ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Устройство турбины от ТурбоМикрон

 


Перед походом в сервис, который производит ремонт турбин, необходимо разобраться с устройством турбины, чтобы при дефектации понимать какие детали действительно необходимо заменить, а какие можно оставить.

Несмотря на широкий модельный ряд турбокомпрессоров, они имеют незначительные конструктивные отличия, и все они работают по одному принципу и выполняют одинаковые функции.

Под термином «турбина» часто подразумевают турбокомпрессор. Это не совсем соответствует истине, так как турбина является всего лишь одной из составных частей турбокомпрессора.

Турбокомпрессор состоит из среднего корпуса, вала с крыльчатками, одного либо двух опорных и одного упорного подшипников скольжения, системы уплотнений (все в сборе называется картридж), двух улиток («горячей и холодной»), в которых вращаются крыльчатки. Опорные подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала (тот самый радиальный люфт, который хорошо ощутим при нажатии на кончик вала

турбины). Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца. В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбины. Где корпус подшипников турбонагнеталя включен в двухконтурную систему охлаждения двигателя.

На всё это устройство навешен пневмопривод, приводящий в действие байпасный (перепускной) клапан. Назначение байпасного клапана – регулировать обороты турбины и, соответственно, производительность компрессора. Сама турбина – это крыльчатка (колесо), неразъемно насаженная на вал и приводящая во вращение другую крыльчатку – компрессор. Колесо турбины изготовлено из жаростойкого сплава, компрессор – алюминиевый, вал – обычная среднелегированная сталь и в редких случаях сплавы/керамика. Отремонтировать эти детали невозможно, их можно только заменить.

Корпус турбокомпрессора представляет собой сплошную отливку из чугуна, в которой на подшипниках вращается вал.

Улитка турбины – чугунная деталь сложной формы. Именно она формирует газовый поток, вращающий колесо турбины. Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под компрессор. Вращающийся компрессор засасывает воздух через центральное отверстие, сжимает его и по кольцевому каналу подаёт в двигатель.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блоу-офф клапана (blow-off) или перепускаться на вход компрессора с помощью бай-пас клапана (by-pass).

В данной статье мы рассмотрели общее устройство турбокомпрессора, разобравшись с которым, Вы будете понимать о чем идет речь во время диагностики либо дефектации турбокомпрессора на сервисе. Если у Вас возникают сложности, обращайтесь в ТурбоМикрон, мы поможем решить любые вопросы, связанные с турбинами.

Устройство турбины дизельного двигателя


Автомобильные двигатели с турбиной у нас не слишком популярны. Ходит мнение, что они слишком сложны и капризны в работе, слишком требовательны к качеству топлива и слишком дороги в ремонте. Ничего подобного. Сейчас мы сами в этом убедимся и рассмотрим конструкцию простейшего турбодизеля, который устанавливается уже даже на самые бюджетные модели автомобилей.

Содержание:

  1. Для чего турбина дизелю
  2. Как устроен турбонаддув
  3. Конструкция турбины
  4. Ресурс, регулировка и диагностика турбины

Для чего турбина дизелю

Конечно, как и любой другой автомобильный мотор, двигатель с турбиной может тоже иногда ломаться. Но как показывает практика, делает он это не чаще, чем атмосферный мотор при условии правильной эксплуатации и своевременного обслуживания. Для того чтобы самостоятельно определить неисправность турбины, необходимо в общих чертах знать устройство турбины дизельного двигателя.

Принцип её работы, как и устройство, не слишком сложны. Наддув предназначен для того, чтобы искусственным путём повысить наполняемость камеры сгорания рабочей смесью солярки и воздуха. В результате, при том же объёме камеры сгорания и при том же расходе топлива, мощность двигателя на порядок возрастает. Конструктивно турбонагнетатель выглядит так.

Как устроен турбонаддув

Турбокомпрессор представляет собой воздушный насос, который приводится в движение отработанными выхлопными газами. Он представляет собой две крыльчатки, которые расположены на одной оси и помещённые в корпус. Поток выхлопных газов на высокой скорости проходят через ведущую турбину и заставляют её вращаться, а она в свою очередь, вращает всасывающую турбину с такой же скоростью.

Ось турбокомпрессора может вращаться с частотой до 140 000 оборотов в минуту, а это значит, что лопасти крыльчатки могут развивать огромную скорость, сравнимую со скоростью звука. Компрессор всасывает отфильтрованный воздух, сжимает его и под давлением подаёт во впускной коллектор. Чем больше сжатого воздуха за единицу времени поступит в коллектор, тем больше будет прирост мощности.

Конструкция турбины

Корпус турбины имеет непростую геометрию. Воздух попадает к нагнетателю через спиралевидный канал с постепенно сужающимся диаметром, что в свою очередь также влияет на повышение рабочего давления турбины. В зависимости от предназначения мотора, конструкция корпуса наддува (улитки) может быть различной. У грузовых автомобилей поток выхлопных газов должен быть разделен во избежание разрушительного резонанса, а в случае разделения потока газов, резонанс используется для более эффективной работы турбины.

Ротор турбины и ось изготовлены из разных материалов, поскольку работают в разных условиях. Процесс изготовления наддува выглядит следующим образом — ось и ротор раскручиваются в противоположном направлении до высокой скорости и во время вращения ротор насаживается на ось. Таким образом получают прочную неразъемную спайку. В конструкции оси есть ещё одна хитрость. В месте усадки ротора она полая, что позволяет затруднить передачу тепла от ротора к оси и улучшить охлаждение сопряжённых элементов. После точной финишной обработки ось балансируется и устанавливается в корпус.

Турбина имеет сложную систему смазки и такую же сложную систему динамических уплотнителей, что и диктует высокую цену турбины в сборе. Они называются динамическими, потому что работают, используя принцип разницы давления в разных частях турбины:

  1. Ось турбины непостоянного диаметра и эти вызывается разница давления, которая препятствует проникновению масла в турбину.

  2. С обеих сторон оси уплотнители установлены в пазах, кроме того, они служат преградой для передачи избыточного тепла на корпус наддува..

  3. Внутренняя геометрия корпуса оси также создаёт препятствие проникновению масла в ротор.

  4. Из корпуса наддува масло вытесняется в полость оси, откуда иго избыток поступает по маслопроводу в систему смазки двигателя.

Ресурс, регулировка и диагностика турбины

Даже поверхностное изучение системы смазки и конструкции турбины уже говорит о том, что это очень требовательный механизм как к качеству масла, так и к правилам эксплуатации. Эти правила просты и понятны, а ресурс турбонаддува может быть не меньше, чем ресурс дизельного двигателя, при условии соблюдения этих условий:

  • использовать только сертифицированное масло и вовремя проводить его замену;

  • не нагружать непрогретый двигатель;

  • перед остановкой мотора необходимо некоторое время дать ему поработать на холостых оборотах;

  • следить за чистотой системы смазки, поскольку засорение маслопровода турбины может существенно сократить её ресурс.

О неисправности наддува могут говорить несколько симптомов, но самый вопиющий из них — невозможность развить полную мощность двигателя и густой чёрный выхлоп. Это говорит о том, что либо засорился воздушный фильтр, либо впускной коллектор потерял герметичность.

В случае попадания масла в коллектор через турбину отчётливо виден сизый дым из выхлопной трубы. В этом случае может потребоваться ремонт и чистка наддува.

Таким образом, если соблюдать все правила ухода и эксплуатации наддува, его ресурс может быть вполне сопоставим с ресурсом дизельного мотора. Пусть проблемы с турбиной обойдут ваш мотор стороной и удачных всем дорог!

Читайте также:


Устройство турбины | ТурбоМикрон Москва


Несмотря на широкий модельный ряд турбокомпрессоров, они имеют незначительные конструктивные отличия, и все они работают по одному принципу и выполняют одинаковые функции.

Под термином «турбина» часто подразумевают турбокомпрессор. Это не совсем соответствует истине, так как турбина является всего лишь одной из составных частей турбокомпрессора.

Турбокомпрессор состоит из корпуса, вала с крыльчатками, одного либо двух опорных и одного упорного подшипников скольжения, системы уплотнений, двух улиток («горячей и холодной»), в которых вращаются крыльчатки. Опорные подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала (тот самый радиальный люфт , который хорошо ощутим при нажатии на кончик вала турбины). Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца. В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбонагнетателей. Где корпус подшипников турбонагнеталя включен в двухконтурную систему охлаждениядвигателя.

На всю эту конструкцию навешен пневмопривод, приводящий в действие байпасный (перепускной) клапан. Назначение байпасного клапана – регулировать обороты турбины и, соответственно, производительность компрессора. Сама турбина – это крыльчатка, неразъемно-насаженная на вал и приводящая во вращение другую крыльчатку – компрессор. Турбина изготовлена из жаростойкого сплава, компрессор – алюминиевый, вал – обычная среднелегированная сталь и в редких случаях сплавы/керамика.

Отремонтировать эти детали невозможно, их можно только заменить.

Корпус турбокомпрессора представляет собой сплошную отливку из чугуна, в которой на подшипниках вращается вал.

Улитка турбины – чугунная деталь сложной формы. Именно она формирует газовый поток, вращающий турбину. Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под компрессор. Вращающийся компрессор засасывает воздух через центральное отверстие, сжимает его и по кольцевому каналу подаёт в двигатель.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блоу-офф клапана (blow-off) или перепускаться на вход компрессора с помощью бай-пас клапана (by-pass).

Если Вы столкнулись с необходимостью ремонта турбины, наши специалисты смогут решить Вашу проблему.

Устройство современного турбокомпрессора

 

1 — корпус подшипников — металлический корпус системы подшипников обеспечивает местоположения для плавающей системы подшипника вала турбины и компрессора, который может вращаться со скоростью до 170,000 оборотов/минут. Cложная геометрическая конструкция для охлаждения. Основные требования: качество обработки, жесткость, термостойкость;

2 — турбинное колесо — установлено в корпусе турбины и соединено штифтом, который вращает крыльчатку компрессора. Покрыто никелиевым сплавом. Сделано из прочных и стойких сплавов. Выдерживает температуры работы до 760 °C. Основные требования: стойкость к изнашиванию, к деформациям, к коррозии;

3 — перепускной клапан — управляемый пневматическим приводом (см. рис. 1), при определенной величине давления наддува направляет часть отработавших газов в обход турбины, тем самым ограничивает давление наддува ДВС. Ограничение давления наддува осуществляют с целью защитить двигатель от перегрузки;

4 — корпус (улитка) турбины — изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку. Основные требования: ударопрочность, стойкость к окислению, жаропрочность, жаростойкость, легкость механической обработки;

5 — масляные каналы;

6 — вал ротора;

7 — подшипник скольжения — изготовлен из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости. Стопорные, упорные стальные кольца и масляные проточки изготавливаются особенно точно. Осевое давление поглощается бронзовым гидродинамическим подшипником осевого давления, расположенным в конец сборки вала. Точная калибровка обеспечивает равномерную нагрузку подшипника.

8 — компрессорное колесо — выполнено из алюминиевых сплавов методом литья, на некоторых моделях крыльчаток, для очень тяжелой и продолжительной работы при больших температурах, лопасти изготавливаются из титана. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала. Основные требования: высокое сопротивление усталости, растяжению, коррозии;

9 — корпус (улитка) компрессора — отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так «песочное» литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины. Основные требования: прочность к ударным и механическим нагрузкам, высокое качество обработки и точные размеры;

10 — пневмопривод перепускного клапана — управляет перепускным клапаном, для ограничения давления наддува и защиты двигателя от перегрузок.

Общее устройство турбокомпрессора

   Турбокомпрессор включает в себя основные части: корпус компрессора 1, компрессорное колесо 2, вал ротора 3, корпус турбины 4, турбинное колесо 5 и корпус подшипников с ротором в сборе.

   ♦ Корпуса турбины и компрессора в обиходе называют «улитки». Турбинный корпус связан с выпускным, а компрессорный — с впускным трубопроводами.

   ♦ В корпусе подшипников установлен ротор в сборе, представляющий собой вал, на котором жестко закреплены турбинное и компрессорное колеса с лопастями. Ротор вращается на подшипниках скольжения. Они смазываются и охлаждаются моторным маслом, поступающим из системы смазки двигателя. Для снижения температуры корпуса в нем могут быть предусмотрены каналы подачи охлаждающей жидкости.

   Работа турбокомпрессора происходит под воздействием потока отработавших газов, вращающих турбинное колесо и вал ротора. Установленное на том же валу компрессорное колесо нагнетает воздух во впускной трубопровод.

 

 

На некоторых режимах работы мотора проявляют себя особенности турбонаддува:

  • «Турбояма» («турболаг») — задержка увеличения оборотов и мощности двигателя при резком нажатии на педаль акселератора («газа»). Эффект связан с инерционностью системы — требуется время, чтобы ускорившийся поток выхлопных газов раскрутил турбину. Основной способ устранения — снижение размеров и массы вращающихся деталей для облегчения их быстрого раскручивания. Однако это ведет к снижению производительности турбокомпрессора и для сохранения необходимого давления наддува приходится увеличивать частоту вращения ротора или применять корпус турбины с изменяемым проходным сечением.
  • «Турбоподхват» — возникает при увеличении оборотов и скорости движения выхлопных газов после преодоления «турбоямы». Вследствие этого резко увеличивается давление наддува, создаваемого турбокомпрессором и, соответственно, мощность двигателя. Чтобы исключить перегрузку деталей кривошипно-шатунного механизма и детонацию (в бензиновых двигателях), необходимо такое же резкое ограничение давления наддува.

 

Устройство газовой турбины и компрессора газотурбинной установки



Устройство газовой турбины и компрессора газотурбинной установки

Рис. Простейшая турбина

Газовая турбина представляет собой тепловой двигатель, в котором потенциальная энергия газа преобразуется в механическую энергию.

Продольный разрез простейшей газовой турбины показан на рисунке. На вал насажен диск 2, в котором укреплены рабочие лопатки 4. Вал с диском и лопатками в сборе называют ротором. Ротор турбины расположен внутри корпуса 5 и опирается на подшипники скольжения 6. Газ поступает к ротору турбины через сопла, образованные сопловыми лопатками 3. Сопла предназначены для преобразования потенциальной энергии газа в кинетическую. Внутри сопла давление газа уменьшается, а его скорость увеличивается. Перегородки, разделяющие сопла, называют сопловыми лопатками, а все сопловые лопатки, расположенные на одной окружности, — сопловой решеткой.

После сопловой решетки газ поступает к рабочим лопаткам. Промежутки между рабочими лопатками называют рабочими каналами, а все рабочие лопатки на диске — рабочей решеткой. Сопловую решетку и расположенную за ней по ходу газа рабочую решетку называют степенью. Рабочие лопатки изготовлены так, что каналы между ними имеют определенную форму. За счет изменения количества движения газа в рабочих каналах часть его энергии преобразуется в механическую, заставляя вращаться ротор. Ротор соединяется с потребителем механической энергии, которым на электрических станциях является электрический генератор, а на газоперекачивающих — нагнетатель газа.

Поступает газ в турбину через входной патрубок 9, а уходит из нее отработавший газ через выхлопной патрубок 8. Корпус турбины состоит из входного и выхлопного патрубков и той части, где расположены сопловые и рабочие лопатки. Таким образом корпус отделяет газ повышенного давления от окружающей среды. Однако в местах выхода ротора из корпуса имеются зазоры, и чтобы предотвратить утечку газа, в корпусе устанавливают уплотнения 7. Корпус турбины внутри или снаружи обязательно покрывают теплоизоляцией.

Компрессор служит для сжатия газа (воздуха) и повышения его энергии и температуры. При малых степенях сжатия в ГТУ в основном используют осевые компрессоры.

Простейший одноступенчатый компрессор состоит из тех же элементов, что и простейшая турбина. Так же как и турбина, компрессор имеет ротор состоящий из вала 1, диска 2 и рабочих лопаток 4. На внутренней поверхности корпуса компрессора располагаются направляющие лопатки 3. Решетку направляющих лопаток и следующую за ней рабочую решетку называют ступенью компрессора.

Воздух засасывается в компрессор через входной патрубок 9. Каналы между направляющими и рабочими лопатками имеют такую форму, что скорость воздуха в них уменьшается, а давление растет. Чтобы производилась работа сжатия воздуха, от турбины отбирается значительная часть мощности, необходимой для вращения ротора компрессора.

Выхлопной патрубок 8 (диффузор) служит для вывода воздуха из компрессора. Давление воздуха за диффузором значительно выше, чем во входном патрубке, и является наибольшим давлением в ГТУ.

Корпус компрессора состоит из входного патрубка, цилиндрической части, в которой расположены направляющие лопатки, и диффузора. Так же как в турбине, в местах выхода ротора из корпуса компрессора располагаются уплотнения 7. Турбины и компрессоры, имеющие одну ступень, называют одноступенчатыми. Турбины и компрессоры большой мощности с одной ступенью сконструировать обычно не удается. В этом случае на роторе приходится располагать несколько ступеней одну за другой. Такие турбины и компрессоры называют многоступенчатыми.



3.2. Основные элементы современных паровых турбин

3.2. Основные элементы современных паровых турбин

Конструкция паровой турбины

Конструктивно современная паровая турбина (рис. 3.4) состоит из одного или нескольких цилиндров, в которых происходит процесс преобразования энергии пара, и ряда устройств, обеспечивающих организацию ее рабочего процесса.

Цилиндр. Основным узлом паровой турбины, в котором внутренняя энергия пара превращается в кинетическую энергию парового потока и далее – в механическую энергию ротора, является цилиндр. Он состоит из неподвижного корпуса (статоратурбины из двух частей, разделенных по горизонтальному разъему; направляющих (сопловых) лопаток, лабиринтовых уплотнений, впускного и выхлопного патрубков, опор подшипников и др.) и вращающегося в этом корпусе ротора (вал, диски, рабочие лопатки и др.). Основная задача сопловых лопаток – превратить потенциальную энергию пара, расширяющегося в сопловых решетках с уменьшением давления и одновременным снижением температуры, в кинетическую энергию организованного парового потока и направить его в рабочие лопатки ротора. Основное назначение рабочих лопаток и ротора турбины – преобразовать кинетическую энергию парового потока в механическую энергию вращающегося ротора, которая в свою очередь преобразуется в генераторе в электрическую энергию. Ротор мощной паровой турбины представлен на рисунке 3.5.

Число венцов сопловых лопаток в каждом цилиндре паровой турбины равно числу венцов рабочих лопаток соответствующего ротора. В современных мощных паровых турбинах различают цилиндры низкого, среднего, высокого и сверхвысокого давления (рис. 3.6.). Обычно цилиндром сверхвысокого давления именуется цилиндр, давление пара на входе в который превосходит 30,0 МПа, цилиндром высокого давления – участок турбины, давление пара на входе в который колеблется в пределах 23,5 – 9,0 МПа, цилиндром среднего давления – участок турбины, давление пара на входе в который около 3,0 МПа, цилиндром низкого давления – участок, давление пара на входе в который не превышает 0,2 МПа. В современных мощных турбоагрегатах число цилиндров низкого давления может достигать 4 с целью обеспечения приемлемой по условиям прочности длины рабочих лопаток последних ступеней турбины.

Органы парораспределения. Количество пара, поступающего в цилиндр турбины, ограничивается открытием клапанов, которые вместе с регулирующей ступенью называются органами парораспределения. В практике турбиностроения различают два типа парораспределения – дроссельное и сопловое. Дроссельное парораспределение предусматривает подвод пара после открытия клапана равномерно по всей окружности венца сопловых лопаток. Это означает, что функцию изменения расхода выполняет кольцевая щель между клапаном, который перемещается, и его седлом, которое установлено неподвижно. Процесс изменения расхода в этой конструкции связан с дросселированием. Чем меньше открыт клапан, тем больше потери давления пара от дросселирования и тем меньше его расход на цилиндр.

Рис. 3.4. Внешний вид паровой турбины К-300-240

Рис. 3.5. Ротор паровой турбины мощностью 220 МВт

Сопловое парораспределение предусматривает секционирование направляющих лопаток по окружности на несколько сегментов (групп сопел), к каждому из которых организован отдельный подвод пара, оснащенный своим клапаном, который либо закрыт, либо полностью открыт. При открытом клапане потери давления на нем минимальны, а расход пара пропорционален доле окружности, через которую этот пар поступает в турбину. Таким образом, при сопловом парораспределении процесс дросселирования отсутствует, а потери давления сводятся к минимуму.

В случае высокого и сверхвысокого начального давления в системе паровпуска применяются так называемые разгрузочные устройства, которые предназначены для уменьшения начального перепада давления на клапане и снижения усилия, которое необходимо приложить к клапану при его открытии.

В некоторых случаях дросселирование называют еще качественным регулированием расхода пара на турбину, а сопловое парораспределение – количественным.

Система регулирования. Эта система позволяет осуществлять синхронизацию турбогенератора с сетью, устанавливать заданную нагрузку при работе в общую сеть, обеспечивать перевод турбины на холостой ход при сбросе электрической нагрузки. Принципиальная схема системы непрямого регулирования с центробежным регулятором скорости представлена на рисунке 3.7.

С ростом частоты вращения ротора турбины и муфты регулятора центробежная сила грузов увеличивается, муфта регулятора скорости1поднимается, сжимая пружину регулятора и поворачивая рычаг АВ вокруг точки В. Соединенный с рычагом в точке С золотник2смещается из среднего положения вверх и сообщает верхнюю полость гидравлического сервомотора3с напорной линией4через окноa, а нижнюю – со сливной линией5через окноb. Под воздействием перепада давлений поршень сервомотора перемещается вниз, прикрывая регулирующий клапан6и уменьшая пропуск пара в турбину7, что и обусловит снижение частоты вращения ротора. Одновременно со смещением штока сервомотора рычаг АВ поворачивается относительно точки А, смещая золотник вниз и прекращая подачу жидкости в сервомотор. Золотник возвращается в среднее положение, чем стабилизируется переходный процесс при новой (уменьшенной) частоте вращения ротора. Если увеличивается нагрузка турбины и частота вращения ротора падает, то элементы регулятора смещаются в противоположном рассмотренному направлении и процесс регулирования протекает аналогично, но с увеличением пропуска пара в турбину. Это приводит к росту скорости вращения ротора и восстановлению частоты генерируемого тока.

Системы регулирования паровых турбин, применяемых, например, на АЭС, в качестве рабочей жидкости используют, как правило, турбинное масло. Отличительной особенностью систем регулирования турбин К-300240-2 и К-500-240-2 является применение в системе регулирования вместо турбинного масла конденсата водяного пара. На всех турбинах НПО «Турбоатом», помимо традиционных гидравлических систем регулирования, применяют электрогидравлические системы регулирования (ЭГСР) с более высоким быстродействием.

Валоповорот. В турбоагрегатах традиционно применяется «тихоходный» – несколько оборотов в минуту – валоповорот. Валоповоротное устройство предназначено для медленного вращения ротора при пуске и останове турбины для предотвращения теплового искривления ротора. Одна из конструкций валоповоротного устройства изображена на рис. 3.8. Она включает электродвигатель с червяком, входящим в зацепление с червячным колесом1, расположенным на промежуточном валике. На винтовой шпонке этого валика установлена ведущая цилиндрическая шестерня, которая при включении валоповоротного устройства входит в зацепление с ведомой цилиндрической шестерней, сидящей на валу турбины. После подачи пара в турбину частота вращения ротора растет и ведущая шестерня автоматически выходит из зацепления.

Рис. 3.6. Цилиндры высокого, среднего и низкого давления паровой турбины мощностью 300 МВт (нижняя половина)

Рис. 3.7. Принципиальная схема регулирования с однократным усилением: 1 – муфта регулятора; 2 – золотник; 3 – гидравлический сервомотор; 4 – напорная линия; 5 – сливная линия; 6 – регулирующий клапан; 7 – подача пара в турбину

Подшипники и опоры. Паротурбинные агрегаты расположены, как правило, в машинном зале электростанции горизонтально. Такое расположение обусловливает применение в турбине наряду с опорными также и упорных или опорно-упорных подшипников3(см. рис. 3.8). Для опорных подшипников наиболее распространенным в энергетике является парное их количество – на каждый ротор приходится два опорных подшипника. Для тяжелых роторов (роторов низкого давления быстроходных турбин с числом оборотов 3000 об/мин и всех без исключения роторов «тихоходных» турбин с числом оборотов 1500 об/мин) допустимо применение традиционных для энергетического турбиностроения втулочных подшипников. В таком подшипнике нижняя половина вкладыша выполняет роль несущей поверхности, а верхняя половина – роль демпфера любых возмущений, возникающих при эксплуатации. К таким возмущениям можно отнести остаточную динамическую неуравновешенность ротора, возмущения, возникающие при прохождении критических чисел оборотов, возмущения за счет переменных сил от воздействия парового потока. Сила веса тяжелых роторов, направленная вниз, в состоянии подавить, как правило, все эти возмущения, что обеспечивает спокойный ход турбины. А для относительно легких роторов (роторов высокого и среднего давления) все перечисленные возмущения могут оказаться значительными по сравнению с весом ротора, особенно в паровом потоке высокой плотности. Для подавления этих возмущений разработаны так называемые сегментные подшипники. В этих подшипниках каждый сегмент обладает повышенной по сравнению с втулочным подшипником демпфирующей способностью.

Естественно, конструкция сегментного опорного подшипника, где каждый сегмент снабжается маслом индивидуально, значительно сложнее, чем втулочного. Однако резко возросшая надежность окупает это усложнение.

Что касается упорного подшипника, то его конструкция всесторонне рассмотрена еще Стодолой и за истекшее столетие практически не претерпела каких-либо изменений. Опоры, в которых располагаются упорный и опорные подшипники, изготавливают скользящими с «фикспунктом» в районе упорного подшипника. Это обеспечивает минимизацию осевых зазоров в области максимального давления пара, т.е. в области самых коротких лопаток, что в свою очередь позволяет минимизировать в этой зоне потери от утечек.

Рис. 3.8. Продольный разрез турбины К-50-90: 1 – ротор турбины; 2 – корпус турбины; 3 – опорно-упорный подшипник; 4 – опорный подшипник; 5 – регулирующий клапан; 6 – сопловая коробка; 7 – кулачковый вал; 8 – сервомотор; 9 – главный масляный насос; 10 – регулятор скорости; 11 – следящий золотник; 12 – картер переднего подшипника; 13 – червячное колесо валоповоротного устройства; 14 – соединительная муфта; 15 – выхлопной патрубок турбины; 16 – насадные диски; 17 – рабочие лопатки; 18 – диафрагмы; 19 – обоймы диафрагм; 20 – обоймы переднего концевого уплотнения; 21 – перепускная труба (от стопорного к регулирующему клапану)

Типичная конструкция одноцилиндровой конденсационной турбины мощностью 50 МВт с начальными параметрами пара 8,8 МПа, 535°С представлена на рис. 3.8. В этой турбине применен комбинированный ротор. Первые 19 дисков, работающих в зоне высокой температуры, откованы как одно целое с валом турбины, последние три диска — насадные.

Неподвижную сопловую решетку, закрепленную в сопловых коробках или диафрагмах с соответствующей вращающейся рабочей решеткой, закрепленной на следующем по ходу пара диске, называютступенью турбины. Проточная часть рассматриваемой одноцилиндровой турбины состоит из 22 ступеней, из которых первая называетсярегулирующей. В каждой сопловой решетке поток пара ускоряется и приобретает направление безударного входа в каналы рабочих лопаток. Усилия, развиваемые потоком пара на рабочих лопатках, вращают диски и связанный с ними вал. По мере понижения давления пара при прохождении от первой к последней ступени удельный объем пара растет, что требует увеличения проходных сечений сопловых и рабочих решеток и, соответственно, высоты лопаток и среднего диаметра ступеней.

К переднему торцу ротора прикреплен приставной конец вала, на котором установлены бойки предохранительных выключателей (датчики автомата безопасности), воздействующие на стопорный и регулирующие клапаны и прекращающие доступ пара в турбину при превышении частоты вращения ротора на 10–12% по сравнению с расчетной.

Статор турбины состоит из корпуса, в который вварены сопловые коробки, соединенные с помощью сварки с клапанными коробками, установлены обоймы концевых уплотнений, обоймы диафрагм, сами диафрагмы и их уплотнения. Корпус этой турбины, кроме обычного горизонтального разъема, имеет два вертикальных разъема, разделяющих его на переднюю часть, среднюю часть и выходной патрубок. Передняя часть корпуса выполнена литой, средняя часть корпуса и выходной патрубок сделаны сварными.

В переднем картере расположен опорноупорный подшипник, в заднем картере – опорные подшипники роторов турбины и генератора. Передний картер установлен на фундаментной плите и при тепловом расширении корпуса турбины может свободно перемещаться по этой плите. Задний картер выполнен за одно целое с выхлопным патрубком турбины, который при тепловых расширениях остается неподвижным благодаря его фиксации пересечением поперечной и продольной шпонок, образующих так называемыйфикспункттурбины, или мертвую точку. В заднем картере турбины расположено валоповоротное устройство.

В турбине К-50-90 применена сопловая система парораспределения, т.е. количественное регулирование расхода пара. Устройство автоматического регулирования турбины состоит из четырех регулирующих клапанов, распределительного кулачкового вала, соединенного зубчатой рейкой с сервомотором. Сервомотор получает импульс от регулятора скорости и регулирует положение клапанов. Профили кулачков выполнены так, чтобы регулирующие клапаны открывались поочередно один за другим. Последовательное открытие или закрытие клапанов исключает дросселирование пара, проходящего через полностью открытые клапаны при пониженных нагрузках турбины.

Конденсатор и вакуумная система.

Подавляющее большинство турбин, используемых в мировой энергетике для производства электрической энергии, являются конденсационными. Это означает, что процесс расширения рабочего тела (водяного пара) продолжается до давлений, значительно меньших, чем атмосферное. В результате такого расширения дополнительно выработанная энергия может составлять несколько десятков процентов от суммарной выработки.

Конденсатор – теплообменный аппарат, предназначенный для превращения отработавшего в турбине пара в жидкое состояние (конденсат). Конденсация пара происходит при соприкосновении его с поверхностью тела, имеющего более низкую температуру, чем температура насыщения пара при данном давлении в конденсаторе. Конденсация пара сопровождается выделением теплоты, затраченной ранее на испарение жидкости, которая отводится при помощи охлаждающей среды. В зависимости от вида охлаждающей среды конденсаторы разделяются наводяныеивоздушные. Современные паротурбинные установки снабжены, как правило, водяными конденсаторами. Воздушные конденсаторы имеют по сравнению с водяными более сложную конструкцию и не получили в настоящее время широкого распространения.

Рис. 3.9. Схема двухходового поверхностного конденсатора: 1 – корпус конденсатора; 2,3 – крышки водяных камер; 4 – трубная доска; 5 – конденсаторные трубки; 6 – приемный паровой патрубок; 7 – конденсатосборник; 8 – патрубок отсоса паровоздушной смеси; 9 – воздухоохладитель; 10 – паронаправляющий щит; 11 – входной патрубок; 12 – выходной патрубок для охлаждающей воды; 13 – разделительная перегородка; 14 – паровое пространство конденсатора; 15,16,17 – входная, поворотная и выходная камеры охлаждающей воды; А – вход отработавшего пара; Б – отсос паровоздушной смесии; В, Г – вход и выход охлаждающей воды; Д – отвод конденсата

Конденсационная установка паровой турбины состоит из собственно конденсатора и дополнительных устройств, обеспечивающих его работу. Подача охлаждающей воды в конденсатор осуществляется циркуляционным насосом. Конденсатные насосы служат для откачки из нижней части конденсатора конденсата и подачи его в систему регенеративного подогрева питательной воды. Воздухоотсасывающие устройства предназначены для удаления воздуха, поступающего в турбину и конденсатор вместе с паром, а также через неплотности фланцевых соединений, концевые уплотнения и другие места.

Схема простейшего поверхностного конденсатора водяного типа приведена на рис. 3.9.

Он состоит из корпуса, торцевые стороны которого закрыты трубными досками с конденсаторными трубками, выходящими своими концами в водяные камеры. Камеры разделяются перегородкой, которая делит все конденсаторные трубки на две секции, образующие так называемые «ходы» воды (в данном случае – два хода). Вода поступает в водяную камеру через патрубок и проходит по трубкам, расположенным ниже перегородки. В поворотной камере вода переходит во вторую секцию трубок, расположенную по высоте выше перегородки. По трубкам этой секции вода идет в обратном направлении, совершая второй «ход», попадает в камеру и через выходной патрубок направляется на слив.

Пар, поступающий из турбины в паровое пространство, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая вода. За счет резкого уменьшения удельного объема пара в конденсаторе создается низкое давление (вакуум). Чем ниже температура и больше расход охлаждающей среды, тем более глубокий вакуум можно получить в конденсаторе. Образующийся конденсат стекает в нижнюю часть корпуса конденсатора, а затем в конденсатосборник.

Удаление воздуха (точнее, паровоздушной смеси) из конденсатора производится воздухоотсасывающим устройством через патрубок8. В целях уменьшения объема отсасываемой паровоздушной смеси ее охлаждают в специально выделенном с помощью перегородки отсеке конденсатора – воздухоохладителе.

Для отсоса воздуха из воздухоохладителя устанавливается трехступенчатый пароструйный эжектор – основной. Помимо основного эжектора, который постоянно находится в эксплуатации, в турбоустановке предусмотрены эжектор пусковой конденсатора (водоструйный) и эжектор пусковой циркуляционной системы. Эжектор пусковой конденсатора предназначен для быстрого углубления вакуума при пуске турбоустановки. Эжектор пусковой циркуляционной системы служит для отсоса паровоздушной смеси из циркуляционной системы конденсатора. Конденсатор турбоустановки снабжен также двумя конденсатосборниками, из которых образующийся конденсат непрерывно откачивается конденсатными насосами.

На переходном патрубке конденсатора размещены приемно-сбросные устройства, цель которых – обеспечить сброс пара из котла в конденсатор в обход турбины при внезапном полном сбросе нагрузки или в пусковых режимах. Расходы сбрасываемого пара могут достигать 60% полного расхода пара на турбину. Конструкция приемносбросного устройства предусматривает, помимо снижения давления, снижение температуры сбрасываемого в конденсатор пара с соответствующим ее регулированием. Она должна поддерживаться на 10–20°С выше температуры насыщения при данном давлении в конденсаторе.

Промежуточный перегрев и регенерация в турбоустановках. В теплоэнергетической установке с промежуточным перегревом пар после расширения в цилиндре высокого давления (ЦВД) турбины направляется в котел для вторичного перегрева, где температура его повышается практически до того же уровня, что и перед ЦВД. После промежуточного перегрева пар направляется в цилиндр низкого давления, где расширяется до давления в конденсаторерк.

Экономичность идеального теплового цикла с промежуточным перегревом зависит от параметров пара, отводимого на промежуточный перегрев. Оптимальную температуру параТ1опт, при которой он должен отводиться на промежуточный перегрев, можно ориентировочно оценить как 1,02–1,04 от температуры питательной воды. Давление пара перед промежуточным перегревом обычно выбирают равным 0,15—0,3 давления свежего пара. В результате промперегрева общая экономичность цикла возрастет. При этом благодаря уменьшению влажности пара в последних ступенях турбины низкого давления возрастут относительные внутренние к.п.д. этих ступеней, а следовательно, увеличится и к.п.д. всей турбины. Потеря давленияΔрппв тракте промежуточного перегрева (в паропроводе от турбины к котлу, перегревателе и паропроводе от котла к турбине) снижает эффект от применения промперегрева пара и поэтому допускается не более 10% потери абсолютного давления в промежуточном перегревателе.

Система регенерации в турбоустановках предполагает подогрев конденсата, образовавшегося в конденсаторе, паром, который отобран из проточной части турбины. Для этого основной поток конденсата пропускают через подогреватели, в трубную систему которых поступает конденсат, а в корпус подается пар из отборов турбины. Для подогрева основного конденсата применяют подогреватели низкого давления (ПНД), подогреватели высокого давления (ПВД) и между ними – деаэратор (Д). Деаэратор предназначен для удаления из основного конденсата остатков воздуха, растворенного в конденсате.

Идея регенерации в ПТУ возникла в связи с потребностью снижения потерь теплоты в конденсаторе. Известно, что потери теплоты с охлаждающей водой в конденсаторе турбины прямо пропорциональны количеству отработавшего пара, поступающего в конденсатор. Расход пара в конденсатор можно значительно уменьшить (на 30–40%) путем отбора его для подогрева питательной воды за ступенями турбины после того, как он произвел работу в предшествующих ступенях. Такой процесс называют регенеративным подогревом питательной воды. Регенеративный цикл по сравнению с обычным имеет более высокую среднюю температуру подвода теплоты при неизменной температуре отвода и обладает поэтому более высоким термическим к.п.д. Повышение экономичности в цикле с регенерацией пропорционально мощности, вырабатываемой на тепловом потреблении, т. е. на базе теплоты, переданной питательной воде в системе регенерации. Путем регенеративного подогрева температура питательной воды могла бы быть повышена до температуры, близкой к температуре насыщения, отвечающей давлению свежего пара. Однако при этом сильно возросли бы потери теплоты с уходящими газами котла. Поэтому международные нормы типоразмеров паровых турбин рекомендуют выбирать температуру питательной воды на входе в котел равной 0,65–0,75 температуры насыщения, отвечающей давлению в котле. В соответствии с этим при сверхкритических параметрах пара, в частности при начальном давлении егор0=23,5 МПа, температура питательной воды принимается равной 265–275°С.

Рис. 3.10. Тепловая схема турбинной установки с использованием утечек пара концевых уплотнений и уплотнений штоков клапанов турбины в системе регенерации: Т – турбина; Г – генератор; К – конденсатор; КН – конденсатный насос; ЭЖ – основной эжектор; ОЭ – охладитель основного эжектора; ЭУ – эжектор уплотнений; ОЭУ – охладитель пара эжектора отсоса уплотнений; СП – сальниковый подогреватель; П1–П4 – подогреватели; ОК – охладитель конденсата; Д – деаэратор; ПН – питательный насос

Регенерация положительно влияет на относительный внутренний к.п.д. первых ступеней благодаря повышенному расходу пара через ЦВД и соответствующему увеличению высоты лопаток. Объемный пропуск пара через последние ступени турбины при регенерации уменьшается, что снижает потери с выходной скоростью в последних ступенях турбины.

В современных паротурбинных установках средней и большой мощности в целях повышения их экономичности применяют широко развитую систему регенерации с использованием пара концевых лабиринтовых уплотнений, уплотнений штоков регулирующих клапанов турбины и др. (рис.3.10).

Свежий пар из котла поступает в турбину по главному паропроводу с параметрамир0,t0. После расширения в проточной части турбины до давленияркон направляется в конденсатор. Для поддержания глубокого вакуума из парового пространства конденсатора основным эжектором (ЭЖ) отсасывается паровоздушная смесь. Конденсат отработавшего пара стекает в конденсатосборник, затем конденсатными насосами (КН) подается через охладитель эжектора (ОЭ), охладитель пара эжектора отсоса уплотнений (ОЭУ), сальниковый подогреватель (СП) и регенеративные подогреватели низкого давления П1, П2 в деаэратор Д. Деаэратор предназначен для удаления растворенных в конденсате агрессивных газов (О2и СО2), вызывающих коррозию металлических поверхностей. Кислород и свободная углекислота попадают в конденсат из-за присосов воздуха через неплотности вакуумной системы турбинной установки и с добавочной водой. В деаэраторе агрессивные газы удаляются при нагревании конденсата и добавочной воды паром до температуры насыщения греющего пара. В современных паротурбинных установках устанавливают деаэраторы повышенного давления 0,6—0,7 МПа с температурой насыщения 158–165°С. Конденсат пара на участке от конденсатора до деаэратора называют конденсатом, а на участке от деаэратора до котла – питательной водой.

Питательная вода из деаэратора забирается питательным насосом (ПН) и под высоким давлением (на блоках со сверхкритическими и суперсверхкритическими параметрами пара до 35 МПа) подается через подогреватели высокого давления ПЗ, П4 в котел.

Пар концевых лабиринтовых уплотнений турбины отсасывается из крайних камер уплотнений, где поддерживается давление 95—97 кПа, специальным эжектором и направляется в охладитель эжектора отсоса, через который прокачивается основной конденсат. Часть пара повышенного давления из концевых лабиринтовых уплотнений направляется в первый и третий регенеративные отборы. С целью предотвращения присоса воздуха в вакуумную систему через концевые уплотнения турбины в каждой предпоследней камере концевых уплотнений поддерживается небольшое избыточное (110—120 кПа) давление с помощью специального регулятора, установленного на подводе уплотняющего пара к этой камере из деаэратора.

Питательная установка. Питательная установка турбоагрегата состоит из главного питательного насоса с турбинным приводом, пускорезервного питательного

насоса с электроприводом и бустерных насосов с электроприводом. Питательная установка предназначена для подачи питательной воды из деаэратора через подогреватели высокого давления в котел. Насос включается в работу при нагрузке блока 50–60% и рассчитан на работу в диапазоне 30–100%. Пускорезервный питательный насос ПЭН приводится во вращение асинхронным электродвигателем.

Сборка паровой турбины на испытательном стенде

Устройство турбокомпрессора

  1. Улитка турбины
  2. Крыльчатка турбины
  3. Улитка компрессора
  4. Крыльчатка компрессора
  5. Система подшипников

Улитка компрессора

Улитка турбины изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению крыльчатки. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку.


    Параметры:
  • Обычно это сплав железа со сферойдным графитом
  • Обычно это установочная база, несущая вес всей турбины
  • Требования
    • ударопрочность
    • стойкость к окислению
    • жаропрочность
    • жаростойкость
    • легкость механической обработки

Крыльчатка турбины


Крыльчатка турбины установлена в корпусе турбины и соединена штифтом, который вращает крыльчатку компрессора.

Параметры:

  • качественное покрытие из никелевого сплава
  • сделана из прочных и стойких сплавов • выдерживает температуры работы до 760 °C
  • Основные требования
    • стойкость к изнашиванию
    • стойкость к деформациям
    • стойкость к коррозии

Улитка компрессора

Улитка компрессора отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так «песочное» литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины.

Параметры:

• Обычно изготовлена из различных алюминевых сплавов
• точные размеры и формы profile machining to match impeller blade shape
• рабочие температуры до 200 °C
• Основные требования
– Прочность к ударным и механическим нагрузкам
– качество обрабоки и точные размеры

Крыльчатка компрессора


Сделана из алюминиевых сплавов методом литья.
Для литья используется резиновая форма. По ней делается форма для литья и в нее заливается расплавленный металл. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала.

Параметры:

• обычно алюминиевый сплав (Cu-Si)
• начало использования этотого процесса литья в 1976
• Основные требования
– высокое сопротивление усталости
– высокое сопротивление растяжению
– высокое сопротивление коррозии
– на некоторых моделях крыльчаток, для очень мощной и продолжительной работы при больших температурах, лопасти изготавливаются из титана

Система смазки подшипников


Серый металлический корпус системы подшипника броска обеспечивает местоположения для плавающей системы подшипника для вала, турбины и компрессора, который может вращаться до 170,000 оборотов/минут.

Параметры:

• обычно сделанна из металла
• в призводстве и обработки использованы шлифовка, расточка, сверление и полировка
• сложная геометрическая конструкция для охлаждения
• Основные требования
– качество обработки
– жесткость
– термостойкость

Система подшипников


Система подшипника должна противостоять высоким температурам, переключениям режимов работы, наличию грязи в смазке и т.д.

Подшипники изготовлены из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости.
Укрепленные стальные упорные кольца и масляные проточки особенно точно изготовлены. Осевое давление поглащается бронзовым гидродинамическим подшипником осевого давления, расположенным в конец сборки вала. Точная калибровка обеспечивает равномерную нагрузку подшипника.

Turbine — Energy Education

Рис. 1. Турбины могут быть довольно большими, паровая турбина вверху масштабируется вместе с человеком. [1]

Турбина — это устройство, которое использует кинетическую энергию некоторой жидкости, такой как вода, пар, воздух или газообразные продукты сгорания, и превращает ее во вращательное движение самого устройства. [2] Турбины обычно используются в производстве электроэнергии, двигателях и силовых установках. Турбины — это машины (в частности, турбомашины), потому что турбины передают и модифицируют энергию.Простая турбина состоит из ряда лопаток — в настоящее время сталь является одним из наиболее распространенных используемых материалов — и позволяет жидкости попадать в турбину, толкая лопатки. Эти лопасти вращаются во время протекания жидкости, улавливая часть энергии в виде вращательного движения. Жидкость, протекающая через турбину, теряет кинетическую энергию и покидает турбину с меньшей энергией, чем вначале. [2]

Турбины используются во многих различных областях, и каждый тип турбины имеет немного отличающуюся конструкцию для правильного выполнения своей работы.Турбины используются в ветроэнергетике, гидроэнергетике, в тепловых двигателях и для движения. Турбины чрезвычайно важны из-за того, что почти все электричество производится путем преобразования механической энергии турбины в электрическую энергию через генератор. [2]

Тепловые двигатели

основная статья

В тепловых двигателях используются турбины (а также поршни), поскольку они могут эффективно извлекать энергию из жидкостей.Кроме того, турбины требуют довольно небольшого обслуживания.

Газовые турбины часто используются в тепловых двигателях, поскольку они являются одними из самых гибких типов турбин. Одно из конкретных применений этих газовых турбин — в реактивных двигателях. [2] В этих газовых турбинах сжатый воздух нагревается и смешивается с некоторым количеством топлива. Когда эта смесь воспламеняется, она быстро расширяется. Расширяющийся воздух проталкивается в турбину, заставляя ее вращаться. Поскольку они используют сжатый воздух, большие высоты не влияют на эффективность турбин, что делает их идеальными для использования в самолетах. [3] . Схема газовой турбины показана на рисунке 2 ниже.

Рисунок 2. Схема газотурбинного двигателя. [4]

Эти турбины используются не только в самолетах, но и для выработки электроэнергии на электростанциях, работающих на природном газе. Дымовые газы в этом случае возникают в результате сгорания природного газа. [3]

Производство электроэнергии

Гидроэлектроэнергия

основная статья и | 3D модель
Рисунок 3.Схема гидроэлектрической турбины. [5]

На гидроэлектростанциях вода удерживается за плотиной и сбрасывается через напорный водовод. Вода, обладающая кинетической и потенциальной энергией, может падать на турбину, которая вращает вал, соединенный с генератором, таким образом вырабатывая электричество. Эти турбины необходимы в области гидроэнергетики — процесса получения энергии из воды.

Конструкция гидроэлектрических турбин аналогична для различных типов гидроэлектростанций (дополнительную информацию см. В русловых гидроэлектростанциях и водохранилищах).К вращающемуся валу или пластине прикреплен ряд лопастей. Затем вода проходит через турбину над лопастями, заставляя внутренний вал вращаться. Затем это вращательное движение передается генератору, в котором вырабатывается электричество. Существует множество различных типов турбин, которые лучше всего использовать в разных ситуациях. Каждый тип турбины создан для обеспечения максимальной мощности в той ситуации, в которой он используется (примеры различных типов гидроэнергетических турбин включают турбины Фрэнсиса, турбины Каплана и турбины Пелтона).Есть много факторов, которые необходимо изучить, чтобы определить, какую турбину следует использовать. Эти факторы включают гидравлический напор, сброс гидроэлектростанции и стоимость. [6]

На этих объектах обычно используются два типа турбин, выбор которых зависит от характеристик гидроэлектростанции. Это реактивные и импульсные турбины. Для получения дополнительной информации о том, как работают эти турбины, и более подробной информации о других турбинах щелкните здесь.

Рисунок 4. Схема ветряной турбины. [7]

Ветер

основная статья и 3D модель

Ветровые турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. Эти турбины состоят из трех основных компонентов. Первым из них являются лопасти несущего винта, которые имеют форму крыльев самолета и предназначены для улавливания воздуха, заставляя лопасти вращаться.Второй компонент — гондола, набор шестерен и генератор, преобразующий вращение лопасти в электрическую энергию. Наконец, башня — это большая подставка, на которой установлены лопасти и гондола. [8]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons. (2 сентября 2015 г.). Turbine Philippsburg [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/c/c2/Turbine_Philippsburg-1.jpg
  2. 2.0 2,1 2,2 2,3 Энергетический словарь под редакцией Катлера Дж. Кливленда и Кристофера Г. Морриса, Elsevier, 2014. ProQuest Ebook Central, https: //ebookcentral-proquest-com.ezproxy.lib. ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=1821967.
  3. 3,0 3,1 Energy.gov. (2 сентября 2015 г.). Как работают газовые турбины [Online]. Доступно: http://energy.gov/fe/how-gas-turbine-power-plants-work
  4. ↑ Wikimedia Commons [Online], Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  5. ↑ Wikimedia Commons. (2 сентября 2015 г.). Водяная турбина [Онлайн]. Доступно: http://commons.wikimedia.org/wiki/File:Water_turbine.svg.
  6. ↑ BrightHub Engineering. (2 сентября 2015 г.). Что такое гидравлические турбины? [Онлайн]. Доступно: http://www.brighthubengineering.com/fluid-mechanics-hydraulics/26551-hydraulic-turbines-definition-and-basics/
  7. ↑ Wikimedia Commons. Схема ветряной турбины [Онлайн].Доступно: https://commons.wikimedia.org/wiki/File:Wind_turbine_diagram.svg
  8. ↑ Энергетический центр Висконсина. (2 сентября 2015 г.). Детали турбины [Онлайн]. Доступно: http://www.ecw.org/windpower/web/cat2a.html

Turbine — Energy Education

Рис. 1. Турбины могут быть довольно большими, паровая турбина вверху масштабируется вместе с человеком. [1]

Турбина — это устройство, которое использует кинетическую энергию некоторой жидкости, такой как вода, пар, воздух или газообразные продукты сгорания, и превращает ее во вращательное движение самого устройства. [2] Турбины обычно используются в производстве электроэнергии, двигателях и силовых установках. Турбины — это машины (в частности, турбомашины), потому что турбины передают и модифицируют энергию. Простая турбина состоит из ряда лопаток — в настоящее время сталь является одним из наиболее распространенных используемых материалов — и позволяет жидкости попадать в турбину, толкая лопатки. Эти лопасти вращаются во время протекания жидкости, улавливая часть энергии в виде вращательного движения. Жидкость, протекающая через турбину, теряет кинетическую энергию и покидает турбину с меньшей энергией, чем вначале. [2]

Турбины используются во многих различных областях, и каждый тип турбины имеет немного отличающуюся конструкцию для правильного выполнения своей работы. Турбины используются в ветроэнергетике, гидроэнергетике, в тепловых двигателях и для движения. Турбины чрезвычайно важны из-за того, что почти все электричество производится путем преобразования механической энергии турбины в электрическую энергию через генератор. [2]

Тепловые двигатели

основная статья

В тепловых двигателях используются турбины (а также поршни), поскольку они могут эффективно извлекать энергию из жидкостей.Кроме того, турбины требуют довольно небольшого обслуживания.

Газовые турбины часто используются в тепловых двигателях, поскольку они являются одними из самых гибких типов турбин. Одно из конкретных применений этих газовых турбин — в реактивных двигателях. [2] В этих газовых турбинах сжатый воздух нагревается и смешивается с некоторым количеством топлива. Когда эта смесь воспламеняется, она быстро расширяется. Расширяющийся воздух проталкивается в турбину, заставляя ее вращаться. Поскольку они используют сжатый воздух, большие высоты не влияют на эффективность турбин, что делает их идеальными для использования в самолетах. [3] . Схема газовой турбины показана на рисунке 2 ниже.

Рисунок 2. Схема газотурбинного двигателя. [4]

Эти турбины используются не только в самолетах, но и для выработки электроэнергии на электростанциях, работающих на природном газе. Дымовые газы в этом случае возникают в результате сгорания природного газа. [3]

Производство электроэнергии

Гидроэлектроэнергия

основная статья и | 3D модель
Рисунок 3.Схема гидроэлектрической турбины. [5]

На гидроэлектростанциях вода удерживается за плотиной и сбрасывается через напорный водовод. Вода, обладающая кинетической и потенциальной энергией, может падать на турбину, которая вращает вал, соединенный с генератором, таким образом вырабатывая электричество. Эти турбины необходимы в области гидроэнергетики — процесса получения энергии из воды.

Конструкция гидроэлектрических турбин аналогична для различных типов гидроэлектростанций (дополнительную информацию см. В русловых гидроэлектростанциях и водохранилищах).К вращающемуся валу или пластине прикреплен ряд лопастей. Затем вода проходит через турбину над лопастями, заставляя внутренний вал вращаться. Затем это вращательное движение передается генератору, в котором вырабатывается электричество. Существует множество различных типов турбин, которые лучше всего использовать в разных ситуациях. Каждый тип турбины создан для обеспечения максимальной мощности в той ситуации, в которой он используется (примеры различных типов гидроэнергетических турбин включают турбины Фрэнсиса, турбины Каплана и турбины Пелтона).Есть много факторов, которые необходимо изучить, чтобы определить, какую турбину следует использовать. Эти факторы включают гидравлический напор, сброс гидроэлектростанции и стоимость. [6]

На этих объектах обычно используются два типа турбин, выбор которых зависит от характеристик гидроэлектростанции. Это реактивные и импульсные турбины. Для получения дополнительной информации о том, как работают эти турбины, и более подробной информации о других турбинах щелкните здесь.

Рисунок 4. Схема ветряной турбины. [7]

Ветер

основная статья и 3D модель

Ветровые турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. Эти турбины состоят из трех основных компонентов. Первым из них являются лопасти несущего винта, которые имеют форму крыльев самолета и предназначены для улавливания воздуха, заставляя лопасти вращаться.Второй компонент — гондола, набор шестерен и генератор, преобразующий вращение лопасти в электрическую энергию. Наконец, башня — это большая подставка, на которой установлены лопасти и гондола. [8]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons. (2 сентября 2015 г.). Turbine Philippsburg [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/c/c2/Turbine_Philippsburg-1.jpg
  2. 2.0 2,1 2,2 2,3 Энергетический словарь под редакцией Катлера Дж. Кливленда и Кристофера Г. Морриса, Elsevier, 2014. ProQuest Ebook Central, https: //ebookcentral-proquest-com.ezproxy.lib. ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=1821967.
  3. 3,0 3,1 Energy.gov. (2 сентября 2015 г.). Как работают газовые турбины [Online]. Доступно: http://energy.gov/fe/how-gas-turbine-power-plants-work
  4. ↑ Wikimedia Commons [Online], Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  5. ↑ Wikimedia Commons. (2 сентября 2015 г.). Водяная турбина [Онлайн]. Доступно: http://commons.wikimedia.org/wiki/File:Water_turbine.svg.
  6. ↑ BrightHub Engineering. (2 сентября 2015 г.). Что такое гидравлические турбины? [Онлайн]. Доступно: http://www.brighthubengineering.com/fluid-mechanics-hydraulics/26551-hydraulic-turbines-definition-and-basics/
  7. ↑ Wikimedia Commons. Схема ветряной турбины [Онлайн].Доступно: https://commons.wikimedia.org/wiki/File:Wind_turbine_diagram.svg
  8. ↑ Энергетический центр Висконсина. (2 сентября 2015 г.). Детали турбины [Онлайн]. Доступно: http://www.ecw.org/windpower/web/cat2a.html

Turbine — Energy Education

Рис. 1. Турбины могут быть довольно большими, паровая турбина вверху масштабируется вместе с человеком. [1]

Турбина — это устройство, которое использует кинетическую энергию некоторой жидкости, такой как вода, пар, воздух или газообразные продукты сгорания, и превращает ее во вращательное движение самого устройства. [2] Турбины обычно используются в производстве электроэнергии, двигателях и силовых установках. Турбины — это машины (в частности, турбомашины), потому что турбины передают и модифицируют энергию. Простая турбина состоит из ряда лопаток — в настоящее время сталь является одним из наиболее распространенных используемых материалов — и позволяет жидкости попадать в турбину, толкая лопатки. Эти лопасти вращаются во время протекания жидкости, улавливая часть энергии в виде вращательного движения. Жидкость, протекающая через турбину, теряет кинетическую энергию и покидает турбину с меньшей энергией, чем вначале. [2]

Турбины используются во многих различных областях, и каждый тип турбины имеет немного отличающуюся конструкцию для правильного выполнения своей работы. Турбины используются в ветроэнергетике, гидроэнергетике, в тепловых двигателях и для движения. Турбины чрезвычайно важны из-за того, что почти все электричество производится путем преобразования механической энергии турбины в электрическую энергию через генератор. [2]

Тепловые двигатели

основная статья

В тепловых двигателях используются турбины (а также поршни), поскольку они могут эффективно извлекать энергию из жидкостей.Кроме того, турбины требуют довольно небольшого обслуживания.

Газовые турбины часто используются в тепловых двигателях, поскольку они являются одними из самых гибких типов турбин. Одно из конкретных применений этих газовых турбин — в реактивных двигателях. [2] В этих газовых турбинах сжатый воздух нагревается и смешивается с некоторым количеством топлива. Когда эта смесь воспламеняется, она быстро расширяется. Расширяющийся воздух проталкивается в турбину, заставляя ее вращаться. Поскольку они используют сжатый воздух, большие высоты не влияют на эффективность турбин, что делает их идеальными для использования в самолетах. [3] . Схема газовой турбины показана на рисунке 2 ниже.

Рисунок 2. Схема газотурбинного двигателя. [4]

Эти турбины используются не только в самолетах, но и для выработки электроэнергии на электростанциях, работающих на природном газе. Дымовые газы в этом случае возникают в результате сгорания природного газа. [3]

Производство электроэнергии

Гидроэлектроэнергия

основная статья и | 3D модель
Рисунок 3.Схема гидроэлектрической турбины. [5]

На гидроэлектростанциях вода удерживается за плотиной и сбрасывается через напорный водовод. Вода, обладающая кинетической и потенциальной энергией, может падать на турбину, которая вращает вал, соединенный с генератором, таким образом вырабатывая электричество. Эти турбины необходимы в области гидроэнергетики — процесса получения энергии из воды.

Конструкция гидроэлектрических турбин аналогична для различных типов гидроэлектростанций (дополнительную информацию см. В русловых гидроэлектростанциях и водохранилищах).К вращающемуся валу или пластине прикреплен ряд лопастей. Затем вода проходит через турбину над лопастями, заставляя внутренний вал вращаться. Затем это вращательное движение передается генератору, в котором вырабатывается электричество. Существует множество различных типов турбин, которые лучше всего использовать в разных ситуациях. Каждый тип турбины создан для обеспечения максимальной мощности в той ситуации, в которой он используется (примеры различных типов гидроэнергетических турбин включают турбины Фрэнсиса, турбины Каплана и турбины Пелтона).Есть много факторов, которые необходимо изучить, чтобы определить, какую турбину следует использовать. Эти факторы включают гидравлический напор, сброс гидроэлектростанции и стоимость. [6]

На этих объектах обычно используются два типа турбин, выбор которых зависит от характеристик гидроэлектростанции. Это реактивные и импульсные турбины. Для получения дополнительной информации о том, как работают эти турбины, и более подробной информации о других турбинах щелкните здесь.

Рисунок 4. Схема ветряной турбины. [7]

Ветер

основная статья и 3D модель

Ветровые турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. Эти турбины состоят из трех основных компонентов. Первым из них являются лопасти несущего винта, которые имеют форму крыльев самолета и предназначены для улавливания воздуха, заставляя лопасти вращаться.Второй компонент — гондола, набор шестерен и генератор, преобразующий вращение лопасти в электрическую энергию. Наконец, башня — это большая подставка, на которой установлены лопасти и гондола. [8]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons. (2 сентября 2015 г.). Turbine Philippsburg [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/c/c2/Turbine_Philippsburg-1.jpg
  2. 2.0 2,1 2,2 2,3 Энергетический словарь под редакцией Катлера Дж. Кливленда и Кристофера Г. Морриса, Elsevier, 2014. ProQuest Ebook Central, https: //ebookcentral-proquest-com.ezproxy.lib. ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=1821967.
  3. 3,0 3,1 Energy.gov. (2 сентября 2015 г.). Как работают газовые турбины [Online]. Доступно: http://energy.gov/fe/how-gas-turbine-power-plants-work
  4. ↑ Wikimedia Commons [Online], Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  5. ↑ Wikimedia Commons. (2 сентября 2015 г.). Водяная турбина [Онлайн]. Доступно: http://commons.wikimedia.org/wiki/File:Water_turbine.svg.
  6. ↑ BrightHub Engineering. (2 сентября 2015 г.). Что такое гидравлические турбины? [Онлайн]. Доступно: http://www.brighthubengineering.com/fluid-mechanics-hydraulics/26551-hydraulic-turbines-definition-and-basics/
  7. ↑ Wikimedia Commons. Схема ветряной турбины [Онлайн].Доступно: https://commons.wikimedia.org/wiki/File:Wind_turbine_diagram.svg
  8. ↑ Энергетический центр Висконсина. (2 сентября 2015 г.). Детали турбины [Онлайн]. Доступно: http://www.ecw.org/windpower/web/cat2a.html

Паровая турбина — Конверсии — Студенческая энергия

Паровая турбина — это механическое устройство, которое извлекает тепловую энергию из сжатого пара и преобразует ее в механическую работу. Поскольку турбина генерирует вращательное движение, она особенно подходит для привода электрических генераторов — около 90% всей выработки электроэнергии в Соединенных Штатах (1996 г.) приходится на паровые турбины 1 .Сэр Чарльз А. Парсонс изобрел первую современную турбину, реактивную турбину, в 1884 году. Подключенная к динамо-машине, турбина производила 7,5 кВт электроэнергии. За время жизни Парсонса эта генерирующая мощность увеличилась в 10 000 раз. Паровые турбины варьируются от блоков <0,75 кВт до блоков 1,5 ГВт. Большие турбины используются для выработки электроэнергии.

Как следует из названия, паровая турбина приводится в действие паром. Когда горячий газообразный пар проходит мимо вращающихся лопаток турбины, пар расширяется и охлаждается, выделяя большую часть содержащейся в нем энергии.Этот пар непрерывно вращает лопасти. Таким образом, лопасти преобразуют большую часть потенциальной энергии пара в кинетическую энергию. Затем турбина используется для запуска генератора, вырабатывающего электричество.

Основными частями потоковых турбин являются лопатки и роторы. Набор лопастей известен как сцена. У них также есть входы для пара (обычно набор форсунок) и выходы для пара. Два независимых механизма, известные как регуляторы, используются для обеспечения безопасной работы турбины.

Два основных типа паровых турбин:

  • Импульсная турбина : Вращающиеся лопасти подобны глубоким лопаткам.Высокоскоростные струи пара, поступающего из сопел тщательно продуманной формы, попадают в лопасти, толкают их серией импульсов и отражаются в другую сторону с таким же давлением, но со значительно меньшей скоростью 3 .
  • Реакционная турбина : В реакционной турбине есть второй набор неподвижных лопаток, прикрепленных к внутренней части корпуса турбины. Они помогают ускорить и направить пар на вращающиеся лопасти под прямым углом, прежде чем пар рассеется с пониженной температурой и давлением. 2

Десять ведущих производителей турбин 2017 г.

Мы взяли данные FTI Consulting за 2016 год, чтобы составить нашу таблицу десяти ведущих производителей оригинального оборудования, выделив новые установки, глобальную совокупную емкость и количество рынков, на которых они в настоящее время активны для окончательного заказа, с перспективным взглядом на книги заказов. , продуктовые предложения и стратегия компании.

Как бы вы ни сложили цифры, Vestas — ведущий мировой поставщик ветряных турбин.

Датский производитель, включая оффшорное совместное предприятие MHI Vestas, установил больше новых мощностей, чем любая другая компания в течение 2016 года, имеет самую большую совокупную долю рынка и был активен на самом большом количестве мировых рынков.

Goldwind фактически продала больше турбин за год — 3 656 против 3 589 Vestas, но средняя паспортная мощность его машин составляла 1,8 МВт против 2,5 МВт турбин Vestas.

Десять рассмотренных здесь производителей отвечали за более 43 ГВт новых ветроэнергетических мощностей в 2016 году, что составляет 76% мирового рынка, что составляет почти 20 000 турбин.

Их совокупная мощность на конец прошлого года составила 380 ГВт, что составляет более трех четвертей от общемировой мощности.

Мы рассматривали Siemens и Gamesa как одно предприятие после их слияния в начале этого года, хотя в 2016 году они все еще работали как отдельные компании.

При отдельном рассмотрении FTI поместила Gamesa на четвертое место в списке новых установленных мощностей в 2016 году после Vestas, GE и Goldwind с установленной мощностью 4262 МВт и долей рынка 7,5%. Siemens занял шестое место после Enercon с 3 204 МВт и 5.6% соответственно.

Перейти к: Весты | Siemens Gamesa | GE | Goldwind | Enercon | Nordex | Сенвион | Объединенная держава | Envision | Сузлон

10 ведущих производителей оборудования

1 VESTAS, ДАНИЯ

Морское видение… Первые машины MHI Vestas V164 8 МВт теперь подключены к британскому отделению Burbo Bank Extension

Датский производитель обогнал Goldwind с точки зрения новых установленных мощностей в 2015 году, но это во многом стало результатом необычайного роста в Китае в том году.

После возобновления нормальной работы в 2016 году Vestas вернулась на первое место. По данным FTI Consulting, в прошлом году она установила почти 9 ГВт, заняв 15,8% мирового рынка.

Ключевое слово здесь — «глобальный», потому что Vestas была активна на 34 рынках в 2016 году, больше, чем любой другой производитель турбин, сообщает FTI Consulting. В этом году не было никаких спадов: компания объявила о крупных заказах на закупку турбин в некоторых ранее маловероятных местах — от Китая и Южной Кореи до России.

Однако львиная доля портфеля заказов приходится на США, в основном, на модели V100 и V110 мощностью 2,0 МВт с сильным и средним ветром.

Варианты Low Wind — с диаметром ротора 116 и 120 метров — были анонсированы в апреле и будут запущены в производство в следующем году.

Более ориентированная на Европу платформа мощностью 3 МВт модернизируется до паспортной мощности 4,2 МВт с диаметром ротора 117, 136 и 150 метров.

Во многом обусловленный требованиями конкурентных аукционов, особенно в Германии, основное внимание уделяется моделям со средним и слабым ветром.

Но V117 впервые перенесет платформу на территорию тайфуна, открыв для компании прибрежные рынки Китая, Японии и Вьетнама.

Совместное оффшорное предприятие MHI Vestas достигло совершеннолетия в 2017 году с вводом в эксплуатацию расширения Burbo Bank Extension 258 МВт Dong Energy у северо-западного побережья Англии.

Он был первым, кто развернул турбину V164-8.0 МВт, но заказы на шельфовые проекты в Великобритании, Германии и Голландии уже поступили.

Летом был анонсирован вариант V164 мощностью 9,5 МВт, который уже был определен для проекта Innogy на 860 МВт Triton Knoll в водах Великобритании.Единственной плохой новостью на морском фронте в 2017 году была потеря в результате пожара первого прототипа V164 мощностью 9,5 МВт, установленного на наземном испытательном полигоне Osterild в Дании.

Приобретение Vestas независимых поставщиков услуг UpWind Solutions и Availon принесло дивиденды. По сообщению компании, объем заказов на услуги вырос с 1,8 млрд евро в 2015 году до 10,7 млрд евро в прошлом году.

Расширение сферы обслуживания — это только часть стратегии Vestas, которая выходит за рамки основного бизнеса по производству и продаже машин.

«Мы определенно перестали считать себя просто поставщиком турбин», — говорит вице-президент компании Мортен Дирхольм. «Мы смотрим на себя все более и более комплексно, как на часть более крупной электрической системы, в которой разные технологии должны уравновешивать друг друга».

Эта работа все еще находится в стадии разработки, хотя Vestas участвовала в небольших гибридных ветро-солнечных и накопительных схемах. В сентябре компания подтвердила, что работает с производителем электромобилей Tesla над решениями для хранения энергии.Пилотные проекты запланированы на 2018 год, а дальше будут коммерческие схемы.

Текущее внимание: Остаться наверху на суше

Главное беспокойство: Вялый рост мирового шельфа

2 SIEMENS GAMESA, ГЕРМАНИЯ И ИСПАНИЯ

Рекордсмен… Siemens Gamesa должна ввести в эксплуатацию самые высокие турбины в Азии в этом году: 33 турбины G114.2.0 и G114.2.1 на ветряной электростанции Саранлом в Таиланде на 153-метровых башнях

Слияние Siemens и Gamesa, которое вступило в силу 3 апреля, привело к созданию нового гиганта в производстве ветряных турбин — с установленной мощностью 75 ГВт в 90 странах, 27 000 сотрудников и широким спектром наземного и морского оборудования.

Однако шесть месяцев спустя все еще неясно, как Siemens Gamesa Renewable Energy (SGRE) объединит свои операции и линейки продуктов. Первой жертвой, не совсем неожиданной, стала морская турбина Adwen мощностью 8 МВт, которая попала под крыло Gamesa, когда ядерная группа Areva вышла из ветроэнергетического бизнеса.

Замена редукторной установки Adwen турбиной SGRE мощностью 8 МВт с прямым приводом для первых морских проектов во Франции, по сути, является похоронным звонком для машины Adwen.

У его коробки передач, построенной Winergy, дочерней компанией Siemens, может быть будущее в будущих проектах морских турбин других производителей, но это ни в коем случае не является определенным.

Еще одна жертва — рабочие места, особенно в производстве лезвий, где были закрыты или сокращены заводы в Канаде и Дании. В этом году потеряно около 1500 рабочих мест.

Обе ветви нового предприятия столкнулись с трудностями в 2017 году. Gamesa пострадала от спада в Бразилии и внезапного спада в Индии, когда государственные коммунальные предприятия перешли с льготных тарифов на конкурентные торги.

Siemens уступил Vestas и GE по вооружению на сверхконкурентном рынке США и не спешил реагировать на новые требования немецкой аукционной системы.

Новая компания нуждалась в крупной победе и нашла ее лидером в консорциуме, который выиграл заказ на 1 ГВт в Турции по цене всего 34,8 евро / МВтч в течение 12-13 лет.

«По такой цене они приветствуются», — был неофициальный ответ одного конкурирующего OEM-производителя и участника торгов. Контракт включает в себя обязательство по созданию производственных и исследовательских предприятий в Турции, в которых будут работать в основном местные жители, и 65% требований к местному содержанию.

Ассортимент турбин выглядит загроможденным. Gamesa предлагает платформу мощностью 2 МВт с диаметром ротора от 80 до 114 метров; семейство мощностью 2,5 МВт с диаметром ротора 106-126 м; и машина мощностью 3,3 МВт с диаметром ротора 132 м. Береговая платформа Siemens мощностью 2,3–2,625 МВт достигает глубины 101–120 м. Его береговое семейство с прямым приводом в настоящее время составляет 3,2-4,3 МВт с диаметром ротора 101, 108, 113, 120, 130 и 142 метра.

Ситуация более ясна на море, где турбина SWT-154 с прямым приводом, представленная как модель 6 МВт, но теперь развитая до 8 МВт, имеет только MHI Vestas V164 для конкуренции в секторе 7 МВт и выше.

Эти две турбины, похоже, будут доминировать на европейском шельфовом рынке в течение следующего десятилетия и имеют хорошие возможности для эксплуатации зарождающегося шельфового сектора США.

Текущее внимание: Рационализация продукции и оборудования

Главное беспокойство: Падение позиций конкурентам в США и Германии

3 GE, США

Питер МакКейб, генеральный директор подразделения GE

Притяжение внутреннего рынка остается сильным для GE, но американский производитель турбин в последнее время добился значительных успехов в ряде других стран, особенно в Азиатско-Тихоокеанском регионе.

В мае GE объявила о заказе почти 200 МВт для двух проектов в Китае. В июне была заключена сделка с Mainstream Renewable Power на установку 800 МВт во Вьетнаме. Основные события лета включали контракт на 153 МВт в Пакистане и сделку на 453 МВт в Австралии.

Но большие возможности открываются в США, в период бума постепенного отказа от налоговых льгот на производство.

Согласно анализу Make Consulting, объявленному на конференции Американской ассоциации ветроэнергетики в мае, к концу 2020 года в США будет установлено 50 ГВт новых ветроэнергетических установок, плюс еще 7-8 ГВт на замену.

GE стремится занять значительную долю этого рынка и будет прилагать все усилия, чтобы получить ее. Теперь она подает на своего главного конкурента, Vestas, в суд США по делу о нарушении патентных прав.

В июне был объявлен самый крупный заказ стрелы на данный момент — 800 турбин мощностью 2,5 МВт для разработанного Invenergy проекта Wind Catcher мощностью 2 ГВт в Оклахоме. Сделки по восстановлению мощности включают одну стоимостью около 500 МВт с PacifiCorp в Айдахо.

Предприятие

GE в оффшорных водах выглядит менее очевидным. Турбина Haliade мощностью 6 МВт, приобретенная компанией Alstom, начала свою коммерческую выработку электроэнергии на 30-мегаватной площадке Deepwater Wind Block Island, введенной в эксплуатацию в декабре прошлого года.

Еще три турбины устанавливаются на демонстрационном проекте в Китае. Кроме того, есть заказы на три французских проекта мощностью 1,5 ГВт, которые остаются предметом судебных споров, и 396 МВт для немецкого проекта в Северном море.

Паспортная мощность Haliade 6 МВт и диаметр ротора 150 метров уже оставляют его далеко позади конкурентов MHI Vestas и SGRE, что вызывает сомнения в его долгосрочном будущем.

Эти сомнения усилились в мае, когда стало известно, что Европейская комиссия (ЕК) расследует поглощение компанией GE производителя лопастей LM Wind Power, одобренной ЕК всего двумя месяцами ранее, на том основании, что GE изначально предоставила «вводящую в заблуждение информацию».

GE якобы сообщила Европейской комиссии, что не планирует разрабатывать морскую турбину мощностью 12 МВт, но регулирующие органы Европейского Союза впоследствии нашли доказательства обратного. Следствие продолжается.

GE в значительной степени зависела от своих рабочих лошадок мощностью 1,7–1,85 МВт и 2,0–2,5 МВт. Его семейство мощностью 3,2–3,8 МВт, нацеленное на европейские рынки, особенно в Германию, изо всех сил пытается преуспеть в конкуренции со стороны Vestas, Enercon и Nordex, которые в настоящее время работают над турбинами мощностью 4 МВт.

GE представила некоторые детали новой машины мощностью 4,8 МВт с рекордным диаметром ротора 158 метров на сентябрьской торговой ярмарке в Хузуме. Предназначенный для участков с низким и средним ветром, он будет доступен с высотой башен от 101 до 161 метра.

Текущий фокус: Максимально эффективное использование окна PTC

Главное беспокойство: Обеспечение роста после закрытия окна

4 GOLDWIND, КИТАЙ

Экспортный драйв… Goldwind был самым активным китайским производителем оригинального оборудования на зарубежных рынках, особенно
в США

Goldwind был ведущим мировым производителем по установленной мощности в 2015 году, его 7.88GW опережает Vestas и GE.

Но из-за замедления роста на китайском рынке он опустился на третье место в прошлогоднем рейтинге, а с созданием в апреле компании Siemens Gamesa Renewable Energy (SGRE) он опустился на четвертое место.

Goldwind сообщил о падении выручки на 10% и прибыли до налогообложения на 21% в первой половине 2017 года по сравнению с годом ранее, что усугубляет опасения, что замедление темпов роста в Китае может повлиять на его результаты.

Совокупная установленная мощность компании на конец 2016 года составляла чуть более 38 ГВт, но только 1.4GW из них находится за пределами Китая.

В 2016 году он поставил турбины на три рынка за пределами Китая — больше, чем любой из своих отечественных конкурентов, — и, похоже, в ближайшие годы этот показатель будет расти.

Ярким светом в его международном арсенале является дочерняя компания Goldwind Americas. К концу прошлого года компания выиграла сделку на 1,87 ГВт на многоэтапный проект девелопера Viridis Eolia в Вайоминге. Поставка турбин мощностью 2,5 и 3 МВт запланирована до 2022 года.

В другом месте летом Goldwind подписал меморандум о взаимопонимании с правительственными агентствами Саудовской Аравии для исследования инвестиционных возможностей и потенциальных производственных площадок.

Компания добавляет хранилище в свой каталог. В августе Goldwind подписала письмо о намерениях со шведской компанией по хранению энергии SaltX о разработке «решения для ветроэнергетики со встроенным накопителем энергии». Goldwind планирует объединить технологию хранения тепловой энергии SaltX в «системе мегаваттного масштаба» в Пекине.

Еще один год, например, 2015, может быть для Goldwind через несколько лет, но компания осознала, что для того, чтобы снова достичь этих высот, ей необходима многоаспектная атака, и она не может полагаться только на количество для обеспечения рыночной позиции.Это также требует инноваций и разнообразия.

Текущее внимание: Диверсификация бизнеса

Главное беспокойство: Замедление внутреннего рынка

5 ENERCON, ГЕРМАНИЯ

Компоненты… Башни из стальных труб для турбин Enercon производятся на производственных предприятиях в Магдебурге, Германия, и Мальмё, Швеция.

Выступая в апреле на выставке Hannover Messe, управляющий директор Enercon Ханс-Дитер Кеттвиг прогнозировал валовую прибыль примерно в 5 евро.5 миллиардов на 2017 год, при этом ожидается, что количество установок достигнет 4 ГВт. По данным FTI Consulting, это больше, чем в 2016 году было установлено 3,6 ГВт.

Комментарии Кеттвиг дают редкое представление о финансовом состоянии Enercon. Действуя как независимый конгломерат компаний с ограниченной ответственностью, он невосприимчив к давлению ежеквартальной публичной отчетности, в отличие от своих конкурентов, зарегистрированных на фондовой бирже.

Согласно данным FTI, присутствие

Enercon на 26 рынках в прошлом году уступало только Vestas, что свидетельствует о работе компании на небольших рынках, включая Боливию, Коста-Рику, Эстонию, Тайвань и Вьетнам.Исторически он держался подальше от США и Китая.

Не менее примечателен тот факт, что его самой популярной турбиной была E115-3MW — все другие самые продаваемые модели OEM-производителей имели мощность 2,4 МВт или меньше.

В этом году компания Enercon вновь вышла на индийский рынок после завершения десятилетнего судебного спора с ее бывшим партнером по совместному предприятию в стране, которая теперь торгуется как WindWorld India.

Enercon хочет отремонтировать 1200 своих турбин на субконтиненте и приступил к заключению неисключительных соглашений о сотрудничестве с независимыми поставщиками услуг по ремонту и техническому обслуживанию.

Фирма начала в этом году революцию на суше мощностью 4 МВт, запустив в конце 2016 года свою турбину с прямым приводом мощностью 4,2 МВт. С тех пор большинство ее основных конкурентов последовали ее примеру, но Enercon полностью изменил курс, открыв свой радикально новый модульный подход для своей платформы мощностью 3,5 МВт в августе.

Широкий технологический портфель компании включает все: от самых маленьких EP1 (800-900 кВт) до EP2 (2-2,35 МВт), EP3 (3,05-3,2 МВт), EP4 (4,2 МВт) и заканчивая EP8 (7.58 МВт).

С добавлением новой модульной конструкции EP3 мощностью 3,5 МВт компания Enercon признала переход к аукционным системам по всему миру, которые требуют производительности при более низких затратах, особенно в Германии, где компания пытается удержать свои позиции лидера рынка. даже если этот рынок сжимается.

Текущее внимание: Новая модульно-турбинная платформа

Главное беспокойство: Переход к конкурсным торгам

6 NORDEX GROUP, ГЕРМАНИЯ

Приобретение… Приобретение Nordex компании Acciona увеличило ее присутствие в Латинской Америке

Ларс Бондо Крогсгаард проработал менее двух лет в качестве генерального директора Nordex, уйдя в отставку в марте после того, как компания снизила прогнозы выручки на 2017 и 2018 годы, что привело к резкому падению цены ее акций.

Его заменил его заместитель и главный операционный директор Хосе Луис Бланко, бывший генеральный директор Acciona Windpower.

К середине года новость была немного более позитивной: компания зафиксировала 572 млн евро новых заказов во втором квартале, в результате чего общий объем невыполненных заказов, включая контракты на обслуживание, составил 3,6 млрд евро.

Подразделение услуг сейчас быстро расширяется, увеличившись на 24% по сравнению с уровнем 2016 года с оборотом более 150 миллионов евро.

Но это еще не все. В сентябре Blanco объявила, что группа намерена сократить расходы на материалы и операционные расходы на 21 миллиард евро, а также еще 24 миллиона евро на расходы на персонал с потерей 400-500 рабочих мест по всей Европе, в основном в Германии.

Переход Германии к конкурентным торгам создал неопределенность на внутреннем рынке Nordex, и чистые игроки, включая Enercon и Senvion, изо всех сил пытаются адаптироваться.

«Мы реагируем на изменения в объеме бизнеса, усиливая дисциплину затрат, чтобы поддержать нашу прибыльность», — сказал Бланко.

Большой новостью в области продуктовой линейки стала презентация в сентябре последней разработки платформы 3MW Delta, запущенной в 2013 году.

Новая модель, предназначенная для участков с низкой и средней скоростью ветра, имеет паспортную грузоподъемность 4-4.5 МВт и диаметр ротора 149 метров. Первый прототип будет установлен осенью 2018 года, а серийное производство начнется в следующем году.

Компания также тестировала 134-метровую стальную трубчатую башню диаметром 4,3 метра, которая соответствует транспортным ограничениям Германии.

Текущее внимание: Сокращение затрат, вывод на рынок 4,5 МВт

Главное беспокойство: Попадание локтем более крупным игрокам

7 SENVION, ГЕРМАНИЯ

Турбина Senvion MM92 в Калифорнии

По данным FTI, американский производитель турбин со штаб-квартирой в Германии не вошел в десятку лидеров по установленной мощности 2016 года.Но его совокупная мощность, международный охват и портфель турбин поднимают его в наших рейтингах.

За последние 18 месяцев компания представила новые модели для своей платформы 3 МВт, дразнила разработку морской турбины мощностью 10 МВт и более, вышла на множество новых рынков, объявила о падении выручки на 4,6% во втором полугодии 2017 года и планирует сократить 780 единиц. рабочие места, в основном на производственных площадках в Германии. Как пояснил генеральный директор Юрген Гайссинджер, компания переходит в двухлетний период «переходного периода».

Бывший руководитель Schaeffler занимал эту должность почти два года.За это время фирма вышла на шесть новых рынков со сделками по поставкам в Хорватию, Чили, Норвегию, Ирландию, Сербию и Италию (оффшор), а также с трудным повторным выходом в Индию после продажи ее предыдущим владельцем Сюзлоном компании Centerbridge Partners в 2015 году.

Портфель наземных установок

Senvion варьируется от серии MM 2–2,05 МВт, из которых MM92 является ее бестселлером, до турбины 3,7M144, представленной в сентябре в Хузуме. Эта турбина уже была выбрана для проекта мощностью 429 МВт в Австралии.

Текущее внимание: Реструктуризация для обеспечения конкурентоспособности

Главное беспокойство: Рост конкуренции и консолидации

8 UNITED POWER, КИТАЙ

United Power 1.В Тибете устанавливают турбину мощностью 5 МВт

United Power, дочерняя компания China Guodian Corporation, входящая в пятерку крупнейших государственных энергетических компаний страны, ощутила на себе последствия замедления темпов роста ветряных установок в Китае.

По данным FTI, United Power установила 3,09 ГВт новой мощности в 2015 году, все это в Китае, что составляет 4,9% мирового рынка. В 2016 году этот показатель снизился до 2,13 ГВт и 3,8%. Он остается вторым по величине производителем турбин в Китае, хотя и значительно уступает Goldwind.

Продажи сосредоточены на турбине мощностью 1,5 МВт с диаметром ротора 86 метров, разработанной немецкой консалтинговой компанией Aerodyn Engineering в области ветроэнергетики.

Европейский опыт также повлиял на его турбину мощностью 2 МВт (диаметр ротора 97 метров) и модель мощностью 3 МВт (120 метров). Прототип морской турбины мощностью 6 МВт с диаметром ротора 136 метров был представлен несколько лет назад, но United Power в 2016 году не вела шельфовый бизнес.

Текущий фокус: Перерыв, пока рынок не улучшится

Главный концерн: Отставание по технологиям

9 ENVISION ENERGY, КИТАЙ

Envision’s 1.Турбина 5 МВт с диаметром ротора 93 метра

Envision изучает новые рынки и новые технологии, чтобы компенсировать спад в Китае. В 2016 году она установила чуть более 2 ГВт, в основном дома, но выиграла сделку на 90 МВт в Мексике и подписала контракты на проекты мощностью 185 МВт в Аргентине.

Фирма приобрела портфель французских береговых ветроэнергетических установок европейского разработчика Velocita Energy Developments, который включает трубопровод мощностью 500 МВт. Кроме того, компания делает свою домашнюю работу в Индии в преддверии возможного выхода на четвертый по величине рынок в мире.

Европейский консорциум в прошлом году выбрал маломощные ветряные турбины Envision для оснащения сверхпроводниковым генератором с прямым приводом — устройством, которое, как утверждается, способно утроить выработку энергии ветра.

В 2016 году компания представила свою платформу энергетической аналитики EnSight и систему EnOS, которые, по ее утверждению, могут управлять «всеми типами энергетической инфраструктуры», от ветряных турбин до устройств хранения и интеллектуальных сетей до бытовой техники.

Технологические гиганты обратили на это внимание, и в этом году Microsoft и Accenture объединились с Envision для разработки программы Интернета вещей.

Текущее внимание: Разработка интеллектуальных пакетов программного обеспечения

Главный концерн: Отсутствует опыт работы на устоявшихся рынках

10 СУЗЛОН, ИНДИЯ

Открытый люк… Инженер осматривает турбину Suzlon в Индии

Ведущий отечественный производитель турбин в Индии попадает в первую десятку только благодаря своим историческим рекордам и будущим перспективам своего внутреннего рынка.

Установлено 1.14 ГВт в 2016 году, что поставило его на 16-е место в таблице ведущих поставщиков ветряных турбин FTI. Но по совокупной мощности он занимает восьмое место: 16,8 ГВт турбин работают в Северной и Латинской Америке, Европе и Австралии.

Амбициозные цели Индии в области ветроэнергетики открывают широкие возможности для роста, не в последнюю очередь для обновления мощности, но другие производители присматриваются к рынку, и Suzlon придется повысить свою игру на технологическом фронте.

Текущее внимание: Увеличение доли рынка в Индии

Главное беспокойство: Глубина конкуренции, с которой сейчас сталкивается

Это крошечное устройство собирает энергию из простого ветра | Наука

Страна: Страна * AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, многонациональное государство ofBonaire, Синт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские ) Фарерские острова, Фиджи, Финляндия, Франция, Французская Гвиана, Французская Полинезия, Французские Южные территории, Габон, Гамбия, Грузия, Германия, Гана, Гибралтар, Греция, Гренландия, Гренада, Гваделупа, Гватемала, Гернси, Гвинея, Гвинея-Бисау, Гайана, Гаити, Остров Херд и МакДональда IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика ofIraqIrelandIsle из ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика ofKorea, Республика ofKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, бывшая югославская Республика ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Республика ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint BarthélemySaint Елены, Вознесения и Тристан-да-КуньяСент-Китс и НевисСент-ЛюсияСент-Мартен (французская часть) Сен-Пьер и МикелонСент-Винсент и ГренадиныСам oaSan MarinoSao Том и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Маартен (Голландская часть) SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, Объединенная Республика ofThailandTimor-LesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабского EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Боливарианская Республика ofVietnamVirgin остров, BritishWallis и Футуна Западная Сахара Йемен Замбия Зимбабве

Пожертвовать сейчас
Поддержка некоммерческой научной журналистики

Если мы чему-то научились из пандемии COVID-19, так это тому, что мы не можем дождаться реакции кризиса. Science и AAAS неустанно работают над предоставлением достоверной, основанной на фактах информации о последних научных исследованиях и политике с широким бесплатным освещением пандемии. Ваш не подлежащий налогообложению вклад играет решающую роль в поддержании этих усилий.

Раскрытие благотворительной информации

Air Turbine Tools® — станок с ЧПУ, фрезерные станки, комплекты пневматических инструментов, шлифовальный карандаш

Революционные высокоскоростные прецизионные инструменты Air Turbine Tools® изменяют стандарты производительности для современных высокоскоростных ручных инструментов, двигателей и шпинделей.От ЧПУ, робототехники и других навесных систем до операций ручной чистовой обработки — уникальная технология, использованная при разработке и производстве этих продуктов, обеспечивает более чистое резание, более высокую производительность и устраняет проблемы, связанные с традиционными инструментами. Принадлежности для смены инструмента позволяют легко интегрировать Air Turbine Spindles® в любой станок с ЧПУ (DMG, Haas, Robodrill, Doosan, Okuma, Makino, Mazak, Fanuc, Hurco, Brother и т. Д.). Фрезерование со скоростью 1500 дюймов / мин (38100 мм / мин) с без рабочего цикла.
Обзор высокоскоростных шпинделей

Более быстрое производство — шпиндели, работающие с постоянной скоростью от 25 000 до 90 000 об / мин и мощностью до 1,40 л.с. (1,04 кВт), поддерживают постоянную высокую скорость и крутящий момент при переменной нагрузке. Фрезерование со скоростью 1 500 дюймов / 3800 см в минуту с более тонкой обработанной поверхностью и точностью 2 микрона.

Более 40 шпинделей — легко монтируются, не требуют обслуживания, не требуют смазки, обеспечивают более качественную отделку и более высокую скорость подачи.Всего две движущиеся части: запатентованная турбина и керамические подшипники. Нет шестерен, лопаток или щеток, которые могли бы термически расшириться и сгореть.

Низкий уровень вибрации, сверхтихий, безмасляный шпиндель с прямым приводом для большей надежности в режиме 24/7. Встроенные держатели инструментов CAT, BT, HSK и DIN с новой опцией Auto Changer для интеграции в ваш VMC.

Обзор опор двигателя

Выбирайте мощную компактную герметичную серию Steel для регулируемых 65000 об / мин с мощностью до 0.95 л.с. Готов для токарных, швейцарских автоматов, робототехники и стационарного оборудования. Допуск h7 + Монтажные диаметры от 20 мм до 40 мм со шлангом. Идеально подходит для маркировки, сверления, фрезерования, чистовой обработки и многого другого с постоянной высокой скоростью и сверхточностью.

Постоянная высокая скорость и крутящий момент под нагрузкой делают серию Aluminium идеальной для роботизированной чистовой обработки или фрезерования металлов, а также резки пластика, керамики, композитов или дерева. Серия HD включает сверхпрочные подшипники в жестком корпусе из нержавеющей стали, который легко устанавливается.

Обзор ручных инструментов

Революционные инструменты Air Turbine Tools® решают проблемы ручного управления. Снизьте риск травм и повторяющихся нагрузок на руки и руку. Инструменты Air Turbine Tools®, составляющие всего 6 унций (0,17 кг), также имеют малый вес.

Сняты ограничения по рабочему времени на производстве. Уровень звука менее 65 дБА защищает ваш слух.Не распыляйте масляный туман на лицо с помощью безмасляных инструментов Air Turbine Tools®.

Мощность до 1,40 л.с. (1,04 кВт) поддерживает высокую скорость вращения для оптимизации режущего действия. Просто подключите воздух под давлением 6,2 бар.

Эти шпиндели воздушной турбины, инструменты воздушной турбины, двигатели воздушной турбины — все продукты компании Air Turbine Technology, Inc. Предназначенные для работы шпинделя с ЧПУ или шпинделя станка с ЧПУ с революционным пневматическим двигателем, шпиндели воздушной турбины предназначены для работы с chiron, dmg moro seiki, doosan, fadal, emco, haas, hardinge, hartford, hermle, harco, hwacheon, kitagawa , макино, мазак, окума, роми и многие другие станки с ЧПУ.Также совместим с станками Brother, Fanuc, Haas, Matrix и другими метчиками для фрезерования с ЧПУ с нашими высокоскоростными прецизионными пневматическими шпинделями. Наши воздушные турбинные двигатели — это высокоскоростные, эффективные пневматические двигатели. Эти пневматические двигатели предназначены для токарных станков, роботов, механической обработки, удаления заусенцев, чистовой обработки, фрезерования, сверления и фрезерования, очень универсальное крепление для приспособлений. Мы также производим ручные инструменты с воздушными турбинами, в том числе гравировальные, чистовые, шлифовальные, карандашные, фрезерные и маркировочные.Air Turbine производит ручные инструменты, шлифовальные машины, карандашные инструменты, инструменты для удаления заусенцев, инструменты для отделки, которые представляют собой инструменты с низким уровнем вибрации, прецизионные инструменты и эргономичные инструменты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *