользователем и машиной.

Типы операционных систем: Некоторые из широко используемых операционных систем следующие:

1.Пакетная операционная система —
Операционная система этого типа не взаимодействует с компьютером напрямую. Есть оператор, который берет похожие задания с одинаковыми требованиями и группирует их в партии. Оператор несет ответственность за сортировку работ с похожими потребностями.

Преимущества пакетной операционной системы:



  • Очень сложно угадать или узнать время, необходимое для выполнения любого задания. Процессоры пакетных систем знают, сколько времени будет занимать задание, когда оно находится в очереди
  • Несколько пользователей могут совместно использовать пакетные системы
  • Время простоя для системы дозирования очень меньше
  • В пакетных системах легко управлять большими объемами работы

Недостатки пакетной операционной системы:

  • Операторы компьютеров должны быть хорошо знакомы с системами пакетной обработки
  • Пакетные системы сложно отлаживать
  • Иногда бывает дорого
  • Другим заданиям придется ждать в течение неизвестного времени, если какое-либо задание не удастся.

Примеры пакетной операционной системы: Система расчета заработной платы, банковские выписки и т. Д.

2. Операционные системы с разделением времени —
Каждой задаче дается некоторое время на выполнение, чтобы все задачи работали без сбоев. Каждый пользователь получает время ЦП, поскольку он использует одну систему. Эти системы также известны как системы многозадачности. Задача может быть от одного пользователя или от разных пользователей. Время, необходимое для выполнения каждой задачи, называется квантовым. По истечении этого временного интервала ОС переходит к следующей задаче.

Преимущества ОС с разделением времени:

  • Каждая задача получает равные возможности
  • Меньше шансов дублирования ПО
  • Время простоя ЦП можно уменьшить

Недостатки ОС с разделением времени:

  • Проблема надежности
  • Необходимо позаботиться о безопасности и целостности пользовательских программ и данных
  • Проблема передачи данных

Примеры ОС с разделением времени: Multics, Unix и т. Д.

3. Распределенная операционная система —
Эти типы операционных систем являются недавним достижением в мире компьютерных технологий и широко используются во всем мире, причем очень быстро. Различные автономные взаимосвязанные компьютеры связываются друг с другом с помощью общей сети связи. Независимые системы обладают собственным блоком памяти и процессором. Они упоминаются как слабосвязанные системы или распределенные системы. Эти системные процессоры различаются по размеру и функциям.Основным преимуществом работы с этими типами операционных систем является то, что всегда возможно, что один пользователь может получить доступ к файлам или программному обеспечению, которые на самом деле отсутствуют в его системе, но в какой-либо другой системе, подключенной к этой сети, т.е. устройства, подключенные к этой сети.


Преимущества распределенной операционной системы:

  • Отказ одного не повлияет на обмен данными в другой сети, поскольку все системы независимы друг от друга
  • Электронная почта увеличивает скорость обмена данными
  • Поскольку ресурсы являются общими, вычисления выполняются очень быстро и надежно.
  • Снижает нагрузку на главный компьютер
  • Эти системы легко масштабируются, так как многие системы могут быть легко добавлены в сеть
  • Снижение задержки обработки данных

Недостатки распределенной операционной системы:

  • Отказ основной сети приведет к прекращению всей связи
  • Используемый язык для создания распределенных систем еще не определен.
  • Эти типы систем недоступны, поскольку они очень дороги.Мало того, что лежащее в основе программное обеспечение очень сложное и еще недостаточно изучено.

Примеры распределенной операционной системы: LOCUS и т. Д.

4. Сетевая операционная система —
Эти системы работают на сервере и предоставляют возможность управлять данными, пользователями, группами, безопасностью, приложениями и другими сетевыми функциями. Операционные системы этого типа обеспечивают общий доступ к файлам, принтерам, средствам безопасности, приложениям и другим сетевым функциям через небольшую частную сеть.Еще одним важным аспектом сетевых операционных систем является то, что все пользователи хорошо осведомлены о базовой конфигурации всех других пользователей в сети, их индивидуальных подключениях и т. Д., И именно поэтому эти компьютеры широко известны как сильно связанные системы .

Преимущества сетевой операционной системы:

  • Централизованные серверы высокой стабильности
  • Проблемы безопасности решаются через серверы
  • Новые технологии и модернизация оборудования легко интегрируются в систему
  • Доступ к серверу возможен удаленно из разных мест и типов систем

Недостатки сетевой операционной системы:

  • Серверы дорогие
  • Пользователь должен зависеть от центрального местоположения для большинства операций
  • Требуется регулярное обслуживание и обновления

Примеры сетевой операционной системы: Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, BSD и т. Д.

5. Операционная система реального времени —
Эти типы ОС обслуживают системы реального времени. Временной интервал, необходимый для обработки входных данных и ответа на них, очень мал. Этот временной интервал называется , время отклика .


Системы реального времени используются, когда есть очень строгие временные требования, такие как ракетные системы, системы управления воздушным движением, роботы и т. Д.

Два типа операционной системы реального времени, а именно:

  • Системы жесткого реального времени:
    Эти ОС предназначены для приложений, в которых временные ограничения очень жесткие, и даже самая короткая возможная задержка недопустима.Эти системы созданы для спасения жизни, как автоматические парашюты или подушки безопасности, которые должны быть легко доступны в случае любой аварии. Виртуальная память в этих системах почти не встречается.
  • Программные системы реального времени:
    Эти ОС предназначены для приложений, в которых временные ограничения менее строгие.

Преимущества RTOS:

  • Максимальное потребление: Максимальное использование устройств и системы, следовательно, больший выход из всех ресурсов
  • Сдвиг задач: Время, отведенное на смещение задач в этих системах, очень мало.Например, в старых системах переключение одной задачи на другую занимает около 10 микросекунд, а в новейших системах — 3 микросекунды.
  • Сосредоточьтесь на приложении: Сосредоточьтесь на запущенных приложениях и меньшее значение для приложений, которые находятся в очереди.
  • Операционная система реального времени во встроенной системе: Поскольку размер программ невелик, ОСРВ также может использоваться во встроенных системах, таких как транспорт и другие.
  • Без ошибок: Эти типы систем не содержат ошибок.
  • Распределение памяти: Распределение памяти лучше всего управляется в системах этого типа.

Недостатки RTOS:

  • Ограниченные задачи: Очень немногие задачи выполняются одновременно, и их концентрация меньше на нескольких приложениях, чтобы избежать ошибок.
  • Использовать большие системные ресурсы: Иногда системные ресурсы не очень хороши и к тому же дороги.
  • Сложные алгоритмы: Алгоритмы очень сложны, и разработчику сложно их написать.
  • Драйвер устройства и сигналы прерывания: Требуются специальные драйверы устройства и сигналы прерывания, чтобы реагировать на прерывания как можно раньше.
  • Приоритет потока: Не рекомендуется устанавливать приоритет потока, поскольку эти системы очень менее склонны к переключению задач.
  • Примеры операционных систем реального времени: Научные эксперименты, медицинские системы визуализации, промышленные системы управления, системы вооружения, роботы, системы управления воздушным движением и т. Д.

    Вниманию читателя! Не прекращайте учиться сейчас. Ознакомьтесь со всеми важными концепциями теории CS для собеседований SDE с помощью курса CS Theory Course по доступной для студентов цене и подготовьтесь к работе в отрасли.

Одноступенчатые и многоступенчатые системы нагрева / охлаждения — какая из них ваша?

Если вы домовладелец, в вашем доме обязательно установлена ​​система отопления / охлаждения. В зависимости от вашего местоположения, размера дома и других факторов тип системы отопления / охлаждения может быть разным.В этой статье давайте узнаем больше о типах систем отопления / охлаждения и о том, как определить ту, что есть у вас дома. В принципе, мы можем разделить системы отопления / охлаждения на два типа на основе предусмотренных ступеней нагрева / охлаждения — это 1) Одноступенчатая и 2) Многоступенчатая — системы отопления / охлаждения . Посмотрим на них подробнее.

Система отопления / охлаждения технически известна как как система отопления, вентиляции и кондиционирования (Отопление, вентиляция, кондиционирование).Одноступенчатая система отопления, вентиляции и кондиционирования имеет только одну ступень нагрева или охлаждения. Они либо работают на полную мощность (состояние ВКЛ), либо совсем не работают (состояние ВЫКЛ).

Многоступенчатая система HVAC имеет более одной ступени мощности нагрева / охлаждения. Наиболее распространенной многоступенчатой ​​системой является Двухступенчатая система нагрева / охлаждения , которая имеет два уровня мощности нагрева / охлаждения. Двухступенчатая система HVAC будет иметь низкие настройки и высокие настройки, подходящие для умеренных и экстремальных климатических условий.

Если зима / лето не на пределе, вам просто нужно запустить двухступенчатую систему отопления, вентиляции и кондиционирования воздуха на «низком уровне», что позволит постепенно регулировать температуру в помещении. Если климат экстремальный, установите двухступенчатую систему HVAC на «высокий уровень», который позволит быстро отрегулировать температуру в помещении.

Кроме двухступенчатых систем (наиболее популярная и распространенная модель), существуют трехступенчатые системы и четырехступенчатые системы — в многоступенчатых системах нагрева / охлаждения. Стоимость системы увеличивается с количеством ступеней.В Северная Америка (США и Канада) , большинство домов работают на одноступенчатых или двухступенчатых системах отопления / охлаждения . Одноступенчатые системы являются наименее дорогими и простыми в установке. Но у них есть недостаток — меньшая эффективность использования топлива и неравномерный нагрев (вспомните, что они либо работают на полную мощность, либо выключены). Двухступенчатые системы дороги в установке (и настройке), но они очень эффективны (расходы на топливо будут меньше) и они обеспечивают равномерную температуру во всех помещениях.

Знаете ли вы, какой тип системы отопления, вентиляции и кондиционирования установлен в вашем доме? Если нет, не волнуйтесь! Мы поможем вам определить тип вашей системы отопления / охлаждения.

Как определить вашу систему отопления / охлаждения?

Самый первый шаг к правильному определению вашей системы отопления, вентиляции и кондиционирования воздуха — это сначала проверить, есть ли у вас в доме система с линейным напряжением (120/240 В) или с низким напряжением (24 В). Если у вас есть система сетевого напряжения, у вас, вероятно, есть система отопления или кондиционирования воздуха на основе электричества.В таком случае у вас в доме будет обогреватель для плинтуса, принудительный тепловентилятор или настенный обогреватель. Теперь, если у вас есть система низкого напряжения в вашем доме, у вас будет система на основе печи, система котла или тепловой насос (это может быть одноступенчатый или многоступенчатый).

Как определить, есть ли у вас система линейного напряжения или система низкого напряжения? Это очень просто — просто проверьте проводку термостата. Самый простой способ — проверить обратную проводку вашего текущего термостата.Если у вас есть система с линейным напряжением, ваш термостат (который будет термостатом с линейным напряжением, работающим на 120/240 вольт) будет иметь два или четыре провода, выходящих из его задней части. Эти провода будут толстыми (как и ваш сетевой провод), а цвет проводов будет либо черно-красным, либо черно-белым.

Если у вас система низкого напряжения, ваш термостат (который будет термостатом низкого напряжения, работающим на 24 В) будет иметь от 2 до 9 проводов (или более) на задней стороне, которые будут очень тонкими по размеру, а провода будут Имея разные цвета, такие как зеленый, желтый, красный, белый и т. д.Прочтите наше полное руководство о том, как различать системы низкого и линейного напряжения.

Определить между — одноступенчатый / многоступенчатый — для системы 24 В / низкого напряжения

В Америке только 10% домов работают от электросети (системы на основе электричества). Подавляющее большинство (около 90%) домов в США и Канаде работают на центральных печах, котлах или тепловых насосах — системах низкого напряжения (которым не требуется электричество для производства тепла), и эти системы управляются с помощью термостатов низкого напряжения.Этот тип систем HVAC будет использовать центральную печь (в большинстве случаев) или центральный котел или тепловой насос. В некоторых случаях для настройки системы HVAC используется комбинация печи и теплового насоса. В любом случае (будь то печь, бойлер или насос) ваша система отопления, вентиляции и кондиционирования может быть одноступенчатой ​​или многоступенчатой, в зависимости от уровней мощности, обеспечиваемой вашей системой. Это означает, что можно установить одноступенчатую или многоступенчатую систему с использованием печи, котла или любого другого источника энергии. Наша цель здесь — определить, является ли ваша система одноступенчатой ​​или многоступенчатой ​​- нас не беспокоит, есть ли у вас печь или котел.

Давайте посмотрим, как это легко сделать! В этом случае также возьмем термостат и посмотрим на его заднюю часть. Снимите основание с термостатов и посмотрите на провода. В частности, проверьте провода, идущие к клеммам W, W1, Y и Y1.

Определение одноступенчатых систем отопления / охлаждения

Обычные одноступенчатые системы — будет иметь один провод, ведущий к клемме W или W1 (для нагрева), и один провод, ведущий к клемме Y или Y1 (для охлаждения). Так что это самый простой способ идентифицировать одноступенчатые обычные системы ОВК (которые будут на основе печи или котла).

Одноступенчатый системный термостат HVAC — Source

Одноступенчатые тепловые насосы — будет иметь только один провод (для нагрева и охлаждения), ведущий к Y-клемме.

Примечание: Если тепловой насос оснащен системой аварийного нагрева / дополнительного нагрева, вы найдете провод, ведущий к клемме AUX .

Электропроводка — термостат теплового насоса (одноступенчатый)
Определение многоступенчатых систем отопления / охлаждения

Многоступенчатые системы HVAC будут иметь несколько проводов (как для нагрева, так и для охлаждения), ведущих к разным клеммам.Провода для нагрева будут подводиться к клеммам с маркировкой «W» (например, W, W1, W2), а провода для целей охлаждения будут вести к клеммам с маркировкой «Y» (например, Y, Y1, Y2)

  • Трехступенчатая обычная система обогрева — с проводами, ведущими к клеммам W, W1 и W2 (или W1, W2 и W3) термостата.
  • Двухступенчатая обычная система обогрева — с проводами, ведущими к клеммам W и W1 (или W1 и W2)
  • Двухступенчатая обычная система охлаждения с проводами, ведущими к клеммам Y и Y1 (или Y1 и Y2).
Двухступенчатый термостат — вариант 2 нагрева / 2 охлаждения

Примечание: На этом изображении выше показан термостат, который поддерживает 2-ступенчатые системы (2H / 2C — 2 ступени нагрева (W1, W2) и охлаждения (Y1, Y2) в одном термостате).Но этот термостат на самом деле подключен как система 1H / 1C, поскольку есть перемычка, соединяющая W1 с W2, и другая перемычка, соединяющая Y1 с Y2. Это может быть связано с тем, что система HVAC была либо одноступенчатой, либо они хотят использовать только 1 ступень (возможно, умеренную настройку) двухступенчатой ​​системы HVAC. Если бы система HVAC была двухступенчатой, мы бы увидели два отдельных провода, идущих к W1, W2, и еще два провода (если в системе есть кондиционер), идущие к клеммам Y1 и Y2.

3H / 2C — термостат с 3 вариантами нагрева и 2 вариантами охлаждения

Примечание. На этом изображении выше показан термостат, который поддерживает 3H / 2C.Но он подключен как 2H / 2C (2 ступени нагрева и охлаждения). Вы можете увидеть перемычку, соединяющую W3 с W2, которая соединяет термостаты как 2H.

Некоторые системы имеют аварийное отопление (или дополнительное отопление)

Термостат с двумя этикетками (двойная этикетка)

В некоторых случаях термостат будет иметь две метки на клеммах (как показано на рисунке ниже). Один набор предназначен для обычных систем (печь или бойлер), а другой набор используется, если у вас есть тепловой насос.

Термостат с двумя этикетками — кредиты

Примечание: На изображении выше, хотя провода выходят из этикетки с пометкой «обычный», этот термостат на самом деле подключен к «тепловому насосу».Так что имейте в виду, что в таких случаях вы не можете судить о своей системе HVAC, просто глядя, откуда выходят провода. В таких случаях вам необходимо иметь представление о схемах подключения.

6 различных типов кондиционеров | Выбор кондиционера

22.07.2015

Валери Йоханнсен Менеджер по персоналу и бренду

Выбор новой системы кондиционирования воздуха для дома может быть трудным и запутанным.Поскольку на рынке представлены все типы кондиционеров, возможности могут показаться огромными. В зависимости от вашей ситуации у вас может быть даже ограниченное время, и вскоре вам придется выбрать новую систему.

1. Центральная система кондиционирования

Из всех типов кондиционеров это наиболее распространенный тип системы охлаждения, так как он наиболее предпочтителен для больших домов из-за его способности эффективно охлаждать. В центральных кондиционерах холодный воздух циркулирует по приточным и возвратным каналам.Приточные воздуховоды и регистры, которые находятся в стене или полу, несут охлажденный воздух в дом. Затем, когда воздух становится теплым, он циркулирует обратно в приточные каналы и регистрируется, где затем транспортируется обратно в кондиционер.

Установка центральной системы кондиционирования воздуха требует тщательного планирования и подготовки, поскольку определение размеров имеет решающее значение для функциональности системы. Если вы установите систему неправильного размера, даже если она является энергоэффективной, вы обнаружите, что ваши коммунальные расходы больше, чем они должны быть.

2. Бесконтактный кондиционер с мини-сплит-системой

Бесконтактные мини-сплит-системы чаще всего используются в модернизированных частях дома. Как и центральные системы кондиционирования воздуха, эти системы имеют наружный компрессор / конденсатор и внутренний блок обработки.

Если вы хотите охлаждать отдельные комнаты в доме, эта система может быть именно для вас. Многие бесканальные мини-сплит-системы могут иметь до четырех внутренних блоков обработки, которые все подключены к наружному блоку.

Каждая зона имеет собственный термостат, позволяющий регулировать температуру для каждой комнаты соответственно. Это особенно полезно, если вы хотите охлаждать только определенную часть дома, которая используется.

3. Оконный кондиционер

Оконный кондиционер можно рассматривать как компактную установку, охлаждающую только одну конкретную комнату. Эта система, также известная как «единое целое», устанавливается в окне комнаты.

Оконные блоки охлаждают комнату, выбрасывая теплый воздух из задней части и дуя в нее холодным воздухом.Эти типы квартир лучше всего подходят для тех, кто живет в небольших помещениях. Он не был бы идеальным для большого дома, так как вы обнаружите, что в такой среде охлаждение неэффективно.

4. Переносной кондиционер

Переносные кондиционеры считаются следующим генератором оконных блоков. Этот тип кондиционера забирает воздух из комнаты и охлаждает его, а затем направляет обратно в комнату. Затем установка удаляет теплый воздух наружу с помощью вытяжного шланга, установленного в окне.

Как и оконные кондиционеры, переносные кондиционеры предназначены для охлаждения только одной комнаты. Их легко установить, они универсальны и доступны по цене. Вы обнаружите, что портативность вашего кондиционера значительно упрощает охлаждение в жаркий летний день.

5. Гибридные кондиционеры

Подобно гибридным автомобилям, гибридные системы с тепловыми насосами чередуются между сжиганием ископаемого топлива и использованием электроэнергии для работы. Система разумно выбирает между двумя источниками энергии, чтобы сэкономить деньги и энергию.Вам не придется становиться заложником роста цен на энергоносители.

Летом ваш тепловой насос работает в обычном режиме, забирая тепло из дома и распределяя его на улице. Зимой ваша гибридная система теплового насоса работает в обратном порядке, забирая тепло из окружающей среды и распределяя его по дому. Если вы помните Второй закон термодинамики из средней школы, вы знаете, что тепло передается от горячего объекта к холодному. Когда температура хладагента падает ниже наружной температуры, тепло снаружи передается змеевикам теплового насоса и, таким образом, в хладагент.Теперь извлеченное тепло можно превратить в теплый кондиционированный воздух для вашего дома.

Для получения более подробной информации о том, как работают гибридные кондиционеры, посетите наш веб-сайт.

Геотермальная энергия экологически безопасна, энергоэффективна и имеет долгий срок службы. Поскольку температура земли под нами остается довольно постоянной 55 градусов, независимо от того, насколько жарко или холодно в атмосфере, геотермальные технологии могут извлекать тепло снизу и передавать его в ваш дом.Геотермальный змеевик («петли» или «колодцы») устанавливается глубоко в земле и может использоваться для обогрева и охлаждения вашего дома. Зимой из земли извлекается тепло; летом тепло забирается из вашего дома и распространяется обратно в землю.

Для более глубокого изучения различных типов систем кондиционирования воздуха ознакомьтесь с инфографикой Министерства энергетики США:


Положитесь на легенды обслуживания во всем, что касается HVAC. Мы можем обучить вас всем различным типам систем и помочь выбрать ту, которая лучше всего подходит для вас и вашего бюджета.Затем мы сообщим вам предварительную цену, чтобы вы знали точную стоимость работ до того, как мы начнем.

Добавить комментарий

Ваш адрес email не будет опубликован.