ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Что такое турбонаддув — ДРАЙВ

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

​Турбонаддув – компактное решение глобальной проблемы. Зачем он нужен и как работает.

Перед тем как мы начнём, хочу сразу прояснить один момент. В данной статье я предполагаю, что читатель имеет хотя бы примерное представление о принципе работы ДВС (двигателя внутреннего сгорания). И есть понимание, что в блоке цилиндров вверх-вниз двигаются поршни: засасывая и затем сжимая воздух с примесью бензина, а после, сжатую смесь поджигает искра и поршень идёт вниз, совершая полезную работу. Уже знаете? Отлично! Тогда разберёмся с турбиной.

С чего всё началось?

Давайте «на пальцах». Почти шекспировский вопрос: как увеличить мощность двигателя? Сейчас не будем лезть в дебри инженерии, а пойдём от простого, как рассуждали мотористы-проектировщики на заре автомобилизации. Самый очевидный способ – банально увеличить рабочий объём цилиндра! Здесь всё понятно: за один такт впуска поршень засосёт больше воздуха, топлива, соответственно, можно также добавить больше. «Заряд», который воспламенит свеча, будет мощнее – а значит, сильнее получится взрыв, который толкает поршень вниз на такте рабочего хода. Победа?.. И да, и нет. Увеличивая рабочий объём, мы волей-неволей тянем за собой и всё остальное: размеры деталей мотора и их масса тоже увеличиваются. А чем больше масса мотора, тем он менее экономичный, а шасси начинает испытывать проблемы с управляемостью… За примером далеко ходить не нужно – вспомним знаменитые масл-кары США годов, эдак, 60-х. Невероятный объём двигателя, относительно высокая мощность, при этом огромные размеры и… способность нормально «выстреливать» только на прямых. Серпантины, да и просто мало-мальски резкие повороты – всё это было таким машинам строго противопоказано. А про расход топлива я молчу вовсе: ну не брался тогда в серьёзный расчёт такой показатель. Вывод: эффективность мотора, мощность которого увеличена только за счёт рабочего объёма,

крайне мала.

Фото автогурман.com

И тогда придумали турбину. Суть идеи очень простая: за один такт впуска загнать в мотор как можно больше воздуха. Скажем так: больше, чем это можно сделать, засасывая воздух разрежением (естественным путём). Проще говоря, когда поршень движется вниз, а впускные клапаны открываются, воздух в цилиндр принудительно заталкивают, и его удельная масса в цилиндре увеличивается. Соответственно, на эту увеличенную массу воздуха можно подать больше топлива. А значит, заряд топливно-воздушной смеси станет более эффективным.

Тут справедливо задать вопрос: а что мешает просто добавить больше топлива, без всяких турбин?.. Отвечаю. Мешает то, что ДВС рассчитан на строго определённую пропорцию воздух/бензин. Академическое значение этой пропорции – 14.7 / 1. То есть, максимально эффективно двигатель будет работать при смешивании 14.7 частей воздуха к 1 части бензина. Если просто ливануть больше топлива – пропорция изменится, и эффективность сгорания снизится, а не увеличится. Поэтому, закон моторостроения неизменен: добавляешь бензина – добавляй и воздуха.

Фото autos.ca

Как этот зверь работает?

Турбина (турбокомпрессор) представляет собой некую похожую на раковину конструкцию (потому и прилепилось к ней прозвище «улитка»), внутри которой находится вал с лопатками. На одном конце вала лопатки «горячей» части – через них проходят раскалённые выхлопные газы двигателя, раскручивая вал. На другом конце находятся лопатки «холодной» части – они сжимают поступающий из воздушного фильтра воздух, который уже сжатый, под давлением, и подаётся в цилиндры. По большому счёту, чем выше обороты двигателя – тем сильнее выхлопные газы раскручивают турбину, и тем сильнее она «дует», увеличивая давление поступающего в мотор воздуха. Конечно, в этом алгоритме есть много нюансов, но это уже за пределами нашего сегодняшнего обсуждения.

А ещё есть механические компрессоры. Суть та же – сжимать воздух, но принцип работы отличается. Механические компрессоры (нагнетатели) приводятся не кинетической энергией выхлопных газов, а ремнём или шестернями, непосредственно от коленвала двигателя. Схема на сегодняшний день распространена слабо, поэтому вдаваться в подробности не будем.

Фото uazbuka.ru

А что на практике?

В заключение хочу дать пару простых советов по эксплуатации турбины. Благо, используется она уже повсеместно, и сегодня трудно встретить автопроизводителя, который не применял бы её даже на автомобилях среднего и нижнего класса. Итак.

Если вы активно «отжигали» - не стоит сразу глушить двигатель. Это самое важное правило, несоблюдение которого может привести к банальному выходу турбины из строя. А турбина – деталь не из дешёвых. Суть же в том, что турбокомпрессор при активной работе запросто может раскаляться докрасна. Дабы внутренние детали не заклинили от таких экстремальных температур (температура выхлопных газов достигает 1000 градусов), к турбокомпрессору подведены трубки охлаждения и смазки. Через оба этих контура циркуляция осуществляется только при работающем двигателе. То есть, сразу выключая двигатель при раскалённой турбине, вы перерубаете и циркуляцию масла и охлаждающей жидкости. Это может привести (и приводит) к закипанию этих жидкостей внутри турбины и фатальному перегреву её деталей.

Наверняка слышали про турботаймер. Вот это устройство как раз призвано предохранять «улитку» от локальных перегревов. Суть работы в том, что когда вы поворачиваете ключ зажигания в положение «OFF», мотор ещё какое-то время продолжает работать. Для того, чтобы масло и ОЖ продолжали циркулировать через турбину, постепенно её охлаждая. Через определённое время (минута-две) двигатель заглушится сам. При этом, вашего присутствия не требуется: вы как обычно закрываете машину и уходите по своим делам.

Фото rosssport.com

Не стоит часами стоять на холостых оборотах. Это может способствовать «утеканию» масла из турбины во впуск, что ведёт к его загрязнению (нагар на клапанах и в камере сгорания). К слову, этот момент описан даже в инструкции по эксплуатации к любому турбированному автомобилю.

Что такое турбонаддув?

Сегодня мы поговорим о том, как небольшой по своим размерам механизм, с виду очень похожий на улитку, способен повысить мощность двигателя в несколько раз. Мы спросили автоинструкторов, что же такое турбонаддув, как с данным механизмом обращаться, и вот что они нам рассказали.

Конструкция «турбины»

В первую очередь мы хотим отметить, что больших различий в конструкции турбонаддувов для разных моделей машин нет. Есть лишь вариации в размерах и дизайне некоторых узлов. По словам инструкторов по вождению, большинство автомобилистов используют термин «турбина», хотя это не совсем верно.

Турбиной называют одну из составляющих турбонаддува, состоящую из корпуса, системы уплотнений, вала с крыльчатками, двух улиток (в них вращаются крыльчатки), одного упорного и двух опорных подшипников скольжения. Сюда же крепится пневмопривод, который приводит в работу перепускной клапан. Заметим, что в некоторых моделях его нет. Основная цель перепускного клапана заключается в регулировке оборотов турбины и производительности компрессора.

Когда на выходе давление воздуха превышает оптимальное, то пневмопривод, который открывает клапан, срабатывает, таким образом, какая-то небольшая часть выхлопных газов выходит напрямую в выхлопную систему, и из-за этого обороты турбины становятся меньше.

Турбина — это крыльчатка на валу, приводящая во вращение компрессор. Турбина изготавливается из жаростойкого сплава, вал — из среднелегированной стали, а компрессор — из алюминия. Напомним, что данные детали не ремонтируются, а просто заменяются. Исключением является вал, который иногда получается перешлифовать и сделать под него новые подшипники.

Для чего нужен турбонаддув?

Как известно, для горения топлива нужен кислород. В цилиндрах сгорает топливно-воздушная смесь, а не топливо. Топливо смешивается с воздухом не на глазок, а в определенном соотношении. Например, для бензиновых двигателей — это 1:15 (топливо и воздух соответственно).

Как видно из примера, воздуха требуется довольно много. При увеличении подачи топлива, подача воздуха увеличивается. Стандартные двигатели получают его из-за небольшой разницы давлений в атмосфере и самом цилиндре. Данная зависимость прямая, ведь чем больше объем цилиндра, тем в него попадет больше кислорода.

Выхлопные газы, идущие из двигателя автомобиля, вращают определенным образом ротор турбины, а он приводит в движение другой механизм — компрессор, который доводит сжатый воздух непосредственно в цилиндры.

Но перед этим воздух проходит сквозь интеркулер, тем самым охлаждаясь.

Итак, чем больше в турбину попадает выхлопных газов, тем быстрее эта турбина вращается, то есть в цилиндры поступает больше воздуха, и соответственно мощность становится выше.

Почему турбонаддув столь непопулярен?

На «самообслуживание» наддува нужно совсем немного энергии мотора (около 1,5%). Кроме того, даровая энергия, затрачиваемая на сжатие воздуха, увеличивает КПД двигателя. Отсюда меньшие потери на трение, небольшой вес двигателя. Казалось бы, машины с турбонаддувом должны быть более экономичными, а это именно то, чего конструкторы хотели добиться. Но не все так гладко, как кажется на первый взгляд.

Скорость вращения турбины иногда достигает 200 000 об/мин, к тому же температура газов может достигать 1000°C. А чтобы сделать турбонаддув, способный выдерживать большие нагрузки долгое время, нужны не только значительные материальные средства, но и время.

Именно поэтому турбонаддув был широко распространен лишь в авиации во время 2-ой мировой войны. В 50-х г.г. прошлого столетия американская фирма Caterpillar стала использовать турбонаддув в тракторах, а Cummins — в своих грузовиках. Лишь в 1962 году турбонаддувами оснастили Chevrolet Corvair Monza и, взять хотя бы, Oldsmobile Jetfire.

Очевидные минусы

Дороговизна и сложность конструкции турбонаддува не являются основными недостатками данного устройства. Эффективность функционирования турбины зависит от оборотов мотора. Если обороты небольшие, и выхлопных газов мало, то ротор раскручивается слабо. В этом случае компрессор практически не дает цилиндрам дополнительный воздух. Именно поэтому бывает так, что до 3 000 оборотов двигатель не дотягивает, и «выстреливает» лишь после 4-5 тысяч. Это называется турбоямой.

Кстати, чем больше турбина, тем дольше она раскручивается, а это значит, что двигатели, оснащенные турбинами высокого давления, и с довольно высокой мощностью страдают турбоямой, как правило, в первую очередь.

У турбин, обеспечивающих низкое давление, подобных провалов тяги практически нет, однако и мощность они могут поднять не очень сильно. От турбоямы поможет избавиться схема с последовательным наддувом. В этом случае на малых оборотах начинает работать малоинерционный турбокомпрессор, который увеличивает тягу на «низах», а на высоких оборотах с повышением давления на выпуске включается другой механизм.

В прошлом столетии последовательный наддув применялся на суперкаре Porsche 959. В настоящее время можно упомянуть фирмы Land Rover и BMW. В случае бензиновых двигателей, к примеру, на Volkswagen, роль «заводилы» отдана приводному нагнетателю.

Пара «улиток»

На рядных двигателях часто ставится одиночный турбокомпрессор пара «улиток» (twin-scroll), где есть двойной рабочий аппарат. В каждую из этих «улиток» выхлопные газы попадают от различных групп цилиндров. При этом оба механизма дают газы одновременно на одну турбину, довольно эффективно раскручивая ее как на больших, так и на малых оборотах.

Чаще всего по-прежнему используется пара одинаковых турбокомпрессоров, которые параллельно обслуживают отдельные группы цилиндров.

Видеоматериал о том, как проверить давление турбонаддува в движении при помощи манометра:

Удачи на дорогах!

В статье использовано изображение с сайта mashintop.ru

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

Магия турбонаддува: как это устроено?

В 80-х компания SAAB, создающая реактивные самолеты и уже выпустившая несколько весьма неоднозначных (в плохом смысле) автомобилей, наконец совершила грандиозный ход — установила турбонаддув на свою новую серийную модель. Сейчас такое решение вряд ли назовут грандиозным, да и в те времена SAAB были далеко не первыми. Однако сразу после появления на свет SAAB 99 Turbo началась настоящая турбо-лихорадка. Слово «турбо» стало синонимом слова «круто». Появилось турбо-всё: турбо-холодильники, турбо-бритвы, турбо-очки, турбо-жвачка и т. д. Даже еженедельная рубрика телеканала Discovery по понедельникам называется Turbo! Но, возвращаясь к турбонаддуву, что это такое и как он работает? Рассказываем далее.

Говоря простым языком, если машина «турбо», значит у нее под капотом есть «кастрюля» с вентилятором, который крутится и изо всех сил толкает по каналам в мотор воздух, а дальше, как сказал известный телеведущий, творится колдовство и машина едет быстрее.

Если говорить более техническим языком, то все немного сложнее. Зачем вообще турбонаддув нужен? Автомобили ездят на горючем топливе. Топливу нужен кислород, чтобы гореть. В атмосферных двигателях воздух попадает в камеру сгорания самостоятельно, как бы по приглашению. Он засасывается прямо из атмосферы с, соответственно, атмосферным давлением. В турбированные же движки воздух попадает в том количестве и под тем давлением, как это будет решено конструкторами, что очень благоприятно сказывается на показателях мощности.

А теперь поговорим непосредственно про турбонаддув. Во-первых, на самом деле он называется нагнетатель. Во-вторых, он бывает разный. Основу любого нагнетателя составляет воздушный компрессор — та самая кастрюля с вентилятором, которая загоняет в мотор дополнительный воздух. А различие составляет способ получения энергии для работы. Таким образом, нагнетатели делятся на две категории: турбонагнетатель и механический нагнетатель.

Говоря простым языком, если машина «турбо», значит у нее под капотом есть «кастрюля» с вентилятором, который крутится и изо всех сил толкает по каналам в мотор воздух, а дальше, как сказал известный телеведущий, творится колдовство и машина едет быстрее.

Турбонагнетатель (турбина) получает энергию от переработанного топлива. В выхлопной системе устанавливается небольшая турбина, которую раскручивают выхлопные газы. Ее вращение передается в воздушный компрессор, и он делает свое дело. Механический нагнетатель, который гораздо чаще называют просто компрессор, работает на ременном приводе: он забирает энергию вращения непосредственно у двигателя, как, например, автомобильный генератор. В русском языке существует некая путанница между понятиями «турбина», «компрессор» и «нагнетатель», а вот в английском все очень просто — у них есть turbocharger и supercharger.


А какая между ними разница? Ведь установка того или иного нагнетателя сильно влияет на мощность и динамику автомобиля. Давайте разбираться.

Турбина забирает энергию вращения от потока выхлопных газов. А пока потока нет — турбина не крутится, следовательно мотор работает как простой атмосферник, и автомобиль едет соответственно. Это называется понятием «турбояма» и характерно для всех двигателей с турбиной. Компрессор же забирает вращение непосредственно от мотора, а следовательно подхватывает ваше желание ехать быстрее уже на низких оборотах двигателя, что положительно сказывается на общей динамике автомобиля. Однако турбина, все так же за счет работы от выхлопных газов, дает в итоге больший прирост мощности, чем компрессор. Существуют модели автомобилей, заводские и тюнингованные, на которые хитрецы устанавливают и то, и другое, решая тем самым проблему турбоямы и недостатка мощности. Стоит сказать и про надежность — у турбины гораздо больше сложных деталей, а значит выше вероятность поломки.

А как в итоге воздух попадает через нагнетатель в двигатель? В отличе от атмосферников, он совершает целое путешествие. Помимо воздушного фильтра, он проходит через нагнетатель, а потом через интеркуллер. Это устройство по сути является обычным радиатором, охлаждающим разогретый в нагнетателе воздух. У прохладного воздуха больше плотность, он занимает меньший объем, и таким образом подавать в мотор охлажденный воздух гораздо выгоднее. Дальше происходит стандартный для камеры сгорания процесс: воздух и топливо сжигаются и отправляются через выхлопную систему прочь из автомобиля, по пути раскручивая турбину, если, конечно, она там есть.

Турбо-день на телеканале Discovery! Каждую неделю по понедельникам в 22:00 (мск) смотрите новые серии шоу «Быстрые и громкие», а в 22:55 (мск) — шоу «В ГАС на прокачку».

Турбонаддув: Что это и для чего он нужен? - Технические вопросы и ответы

Что такое турбонаддув

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?


Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.


Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.


А вот так выглядит интеркулер

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.


У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.


Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.


Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.


Турбина с изменяемой геометрией

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

http://www.drive.ru/.../05/321982.html

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

- Установка турбонаддува
- Увеличение рабочего объёма двигателя
- Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Руководство по двигателю с турбонаддувом

- Как установить любой двигатель с турбонаддувом

Иногда мы должны задаться вопросом, почему кто-то пытается сделать больше не мощность. Мы признаем, что существует множество правил гонок, которые не позволяют сумматорам мощности доминировать, а турбины выглядят довольно сложно. Но тебе нужно это пережить. Мы поняли это после того, как зацепили за то, что наблюдали, как парни из с турбо-смолл-блоками на YouTube чертовски избивают Vipers и любого спортбайкера, готового рискнуть на дороге. Забудьте о большом кулачке и незакрепленном преобразователе; они тебе не понадобятся.Вам даже не нужно задумываться, как спрятать большой блок под капотом или где вырезать отверстие для воздуходувки. Все, что вам нужно, это турбо или два, чтобы получить непристойную мощь, и мы собираемся показать вам, как ее получить.

Что нужно для установки Turbo

Первое: компрессор Большой или маленький? На нагнетательной или холодной стороне турбонагнетателя стоит компрессор . Когда отработанный воздух и топливо покидают выпускное отверстие, оно вращает колесо выхлопной турбины, которое вращает вал турбины, соединенный с колесом компрессора.Размер и шаг колеса, а также форма корпуса определяют, где сочетание воздушного потока и давления наддува является наиболее эффективным. Хитрость заключается в том, чтобы выбрать размер компрессора, который обеспечивает такую ​​эффективность в используемом диапазоне оборотов. Колесо компрессора меньшего размера будет более эффективным при низких оборотах, но будет выделять больше тепла при более высоких оборотах двигателя. Это также ограничит поток при более высоких оборотах. Слишком большой компрессор вызовет задержку наддува и возможный помпаж компрессора в диапазоне низких оборотов и будет наиболее эффективным при высоких оборотах двигателя.Поскольку колесо компрессора определяет мощность, необходимую для турбины, очень важно выбрать правильные размеры. Слишком маленькая турбина вращается быстро, но ограничивает верхнюю часть. Слишком большая турбина не может передать достаточно мощности компрессору на нижнем уровне.

Просмотреть все 18 фотографий

Степень давления и скорректированный массовый расход воздуха - это два числа, которые необходимы для оценки компрессора на карте. Выберите турбонаддув с картой компрессора, которая помещает две нанесенные точки между 65 и 70 процентами эффективности для уличного применения.Чтобы получить коэффициент давления, просто добавьте величину наддува в фунтах на квадратный дюйм к стандартному атмосферному давлению (14,7) и разделите его на 14,7. Мы будем использовать 10 фунтов на квадратный дюйм, потому что это приближается к порогу безопасности для газового двигателя с насосом без переохлаждения. Степень давления для 302-дюймового двигателя при 6000 об / мин составляет 1,68.

Глядя на карту компрессора, можно совершить ошибку, просто умножив общий куб.футов двигателя в минуту на коэффициент давления, чтобы получить скорректированный массовый расход воздуха, и соединив точки. Правда в том, что скорректированное число массового расхода воздуха является результатом нескольких сложных вычислений, включающих плотность воздуха, степень сжатия, CFM двигателя и даже плотность воздуха при наддуве.Если вам удастся разобраться в математике, вы заметите, что последний кусок головоломки - это эффективность самого компрессора, определяемая таблицей.

Кратчайший путь ко всему этому - то, что инженер Turbonetics Дэйв Остин называет племенными знаниями. Посмотрите, что делают другие ребята, и посмотрите, работает ли это, или просто позвоните в авторитетную турбо-компанию, чтобы получить некоторые предложения. Turbonetics, например, имеет матрицу своего популярного турбонагнетателя, классифицированного по размеру двигателя и мощности на основе многолетних проб и ошибок.Вся сетка слишком велика для печати здесь, но вы можете получить доступ к информации, отправив простое электронное письмо или позвонив в службу технической поддержки. Просто обязательно знайте все подробности о своей машине и своих планах по ее использованию.

Посмотреть все 18 фотографий

Секунда: Турбина Выбор турбины включает в себя выбор колеса, достаточно маленького, чтобы реагировать быстро, и достаточно большого, чтобы колесо компрессора вращалось достаточно быстро, чтобы обеспечить желаемое давление наддува и минимизировать противодавление. Практическое правило - выбирайте колеса наименьшего диаметра, который все же позволяет вам достичь поставленных целей в лошадиных сил, не теряя при этом мощности.Современные турбины в конечном итоге можно настраивать с помощью сменных корпусов турбины с синхронизацией, поэтому вы можете точно настроить систему, если промахнетесь.

Чтобы помочь вам выбрать корпус турбины в соответствии с вашими потребностями, производители турбонагнетателей полагаются на упрощенный инструмент, называемый соотношением A / R. A означает площадь, а R - радиус. Отношение A / R - это соотношение между центральной точкой площади поперечного сечения в канале и радиусом от центра турбинного колеса на входе до улитки.Это простое деление A на R. По мере того, как A становится меньше, скорость газа увеличивается, как и его влияние на скорость турбинного колеса. Если A станет слишком маленьким, он задохнется и не сможет передать достаточно энергии компрессору, и пиковая мощность пострадает. Противодавление в двигателе также станет слишком высоким, что вызовет обратный поток в цилиндр при открытии выпускного клапана. По мере того, как A становится больше, он сможет передавать больше энергии турбинному колесу за счет скорости. Эффективность турбонагнетателя и конструкция турбинного колеса также имеют значение, но обычно это A / R и размер турбинного колеса, которые определяют нагнетание, общий воздушный поток и давление.Как правило, A / R 1,5 обеспечивает большую мощность, а A / R 0,5 дает лучший отклик на низких скоростях. Согласно матрице, двигателям от 5,0 до 6,0 литров понравится диапазон от 0,68 до 0,81 A / R.

Третий: отработанные газы и перепускные клапаны Как вы, наверное, догадались, поскольку давление наддува создается за счет давления выхлопных газов и вращающегося колеса компрессора, можно подавать в двигатель больше наддува, чем октановое число топлива или даже сам двигатель. ручка. Это состояние называется избыточным усилением, и им можно управлять с помощью клапана, называемого перепускным клапаном, который отводит выхлопные газы вокруг турбокомпрессора в поток выхлопных газов.Для регулирования максимального количества энергии, подаваемой на турбину, и, следовательно, количества наддува, создаваемого компрессором, используются заслонки с наддувом. Тип, расположение и размер вестгейта являются ключами к эффективной системе.

Большинство заводских турбин имеют встроенный перепускной клапан, механизм которого встроен в корпус турбонагнетателя и приводится в действие рычагом, который соединяет компрессор с турбиной. Хотя он компактен и функционален для установки с одним или двумя турбинами с низким наддувом, он не может быть синхронизирован для установки и ставит ворота в наименее желательную часть системы.Внешние перепускные клапаны имеют размер в соответствии с мощностью, которую вы хотите производить, и должны располагаться там, где они могут собирать все импульсы выхлопа, например, на конце коллектора коллектора или коллектора. Следует избегать того, чтобы газы снова включались сами по себе или резко поворачивались для выхода из турбины. Поскольку газ пойдет по пути наименьшего сопротивления, возможно, что при высоких оборотах турбина продолжит увеличивать скорость, если путь к выхлопу ограничен или перепускная заслонка слишком мала.

Посмотреть все 18 фото

Перепускной клапан подсоединяется к холодной стороне системы и предназначен для предотвращения помпажа и повреждения компрессора. В ситуации высоких оборотов / высокого наддува, если вы быстро откроете дроссельную заслонку, давление не сможет попасть во впускной коллектор. Поскольку турбина и компрессор все еще вращаются, давление на лопатки дроссельной заслонки возрастает. Это давление может привести к остановке крыльчатки компрессора или к скачку давления при изменении направления вращения, создавая зону низкого давления и повышая или понижая скорость компрессора.Перепускной клапан просто сбрасывает давление в атмосферу, когда дроссельная заслонка закрыта. Это также источник чирикающего шума, который вы иногда слышите, когда автомобили с турбонаддувом поднимаются для переключения передач.

Четвертое: тепло, детонация и промежуточное охлаждение Ранние заводские автомобили с турбонаддувом не имели промежуточного охладителя и, следовательно, не имели защиты от дополнительного тепла, создаваемого способностью turbo быстро сжимать и нагревать поступающий воздух . Это, в сочетании с перекачкой бензина, привело к детонации, которая по-прежнему остается способом номер один разрушить ваш двигатель.Решение варьировалось от ужасных статических степеней сжатия всего 6,0: 1 до турбо-реактивной жидкости Corvairs Turbo Rocket Fluid, которая на самом деле представляла собой просто кувшин воды / метанола, который вводили в поток всасываемого воздуха для охлаждения заряда. Он отлично работал, пока вы не забыли его заполнить. Двигатели с низкой степенью сжатия и большими турбинами созданы для вялых уличных автомобилей с низкими оборотами, которые внезапно просыпались из-за резкой избыточной поворачиваемости и диких дымных «рыбьих хвостов». Просто спросите любого, кто владел Porsche 930 начала 70-х годов.

Идея эффективного двигателя с разумной степенью сжатия, который имеет хороший отклик на низких оборотах и ​​использует достаточный наддув для создания реальной мощности, возможна с промежуточным охладителем.Промежуточный охладитель - это просто теплообменник, который находится между компрессором и воздухозаборником, чтобы уменьшить количество тепла, которое было добавлено в процессе сжатия воздуха. На первый взгляд, промежуточное охлаждение воздушного заряда позволяет использовать более мощный наддув или меньший турбонаддув на двигателе с масляным охлаждением. На самом деле он стабилизирует заряд всасываемого воздуха, чтобы предотвратить детонацию, и расширяет всю схему компрессора, что позволяет вам получить больше мощности с меньшим двигателем и меньшим насилием. Мы также рекомендуем МСД с регулируемой кривой синхронизации или систему управления синхронизацией наддува, чтобы избежать дребезжания двигателя.

Посмотреть все 18 фото Для предотвращения утечки выхлопных газов в комплект повсюду входят шаровые фланцевые соединители. Вы можете купить их отдельно у Hellion, если хотите обновить свой текущий выхлоп.

Пятое: Топливные системы Чтобы получить больше мощности, вам понадобится больше топлива. Различают установок трех типов: продувочные и проточные карбюраторные и продувочные системы впрыска топлива. Система проточного карбюратора имеет ряд неисправностей, худшими из которых являются наличие воздушно-топливной смеси, проходящей через компрессор, и отсутствие опции промежуточного охладителя.Система продувки немного менее загадочна и работает по тем же принципам, что и любая система продувки центробежного нагнетателя. Поэтому уже доступны продувочные углеводы, которые созданы специально для этой цели. Мы добились хорошей мощности с помощью продувки карбюраторов Quick Fuel и Carb Shop и 10 фунтов наддува, включая пробег 600 л.с. с ATI ProCharger на Ford 302.

Если у вас двигатель с впрыском топлива и вы используете 5 до 6 фунтов наддува вы можете использовать FMU (блок управления топливом), который повышает давление топлива или добавляет топливо для обогащения каким-либо другим способом, или переходить к контроллеру послепродажного обслуживания, чтобы переназначить топливную кривую и запустить более крупные форсунки.На 5,0-литровом Mustang насос в баке на 255 галлонов в час и форсунки на 42 фунта / час могут быть настроены на 550 оборотов в час.

Карбюраторные автомобили нуждаются в регуляторе топлива с опорой на наддув, который увеличивает давление топлива вместе с кривой наддува.

Посмотреть все 18 фотографий

Шестое: получение Turbo Используя математику, вы можете построить полную систему на бумаге. Используя науку о схемах компрессоров и некоторое представление о размере и диапазоне оборотов вашего двигателя, вы можете добавить практически любую турбину к любому двигателю . Уловка заключается в наличии карт и соотношений A / R корпуса турбины и размеров турбинных колес.Небольшие заводские двигатели производят небольшие турбины с внутренними перепускными клапанами, которые нужно будет запускать парами на V-8. Они также обычно имеют водяное охлаждение на автомобилях оригинального производителя для увеличения срока службы. Они годны к употреблению, но далеки от оптимального. В качестве примера возьмем Garrett T03 из турбокупе T-Bird с 1985 по 1986 год. Купе с автоматической трансмиссией оснащено одним турбонаддувом с соотношением A / R 0,48, а стандартное купе имеет A / R 0,63 и карту эффективности компрессора, разработанную для четырехцилиндрового двигателя объемом 2,3 л. Используя карту на боковой панели Junkyard Turbo, вы можете увидеть это с коэффициентом давления наддува, равным 1.68 (14,7 + 10 / 14,7 = 1,68), легко снизить эффективность турбонагнетателя примерно до 65-68 процентов. Чтобы повысить эффективность, вам нужно увеличить наддув до предела безопасности наддува. С более мощным двигателем станет еще хуже. Это работоспособно; вам просто нужно быть осторожным в том, что вы делаете.

Приманка турбо на свалке за 80 долларов заманчива, но прежде чем покупать, взгляните на ребят, которые действительно развлекаются, и посмотрите, что они используют. Существует разрыв между оборудованием 80-х и новыми модернизированными заводскими турбинами, которые в основном появлялись на импортных автомобилях в 90-х.Простые нововведения, такие как количество компонентов, конструкция подшипников, накладки колес и материалы, изменились к лучшему. Возьмем, к примеру, турбины Garrett GT. Количество движущихся частей было уменьшено по сравнению с ранней моделью T в среднем с 54 компонентов до примерно 29. Это 45-процентное сокращение количества деталей снижает риск отказа компонентов. В GT также есть картридж с шарикоподшипниками, который исключает опорные подшипники (которые на самом деле больше похожи на втулки) и знаменитый упорный подшипник слабой связи.Лучшие подшипники означают меньшее количество масла, проходящего через турбонагнетатель, и меньшую вероятность утечек или того, что вышедший из строя подшипник разрушит турбонагнетатель и загрязнит ваше моторное масло.

Вы также получаете преимущество более легких и хорошо продуманных колес компрессора и турбины, которые создают большую мощность с меньшими задержками и тепловыделением. Новые турбины имеют современные схемы компрессоров с более широким спектром соотношений A / R и кожухи турбины с синхронизацией, различные варианты размеров колес и техническую поддержку для решения проблем. Алюминиевые колеса компрессора могут быть сняты со стального вала, поэтому компании, занимающиеся вторичным рынком, могут предложить различные варианты отделки для точных технических характеристик и подобрать компрессоры и комбинации турбин.В результате получается отзывчивая система, которая отлично работает и вырабатывает мощность вместо того, что вам не понравится.

Посмотреть все 18 фотографий Обратите внимание на порт датчика кислорода для заводского EFI (стрелка). Выход турбины всегда должен быть больше входа. Чтобы охватить двигатель мощностью от 500 до 800 л.с., входное отверстие должно быть не менее 2,75 дюйма, а выходное отверстие - не менее 3,5 дюймов в диаметре.

Турбо на свалке Герои на свалке утверждают, что вы можете установить турбины Thunderbird и отправиться в город.Это может быть правдой, но при этом вы от многого откажетесь. Помимо усовершенствований в технологии подшипников, которые увеличивают долговечность и производительность турбонагнетателя, карты эффективности компрессора на более новых компрессорах намного шире, что позволяет вам работать с большим наддувом в более широком диапазоне оборотов, чем у оригинального оборудования. Вы также можете обойтись без одного турбо для достижения тех же уровней мощности.

Посмотреть все 18 фотоЭто карта от "хорошего" Ford Thunderbird '85 до '86. Обратите внимание, что линия помпажа сужает полезную область карты, и турбо-режим должен вращаться примерно на 40 000 об / мин быстрее, чем 60-1, чтобы выполнить свою работу.

Turbo Термины Boost: Любое давление выше атмосферного, измеренное во впускном коллекторе.

Порог наддува: Самая низкая частота вращения двигателя, при которой турбонаддув может обеспечить полезный наддув.

Карта компрессора: Сетка чисел, используемая в качестве инструмента для оценки эффективности турбонаддува по отношению к двигателю.

Помпаж компрессора: Воздух, создающий резервную копию, в результате чего скорость турбонагнетателя становится нестабильной, когда дроссельная заслонка внезапно закрывается.

Lag: Задержка между изменением положения дроссельной заслонки и производством полезного наддува.

Линия помпажа: Линия, которая следует за крайним левым уголком КПД на карте компрессора, где турбо становится нестабильным.

Классные книги о Turbos
Заголовок Источник
Максимальное усиление по Corky Bell Издательство Bentley
Руководство по производительности турбонаддува Джеффа Хартмана Моторбуки
Турбокомпрессоры Хью Макиннес Моторбуки
Turbo: Реальные высокопроизводительные системы турбонаддува от Джея К.Миллер SA Дизайн
Показать все
Детали
Описание PN Цена
Тепловая система Hellion НЕТ 3 999 долл. США

Базовые компоненты и теория турбонаддува

Посмотрите, не говоря уже о технической чепухе, турбонаддув на самом деле является довольно простой концепцией. Цель здесь состоит в том, чтобы преобразовать энергию, содержащуюся в вашем выхлопном потоке, которая обычно идет впустую, в положительное давление во впускном коллекторе, нагнетая воздух в двигатель и, таким образом, производя больше мощности.Теперь мы понимаем, что это много, чтобы охватить - достаточно, чтобы написать книгу - но цель этой конкретной статьи - познакомить всех, включая читателей, которые никогда раньше не видели турбо, в кратчайшие сроки с концепциями. вовлеченный. Проще говоря, это турбокомпрессоры 101-A, которые покрывают самую верхушку айсберга с расстояния 1000 футов. В этой первой статье мы надеемся создать базовый словарный запас и рабочие знания, которые будут использоваться в будущем, поэтому, если вы опытный турбо-гуру, который ищет советы по чтению карт компрессоров или настройке корпусов турбин для вашего конкретного применения , не бойтесь - эти истории еще впереди.А пока мы собираемся охватить основы турбонаддува, рассматривая каждый компонент, определяя его назначение и объясняя теорию, лежащую в основе его работы.

На самом базовом уровне турбокомпрессор состоит всего из трех основных компонентов: турбины, компрессора и подшипниковой системы, которая поддерживает вал турбины, соединяя вместе колеса турбины и компрессора. Понимание того, как все три части работают вместе, имеет решающее значение, и даже базовое понимание взаимосвязи компонентов друг с другом значительно упростит выбор турбо-режима для вашего проекта.

Турбинное колесо отвечает за преобразование тепла и давления во вращательную силу. Чтобы понять, как происходит этот процесс, нам нужно углубиться в некоторые из основных законов термодинамики, но в рамках этой статьи необходимо понимать, что высокое давление (из выпускного коллектора) всегда будет стремиться к низкому давлению, и в рамках этого процесса, турбинное колесо преобразует кинетическую энергию во вращение. Когда колесо турбины вращается, оно вращает вал турбины, который, в свою очередь, вращает колесо компрессора.Выбор турбинного колеса, о котором часто забывают, имеет решающее значение для правильно построенной системы турбонагнетателя, поскольку слишком маленькое турбинное колесо вызовет чрезмерное противодавление и может задушить двигатель, что приведет к потере мощности. С другой стороны, выбор слишком большой турбины приведет к увеличению задержки и может затруднить достижение конкретных целевых значений наддува.

Конечно, турбинное колесо действует не в одиночку. Это часть корпуса турбины, которая представляет собой тот гигантский, иногда ржавый кусок железа или стали, который вы всегда видите прикрученным к выпускному коллектору или сливному коллектору на турбомоторе.Из-за огромного количества тепла, связанного с сбором и перемещением выхлопных газов под давлением, корпус турбины изготавливается из толстого железа или стали и всегда состоит из опоры турбины (фланец, который соединяется с трубопроводом выпускного коллектора), выпускного патрубка (большое отверстие который соединяется с водосточной трубой) и спиральной камерой, которая представляет собой путь, по которому горячий выхлоп проходит через колесо турбины от опоры турбины к выпускному отверстию. Когда кто-то называет турбо «турбо Т4», они говорят об этом фланце.Выхлопные газы входят через фланец, вращаются вокруг колеса внутри улитки и выходят через выпускное соединение в часть выхлопа, которую энтузиасты называют спускной трубой.

Как и турбина, компрессорная секция состоит из двух основных компонентов: крыльчатки компрессора и крышки компрессора. Работа компрессора заключается в том, чтобы буквально сжимать свежий воздух и направлять его к корпусу дроссельной заслонки. Поскольку оно напрямую соединено с турбинным колесом через вал турбины, компрессорное колесо вращается с той же частотой вращения, что и турбинное колесо, и, когда двигатель и турбинное колесо ускоряются, то же самое происходит и с колесом компрессора.Этот процесс создает давление во впускном тракте, которое мы называем «наддувом», и это причина, по которой кто-либо в первую очередь установил бы турбокомпрессор. Опять же, чтобы полностью понять этот процесс, нам нужно будет объяснить несколько законов термодинамики, в том числе закон идеального газа, но для нашей цели понять, что работа компрессорного колеса состоит в том, чтобы собирать свежий воздух и сжимать его - вот и все. Когда колесо вращается, оно забирает окружающий воздух, поворачивает его на 90 градусов вдоль лопасти колеса и нагнетает его в крышку компрессора, где он собирается и затем нагнетается во всасывающую трубу.

Колеса компрессора - одна из наиболее часто обсуждаемых частей турбокомпрессора. Даже если вы никогда раньше не видели турбомотора, вы, вероятно, слышали, как кто-то сказал: «Это 88-миллиметровый турбо» или «Не могу поверить, что они объявили 116 вне закона». Речь идет о диаметре крыльчатки компрессора, измеренном на кончике или, точнее, на кончике индуктора. Колесо компрессора и крышка также являются наиболее фотогеничными частями турбокомпрессора, поскольку они сделаны из блестящего алюминия, и, следовательно, людям нравится фотографировать их с долларовыми купюрами, банками из-под колы или другими предметами, чтобы показать, насколько велик компрессор. колесо собственно есть.Теперь, помимо всего забавного, важно понимать, что компрессор является источником денег в этой системе, и это одна часть турбокомпрессора, которая выполняет всю перекачку, поэтому важно правильно выбрать ее размер для вашего приложения.

Центральный кожух / вращающийся узел (CHRA)

На CHRA может не хватать чернил, но это одна из наиболее важных частей любого узла турбонагнетателя. Фактически, CHRA служит точкой крепления для обоих корпусов и должен быть изготовлен из прочного материала, чтобы выдерживать тепло и напряжение турбины.Конечно, удерживание корпусов вместе - детская игра по сравнению с реальной работой CHRA, которая заключается в поддержке и смазке подшипников турбокомпрессора. При частоте вращения вала турбины, превышающей 100000 об / мин, работа подшипника намного, намного сложнее, чем у традиционного подшипника распределительного вала, и поэтому производители турбонагнетателей потратили много времени и денег на создание серьезных подшипников для выполнения этих работ. Если вы когда-нибудь слышали о том, чтобы кто-то «перестраивал турбину», скорее всего, речь идет о замене подшипников, которые могут начать изнашиваться в зависимости от множества факторов, включая состояние масла, осевые нагрузки или движение вала.Традиционно в CHRA будут установлены два бронзовых подшипника с полным поплавком и отдельный бронзовый упорный подшипник. Сегодня многие качественные производители предлагают модернизированные системы подшипников, в том числе керамический шарикоподшипник Turbonetics, который устраняет традиционный упорный подшипник, позволяя турбо-двигателю выдерживать «до 50 раз большую нагрузочную способность по сравнению с обычным узлом». Многие другие производители также перешли на системы шариковых подшипников, в том числе Garrett, чтобы уменьшить сопротивление и увеличить срок службы турбокомпрессора.

Понимая, что турбокомпрессор работает за счет сжатия воздуха, легко понять, почему промежуточный охладитель важен. Не вдаваясь в математику (мы снова говорим о законе идеального газа ...), давайте просто скажем, что при увеличении давления в фиксированном объеме создается тепло. Это закон термодинамики, и, что бы кто-то ни спорил, он присутствует в любом двигателе с турбонаддувом, даже при настройках «низкого наддува». В любом случае, зная, что тепло присутствует, нам нужен способ охлаждения поступающего воздуха, прежде чем он попадет во впускной коллектор, и для этого мы обычно используем промежуточный охладитель.На самом деле интеркулер - это не что иное, как теплообменник, и его задача - отводить тепло от всасываемого заряда, который мы создали путем его сжатия. Если вы понимаете, как работает радиатор, вы понимаете, как работает интеркулер - это действительно так просто!

На сегодняшнем рынке производительности преобладают два типа промежуточных охладителей: воздух-воздух и воздух-вода. Интеркулер типа «воздух-воздух», вероятно, самый распространенный в уличных автомобилях, и вы, вероятно, видели, как они болтаются за бампером некоторых из ваших любимых автомобилей GMHTP .Как и радиатор, промежуточный охладитель воздух-воздух пропускает горячий воздух от компрессора через ряд трубок, которые физически соединены с рядом тонких алюминиевых ребер. Поскольку окружающий воздух проходит через поверхность промежуточного охладителя и тонкие ребра, он отводит тепло от сжатого воздуха, что обеспечивает охлаждающий эффект. На типичных уличных автомобилях, которые ездят в течение длительного времени, промежуточный охладитель воздух-воздух является одним из наиболее эффективных способов держать температуру наддува под контролем.С другой стороны, промежуточный охладитель воздух-вода использует те же принципы, что и блок воздух-воздух, хотя вместо окружающего воздуха, проходящего по поверхности, он использует охлажденную воду, что обеспечивает невероятную охлаждающую способность. Однако то, что система воздух-вода получает от падения температуры и эффективности, со временем она теряет, поскольку вода в конечном итоге нагревается и обеспечивает гораздо меньшее охлаждение.

Вестгейт - это просто устройство, которое отводит выхлопной газ до того, как он достигнет входа в корпус турбины.Чтобы полностью понять концепцию, давайте посмотрим на турбо-систему без перепускного клапана. Когда выхлопные газы заполняют коллекторы, они направляются к турбонагнетателю и входят в корпус турбины, прежде чем расширяться через турбинное колесо и выходить через спускную трубу. В закрытой системе турбина будет видеть весь выхлоп во всем рабочем диапазоне двигателя, и наддув будет продолжать бесконтрольно повышаться, пока либо дроссельная заслонка не будет закрыта, либо колесо турбины не достигнет точки дросселирования. Для большинства двигателей это приведет к чрезмерному увеличению наддува / воздушного потока и разрушению деталей, в результате чего у вас останется пара расплавленных поршней в лучшем случае или гигантское отверстие в блоке (гораздо более вероятно).Для управления наддувом и общей мощностью двигателя системы турбонагнетателей полагаются на перепускные клапаны, которые устанавливаются перед корпусом турбины (или внутри него в случае турбины с внутренними затворами) и действуют как контролируемый байпас для процентного содержания выхлопных газов. регулировать частоту вращения турбины и, таким образом, общий наддув.

Конструкция перепускной заслонки различается, но, проще говоря, каждая перепускная заслонка имеет впускной и выпускной порт, в который может поступать выхлопной газ, клапан, регулирующий поток выхлопного газа через впускной порт, и пружинный / диафрагменный привод, который управляет когда клапан открывается и закрывается.В нормальных условиях движения перепускной клапан остается закрытым, и весь выхлопной газ направляется непосредственно в корпус турбины. По мере увеличения давления наддува давление действует на пружинный узел и начинает поднимать клапан, отклоняя поток выхлопных газов от турбины и регулируя скорость турбины для регулирования давления наддува. Чтобы отрегулировать целевые уровни наддува, вестгейты полагаются на разные пружины, которые можно менять местами, чтобы увеличить или уменьшить целевое давление наддува.

Выпускной клапан - это, по сути, клапан сброса давления, который устанавливается на стороне компрессора турбо-системы.Его работа, в буквальном смысле, состоит в том, чтобы сбрасывать избыточное давление наддува, оставшееся в системе, когда закрывается дроссельная заслонка. Представьте себе турбонагнетатель, производящий 10 фунтов на квадратный дюйм, с трубопроводом, соединяющим выходное отверстие крышки компрессора непосредственно с корпусом дроссельной заслонки. Когда дроссельная заслонка широко открыта, а двигатель находится под полной нагрузкой, сжатый воздух попадает прямо во впускной коллектор и может легко заполнять цилиндры. Когда водитель отпускает (поднимает) педаль газа и закрывает дроссельную заслонку, турбонагнетатель все еще вращается и производит наддув (помните, что колесо компрессора может вращаться со скоростью свыше 150 000 об / мин!), Что создает нежелательное состояние в системе.Турбонагнетатель перемещает много воздуха, но, поскольку дроссельная заслонка закрыта, воздуху некуда идти, кроме как обратно к крыльчатке компрессора, что может привести к помпажу компрессора. Помпаж компрессора может повредить турбокомпрессор из-за чрезмерной нагрузки на опорные поверхности и, в крайних случаях, может даже привести к остановке крыльчатки компрессора.

Выпускной клапан по конструкции аналогичен перепускному клапану, хотя обычно меньше по размеру и построен с гораздо меньшей устойчивостью к высоким температурам, поскольку он установлен на стороне компрессора турбонагнетателя.В нормальных условиях эксплуатации фактический клапан закрыт относительно седла, и воздух задерживается в нагнетательном трубопроводе компрессора. Когда дроссельная заслонка закрыта, пружина / диафрагма выпускного клапана видит изменение давления (от атмосферного до вакуума), и клапан открывается, выпуская сжатый воздух из напорной трубы в атмосферу. В отличие от перепускных клапанов, большинство продувочных клапанов поставляются с одной предварительно установленной пружиной, и настройка скорости открытия клапана осуществляется путем небольших корректировок предварительной нагрузки пружины.Обратите внимание, что эталонный источник наддува продувочного клапана должен быть расположен после корпуса дроссельной заслонки во впускном коллекторе, чтобы он мог точно считывать разрежение, когда дроссельная заслонка закрыта.

Трубопроводы могут быть последним, что большинство энтузиастов рассматривают при создании турбо-системы, но правильное применение и размер имеют важное значение для обеспечения оптимальной производительности. В типичной системе турбонагнетателя трубопроводы можно разделить на три отдельных участка: коллекторы, горячая и холодная стороны.

Турбо-коллекторы живут невероятно трудной жизнью. Экстремальные перепады температуры, невероятное противодавление и высокое напряжение делают эти участки одной из наиболее вероятных областей турбонаддува для развития проблем. Понимая крайности, которые коллектор должен выдерживать изо дня в день, лучше всего разработать коллектор, основанный на долговечности и прочности, даже если это означает снижение производительности. Кроме того, зная, что турбинное колесо работает за счет тепла и скорости, нужно построить коллектор для эффективного и быстрого отвода тепла, сохраняя как можно больше тепла внутри, без образования трещин или замедления импульса выхлопных газов.Таким образом, следует рассмотреть возможность использования чугунных коллекторов, если таковые имеются, и, как видели гонщики LSX, даже стандартные агрегаты, такие как пара коллекторов для грузовиков GM, могут производить более 2000 л.с. в стандартной комплектации. Если такой коллектор не существует для вашего приложения или вы работаете в определенном пространстве, которое не может вместить их, изготовление пары коллекторов будет вашим лучшим вариантом, и вы можете обратиться ко многим превосходным производителям, чтобы выполнить эту работу.

Любой трубопровод, связанный с отводом выхлопных газов к турбонагнетателю или от него, обычно называют трубопроводом горячей стороны.Из-за сильного нагрева, связанного с переносом выхлопных газов в корпус турбины, критически важно использовать здесь прочный материал, и для многих производителей нержавеющая сталь является предпочтительным материалом. Что касается диаметра, это действительно зависит от множества факторов, включая кубические дюймы, конструкцию турбинного колеса, диапазон оборотов, противодавление и т. Д., Но, как правило, трубы с внутренним диаметром 2,5 дюйма от выпускных коллекторов к корпусу турбины работает очень хорошо. Следует отметить, что некоторые строители теперь переходят на трубы меньшего размера, если это возможно, чтобы увеличить скорость к турбине, которая должна работать хорошо, хотя результаты будут варьироваться в зависимости от конкретного применения.Когда воздух выходит из турбинного колеса, он попадает в секцию выхлопа, известную как спускная труба, и здесь чем больше, тем лучше. Вы не можете действительно увеличить водосточную трубу, а это значит, что если у вас есть место для 4- или 5-дюймовой водосточной трубы, сделайте это!

«Холодная сторона» турбонагнетателя относится к любым трубопроводам, связанным с перемещением сжатого воздуха от турбокомпрессора к корпусу дроссельной заслонки. Если вы устанавливаете интеркулер, он также является частью холодной стороны, и его необходимо правильно подключить, чтобы все работало.Поскольку тепло не вызывает особого беспокойства, алюминиевые трубки обычно считаются оптимальным выбором, поскольку с ними легко работать, они легкие и достаточно прочные, чтобы выдерживать относительно умеренные температуры, связанные с холодной стороной. Диаметр трубопровода зависит от размера турбонагнетателя, промежуточного охладителя и корпуса дроссельной заслонки, хотя большинство энтузиастов GM найдут, что алюминиевые трубки с внутренним диаметром 3 дюйма работают идеально. Любая область, где должно быть выполнено полупостоянное соединение, например, соединение секции 3-дюймовой трубы с концевым баком промежуточного охладителя, может быть выполнена с использованием высококачественных силиконовых муфт и традиционных зажимов, которые хорошо подходят для большинства приложений.Для тех из вас, кто хочет получить большое количество наддува, такие компании, как Vibrant Performance, предлагают быстроразъемные зажимы с двойным уплотнительным кольцом, которые могут выдерживать более 100 фунтов наддува без сдувания или утечки.

Что еще мне нужно знать?

Много. Серьезно, понимание турбо-систем - это не то, что можно сделать в одночасье, и, как и создание двигателя или настройка подвески, могут потребоваться годы, чтобы правильно понять все нюансы конструкции турбонаддува. Но это не значит, что вам не следует начинать изучать и исследовать эту увлекательную форму принудительной индукции прямо сейчас! Если вы хотите узнать больше сегодня, мы рекомендуем вам ознакомиться с двумя отличными книгами, которые мы всегда держим под рукой.Первая - это классическая разработка Корки Белла под названием «Максимальное ускорение», охватывающая проектирование системы от теории до реального применения, но при этом она не становится чрезмерно технологичной или научной. Вторая книга, которую мы рекомендуем, - это Turbo: Real World High-Performance Turbocharger Systems Джея К. Миллера. Turbo имеет отличный раздел по анатомии турбокомпрессора и вникает в такие темы, как схемы компрессоров и восстановление турбокомпрессора, для тех из вас, кто хочет действительно расширить свои рабочие знания. И последнее, но не менее важное: мы приглашаем вас присоединиться к нам в ближайшие месяцы, поскольку мы объединяемся с одними из лучших в отрасли, чтобы изготовить и установить единую турбо-систему на нашем новейшем проектном автомобиле

Bell, Corky.Максимальное усиление.
Кембридж, Массачусетс: Bentley Publishers, 1997

Миллер, Джей. Турбо.
North Branch, MN: Cartech Books, 2008

Как это работает: турбонаддув | Driving

Breadcrumb Trail Links

  1. Как это работает
  2. Описание функций

Этот компонент сжимает воздух, поступающий в ваш двигатель, для увеличения мощности, но это снижает расход топлива

Автор статьи:

Jil McIntosh

Publishing дата:

13 июня, 2018 • 7 февраля, 2019 • 4 минуты чтения • Присоединяйтесь к разговору Этот компонент сжимает воздух, поступающий в ваш двигатель, для большей мощности, но есть затраты на экономию топлива

Содержание статьи

Раньше это были турбокомпрессоры в основном использовались на мощных спортивных автомобилях.Они по-прежнему дают быстроходным автомобилям дополнительный прирост мощности, но автопроизводители все чаще используют их на двигателях меньшего размера для увеличения мощности, когда это необходимо, но с лучшей общей экономией топлива. Они также используются практически во всех дизельных двигателях для увеличения мощности.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Турбокомпрессор - это, по сути, воздушный насос, нагнетающий дополнительный кислород в двигатель по мере необходимости, чтобы он мог сжигать больше топлива для получения большей мощности.

Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они поворачивают тяжелый центральный коленчатый вал так же, как ваши ноги двигаются вверх и вниз, чтобы привести в движение велосипед. Вращение коленчатого вала используется для поворота колес автомобиля.

Двигатель Audi 3,0 л V6 с двумя последовательно расположенными турбонагнетателями.

Все это движется паром воздуха и бензина в верхней части поршня. Когда он воспламеняется свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть кривошип.Сгоревшие газы затем удаляются как выхлопные газы.

Каждый поршень скользит вниз в начале своего цикла, создавая вакуум. В двигатель без турбонаддува, известный как безнаддувный, воздух врывается внутрь при открытии впускного клапана, но он может заполнить цилиндр только при атмосферном давлении. Сжигание большего количества топлива дает больше мощности, но поскольку смесь топлива и воздуха должна быть точной для правильной работы двигателя, добавление большего количества бензина не сработает, и цилиндр не сможет втянуть лишний воздух.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В двигателе с турбонаддувом турбонагнетатель нагнетает больший объем воздуха под давлением, и компьютер транспортного средства реагирует, добавляя правильное количество дополнительного топлива.

Турбина приводится в движение выхлопными газами. Одна сторона турбонагнетателя расположена у выпускного коллектора, другая - у воздухозаборника двигателя, и он содержит два небольших вентилятора, соединенных валом. Когда выхлопные газы проходят через турбонагнетатель, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, вращает второй вентилятор, называемый компрессором, который всасывает свежий воздух, нагнетает его и нагнетает в двигатель.Разница между атмосферным давлением и давлением воздуха, обеспечиваемым турбонаддувом, называется наддувом и измеряется в фунтах на квадратный дюйм (psi).

Вместо турбонагнетателя в некоторых автомобилях используется нагнетатель, который также нагнетает воздух, но работает механически от коленчатого вала двигателя, а не от потока выхлопных газов.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В разрезе турбокомпрессор показаны вентиляторы турбины и компрессора, соединенные валом.

Одна из проблем с турбонаддувом заключается в том, что воздух нагревается при сжатии, а это противоположно тому, что вы хотите. Холодный воздух более насыщен кислородом, поэтому он может смешиваться с большим количеством топлива и при этом нормально сгорать в цилиндре. Автопроизводители добавляют к турбо-системе теплообменник, называемый промежуточным охладителем, который поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.

Вентиляторы турбонагнетателя вращаются очень быстро - до 250 000 оборотов в минуту или больше - и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке.В этом случае открывается клапан, называемый перепускным клапаном, который отводит часть выхлопных газов от турбины.

Турбокомпрессор не нагнетает двигатель постоянно. Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как безнаддувный. Когда вы нажимаете на дроссельную заслонку, двигатель работает сильнее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, ускоряет двигатель, который, в свою очередь, получает больше топлива - вот почему эти двигатели небольшого рабочего объема могут внезапно стать намного более жаждущими, чем ожидалось, когда вы их сильно водите.(Положительным моментом является то, что дополнительный кислород имеет тенденцию более полно сжигать топливо в цилиндре, повышая эффективность двигателя и уменьшая вредные выбросы.)

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Турбокомпрессор также создает головную боль инженерам, потому что он не сразу выходит на полную мощность. Существует небольшая задержка между моментом, когда вы опускаете ногу, и тем, когда турбокомпрессор набирает скорость, достаточную для обеспечения наддува и желаемого ускорения.Это известно как турбо-задержка.

Раньше он был гораздо более заметным в старых автомобилях, но сегодня автопроизводители используют другие методы, чтобы уменьшить его. Используются легкие лопатки турбины, поэтому для их вращения требуется меньшее давление. Турбонагнетатели меньшего размера раскручиваются быстрее, и некоторые автопроизводители устанавливают два из них на двигатель, комбинируя маленький для быстрого начального наддува с более крупным, который может обеспечить большую мощность при более высоких оборотах двигателя. Некоторые автопроизводители, в том числе Volvo, для достижения этой цели используют в двигателе как нагнетатель с механическим приводом, так и турбонагнетатель с приводом от выхлопных газов.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Еще одна технология - это изменяемая геометрия, которая автоматически регулирует поток выхлопных газов в турбинное колесо в зависимости от частоты вращения двигателя и требований к мощности.

Двигатели с турбонаддувом, как правило, не требуют какого-либо дополнительного обслуживания, кроме рекомендованной замены масла в автомобиле и замены свечей зажигания.Некоторые более новые двигатели с турбонаддувом отлично работают на обычном бензине, но проверьте руководство пользователя на предмет требований к премиум-классу.

Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют собственные названия, такие как Audi TFSI (для стратифицированного впрыска топлива с турбонаддувом) или Ford EcoBoost. Если вы не уверены, перед покупкой поинтересуйтесь, турбовый ли это.

Поделитесь этой статьей в своей социальной сети

Подпишитесь, чтобы получать информационный бюллетень Driving.ca Blind-Spot Monitor по средам и субботам

Нажимая на кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc.Вы можете отказаться от подписки в любое время, щелкнув ссылку для отказа от подписки внизу наших электронных писем. Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

Спасибо за регистрацию!

Приветственное письмо уже готово. Если вы его не видите, проверьте папку нежелательной почты.

Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

Комментарии

Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях.На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными. Мы включили уведомления по электронной почте - теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии. Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

Турбонаддув в безнаддувном двигателе?

Распространено заблуждение, что установить турбокомпрессор так же просто, как прикрутить его болтами!

Некоторые думают, что в 99% случаев, будь то бензиновый или дизельный двигатель, просто никогда не было разработано, чтобы справиться с таким увеличением мощности и крутящего момента.Итак, прежде чем вы начнете думать о подборе и установке турбокомпрессора, вы должны сначала подумать о двигателе.

Основные различия между безнаддувным двигателем и двигателем с турбонаддувом: степень сжатия, профиль распределительного вала, заправка топливом, момент зажигания, тип поршней и прочность некоторых вращающихся частей.

Турбонагнетатель в качестве компонента двигателя может довольно легко увеличить выходную мощность на 30%, а в некоторых случаях - до 100%. Поэтому первое, на что стоит обратить внимание, - это сам двигатель.

Способен ли двигатель выдержать такое увеличение в его нынешнем состоянии? Была ли она способна, когда была новой? Точно так же сцепление, трансмиссия и тормоза справляются со своей задачей?

Для проведения модернизации двигателя без наддува необходимо провести следующие модификации двигателя для эффективного завершения модернизации:

Кулачки и поршни

Изготовление впускных и выпускных коллекторов для конкретного применения.Степень сжатия двигателя следует проверить и при необходимости снизить, в идеале она должна составлять от 7,5: 1 до 8,5: 1 (обычно), чтобы можно было использовать любое значительное давление наддува.

Это может быть достигнуто одним из трех способов: предпочтительно путем установки кованых поршней с низким уровнем сжатия, обработки верхней части стандартных поршней или установки более толстой прокладки головки или распорной пластины.

Спецификация распределительного вала

Следует также проверить спецификацию распределительного вала, чтобы убедиться, что продолжительность и перекрытие клапанов не слишком велики для применения.В идеале это должен быть распредвал небольшой продолжительности и перекрытия.

Топливная система

, то есть форсунки, топливный насос, давление и отображение системы зажигания также должны быть изменены с учетом повышенных требований турбонагнетателя. При повышении давления наддува необходимо замедлить момент зажигания.

Чтобы указать правильный турбокомпрессор для области применения, нам потребуется следующая основная информация:

a) Объем двигателя
b) Максимальная частота вращения
c) Применение или использование i.е. трамвай / дрэг / гонка и т. д.
d) Предполагаемые требования к мощности и крутящему моменту
e) Требования к давлению наддува
f) Если двигатель должен иметь промежуточное или наддувное охлаждение

Если вы твердо намерены продолжить работу над турбонаддувом вашего автомобиля, вам необходимо сначала найти специалиста по переоборудованию и посоветоваться с ним.

Turbo Dynamics не выполняет этот тип работ, а просто предоставляет консультации, подбор и поставку турбокомпрессора, а также некоторые вспомогательные продукты (например, входные и выходные фланцы турбины; маслопроводы, фитинги и фланцы; силиконовые шланги высокого давления длины и колена; дамп клапаны...)

Мы можем предоставить чертежи фланцев с указанием размеров для изготовления коллектора. Преобразование может быть очень дорогостоящим (обычно от 2500 до 5000 фунтов стерлингов), поэтому получите предложение у своего специалиста по конверсии, прежде чем рассматривать проект дальше.

Основы турбонаддува

Если когда-либо на небесах был заключен механический брак, то это дизельный двигатель и турбокомпрессор. На ферме этот союз присутствует во всем, от пикапа до комбайна.

Двигатель может дышать двумя способами.

  1. Двигатель может потреблять воздух естественным образом за счет разницы давления в цилиндре по сравнению с атмосферным. Это описание двигателя без наддува.
  2. Двигатель может нагнетать воздух в цилиндры с помощью турбонагнетателя или нагнетателя (принудительная индукция).

Два метода принудительной индукции различаются по способу питания. Нагнетатель приводится в действие коленчатым валом двигателя и потребляет мощность. С другой стороны, турбокомпрессор для работы использует выхлопные газы, выходящие из цилиндра, и не требует мощности от двигателя.

Турбокомпрессор выполняет две задачи. Он заполняет отверстие цилиндра большим количеством воздуха и вызывает турбулентность в цилиндре. Этот последний эффект значительно улучшает сгорание. Таким образом, турбокомпрессор делает дизельное топливо более мощным, позволяет ему работать чище и дает возможность использовать меньше топлива.

Объемный КПД


Стандарт, используемый для измерения наполнения цилиндра, называется объемной эффективностью (VE), и ее читают в процентах.

Безнаддувный двигатель испытывает около 80% VE.Другими словами, он использует 80% своей емкости по отношению к объему цилиндра.

Используя принудительную индукцию за счет турбонагнетателя, VE двигателя может улучшиться до 100% и выше в зависимости от количества создаваемого воздушного потока и создаваемого давления.

Кстати, это давление во впускном коллекторе читается как наддув. Датчик на приборной панели показывает это как давление на квадратный дюйм, но на самом деле это величина давления в атмосфере.

Если атмосферное давление 14.7 фунтов на квадратный дюйм, а турбонагнетатель производит 14,7 фунтов на квадратный дюйм (по показаниям датчика), тогда на цилиндре фактически 29,4 фунтов на квадратный дюйм. Таким образом, можно считать, что эффективный размер двигателя удваивается на каждые 14,7 фунта на квадратный дюйм наддува.

Теоретически 12-литровый двигатель (1 литр составляет примерно 61 кубический дюйм) при повышении давления примерно на 15 фунтов на квадратный дюйм эквивалентен 24-литровому двигателю, который дышит естественно.

Что замечательно в турбонаддуве, так это то, что он дает пассивный прирост мощности.Другими словами, выгода есть только тогда, когда она вам нужна, например, когда двигатель вынужден усердно работать. Когда нагрузка мала, двигатель работает в соответствии со своими механическими размерами. Когда требуется больше мощности, турбонаддув помогает двигателю реагировать так, как будто он имеет больший рабочий объем.

Интеркулер


Во многих приложениях с турбонаддувом также используется теплообменник, который идентифицируется как промежуточный охладитель или охладитель наддувочного воздуха (CAC). Целью CAC является охлаждение нагнетаемого воздуха, что, в свою очередь, увеличивает плотность воздуха, направляемого в цилиндры.

CAC также помогает уменьшить тепло, вызванное действием турбонаддува. Более горячий воздух нежелателен для работы двигателя, поскольку он содержит меньше молекул кислорода, чем более холодный воздух. На каждые 10 ° F. изменение температуры наддувочного воздуха, мощность изменяется на 1%.

Турбокомпрессор включает турбинное колесо с приводом от выхлопных газов. Это колесо заключено в спираль, которая представляет собой корпус в форме улитки. Это колесо также соединено валом с другой спиральной камерой, которая содержит колесо центробежного компрессора, которое направляет наддувочный воздух во впускной коллектор.Сторона турбины турбонагнетателя считается горячей; сторона компрессора считается холодной.

Вал, соединяющий колеса, движется в корпусе подшипника, в который под давлением подается моторное масло. Это масло течет через корпус, стекая обратно в двигатель (обычно обратно в масляный поддон или крышку привода ГРМ). Подшипники вала - плавающие. В некоторых турбокомпрессорах (особенно в более ранних моделях) могли использоваться полуплавающие или запрессованные шариковые или роликовые подшипники.

В условиях высокого наддува вал (и, следовательно, колесо турбины и компрессора) может вращаться со скоростью до 150 000 об / мин.Из-за тепла выхлопных газов турбины многие модели также пропускают охлаждающую жидкость двигателя через корпус подшипника, чтобы продлить срок службы и уменьшить коксование масла.

В турбонагнетателе используются уплотнения, чтобы масло не попало в выхлопную и впускную трубы. Они также содержат отработанные газы и давление наддува в улитке.

Турбокомпрессоры различаются по способу управления давлением наддува. Эти органы управления могут быть либо перепускным клапаном, либо состоять из подвижных колец с лопатками на стороне турбины.Перепускная заслонка позволяет выхлопным газам обходить турбинное колесо и корпус и, таким образом, ограничивать его скорость.

Функция нагрузки, а не частоты вращения двигателя


Энергия, которая вращает турбинное колесо турбонагнетателя, поступает от горячих выхлопных газов, выходящих из цилиндра двигателя. Турбокомпрессор пассивен, поскольку он в гораздо меньшей степени реагирует на частоту вращения коленчатого вала двигателя, чем на температуру выхлопных газов. Вот почему вы услышите турбонаддув, когда двигатель нагружен, даже если скорость двигателя может быть незначительной или не увеличиваться.

По мере увеличения нагрузки на двигатель увеличивается температура выхлопных газов и их скорость. Когда выхлопные газы выходят из порта головки цилиндров, инертный газ испытывает изэнтропическое расширение. Это означает без изменения температуры.

Горячие и расширяющиеся газы нагнетаются в корпус турбины и воздействуют на турбинное колесо так же, как поток реки имел бы воздействие на старую мельницу для измельчения зерна. Затем крыльчатка компрессора под давлением подает воздух во впускной коллектор.Результатом является увеличение VE, мощности и снижение выбросов.

Советы по обслуживанию Turbo


Турбонагнетатель похож на коленчатый вал в двигателях, предназначенных для принудительной индукции, в том смысле, что турбонагнетатель считается основным компонентом, предназначенным для продления срока службы двигателя при надлежащем обслуживании. Это не значит, что турбины не выходят из строя. Когда это происходит, в 90% случаев неисправность может быть связана либо с попаданием постороннего предмета в турбокомпрессор, либо с плохим обслуживанием.

Посторонние предметы могут повредить - если не разрушить - турбокомпрессор. Лучший способ предотвратить такую ​​катастрофу - это аккуратно заменить воздушные фильтры в соответствии с рекомендациями производителя двигателя.

Замена фильтров также дает преимущество предотвращения чрезмерного падения давления воздуха и разрежения на масляном уплотнении компрессора турбокомпрессора. Если падение давления продолжается с течением времени, это может вызвать проблемы с масляным уплотнением.

Еще один общий совет по турбонаддуву - дать двигателю поработать на холостом ходу около минуты после того, как он сильно поработал.Это позволяет турбокомпрессору замедлиться при охлаждении. Это старая проверенная процедура, которой сегодня часто пренебрегают, но она приносит свои плоды в течение срока службы оборудования.

Поиск и устранение неисправностей


Наиболее частыми симптомами, связанными с недостаточной производительностью турбокомпрессора, являются недостаточная мощность двигателя, чрезмерный дым выхлопных газов из-за чрезмерного расхода масла и (если применимо) попадание охлаждающей жидкости из корпуса подшипника с водяным охлаждением.

Имея дело с недостаточной мощностью двигателя, сначала определите, правильно ли работает двигатель, прежде чем обвинять турбонагнетатель в возникновении проблемы.Если двигатель работает нормально, велика вероятность того, что причина потери мощности или чрезмерного дыма в выхлопных газах кроется в системе турбонагнетателя.

Перед тем, как определить причину плохой работы турбокомпрессора, всегда проводите физический осмотр компонента. Проверьте все впускные патрубки на предмет плотной посадки турбонагнетателя и двигателя. Ослабленные хомуты или поврежденные шланги позволят ускорить выброс.

Во время осмотра обратите внимание на явные признаки утечки выхлопных газов перед корпусом турбины обратно в двигатель.

Утечки выхлопных газов ограничивают производительность турбонагнетателя, поскольку не весь выхлопной газ поступает в турбину турбокомпрессора. Это, в свою очередь, сильно влияет на его способность сжимать воздух для горения.

При осмотре системы обязательно проверьте целостность промежуточного охладителя (CAC) турбонагнетателя. Возможна трещина в баке или небольшое отверстие под штифт в трубе (особенно это проблема вездеходов). Возможно, потребуется снять CAC и проверить его под давлением, как если бы вы делали радиатор.

Если масляное уплотнение турбокомпрессора действительно выходит из строя, это приведет к попаданию смазки в CAC. Смойте эту смазку, поскольку она не только вызывает чрезмерный дым от выхлопных газов, но и ограничивает теплопроводность устройства.

Застрял перепускной клапан


Если в исследуемом турбокомпрессоре используется перепускной клапан, убедитесь, что он не заблокирован в открытом положении. Застрявший перепускной клапан может лишить двигатель мощности или привести к медленному нарастанию наддува.

Во время обследования обязательно проверьте целостность линии, идущей к диафрагме турбины, которая определяет наддув.Если эта линия треснула или протекает, это приведет к чрезмерному ускорению двигателя.

Если вы проверяете турбо-двигатель с регулируемыми лопатками, обратите внимание на скопление углерода в этих лопатках. Накопление углерода приводит к заеданию лопаток и, в свою очередь, к выходу из строя соленоида, управляющего лопатками.

Проверить маслопроводы


Если в исследуемом турбокомпрессоре вышел из строя подшипник или уплотнение, обязательно проверьте целостность линий подачи и слива масла. Если сливная линия забита шламом, это приведет к скоплению масла в корпусе вала и его прохождению через уплотнение.

При проверке турбонагнетателя посмотрите на вход компрессора, чтобы убедиться, что крыльчатка не повреждена. Также обратите внимание на чрезмерную масляную пленку и плавность хода вала. Имейте в виду, что если у исследуемой турбины есть плавающий подшипник, то его вал будет немного перемещаться вверх и вниз. Однако, если это движение приводит к удару ребер о корпус, это верный признак чрезмерного износа вала.

Если и когда придет время, когда турбонагнетателю потребуется профессиональное обслуживание, важно убедиться, что работа выполняется правильно.Анализ отказов - это первый шаг к определению причины поломки.

При найме на работу настаивайте на том, чтобы в сервисной мастерской всегда использовались оригинальные уплотнения и подшипники и чтобы после ремонта сборка была сбалансирована. Для балансировки требуется специальное оборудование, которого у дешевого восстановителя не будет или которое будет утверждать, что это задача, в которой нет необходимости.

Турбонаддув: что нужно знать о технологиях экономии топлива

  • Технология Turbo повышает производительность двигателей меньшего размера
  • Турбо 4-цилиндровые двигатели заменяют V6, турбо V6 заменяют V8
  • Снижение «запаздывания» реакции с новыми конструкциями и технологиями
  • Дополнительные затраты и сложность компенсируются увеличением эффективности и производительности
  • Почти две трети всех новых автомобилей будут иметь турбонаддув

Любой, кто покупает новые автомобили или грузовики в наши дни, несомненно, заметил, что все больше и больше из них рекламируют двигатели с турбонаддувом.Почему? Поскольку постоянно ужесточающиеся правительственные требования к выбросам и экономии топлива вынудили автопроизводителей уменьшить размеры двигателей, а турбонаддув меньшего двигателя может дать ему большую мощность, не жертвуя большой (если вообще) эффективностью, полученной за счет уменьшения габаритов.

В результате спрос на турбонагнетатели неуклонно рос, с сильным ростом для мировых производителей турбокомпрессоров, таких как Штутгарт, немецкая компания BMTS (Bosch Mahle Turbo Systems), которая была основана в 2008 году как совместное предприятие между поставщиками Bosch и Mahle. .«Традиционные двигатели внутреннего сгорания, в том числе гибридные, будут по-прежнему пользоваться спросом, поддерживая рост турбонагнетателей», - сказал директор по глобальным продажам BMTS Нил Карванд на недавнем мероприятии для СМИ, проходившем в зале M1 недалеко от Детройта.

Как работает турбина

Турбокомпрессор - это турбина, приводимая в движение горячими выхлопными газами двигателя, которые вращают компрессор на стороне впуска двигателя, чтобы нагнетать сжатый воздух в его цилиндры для создания большей мощности. Количество энергии, генерируемой двигателем внутреннего сгорания (ДВС), зависит от того, сколько топлива он может сжечь быстро и эффективно.Но топливу нужен воздух для сгорания, поэтому мощность ДВС также зависит от того, сколько воздуха можно закачать в него для смешивания с топливом.

Хотя нагнетатель служит той же цели, его компрессор приводится в движение двигателем через ремень или цепь, а не за счет энергии выхлопных газов, которая в противном случае тратится впустую. Основное различие состоит в том, что кратковременный момент, который обычно требуется турбонагнетателю для «раскрутки» до скорости, когда обороты двигателя (и, следовательно, температура и давление выхлопных газов) увеличиваются после нажатия на газ, приводит к «турбо-задержке».«Нагнетание и, следовательно, реакция нагнетателя мгновенно увеличивается с увеличением числа оборотов двигателя.

Турбины: меньше и легче, проще в установке

Но турбокомпрессоры обладают важным преимуществом, заключающимся в том, что они могут быть меньше, легче и их легче интегрировать в выхлопную систему наряду с рядными 4- или 6-цилиндровыми двигателями или внутри V-образного шестицилиндрового или восьмицилиндрового двигателя. А отставание можно уменьшить, прижав турбину к выпускным отверстиям.

Автопроизводители все чаще заменяют V6 более эффективными 4-цилиндровыми двигателями с турбонаддувом, которые обеспечивают, по крайней мере, эквивалентную мощность (и часто более высокий крутящий момент), в то время как 6-цилиндровые двигатели с турбонаддувом вытесняют V8 без наддува.

Добавление турбонаддува позволило меньшим двигателям, таким как I4 от 1,2 до 1,4 литра, вырабатывать ту же мощность, что и более крупные 2,0- и 2,4-литровые 4-цилиндровые двигатели. А когда дополнительный наддув турбонагнетателя не требуется, меньший рабочий объем этих двигателей обеспечивает гораздо лучшую экономию топлива, особенно в городском цикле.

Турбо рост

Из-за этого повышения эффективности производители быстро расширили использование этой технологии. Глобальная информационная компания IHS Markit насчитала около 220 автомобилей модели 2018 года, предлагающих как минимум один двигатель с турбонаддувом.IHS прогнозирует, что производство аккумуляторных электромобилей (BEV) достигнет 17 миллионов к 2031 году по сравнению с 99 миллионами автомобилей с ДВС (включая газовые / электрические гибриды), а из этих автомобилей с ДВС 63 миллиона (почти две трети) будут с турбонаддувом по сравнению с около половины сегодня.

Эффективность по цене

Добавление турбонагнетателя действительно увеличивает стоимость и сложность, но результирующее повышение производительности приятно, а иногда и важно - чтобы быстро пересечь оживленную улицу или плавно и безопасно въехать в быстро движущееся движение.Турбокомпрессоры также компенсируют потерю мощности из-за более разреженного воздуха на больших высотах.

Как BMTS продемонстрировала СМИ на M1 Concourse на 1,5-литровом 4-цилиндровом Chevrolet Malibu, 1,4-литровом 4-цилиндровом VW Jetta, 3,0-литровом 6-цилиндровом BMW 540i и 6,0-литровом твин-турбо 12-цилиндровом двигателе мощностью 600 л.с. Bentley Bentayga W12 с турбонаддувом существенно улучшает характеристики любого автомобиля.

Грядут и более важные события. «BMTS провела много исследований и инвестировала в снижение неэффективности, сокращение потребления масла и сокращение выбросов», - сказал технический директор д-р.Нисар Аль-Хасан. «Что касается технологий, BMTS разработала и представила ключевые инновационные продукты». Среди них - электрифицированный турбонагнетатель, в котором используется небольшой воздушный насос с моторным приводом для устранения задержки на низких частотах.

Что нужно знать о владении турбиной

По мере того, как турбокомпрессоры становятся все более распространенными повсеместно, есть несколько вещей, которые вы должны помнить о технологии. Из-за более высокой рабочей температуры и давления двигателя с турбонаддувом важно не отставать от регулярных плановых замен масла в соответствии с рекомендациями производителя.Более высокая температура и давление двигателя с турбонаддувом могут быстрее разрушить защитные присадки в масле, используемом для защиты двигателя от преждевременного износа.

Также для двигателей с турбонаддувом может потребоваться более дорогое синтетическое масло. Опять же, обратитесь к руководству пользователя, чтобы узнать рекомендуемый вес и состав заменяющего масла. Двигатели с турбонаддувом также могут потребовать (или, по крайней мере, рекомендовать) топливо премиум-класса для максимальной мощности и эффективности.

Как работает турбокомпрессор

Drive и его партнеры могут получать комиссию, если вы покупаете продукт по одной из наших ссылок. Подробнее.

Было время, когда безраздельно властвовал V8. Когда "Замены вытеснению нет!" был прикреплен к бамперу каждого хромированного маслкара. Однако, как однажды сказал Боб Дилан: «Времена меняются», и в автомобильном мире это изменение приносит с собой турбокомпрессоры.

Турбокомпрессор - это система, которая помогает двигателю производить больше мощности и крутящего момента за счет принудительной индукции. По сути, турбонагнетатель всасывает воздух, охлаждает его, а затем принудительно нагнетает в двигатель больше воздуха, чем то, что он получит через стандартное впускное отверстие.Конечный результат - намного больше «Уф!»

Тем не менее, турбокомпрессоры могут быть загадочными, и их внутреннее устройство может показаться неприступным для полного понимания. Они не должны быть такими. Имея рядом с вами команду специалистов , занимающихся технической информацией, мы избавим вас от того, чтобы вы прищурились на свой двигатель и неправильно указали на стартер на запчасти из Японии ... или Австрии.

Готовы? Устойчивый? Идти!

Depositphotos

Что такое турбокомпрессор?

Турбокомпрессор - это небольшая турбина, которая находится между двигателем и выхлопом.Подключенный к обоим воздухозаборникам, турбонагнетатель использует выхлопные газы для вращения турбины, которая затем нагнетает больше воздуха в двигатель вашего автомобиля и увеличивает мощность автомобиля. Турбонагнетатель состоит из четырех частей. Это:

Турбокомпрессор

Турбокомпрессор сам по себе похож на улитку и имеет воздухозаборник, выпускной патрубок, две разные крыльчатки (турбина сзади и компрессор спереди) и выхлоп заряженного воздуха, который поступает в промежуточный охладитель. .Также есть шланг для масла.

Интеркулер

Для снижения температуры нагнетаемого воздуха, вытесняемого из турбокомпрессора, вторичный радиатор или промежуточный охладитель задерживает воздух до того, как он достигнет двигателя. В качестве охлаждающего агента используется охлаждающая жидкость.

Перепускной клапан

Перепускной клапан - это клапан между впуском выхлопных газов и турбонагнетателем, который обходит турбину и регулирует давление наддува.

ECU Tune

Электронный мозг двигателя с турбонаддувом требует другой калибровки для топливовоздушных смесей и момента зажигания по сравнению с автомобилем с безнаддувным двигателем.Таким образом, если кто-то добавляет турбокомпрессор к двигателю, который никогда не предназначался для него, ему придется перепрограммировать электронный блок управления двигателем (ЭБУ), чтобы он работал должным образом.

Джонатон Кляйн

McLaren 720S с двойным турбонаддувом.

Типы турбонагнетателей

Существует большое разнообразие турбонагнетателей и применений с турбонаддувом.Вот краткое изложение общих настроек.

Одиночный турбонагнетатель

Одиночный турбонагнетатель - это наиболее распространенный тип турбонагнетателя. Он оснащен одной турбиной, и на массовом потребительском рынке он обычно используется в большем количестве пешеходных автомобилей, которым не требуется много лошадиных сил или крутящего момента. На вторичном рынке это одно из самых популярных обновлений тюнера.

Примером этого может быть Honda Civic.

С двойным турбонаддувом

Добавление второго турбонагнетателя увеличивает количество воздуха, которое может быть нагнетено в двигатель для создания большей мощности и крутящего момента.Настройка в целом остается такой же, как у одиночной турбонаддува, если только у вас нет ступенчатой ​​системы с двумя турбонагнетателями, в которой малый турбонаддув сочетается с большим турбонаддувом для устранения задержки.

Примером этого может быть McLaren 570S.

с четырехцилиндровым турбонаддувом

Bugatti Chiron - единственный серийный автомобиль, в котором используется четырехцилиндровый двигатель с турбонаддувом. Bugatti соединяет две большие турбины и две маленькие турбины с 8,0-литровым двигателем W16, чтобы обеспечить в общей сложности 1500 лошадиных сил. По словам человека, который разогнался до 304 миль в час, это спешка.

Составной заряженный

Составной заряженный система - это когда турбонагнетатель соединен с нагнетателем. Нагнетатель используется для создания более быстрого крутящего момента, в то время как турбонагнетатель увеличивает максимальную мощность в лошадиных силах.

Примером может служить четырехцилиндровый двигатель Volvo с комбинированным наддувом, который используется в автомобилях и внедорожниках класса T6.

Audi

Схема электронного турбонагнетателя.

E-Turbocharger

Идея электронного турбонагнетателя витала в воздухе в течение некоторого времени, но потребовались исследования и разработки Формулы 1 на миллиард долларов, чтобы создать продукт, достойный производства.

Конструкция электронного турбонагнетателя заимствована у нынешнего поколения автомобилей Формулы 1 и добавляет электричество в смесь для устранения турбо-лага. Между корпусом турбины и компрессором находится небольшой электродвигатель, работающий от электрической системы 48 В. Электродвигатель может вращать компрессор раньше, чем выхлопные газы, тем самым сокращая время между отсутствием наддува и наддува.

Audi заявляет, что добавление электродвигателя к ее агрегату «сокращает время отклика [турбонагнетателя] до менее 250 миллисекунд, что быстрее, чем время реакции среднего человека.

Наряду с Audi Mercedes-Benz выпускает автомобили с электронным турбонаддувом.

Турбокомпрессор Hot-V

Установка «Hot-V» - это когда турбокомпрессор или турбокомпрессоры расположены внутри буквы «V» двигателя. Это не только уменьшает пространство, необходимое для двигателя, но также уменьшает расстояние, которое требуется наддувному воздуху для прохождения между компрессором и двигателем. Это означает, что турбокомпрессор или турбокомпрессоры могут работать быстрее и уменьшать задержку.

Установка «Hot-V» также разделяет турбину и компрессор и размещает их на противоположных сторонах двигателя.Это снижает накопление тепла в нагнетаемом воздухе и значительно снижает охлаждающую нагрузку промежуточных охладителей.

Mercedes-Benz был первым автопроизводителем, запустившим в производство установку Hot-V.

Джонатон Кляйн

A Hyundai Veloster с турбонаддувом N.

Кто изобрел турбокомпрессор?

Швейцарский инженер Альфред Бучи впервые разработал турбокомпрессор для увеличения мощности дизельных двигателей в 1905 году.Аккуратный!

Сколько дополнительной мощности можно получить?

Это вопрос каждого редуктора, и, к сожалению, на него нет простого ответа. Обычный турбокомпрессор приносит чистым энтузиастам примерно на 20-40 процентов больше мощности, чем стандартный.

Однако, сколько дополнительной мощности зависит от множества переменных, в том числе от того, насколько велик или мал турбокомпрессор, какие модификации вы внесли во внутренние части двигателя, какой тип топлива вы используете, а также от ECU, настроенного для вашего турбонагнетателя установка использует. Прибыль вашего автомобиля будет разной.

Преимущества и недостатки турбокомпрессоров

У всего есть свои компромиссы, и турбокомпрессоры ничем не отличаются. Вот несколько преимуществ и недостатков турбокомпрессоров.

Преимущества

Благодаря увеличенному потоку воздуха турбонагнетатель увеличивает мощность и крутящий момент двигателя. В то же время, поскольку турбокомпрессоры могут производить большую мощность, производители могут уменьшить рабочий объем двигателя и, таким образом, получить более высокую эффективность и более низкие выбросы.

Недостатки

Однако есть недостатки, такие как повышенная сложность, которая делает ремонт двигателя с турбонаддувом дорогим. Также существует проблема турбо-лага.

Что такое турбо-задержка?

Одна из самых больших проблем с производительностью турбокомпрессора - турбо задержка. Поскольку турбонагнетателям требуется выхлопные газы для вращения турбины и, следовательно, компрессора, требуется время, чтобы создать наддув и нагнетать больше воздуха в двигатель. Создается впечатление, что между моментом нажатия на дроссель и ощущением скачка напряжения есть кратковременная пауза.Вот почему производители начали экспериментировать с электронными турбонагнетателями.

Джонатон Кляйн

Shelby Mustang GT500 с наддувом.

Часто задаваемые вопросы о турбонагнетателях

У вас есть вопросы о турбонагнетателях, Информационная команда Drive ответит на них.

Чем отличается нагнетатель?

В то время как турбонагнетатель использует выхлопные газы для приведения в движение турбины, которая нагнетает больше воздуха в двигатель, нагнетатель использует ременную систему двигателя, чтобы вращать турбину, которая нагнетает больше воздуха в двигатель.Поскольку он работает от собственной мощности двигателя, нагнетатели, как правило, менее эффективны как с точки зрения наддува, так и с точки зрения экономии топлива по сравнению с турбонагнетателем.

Есть ли в моей машине турбокомпрессор?

Может быть. Есть несколько способов проверить. Первый и самый простой - пролистать запыленное руководство по эксплуатации вашего автомобиля. Второй - поискать его в Интернете на сайте производителя или в Google. Последний способ - визуально осмотреть двигатель. Если возле выхлопной трубы вашего автомобиля или вдоль буквы V двигателя есть цилиндрическая металлическая деталь в виде улитки, то перед вами автомобиль с турбонаддувом.Турбо свисток?

Какой был первый серийный автомобиль с турбонаддувом?

Эта честь принадлежит Oldsmobile Jetfire, производство которого началось в 1962 году.

Турбокомпрессоры - дорогие?

Могут быть. Если вы модифицируете существующий автомобиль, который изначально не был оснащен турбонагнетателем, вам потребуется внести множество изменений, чтобы турбокомпрессор мог работать. Это может обойтись дорого: комплекты турбокомпрессоров стоят от 1500 до 20 000 долларов в зависимости от машины, на которой вы бьете этих улиток.

Аналогичным образом, замена сломанных турбонагнетателей также может быть дорогостоящей, например, турбокомпрессоры Mercedes-Benz AMG, замена которых стоит более 15 000 долларов.

Почему так много автомобилей имеют турбокомпрессоры?

По мере ужесточения требований к топливу и выбросам производителям приходится уменьшать рабочий объем двигателей в своих моделях. Чтобы поддерживать уровень мощности для этих все более тяжелых транспортных средств, автопроизводители перешли на двигатели с турбонаддувом для дополнительной мощности.

Что такое Ford EcoBoost?

Ford EcoBoost - это просто название продукции бренда с турбонаддувом. Компания Ford нанесла название EcoBoost на такие автомобили, как Ford Mustang, пикапы F-Series, новый Bronco и вплоть до суперкара Ford GT.

Получите свой собственный комплект турбонагнетателя от Vivid Racing

Ваш автомобиль не имеет достаточно возможностей для подъема и движения? Вас чуть не убил сливающийся полуавтомат, когда ваша поездка изо всех сил пытается разогнаться до 60 миль в час? Вы тоскуете по сладкому, сладкому свисту турбокомпрессора на пике наддува? Что ж, тогда вам может подойти турбонагнетатель.Вот почему мы сотрудничаем с нашими друзьями из Vivid Racing, чтобы вы получили турбонаддув! Нажмите здесь, чтобы ознакомиться с линейкой комплектов турбокомпрессоров Vivid Racing.

Рекомендуемые изделия для турбонагнетателей

Mishimoto MMSK Ручка переключения передач с весами

Комплект керамических тормозных колодок Akebono ProACT Ultra-Premium

Torco F500010TE Неэтилированный топливный ускоритель

Есть вопрос? Получили совет от профессионала? Отправьте нам сообщение: [email protected]

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *