ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Удельный вес дизельного топлива. расчет удельного веса дизтоплива.

Компания «Ренетоп» предлагает низкую цену на дизельное топливо с доставкой по Уралу.

Удельный вес рассчитывается путем умножения плотности на коэффициент ускорения свободного падения, который всегда составляет 9,81 м/с2. Например, 1 кг дизельного топлива плотностью 840 кг/м3 будет иметь удельный вес 8240 Н/м3.

Важную роль отыгрывает плотность дизельного топлива. Она меняется при перемене температуры топлива. При изменении температуры на 1 градус по Цельсию плотность изменяется коэффициент 0,0007. При снижении температуры на 1 градус плотность повышается, при повышении снижается.

Посмотрите наши цены:

Удельный вес дизтоплива летнего

Удельный вес летнего дизтоплива напрямую зависит от его температуры. Государственным стандартом установлен в пределах 8440 Н/м3.

Удельный вес дизтоплива зимнего

Удельный вес зимнего топлива зависит от его температуры. Государственным стандартом установлен в пределах 8240 Н/м3.

Формулы расчета плотности, веса и объема дизтоплива

Формула определения веса ДТ

Вес топлива определяется умножением плотности нефтепродукта на его объем. 1850 литров ДТ при плотности 0,840 кг/м3 будет весить 1554 кг. 1000 литров дизтоплива плотностью 0,860 кг/м3 будет весить 860 кг.

Формула определения объема ДТ

Актуальный при транспортировке, реализации и бухгалтерском учете вопрос: как перевести вес топлива в объем?

Чтобы узнать объем дизельного топлива необходимо его массу поделить на плотность. Если есть 1 тонна ДТ, а его плотность составляет 0,840 кг/м3 – объем составит 1 190 литров 476 грамм.

Формула определения плотности ДТ

Плотность дизельного топлива – это соотношение массы нефтепродукта к его объему. Если есть 860 кг дизтоплива объемом 1000 литров, то плотность составит 0,860 кг/м3.

Плотность дизельного топлива регламентируется ГОСТ 305-82. Стандарт фиксирует значение при 20 градусах по Цельсию. Плотность дизтоплива, в зависимости от его сезонного вида государственными стандартами установлена следующая:

  • зимнего – 860 кг/м3;
  • летнего - 840 кг/м3;
  • арктического – 830кг/м3.

Для определения плотности дизельного топлива другим методом нужно:

  • В паспортных данных нефтепродукта найти плотность нефтепродукта при 20 градусах по Цельсию.
  • Замерять фактическую температуру дизельного топлива в емкости для транспортировки или хранения.
  • Разность температуры умножаем на коэффициент 0,0007.
  • Вносим поправку. Если температура выше – отнимаем значение от паспортной плотности, если ниже добавляем.

От чего зависит плотность дизельного топлива

Плотность дизельного топлива – это непостоянная величина, которая обозначает соотношение веса нефтепродукта к объему. Она регулярно изменяется. Колебания плотности зависят от марки дизельного топлива и от температуры окружающей среды. Фактически плотность обозначает удельный вес.

Компания «Ренетоп» предлагает низкую цену на дизельное топливо с доставкой по Уралу.

Плотность топлива и температура

Принято измерять плотность различных марок дизельного топлива при температуре 20 градусов по Цельсию. Рассматривая плотность дизтоплива в зависимости от температуры, нужно отметить, что при понижении температуры окружающей среды на один градус по Цельсию плотность нефтепродукта снижается на коэффициент 0,0007 г/см³.

Нормативы расчета плотности дизтоплива

Исходя из значения коэффициента изменения плотности при понижении или повышении температуры видим, что изменяется и объем топлива. При понижении температуры окружающей среды объем повышается, при снижении – понижается.

Основной расчет плотности дизельного топлива в соответствии с государственными стандартами ведется относительно температуры окружающей среды 20 градусов по Цельсию, а изменения плотности рассчитываются с учетом возможных изменений температуры и соответственно объема.

Услуги компании «Ренетоп»:

Плотность дизтоплива в летнее и зимнее время

Плотность топлива – величина изменяющаяся. Она напрямую зависит от температуры дизельного топлива и воздуха. Снижение температуры приводит к снижению плотности, повышение к повышению.

Повышение плотности утяжеляет фракционный состав. Плотность летнего и зимнего дизельного топлива регламентирует ГОСТ Р 52368-2005 и ГОСТ 305-82.

Плотность дизтоплива, в зависимости от времени года государственными стандартами установлена следующая:

  • зимнего – 860 кг/м3;
  • летнего - 840 кг/м3;
  • арктического – 830кг/м3.

Исходя из этого – вес одного литра колеблется от 830 до 860 гр. С повышением температуры на один градус по Цельсию вес дизельного топлива будет понижаться.

Примеры плотности дизтоплива при различных температурах

Для определения плотности дизельного топлива при определенной температуре нужно:

  1. В паспортных данных найти плотность нефтепродукта при +20 градусов по Цельсию.
  2. Замерять фактическую температуру дизельного топлива в емкости для транспортировки или хранения.
  3. Разность температуры умножаем на коэффициент 0,0007.
  4. Вносим поправку. Если температура выше – отнимаем значение от паспортной плотности, если ниже добавляем.

Сколько литров в тонне дизельного топлива? Расчет плотности

Нормативы плотности дизтоплива кг/л

Плотность дизельного топлива обозначает его массу, которая помещается в одном кубометре. Она регламентируется ГОСТ 305-82 и ГОСТ Р 52368-2005.

Нефтеперерабатывающие предприятия производят дизельное топливо, сертифицирующееся соответствующими органами по всем характеристикам. Если плотность не соответствует показателю, прописанному в государственном стандарте, дизельное топливо не получает паспорт качества и не допускается на рынок к реализации.

Плотность дизтоплива, в зависимости от марки, стандартами установлена следующая:

  • зимнего – 860 кг/м3;
  • летнего - 840 кг/м3;
  • арктического – 830кг/м3.

Повышенная плотность дизельного топлива свидетельствует о наличии в его составе тяжелых фракций, значительно утяжеляющих работу двигателя внутреннего сгорания. В результате использования топлива с повышенной плотностью на стенках камеры сгорания образуется нагар.

Плотность ДТ указывает и на количество энергии, выделяемой в результате его сгорания. Более плотное топливо выделяет большее количество энергии, что повышает коэффициент полезного действия силового агрегата. Летнее дизельное топливо, из-за большей плотности экономичнее, чем зимнее, с сравнительно низкой плотностью.

Чтобы рассчитать объем дизельного топлива в литрах нужно его массу разделить на плотность. В 1 тонне зимнего топлива будет 1163 литра ДТ, в тонне летнего – 1190. Объем дизтоплива постоянно изменяется и зависит от определенных факторов.

Доставка дизельного топлива без обмана:

От чего зависит текущая плотность топлива

Текущая плотность дизельного топлива зависит от его марки и температуры. Узнать его плотность при температуре 15 или 20 градусов по Цельсию можно в паспорте качества.

Чем выше температура нефтепродукта – тем меньше будет весить 1 литр, а объем килограмма топлива будет повышаться.

Для проверки соответствия плотности дизельного топлива прописанным в паспорте качества данным нужно взять литр ДТ, взвесить его и поместить в температурную среду, в которой производителем проводились испытания на плотность: +150С или +200С. Точный вес топлива необходимо разделить на его объем. Получаем текущую плотность и сравниваем ее с паспортными данными.

Сколько литров в 1 кубе дизтоплива

Кубический метр – это единица измерения объема. Она не зависит от марки дизельного топлива или температуры жидкости. В 1 м3 всегда 1000 литров.

Какая плотность бензина кг/м3. аи-92, аи-95, аи-100

Плотность бензина в кг/м3 (иногда встречается и внесистемное обозначение – г/см3) представляет собой физическую величину, по которой можно установить массовое количество действующего вещества – горючего углеводородного компонента – в единице объёма топлива, кг/л. Плотность косвенно служит мерой качества многих жидких рабочих сред.

Условия, при которых определяют плотность бензина

Прямой зависимости между качеством бензина (это распространяется также и на плотность солярки или плотность керосина) нет, поскольку все измерения должны происходить при определённой температуре. Ныне действующий ГОСТ Р 32513-2013 устанавливает такую температуру 15ºС, в то время как прежний стандарт – ГОСТ 305-82 – считал такой температурой 20ºС. Поэтому, приобретая бензин, не лишне поинтересоваться, согласно какому стандарту производилось определение плотности. Результаты, как и для всех углеводородов, будут заметно отличаться. Удельный вес бензина равен значению его плотности, когда последняя измеряется в кг/л.

Плотность бензина в кг/м3 часто служит камнем преткновения во взаимоотношениях между производителем и оптовым потребителем горючего. Проблема заключается в том, что с уменьшением плотности масса бензина в партии уменьшается, в то время как его объём сохраняется на прежнем уровне. Разница может достигать сотен и тысяч литров, однако при покупке бензина в розницу это не особо критично.

По плотности можно устанавливать также вид нефти, их которой производился бензин. Для тяжёлых нефтепродуктов, в которых содержится больше серы, плотность выше, хотя на большинство эксплуатационных показателей бензина состав исходной нефти мало влияет, просто используется соответствующая технология перегонки.

Чем измеряется плотность бензина?

Любой бензин представляет собой жидкую смесь углеводородов, полученную в результате фракционной перегонки нефти. Эти углеводороды могут быть классифицированы на ароматические соединения, которые имеют кольца атомов углерода, и алифатические соединения, которые состоят только из прямых углеродных цепей. Следовательно, бензин — это класс соединений, а не конкретная смесь, поэтому его состав может варьироваться в широких пределах.

Самый простой способ определения плотности в домашних условиях следующий:

  1. Выбирается любая градуированная ёмкость, которая взвешивается.
  2. Результат записывается.
  3. Ёмкость заполняется 100 мл бензина и также взвешивается.
  4. Масса пустой ёмкости вычитается из массы заполненной.
  5. Результат делится на объём бензина, который находился в ёмкости. Это и будет плотность горючего.

При наличии ареометра можно выполнить измерение альтернативным способом. Ареометр — устройство, которое реализует принцип Архимеда для измерения удельного веса. Этот принцип гласит, что объект, плавающий в жидкости, вытеснит количество воды, равное весу объекта. По показаниям шкалы ареометра устанавливают искомый параметр.

Последовательность измерений такова:

  1. Заполнить прозрачную ёмкость и аккуратно поместите ареометр в бензин.
  2. Вращать ареометр, чтобы вытеснить все пузырьки воздуха и позволить стабилизировать положение прибора на поверхности бензина. Важно удалить пузырьки воздуха, потому что они увеличат плавучесть ареометра.
  3. Установить ареометр так, чтобы поверхность бензина была на уровне глаз.
  4. Записать значение шкалы, соответствующей уровню поверхности бензина. Одновременно записывают и температуру, при которой происходило измерение.

Обычно бензин имеет плотность в пределах 700… 780 кг/м3, в зависимости от его точного состава. Ароматические соединения менее плотные, чем алифатические, поэтому измеренный показатель может указывать на относительную долю этих соединений в бензине.

Значительно реже для определения плотности бензинов используют пикнометры (см. ГОСТ 3900-85), поскольку данные приборы для летучих и маловязких жидкостей не отличаются стабильностью своих показаний.

Плотность бензина АИ-92

Стандарт устанавливает, что плотность бензина марки АИ-92 неэтилированного должна находиться в пределах 760±10 кг/м3. Замеры должны быть произведены при температуре 15ºС.

Плотность бензина АИ-95

Стандартное значение плотности бензина марки АИ-95, которая была измерена при температуре 15ºС, равно 750±5 кг/м3.

Плотность бензина АИ-100

Торговая марка этого бензина – Лукойл Экто 100 – устанавливает нормативный показатель плотности, кг/м3, в пределах 725…750 (также при 15ºС).

Плотность нефтепродуктов и расчет плотности

ПЛОТНОСТЬ НЕФТЕПРОДУКТОВ

НЕФТЕПРОДУКТЫ

ПЛОТНОСТЬ ПРИ 20* С, г/см3

Авиационный бензин

0,73-0,75

Автомобильный бензин

0,71-0,76

Топливо для реактивных двигателей

0,76-0,84

Дизельное топливо

0,80-0,85

Моторное масло

0,88-0,94

Мазут

0,92-0,99

Нефть

0,74-0,97

 

Точный расчет плотности нефтепродукта

Для того чтобы определить при помощи этой таблицы плотность нефтепродукта при данной температуре, необходимо:

таблица средних температурных поправок плотности нефтепродуктов.

 

Плотность при 20oС

Температурная поправка на 1oС

Плотность при 20oС

Температурная поправка на 1oС

0,650-0,659

0,000962

0,8300-0,8399

0,000725

0,660-0,669

0,000949

0,8400-0,8499

0,000712

0,670-0,679

0,000936

0,8500-0,8599

0,000699

0,680-0,689

0,000925

0,8600-0,8699

0,000686

0,6900-0,6999

0,000910

0,8700-0,8799

0,000673

0,7000-0,7099

0,000897

0,8800-0,8899

0,000660

0,7100-0,7199

0,000884

0,8900-0,8999

0,000647

0,7200-0,7299

0,000870

0,9000-0,9099

0,000633

0,7300-0,7399

0,000857

0,9100-0,9199

0,000620

0,7400-0,7499

0,000844

0,9200-0,9299

0,000607

0,7500-0,7599

0,000831

0,9300-0,9399

0,000594

0,7600-0,7699

0,000818

0,9400-0,9499

0,000581

0,7700-0,7799

0,000805

0,9500-0,9599

0,000567

0,7800-0,7899

0,000792

0,9600-0,9699

0,000554

0,7900-0,7999

0,000778

0,9700-0,9799

0,000541

0,8000-0,8099

0,000765

0,9800-0,9899

0,000528

0,8100-0,8199

0,000752

0,9900-1,000

0,000515

0,8200-0,8299

0,000738

 

 

 

а) найти по паспорту плотность нефтепродукта при +20oС;

б) измерить среднюю температуру груза в цистерне;

в) определить разность между +20oС и средней температурой груза;

г) по графе температурной поправки найти поправку на 1oС, соответствующую плотность данного продукта при +20oС;

д) умножить температурную поправку плотности на разность температур;

е) полученное в п. "д" произведение вычесть из значения плотности при +20oС, если средняя температура нефтепродукта в цистерне выше +20oС, или прибавить это произведение, если температура продукта ниже +20oС.

Примеры.

Плотность нефтепродукта при +20oС, по данным паспорта 0,8240. Температура нефтепродукта в цистерне +23oС. Определить по таблице плотность нефтепродукта при

этой температуре.

Находим:

а) разность температур 23o - 20o =3o;

б) температурную поправку на 1oС по таблице для плотности 0,8240, состовляющую 0,000738;

в) температурную поправку на 3o:

0,000738*3=0,002214, или округленно 0,0022;

г) искомую плотность нефтепродукта при температуре +23oС (поправку нужно вычесть, так как температура груза в цистерне выше +20oС), равную 0,8240-0,0022=0,8218, или округленно 0,8220.

2. Плотность нефтепродукта при +20oС, по данным паспорта, 0,7520. Температура груза в цистерне -12oС. Определить плотность нефтепродукта при этой температуре.

Находим:

а) разность температур +20oС - (-12oС)=32oС;

б) температурную поправку на 1oС по таблице для плотности 0,7520, составляющую 0,000831;

в) температурную поправку на 32o, равную 0,000831*32=0,026592, или округленно 0,0266;

г) искомую плотность нефтепродукта при температуре -12oС (поправку нужно прибавить, так как температура груза в цистерне ниже +20oС), равную 0,7520+0,0266=0,7786, или округленно 0,7785.

Удельные веса и плотности жидких топлив. Бензин, керосин, дизтопливо, пропан, бутан, мазут. Сколько весит литр бензина.

Перевод топлива из тонн в литры и обратно дизельного, бензина и керосина

Топливо всех марок поставляется оптовыми компаниями в тоннах. Продается в рознице в литрах, поэтому вопросы перевода веса в объем и обратно актуальны, в основном для бухгалтеров предприятий, работающих в этом бизнесе, и налоговых служб, надзирающих за правильным начислением налогов с объемов продаж. Обычный покупатель топлива для своего автомобиля редко интересуется этими тонкостями, поскольку оплачивает и летом, и зимой литры.

Формулы пересчета

Объем и масса жидкости связаны формулой: М = V · ρ,

где М – масса жидкости в тоннах, V – ее объем в м³, ρ – плотность в т/ м³.

В реальной практике менеджеры предпочитают иметь дело с тоннами (закупка топлива) и с литрами (продажа). Если приведенную выше формулу выразить через эти величины, ее вид станет таким:

М = V · ρ /1000

  • где ρ – плотность жидкости в кг/л (числовое значение),

V – объем жидкости в литрах;

M – масса жидкости в тоннах.

Чтобы выяснить, к примеру, сколько весят 1000 л дизтоплива плотностью 0,83 кг/л, подставляем величины в формулу, получаем массу в тоннах:

М = 1000 · 0,83 / 1000 = 0,83 т.

Обратный перевод (из тонн в литры) производим по формуле V = M · 1000/ρ (масса в тоннах, плотность в кг/л, объем в литрах).

Топливо (и дизельное, и бензины, и керосины) физически не обладают постоянной плотностью — она зависит от температуры жидкости, уменьшается с ростом температуры, и растет с ее падением.

Именно поэтому перевод имеющейся массы топлива в объем для каждого значения температуры жидкости будет давать разные значения. Изменение температуры, а также возможное испарение части жидкости изменят как массу, так и, соответственно, плотность вещества. Если испарениями пренебречь, то главным действом при пересчете массы в объем и наоборот становится установление плотности жидкости.

Пересчет дизельного топлива

В практике продаж дизтоплива фигурируют различные значения плотности, используемые в разных климатических зонах как нормативные для упрощения торговли. ГОСТ № 305-82 устанавливает значения плотности при 20º С для трех видов дизтоплива — летнего (Л), зимнего (З) и арктического (А):

З – 0,840 кг/л;

А – 0,830 кг/л.

Минпромэнерго установил для дизтоплива среднее значение плотности для расчетов. Оно составляет 0,769 кг/литр. В свою очередь Ростехнадзор использует в качестве усредненного значения плотности дизтоплива величину 0,84 кг/л.

Как сориентироваться, какое число подставлять в формулу?

Федеральная налоговая служба РФ, ссылаясь на приказ Минэнерго, считает, что плотность горючего нужно устанавливать по факту при получении партии топлива замером нефтеденсиметром — специальным измерительным прибором типа ареометра.

Если прибор отсутствует, то используют средние значения плотности дизтоплива, которые можно узнать в местном отделении Ростехнадзора.

Пересчет бензинов

Плотность бензинов меняется в диапазоне 0,70 кг/л – 0,78 кг/л.

При пересчетах применяется выведенная выше формула, в которую, при отсутствии инструментального замера плотности топлива подставляют усредненное значение ρ:

  • Для АИ-80 0,715 кг/л;

АИ-92 0,735 кг/л;

АИ-95 0,750 кг/л;

АИ-98 0,765 кг/л.

Пересчет керосинов

Значения плотности керосинов меняется, в зависимости от марки, в пределах: 0,775 кг/л — 0,85 кг/л. Примеры:

  • осветительный керосин марки КО-30: плотность 0,790 кг/л;

осветительный керосин марки КО-20: плотность 0,83 кг/л;

авиационный керосин гидрированный для сверхзуковой авиации: плотность 840 кг/л. И т.д.

Пересчет керосинов из литров в тонны производится описанным выше методом после определения или установления значения плотности.

Сколько тонн и литров, в кубе дизельного топлива

Объем кубический метр.
В этом объёме (независимо от температуры) будет всегда 1000 (тысяча) литров или кубических дециметров.
А вот масса дизельного топлива сильно меняется от температуры. На этом навариваются на заправках, а особенно донкерманы на танкерах.
В удачный рейс на танкере 7 000 тонн можно до 25 тонн соляры налево сплавить)))) )

При повышении температуры объем нефтепродуктов увеличивается и определяется по формуле
V 2 = V1 (1 + ∆tβ) ,

где V2 – объем нефтепродукта при повышении температуры на 1 °С; V1 – первоначальный объем нефте-
продукта; ∆t – разность температур; β – коэффициент объемного расширения нефтепродукта (табл. 2).
2 Коэффициенты объемного расширения нефтепродуктов
в зависимости от плотности при +20 °С на 1 °С

Плотность, Плотность,
г/см3 β г/см3 β

0,700 …0,710 0,00127 0,800 …0,810 0,00095
0,710 …0,720 0,00123 0,800 …0,810 0,00092
0,720 …0,730 0,00120 0,800 …0,810 0,00089
0,730 …0,740 0,00116 0,800 …0,810 0,00087
0,740 …0,750 0,00113 0,800 …0,810 0,00084
0,750 …0,760 0,00110 0,800 …0,810 0,00082
0,760 …0,770 0,00107 0,800 …0,810 0,00079
0,770 …0,780 0,00104 0,800 …0,810 0,00077
0,790 …0,80 0,00098 0,800 …0,810 0,00072

В одном кубе 1000 литров или приблизительно 850 кг (последнее сильно зависит от температуры)

в один кубический метр помещается 1000л жидкости, плотность диз топлива составляет не более 860 кг/м³, отсюда можем сделать вывод, что масса топлива составит 860 кг….

= * = 0,85*1000 = 850кг=0,85т (примерно)
Куб жидкости = Тысяча литров жижкости (объём = объёму)

Р. S. Это также, как и про молоко 1 литр молока больше по объёму 1 кг молока, а 1 литр подсолнечного масла весит меньше 1 кг.

Удельный вес дизтоплива летнего

Удельный вес летнего дизтоплива напрямую зависит от его температуры. Государственным стандартом установлен в пределах 8440 Н/м3.

Удельный вес дизтоплива зимнего

Удельный вес зимнего топлива зависит от его температуры. Государственным стандартом установлен в пределах 8240 Н/м3.

Формула определения веса ДТ

Вес топлива определяется умножением плотности нефтепродукта на его объем. 1850 литров ДТ при плотности 0,840 кг/м3 будет весить 1554 кг. 1000 литров дизтоплива плотностью 0,860 кг/м3 будет весить 860 кг.

Формула определения объема ДТ

Актуальный при транспортировке, реализации и бухгалтерском учете вопрос: как перевести вес топлива в объем?

Чтобы узнать объем дизельного топлива необходимо его массу поделить на плотность. Если есть 1 тонна ДТ, а его плотность составляет 0,840 кг/м3 – объем составит 1 190 литров 476 грамм.

Формула определения плотности ДТ

Плотность дизельного топлива – это соотношение массы нефтепродукта к его объему. Если есть 860 кг дизтоплива объемом 1000 литров, то плотность составит 0,860 кг/м3.

Плотность дизельного топлива регламентируется ГОСТ 305-82. Стандарт фиксирует значение при 20 градусах по Цельсию. Плотность дизтоплива, в зависимости от его сезонного вида государственными стандартами установлена следующая:

  • зимнего – 860 кг/м3;

летнего — 840 кг/м3;

арктического – 830кг/м3.

Для определения плотности дизельного топлива другим методом нужно:

  • В паспортных данных нефтепродукта найти плотность нефтепродукта при 20 градусах по Цельсию.

Замерять фактическую температуру дизельного топлива в емкости для транспортировки или хранения.

Разность температуры умножаем на коэффициент 0,0007.

Вносим поправку. Если температура выше – отнимаем значение от паспортной плотности, если ниже добавляем.

Сколько литров в тонне дизельного топлива

При ​температуре 20º С, удельный вес стандартного диз. топлива 0,825 кг/л. Поэтому объем тонны солярки равен 1212.12литров, при 20ºС.

1160, 1140 литров примерно, зависит от качества дизеля

Что бы это узнать, необходимо знать плотность ДТ, вот вам формула. M=pV, отсюда находим отъем V= m/p, м- масса, р- плотность ДТ

1176,5кг. (коэффициент перевода 0,85)

нормальная плотность солярки 0.8 примерно вот и считай 1000 литров равна 800 килограммам

Топливо - Плотность и удельный объем

Плотность - ρ - и удельный объем некоторых обычно используемых видов топлива:

Топливо Плотность при 15 ° C
- ρ -
Удельный объем
- v -
(кг / м 3 ) (фунт / фут 3 ) 3 /1000 кг) (фут 3 ) за тонну)
Антрацит 720-850 45-53 1.2 - 1,4 42-50
Битуминозный уголь 690-800 43-50 1,2 - 1,5 45-52
Бутан (газ) 2,5 0,16 400 14100
Древесный уголь, твердая древесина 149 9,3 6,7 240
Древесный уголь мягких пород 216 13,5 4.6 165
Кокс 375-500 23,5 - 31 2,0 - 2,7 72-95
Дизель 1D 1) 875 54,6 1,14 40,4
Дизель 2D 1) 849 53 1,18 41,6
Дизель 4D 1) 959 59,9 1.04 36,8
EN 590 Дизель 2) 820-845 51-53 1,18-1,22

42-43

Газойль 825-900 51-56 1,1-1,2 36-43
Бензин 715-780

45-49

1,3-1,4 45-49
Мазут № 1 3) 750-850 47-53 1.2-1,3 42-47
Мазут №2 3) 810-940 51-59 1,1-1,2 38-44
Мазут тяжелый 800-1010 50-63 1,0-1,3 35-44
Керосин 775-840 48-52 1,2-1,3 42-46
Природный газ ( газ) 0,7 - 0,9 0.04-0.06 1110-1430 39200-50400
Торф 310-400 19,5 - 25 2,5 - 3,2 90-115
Пропан (газ) 1,7 0,11 590 20800
Дерево 360-385 22,5 - 24 2,5 - 2,8

90-100

Примечание 1) Дизельное топливо в США разбито на 3 разных класса: 1D, 2D и 4D .Разница между этими классами зависит от вязкости и диапазонов температур кипения . 4D Топливо обычно используется в тихоходных двигателях. Топливо 2D используется в более теплую погоду и иногда смешивается с топливом 1D для создания подходящего зимнего топлива. 1D Топливо предпочтительнее для холодной погоды, так как оно имеет более низкую вязкость. Раньше было стандартно видеть номер топлива на насосе, но на многих заправках больше не указывается номер топлива.

Примечание 2) Европейский стандарт на дизельное топливо с 2005 г.

Примечание 3) Мазут - это продукт с множеством классов и классов, а также с различными спецификациями на разных рынках. Приведенные диапазоны плотности представляют собой вариации, однако некоторые продукты могут выходить за эти пределы.

Изменение климата: атмосферный углекислый газ

Глобальный средний уровень двуокиси углерода в атмосфере в 2019 году составил 409,8 частей на миллион ( частей на миллион для краткости) с диапазоном неопределенности плюс или минус 0.1 промилле. Уровни углекислого газа сегодня выше, чем когда-либо за последние 800 000 лет.

Фактически, в последний раз такое высокое содержание CO₂ в атмосфере было более 3 миллионов лет назад, когда температура была на 2–3 ° C (3,6–5,4 ° F) выше, чем в доиндустриальную эпоху, а морская уровень был на 15–25 метров (50–80 футов) выше, чем сегодня.

Концентрация углекислого газа растет в основном из-за ископаемого топлива, которое люди сжигают для получения энергии. Ископаемые виды топлива, такие как уголь и нефть, содержат углерод, который растения извлекали из атмосферы в процессе фотосинтеза в течение многих миллионов лет; мы возвращаем этот углерод в атмосферу всего за несколько сотен лет.По данным State of the Climate in 2019 from NOAA и Американского метеорологического общества,

С 1850 по 2018 год в результате сжигания ископаемого топлива было выброшено 440 ± 20 Пг C (1 Пг C = 10¹⁵ г C) в виде CO₂ (Friedlingstein et al., 2019). Только за 2018 год глобальные выбросы от ископаемого топлива впервые в истории достигли 10 ± 0,5 Пг С / год (Friedlingstein et al.2019). Около половины CO₂, выброшенного с 1850 г., остается в атмосфере. Остальная часть частично растворилась в Мировом океане….Хотя наземная биосфера в настоящее время также является поглотителем CO из ископаемого топлива, совокупные выбросы CO₂ в результате изменений в землепользовании, таких как вырубка лесов, отменяют его поглощение землей в период 1850–2018 годов (Friedlingstein et al. 2019).

Уровень двуокиси углерода в атмосфере в 2019 году составил 409,8 ± 0,1 ppm, что стало новым рекордом. Это увеличение на 2,5 ± 0,1 частей на миллион по сравнению с 2018 годом, такое же, как увеличение в период с 2017 по 2018 год. В 1960-х годах глобальные темпы роста содержания двуокиси углерода в атмосфере составляли примерно 0.6 ± 0,1 частей на миллион в год. Однако в период с 2009 по 18 год темпы роста составляли 2,3 промилле в год. Ежегодные темпы увеличения содержания углекислого газа в атмосфере за последние 60 лет примерно в 100 раз быстрее, чем предыдущие естественные приросты, такие как те, которые произошли в конце последнего ледникового периода 11 000-17 000 лет назад.

Сожмите или растяните график в любом направлении, удерживая клавишу Shift при щелчке и перетаскивании. Ярко-красная линия (исходные данные) показывает среднемесячное содержание углекислого газа в обсерватории NOAA Мауна-Лоа на Гавайях в частях на миллион (ppm): количество молекул углекислого газа на миллион молекул сухого воздуха.В течение года значения выше зимой в Северном полушарии и ниже летом. Темно-красная линия показывает годовой тренд, рассчитанный как 12-месячное скользящее среднее.

Почему имеет значение диоксид углерода

Двуокись углерода - это парниковый газ: газ, который поглощает и излучает тепло. Согретые солнечным светом поверхности Земли и океана непрерывно излучают тепловую инфракрасную энергию (тепло). В отличие от кислорода или азота (которые составляют большую часть нашей атмосферы), парниковые газы поглощают это тепло и постепенно выделяют его, как кирпичи в камине после того, как огонь погас.Без этого естественного парникового эффекта средняя годовая температура на Земле была бы ниже нуля, а не около 60 ° F. Но увеличение количества парниковых газов нарушило баланс энергетического баланса Земли, задерживая дополнительное тепло и повышая среднюю температуру Земли.

Двуокись углерода - самый важный из долгоживущих парниковых газов Земли. Он поглощает меньше тепла на молекулу, чем парниковый газ метан или закись азота, но его больше, и он остается в атмосфере намного дольше.И хотя углекислый газ менее распространен и менее эффективен, чем водяной пар, в расчете на одну молекулу на молекулу, он поглощает длины волн тепловой энергии, которых нет у водяного пара, что означает, что он уникальным образом усиливает парниковый эффект. Увеличение содержания углекислого газа в атмосфере является причиной примерно двух третей общего энергетического дисбаланса, который вызывает повышение температуры Земли.

Другая причина, по которой углекислый газ играет важную роль в системе Земля, заключается в том, что он растворяется в океане, как газировка в банке с газировкой.Он вступает в реакцию с молекулами воды, производя углекислоту и понижая pH океана. С начала промышленной революции pH поверхностных вод океана упал с 8,21 до 8,10. Это падение pH называется закисление океана .

Падение 0,1 может показаться не таким уж большим, но шкала pH логарифмическая; снижение pH на 1 единицу означает десятикратное увеличение кислотности. Изменение на 0,1 означает увеличение кислотности примерно на 30%. Повышенная кислотность препятствует способности морских обитателей извлекать из воды кальций для создания своих раковин и скелетов.

Прошлое и будущее Углекислый газ

Естественное увеличение концентрации углекислого газа периодически приводило к повышению температуры Земли во время циклов ледникового периода на протяжении последних миллионов лет или более. Периоды тепла (межледниковья) начались с небольшого увеличения солнечного света из-за крошечного колебания оси вращения Земли или ее орбиты вокруг Солнца.

Это немного дополнительного солнечного света вызвало небольшое потепление. По мере того, как океаны нагреваются, они выделяют углекислый газ - как банка газировки, развалившаяся в жаркий летний день.Избыток углекислого газа в атмосфере усилил начальное потепление.

Основываясь на пузырьках воздуха, захваченных в ледяных кернах толщиной в милю (и других палеоклиматических свидетельствах), мы знаем, что во время циклов ледникового периода за последний миллион лет или около того содержание углекислого газа никогда не превышало 300 ppm. До начала промышленной революции в середине 1700-х годов среднее количество углекислого газа в мире составляло около 280 частей на миллион.

К моменту начала непрерывных наблюдений в вулканической обсерватории Мауна-Лоа в 1958 году уровень двуокиси углерода в атмосфере уже составлял 315 ppm.9 мая 2013 года среднесуточное значение двуокиси углерода, измеренное на Мауна-Лоа, впервые за всю историю превысило 400 ppm. Менее чем через два года, в 2015 году, глобальное количество впервые превысило 400 частей на миллион. Если глобальный спрос на энергию продолжит расти и будет удовлетворяться в основном за счет ископаемого топлива, к концу этого столетия уровень двуокиси углерода в атмосфере, по прогнозам, превысит 900 ppm.

Подробнее о диоксиде углерода

Наблюдения за двуокисью углерода NOAA

Информационный бюллетень по углеродному циклу

Выбросы двуокиси углерода по странам в динамике

Сравнение парниковых газов по их потенциалу глобального потепления

Список литературы

Коллинз, М., Р. Кнутти, Дж. Арбластер, Ж.-Л. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Уивер и М. Венер, 2013 г .: Долгосрочное изменение климата: прогнозы, обязательства и необратимость. В: Изменение климата 2013: основы физических наук. Вклад Рабочей группы I в Пятый доклад об оценке Межправительственной группы экспертов по изменению климата [Stocker, T.F., D. Qin, G.-K. Платтнер, М. Тиньор, С.К. Аллен, Дж. Бошунг, А. Науэльс, Ю.Ся, В. Бекс, П.М. Мидгли (ред.)]. Издательство Кембриджского университета, Кембридж, Великобритания и Нью-Йорк, штат Нью-Йорк, США.

X. Lan, B. D. Hall, G. Dutton, J. Mühle и J. W. Elkins. (2020). Состав атмосферы [в Состояние климата в 2018 г., Глава 2: Глобальный климат]. Специальное онлайн-приложение к бюллетеню Американского метеорологического общества, том 101, № 8, август 2020 г.

Люти, Д., М. Ле Флок, Б. Берейтер, Т. Блунье, Ж.-М. Барнола, У. Зигенталер, Д.Рейно, Ж. Жузель, Х. Фишер, К. Кавамура и Т.Ф. Stocker. (2008). Рекордная концентрация углекислого газа с высоким разрешением 650 000-800 000 лет назад. Природа , Том. 453, с. 379-382. DOI: 10,1038 / природа06949.

Океанографическое учреждение Вудс-Хоул. (2015). Введение в закисление океана. По состоянию на 4 октября 2017 г.

Линдси Р. (2009). Климат и энергетический бюджет Земли. По состоянию на 4 октября 2017 г.

Измерения и анализ ошибок

"Лучше быть примерно правым, чем совершенно неправым."- Алан Гринспен

Неопределенность измерений

Некоторые числовые утверждения точны: у Мэри 3 брата и 2 + 2 = 4. Однако все измерения имеют некоторую степень неопределенности, которая может быть получена из различных источников. Процесс оценки неопределенности, связанной с результатом измерения, часто называют анализом неопределенности или анализом ошибки . Полный отчет об измеренном значении должен включать оценку уровня уверенность, связанная с ценностью.Правильное сообщение экспериментального результата с его неопределенностью позволяет другим людям судить о качестве экспериментируйте, и это облегчает значимые сравнения с другими аналогичными значениями или теоретическое предсказание. Без оценки неопределенности невозможно ответить на основной научный вопрос: «Согласуется ли мой результат с теоретическим предсказанием или результатами из других экспериментов? »Этот вопрос является основополагающим для принятия решения о том, гипотеза подтверждена или опровергнута.Когда мы проводим измерения, мы обычно предполагаем, что существует какое-то точное или истинное значение в зависимости от того, как мы определяем, что измеряется. Хотя мы, возможно, никогда не узнаем это истинное значение точно, мы пытаемся найти это идеальное количество в меру наших возможностей с помощью время и ресурсы. Поскольку мы проводим измерения разными методами или даже при выполнении нескольких измерений одним и тем же методом, мы можем получить немного разные результаты. Итак, как мы сообщаем о наших результатах для нашей наилучшей оценки этого неуловимого истинного значения ? Самый распространенный способ показать диапазон значений, который, по нашему мнению, включает истинное значение:

(1)

измерения = (наилучшая оценка ± неопределенность) единиц

Возьмем пример.Предположим, вы хотите найти массу золотого кольца, которое вы хотел бы продать другу. Вы не хотите подвергать опасности свою дружбу, поэтому вы хотите чтобы получить точную массу кольца по справедливой рыночной цене. Вы оцениваете масса должна составлять от 10 до 20 граммов в зависимости от того, насколько тяжелой она ощущается в руке, но это не очень точная оценка. После некоторых поисков вы найдете электронные весы, которые массовое чтение 17,43 грамма. Хотя это измерение намного точнее , чем исходная оценка, откуда вы знаете, что она точная , и насколько вы уверены, что это измерение представляет собой истинное значение массы кольца? Поскольку цифровой дисплей баланс ограничен двумя знаками после запятой, вы можете указать массу как

м = 17.43 ± 0,01 г.

Предположим, вы используете те же электронные весы и получили еще несколько показаний: 17,46 г, 17,42 г, 17,44 г, так что средняя масса находится в диапазоне

17,44 ± 0,02 г.

Теперь вы можете быть уверены, что знаете массу этого кольца с точностью до ближайшего сотые доли грамма, но откуда вы знаете, что истинная ценность определенно лежит между 17,43 г и 17,45 г? Если честно, вы решили использовать другой баланс, который дает значение 17.22 г. Это значение явно ниже диапазона значений, найденных на первый баланс, и при нормальных обстоятельствах вам может быть все равно, но вы хотите быть справедливым своему другу. Так что вы будете делать теперь? Ответ заключается в том, чтобы знать кое-что о точность каждого инструмента. Чтобы ответить на эти вопросы, мы должны сначала определить термины точность и точность : Точность - это степень соответствия измеренного значения истинному или принятому значению.Ошибка измерения - это величина неточности.

Точность - это мера того, насколько хорошо результат может быть определен (без ссылки на теоретическое или истинное значение). Это степень согласованности и согласия между независимыми измерениями одной и той же величины; а также надежность или воспроизводимость результата.

Оценка неопределенности , связанная с измерением, должна учитывать как точность, так и прецизионность измерения.

Примечание: К сожалению, термины ошибка и неопределенность часто используются взаимозаменяемо, чтобы описать как неточность, так и неточность. Это использование настолько распространено, что невозможно чтобы полностью избежать. Когда вы сталкиваетесь с этими условиями, убедитесь, что вы понимаете относятся ли они к точности или точности, или к тому и другому. Обратите внимание, что для определения точности конкретного измерения у нас есть знать идеальную, истинную ценность.Иногда у нас есть "учебное" измеренное значение, которое хорошо известно, и мы предполагаем, что это наше "идеальное" значение, и используем его для оценки точность нашего результата. В других случаях мы знаем теоретическое значение, которое рассчитывается из основные принципы, и это тоже можно принять за «идеальное» значение. Но физика - это эмпирическая наука, что означает, что теория должна быть подтверждена экспериментом, а не наоборот. Мы можем избежать этих трудностей и сохранить полезное определение понятия точность , если предположить, что даже когда мы не знаем истинного значения, мы можем полагаться на наилучшее из имеющихся принятое значение , с которым можно сравнить наше экспериментальное значение.В нашем примере с золотым кольцом нет приемлемого значения для сравнения, и оба измеренных значения имеют одинаковую точность, поэтому у нас нет оснований полагать, что больше, чем другие. Мы могли бы найти характеристики точности для каждого весов как предоставленные производителем (приложение в конце этого лабораторного руководства содержит данные о точности для большинства инструментов, которые вы будете использовать), но лучший способ оценить точность измерения заключается в сравнении с известным стандартом .В этой ситуации это может быть возможность калибровки весов с помощью стандартной массы, которая является точной в узком допуска и прослеживается до стандарта первичной массы в Национальном институте Стандарты и технологии (NIST). Калибровка весов должна устранить Несоответствие показаний и более точного измерения массы. Прецизионность часто выражается количественно с использованием относительной погрешности или дробной неопределенности :

(2)

Относительная неопределенность =
неопределенность
измеренное количество
Пример:

м = 75.5 ± 0,5 г

имеет дробную погрешность:

Точность часто выражается количественно с помощью относительной ошибки :

(3)

Относительная ошибка =
измеренное значение - ожидаемое значение
ожидаемое значение
Если ожидаемое значение для м составляет 80,0 г, то относительная погрешность составляет:

Примечание: Знак минус означает, что измеренное значение на меньше , чем ожидаемое. значение.

При анализе экспериментальных данных важно понимать разницу между точностью и точностью. Точность указывает качество измерения без какой-либо гарантии, что измерение «правильное». Точность , с другой стороны, предполагает наличие идеального значения и показывает, насколько ваш ответ далек от этого идеального, «правильного» ответа. Эти концепции напрямую связаны с случайными и систематическими ошибками измерения.

Типы ошибок

Ошибки измерения могут быть классифицированы как случайных или систематических , в зависимости от того, как было получено измерение (прибор может вызвать случайную ошибку в одной ситуации и систематическую ошибку в другой).

топливных элементов | Определение, типы, области применения и факты

От химической энергии к электрической энергии

Топливный элемент (фактически группа элементов) состоит по существу из тех же компонентов, что и батарея.Как и в последнем случае, каждая ячейка системы топливных элементов имеет соответствующую пару электродов. Это анод, который питает электроны, и катод, который поглощает электроны. Оба электрода должны быть погружены и разделены электролитом, который может быть жидким или твердым, но который в любом случае должен проводить ионы между электродами, чтобы завершить химический состав системы. Топливо, такое как водород, подается на анод, где оно окисляется, образуя ионы и электроны водорода.Окислитель, такой как кислород, подается на катод, где ионы водорода от анода поглощают электроны от последнего и реагируют с кислородом с образованием воды. Разница между соответствующими уровнями энергии на электродах (электродвижущая сила) - это напряжение на единицу ячейки. Количество электрического тока, доступного для внешней цепи, зависит от химической активности и количества веществ, поставляемых в качестве топлива. Процесс выработки тока продолжается до тех пор, пока есть запас реагентов, так как электроды и электролит топливного элемента, в отличие от обычных батарей, сконструированы так, чтобы оставаться неизменными в результате химической реакции.

схема топливного элемента

Типичный топливный элемент.

Encyclopædia Britannica, Inc.

Практический топливный элемент обязательно представляет собой сложную систему. Он должен иметь функции для повышения активности топлива, насосов и нагнетателей, резервуаров для хранения топлива, а также множество сложных датчиков и элементов управления, с помощью которых можно контролировать и регулировать работу системы. Рабочие возможности и срок службы каждой из этих конструктивных особенностей системы могут ограничивать производительность топливного элемента.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Как и в случае других электрохимических систем, работа топливного элемента зависит от температуры. Химическая активность топлива и значение промоторов активности или катализаторов снижаются при низких температурах (например, 0 ° C или 32 ° F). С другой стороны, очень высокие температуры улучшают показатели активности, но могут сократить срок службы электродов, воздуходувок, строительных материалов и датчиков.Таким образом, каждый тип топливного элемента имеет расчетный диапазон рабочих температур, и значительное отклонение от этого диапазона, вероятно, приведет к уменьшению как емкости, так и срока службы.

Топливный элемент, как и батарея, по своей сути является высокоэффективным устройством. В отличие от машин внутреннего сгорания, в которых топливо сжигается, а газ расширяется для выполнения работы, топливный элемент преобразует химическую энергию непосредственно в электрическую. Из-за этой фундаментальной характеристики топливные элементы могут преобразовывать топливо в полезную энергию с КПД до 60 процентов, в то время как двигатель внутреннего сгорания ограничен КПД около 40 процентов или меньше.Высокая эффективность означает, что для фиксированной потребности в энергии требуется гораздо меньше топлива и меньший контейнер для хранения. По этой причине топливные элементы являются привлекательным источником энергии для космических полетов ограниченной продолжительности и для других ситуаций, когда топливо очень дорогое и его трудно доставить. Они также не выделяют вредных газов, таких как диоксид азота, и практически не производят шума во время работы, что делает их достойными конкурентами для местных муниципальных электростанций.

Топливный элемент может быть сконструирован так, чтобы он работал обратимо.Другими словами, водородно-кислородный элемент, производящий воду в качестве продукта, можно заставить регенерировать водород и кислород. Такой регенеративный топливный элемент влечет за собой не только пересмотр конструкции электродов, но также введение специальных средств для разделения продуктовых газов. В конце концов, силовые модули, содержащие этот тип высокоэффективного топливного элемента, используемые в сочетании с большими массивами тепловых коллекторов для солнечного отопления или других систем солнечной энергии, могут использоваться для снижения затрат на энергетический цикл в долговечном оборудовании.Крупные автомобильные компании и компании-производители электрического оборудования во всем мире объявили о своем намерении производить или использовать топливные элементы в коммерческих целях в ближайшие несколько лет.

Проектирование систем топливных элементов

Поскольку топливный элемент непрерывно вырабатывает электричество из топлива, он имеет многие выходные характеристики, аналогичные характеристикам любой другой генераторной системы постоянного тока (DC). Система генератора постоянного тока может работать одним из двух способов с точки зрения планирования: (1) топливо может быть сожжено в тепловом двигателе для приведения в действие электрогенератора, что обеспечивает доступ к мощности и току, или (2) топливо может быть преобразовано в форму, подходящую для топливного элемента, который затем напрямую вырабатывает энергию.

Для системы теплового двигателя может использоваться широкий спектр жидкого и твердого топлива, в то время как водород, реформированный природный газ (то есть метан, который был преобразован в газ, богатый водородом) и метанол являются основными видами топлива, доступными в настоящее время. топливные элементы. Если топливо, такое как природный газ, должно быть изменено по составу для топливного элемента, чистая эффективность системы топливного элемента снижается, и большая часть ее преимущества в эффективности теряется. Такая «непрямая» система топливных элементов по-прежнему будет показывать преимущество эффективности до 20 процентов.Тем не менее, чтобы быть конкурентоспособной с современными тепловыми генерирующими установками, система топливных элементов должна обеспечивать хороший расчетный баланс с низкими внутренними электрическими потерями, устойчивыми к коррозии электродами, электролитом постоянного состава, низкими затратами на катализаторы и экологически приемлемыми видами топлива.

Первой технической проблемой, которую необходимо решить при разработке практических топливных элементов, является разработка и сборка электрода, который позволяет газообразному или жидкому топливу контактировать с катализатором и электролитом в группе твердых участков, которые не изменяются очень быстро.Таким образом, трехфазная реакция является типичной для электрода, который также должен служить проводником электричества. Это могут быть тонкие листы, которые имеют (1) водостойкий слой, обычно содержащий политетрафторэтилен (тефлон), (2) активный слой катализатора (например, платины, золота или сложного металлоорганического соединения на углеродной основе) и (3) проводящий слой для переноса генерируемого тока в электрод или из него. Если электрод залит электролитом, скорость работы в лучшем случае станет очень низкой.Если топливо прорывается на сторону электролита электрода, отсек электролита может заполниться газом или паром, вызывая взрыв, если окисляющий газ также достигнет отсека электролита или топливный газ попадет в отсек окисляющего газа. Короче говоря, для поддержания стабильной работы в работающем топливном элементе необходимы тщательная конструкция, конструкция и контроль давления. Поскольку топливные элементы использовались в лунных полетах Аполлона, а также во всех других орбитальных пилотируемых космических миссиях США (например,g., Близнецы и космический шаттл), очевидно, что все три требования могут быть надежно выполнены.

Обеспечение системы поддержки топливных элементов, состоящей из насосов, нагнетателей, датчиков и средств управления для поддержания расхода топлива, нагрузки по электрическому току, давления газа и жидкости, а также температуры топливных элементов остается основной проблемой инженерного проектирования. Значительное увеличение срока службы этих компонентов в неблагоприятных условиях будет способствовать более широкому использованию топливных элементов.

Аммиак - возобновляемое топливо, получаемое из солнца, воздуха и воды - может обеспечить энергию земного шара без углерода | Наука

Роберт Ф.Сервис

СИДНЕЙ, БРИСБАН И МЕЛЬБУРН, АВСТРАЛИЯ— Древние засушливые ландшафты Австралии - плодородная почва для новых побегов, говорит Дуглас Макфарлейн, химик из Университета Монаш в пригороде Мельбурна: обширные леса ветряных мельниц и солнечных батарей. На страну падает больше солнечного света на квадратный метр, чем на любую другую, а сильные ветры обрушиваются на ее южное и западное побережье. В целом Австралия может похвастаться потенциалом возобновляемых источников энергии в 25 000 гигаватт, что является одним из самых высоких показателей в мире и примерно в четыре раза превышает установленную мощность производства электроэнергии на планете.Тем не менее, при небольшом населении и ограниченном количестве способов хранения или экспорта энергии его возобновляемые источники энергии практически не используются.

Вот где появляется Макфарлейн. Последние 4 года он работал над топливным элементом, который может преобразовывать возобновляемую электроэнергию в безуглеродное топливо: аммиак. Топливные элементы обычно используют энергию, хранящуюся в химических связях, для производства электричества; MacFarlane's действует наоборот. В своей лаборатории на третьем этаже он демонстрирует одно из устройств размером с хоккейную шайбу, покрытое нержавеющей сталью.Две пластиковые трубки на его задней стороне подают азот и воду, а шнур питания подает электричество. Через третью трубку в передней части он бесшумно выдыхает газообразный аммиак без тепла, давления и выбросов углерода, которые обычно необходимы для производства химического вещества. «Это вдыхание азота и выдыхание аммиака», - говорит Макфарлейн, сияя, как гордый отец.

Компании по всему миру уже производят аммиак на сумму 60 миллиардов долларов в год, в основном в качестве удобрений, и штуковина Макфарлейна может позволить им производить аммиак более эффективно и чисто.Но у него есть амбиции сделать гораздо больше, чем просто помочь фермерам. Преобразуя возобновляемую электроэнергию в богатый энергией газ, который можно легко охладить и сжать в жидкое топливо, топливный элемент MacFarlane эффективно сдерживает солнечный свет и ветер, превращая их в товар, который можно отправлять в любую точку мира и преобразовывать обратно в электричество или газообразный водород для питания транспортных средств на топливных элементах. Газ, выходящий из топливного элемента, бесцветен, но для окружающей среды, по словам Макфарлейна, аммиак настолько зеленый, насколько это возможно.«Жидкий аммиак - это жидкая энергия», - говорит он. «Нам нужны устойчивые технологии».

Аммиак - один атом азота, связанный с тремя атомами водорода - может показаться не идеальным топливом: химическое вещество, используемое в бытовых чистящих средствах, имеет неприятный запах и токсично. Но его удельная энергия по объему почти вдвое больше, чем у жидкого водорода - его основного конкурента в качестве экологически чистого альтернативного топлива - и его легче транспортировать и распространять. «Его можно хранить, отправлять, сжигать и преобразовывать обратно в водород и азот», - говорит Тим ​​Хьюз, исследователь накопителей энергии из производственного гиганта Siemens в Оксфорде, США.К. «Во многом он идеален».

Исследователи всего мира преследуют то же видение «аммиачной экономики», и Австралия позиционирует себя, чтобы возглавить ее. «Это только начало», - говорит Алан Финкель, главный ученый Австралии, работающий в Канберре. По словам Финкеля, федеральным политикам еще предстоит предложить какое-либо серьезное законодательство в поддержку возобновляемого аммиака, что, возможно, и понятно для страны, долгое время связанной с экспортом угля и природного газа. Но в прошлом году Австралийское агентство по возобновляемой энергии заявило, что создание экспортной экономики для возобновляемых источников энергии является одним из его приоритетов.В этом году агентство объявило о выделении 20 млн австралийских долларов на поддержку экспортных технологий из возобновляемых источников, включая доставку аммиака.

Ветреные побережья Австралии предлагают изобилие энергии, которую она однажды может экспортировать в качестве безуглеродного топлива.

ЗАЩИТА ПОБЕРЕЖЬЯ, ЮЖНАЯ АВСТРАЛИЯ

В штатах Австралии политики рассматривают возобновляемый аммиак как потенциальный источник местных рабочих мест и налоговых поступлений, говорит Бретт Купер, председатель Renewable Hydrogen, консалтинговой фирмы по возобновляемым источникам топлива в Сиднее.В Квинсленде официальные лица обсуждают создание экспортного терминала аммиака в портовом городе Гладстон, который уже является центром отгрузки сжиженного природного газа в Азию. В феврале штат Южная Австралия выделил 12 миллионов австралийских долларов в виде грантов и займов для проекта по возобновляемым источникам аммиака. А в прошлом году международный консорциум объявил о планах строительства комбинированной ветро-солнечной электростанции стоимостью 10 миллиардов долларов, известной как Азиатский центр возобновляемой энергии в штате Западная Австралия. Хотя большая часть из 9000 мегаватт электроэнергии проекта будет проходить по подводному кабелю для питания миллионов домов в Индонезии, часть этой энергии может быть использована для производства аммиака для экспорта на большие расстояния.«Аммиак - ключевой фактор для экспорта возобновляемых источников энергии», - говорит Дэвид Харрис, директор по исследованиям в области технологий с низким уровнем выбросов в Энергетической организации Содружества научных и промышленных исследований (CSIRO) в Пулленвейле. «Это мост в совершенно новый мир».

Однако сначала проповедники возобновляемого аммиака должны будут заменить один из крупнейших, самых грязных и проверенных временем промышленных процессов в мире: то, что называется Haber-Bosch.

Завод по производству аммиака, металлический мегаполис труб и резервуаров, расположен там, где красные скалы пустыни Пилбара в Западной Австралии встречаются с океаном.Завод принадлежит Yara, крупнейшему в мире производителю аммиака, и завершен в 2006 году. Он находится в авангарде технологий и является одним из крупнейших заводов по производству аммиака в мире. Тем не менее, в его основе - стальные реакторы, в которых до сих пор используется вековой рецепт производства аммиака.

До 1909 года азотфиксирующие бактерии производили большую часть аммиака на планете. Но в том же году немецкий ученый Фриц Габер обнаружил реакцию, которая с помощью железных катализаторов может расщепить прочную химическую связь, удерживающую вместе молекулы азота, N 2 , и соединить атомы с водородом с образованием аммиака.Реакция требует грубой силы - давление до 250 атмосфер в высоких и узких стальных реакторах - процесс, впервые внедренный немецким химиком Карлом Бошем. Процесс довольно эффективен; около 60% энергии, потребляемой растением, в конечном итоге сохраняется в аммиачных связях. Этот процесс, масштабируемый до заводов размером с Yara, может производить огромное количество аммиака. Сегодня предприятие производит и отгружает 850 000 метрических тонн аммиака в год, что более чем вдвое превышает вес Эмпайр-стейт-билдинг.

Большинство используется как удобрение. Растения жаждут азота, который используется для построения белков и ДНК, а аммиак доставляет его в биологически доступной форме. Реакторы Haber-Bosch могут производить аммиак намного быстрее, чем естественные процессы, и в последние десятилетия эта технология позволила фермерам прокормить растущее население планеты. Подсчитано, что по крайней мере половина азота в организме человека сегодня поступает из завода по производству синтетического аммиака.

Haber-Bosch привел к Зеленой революции, но этот процесс совсем не зеленый.Для этого требуется источник газообразного водорода (H 2 ), который отделяется от природного газа или угля в реакции с использованием сжатого перегретого пара. Остается двуокись углерода (CO 2 ), на которую приходится около половины выбросов от всего процесса. Второе сырье, N 2 , легко отделяется от воздуха, который на 78% состоит из азота. Но создание давления, необходимого для смешивания водорода и азота в реакторах, потребляет больше ископаемого топлива, что означает больше CO 2 .Сумма выбросов складывается: производство аммиака потребляет около 2% мировой энергии и производит 1% его CO 2 .

Экологичный способ производства аммиака

Обратные топливные элементы могут использовать возобновляемые источники энергии для производства аммиака из воздуха и воды, что является гораздо более экологически безопасным методом, чем промышленный процесс Хабера-Боша. Возобновляемый аммиак может служить удобрением - традиционная роль аммиака - или энергоемким топливом.

Промышленный аммиак Большая часть аммиака в мире синтезируется с использованием метода Габера – Боша, вековой давности, который является быстрым и достаточно эффективным.Но фабрики выбрасывают огромное количество углекислого газа (CO2). Мягкие реакции В обратном топливном элементе используется возобновляемая электроэнергия для запуска химической реакции, в результате которой образуется аммиак. Вода реагирует на аноде, образуя ионы водорода (H +), которые мигрируют к катоду, где они реагируют с азотом (N2) с образованием аммиака.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *