ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Как работает двигатель?

Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.

Виды моторов

Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.

Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:

  • цилиндры, в которых располагаются поршни;
  • коленчатый вал;
  • газораспределительный механизм.

К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.

Основные подходы к классификации силовых установок:

  1. По количеству цилиндров.
  2. По расположению цилиндров.
  3. По виду топлива.

1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.

2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов. Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.

3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.

В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).

А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.

Порядок работы двигателя

Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев. За счет меньшего количества оборотов мощность двухтактников выше, но экономичность хуже. Маленькие по размерам и мощности моторы не требуют сложной системы охлаждения, масло для смазки добавляется непосредственно с топливом в камеру сгорания.

Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:

  • впуска;
  • сжатия;
  • рабочего хода;
  • выпуска.

У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).

Теперь подробнее о четырехтактном процессе.

В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.

Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.

В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).

Во втором такте поршень идет вверх, сжимая содержимое и параллельно увеличивая его давление и температуру. В конце такта свеча зажигания создает искру, в результате чего происходит детонация топливной смеси в бензиновом двигателе. В дизельном же свеча не используется, а топливо подается в последний момент такта, которое возгорается за счет высокого давления и температуры воздуха.

В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.

На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы. Далее цикл из четырех тактов повторяется.

Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.

Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.

В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.

Турбированные моторы & атмосферные: устройства и принцип работы | Справочная информация

Классические бензиновые и дизельные силовые агрегаты в последние несколько лет стали сдавать позиции лидеров в автомобилестроении. На смену им и в дополнение приходят турбированные и атмосферные двигатели, которые всего пару десятилетий назад можно было встретить только на гоночных болидах.

Сегодня очень часто при выборе современных моделей транспортных средств, автолюбители не знают, на каком силовом агрегате лучше всего остановиться — купить автомобиль с «атмосферником» или турбиной? У каждого из этих механизмов есть свои специфические особенности, а также плюсы и минусы в эксплуатации.

Устройство и принцип работы турбированного двигателя

Турбированный силовой агрегат считается одним из самых старых среди двигателей внутреннего сгорания, так как был придуман почти столетие назад. Принцип его работы заключается в том, в цилиндры подается увеличенное количество воздуха, для этого используется нагнетающее устройство – турбокомпрессор («турбина»). Это создает лучшие условия для сгорания топлива и, соответственно, увеличивает мощность двигателя.

По принципу работы турбированный двигатель не отличается от обычного атмосферного двигателя. А нагнетание дополнительного воздуха позволяет эффективнее использовать полный объем поступающей горючей смеси, что положительно сказывается на динамических характеристиках автомобиля.

Турбокомпрессор использует для работы энергию выхлопных газов. Он подсоединяется к выхлопной системе, в результате чего часть отработанных газов поступает на лопасти турбины и вращает крыльчатку компрессора.

Для охлаждения силового агрегата с турбокомпрессором используют интеркуллер. Это обычный радиатор, но вместо охлаждающей жидкости в нем циркулирует воздух.

Достоинства турбодвигателя

Главный козырь турбированных силовых агрегатов — это, конечно же, их высокая мощность.

Двигатели с турбокомпрессором по динамике разгона значительно превосходят своих атмосферных «собратьев» при одинаковом объеме. При этом потребление топлива увеличивается ненамного, так как турбина использует энергию уже отработавших газов, а не тратит горючее на создание новых.

Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».

Недостатки турбодвигателя

В отличие от атмосферного двигателя, турбодвигатель очень привередлив к качеству потребляемого горючего. Если не контролировать этот вопрос, то турбина очень скоро может выйти из строя. Кроме того, из-за специфики конструкции двигатели с турбонаддувом следует прогревать в любое время года.

Этот тип силовых агрегатов нуждается в особой заботе в вопросах использования смазочных материалов. Обычные минеральные и синтетические масла категорически запрещается заливать в двигатель с турбиной. Для них предназначаются специальные виды масел, которые достаточно дорого стоят. Кроме того, как отмечают специалисты автосервиса Favorit Motors, замена масла рекомендуется каждые 10 тысяч километров (при эксплуатации в городских условиях).

Устройство и принцип работы атмосферного двигателя

Система запитывания атмосферного двигателя основана на инжекторном или карбюраторном механизме. Топливовоздушная смесь формируется в строгой пропорции: 1 часть бензина + 14 частей воздуха.

Принцип работы «атмосферника» заключается в том, что топливо впрыскивается в цилиндр без сопротивления. Это стало возможным благодаря сложным и тонким настройкам в распределительном валу, который открывает впускающий клапан. После впрыска смесь сгорает, а выделившиеся газы приводят в движение поршни.

Атмосферный двигательный аппарат назван так потому, что давление воздуха при попадании в мотор, равняется одной атмосфере. В его конструкции не используются турбонагнетатели, он функционирует при стандартном атмосферном давлении.

Преимущество в использовании атмосферного двигателя заключается в том, что на каких бы оборотах он не работал в данный момент, у него всегда будет определенный запас мощности. Это позволяет максимально быстро ускоряться при любой начальной скорости движения. До максимально возможного количества оборотов атмосферный силовой агрегат «раскрутится» за считанные секунды.

Достоинства атмосферного двигателя

Рано или поздно даже самый надежный мотор может потребовать вложений и качественного ремонта. Атмосферный агрегат имеет более простое строение, чем турбированный мотор, а потому и проведение ремонтных работ обойдется дешевле.

Срок службы атмосферника гораздо выше, чем у турбированного мотора. Это обусловлено более мягкими условиями эксплуатации и отсутствием повышенных нагрузок. Поэтому рабочий ресурс атмосферного двигателя в среднем вдвое выше, чем у турбины.

В качестве приятного бонуса для автовладельцев специалисты ГК Favorit Motors могут привести следующий факт. Атмосферные агрегаты не требуют постоянно контроля смазки и менее требовательны к качеству используемых масел. В их конструкции отсутствуют устройства, которые нуждаются в дополнительной смазке. Это же касается и выбора топлива: атмосферный двигательный агрегат менее требователен к качеству горючего. Кроме того, замена смазочной жидкости производится реже — каждые 15-20 тысяч километров пробега.

И еще один плюс «атмосферника». Российские водители уже смогли убедиться, что атмосферный силовой агрегат даже зимой прогревается быстрее, чем его турбированный собрат.

Недостатки атмосферного двигателя

Самым главным минусом такого двигателя можно считать отсутствие высоких крутящих моментов. Атмосферный агрегат проигрывает турбированному в плане мощности. Такой автомобиль будет идеальным для неспешных поездок по городу, но в качестве трассового авто для молодежных гонок явно не подойдет.

Расход топлива для такого двигателя будет достаточно высок. Как отмечают специалисты ГК Favorit Motors, в среднем автомобиль с атмосферным двигателем потребляет не менее 11-12 литров горючего на 100 километров пути.

Итоги

Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.

В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.

Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.

Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.

Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.

Подборка б/у автомобилей Skoda Octavia

Устройство ДВС и принцип работы простыми словами

Устройство двигателя внутреннего сгорания

В этой статье поговорим об устройстве двигателя внутреннего сгорания узнаем принцип его работы. Рассмотрим его в разрезе. Несмотря на то, что двигатель внутреннего сгорания был изобретён уже очень давно, но он до сих пор пользуется огромной популярностью. Правда за большое количество времени конструкция двигателя внутреннего сгорания претерпела различные изменения.

Усилия инженеров постоянно направлены на облегчения веса двигателя, улучшения экономичности, увеличение мощности, а также уменьшения выброса вредных веществ.

Двигатели бывают бензиновые и дизельные. Также встречаются роторные и газотурбинные двигатели которые используются намного реже. О них мы поговорим в других статьях.

По расположению цилиндров двс бывают рядные,V- образные и опозитные. По количеству цилиндров 2,4,6,8,10,12,16. Встречаются и 5 цилиндровые двигатели внутреннего сгорания.

У каждой компоновки есть свои преимущества например рядный 6-ти цилиндровый двигатель это хорошо сбалансированный , но склонен к перегреву мотор. У V- образных двигателей другое преимущество они занимают меньше место под капотом, но при этом затрудняют обслуживание из-за ограниченного доступа. Раньше встречались и рядные 8 цилиндровые двигатели вероятней всего их не стало из-за сильной склонности к перегреву и они занимали много места под капотом.

. По типу работы двс бывают двух типов: двух тактные и четырех тактные. Двух тактные двигатели внутреннего сгорания в основном применяются на мотоциклах. В автомобилях практически всегда использовались 4 тактные двигатели.

Устройство двс

Рассмотрим двигатель в разрезе

Двигатель внутреннего сгорания состоит из следующих компонентов и вспомогательных систем.

1) Блок цилиндров. Блок цилиндров и является главным телом двигателя в котором и происходит работа поршней. Обычно состоит из чугуна и обладает охладительной рубашкой для охлаждения.

2) Механизм ГРМ. Газораспределительный механизм регулирует подачу топливно-воздушной смеси и отвод выхлопных газов. С помощью кулачков распредвала которые воздействуют на пружины клапанов. Клапана открываются либо, закрываются в зависимости от такта двигателя. При открытии впускных клапанов цилиндры наполняются топливно-воздушной смесью. При открытии выпускных клапанов происходит отвод выхлопных газов.

3) Поршневая группа. Благодаря энергии взрыва топливно-воздушной смеси поршень опускается вниз. Через шатун он передает энергию на коленвал. Поршневая группа состоит из: поршня, поршневых колец, поршневого пальца ( который прочно соединяется с шатуном). Благодаря поршневым кольцам. Поршень плотно прилегает к стенкам цилиндров. Более подробно про устройство поршня можно узнать здесь.

4) КШМ- Кривошипно-шатунный механизм. Благодаря передаче энергии шатуна на коленвал совершается полезная работа.

5) Масляный поддон. В масляном поддоне находится моторное масло которое и используется системой смазки для смазывания подшипников и компонентов двс.

6) Система охлаждения. Благодаря системе охлаждения двигатель внутреннего сгорания поддерживает оптимальную температуру. Система охлаждения состоит из: помпы, радиатора, термостата, патрубков охлаждения , а также охладительной рубашки.

7) Система смазки. Система смазки служит для защиты компонентов двигателя от прежде временного износа. Кроме того благодаря моторному маслу в двигателе внутреннего сгорания происходит охлаждение и защита от коррозии. Система смазки состоит из: масляного насоса, масляного фильтра, масляных магистралей и масляного поддона.

8) Система питания. Система питания обеспечивает своевременную подачу топлива. Различается на 3 вида карбюратор, моновпрыск и инжектор.

Узнать более подробно о том, что лучше карбюратор или инжектор можно перейдя по ссылке.

В карбюраторе топливно-воздушная смесь готовиться в карбюраторе для последующей подачи. Карбюратор обладает механическим топливным насосом.

Моновпрыск это по сути переход от карбюратора к инжектору или промежуточное звено. Благодаря блоку управления на одну единственную форсунку подаётся команда о необходимом количестве топлива.

Инжектор. Инжекторные системы топлива обладают. ЭБУ- электронный блок управления, форсунки, топливная рампа. Благодаря командам ЭБУ на форсунки подаётся сигнал о том какое количество топлива необходимо в данный момент. Про ЭБУ более подробно можно узнать здесь.

На сегодняшний момент это самые распространенные топливные системы. Так как обладают рядом преимуществ. Экономичность, экологичность и лучшая отдача по сравнению с моновпрыском и карбюратором.

Также существует прямой впрыск топлива. Где форсунки впрыскивают топливо непосредственно в камеру сгорания , не используется часто по причине более сложной конструкции и меньшей надёжности по сравнению с распределительным впрыском. Преимущество такой конструкции в лучшей экономичности и экологичности.

9) Система зажигания. Система зажигания служит для воспламенения топливно-воздушной смеси. Состоит из высоковольтных проводов, катушек зажигания, свеч зажигания. Стартер запускает двигатель внутреннего сгорания. Более подробно о стартере можно узнать перейдя по ссылке.

10) Маховик. Главной задачей маховика является запуск двс с помощью стартера через коленвал.

Принцип работы

Двигатель внутреннего сгорания совершает 4 цикла или такта.

1) Впуск. На этой стадии происходит впуск топливно-воздушной смеси.

2) Сжатие. При сжатии происходит сжатие поршнем топливно-воздушной смеси.

3) Рабочий ход. Поршень под давлением газов отправляется в НМТ( нижнюю мертвую точку). Поршень передает энергию на шатун, затем через шатун передается энергия на коленвал. Таким образом происходит обмен энергии газов на полезную механическую работу.

4) Выпуск. Поршень отправляется вверх. Выпускные клапана открываются, чтобы выпустить продукты распада.

Инновации двигателя внутреннего сгорания

1) Использование в двс лазеров для воспламенения топлива. По сравнению со свечами зажигания у лазеров будет проще настройка угла зажигания и будет большая мощность. Обычные свечи при сильной искре быстро выходят из строя.

2) Технология FreeValve эта технология подразумевает двигатель без распредвалов. Вместо распредвалов клапанами управляют индивидуальные приводы на каждый клапан. Экологичность и экономичность таких двс выше. Технология разработана дочерней компанией Koniesseg и имеет схожее название FreeValve. Технология пока сырая, но уже продемонстрировала ряд преимуществ. Что будет дальше время покажет.

3) Разделение двигателей на холодную и горячую части. Суть технологии в том, что двигатель делится на две части. В холодной будет происходить впуск и сжатие так как эти стадии более эффективно будут происходить в холодной части. Благодаря этой технологии инженеры обещают улучшение производительности на 30-40%. В горячей части будут происходить воспламенение и выхлоп.

А о каких будущих технологиях двигателя внутреннего сгорания Вы слышали обязательно поделитесь этим в комментариях.

как приготовить пирог на сковороделобановский харьков

В чем разница между щеточными и бесщеточными двигателями? — Worx Tools Russia

Все чаще на просторах интернет-магазинов можно найти инструменты с двумя типами двигателей. Инструменты и садовая техника WORX также не отстают от современных трендов при производстве техники, так что на нашем сайте вы тоже можете найти специальную характеристику двигателя — щеточный или бесщеточный. Так что же это за характеристика, на что она влияет и в чем принципиальные отличия инструментов с тем или иным двигателем? Давайте разбираться.

Устройство и принцип действия щеточного двигателя

Щеточный двигатель по-другому еще называется коллекторным. Состоит двигатель из нескольких важных частей.

Ротор — по-другому, якорь. Как раз он вращается внутри и преобразует электрическую энергию в механическую. Якорь обмотан медной проволокой (обмоткой) с разных сторон ротора. За счет прохождения тока через проволоку создается магнитное поле, которое в свою очередь и создает вращение элемента.

На обмотке в бесщеточном двигателе установлен коммутатор, который используется для переключения с одной обмотки на другую, что позволяет менять направление вращения ротора. Этот коммутатор и есть коллектор, от которого взял свое название двигатель.

Чтобы напряжение передалось на обмотки, а ток прошел через коллектор в двигатель устанавливаются специальные щетки. Щетки обычно состоят из графита; они всегда контактируют с коммутатором и обеспечивают подачу энергии к катушкам с обмоткой. Есть две щетки, и каждая из них подключается к противоположному полюсу батареи. Это гарантирует, что при вращении ротора ток, протекающий к катушкам, постоянно меняет направление. Это приводит к необходимому изменению магнитного поля, которое позволяет ротору продолжать вращаться.


Все вышеописанные элементы установлены в статор. Статор — неподвижных элемент двигателя, в котором могут быть либо еще одна катушка с проволокой, либо постоянный магнит. За счет того или другого элемента и создается магнитное поле обратной полярности ротору, из-за чего тот вращается.

Коллекторные двигатели могут работать от переменного напряжения, так как при смене полярности ток в обмотках возбуждения и якоря также меняет направление, в результате чего вращательный момент не меняет своего направления.

Плюсы и минусы щеточного двигателя

Так мы с вами вкратце разобрались с устройством щеточного двигателя. Теперь в чем же его плюсы и минусы?

Плюсы

  1. Первым плюсом инструментов со щеточными двигателями стоит отметить более низкую стоимость в отличие бесщеточных. Это связано с технологиями производства и более бюджетными материалами.
  2. Вторым плюсом специалисты отмечают упрощенную конструкцию двигателя, что влияет на стоимость ремонта. Проще поменять щетки, чем весь мотор в целом.
  3. Также к плюсам можно отнести относительно малый вес и размер инструментов.

Минусы

  1. На высоких оборотах увеличивается трение щёток. Отсюда вытекает проблема их быстрого износа. Помимо износа самих щеток, в процессе работы они стираются. Стертый графит может засорить коллектор и привести в полную негодность инструмент.
  2. Также к минусам можно отнести более низкую мощность щеточных инструментов, в отличие от бесщеточных моделей. Это связано с тем, что щеточные двигатели физически не могут выдавать мощность выше 3 000 об./мин. Но такой мощности вполне достаточно для домашнего обихода.
  3. Еще одним минусом щеточных двигателей мы можем отметить наличие искрения во время работ. Обратите внимание, что при запуске инструмента щетки трутся о коллектор и создают видимые искры. Это значит, что работать щеточными инструментами нужно более аккуратно — убирать на расстояние все возможные легковоспламеняющиеся вещества и предметы, а также периодически делать перерывы в работе, во избежание перегрева двигателя.
  4. Последним минусом отметим не очень высокий КПД инструментов с коллекторным двигателем — всего 60%. Это значит, что инструменты несколько хуже справляются с прочными материалами (например, с металлом) и выполняют меньший объем работы за то же время, что бесщеточный инструмент.

Устройство и принцип действия бесщеточного двигателя

Теперь давайте разберем принцип работы бесщеточного двигателя. Как понятно из названия, его принципиальное отличие в отсутствии щеток. Но как же он тогда работает? Как нужная энергия поступает в двигатель?

В устройстве бесщеточного двигателя также присутствует ротор и статор — основные элементы любого мотора. Но при этом отсутствует коллектор, соответственно и двигатель по-другому называется бесколлекторным. Если у щеточного двигателя работа происходит за счет электро-механической смены полярности, то в бесщеточном двигателе все работает благодаря электромагнитной индукции. Также отличается местоположение обмотки — здесь она располагается на статоре, в отличие от предыдущего вида двигателя.

Вместо щеток и коллектора в бесщеточном двигателе установлены датчики Холла и контроллер, который контролирует подачу напряжения на катушки для создания индуктивности, а также положение ротора и скорость его вращения.

Когда плата подает на обмотку ток, создается тоже противоположное магнитное поле, и магниты на роторе начинают вращаться.


Еще одной особенностью бесщеточных двигателей нужно назвать их типы. Двигатели бывают двух типов — синхронный и асинхронный. В синхронном двигателе частота вращений ротора равна частоте вращений магнитного поля — то есть один оборот ротор совершает после одного полного прохождения тока через катушку. А в асинхронном двигателе обратная ситуация — частота вращений ротора меньше, чем частота вращения магнитного поля. То есть ток проходит через катушку быстрее.

Плюсы и минусы бесщеточного двигателя

Если с устройством бесщеточного двигателя мы разобрались, то теперь давайте рассмотрим положительные и отрицательные стороны инструментов с бесщеточными моторами.

Плюсы:

  1. У инструментов с бесщеточным двигателем отсутствуют многие проблемы, которые встречаются у щеточных моделей. Так, первым плюсом специалисты отмечают бо́льшую износостойкость инструментов. Ввиду отсутствия щеток не создается трение внутри двигателя, соответственно нет внутренних загрязнений. Также отсутствие щеток снижает пожароопасность инструмента — при работе нет искрения, а значит можно работать практически в любых условиях.
  2. Вторым плюсом стоит отметить упрощенную регулировку крутящего момента — в отличие от щеточных моделей, у бесколлекторных инструментов достаточно просто нажать соответствующую кнопку на инструменте. Причем регулировка может иметь до 15 уровней и переключаться в одно мгновение.
  3. Одним из ключевых преимуществ бесщеточных моделей нужно отметить экономию расходуемой энергии. Этот пункт особенно актуален для аккумуляторных инструментов. Благодаря экономии инструменты работают до 50% дольше, чем модели со щеточным двигателем. Также КПД бесколлекторных инструментов намного выше — инструмент выполняет 90% поставленных задач, против 60% у коллекторных моделей. Это значит, что бесщеточными инструментами можно работать практически с любым материалом без потери мощности.
  4. Помимо вышеуказанных преимуществ инструментов с бесщеточным двигателем, они еще могут разгоняться до максимальных показателей и имеют быстрый запуск сразу с больших скоростей, чем не могут похвастаться щеточные инструменты.

Минусы:

Но не бывает все настолько радужно. Даже у инструментов с бесщеточными двигателями есть и свои недостатки. Так сказать, ложка дегтя в бочке меда.

  1. К минусам, в первую очередь стоит отнести стоимость инструментов. Техника с бесщеточным мотором в цене дороже, чем упрощенные модели со щеточным двигателем.
  2. Вторым недостатком бесколлекторных инструментов может быть сложное и дорогое техническое обслуживание. Бесщеточный двигатель — технологичное устройство, для работы с которым нужны знания в микроэлектронике. К счастью, в сотрудники наших сервисных центров знают и умеют обслуживать бесколлекторные двигатели.

Итоги сравнения щеточного и бесщеточного двигателей

Если сравнивать инструменты с разными видами двигателей, то можно смело сказать, что техника с бесщеточным двигателем надежнее и мощнее. Но нужно учитывать тот факт, что ориентирована такая техника больше на профессиональные работы. В быту же и инструменты со щеточным двигателем отлично справятся со своими задачами. Потому перед покупкой инструмента заранее определите цели, для которых вы будете использовать инструменты.

В ассортименте компании WORX есть инструменты и со щеточными и с бесщеточными двигателями. Чтобы определить какой именно тип двигателя установлен в инструменте, обратите внимание на иллюстрацию в карточке товара — в бесщеточных моделях есть специальная пометка «BRUSHLESS MOTOR».

Как работает двигатель автомобиля – «сердечные» дела вашей машины

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

Оцените статью: Поделитесь с друзьями!

Что такое катализатор на автомобиле, зачем он нужен и что будет, если его убрать

Автомобиль в системе выхлопа имеет каталитический нейтрализатор, который часто выходит из строя из-за некачественного топлива. Давайте разберемся, что это такое, для чего нужен и что делать в случае засора.

Что такое катализатор

Катализатор предназначен для очистки вредных выхлопов. Он расположен в системе выпуска, в процессе его работы происходят химические реакции: опасные вещества переходят в безопасные формы, после чего выбрасываются вместе с выхлопом. Пройдя этот путь выхлопные газы становятся чище. И как результат, автомобиль наносит меньший вред окружающей среде. 

Схема катализатора

Нейтрализатор работает только после нагрева до 300°C, сразу после запуска двигателя очистка не происходит.

Устройство каталитического нейтрализатора

Основой катализатора являются керамические или металлические соты. В зависимости от модели на стенки сот наносится микрослой из палладия и родия или иридия. Эти металлы обладают высокой химической активностью. Касаясь напыления, часть выхлопа входит с ним в химическую реакцию. Часть элементов, образовавшихся при сгорании топлива, связывается.

Современные катализаторы трехкомпонентные.

  • Первый элемент связывает оксиды азота.
  • Второй — удаляет часть несгоревших элементов топлива. В большей части удаляется окись углерода.
  • Третий элемент — это датчик. Он анализирует газы на выходе из катализатора, данные передаются в бортовой компьютер.

Трехкомпонетные катализаторы

Неисправности катализатора и их причины

Производители пишут, что срок службы нейтрализатора 100–150 тысяч километров. Но на практике проблемы могут возникнуть и при меньшем пробеге, особенно в больших городах, где часто приходится стоять в пробках. 

В зависимости от особенностей эксплуатации, замена каталитического нейтрализатора может производиться раз в 3–7 лет.

Основной причиной неисправности становится выгорание слоя металлов, покрывающих соты. Это естественный процесс, в результате которого качество выхлопа ухудшается. Бортовой компьютер показывает горящий «чек», а в некоторых случаях и вообще не позволяет мотору работать, выключая зажигание.

Ускоряет процесс выгорания и некачественное топливо. Зачастую у бензина увеличивают октановое число путем добавки свинца, это усиливает нагрузку на катализатор, уменьшая срок эксплуатации. В ситуации с дизельным топливом выход из строя может ускорить сам владелец, используя в зимнее время добавки-«антигель».

В некоторых случаях причиной поломки может стать неисправный двигатель. При неправильно выставленном зажигании и проблемах в системе питания (последнее особенно актуально для дизельных двигателей) выгорание каталитического слоя ускоряется.

Соты каталитического нейтрализатора

Диагностика автомобильного катализатора

Определить неисправность можно по нескольким признакам:

  • На панели приборов загорелась лампочка “Check Engine”. Она включается при любых ошибках мотора. В нашем случае, как результат нехарактерных показателей датчика, лямбда-зонд. Точно определить, что причина в катализаторе может диагностика сканером.
  • Снижение мощности двигателя. При неисправном катализаторе машина начинает троить, дергаться, хуже разгоняется. Причина в снижении пропускной способности каталитического нейтрализатора, связанной с частичным разрушением сот: они запекаются, забивают проход для выхлопных газов. В итоге мотор «задыхается».
  • Грохот под днищем. Обычно проявляется на высоких оборотах, изредка сразу после запуска. Причина в частичном разрушении керамической конструкции сот. Отпавшие частицы начинают биться о стенки катализатора под воздействием потока газов и центробежных сил.
  • Недостаточно сильный или ровный напор газов из глушителя. При исправном нейтрализаторе, поднеся руку к выхлопной трубе, можно ощутить слабую пульсацию, она возникает вследствие поочередной работы выпускных клапанов. Если поток ровный или ослабленный, вероятно проблема в разрушенных сотах катализатора.

Каталитический нейтрализатор не выходит из строя резко и неожиданно. Обычно перед отказом начинаются мелкие проблемы из списка выше.

Катализатор в разборе

Оригинал или аналог

Оригинальный катализатор — довольно дорогая вещь. Он не производится в нашей стране, все детали в автомагазинах импортные, поэтому на увеличение цены влияют пошлины.

При этом, в случае использования оригинальной детали, автомобиль сохраняет все режимы работы двигателя. Это положительно сказывается на экологии, а также на ресурсе мотора.

Все описанные ниже способы замены катализатора, носят только ознакомительный характер. Не рекомендуется пользоваться данными методами самостоятельно!

Из-за высокой цены автолюбители ищут альтернативу. Вариантов несколько:

  • универсальный катализатор;
  • пламегаситель.

Под универсальным катализатором подразумевается сразу две группы деталей. Первая — катализатор, подходящий под любой автомобиль. Довольно дорогая вещь, но работает безотказно. Второй вариант — блок с сотами. В этом случае в старый катализатор устанавливают новые соты. Недостатком данного варианта считается сложность с выбором сервиса для ремонта, не везде возьмутся за такую работу. Срок службы универсального нейтрализатора 60–90 тысяч километров.

Съём/Установка катализатора

Более дешевый и распространенный способ — пламегаситель. Он может быть готовым, просто предназначенным для установки вместо катализатора. Другой вариант — установка пламегасителя непосредственно в корпус нейтрализатора. Такой способ несколько сложнее, но позволяет скрыть факт замены детали при продаже автомобиля.

Иногда водители просто выбивают соты из корпуса. Способ дешевый, но может привести к увеличению уровня шума и урону экологии.

Особенности удаления катализатора из выхлопной системы

Ниже рассмотрим, какие нюансы удаления катализатора стоит учитывать. В первую очередь, нужно решить, как будет обходиться лямбда-зонд. После удаления нейтрализатора, датчик будет постоянно выдавать ошибку.

Чтобы обойти датчик, обычно делают обманку. Это проставка, которая отдаляет датчик от выхлопных газов, в результате он фиксирует больше кислорода. Обманку вкручивают на место датчика, и уже в нее устанавливают прибор. Такая система работает стабильно, хоть и имеет большое количество минусов. 

  • Любое вмешательство в конструкцию автомобиля приводит к снятию его с гарантии. Подумайте, что будет, если возникнет неисправность двигателя, которая попадает под гарантийный случай.
  • Невозможность пройти государственный техосмотр. Бортовой компьютер вы обманули, но вот при проверке на стенде, обман вскроется. В итоге, вы получите запрет на эксплуатацию транспортного средства. Со станции СТО, вы поедете уже на эвакуаторе.

Еще можно сделать перепрошивку ЭБУ. В результате система будет считать, имеющиеся показатели за норму. Для такой работы требуются дополнительные знания, а также программное обеспечение.

Предупреждения на приборной панели

При перепрошивке нарушаются нормальные циклы работы мотора. Он начинает работать в неправильном режиме. Это снижает ресурс силового агрегата примерно в два раза. В результате перепрошивка вместо экономии принесет вам только больше расходов.

Заключение

В случае возникновения проблем с катализатором, необходимо его заменить. Оптимальным решением будет установка оригинального нейтрализатора. Все аналоги и обманки могут привести к ускоренному выходу двигателя из строя, сделают невозможным получение диагностической карты, а также создадут дополнительную нагрузку на экологию.

Устройство двигателя внутреннего сгорания — видео, схемы, картинки

Двигатель внутреннего сгорания – это одно из тех изобретений, которые в корне перевернули нашу жизнь – с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели – Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других – привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же – теплота сгорания топлива преобразуется в механическую энергию.

Название “двигатель внутреннего сгорания” используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания – паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель – бензин, дизель, пропан-бутан или экотопливо на основе растительных масел – главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски – с плоским толстым дном и прямыми стенками), а цилиндр – на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания – углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней – к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные – цилиндры расположены в один ряд;
  • V-образные – цилиндры расположены друг против друга под углом, в разрезе напоминают букву “V”;
  • U-образные – два объединенных между собой рядных двигателя;
  • X-образные – ДВС со сдвоенными V-образными блоками;
  • оппозитные – угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые – три или четыре ряда цилиндров установленные в форме буквы “W”;
  • звездообразные двигатели – применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.

Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны – шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

Загрузка…

Поделиться в социальных сетях

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу.Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит.Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не смог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Институт

— История — Изобретение электродвигателя 1800-1854

Univ.-Проф. Д-р инж. Мартин Доппельбауэр

Сводка

С изобретением батареи (Алессандро Вольта, 1800 г.), генерации магнитного поля из электрического тока (Ганс Христиан Эрстед, 1820 г.) и электромагнита (Уильям Стерджен, 1825 г.) был заложен фундамент для создания электродвигателей. В то время было еще открытым вопрос, должны ли электродвигатели быть вращающимися или возвратно-поступательными машинами, то есть имитировать шток плунжера паровой машины.

Во всем мире многие изобретатели работали параллельно над этой задачей — это была проблема «моды». Новые явления открывались почти ежедневно. Изобретения в области электротехники и ее приложений витали в воздухе.

Часто изобретатели ничего не знали друг о друге и самостоятельно разрабатывали аналогичные решения. Соответствующим образом формируются национальные истории до наших дней. Ниже приводится попытка дать исчерпывающую и нейтральную картину.

Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу в 1822 году (Колесо Барлоу).

После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным устройством немецкоязычный прусский Мориц Якоби создал в мае 1834 года первый настоящий вращающийся электродвигатель , который на самом деле развил замечательную механическую выходную мощность. Его мотор установил мировой рекорд, который был улучшен только четыре года спустя, в сентябре 1838 года, самим Якоби. Его второй двигатель был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку.Только в 1839/40 году другим разработчикам во всем мире удалось создать двигатели с аналогичными, а затем и с более высокими характеристиками.

Уже в 1833 году немец Генрих Фридрих Эмиль Ленц опубликовал статью о законе взаимности магнитоэлектрических и электромагнитных явлений, то есть о обратимости электрогенератора и двигателя . В 1838 году он дал подробное описание своих экспериментов с генератором Pixii, который он использовал в качестве двигателя.

В 1835 году двое голландцев Сибрандус Стратинг и Кристофер Беккер построили электродвигатель, который приводил в движение небольшую модель автомобиля.Это первое известное практическое применение электродвигателя. В феврале 1837 года первый патент на электродвигатель был выдан американцу Томасу Дэвенпорту.

Однако все ранние разработки Якоби, Стратинга, Давенпорта и других в конечном итоге не привели к электродвигателям, которые мы знаем сегодня.

Двигатель постоянного тока был создан не на основе этих двигателей, а в результате разработки генераторов энергии (динамометров). Основы были заложены Уильямом Ричи и Ипполитом Пикси в 1832 году с изобретением коммутатора и, что наиболее важно, Вернером Сименсом в 1856 году с двойным Т-образным якорем и его главным инженером Фридрихом Хефнер-Альтенеком в 1872 году с помощью барабанная арматура.Двигатели постоянного тока по-прежнему занимают доминирующее положение на рынке в диапазоне малой мощности (ниже 1 кВт) и низкого напряжения (ниже 60 В).

В период с 1885 по 1889 год была изобретена трехфазная электроэнергетическая система , которая является основой для современной передачи электроэнергии и современных электродвигателей. Единого изобретателя трехфазной системы питания назвать нельзя. Есть несколько более или менее известных имен, которые принимали активное участие в изобретениях (Брэдли, Доливо-Добровольский, Феррарис, Хазельвандер, Тесла и Венстрём).Сегодня трехфазный синхронный двигатель используется в основном в высокодинамичных приложениях (например, в роботах) и в электромобилях. Впервые он был разработан Фридрихом Августом Хазельвандером в 1887 году.

Очень успешный трехфазный асинхронный двигатель был построен Михаилом Доливо-Добровольским в 1889 году. Сегодня это наиболее часто производимая машина в диапазоне мощностей от 1 кВт и выше.

Расписание 1800 — 1834: Первые эксперименты с электромагнитными устройствами
1800 Впервые Allessandro Volta (итальянский) производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из набора серебряных и цинковых пластин.
1820 Ганс Кристиан Эрстед (Дениш) обнаруживает генерацию магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механическое движение было вызвано электрическим током.
1820 Андре-Мари Ампер (французский язык) изобретает цилиндрическую катушку (соленоид).
1821 Майкл Фарадей (британский) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита.
Вращающийся провод Фарадея, 1821
Фотография любезно предоставлена ​​Отделом труда и промышленности, Национальный музей американской истории, Смитсоновский институт
1822 Питер Барлоу (Великобритания) изобретает прялку (колесо Барлоу = униполярная машина).
Колесо Барлоу, 1822
Philosophical Magazine, 1822, vol. 59
1825-1826 William Sturgeon (Великобритания) изобретает электромагнит , катушку проводов с железным сердечником для усиления магнитного поля.

Первый электромагнит Стерджена, 1825 г.
Труды Общества поощрения художеств, мануфактур и торговли, 1824 г., т.43, пл. 3
1827-1828 Istvan (Ányos) Jedlik (венгерский) изобретает первую роторную машину с электромагнитами и коммутатором.
Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна.

До сих пор многие венгры верят, что Джедлик изобрел электродвигатели. Функциональная модель его аппарата выставлена ​​в художественном музее в Будапеште.

Хотя на самом деле это может быть первый электродвигатель, необходимо понимать, что это устройство не оказало влияния на дальнейшее развитие электрических машин. Изобретение Джедлика долгое время оставалось скрытым, и изобретатель не преследовал его. Электротехника ничем не обязана Джедлику.


Поворотное устройство Jedlik, 1827/28
Фото: Wikipedia

Электромобиль Jedlik, 1827/28
Фото: Wikipedia
перед
1830
Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям проф.Андреас фон Баумгартнер (австрийский физик; с 1823 г. профессор физики и прикладной математики в Вене).

Этот аппарат был приобретен в 1830 году Инсбрукским университетом по цене 50 жидких кубометров. Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена.


Двигатель Баумгартнера, построенный Эклингом до 1830 года
Фотография любезно предоставлена ​​Университетом Инсбрука, Музей экспериментальной физики, Ao.Univ. Проф. Маг. Доктор Армин Денот.
1831 Майкл Фарадей (Великобритания) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основу для развития электрогенератора.
1831 Джозеф Генри (американец из США) находит закон индукции независимым от Фарадея и строит небольшой магнитный рокер.Он описывает это как «философскую игрушку».

В статье для английского журнала Philosophical Magazine, в 1838 году англичанин Ф. Уоткинс подробно описывает устройство Генри и называет его первым электродвигателем, когда-либо известным. Эта точка зрения распространяется и по сей день в основном на британскую литературу.


Магнитный рокер Генри, 1831
Американский журнал науки, 1831, т. 20, стр. 342
Апрель
1832
Savatore dal Negro (итальянский) создает устройство, которое может поднять 60 граммов за одну секунду на 5 сантиметров и, следовательно, развивает механическую мощность почти 30 мВт.

Вероятно, он был вдохновлен магнитным рокером Генри и создал аналогичную возвратно-поступательную машину. Однако устройство Даль Негро может производить движение с помощью специальной передачи.

Даль Негро описывает свои эксперименты в письме от апреля 1832 года, а затем в научной статье « Nuova Macchina élettro-Magnetica » в марте 1834 года.
Его устройства хранятся в Музее истории физики при университете Падуи. К сожалению, они не отображаются.


Электромагнитный маятник Даль Негро, 1832
Annali delle Scienze de Regno Lombardo-Veneto, März 1834, pl. 4
июль
1832
Первое публичное описание вращающейся электрической машины .

Автор — анонимный писатель с инициалами П.М. Теперь его с большой вероятностью опознали как ирландца Фредерика Мак-Клинтока из Дублина.

Майкл Фарадей, получатель письма 26 июля 1832 г., немедленно его публикует. Впервые публично описана вращающаяся электрическая машина.


Первое описание вращающейся электрической машины П.М., 1832 г.
Philosophical Magazine, 1832, стр. 161–162
июль
1832
Hippolyte Pixii (французский язык) создает первый аппарат для генерации переменного тока из вращения.

Устройство публично представлено в сентябре 1832 года на заседании Académie des Sciences . Его описание напечатано уже в июльском выпуске Annales de Chimie .

Pixii улучшил свое устройство в том же году, добавив переключающее устройство. Теперь он может производить пульсирующий постоянный ток.


Первый генератор постоянного тока Pixii, 1832/33
F.Niethammer, Ein- und Mehrphasen-Wechsel-strom-Erzeuger, Verlag S. Hirzel, Leipzig 1906
1832 Уильям Ричи (британский) сообщил в марте 1833 года об устройстве, которое, как он утверждал, было построено девятью месяцами ранее летом 1832 года. Это вращающийся электромагнитный генератор с четырьмя катушками ротора, коммутатором и щетками.

Таким образом, Ричи считается изобретателем коммутатора.

В конце своей статьи Ричи описывает, как он смог вращать электрический магнит, используя магнитное поле Земли. Он мог поднять вес на несколько унций (50-100 грамм). Коммутация производилась двумя концами провода, которые входили в два полукруглых желоба с ртутью.


Первый генератор постоянного тока с коммутатором, 1832/33

Вращающаяся катушка Ричи, 1833
Philosophical Trans.Лондонского королевского общества, 1833, Vol. 132, стр.316, пл.7
Янв
1833
A Доктор Шультесс читает лекцию в Обществе инженеров в Цюрихе в 1832 году, в которой описывает свои идеи электродвигателя. В январе 1833 года он успешно продемонстрировал машину перед тем же цюрихским обществом.
Более подробная информация отсутствует.
Март
1833
Осенью 1832 года Уильям Стерджен строит вращающееся электрическое устройство, которое он публично демонстрирует в марте 1833 года в Лондоне.

Как и в случае с Джедликом, нет никаких определенных доказательств даты и деталей его строительства. Осетр сообщил об этом изобретении в 1836 году в первом выпуске своего собственного журнала.


Устройство вращения осетровых, 1832
Осетровые летопись электричества, 1836/37, т. 1
Декабрь
1833
В первые годы развития электротехники проводилось строгое различие между магнитно-электрическими машинами, т.е.е. электрические генераторы и электромагнитные машины, то есть электродвигатели.

Генрих Фридрих Эмиль Ленц (немецкий) обнаружил « закон взаимности магнитоэлектрических и электромагнитных явлений », то есть обратимость электрического генератора и двигателя.

Его научный текст прочитан в конце 1833 года в Петербургской Академии наук и опубликован в 1834 году в журнале «Annalen der Physik und Chemie » Поггендорфа.Его идеи постепенно становятся обычным явлением, особенно в 1838 году после нескольких сообщений об успешных экспериментах по обращению.

Иногда утверждают, что принцип обращения был открыт в 1861 году итальянцем Пачинотти или даже только в 1873 году случайно на Всемирной выставке в Вене. Оба утверждения ложны. Эмиль Ленц широко сообщил уже в 1838 году в Annalen der Physik und Chemie Поггендорфа , как он использовал генератор Pixii в качестве двигателя.

июль
1834
Джузеппе Доменико Ботто (итальянец), профессор физики из Турина, в июле 1834 года публикует в женевском журнале Bibliotheque Universelle описание электродвигателя, на котором он работает.

Его устройство соответствует метроному (похожему на конструкции Генри и Даль Негро), действующему на маятник с помощью двух электромагнитов.Вращательное движение создается штоком поршня.

Реплика устройства сейчас выставлена ​​в Museo Galileo во Флоренции.


Роторная машина Ботто, июль 1834 г. (реконструкция)
Фото любезно предоставлено Museo Galileo, Флоренция

Расписание 1834 — 1837: Первые настоящие электродвигатели
Май
1834
Мориц Херманн Якоби (немецкоязычный прусский, натурализованный русский) начинается с экспериментов над подковообразным электромагнитом в начале 1833 года в Кенигсберге (тогда Пруссия, ныне Россия).В январе 1834 года он пишет в письме Поггендорфу, редактору журнала Annalen der Physik und Chemie , о своих успехах.

Он переходит к созданию электродвигателя, которое он завершает в мае 1834 года. Его двигатель поднимает вес от 10 до 12 фунтов со скоростью один фут в секунду, что эквивалентно примерно 15 ваттам механической мощности.
В ноябре 1834 года он отправляет отчет Академии наук в Париже и публикует подробные научные мемуары весной 1835 года.Позже за эту работу он получил звание почетного доктора факультета Кенигсбергского университета. Его текст разделен на 23 раздела и был расширен в 1837 году еще на 15 разделов.

Якоби прямо заявил в меморандуме 1835 года, что он не единственный изобретатель электромагнитного двигателя. Он указывает на приоритет изобретений Ботто и Даль Негро.

Однако Якоби, несомненно, был первым, кто создал пригодный для использования вращающийся электродвигатель.

Полнофункциональная копия его двигателя выставлена ​​в Институте электротехники (ETI) Технологического института Карлсруэ (KIT) по адресу Engelbert-Arnold-Strasse 5 (Building 11.10) в Карлсруэ, Германия.


Первый настоящий электродвигатель
Мориц Якоби, Кенигсберг, май 1834 года
Октябрь
1834
Американец Т. Edmundson создает электромагнитное вращающееся устройство, напоминающее водяное колесо.
Электромагнитное колесо Эдмундсона
Американский журнал науки, 1834, т. 26, стр. 205
1834-1835 В декабре 1833 года кузнец Томас Давенпорт (американец) покупает соленоид непосредственно у Джозефа Генри и начинает эксперименты вместе с Orange Смолли (американец) в мастерской в ​​Форестдейле, штат Вермонт.

В июле 1834 года двое мужчин создают свою первую роторную машину. Они улучшают устройство в несколько этапов, прежде чем впервые публично продемонстрировать его в декабре 1834 года.

В следующем году Давенпорт отделяется от Смолли.

Летом 1835 года Давенпорт едет в Вашингтон, округ Колумбия, чтобы продемонстрировать свою машину в патентном бюро и зарегистрировать ее. Однако из-за отсутствия денег ему пришлось безуспешно вернуться домой.


Первый двигатель Давенпорта из его первой заявки на патент в июне 1835 года
Август
1835
Фрэнсис Уоткинс (британец) создает электрическую «игрушку», с помощью которой он может приводить во вращение несколько магнитных игл. Он описывает устройство в статье для Philosophical Magazine .

Он признается, что его вдохновила электромагнитная машина (генератор) Джозефа Сакстона, которая выставлена ​​в публичной галерее в Лондоне с августа 1833 года.

Watkins можно считать одним из первых, кто понял принцип реверсирования двигателя и генератора.


Игрушка Уоткина, 1835 г.
Philosophical Magazine , 1835 г., т. 7, стр. 112
1835 Sibrandus Stratingh и Christopher Becker (голландский) создают небольшой (30 x 25 см) трехколесный автомобиль с электрическим приводом и весом около 3 кг.Он может проехать по столу от 15 до 20 минут, пока батарея не разрядится.

Stratingh и Becker публикуют отчет о своем успехе в том же году. Стратинг знал работу Якоби и в 1840 году хотел построить настоящий электромобиль, но ему это так и не удалось.


Электромодель Стрейтинга и Беккера, 1835 год
Май
1836
Johann Philipp Wagner (немецкий) представляет электродвигатель на Stiftungsfest из Sencken-bergischen naturforschenden Gesellschaft .Его аппарат похож на устройство, созданное Стратингом и Беккером. Он может работать около 10 минут, пока батарея не разрядится.

Вагнер хранит свою конструкцию в секрете, поэтому есть отчеты о демонстрации, но нет чертежей машины. В последующие годы Вагнер продолжает развивать свой двигатель и публично демонстрирует улучшенные версии.

1836
1837
Davenport продолжает совершенствовать свои устройства.В 1836 году он находит нового партнера в лице Ransom Cook и переезжает в Саратога-Спрингс, штат Нью-Йорк, для дальнейшего развития своих двигателей. С помощью Кука он строит модель патентного бюро.
24 января 1837 года Давенпорт подает в Вашингтон свое предостережение, а 5 февраля 1837 года он получает первый в США патент на электродвигатель: « Улучшение силовых механизмов с помощью магнетизма и электромагнетизма ».

Его модель двигателя сейчас выставлена ​​в Смитсоновском институте в Вашингтоне, округ Колумбия.

В запатентованной конструкции

Davenport используются четыре вращающихся электромагнита, которые переключаются с помощью коммутатора, и постоянные постоянные магниты в форме кольца, сделанные из мягкого железа.

Усовершенствованный двигатель, который он представляет в августе 1837 года, имеет диаметр 6 дюймов, вращается со скоростью около 1000 оборотов в минуту и ​​может поднять 200-фунтовый груз на один фут за одну минуту. Это соответствует мощности 4,5 Вт.

Давенпорт в последующие годы постоянно совершенствовал свои конструкции.

Вместе с Эдвином Вильямсом из Нью-Йорка и его партнером Рэнсомом Куком , Давенпорт 3 марта 1837 года формирует объединенную акционерную ассоциацию. Однако Уильямс не может продать достаточное количество акций, и все предприятие рушится всего через год. .


Запатентованный двигатель Давенпорта, февраль 1837 г.

Томас Дэвенпорт — изобретатель электродвигателя?

Есть несколько текстов пафоса в американо-американской литературе, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на бесспорном факте, что Давенпорт был первым американцем, который создал пригодный для использования электродвигатель, а также первым, кто получил патент на такое устройство в начале 1837 года.

Однако

Davenport был далеко не первым, кто построил электродвигатель. В Европе (особенно в Англии, Италии и Пруссии) технологии были уже значительно продвинуты. Уже летом 1834 года, за три года до патента, Мориц Якоби представил двигатель, который был в три раза мощнее усовершенствованной машины, которую Давенпорт разработал через несколько месяцев после подачи заявки на патент.Вдобавок мотор Давенпорта работал быстрее, чем у Якоби. Таким образом, выходной крутящий момент двигателя Давенпорта, решающий фактор при сравнении электрических машин, составлял лишь около одной десятой от конструкции Якоби, разработанной тремя годами ранее.

В 1835 году, вскоре после появления двигателя Якоби, двое голландцев Стрейтинг и Беккер уже представили первое практическое применение, управляя небольшой электромобилем.

За годы, прошедшие после патента Давенпорта, продвижение Якоби практически не уменьшилось.В то же время, когда Якоби продемонстрировал свою следующую машину осенью 1838 года, двигатель, который имел выходную мощность 300 Вт и мог вести лодку с 14 людьми через широкую реку, Давенпорт показал крошечную модель поезда.

Мотор

Davenport не примечателен в историческом контексте. Его конструкция не является существенным улучшением других современных конструкций.

За прошедшие годы Давенпорт произвел большое количество машин.Но в отличие от Вернера Сименса, Джорджа Вестингауза и Томаса Эдисона он не был основателем важной компании. И в отличие от Николы Теслы, например, Томас Давенпорт никогда не мог продать или лицензировать свой патент.

Davenport не получил патент на электродвигатель как таковой, а только на его особые конструктивные особенности. В период с 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. После того, как Давенпорт модернизировал свой двигатель уже в 1837 году, его патент стал практически бесполезным.

Davenport — это честь быть первым из тысяч инженеров, получивших патент на электродвигатель. Но он не является их изобретателем, и его разработки не оказали сколько-нибудь значительного влияния на дальнейшее развитие электродвигателей.


Расписание 1838 — 1854 гг .: более мощные двигатели, новые применения
февр.
1838
Уоткинс публикует обширную статью в Philosophical Magazine , где он представляет свой двигатель.
Двигатель Уоткина, февраль 1838 г.
Philosophical Magazine, 1838 г., т. 12, пл. 4
Август 1838 г. В августе 1838 года в Лондоне выставлена ​​крошечная модель поезда с одним из двигателей Davenport . Он движется со скоростью 3 мили в час.
Модель поезда Давенпорта, 1838
Фото любезно предоставлено Отделом труда и промышленности Национального музея американской истории Смитсоновского института.
сен.
1838
Якоби переезжает в Санкт-Петербург в августе 1838 года по просьбе русского царя. Он был принят в Петербургскую Академию наук и щедро поддержан царем в его дальнейшей работе над электродвигателями.

13 сентября 1838 года Якоби впервые демонстрирует на Неве лодку с электрическим приводом и гребными колесами длиной около 8 м.

Цинковые батареи имеют 320 пар пластин и весят 200 кг.Они размещены вдоль двух боковых стенок сосуда. Мотор развивает мощность от 1/5 до 1/4 л.с. (300 Вт), лодка движется со скоростью 2,5 км / ч по маршруту длиной 7,5 км. Он может перевозить более десятка пассажиров. Якоби целыми днями разъезжает по Неве. В современных газетных статьях говорится, что после двух-трех месяцев работы потребление цинка составило 24 фунта.


Улучшенный мотор Якоби, 1838
1838 Чарльз Г. Page (американец) начинает всю жизнь заниматься электромоторами.

В течение следующих 20 лет Пейдж будет искать лучшие и более мощные машины. Его двигатели продавались по каталогам в США и достигли высокого уровня осведомленности общественности.

В первые годы многие изобретатели электродвигателей имитировали паровые двигатели с качающимся (возвратно-поступательным) поршнем. Пейдж тоже строит такую ​​машину (см. Справа), но затем обращается к вращающимся устройствам.


Первый двигатель Пейджа, 1838
Американский журнал науки , 1838, т. 35, стр. 264
Август
1839
8 августа г. Якоби испытывает усовершенствованный электродвигатель, механические характеристики которого в три-четыре раза превышают механические характеристики его второй машины 1838 года (около 1 кВт).Его лодка сейчас развивает скорость 4 км / ч. По словам Уильяма Роберта Гроува, ключевым фактором его успеха является улучшенная цинк-платиновая батарея, которую он сделал сам.

В октябре 1841 года Якоби снова демонстрирует усовершенствованный двигатель, который, однако, лишь немного превосходит модель 1839 года. Это последний электродвигатель, построенный Якоби. Теперь он обращается к теории электродвигателей, а затем переходит к другим электрическим явлениям.

1837-
1842
Роберт Дэвидсон (Шотландия) также занимается разработкой электродвигателей с 1837 года.Сделал несколько приводов для токарного станка и модельных машин.

В 1839 году Дэвидсон руководит постройкой первого автомобиля с электрическим приводом.

В сентябре 1842 года он совершает пробные пробеги с 5-тонным локомотивом длиной 4,8 м на железнодорожной линии Эдинбург — Глазго. Его двигатель развивает около 1 л.с. (0,74 кВт) и развивает скорость 4 мили в час (6,4 км / ч).


Первый электровоз Дэвидсона, 1839 год
От Т.du Moncel, Электричество как движущая сила , Лондон, 1883 г., рис. 32

В последующие годы начинается поток патентов на электромагнитные машины — около 100 в одной только Англии с 1837 по 1866 год.

Среди изобретателей, занимающихся электромоторами: Джеймс Джоул (англ., 1838 г.), Уильям Тейлор (англ., 1838 г.), Урайа Кларк (1840 г.), Томас Райт (1840 г.), Уитстон (англ., 1841 г.) , де Гарлем (около 1841 г.), П.Элиас (американец, ок. 1842 г.), Дж. Фромент (франц., Ок. 1844 г.), Мозес Г. Фармер (американец, ок. 1846 г.), Г. К. Колтон (американец, род. 1847 г.), Хьорт (ок. 1849 г.), Томас Холл (американец в США, около 1850 г.), Т. К. Эйвери (около 1851 г.), Сорен Хьорт (датчанин, около 1851 г.), Дю Монсель (француз, около 1851 г.), Мари Дэви (француз, около 1855 г.), Пачинотти (Италия, около 1855 г.) 1861)
и другие.

Изначально идет соревнование между колебательными (возвратно-поступательными) и вращательными машинами. Позже колебательные машины полностью исчезают из поля зрения.

Фундаментальная проблема первых электродвигателей заключалась в том, что электрический ток от гальванических элементов (цинковых батарей) был слишком дорогим, чтобы конкурировать с паровыми двигателями. Р. Хант сообщил в 1850 году в британском философском журнале «», что электроэнергия даже в самых лучших условиях в 25 раз дороже, чем паровая машина. Только с продолжающейся разработкой электрогенератора (динамо-машины) ситуация начинает меняться.

1840 18 января 1840 года выходит первое издание новой газеты Давенпорта, Electro Magnet and Mechanics Intelligencer . Печатный станок приводится в движение двумя собственными моторами. Моторы выдают якобы около 2 л.с., что составляет около 1,5 кВт.
1841-
1844
По инициативе Вагнера, Германская Конфедерация под руководством Пруссии, Баварии и Австрии устанавливает в 1841 году приз в размере 100000 гульденов за создание электрической машины, мощность которой дешевле, чем мощность лошади, пара или человека. мощность.

Конечно, эта цена привлекает других изобретателей, которые параллельно с Вагнером начинают работать над электродвигателем. Среди них г-н Карл Людвиг Althans из Бюкебурга недалеко от Миндена, Эмиль Stöhrer из Лейпцига, Эмиль Groos из Карлсруэ и Петер Bauer из Нюрнберга. В частности, в 1843 году Штёрер конструирует замечательную машину.

При исследовании последней машины Вагнера в мае и июне 1844 г. во Франкфурте-на-Майне федеральная комиссия определила мощность всего в 50 Вт.Потребление цинка настолько велико, что лошадь, пар и рабочая сила значительно дешевле. Из-за этой неудачи Вагнеру отказывают в цене, и он впадает в немилость.

Без мощного электрогенератора это соревнование невозможно было бы выиграть, и человечеству пришлось ждать еще 25 лет.

1851 Page увеличивает мощность двигателей с 8 до 20 л.с.

С двумя двигателями он ведет 10-тонный локомотив с максимальной скоростью 30 км / ч. Он путешествует по маршруту из Вашингтона в Бладенбург за 19 минут.

1854 Другой, 12-тонный локомотив Пейджа едет по маршруту Балтимор — Огайо.
… подробнее в части 2.

Общие типы электродвигателей

Электродвигатель — это электрическое устройство, преобразующее электрическую энергию в механическую.Механическая сила может использоваться для вращения вентиляторов, миксера, конвейеров или шин электромобиля. Электродвигатель — это рабочая лошадка в отрасли передачи электроэнергии.

Все двигатели обладают определенными характеристиками, поэтому мы можем классифицировать их на основе конкретных характеристик или стандартов.

Двигатели, используемые в Северной Америке, чаще всего соответствуют стандартам NEMA (Национальная ассоциация производителей электрооборудования). Обычно называемые двигателями NEMA. Практически во всем остальном мире используется метрическая версия, называемая SI или международным стандартом, известная как стандарты IEC.Часто называют двигателями IEC. NEMA использует лошадиные силы и дюймы, IEC использует миллиметры и киловатты

.

Мы классифицируем 2 типа электродвигателей в зависимости от источника питания:

  • Двигатели постоянного или постоянного тока
  • Двигатели переменного или переменного тока


Двигатели постоянного тока Двигатели постоянного тока

были первой формой двигателей, широко используемых, поскольку они могли питаться от существующих систем распределения электроэнергии постоянного тока.Они обычно снабжены постоянными магнитами в их статической части, но есть и другие, которые содержат электромагниты вместо постоянных магнитов в своем статоре. Скорость двигателя постоянного тока можно регулировать в широком диапазоне, используя либо переменное напряжение питания, либо изменяя силу тока в его обмотках возбуждения. Небольшие двигатели постоянного тока используются в игрушках, инструментах и ​​бытовой технике.

Двигатели переменного тока

Переменный ток, что означает, что ток вместо того, чтобы течь в одном направлении, движется вперед и назад, меняет направление с определенной частотой в герцах.В большинстве стран в качестве частоты переменного тока используется 50 Гц (50 Гц или 50 циклов в секунду). Лишь немногие используют 60 Гц. Стандарт в США — электричество переменного тока частотой 60 Гц.

Мы классифицируем 2 основных типа двигателей переменного тока в соответствии с фазой:

Однофазный двигатель

Однофазный двигатель работает от однофазного источника питания. Они содержат два типа проводки: горячую и нейтральную. Их мощность может достигать 3 кВт.Их можно использовать в основном в домах, офисах, магазинах и небольших непромышленных компаниях, а также во многих других устройствах, таких как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

Трехфазный двигатель

Трехфазный двигатель работает от трехфазного источника питания. Они управляются тремя переменными токами одинаковой частоты, которые достигают максимума в переменные моменты времени. Они могут иметь мощность до 300 кВт и скорость от 900 до 3600 об / мин.Из-за высокой эффективности и низкой стоимости трехфазный двигатель переменного тока является наиболее часто используемым двигателем в промышленных приложениях.

Мы также можем классифицировать двигатели по типу корпуса. Мы расскажем об этом в другой статье.
Читайте здесь: Самые распространенные типы корпусов электродвигателей

Применение электродвигателей

Электричество — это наиболее экономичный способ передачи энергии на очень большие расстояния по проводам.Однако практически невозможно использовать электричество напрямую, например, для перекачивания воды, для чего требуется механическая энергия. В этом случае нам нужно производить механическую энергию из электричества, чтобы выполнять механическую работу. По этой причине мы используем электродвигатели, которые потребляют электричество на входе и выдают механическую энергию на выходе.

Ознакомьтесь с некоторыми приложениями, в которых требуются электродвигатели:

  • Промышленное использование — Существуют различные процессы во всех отраслях промышленности, в которых нам требуется механическая энергия от электродвигателей, например смешивание, подъем, вытягивание и т. Д.

  • Домашнее хозяйство — Для комфортной жизни мы полагаемся на многие электрические приборы, для которых требуются электродвигатели, такие как кондиционер, электрические вентиляторы, пылесос, водяной насос, кофемолка, миксер и т. Д.

Не стесняйтесь: Свяжитесь с нами , если у вас есть какие-либо вопросы, вам нужна дополнительная информация или если вы заинтересованы в покупке электродвигателей.

HVH Industrial Solutions является авторизованным дистрибьютором следующих производителей электродвигателей: Elektrim Motors, Aurora Motors, Worldwide Electric , Rossi . Мы тесно сотрудничаем с их инженерными командами, чтобы обеспечить превосходное обслуживание и поддержку клиентов.

Сделать запрос


Владимир Арутюнян

Владимир Арутюнян — основатель HVH Industrial.Он имеет степень магистра машиностроения и более 10 лет опыта работы в области передачи механической энергии.

Не стесняйтесь связываться с Владом на Linkedin: https://www.linkedin.com/in/vladharut



Что такое мотор? | Сервоприводы и контроллеры машин | Продукты и решения

Что такое мотор?

Словарь описывает: «Двигатель — это машина, которая преобразует электрическую энергию в механическую.Другими словами, электрическая энергия — это «батарея», а механическая энергия — это «вращение». Для физического объяснения мотора хорошо подходит хорошо известное «правило левой руки Флеминга». Когда электрический ток течет по электрическому проводу, помещенному между двумя магнитами, обращенными друг к другу, он создает силу. Электрический ток, магнитное поле и движение соответственно применяются в перпендикулярных направлениях друг к другу, как когда вы разводите средний палец (электрический ток), указательный палец (магнитное поле) и большой палец (сила) левой руки соответственно по взаимно ортогональным осям.

Тогда почему электрический ток, протекающий по электрическому проводу, создает силу? Это связано с тем, что, когда электрический ток течет по электрическому проводу, вокруг него создается магнитное поле. Магнитное поле притягивает или отталкивает магнитное поле от магнитов, которые создают силу для перемещения электрического провода. Электрическая энергия здесь — это «электрический ток», а механическая энергия — это «сила».

Начало моторов

В 1831 году британский физик Майкл Фарадей открыл закон электромагнитной индукции, согласно которому электрический ток течет при перемещении магнитов в катушке с воздушным сердечником.Закон электромагнитной индукции доказал, что электрическая энергия и механическая энергия взаимно преобразованы. Говорят, что это катализатор изобретения двигателей. В те дни Великобритания переживала период первой промышленной революции, и паровая энергия была движущей силой революции. Никто не мог признать важность двигателей, которые работали с электричеством в те дни без электросети.

На пути к практичным моторам

Никола Тесла

С момента открытия Фарадеем электромагнитной индукции люди изобрели ряд двигателей.В 1834 году Томас Давенпорт изобрел практический двигатель постоянного тока. После этого югославскому инженеру-электрику, позже ставшему американцем Никола Тесла, пришла в голову идея управлять двигателями переменным током. В 1882 году идея принципа вращающегося магнитного поля внезапно поразила его голову, когда он гулял в парке. В 1887 году он закончил практический двухфазный двигатель переменного тока (асинхронный двигатель), использующий вращающееся магнитное поле. С тех пор были разработаны технологии переменного тока, такие как трансформатор, трехфазная трехпроводная система, а также электросети.Чем доступнее становилось электричество, тем шире использовались двигатели.

Благодаря прорыву Tesla теперь мы можем наслаждаться жизнью с помощью электричества и двигателей. Кстати, когда-то Тесла работал в компании, которой руководил великий изобретатель Эдисон, он вступил в конфликт с Эдисоном и покинул компанию в течение одного года. Тесла оставил слова, цинично искажающие слова Эдисона: «Гений — это 1 процент вдохновения и 99 процентов напрасных усилий».

Отечественное производство моторов и выезд Yaskawa Electric

Первый заказ размещен на асинхронном двигателе

Говорят, что первый двигатель, использованный в Японии, был для лифта (вмещал 15-20 человек, работал до 8 этажа) в Ryōunkaku, первом небоскребе в западном стиле в Японии, открытом в 1890 году в районе Асакуса, Токио. .Не говоря уже о том, что такой технологии для разработки и производства двигателей в Японии не было, в лифте использовался 15-сильный двигатель (двигатель постоянного тока), купленный в Америке. Хотя утверждается, что лифт прекратил работу в течение 1 года из-за частых поломок, это стало эпизодом, демонстрирующим стремление людей к моторизации.

В 1890-х годах в Японии начали использовать импортные двигатели, например, для насосов в шахтах. Поскольку уровень промышленных технологий в Японии в то время был значительно ниже, чем в Европе и Америке, большинство электрических устройств было импортным.Однако говорят, что они часто выходили из строя. Итак, двигатели отечественного производства постепенно набирали обороты.

В 1895 году был выпущен первый двигатель (асинхронный двигатель), произведенный в Японии. Затем, в 1915 году, Yaskawa Electric была основана как компания, которая производила и продавала электрические продукты, произведенные исключительно в Японии, и запустила первый заказ на асинхронные двигатели в 1917 году. С этого момента операторы угольных шахт начали размещать заказы на двигатели Yaskawa для их насосы и тягачи.

Различные виды и особенности двигателей

Через 180 лет после появления двигателей его характеристики и удобство использования значительно улучшились благодаря прогрессу в разработке и производстве технологий и материалов, а также электроники. Существуют различные способы вызова двигателей в зависимости от категоризации функций и структур, таких как серводвигатель для его точной работы по командам, линейный двигатель для его линейного движения, вибрационный двигатель для его вибрации для уведомления о входящем вызове на мобильном телефоне и мотор-редуктор для комбинированного редуктора.У двигателей также есть несколько названий, хотя их конструкция одинакова. Начиная с двигателя для угольной шахты, теперь, когда двигатели Yaskawa Electric находят применение в самых разных областях, таких как промышленное оборудование, роботы и электромобили (EV). Например, в приведенном ниже списке показаны несколько названий, используемых в двигателях для электромобилей. Люди назвали моторы, чтобы обозначить отличия от других, в результате осталось много названий для моторов. Это такой сложный фон, но вместе с тем «доказательство диверсификации автомобильной промышленности».”

Категоризация двигателей

Двигатели постоянного тока пропускают через него постоянный ток (DC), а двигатели переменного тока пропускают через него переменный ток. Бесщеточный электродвигатель постоянного тока — это электродвигатель постоянного тока, в котором вместо щетки и коммутатора используется полупроводниковый переключающий элемент. Универсальный двигатель может вращать двигатель на высокой скорости с электричеством 100 В переменного тока для домашних хозяйств, удерживая ту же щетку и коммутатор для двигателей постоянного тока. Помимо этого, есть шаговый двигатель, который движется с прямоугольным потоком тока, и реактивный двигатель с переключаемым сопротивлением.Ультразвуковой двигатель — это специальный двигатель, который работает путем вибрации пьезоэлектрической керамики с приложением высокочастотного напряжения.

1) Двигатели постоянного тока

Двигатель, который многие японские ученики использовали в своих научных экспериментах в начальной школе, был электродвигателем постоянного тока. Это самый популярный двигатель, используемый в моделях, бытовой электронике и вибрационных двигателях в мобильных телефонах. Чтобы примерно объяснить устройство двигателей, в нем есть ротор и статор.Ротор — это часть, соединенная с валом, а статор — это неподвижная часть, которая составляет внешнюю часть.

Статор в двигателях постоянного тока удерживает постоянные магниты и щетки, которые подают электрический ток на ротор, а ротор удерживает обмотки и коммутатор. Как только щетки подают постоянный ток на коммутатор, электрический ток начинает течь через обмотки, подключенные к коммутатору, и создает крутящий момент. Здесь обмотки и коммутатор имеют механизм для протекания электрического тока таким образом, что крутящий момент остается на одном уровне.Самая большая особенность двигателя постоянного тока — его удобство использования с сухими элементами. Вы можете изменить направление вращения, просто изменив подключение проводов двигателя. Вот почему двигатели постоянного тока получили широкое распространение.

2) Бесщеточные двигатели постоянного тока

Бесщеточный двигатель постоянного тока можно охарактеризовать как «двигатель без щеток, обладающий характеристиками, аналогичными двигателю постоянного тока». Он содержит обмотки статора и постоянные магниты в роторе в качестве своей конструкции. В нем нет щеток и коммутатора, которые раньше были в двигателях постоянного тока, вместо этого он удерживает полупроводниковый переключающий элемент вне двигателя.Он работает, чтобы постоянно пропускать постоянный ток через две из трех фаз обмоток, фазы U, V и W. Он переключает поток тока в соответствии с положением постоянных магнитов, обнаруженным, например, датчиком элемента Холла, и продолжает генерировать то же самое. уровень крутящего момента.

3) Синхронные двигатели

С другой стороны, синхронный двигатель работает синусоидально, используя информацию, обнаруженную датчиком угла, прикрепленным к краю ротора. Синхронный двигатель назван в честь механизма, в котором вращение магнитного поля, создаваемого трехфазными обмотками, синхронизируется с вращением ротора.Конструкция синхронных двигателей в основном такая же, как и у бесщеточных двигателей постоянного тока. Поэтому люди часто принимают синхронные двигатели за бесщеточные двигатели постоянного тока и наоборот.

Одной из особенностей синхронных двигателей и бесщеточных двигателей постоянного тока является то, что они способны предотвращать износ щеток и электрические шумы. Они также могут уменьшаться в размерах, иметь высокую производительность и высокую эффективность за счет использования сильных редкоземельных магнитов. Благодаря этим характеристикам, существует широкий спектр применения, например, в информационных устройствах, бытовой электронике, автомобильных двигателях и серводвигателях.Говорят, что на двигатели постоянного тока приходится 70%, а общее количество бесщеточных двигателей постоянного тока и синхронных двигателей составляет 20% от общего количества произведенных малогабаритных двигателей.

4) Асинхронные двигатели

Принцип вращения асинхронных двигателей основан на «вращениях Араго», открытых французским физиком Араго. Это явление заключается в том, что когда вы помещаете алюминиевый диск между U-образным магнитом и перемещаете магнит в направлении вращения, алюминиевый диск начинает вращаться в том же направлении с небольшой задержкой по времени.Когда магнитное поле U-образного магнита изменяется на алюминиевом диске, спиральный электрический ток течет через алюминиевый диск (закон электромагнитной индукции), и действие тока и магнитного поля U-образного магнита генерирует электромагнитную силу. Асинхронные двигатели — это изобретение, применяемое во вращении Араго.

Статор асинхронных двигателей имеет в своем составе трехфазные обмотки. А на роторе находится алюминиевая деталь в виде клетки (корпусный проводник).Когда вы запускаете трехфазные обмотки в виде синусоиды, она генерирует магнитное поле, которое вращается с определенной частотой. Затем, как и в принципе вращения Араго, электрический ток течет через проводник с короткозамкнутым ротором, который воспринимает изменения магнитного поля, и ротор начинает вращаться с небольшой задержкой по времени.

Асинхронные двигатели

менее эффективны по сравнению с бесщеточными двигателями постоянного тока и синхронными двигателями, в которых используются постоянные магниты, однако у них есть другие особенности, например, они применимы к коммерческому трехфазному источнику питания переменного тока 200 В, с возможностью вращения без датчика Холла или датчик угла поворота, который трудно сломать, может эффективно работать с приводом переменного тока и обеспечивать большую мощность при использовании двигателя большого размера.Таким образом, существует множество вариантов использования асинхронных двигателей в промышленной сфере и транспортных средствах. Подобно биоразнообразию, у нас есть множество двигателей, которые имеют широкий диапазон природы в зависимости от различия структур и распределения материалов.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник».Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла.Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е.е., одна шестая часть цикла позже), ток в фазе c является максимально отрицательным, в то время как ток в фазе b и фазе a имеет положительное значение на половину. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности и до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения.Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е. одна шестая цикла позже) ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки.Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности и до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения.Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е. одна шестая цикла позже) ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки.Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности и до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °.

Добавить комментарий

Ваш адрес email не будет опубликован.