ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

4 основные причины и ряд возможных решений

Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?

Типы проблем. Возможные решения

1. Масло поступает во впускную систему из компрессора

Возможные причины:

  • засорение патрубка;
  • обледенение или засорение воздушного фильтра;
  • повреждение сегмента впускного коллектора.

Для устранения неполадок необходимо проверить сопротивление поступающего воздуха. Параметры разрежения в области воздушного фильтра – не более 20 мм водного столба (на холостом ходу). Если остановить двигатель, резиновые патрубки вернут свою начальную форму. Напоследок необходимо освободить впускной коллектор иинтеркулер от масла.

Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не нужно.

2. Масло поступает во впускную систему двигателя

Возможна нехватка подкачанного воздуха в патрубках, интеркулере, коллекторе. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление. В результате масло вытекает через компрессорную часть. Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты.

Необходимо проверить места, из которых масло может теряться по пути до турбины:

  • воздушный фильтр, наполненный маслом;
  • компрессор тормозной системы;
  • система замкнутой вентиляции.

3. Масло поступает в выпускную систему

Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Если турбина на двигатель абсолютно новая, а в коллекторе обнаружено масло, возможно, что оно попало из двигателя.

4. Масло поступает в обе системы

Причин может быть две:

  1. Повреждение или засорение масляной магистрали, неправильное положение прокладки на стыке с турбиной.
  2. Неисправность картера двигателя, а именно засорение системы вентиляции. Возможно появление избытка газов из-за неполадок в двигателе или износа деталей. В этом случае для начала следует устранить неисправности. Если потеки масла слабые, скорее всего, виновата не турбина, а системы двигателя.

7 причин почему гонит масло из турбины (все случаи). Их следствие и как решить

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе.

Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Содержание

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков.

Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки

. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

 

Методы устранения поломки

Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

  1. Замена (в крайнем, не нежелательном случае, чистка) воздушного фильтра. Запомните, что желательно менять фильтр немного раньше регламента, приблизительно на 10%. В среднем же, его замену нужно проводить не реже, чем через каждые 8-10 тысяч километров пробега.
  2. Проверка состояния крышки воздушного фильтра и патрубков, при обнаружении засора нужно обязательно хорошенько прочистить их, удалив мусор.
  3. Проверка герметичности крышки воздушного фильтра и патрубков. При обнаружении трещин или других повреждений в зависимости от ситуации можно попробовать отремонтировать их, наложив хомуты или другие приспособления, в крайнем случае нужно купить новые детали вместо поврежденных. При этом обязательным условием будет то, что если разгерметизация была обнаружена, то перед сборкой системы с новыми комплектующими ее обязательно нужно тщательно прочистить от мусора и пыли, которые в ней находятся. Если этого не сделать — мусор будет играть роль абразива и значительно изнашивать турбину.
  4. Правильный подбор моторного масла и его своевременная замена. Это актуально для всех двигателей, а особенно для тех, которые снабжены турбонагнетателем. Лучше пользоваться качественными синтетическими или полусинтетическими маслами известных производителей, таких как Shell, Mobil, Liqui Moly, Castrol и других.
  5. Периодически необходимо контролировать состояние масляных патрубков с тем, чтобы они обеспечивали нормальное перекачивание масла по масляной системе, в частности, к турбине и от нее. В случае, если вы полностью меняете турбину, то в профилактических целях нужно выполнить их чистку, даже если на первый взгляд они относительно чистые. Лишним это не будет!
  6. Регулярно нужно выполнять контроль состояния вала, крыльчатки и подшипников, не допускать их значительного люфта. При малейших подозрениях на неисправность нужно выполнить диагностику. Лучше делать это в автосервисе, где имеется соответствующее оборудование и инструменты.
  7. В случае, если имеет место масло на выходе из турбины, то имеет смысл проверить состояние дренажной трубки, наличие в ней критических изгибов. При этом уровень масла в картере обязательно должен быть выше, чем у отверстия той трубочки. Также имеет смысл проверить вентиляцию картерных газов. Обратите внимание, что конденсат, образующийся в выпускном коллекторе из-за разности температур, зачастую принимают за масло, поскольку влага, смешиваясь с грязью, приобретает черный цвет. Нужно быть внимательным, и убедиться, что это действительно масло.
  8. Если наблюдается течь во впускную или выпускную систему двигателя, то также имеет смысл проверить состояние прокладок. Со временем и под воздействием высоких температур она может значительно износиться и выйти из строя. Соответственно, ее нужно поменять на новую. Делать это самостоятельно нужно лишь в случае, если вы уверены в своих знаниях и практическом опыте по выполнению подобных работ. В некоторых случаях вместо замены помогает простая подтяжка стягивающих болтов (но реже). Однако сильно перетягивать тоже нельзя, поскольку это может привести к обратным последствиям, когда прокладка вообще не будет держать давление.

Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.

Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h2C или h2E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Спрашивайте в комментариях. Ответим обязательно!

Масло в выпускном коллекторе причины

Всем привет, разберемся с этой проблемой! Не торопитесь менять турбину, масло в патрубке не означает приговор турбине! В этом же конечно мне помог наш верный друг и товарищ audi-club. ru

Приготовтесь будет много букв, но это полезно знать каждому у кого стоит турбина:

Одной из типичных неисправностей турбокомпрессора является выброс моторного масла во впускной коллектор (или в интеркулер, если он есть) или в выхлопную систему. Но всегда ли при таких симптомах можно однозначно судить о неисправности турбины? Нет, далеко не всегда. Существует ряд причин, по которым даже полностью исправный турбокомпрессор выбрасывает масло в горячую или в холодную улитку, или в обе сразу.

Рассмотрим причины, по которым возникает такая ситуация

Первая причина (на мой взгляд, наиболее распространенная):
Не работает (или плохо работает) по каким-либо причинам система вентиляции картера двигателя. Система вентиляции картера любого двигателя внутреннего сгорания предназначена для устранения избыточного давления в картере двигателя, возникающего вследствие прорыва газов из камеры сгорания в картер при работе двигателя. Патрубок вентиляции картера любого ДВС подключаестя к зоне пониженного давления (т.е. разряжения). В нетурбированных двигателях это, как правило, впускной коллектор, в двигателях с турбонаддувом-это всасывающий патрубок турбокомпрессора. Сливная масляная магистраль турбокомпрессора подключается к масляной системе двигателя, как правило, ниже нормального уровня масла в картере. Таким образом, если в картере возникает избыточное давление картерных газов, масло не может нормально сливаться по сливной магистрали турбокомпрессора, оно «подпирается« в корпусе подшипников со всеми вытекающими отсюда последствиями. Причиной этого может быть сильная закоксованность масляного сепаратора системы вентиляции картера, закоксованность патрубка системы вентиляции картера, перелом или зажатие этого патрубка и т.д.
Вторая причина:
Затруднен нормальный слив отработанного масла по сливной магистрали турбокомпрессора по различным причинам (закоксованность, попадание посторонних предметов, остатков старой прокладки, герметика). Определить и устранить эту причину не составляет большого труда.

Почему масло попадает во впускной коллектор

В большинстве случаев причиной того, что масло оказывается во впускном коллекторе, является неисправный воздушный фильтр. Чтобы понять, как это происходит, рассмотрим весь процесс в подробностях.

В большинстве случаев воздушный фильтр уже загрязнён маслом. Поэтому воздух, проходя через него, захватывает с собой капельки жидкости, которые вскоре оказываются во впускном коллекторе. Естественно, это крайне негативно сказывается на работе автомобиля.

Подобные утечки возможны только на выходе из компрессора. Чтобы избавиться от масла во впускном коллекторе достаточно заменить фильтр на другой. Если же проблемы наблюдаются на входе, то способ восстановления нормальной работоспособности будет немного другим.

На выходе компрессора стоит воздушный фильтр. В процессе работы он пропускает через себя огромные объёмы воздуха. Поэтому со временем, мембраны забиваются частичками пыли. Как результат сопротивление растёт . Из-за этого падает давление.

Дебби Мерфи / autoMedia.com на mobiloil.com .

. проверьте на утечки масла и всегда используйте воронку при добавлении масла. Масло, пролитое на горячий выпускной коллектор, может привести к пожару.

Если у вас есть бензоколонка, добавьте масло, дважды проверьте, чтобы крышка была надежно закрыта. Это звучит очевидно, но лучше проверить, чем в конечном итоге масло в вашем моторном отсеке в лучшем случае или пожар в худшем случае.

Еще одно видео на youtube.com

Температура вспышки моторного масла Mobile 1 10w30 составляет 232 град. C. согласно его паспорту .

Температура выхлопных газов может широко варьироваться в зависимости от автомобиля. Среднее число, которое я нашел упомянутым, составляет 149 Градусов. C. на холостом ходу до 760 град. C. при высокой нагрузке и редких крайностях 1200 град. C. Ниже приводится цитата из «пасьянса» от sportscarforums. com

EGT (температура выхлопных газов) может легко колебаться между 300 градусов F на холостом ходу и 1400 градусов F при высокой нагрузке.

232 град. температура вспышки моторного масла легко попадает в диапазон температур выхлопных газов.

Как навсегда решить проблему

В действительности, несмотря на серьёзные последствия, связанные с попаданием масла во впускной коллектор, устранить проблему довольно просто. Достаточно установить датчик. Это устройство будет контролировать область, находящуюся между фильтром и турбокомпрессором.

Если же вы не желаете тратить средства на установку датчика, можно просто следовать рекомендациям производителя и менять фильтр по расписанию. Но стоит сделать одно важное замечание. Скорость загрязнения зависит от условий эксплуатации и нагрузок, поэтому далеко не всегда можно полагаться на мануалы производителей.

Замена масла в авто

12.07.2017

| Комментариев нет

почему гонит масло в выпускной коллектор


Как 100% разграничить причину расхода масла Сайт СТО «Ковш»: https://kovsh. com Для того чтобы определиться откуда утечка масла, из турбины или из двигателя, мы…

Урал 4320 . Масло в выпускном коллекторе двс камаз 740 Ссылка на группу в вк: https://vk.com/club150280626 Почему кидает масло в выпускной коллектор на двс камаз 740 Как снять…

Масло в выпускном коллекторе часть 4 заключительная

Масло в выпускном коллекторе часть 3

Течь из под коллектора Д245

Из какого цилиндра выбрасывает масло? Проверка эндоскопом выхлопного коллектора Сайт СТО «Ковш»: https://kovsh.com Частые дымления двигателя связаны с попаданием углеводородов (ГСМ) в выхлопной…

Почему Масло вылетает через Сапун Контакты для связи. Емел ВК https://vk.com/id511176354 Кошельки если появиться желание отблагодарить за…

Выхлопной коллектор в масле д 245

Сильно гонит масло с под одной головы Камаз, выясняю причину! течьмасла#камазремонт.

Картерные газы привели к попаданию масла в цилиндр, Renault Megane II 1.5d, K9K По причине неправильного удаления катализатора давление сопротивления выхлопным газам превышало допусти…

Как определить причину дымления и расхода масла. Renault Kangoo 1.5d K9K710 : https://kovsh.com/service Неисправности дизельного двигателя: https://kovsh.com/popular/engines_troubles Механические…

Масло в выпускном коллекторе

Кидает ли турбина масло во впуск? Как проверить. Audi A6C5 2.5TDI V6 Привет, меня зовут Олег, я механик — любитель, свою машину обслуживаю и ремонтирую практически всегда самост…

Масло в выпускном коллекторе часть 2

Как турбина гонит масло. Nissan 2.2 DDTI. При износе турбины масло может попадать как во впускной, так и в выпускной коллектор. Вот яркий пример изнош…

Д — 245 сырой коллектор Мокрый или Потеет коллектор на д 245 газ 3309. льют форсунки или гонит масло через шпильки.

Масло во впускном коллекторе! Что делать? Проклейка крышки сапуна на K4M. | Видеолекция#2 На моторах RENAULT K4M (1.6 16V) почти на каждом присутствует масло на впускном коллекторе и на крышке сапуна (маслоу…

Что кидает масло: двигатель или турбина? Подробно разбираем тему запотевания масла на впускных коллекторах, патрубках интеркулера, системы вентиля…

Ом 602. 940 утечка масла в первый цилиндр. Ом 602.940 утечка масла в первый цилиндр.

Летит масло из глушителя. (Ответы)

Без рубрики

Диагностика

Для начала давайте разберемся, как выявить попадание масла в коллектор. На практике имеется несколько признаков, по которым можно определить проблему. Зная все эти признаки, вы гарантированно сможете определить наличие неисправности:

  • Масляный дым из выхлопной трубы. Это, пожалуй, основной признак, который замечают даже неопытные водители. Но, стоит помнить, что такой дым может свидетельствовать и о других проблемах;
  • Увеличенный расход масла. Это довольно частый спутник загрязненного коллектора. Собственно, уменьшается количество смазки в двигателе, по причине выгонки его в коллектор;
  • Наличие масла на воздушном фильтре
    . Этот признак уже более точный, для того чтобы увидеть проблему придется снять крышку с корпуса фильтра;
  • Масло в коллекторе.
    Если мы доберемся до него, то увидим наличие там смазки. Причем ее там будет достаточно много.

причины появления и способы устранения

В автомобиле все узлы и механизмы должны работать правильно, именно так эксплуатировать машину будет в радость. Если своевременно обнаруживать и устранять мелкие неисправности, то можно избежать дорогостоящего ремонта в будущем. Также такой подход к обслуживанию является залогом безопасного использования автомобиля. Нередко случается так, что появляется масло во впускном коллекторе. Давайте разберемся, почему так случается, как диагностировать, а затем устранить данную неисправность.

Признаки неисправности

Данную проблему можно выявить по определенным признакам. Масло может быть непосредственно во впускном коллекторе или в дроссельной заслонке. Это самый простой способ диагностики, однако он связан с необходимостью разбора верхней части силового агрегата.

Также проблема определяется по сизому дыму из трубы. Это могут увидеть даже неопытные водители. Но данный признак может свидетельствовать и о других проблемах с мотором.

Можно говорить о неисправности, если резко вырос расход масла. Стоит регулярно проверять его уровень по щупу. Когда еще появляется масло во впускном коллекторе? Можно начать подозревать о неисправности, если заметно упала тяга мотора, а при его работе увеличился уровень шума.

Капли масла на воздушном фильтре – это еще один из признаков. Проверить, есть ли там масло, очень легко. Доступ к воздушному фильтру на большинстве автомобилей очень простой.

Существует несколько причин масла во впускном коллекторе. Рассмотрим самые часто встречающиеся из них.

Вентиляция картера

Система вентиляции картерных газов предназначена для того, чтобы снизить давление в картере двигателя. Давление там образуется по причине попадания выхлопных газов при работе двигателя. Для этого картер посредством патрубка соединен с зоной пониженного давления или с зоной разрежения. В атмосферных двигателях внутреннего сгорания это как раз впускной коллектор. Если мотор турбированный, то вентиляция картера подключается к входному патрубку на турбокомпрессоре.

В любой турбине имеется магистраль, предназначенная для слива масла. Она соединяется со смазочной системой двигателя. Чаще всего данная магистраль подключается ниже уровня масла в картере. Поэтому, когда давление возрастает, масло из турбокомпрессора не может нормально удаляться. Также такая проблема может быть по причине засора сепаратора. Это один из узлов в системе вентиляции. Также может быть закоксован патрубок.

Деформация ГБЦ или ее узлов

Это еще одна из причин, почему впускной коллектор в масле. Здесь имеют место различные неисправности головки блока цилиндров. Некоторые детали ГБЦ неспособны вследствие повреждений или износа сходиться вплотную, герметично. Ничто не препятствует попаданию масла в коллектор. Зачастую данная неприятность может сопровождаться белым налетом в масле, а также мотор может терять мощность. Не заметить эти «симптомы» просто невозможно.

Также можно выделить большую выработку направляющих клапанов в ГБЦ. Если это имеет место, то клапаны практически не смазываются – вот откуда масло во впускном коллекторе. Далее смазка попадает в цилиндры, где благополучно сгорает.

Перегрев

Говоря о неисправностях ГБЦ, стоит упомянуть о перегреве как об одной из причин. Перегрев опасен тем, что существует серьезный риск деформации головки блока. В первую очередь при таких обстоятельствах страдает именно головка. Поэтому эксплуатировать двигатель нужно максимально аккуратно.

Диагностика ГБЦ

Выявить деформации можно при помощи специальных стендов либо визуально. Рекомендуется внимательно осмотреть мотор на предмет повреждений. Если есть проблемы, то будет заметно неплотное прилегание деталей друг к другу. Но в большинстве случаев с визуальной диагностикой могут быть трудности. Тогда прямая дорога на специализированный стенд.

Определить выработку в направляющих клапанах можно по стуку клапанов, которым сопровождается работа двигателя. Устранив эти причины, можно решить проблему масла во впускном коллекторе.

Прокладки

Впускной коллектор закреплен на силовом агрегате при помощи прокладок. Это позволяет избежать возможных подсосов воздуха. Также прокладка позволяет ограничить попадание в коллектор масла. Но со временем она может повредиться. В этом случае масло туда все-таки попадает. Мотор может из-за этого начать сбоить. Если имеется датчик массового расхода воздуха, то ЭБУ выдаст ошибку. Все это говорит о том, что под коллектором повреждена прокладка.

Причин повреждения ее может быть много. Чаще всего эти элементы выходят из строя по причине износа. Иногда прокладка разрушается из-за перегрева. Однако современные элементы устойчиво выдерживают высокотемпературные воздействия. Иногда прокладку повреждают в процессе сборки двигателя.

Избавиться от масла во впускном коллекторе в этом случае просто – нужно лишь заменить прокладку. Затем коллектор устанавливают обратно. Но нужно соблюдать некоторые нюансы. Поверхности двигателя и коллектора рекомендуется тщательно зачистить. Гайки протягиваются со строго определенным моментом.

Турбина

Прежде чем говорить о том, почему турбина гонит масло во впускной коллектор, необходимо вспомнить ее устройство.

Если говорить утрированно, то компрессор имеет примитивную конструкцию. Он представляет собой вал, на котором установлены две гребенки с лопастями. Одна из гребенок приводится в действие от выхлопных газов. Другая крутится за счет того, что находится на том же валу. Количество оборотов может быть высоким, поэтому вал должен быть оборудован качественными подшипниками. Но как показывает практика, сухие подшипники не способны выдержать работу в турбине. Деталь сильно нагревается, в результате узел перегревается и заклинивает.

Для эффективной работы узла нужно было каким-то образом убирать лишнюю температуру и улучшать скольжение. С этим прекрасно справляется масло. К валу подведено два смазочных канала на каждый подшипник. Так можно получить высокие обороты и высокую производительность.

Все хорошо, но данная конструкция спровоцировала возникновение множества проблем, которые не могут решить и сегодня. И самая трудная из них связана с тем, что турбина кидает масло во впускной коллектор.

Почему турбина гонит масло?

Если чем-то нарушена нормальная работа турбины, то она начинает гнать масло. Это не самая серьезная неисправность, но здесь многое зависит от модели компрессора и типа неисправности. Но поломку нужно обязательно найти и устранить. Ведь даже если поставить новую турбину и не устранить причину, то и новая турбина будет гонять масло во впускной коллектор.

Косвенные причины можно найти и устранить самостоятельно. Зачастую турбины гонят масло из-за нарушений давления. Запорные кольца больше не могут нормально выполнять свою задачу. Давление нарушается, и маслу идти становится легче.

Если есть износ прокладок и сальников, в процессе работы турбины смазка может попадать в коллектор. Происходит это активно, так как масла через турбину прокачивается много. В итоге оно проливается через верх. Это проявляется очень ярко. Наблюдается не только масло во впускном коллекторе, но и на свечах. Исправить ситуацию можно только ремонтом турбины.

Сам по себе ремонт и его особенности зависят от модели авто. На некоторые турбины есть в продаже ремонтные комплекты. Это позволяет избежать лишних трат и очень быстро вернуть узел в действие. Такая работа делается и самостоятельно. Но есть модели, на которые производители запасных частей не выпускают, и тогда приходится менять деталь полностью.

Загрязнение воздушного фильтра

Усложненный забор воздуха для турбины – это одна из причин неисправности. Часто виноват в этом воздушный фильтр – его забывают менять. Также могут частично блокироваться патрубки забора воздуха. Его может зажимать, или он переламывается.

В процессе работы турбины образуется разрежение. Если воздуха не хватает, давление значительно вырастает, масло вытягивается из турбокомпрессора.

Для турбины воздушный фильтр очень важен. В основном смазку гонит по причине того, что нарушается давление именно из-за забитого фильтра. На турбированных двигателях очистительный элемент нужно менять через каждые 8 тысяч километров.

Масло

Это вторая по распространенности причина того, что турбина гонит его в коллектор. Масло обязательно должно быть стойким к высоким температурам. Есть специальное масло для турбин. Оно не должно пригорать. Обычное масло закоксует все каналы смазки.

Замену следует производить чаще. Если производитель рекомендует менять масло через каждые 12 тысяч километров, то лучше менять через каждые 10 тысяч. Тогда ресурс у турбины повысится, и масла в коллекторе не будет.

Патрубки

Это еще одна из причин. Если масло долго не менялось, то патрубки имеют свойство забиваться. Даже если ремонтируют турбину, то патрубки прочищают. Это очень важно. Если масло под впускным коллектором, то возникает разница в давлении из-за трубок или фильтра. Важно также следить за герметичностью воздушных элементов, если патрубки имеют трещины или другие следы деформаций, их стоит заменить новыми.

В противном случае будет излишний подсос воздуха. Это вредно как для турбированных, так и для атмосферных двигателей. Проблема усугубляется еще и тем, что сквозь эти трещины попадает вовсе не очищенный, грязный воздух, в обход фильтра. А наличие пыли в цилиндрах ДВС ведет к преждевременному износу поршневой группы.

Заключение

Причин, по которым смазка попадает в коллектор, много. Но все эти симптомы можно исключить при помощи диагностики. Диагностировать проблему не так сложно, как кажется. После того как причина найдена, важно очень быстро устранить неисправность, чтобы исключить дорогостоящий ремонт в будущем.

fb.ru

Итак, что такое маслоуловитель?

Маслоуловитель, также называемый «маслоулавливатель», — это устройство дополнительной сепараторации масляной эмульсии, по-простому говоря, система предназначена для очистки воздуха от частиц моторного масла, которое мелкой взвесью, масляным туманом может подниматься из картера вместе с картерными газами.

Испарение масла может происходить по разным причинам, но, в частности, такое явление может быть из-за некачественного смазочного материала, который при рабочих температурах начнет испаряться. При этом продукты сгорания масла будут оседать на впускном коллекторе, дроссельной заслонке, клапане холостого хода и так далее, загрязняя некоторые внутренние части мотора и усложняя работу двигателя в целом.

Кустарно выполненный маслоуловитель

фото: lada-xray2.ru

Таким образом, маслоуловитель действует как некий фильтр, который защищает двигатель от чрезмерного загрязнения продуктами картерных газов и поддерживает его рабочие параметры за счет конденсации паров масла, попадающих в систему впуска и затем всасывающихся в камеры сгорания.

Именно из-за этого масляного тумана на автомобилях и рекомендуется производить чистку дроссельной заслонки!

На задней части заслонки, обращенной к двигателю, со временем образуется пленка, а затем и целый толстый слой «нефтяного» налета, в чем, главным образом, повинна система вентиляции картера двигателя.

Чем больше слой масла на заслонке, тем хуже ее реакция на открытие и закрытие дросселя, «подвисания» после отпуска педали газа. Неровная работа на холостых оборотах.

Как-то мы уже рассказывали, каким образом можно произвести чистку механической дроссельной заслонки, отчистив ее из такого состояния:

Приведя его в такое:

Подробнее можно прочитать здесь:

Четыре простых совета, после которых ваш автомобиль поедет гораздо лучше

Вот именно с таким налетом по всему впускному коллектору и призван бороться сепаратор масляных газов.

Как масло может оказаться в коллекторе? Причины и их устранение

Мы публикуем несколько основных причин этой неисправности.

Система вентиляция картера двигателя

Данная система обеспечивает снижение давления в картере, которое появляется в результате попадания в него выхлопных газов во время работы силового агрегата. Для этого картер с помощью специального патрубка соединяют с зоной разрежения (пониженного давления). В атмосферных двигателях это впускной коллектор, а вот в турбированных – входной патрубок турбокомпрессора.

В турбине есть магистраль для слива масла, которая соединена с масляной системой мотора. Обычно эта магистраль подключена немного ниже привычного уровня масла в картере двигателя. А это значит, что при повышении давления картерных газов, масло от турбокомпрессора не способно нормально сливаться. Это может происходить из-за чрезмерной загрязненности масляного сепаратора (компонент системы вентиляции картера) или закоксованности либо механического повреждения патрубка этой системы.

При отсутствии видимых повреждений необходимо разобрать сепаратор. Как правило, он содержит специальный фильтрующий элемент, задерживающий капли масла. Если эта составляющая выходит из строя, газы начинают прорываться во впускной коллектор. В них содержатся капли масла, что и приводит к появлению вышеописанных проблем. Иногда масляный сепаратор приходится менять, иногда его надо просто почистить.

Загрязнение трубки слива отработанного масла с турбины

Слив может затруднить загрязнение магистрали в результате закоксованности или попадания в трубку различных предметов (остатков герметизирующего состава или старой прокладки).

Загрязнение воздушного фильтра или патрубка подачи воздуха

Ещё одна причина, по которой масло может оказаться во впускном коллекторе – усложнённый забор воздуха для турбины. Очень часто виновником этого явления оказывает забитый воздушный фильтр, который попросту нужно поменять. Также может происходить частичное блокирование патрубка для забора воздуха в результате зажатия либо перелома.

Во время функционирования турбины формируется определенное разрежение. При нехватке требуемого количества воздуха давление значительно увеличивается, в результате чего масло вытягивается из средней части турбокомпрессора.

Плохой отвод выхлопных газов

В результате роста сопротивления в системе выпуска (повреждение или выход из строя банки глушителя, загрязнение катализатора и др.) растёт давление в «горячей» улитке турбины, из-за чего выхлопные газы попадают в средний корпус турбины. Там, соответственно, давление тоже начинает расти, что и приводит к выбросу масла с турбокомпрессора.

Как видите, наличие любого из этих признаков приведёт к тому, что даже идеально работающая турбина начнёт выбрасывать масло. Прежде всего, при обнаружении масла во впускном коллекторе или турбокомпрессоре, убедитесь в исправности системы вентиляции картера.

Почему масло в выпускном коллекторе

В автомобиле все узлы и механизмы должны работать правильно, именно так эксплуатировать машину будет в радость. Если своевременно обнаруживать и устранять мелкие неисправности, то можно избежать дорогостоящего ремонта в будущем. Также такой подход к обслуживанию является залогом безопасного использования автомобиля. Нередко случается так, что появляется масло во впускном коллекторе. Давайте разберемся, почему так случается, как диагностировать, а затем устранить данную неисправность.

Признаки неисправности

Данную проблему можно выявить по определенным признакам. Масло может быть непосредственно во впускном коллекторе или в дроссельной заслонке. Это самый простой способ диагностики, однако он связан с необходимостью разбора верхней части силового агрегата.

Также проблема определяется по сизому дыму из трубы. Это могут увидеть даже неопытные водители. Но данный признак может свидетельствовать и о других проблемах с мотором.

Можно говорить о неисправности, если резко вырос расход масла. Стоит регулярно проверять его уровень по щупу. Когда еще появляется масло во впускном коллекторе? Можно начать подозревать о неисправности, если заметно упала тяга мотора, а при его работе увеличился уровень шума.

Капли масла на воздушном фильтре – это еще один из признаков. Проверить, есть ли там масло, очень легко. Доступ к воздушному фильтру на большинстве автомобилей очень простой.

Существует несколько причин масла во впускном коллекторе. Рассмотрим самые часто встречающиеся из них.

Вентиляция картера

Система вентиляции картерных газов предназначена для того, чтобы снизить давление в картере двигателя. Давление там образуется по причине попадания выхлопных газов при работе двигателя. Для этого картер посредством патрубка соединен с зоной пониженного давления или с зоной разрежения. В атмосферных двигателях внутреннего сгорания это как раз впускной коллектор. Если мотор турбированный, то вентиляция картера подключается к входному патрубку на турбокомпрессоре.

В любой турбине имеется магистраль, предназначенная для слива масла. Она соединяется со смазочной системой двигателя. Чаще всего данная магистраль подключается ниже уровня масла в картере. Поэтому, когда давление возрастает, масло из турбокомпрессора не может нормально удаляться. Также такая проблема может быть по причине засора сепаратора. Это один из узлов в системе вентиляции. Также может быть закоксован патрубок.

Деформация ГБЦ или ее узлов

Это еще одна из причин, почему впускной коллектор в масле. Здесь имеют место различные неисправности головки блока цилиндров. Некоторые детали ГБЦ неспособны вследствие повреждений или износа сходиться вплотную, герметично. Ничто не препятствует попаданию масла в коллектор. Зачастую данная неприятность может сопровождаться белым налетом в масле, а также мотор может терять мощность. Не заметить эти «симптомы» просто невозможно.

Также можно выделить большую выработку направляющих клапанов в ГБЦ. Если это имеет место, то клапаны практически не смазываются – вот откуда масло во впускном коллекторе. Далее смазка попадает в цилиндры, где благополучно сгорает.

Перегрев

Говоря о неисправностях ГБЦ, стоит упомянуть о перегреве как об одной из причин. Перегрев опасен тем, что существует серьезный риск деформации головки блока. В первую очередь при таких обстоятельствах страдает именно головка. Поэтому эксплуатировать двигатель нужно максимально аккуратно.

Диагностика ГБЦ

Выявить деформации можно при помощи специальных стендов либо визуально. Рекомендуется внимательно осмотреть мотор на предмет повреждений. Если есть проблемы, то будет заметно неплотное прилегание деталей друг к другу. Но в большинстве случаев с визуальной диагностикой могут быть трудности. Тогда прямая дорога на специализированный стенд.

Определить выработку в направляющих клапанах можно по стуку клапанов, которым сопровождается работа двигателя. Устранив эти причины, можно решить проблему масла во впускном коллекторе.

Прокладки

Впускной коллектор закреплен на силовом агрегате при помощи прокладок. Это позволяет избежать возможных подсосов воздуха. Также прокладка позволяет ограничить попадание в коллектор масла. Но со временем она может повредиться. В этом случае масло туда все-таки попадает. Мотор может из-за этого начать сбоить. Если имеется датчик массового расхода воздуха, то ЭБУ выдаст ошибку. Все это говорит о том, что под коллектором повреждена прокладка.

Причин повреждения ее может быть много. Чаще всего эти элементы выходят из строя по причине износа. Иногда прокладка разрушается из-за перегрева. Однако современные элементы устойчиво выдерживают высокотемпературные воздействия. Иногда прокладку повреждают в процессе сборки двигателя.

Избавиться от масла во впускном коллекторе в этом случае просто – нужно лишь заменить прокладку. Затем коллектор устанавливают обратно. Но нужно соблюдать некоторые нюансы. Поверхности двигателя и коллектора рекомендуется тщательно зачистить. Гайки протягиваются со строго определенным моментом.

Турбина

Прежде чем говорить о том, почему турбина гонит масло во впускной коллектор, необходимо вспомнить ее устройство.

Если говорить утрированно, то компрессор имеет примитивную конструкцию. Он представляет собой вал, на котором установлены две гребенки с лопастями. Одна из гребенок приводится в действие от выхлопных газов. Другая крутится за счет того, что находится на том же валу. Количество оборотов может быть высоким, поэтому вал должен быть оборудован качественными подшипниками. Но как показывает практика, сухие подшипники не способны выдержать работу в турбине. Деталь сильно нагревается, в результате узел перегревается и заклинивает.

Для эффективной работы узла нужно было каким-то образом убирать лишнюю температуру и улучшать скольжение. С этим прекрасно справляется масло. К валу подведено два смазочных канала на каждый подшипник. Так можно получить высокие обороты и высокую производительность.

Все хорошо, но данная конструкция спровоцировала возникновение множества проблем, которые не могут решить и сегодня. И самая трудная из них связана с тем, что турбина кидает масло во впускной коллектор.

Почему турбина гонит масло?

Если чем-то нарушена нормальная работа турбины, то она начинает гнать масло. Это не самая серьезная неисправность, но здесь многое зависит от модели компрессора и типа неисправности. Но поломку нужно обязательно найти и устранить. Ведь даже если поставить новую турбину и не устранить причину, то и новая турбина будет гонять масло во впускной коллектор.

Косвенные причины можно найти и устранить самостоятельно. Зачастую турбины гонят масло из-за нарушений давления. Запорные кольца больше не могут нормально выполнять свою задачу. Давление нарушается, и маслу идти становится легче.

Если есть износ прокладок и сальников, в процессе работы турбины смазка может попадать в коллектор. Происходит это активно, так как масла через турбину прокачивается много. В итоге оно проливается через верх. Это проявляется очень ярко. Наблюдается не только масло во впускном коллекторе, но и на свечах. Исправить ситуацию можно только ремонтом турбины.

Сам по себе ремонт и его особенности зависят от модели авто. На некоторые турбины есть в продаже ремонтные комплекты. Это позволяет избежать лишних трат и очень быстро вернуть узел в действие. Такая работа делается и самостоятельно. Но есть модели, на которые производители запасных частей не выпускают, и тогда приходится менять деталь полностью.

Загрязнение воздушного фильтра

Усложненный забор воздуха для турбины – это одна из причин неисправности. Часто виноват в этом воздушный фильтр – его забывают менять. Также могут частично блокироваться патрубки забора воздуха. Его может зажимать, или он переламывается.

В процессе работы турбины образуется разрежение. Если воздуха не хватает, давление значительно вырастает, масло вытягивается из турбокомпрессора.

Для турбины воздушный фильтр очень важен. В основном смазку гонит по причине того, что нарушается давление именно из-за забитого фильтра. На турбированных двигателях очистительный элемент нужно менять через каждые 8 тысяч километров.

Масло

Это вторая по распространенности причина того, что турбина гонит его в коллектор. Масло обязательно должно быть стойким к высоким температурам. Есть специальное масло для турбин. Оно не должно пригорать. Обычное масло закоксует все каналы смазки.

Замену следует производить чаще. Если производитель рекомендует менять масло через каждые 12 тысяч километров, то лучше менять через каждые 10 тысяч. Тогда ресурс у турбины повысится, и масла в коллекторе не будет.

Патрубки

Это еще одна из причин. Если масло долго не менялось, то патрубки имеют свойство забиваться. Даже если ремонтируют турбину, то патрубки прочищают. Это очень важно. Если масло под впускным коллектором, то возникает разница в давлении из-за трубок или фильтра. Важно также следить за герметичностью воздушных элементов, если патрубки имеют трещины или другие следы деформаций, их стоит заменить новыми.

В противном случае будет излишний подсос воздуха. Это вредно как для турбированных, так и для атмосферных двигателей. Проблема усугубляется еще и тем, что сквозь эти трещины попадает вовсе не очищенный, грязный воздух, в обход фильтра. А наличие пыли в цилиндрах ДВС ведет к преждевременному износу поршневой группы.

Заключение

Причин, по которым смазка попадает в коллектор, много. Но все эти симптомы можно исключить при помощи диагностики. Диагностировать проблему не так сложно, как кажется. После того как причина найдена, важно очень быстро устранить неисправность, чтобы исключить дорогостоящий ремонт в будущем.

Автомобиль — это сложное устройство, в котором все узлы должны работать слажено и стабильно. Небольшое нарушение способно вызвать серьёзные последствия, которые могут привести не только к поломке, но и к ДТП. Поэтому своевременное обнаружение неисправности крайне важно.

Что такое впускной коллектор

Перед тем как устранить причину попадания масла во впускной коллектор, необходимо разобраться, что эта деталь собой представляет. Данное устройство отвечает за смешивание потока воздух с топливом. При соблюдении чётких пропорций двигатель работает как часы. Но стоит возникнуть малейшей неточности и появляется множество проблем.

Когда поршни движутся в устройстве, формируется разрежение. Оно позволяет добиться внутрисистемного давления, которое ниже, чем атмосферное. Естественно, главную роль в данном процессе играет вакуум. Именно он является источником приводной силы. Благодаря ей начинают функционировать вспомогательные системы, к которым относят:

  • усилитель тормозов, работающий посредством вакуума;
  • систему, контролирующую количество вредных выбросов;
  • устройство, корректирующее угол опережения;
  • вентиляцию картера;
  • круиз-контроль.

Конечно же, этот список является далеко не полным, так как многое зависит от марки автомобиля и модели.

Признаки того, что масло попадает во впускной коллектор

Перед тем как заявить, что масло во впускном коллекторе, вы должны быть точно уверенным, что причина нестабильной работы именно в этом. Есть ряд признаков, которые явственно указывают на данный дефект:

  • Необычный цвет выхлопных газов. Когда масло попадает во впускной коллектор — дым из трубы становится чёрным или сизым.
  • При возникновении данного дефекта мотор всё чаще перегревается. Мало того, это не связано с нагрузкой.
  • Сильно падает тяга.
  • Существенно растёт расход топлива и масла.
  • Мотор начинает работать слишком шумно.

Если в процессе эксплуатации вы обнаруживаете какие-либо из этих признаков, то необходимо проверить, не попадает ли во впускной коллектор масло. Только после более подробной диагностики вы сможете уверенно сказать в чём дело.

Почему масло попадает во впускной коллектор

В большинстве случаев причиной того, что масло оказывается во впускном коллекторе, является неисправный воздушный фильтр. Чтобы понять, как это происходит, рассмотрим весь процесс в подробностях.

В большинстве случаев воздушный фильтр уже загрязнён маслом. Поэтому воздух, проходя через него, захватывает с собой капельки жидкости, которые вскоре оказываются во впускном коллекторе. Естественно, это крайне негативно сказывается на работе автомобиля.

Подобные утечки возможны только на выходе из компрессора. Чтобы избавиться от масла во впускном коллекторе достаточно заменить фильтр на другой. Если же проблемы наблюдаются на входе, то способ восстановления нормальной работоспособности будет немного другим.

На выходе компрессора стоит воздушный фильтр. В процессе работы он пропускает через себя огромные объёмы воздуха. Поэтому со временем, мембраны забиваются частичками пыли. Как результат сопротивление растёт . Из-за этого падает давление.

На первый взгляд, вакуум, который образуется на входе, никак не влияет на то, что масло попадает во впускной коллектор. Но если рассмотреть данный процесс более подробно, то можно обнаружить интересную закономерность. Когда мотор работает при больших нагрузках, безвоздушное пространство образуется также и на выходе. Это происходит из-за избыточного давления.

Если подобное состояние длится не слишком долго, то ничего страшного не происходит. Но при длительных нагрузках масло всё-таки попадает во впускной коллектор. Это происходит посредством подшипников, из которых жидкость просачивается в систему.

Как навсегда решить проблему

В действительности, несмотря на серьёзные последствия, связанные с попаданием масла во впускной коллектор, устранить проблему довольно просто. Достаточно установить датчик. Это устройство будет контролировать область, находящуюся между фильтром и турбокомпрессором.

Если же вы не желаете тратить средства на установку датчика, можно просто следовать рекомендациям производителя и менять фильтр по расписанию. Но стоит сделать одно важное замечание. Скорость загрязнения зависит от условий эксплуатации и нагрузок, поэтому далеко не всегда можно полагаться на мануалы производителей.

Итоги

Впускной коллектор — это крайне важная деталь. Наличие в ней посторонних веществ приводит к нарушению стабильности работы двигателя. Поэтому крайне важно следить за состоянием воздушного фильтра турбокомпрессора и вовремя осуществлять замену.

В автомобиле все механизмы должны функционировать правильно. Только в таком случае его эксплуатация будет приносить радость владельцу. Своевременное обнаружение и устранение мелких неисправностей помогает избежать дорогостоящего ремонта и является залогом безопасного использования авто. Сегодня вы узнаете, по каким причинам во впускном коллекторе двигателя может оказаться моторное масло. Также мы рассмотрим основные методы борьбы с этим явлением.

Основные признаки попадания масла

Определить наличие масла в коллекторе можно по наличию одного или нескольких признаков:

  • Масло во впускном коллекторе или в дроссельной заслонке (самый простой метод обнаружения проблемы, но он требует наличия определенных навыков для разбора верхней части двигателя).
  • Сизый дым из выхлопной трубы. Увидеть это смогут даже водители-новички. Необходимо отметить, что очень часто наличие этого признака может свидетельствовать об иных проблемах в двигателе.
  • Значительный рост расхода масла (регулярно проверяйте уровень масла на щупе!).
  • Заметное снижение тяги двигателя и повышенный уровень шума при его работе.
  • Капли масла на воздушном фильтре (проверить несложно, ведь доступ к этому фильтру обычно очень легкий).

Наиболее распространенные варианты диагностики мы рассмотрели, пришло время узнать о причинах.

Как масло может оказаться в коллекторе? Причины и их устранение

Мы публикуем несколько основных причин этой неисправности.

Система вентиляция картера двигателя

Данная система обеспечивает снижение давления в картере, которое появляется в результате попадания в него выхлопных газов во время работы силового агрегата. Для этого картер с помощью специального патрубка соединяют с зоной разрежения (пониженного давления). В атмосферных двигателях это впускной коллектор, а вот в турбированных – входной патрубок турбокомпрессора.

В турбине есть магистраль для слива масла, которая соединена с масляной системой мотора. Обычно эта магистраль подключена немного ниже привычного уровня масла в картере двигателя. А это значит, что при повышении давления картерных газов, масло от турбокомпрессора не способно нормально сливаться. Это может происходить из-за чрезмерной загрязненности масляного сепаратора (компонент системы вентиляции картера) или закоксованности либо механического повреждения патрубка этой системы.

При отсутствии видимых повреждений необходимо разобрать сепаратор. Как правило, он содержит специальный фильтрующий элемент, задерживающий капли масла. Если эта составляющая выходит из строя, газы начинают прорываться во впускной коллектор. В них содержатся капли масла, что и приводит к появлению вышеописанных проблем. Иногда масляный сепаратор приходится менять, иногда его надо просто почистить.

Загрязнение трубки слива отработанного масла с турбины

Слив может затруднить загрязнение магистрали в результате закоксованности или попадания в трубку различных предметов (остатков герметизирующего состава или старой прокладки).

Загрязнение воздушного фильтра или патрубка подачи воздуха

Ещё одна причина, по которой масло может оказаться во впускном коллекторе – усложнённый забор воздуха для турбины. Очень часто виновником этого явления оказывает забитый воздушный фильтр, который попросту нужно поменять. Также может происходить частичное блокирование патрубка для забора воздуха в результате зажатия либо перелома.

Во время функционирования турбины формируется определенное разрежение. При нехватке требуемого количества воздуха давление значительно увеличивается, в результате чего масло вытягивается из средней части турбокомпрессора.

Плохой отвод выхлопных газов

В результате роста сопротивления в системе выпуска (повреждение или выход из строя банки глушителя, загрязнение катализатора и др.) растёт давление в «горячей» улитке турбины, из-за чего выхлопные газы попадают в средний корпус турбины. Там, соответственно, давление тоже начинает расти, что и приводит к выбросу масла с турбокомпрессора.

Как видите, наличие любого из этих признаков приведёт к тому, что даже идеально работающая турбина начнёт выбрасывать масло. Прежде всего, при обнаружении масла во впускном коллекторе или турбокомпрессоре, убедитесь в исправности системы вентиляции картера.

Выводы

Причин попадания масла во впускной коллектор двигателя может быть много. В данном случае необходимо правильно диагностировать неисправность и начинать борьбу с ней. Как правило, решение проблемы не является очень дорогостоящим.

Откуда в интеркулер и впускной коллектор попадает

19. 03.2019, Просмотров: 5940

Проблема скопления масла в интеркулере встречается на турбированных двигателях. Теплообменник понижает температуру воздушного заряда, повышая тем самым его плотность. Но владельцы авто с атмосферным двигателем могут найти масляный налет в корпусе воздушного фильтра, гофре и впускном коллекторе. Давайте рассмотрим причина попадания моторного масла во впускной тракт, и какими последствиями это чревато для дизельных моторов.

Откуда берется масло?
  1. Масло на впуск гонит турбина. В случае износа деталей картриджа турбины масло через компрессорную часть начинает поступать во впуск. Но не стоит сразу ремонтировать или менять турбину, начните с проверки системы вентиляции картера.
  2. Неэффективная работа маслоотделителя системы вентилирования картерных газов. Маслоотделитель предназначен для удаления из газов масляной взвеси. Если фильтрующий элемент забит, во впускной коллектор газы попадают нефильтрованными. Поэтому частички масла скапливаются в интеркулере и патрубках.

Смазка и охлаждение турбокомпрессора

Поскольку турбинная часть переносит большие температурные нагрузки, моторное масло не только смазывает подшипники ротора, но и отводит львиную долю тепла. В конструкции картриджа турбины используются упорные (центрующие) и опорные подшипники скольжения (бронзовые втулки). Подшипники работают на масляном клине. С обеих сторон картриджа установлены металлические кольца (по типу поршневых), которые препятствуют проникновению в картер воздуха из компрессорной части и выхлопных газов из турбинной. Вместе с тем они отсекают область с масляным туманом.

Поскольку в турбинной и насосной частях постоянно повышенное давление, масло стремится стечь в поддон, над которым исправная система ВКГ создает разряжение или поддерживает давление близкое к атмосферному. Подобный тип уплотнения смазывающихся элементов называется газодинамическим.

Почему турбина кидает масло?

Основные причины, из-за которых турбина кидает масло в интеркулер:

  • износ опорных подшипников, из-за которых появляется люфт и дисбаланс при вращении ротора. Изнашиваются пары трения вследствие попадания абразивных частиц (закоксованное масло, грязь из поддона) и масляного голодания. Вследствие дисбаланса уплотнения системы недостаточно для предотвращения попадания масла в интеркулер;
  • износ упорного подшипника компрессорной части. Возникает вследствие продавливания масляного клина, дисбаланса при вращении ротора.
  • повышенное давление газов в картере. Моторное масло после прохождения по каналам корпуса турбины должно самотеком сливаться в поддон. Противодействие сливу переведет к его утечке в выпускной или впускной коллектор. Отсутствие циркуляции приведет к коксованию масла и трению пары ротор-подшипники на сухую;
  • забитая трубка слива масла с турбины. Некачественная продукция и/или несоблюдение сроков замены ведут к образованию закоксованности каналов масляной системы. Налет уменьшает проходное сечение трубки и, как следствие, ее пропускную способность;
  • забитый воздушный фильтр. Загрязненный фильтрующий элемент создает значительное противодействие. Раскручиваемое турбиной компрессорное колесо создает разряжение, из-за которого масло всасывается через компрессорную часть во впускной тракт.

Проверка системы вентиляции картерных газов

Простейший способ проверки ВКГ – вывести патрубок системы в емкость и некоторое время эксплуатировать автомобиль. Для этих целей используйте обычную канистру небольшого объема, которую можно будет разместить в подкапотном пространстве, и шланг подходящего диаметра, длины. Если спустя некоторое время в канистре образовался явный масляный налет, значит, маслоотделитель не справляется с вверенной ему функцией. Решается проблема чисткой маслоотделителя. На некоторых авто фильтрующий элемент сменный.

После снятия патрубка вентиляции картера обязательно заглушите отверстии в гофре впускного тракта.

Следующий шаг – измерение давления в картерном пространстве. В зависимости от режима работы двигателя, в картере должно быть небольшое разряжение либо близкое к атмосферному давление. Для измерения достаточно подключить механический манометр к отверстию щупа, после чего завести двигатель. Проверку нужно проводить на холостых оборотах, в режиме частичной и полной нагрузки. В случае обнаружения повышенного давления остается определить, виновата ВКГ или изношенная цилиндропоршневая группа.

Чем опасно масло в теплообменнике для ДВС цикла Дизеля?

В масле присутствует большое количество углеводородов, которые легко самовоспламеняются при воздействии высоких температурах. Воспламенение топливовоздушной смеси в дизельном двигателе происходит за счет контакта топлива с разогретым от сжатия воздухом. По большому счету, дизелю без разницы, на чем работать. Главное, чтобы температуры воздуха после сжатия хватило для воспламенения. Именно поэтому ДВС цикла дизеля может работать на моторном масле даже после выключения зажигания. В таких случаях говорят, что дизель ушел в разнос. Происходит цепная реакция, при которой сгоревшее в цилиндрах масло приводит к поднятию оборотов, раскручиванию турбины и попадании во впускной коллектор еще большего количества масла. Явление крайне опасное и если вовремя не перекрыть доступ воздуха, разнос чреват дорогостоящим ремонтом двигателя.

Как промыть интеркулер?

Если после устранения неисправности теплообменник не промыть, масляный налет будет препятствовать нормальному охлаждению воздуха. Для промывки лучше всего использовать керосин или бензин. Залейте жидкость внутрь, после чего оставьте интеркулер на 10-15 минут для растворения масляного налета. Однократной промывки будет недостаточно, поэтому запаситесь терпением. Поскольку теплообменник уже снят с автомобиля, нелишним будет вымыть мойкой высокого давления грязь, пух и насекомым из сот с его наружной части.

Почему турбина гонит масло во впускной коллектор


7 причин почему гонит масло из турбины (все случаи). Их следствие и как решить

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Содержание

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло. И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить
Подробнее

 

Методы устранения поломки

Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

  1. Замена (в крайнем, не нежелательном случае, чистка) воздушного фильтра. Запомните, что желательно менять фильтр немного раньше регламента, приблизительно на 10%. В среднем же, его замену нужно проводить не реже, чем через каждые 8-10 тысяч километров пробега.
  2. Проверка состояния крышки воздушного фильтра и патрубков, при обнаружении засора нужно обязательно хорошенько прочистить их, удалив мусор.
  3. Проверка герметичности крышки воздушного фильтра и патрубков. При обнаружении трещин или других повреждений в зависимости от ситуации можно попробовать отремонтировать их, наложив хомуты или другие приспособления, в крайнем случае нужно купить новые детали вместо поврежденных. При этом обязательным условием будет то, что если разгерметизация была обнаружена, то перед сборкой системы с новыми комплектующими ее обязательно нужно тщательно прочистить от мусора и пыли, которые в ней находятся. Если этого не сделать — мусор будет играть роль абразива и значительно изнашивать турбину.
  4. Правильный подбор моторного масла и его своевременная замена. Это актуально для всех двигателей, а особенно для тех, которые снабжены турбонагнетателем. Лучше пользоваться качественными синтетическими или полусинтетическими маслами известных производителей, таких как Shell, Mobil, Liqui Moly, Castrol и других.
  5. Периодически необходимо контролировать состояние масляных патрубков с тем, чтобы они обеспечивали нормальное перекачивание масла по масляной системе, в частности, к турбине и от нее. В случае, если вы полностью меняете турбину, то в профилактических целях нужно выполнить их чистку, даже если на первый взгляд они относительно чистые. Лишним это не будет!
  6. Регулярно нужно выполнять контроль состояния вала, крыльчатки и подшипников, не допускать их значительного люфта. При малейших подозрениях на неисправность нужно выполнить диагностику. Лучше делать это в автосервисе, где имеется соответствующее оборудование и инструменты.
  7. В случае, если имеет место масло на выходе из турбины, то имеет смысл проверить состояние дренажной трубки, наличие в ней критических изгибов. При этом уровень масла в картере обязательно должен быть выше, чем у отверстия той трубочки. Также имеет смысл проверить вентиляцию картерных газов. Обратите внимание, что конденсат, образующийся в выпускном коллекторе из-за разности температур, зачастую принимают за масло, поскольку влага, смешиваясь с грязью, приобретает черный цвет. Нужно быть внимательным, и убедиться, что это действительно масло.
  8. Если наблюдается течь во впускную или выпускную систему двигателя, то также имеет смысл проверить состояние прокладок. Со временем и под воздействием высоких температур она может значительно износиться и выйти из строя. Соответственно, ее нужно поменять на новую. Делать это самостоятельно нужно лишь в случае, если вы уверены в своих знаниях и практическом опыте по выполнению подобных работ. В некоторых случаях вместо замены помогает простая подтяжка стягивающих болтов (но реже). Однако сильно перетягивать тоже нельзя, поскольку это может привести к обратным последствиям, когда прокладка вообще не будет держать давление.

Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.

Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h3C или h3E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Спрашивайте в комментариях. Ответим обязательно!

причины появления и способы устранения

В автомобиле все узлы и механизмы должны работать правильно, именно так эксплуатировать машину будет в радость. Если своевременно обнаруживать и устранять мелкие неисправности, то можно избежать дорогостоящего ремонта в будущем. Также такой подход к обслуживанию является залогом безопасного использования автомобиля. Нередко случается так, что появляется масло во впускном коллекторе. Давайте разберемся, почему так случается, как диагностировать, а затем устранить данную неисправность.

Признаки неисправности

Данную проблему можно выявить по определенным признакам. Масло может быть непосредственно во впускном коллекторе или в дроссельной заслонке. Это самый простой способ диагностики, однако он связан с необходимостью разбора верхней части силового агрегата.

Также проблема определяется по сизому дыму из трубы. Это могут увидеть даже неопытные водители. Но данный признак может свидетельствовать и о других проблемах с мотором.

Можно говорить о неисправности, если резко вырос расход масла. Стоит регулярно проверять его уровень по щупу. Когда еще появляется масло во впускном коллекторе? Можно начать подозревать о неисправности, если заметно упала тяга мотора, а при его работе увеличился уровень шума.

Капли масла на воздушном фильтре – это еще один из признаков. Проверить, есть ли там масло, очень легко. Доступ к воздушному фильтру на большинстве автомобилей очень простой.

Существует несколько причин масла во впускном коллекторе. Рассмотрим самые часто встречающиеся из них.

Вентиляция картера

Система вентиляции картерных газов предназначена для того, чтобы снизить давление в картере двигателя. Давление там образуется по причине попадания выхлопных газов при работе двигателя. Для этого картер посредством патрубка соединен с зоной пониженного давления или с зоной разрежения. В атмосферных двигателях внутреннего сгорания это как раз впускной коллектор. Если мотор турбированный, то вентиляция картера подключается к входному патрубку на турбокомпрессоре.

В любой турбине имеется магистраль, предназначенная для слива масла. Она соединяется со смазочной системой двигателя. Чаще всего данная магистраль подключается ниже уровня масла в картере. Поэтому, когда давление возрастает, масло из турбокомпрессора не может нормально удаляться. Также такая проблема может быть по причине засора сепаратора. Это один из узлов в системе вентиляции. Также может быть закоксован патрубок.

Деформация ГБЦ или ее узлов

Это еще одна из причин, почему впускной коллектор в масле. Здесь имеют место различные неисправности головки блока цилиндров. Некоторые детали ГБЦ неспособны вследствие повреждений или износа сходиться вплотную, герметично. Ничто не препятствует попаданию масла в коллектор. Зачастую данная неприятность может сопровождаться белым налетом в масле, а также мотор может терять мощность. Не заметить эти «симптомы» просто невозможно.

Также можно выделить большую выработку направляющих клапанов в ГБЦ. Если это имеет место, то клапаны практически не смазываются – вот откуда масло во впускном коллекторе. Далее смазка попадает в цилиндры, где благополучно сгорает.

Перегрев

Говоря о неисправностях ГБЦ, стоит упомянуть о перегреве как об одной из причин. Перегрев опасен тем, что существует серьезный риск деформации головки блока. В первую очередь при таких обстоятельствах страдает именно головка. Поэтому эксплуатировать двигатель нужно максимально аккуратно.

Диагностика ГБЦ

Выявить деформации можно при помощи специальных стендов либо визуально. Рекомендуется внимательно осмотреть мотор на предмет повреждений. Если есть проблемы, то будет заметно неплотное прилегание деталей друг к другу. Но в большинстве случаев с визуальной диагностикой могут быть трудности. Тогда прямая дорога на специализированный стенд.

Определить выработку в направляющих клапанах можно по стуку клапанов, которым сопровождается работа двигателя. Устранив эти причины, можно решить проблему масла во впускном коллекторе.

Прокладки

Впускной коллектор закреплен на силовом агрегате при помощи прокладок. Это позволяет избежать возможных подсосов воздуха. Также прокладка позволяет ограничить попадание в коллектор масла. Но со временем она может повредиться. В этом случае масло туда все-таки попадает. Мотор может из-за этого начать сбоить. Если имеется датчик массового расхода воздуха, то ЭБУ выдаст ошибку. Все это говорит о том, что под коллектором повреждена прокладка.

Причин повреждения ее может быть много. Чаще всего эти элементы выходят из строя по причине износа. Иногда прокладка разрушается из-за перегрева. Однако современные элементы устойчиво выдерживают высокотемпературные воздействия. Иногда прокладку повреждают в процессе сборки двигателя.

Избавиться от масла во впускном коллекторе в этом случае просто – нужно лишь заменить прокладку. Затем коллектор устанавливают обратно. Но нужно соблюдать некоторые нюансы. Поверхности двигателя и коллектора рекомендуется тщательно зачистить. Гайки протягиваются со строго определенным моментом.

Турбина

Прежде чем говорить о том, почему турбина гонит масло во впускной коллектор, необходимо вспомнить ее устройство.

Если говорить утрированно, то компрессор имеет примитивную конструкцию. Он представляет собой вал, на котором установлены две гребенки с лопастями. Одна из гребенок приводится в действие от выхлопных газов. Другая крутится за счет того, что находится на том же валу. Количество оборотов может быть высоким, поэтому вал должен быть оборудован качественными подшипниками. Но как показывает практика, сухие подшипники не способны выдержать работу в турбине. Деталь сильно нагревается, в результате узел перегревается и заклинивает.

Для эффективной работы узла нужно было каким-то образом убирать лишнюю температуру и улучшать скольжение. С этим прекрасно справляется масло. К валу подведено два смазочных канала на каждый подшипник. Так можно получить высокие обороты и высокую производительность.

Все хорошо, но данная конструкция спровоцировала возникновение множества проблем, которые не могут решить и сегодня. И самая трудная из них связана с тем, что турбина кидает масло во впускной коллектор.

Почему турбина гонит масло?

Если чем-то нарушена нормальная работа турбины, то она начинает гнать масло. Это не самая серьезная неисправность, но здесь многое зависит от модели компрессора и типа неисправности. Но поломку нужно обязательно найти и устранить. Ведь даже если поставить новую турбину и не устранить причину, то и новая турбина будет гонять масло во впускной коллектор.

Косвенные причины можно найти и устранить самостоятельно. Зачастую турбины гонят масло из-за нарушений давления. Запорные кольца больше не могут нормально выполнять свою задачу. Давление нарушается, и маслу идти становится легче.

Если есть износ прокладок и сальников, в процессе работы турбины смазка может попадать в коллектор. Происходит это активно, так как масла через турбину прокачивается много. В итоге оно проливается через верх. Это проявляется очень ярко. Наблюдается не только масло во впускном коллекторе, но и на свечах. Исправить ситуацию можно только ремонтом турбины.

Сам по себе ремонт и его особенности зависят от модели авто. На некоторые турбины есть в продаже ремонтные комплекты. Это позволяет избежать лишних трат и очень быстро вернуть узел в действие. Такая работа делается и самостоятельно. Но есть модели, на которые производители запасных частей не выпускают, и тогда приходится менять деталь полностью.

Загрязнение воздушного фильтра

Усложненный забор воздуха для турбины – это одна из причин неисправности. Часто виноват в этом воздушный фильтр – его забывают менять. Также могут частично блокироваться патрубки забора воздуха. Его может зажимать, или он переламывается.

В процессе работы турбины образуется разрежение. Если воздуха не хватает, давление значительно вырастает, масло вытягивается из турбокомпрессора.

Для турбины воздушный фильтр очень важен. В основном смазку гонит по причине того, что нарушается давление именно из-за забитого фильтра. На турбированных двигателях очистительный элемент нужно менять через каждые 8 тысяч километров.

Масло

Это вторая по распространенности причина того, что турбина гонит его в коллектор. Масло обязательно должно быть стойким к высоким температурам. Есть специальное масло для турбин. Оно не должно пригорать. Обычное масло закоксует все каналы смазки.

Замену следует производить чаще. Если производитель рекомендует менять масло через каждые 12 тысяч километров, то лучше менять через каждые 10 тысяч. Тогда ресурс у турбины повысится, и масла в коллекторе не будет.

Патрубки

Это еще одна из причин. Если масло долго не менялось, то патрубки имеют свойство забиваться. Даже если ремонтируют турбину, то патрубки прочищают. Это очень важно. Если масло под впускным коллектором, то возникает разница в давлении из-за трубок или фильтра. Важно также следить за герметичностью воздушных элементов, если патрубки имеют трещины или другие следы деформаций, их стоит заменить новыми.

В противном случае будет излишний подсос воздуха. Это вредно как для турбированных, так и для атмосферных двигателей. Проблема усугубляется еще и тем, что сквозь эти трещины попадает вовсе не очищенный, грязный воздух, в обход фильтра. А наличие пыли в цилиндрах ДВС ведет к преждевременному износу поршневой группы.

Заключение

Причин, по которым смазка попадает в коллектор, много. Но все эти симптомы можно исключить при помощи диагностики. Диагностировать проблему не так сложно, как кажется. После того как причина найдена, важно очень быстро устранить неисправность, чтобы исключить дорогостоящий ремонт в будущем.

Турбина гонит масло (во впускную или выпускную систему)

Течет масло во впускную систему со стороны компрессора

Для устранения проблемы необходимо выполнить следующие действия: 1. Проверить на наличие повреждений и засорений воздушный фильтр и патрубок. 2 Проверить на повреждение секцию коллектора. 3. Проверить сопротивление впуска, при любых обстоятельствах это значение не должно превышать показатель в 25 единиц.

Течь во впускную систему

Потеря накачанного воздуха приводит к потери давления наддува, а это, в свою очередь, может спровоцировать утечку масла.

Для устранения неполадки необходимо проверить систему на наличие утечек воздуха из коллектора двигателя, афтеркуллера и патрубков. Обязательно сделать внеплановой обслуживание. Заменить прокладки, хомуты, надежно закрепить все соединения.

Течь во впускную или выпускную системы двигателя

Из-за того, что масло в турбокомпрессор попадает под давлением, а уходит самотеком, то из-за большой разности давлений даже не значительное засорение путей отвода масла может спровоцировать очень серьезные потеки масла со стороны как компрессора так и турбины, а иногда даже с обеих сторон одновременно.

Для решения неполадки необходимо проверить отводящую масляную трубку. Также нужно проверить насколько сильно затянута прокладка на соединении с турбокомпрессором.

Течь исключительно во впускную систему

Обратите внимание на коллектор, если там вы обнаружили частицы масла, то проблема скорее всего находится в двигателе, а не в турбине. Также внимательно осмотрите турбину и жидкость. Есть большая вероятность того, что это не масло, а топливо или масляные пары.

При проблемах в определении причины течи советуем вам обратиться к специалистам.

Похожие проблемы:

Откуда в интеркулер и впускной коллектор попадает

19.03.2019, Просмотров: 3341

Проблема скопления масла в интеркулере встречается на турбированных двигателях. Теплообменник понижает температуру воздушного заряда, повышая тем самым его плотность. Но владельцы авто с атмосферным двигателем могут найти масляный налет в корпусе воздушного фильтра, гофре и впускном коллекторе. Давайте рассмотрим причина попадания моторного масла во впускной тракт, и какими последствиями это чревато для дизельных моторов.

Откуда берется масло?
  1. Масло на впуск гонит турбина. В случае износа деталей картриджа турбины масло через компрессорную часть начинает поступать во впуск. Но не стоит сразу ремонтировать или менять турбину, начните с проверки системы вентиляции картера.
  2. Неэффективная работа маслоотделителя системы вентилирования картерных газов. Маслоотделитель предназначен для удаления из газов масляной взвеси. Если фильтрующий элемент забит, во впускной коллектор газы попадают нефильтрованными. Поэтому частички масла скапливаются в интеркулере и патрубках.
Смазка и охлаждение турбокомпрессора

Поскольку турбинная часть переносит большие температурные нагрузки, моторное масло не только смазывает подшипники ротора, но и отводит львиную долю тепла. В конструкции картриджа турбины используются упорные (центрующие) и опорные подшипники скольжения (бронзовые втулки). Подшипники работают на масляном клине. С обеих сторон картриджа установлены металлические кольца (по типу поршневых), которые препятствуют проникновению в картер воздуха из компрессорной части и выхлопных газов из турбинной. Вместе с тем они отсекают область с масляным туманом.

Поскольку в турбинной и насосной частях постоянно повышенное давление, масло стремится стечь в поддон, над которым исправная система ВКГ создает разряжение или поддерживает давление близкое к атмосферному. Подобный тип уплотнения смазывающихся элементов называется газодинамическим.

Почему турбина кидает масло?

Основные причины, из-за которых турбина кидает масло в интеркулер:

  • износ опорных подшипников, из-за которых появляется люфт и дисбаланс при вращении ротора. Изнашиваются пары трения вследствие попадания абразивных частиц (закоксованное масло, грязь из поддона) и масляного голодания. Вследствие дисбаланса уплотнения системы недостаточно для предотвращения попадания масла в интеркулер;
  • износ упорного подшипника компрессорной части. Возникает вследствие продавливания масляного клина, дисбаланса при вращении ротора.
  • повышенное давление газов в картере. Моторное масло после прохождения по каналам корпуса турбины должно самотеком сливаться в поддон. Противодействие сливу переведет к его утечке в выпускной или впускной коллектор. Отсутствие циркуляции приведет к коксованию масла и трению пары ротор-подшипники на сухую;
  • забитая трубка слива масла с турбины. Некачественная продукция и/или несоблюдение сроков замены ведут к образованию закоксованности каналов масляной системы. Налет уменьшает проходное сечение трубки и, как следствие, ее пропускную способность;
  • забитый воздушный фильтр. Загрязненный фильтрующий элемент создает значительное противодействие. Раскручиваемое турбиной компрессорное колесо создает разряжение, из-за которого масло всасывается через компрессорную часть во впускной тракт.
Проверка системы вентиляции картерных газов

Простейший способ проверки ВКГ – вывести патрубок системы в емкость и некоторое время эксплуатировать автомобиль. Для этих целей используйте обычную канистру небольшого объема, которую можно будет разместить в подкапотном пространстве, и шланг подходящего диаметра, длины. Если спустя некоторое время в канистре образовался явный масляный налет, значит, маслоотделитель не справляется с вверенной ему функцией. Решается проблема чисткой маслоотделителя. На некоторых авто фильтрующий элемент сменный.

После снятия патрубка вентиляции картера обязательно заглушите отверстии в гофре впускного тракта.

Следующий шаг – измерение давления в картерном пространстве. В зависимости от режима работы двигателя, в картере должно быть небольшое разряжение либо близкое к атмосферному давление. Для измерения достаточно подключить механический манометр к отверстию щупа, после чего завести двигатель. Проверку нужно проводить на холостых оборотах, в режиме частичной и полной нагрузки. В случае обнаружения повышенного давления остается определить, виновата ВКГ или изношенная цилиндропоршневая группа.

Чем опасно масло в теплообменнике для ДВС цикла Дизеля?

В масле присутствует большое количество углеводородов, которые легко самовоспламеняются при воздействии высоких температурах. Воспламенение топливовоздушной смеси в дизельном двигателе происходит за счет контакта топлива с разогретым от сжатия воздухом. По большому счету, дизелю без разницы, на чем работать. Главное, чтобы температуры воздуха после сжатия хватило для воспламенения. Именно поэтому ДВС цикла дизеля может работать на моторном масле даже после выключения зажигания. В таких случаях говорят, что дизель ушел в разнос. Происходит цепная реакция, при которой сгоревшее в цилиндрах масло приводит к поднятию оборотов, раскручиванию турбины и попадании во впускной коллектор еще большего количества масла. Явление крайне опасное и если вовремя не перекрыть доступ воздуха, разнос чреват дорогостоящим ремонтом двигателя.

Как промыть интеркулер?

Если после устранения неисправности теплообменник не промыть, масляный налет будет препятствовать нормальному охлаждению воздуха. Для промывки лучше всего использовать керосин или бензин. Залейте жидкость внутрь, после чего оставьте интеркулер на 10-15 минут для растворения масляного налета. Однократной промывки будет недостаточно, поэтому запаситесь терпением. Поскольку теплообменник уже снят с автомобиля, нелишним будет вымыть мойкой высокого давления грязь, пух и насекомым из сот с его наружной части.

Турбина гонит масло во впускной коллектор на 1.4 TSI (CAXA, CAXC) EA111

Добрый день. Нужен Ваш совет.

Автомобиль гольф плюс 6. Пробег 126000 км. 2011 год. Двигатель TSI CAXA 1.4 122 л.с.

Турбина гонит масло во впускной коллектор.
Дроссельная заслонка в масле. Во впускном коллекторе было около 0.25 литра масла.
Проверил воздушный фильтр — чистый.

Снял целиком коробку воздушного фильтра и впускной патрубок к турбине. Наблюдал ситуацию с фонариком во впуске: на оборотах ХХ — все нормально, при увеличении оборотов (где-то к 2000) из под холодной крылатки начинает сочиться масло.
Турбину сняли и отдали на проверку в два разных сервиса. Оба сказали что с турбиной все нормально.
Померял У-образным водяным монометром давление картерных газов через масляный щуп: на оборотах ХХ — где-то 2 см вод. столба. При увеличении оборотов — давление картерных газов уменьшается почти до 0.

Какие еще тесты можно провести, что бы определить причину гона масла турбокомпрессором?

Заранее спасибо за ответ.

Доброго времени суток!

Да, действительно, не всегда масло попадает во впуск через турбину из-за неисправности самого турбокомпрессора.

Основные масляные уплотнения турбокомпрессора являются уплотнениями динамического типа, работающие на основе использования центробежных сил для предотвращения утечек масла из корпуса подшипников. На валу со стороны турбинного колеса выполняются две канавки. Канавка, расположенная ближе к турбинному колесу, предназначена для установки в нее уплотнительного кольца. Вторая канавка и разница диаметров выполняют роль динамического масляного уплотнения.Отработанное масло под действием центробежных сил разбрызгивается внутри корпуса подшипников и далее стекает через маслосливное отверстие турбокомпрессора.

Итак, основным условием нормальной работы турбокомпрессора (в плане отсутствия утечек масла) является нормальная работа его динамических уплотнений. Динамические уплотнения, в свою очередь, могут нормально работать только в воздушном пространстве, то есть только тогда, когда внутренняя полость корпуса подшипников свободна от моторного масла. Если корпус подшипников по каким-либо причинам заполняется («подпирается») маслом или нарушается баланс давлений внутри корпуса подшипников и извне его, динамические уплотнения практически перестают работать, происходит утечка масла через уплотнительные кольца в корпус турбины.

Почему исправная турбина гонит масло во впускной коллектор на 1.4 TSI (CAXA, CAXC)?

Давайте рассмотрим некоторые из возможных причин того, почему на исправном турбокомпрессоре масло улетает во впуск:

1) Неправильно работает система вентиляции картерных газов

Давайте, вспомним, что в картере двигателей внутреннего сгорания возникает избыточное давление (картерные газы), которые попадают туда через поршневые кольца. Система вентиляции картерных газов служит для устранения этого избыточного давления и для дожигания паров отработавших газов, которые попали в картер. В турбо-двигателях патрубок системы вентиляции картерных газов подключается, как правило, к всасывающему патрубку турбокомпрессора, чтобы создавать эффект всасывания

Система вентиляции картера на двигателе 1,4 л TSI работает так же, как и аналогичные системы на двигателях с наддувом. При работающем двигателе воздух под давлением турбокомпрессора подаётся в картер двигателя через клапанную крышку. Этим достигается принудительная вентиляция блока цилиндров и засасывание находящихся в картере двигателя паров масла и топлива.

Всасываемые пары подаются в корпус привода ГРМ, где они фильтруются для предотвращения попадания в цилиндры масла и паров топлива. При этом отделённое от паров масло стекает обратно в масляный поддон для смазки двигателя. Восходящее движение паров топлива возникает вследствие разрежения во впускном коллекторе (при низких оборотах) или на стороне всасывания турбонагнетателя (на высоких оборотах).

Сливная масляная магистраль турбокомпрессора подключается к масляной системе двигателя, как правило, ниже нормального уровня масла в картере. Таким образом, если в картере возникает избыточное давление картерных газов, масло не может нормально сливаться по сливной магистрали турбокомпрессора, оно «подпирается» в корпусе подшипников со всеми вытекающими отсюда последствиями.

Причиной этого может быть сильная закоксованность масляного сепаратора системы вентиляции картера, закоксованность патрубка системы вентиляции картера, перелом или зажатие этого патрубка и т.д.

Теперь о том, как проверить эту теорию: Нужно отсоединить трубку системы ВКГ от крышки механизма ГРМ (зелёная на схеме), также нужно отсоединить от турбины трубку принудительного наддува картерных газов (оранжевая на схеме) и снять воздушный патрубок, который идёт от корпуса воздушного фильтра к турбокомпрессору. Ваш помощник повышает обороты ДВС, а вы смотрите, течёт или не течёт масло из картриджа турбины во впуск. Если течёт, то система ВКГ и масляный сепаратор — не при делах. Если не течёт, то нужно прочистить все магистрали системы ВКГ и в особенности сам сепаратор.

2) Затруднён слив отработанного масла из турбонагнетателя

В контуре системы смазки можно выделить три основных части: забор масла из масляного поддона, напорная сторона, по которой масло под давлением подаётся ко всем точкам смазки в двигателе и обратный отвод масла в масляный поддон.

В напорной стороне следует выделить подачу масла к опорам вала турбонагнетателя, а также четыре форсунки в средней части блока цилиндров, которые впрыскивают масло в днища поршней, когда поршни находятся в своих нижних мёртвых точках. Шестерённый масляный насос Duocentric установлен снизу на блоке цилиндров на винтах и приводится от коленвала отдельной цепной передачей, не требующей обслуживания. Натяжение цепи обеспечивает механический натяжитель.

Если затруднен нормальный слив отработанного масла по сливной магистрали турбокомпрессора, то масло также будет выдавливать через турбину во впуск. Это может произойти по различным причинам: закоксованность каналов, попадание посторонних предметов, остатков старой прокладки или герметика. Все магистрали достаточно наглядно отражены на схеме.

Теперь о том, как проверить эту теорию: Откручиваете от турбокомпрессора и блока двигателя маслосливную трубку и проверяете её на засоры и закоксованность, в любом случае имеет смысл её почистить. Не забудьте поменять прокладки её крепления к турбине и блоку, так как они одноразовые. По возможности проверьте отверстие в блоке, куда крепится эта трубка, нету ли там посторонних предметов.

3) Возникает лишнее разряжение во впускном тракте перед турбокомпрессором

Вариант, который встречается хоть и не часто, но тем не менее возможен — затруднен забор воздуха на турбокомпрессор. Попросту говоря, «забит» воздушный фильтр или частично заблокирован воздухозаборный патрубок (например сильно перегнут, за счет чего уменьшается его проходное сечение).

При работе турбокомпрессора за счет динамических сил за вращающимся на огромной скорости турбинным колесом создается некоторое разрежение. Если возникает излишнее сопротивление забору воздуха, это разрежение многократно увеличивается, масло просто «высасывается» из среднего корпуса турбокомпрессора.

Хотя в случае, когда скинут патрубок от воздушного фильтра, а масло всё-равно течёт с крыльчатки, то это точно проблема не во впуске.

4) Затруднен выброс отработанных газов через выхлопную систему

Излишнее сопротивление в выхлопной системе (засорен или закоксован катализатор, неисправна или замята банка глушителя и т.д.) вызывает увеличение давления в «горячей» улитке турбокомпрессора, что вызовет прорыв выхлопных газов в средний корпус турбокомпрессора и увеличение давления внутри его, что, в свою очередь, вызовет выброс масла со стороны компрессора.

Очень брутальный способ проверки этой теории — скидываем катализатор от выпускного коллектор, затыкаем уши (грохот будет как от старого болида Формулы 1 =) и запускаем двигатель. Будут ошибки по кислородным датчикам, но это не беда, нам главное смотреть, как поведёт себя масло на штоке холодной турбины.

Как итог: Всегда, перво-наперво смотрите на состояние системы вентиляции картерных газов. У нас в стране легко нарваться на палёное масло, которое моментально забивает всю систему, и в особенности сепаратор. Поэтому появление масла во впускном тракте может не иметь никакого отношения к состоянию и работе турбонагнетателя.

4 основные причины и ряд возможных решений

Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?

Типы проблем. Возможные решения

1. Масло поступает во впускную систему из компрессора

Возможные причины:

  • засорение патрубка;
  • обледенение или засорение воздушного фильтра;
  • повреждение сегмента впускного коллектора.

Для устранения неполадок необходимо проверить сопротивление поступающего воздуха. Параметры разрежения в области воздушного фильтра – не более 20 мм водного столба (на холостом ходу). Если остановить двигатель, резиновые патрубки вернут свою начальную форму. Напоследок необходимо освободить впускной коллектор иинтеркулер от масла. Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не нужно.

2. Масло поступает во впускную систему двигателя

Возможна нехватка подкачанного воздуха в патрубках, интеркулере, коллекторе. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление. В результате масло вытекает через компрессорную часть. Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты.

Необходимо проверить места, из которых масло может теряться по пути до турбины:

  • воздушный фильтр, наполненный маслом;
  • компрессор тормозной системы;
  • система замкнутой вентиляции.

3. Масло поступает в выпускную систему

Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Если турбина на двигатель абсолютно новая, а в коллекторе обнаружено масло, возможно, что оно попало из двигателя.

4. Масло поступает в обе системы

Причин может быть две:

  1. Повреждение или засорение масляной магистрали, неправильное положение прокладки на стыке с турбиной.
  2. Неисправность картера двигателя, а именно засорение системы вентиляции. Возможно появление избытка газов из-за неполадок в двигателе или износа деталей. В этом случае для начала следует устранить неисправности. Если потеки масла слабые, скорее всего, виновата не турбина, а системы двигателя.

Впускной коллектор, принцип работы, проблемы, стоимость замены

Обновлено: 24 октября 2019 г.

В двигателе автомобиля впускной коллектор равномерно распределяет воздушный поток между цилиндрами. Во многих современных автомобилях впускной коллектор делают из пластика.

Впускной коллектор.

Часто впускной коллектор удерживает дроссельную заслонку (корпус дроссельной заслонки) и некоторые другие компоненты.Впускной коллектор состоит из камеры статического давления и бегунов, см. Фото. В некоторых двигателях V6 и V8 впускной коллектор может состоять из нескольких отдельных секций или частей.

Всасываемый воздух проходит через воздушный фильтр, воздухозаборник (шноркель), затем через корпус дроссельной заслонки в камеру статического давления, затем через направляющие и в цилиндры (см. Схему).

Дроссельная заслонка (корпус) регулирует частоту вращения двигателя, регулируя количество воздушного потока.

Расход воздуха на впуске.

В современных автомобилях частота вращения двигателя на холостом ходу также регулируется дроссельной заслонкой: на холостом ходу она открывается на очень небольшой угол. Поскольку корпус дроссельной заслонки почти закрыт, когда двигатель работает на холостом ходу, во впускном коллекторе есть разрежение. Если где-то в коллекторе есть утечка вакуума, двигатель будет работать с перебоями на холостом ходу. Многие проблемы с впускными коллекторами связаны с утечками вакуума, подробнее читайте ниже.

Мощность двигателя можно регулировать, изменяя размер впускной камеры и длину или размер отверстия направляющих.По этой причине современные автомобили имеют регулируемый впускной коллектор , в котором специальные регулирующие клапаны изменяют поток воздуха через коллектор в зависимости от частоты вращения двигателя и требуемой мощности.

Проблемы с впускным коллектором

Общие проблемы с впускными коллекторами включают вакуум, утечки охлаждающей жидкости или масла, снижение расхода из-за накопления углерода и проблемы с впускными регулирующими клапанами. В некоторых двигателях впускной коллектор может корродировать или треснуть, вызывая утечку вакуума или охлаждающей жидкости.Треснувший коллектор необходимо заменить, если он не подлежит безопасному ремонту.

Реклама — продолжить чтение ниже

В некоторых автомобилях во впускном коллекторе есть каналы для охлаждающей жидкости, которые могут протекать, часто из-за плохих прокладок или других повреждений. Например, эта проблема была довольно частой в старых двигателях GM V6. Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора.Если коллектор поврежден, его необходимо заменить.

Проблемы с впускным коллектором.

Изношенные прокладки впускного коллектора (на фото) часто становятся причиной утечки вакуума. Это может привести к резкому холостому ходу, остановке двигателя, а также к загоранию индикатора Check Engine, хотя двигатель может нормально работать на более высоких оборотах. Например, коды неисправности OBD-II P0171 и P0174 часто вызваны утечками вакуума во впускном коллекторе. Если утечки вызваны плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок.Посмотрите, например, эти видео на YouTube о ремонте двигателя Ford V6.

Часто источником утечки вакуума может быть треснувший вакуумный шланг или трубопровод, который подсоединяется к впускному коллектору. В этом случае необходимо заменить сломанный вакуумный шланг или трубопровод. Иногда впускной коллектор может деформироваться, из-за чего прокладки не закрываются должным образом. Покоробленный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота. Подробнее: Утечки вакуума: общие источники, симптомы, ремонт.

В некоторых двигателях, например, Volkswagen TDI Diesel, накопление углерода во впускном коллекторе может вызвать недостаточную мощность, пропуски зажигания, дым и низкую экономию топлива. Проблемы с накоплением углерода чаще встречаются в двигателях с турбонаддувом. Один из основных симптомов — отсутствие питания. Засоренный впускной коллектор, возможно, потребуется удалить и очистить вручную. В некоторых случаях замена впускного коллектора может быть более разумным решением, чем его чистка. Внутри коллектора есть много скрытых областей, которые нельзя очистить.

Проблемы с клапанами настройки впускного коллектора

Регулирующие клапаны обычно приводятся в действие электрическими или вакуумными приводами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать. Вакуумные приводы легко проверить с помощью портативного вакуумметра.

Как проверить вакуумные приводы для настройки клапанов.

Если вакуумный привод протекает, его необходимо заменить.Посмотрите это видео о том, как проверить вакуумные приводы клапанов настройки впускного коллектора.

Автомобильный компьютер (PCM) включает в себя вакуумные исполнительные механизмы, включая и выключая небольшие соленоиды контроля вакуума. Эти соленоиды тоже часто выходят из строя. Соленоиды также легко проверить с помощью ручного вакуумного насоса.

Другой распространенной проблемой является заедание регулирующего клапана рабочего колеса или переключающего клапана из-за отложений нагара или перекоса клапана. В этом случае коллектор необходимо заменить.
Например, проблемы с впускным коллектором (регулирующим клапаном рабочего колеса) часто встречаются в некоторых двигателях VW / Audi.Volkswagen продлил гарантию на впускной коллектор на некоторые автомобили Audi / Volkswagen 2008-2011 модельного года с двигателем 2.0 TFSI, коды двигателей CBFA и CCTA. Подробнее читайте на этом форуме.
Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является распространенной проблемой. Посмотрите эти видео о ремонте клапана DISA в BMW.

Замена впускного коллектора

Коллектор впускной, внутренняя сторона.

Если впускной коллектор невозможно очистить или отремонтировать, его необходимо заменить.Впускной коллектор также заменяется, если один из вышедших из строя регулирующих клапанов не может быть заменен отдельно. В некоторых автомобилях это довольно просто, в других требуется больше труда. Например, дилер может взимать до 750 долларов за замену впускного коллектора в Chevrolet Cruze 2011-2016 годов. В более старом автомобиле GM V6 замена впускного коллектора может стоить около 480-650 долларов.

Каждый раз при замене впускного коллектора важно очистить монтажную поверхность, заменить прокладки и затянуть болты коллектора в рекомендованном порядке согласно спецификациям.Это особенно важно для двигателя V6 / V8. Если вы хотите найти инструкции по обслуживанию, мы разместили несколько ссылок, по которым вы можете получить доступ к заводскому руководству по ремонту за абонентскую плату в этой статье.


Подробнее:
Утечки вакуума: проблемы, симптомы, ремонт
Check Engine Light: что проверять, распространенные проблемы, варианты ремонта
Код P0171 — Система слишком бедная: симптомы, причины, общие проблемы, диагностика
Код OBD II P0401 Недостаточный расход системы рециркуляции отработавших газов: причины, симптомы, распространенные проблемы
Датчик массового расхода воздуха (MAF): принцип работы, симптомы, проблемы, тестирование
Коды P0301-P0308 Обнаружены пропуски зажигания в цилиндре: симптомы, общие проблемы, вызывающие пропуски зажигания, ремонт .

В чем разница между впускными и впускными турбинами в коллекторе? — Страница 4

31.01.2013, 04:36 # 54 ( постоянная ссылка )

Настоящий фанатик Z

Дата регистрации: May 2010

Место нахождения: Alfa 4C

Сообщений: 6,394

Приводы: Пиковый туз

Сила репутации: 414

Турбины с приводом от выхлопных газов (турбины) нагнетаются выхлопным газом, обычно устанавливаются ближе к выпускному коллектору, а затем нагнетают сжатый воздух во впускной коллектор.

Турбины или компрессоры (нагнетатели) с ременным приводом обычно устанавливаются рядом с впускным отверстием и также нагнетают сжатый воздух во впускной коллектор.

Оба типа обычно имеют дополнительный трубопровод к теплообменнику для охлаждения сжатого воздуха.

Оба увеличивают поступление воздуха в двигатель и, следовательно, требуют большего количества топлива, чтобы поддерживать сгорание и приводить в действие двигатель. Кроме того, может потребоваться дополнительное количество топлива для охлаждения заряда и гашения избыточного тепла в двигателе, которое может вызвать детонацию и повреждение.

Это вы имеете в виду ???

__________________
Наслаждайся этим. Уничтожьте это.

.

Отложения на впускных клапанах в двигателях с прямым впрыском бензина

Бензин с прямым впрыском (GDI) используется на различных двигателях последних моделей: Audi, BMW, GM, Ford, Hyundai, Lexus, Mazda, MINI, Nissan, Porsche, VW и других. GDI распыляет топливо непосредственно в камеру сгорания под высоким давлением, а не распыляет топливо под низким давлением во впускные каналы в ГБЦ. GDI увеличивает экономию топлива и мощность на 15–25 процентов, но есть обратная сторона, которая теперь становится очевидной по мере того, как эти двигатели накапливают мили.Для получения дополнительной информации по этому вопросу см. Прямой впрыск бензина (GDI).

Проблема в том, что нагар накапливается на впускной стороне (вверху) впускных клапанов. Отложения создают турбулентность и могут ограничивать поток воздуха в цилиндры, вызывая проблемы с производительностью и управляемостью. (колебания, спотыкание, пропуски зажигания, даже тяжелый запуск). Чем толще нагар на клапанах, тем хуже управляемость.

GDI распыляет топливо прямо в камеру сгорания, так что топливо полностью обходит впускные клапаны.Следовательно, моющие и чистящие средства, которые добавляются в бензин для предотвращения образования отложений на впускных клапанах в двигателях с впрыском топлива, никогда не смогут выполнять свою работу в двигателе GDI. Впускная сторона впускных клапанов никогда не контактирует напрямую с топливом, поэтому моющие средства не могут смыть отложения. Из-за этого моющие присадки к топливу, которые либо содержатся в бензине с нефтеперерабатывающего завода, либо добавляются в топливный бак, почти не влияют на предотвращение или удаление отложений на впускных клапанах двигателей GDI.Присадки работают в двигателях с обычным впрыском топлива, но не в двигателях GDI.

Причины отложений на впускном клапане

Отложения на впускном клапане образуются в результате медленного просачивания масла через уплотнения направляющей впускного клапана и вниз по направляющим клапана. Небольшое количество масла необходимо для смазки направляющих, но когда масло достигает горячей поверхности клапана, оно может прилипнуть и сгореть, образуя тяжелые отложения сажи, которые постепенно накапливаются. Чем больше пробег двигателя и больше износ направляющих и уплотнений клапанов, тем быстрее накапливается черный нагар на впускных клапанах.Моторные масла с низкой вязкостью (например, 5W-20 и 0W-20) могут усугубить проблему, поскольку они тоньше (для уменьшения трения) и легче стекают по направляющим клапана. Обычные моторные масла также имеют более низкую температуру вспышки, чем синтетические масла, что также может со временем увеличивать образование отложений.

Еще одним фактором, способствующим образованию отложений на впускных клапанах, являются несгоревшие пары топлива и пары масла, отводимые обратно во впускной коллектор через систему принудительной вентиляции картера (PCV).Это делается для контроля выбросов из картера и для удаления влаги из масла (что помогает продлить срок службы масла). Пары топлива, частицы углерода и капли масла, которые система PCV направляет обратно во впускной коллектор, повторно сжигаются в двигателе, чтобы уменьшить загрязнение. Но эти же пары могут также образовывать нагар и налет на впускных клапанах.

Чем сильнее газовая струя в двигателе из-за износа цилиндров и поршневых колец, тем больший объем паров картера втягивается обратно в двигатель системой PCV.Двигатели с большим пробегом обычно имеют более сильный газовый поток, чем двигатели с небольшим пробегом, поэтому накопление отложений на впускных клапанах обычно происходит быстрее.

Диагностика отложений впускного клапана:

Двигатель, испытывающий проблемы с управляемостью и производительностью из-за отложений на впускном клапане, может или не может установить какие-либо диагностические коды неисправностей (DTC) и включить индикатор проверки двигателя. Если двигатель пропускает зажигание достаточно сильно, он может установить случайный код пропуска зажигания P0300 или коды пропусков зажигания отдельных цилиндров.Однако многие другие факторы также могут устанавливать коды пропусков зажигания, поэтому сам по себе код пропусков зажигания не обязательно указывает на то, что двигатель имеет грязные впускные клапаны.

Вы не можете увидеть отложения на впускных клапанах напрямую, потому что клапаны находятся внутри головки цилиндров. Единственный способ увидеть отложения на впускных клапанах — снять впускной коллектор и заглянуть во впускные отверстия в головке блока цилиндров — если у вас нет такого необычного инструмента, как бороскоп или оптоволоконная видеокамера, которую можно вставить в камеру сгорания. через отверстие для свечи зажигания или спуститесь во впускной коллектор, чтобы проверить клапаны.Немногие автомобильные техники имеют такое оборудование и, вероятно, не использовали бы его, даже если бы оно было у них, потому что они исходили бы из предположения, что клапаны загрязнены и их необходимо очистить.

Как уменьшить нагар на впускных клапанах GDI

Скорость загрязнения впускных клапанов, похоже, не зависит от качества топлива или количества этанола в бензине. Скорее всего, на это больше всего влияет частота замены моторного масла.Пары масла и побочные продукты сгорания, которые втягиваются обратно во впускной коллектор через систему PCV, по-видимому, вносят наибольший вклад в образование нагара на впускных клапанах.

Мой совет — менять масло каждые 3000 миль, если вы едете только по городу с короткими остановками, или менять масло каждые 5000 миль, если вы в основном ездите по шоссе. Если вы хотите минимизировать накопление углерода на впускных клапанах, не увеличивайте интервалы замены масла до 7500 миль или дольше, если вы не используете высококачественное полностью синтетическое масло (которое обычно имеет меньшую летучесть, чем обычное моторное масло).

Регулярная замена масла поможет свести к минимуму накопление нагара на клапанах, но со временем они все равно могут загрязняться. Если это произойдет, может потребоваться очищать клапаны каждые 25 000–30 000 миль с помощью аэрозольного очистителя, который распыляется во впускной коллектор.

Как очистить грязные впускные клапаны

Если вы считаете, что впускные клапаны двигателя GDI загрязнены, но не хотите выполнять всю работу по снятию впускного коллектора и головки блока цилиндров, вы можете попытаться очистить клапаны, используя следующие процедуры:

Приобретите жидкий очиститель верхней части двигателя, очиститель системы впуска или очиститель карбюратора (например, Sea Foam) или специальный продукт, например очиститель впускных клапанов CRC GDI или очиститель для прямого впрыска бензина BG, для очистки впускных клапанов.Следуйте инструкциям на продукте или действуйте следующим образом:
В некоторых продуктах очиститель распыляется на корпус дроссельной заслонки при работающем двигателе. Другие рекомендуют отсоединить шланг PCV от клапана PCV или использовать любой другой большой вакуумный шланг, который подключается к впускному коллектору, чтобы вы могли медленно наливать очиститель в шланг при работающем двигателе (для этого вам, вероятно, понадобится небольшая воронка) . Дайте двигателю поработать на высоких холостых оборотах (скажем, от 1000 до 1500 об / мин), подавая очиститель во впускной коллектор.

В зависимости от степени загрязнения впускных клапанов и эффективности чистящего химического вещества процесс удаления нагара может занять от 10 до 20 минут или больше. Возможно, вам также придется повторить процесс очистки более одного раза, чтобы полностью удалить отложения.

Если этот процесс очистки не дает результата из-за большой толщины нагара, возможно, вам придется попробовать более прямой подход к очистке. Для этого необходимо снять впускной коллектор, чтобы очиститель можно было наносить непосредственно на клапаны.Для получения подробных пошаговых инструкций по снятию впускного коллектора, возможно, потребуется обратиться к заводской сервисной информации.

ВНИМАНИЕ: Если вам необходимо отсоединить любые топливопроводы для снятия впускного коллектора, убедитесь, что все остаточное давление топлива внутри линий было сброшено, прежде чем открывать какие-либо линии.

После снятия впускного коллектора посмотрите в каждое отверстие, чтобы увидеть, какие клапаны закрыты, а какие открыты.Процесс очистки начнется при ЗАКРЫТЫХ клапанах. После очистки этих клапанов проверните двигатель, чтобы закрыть оставшиеся открытые клапаны. Причина, по которой вы хотите, чтобы клапаны закрывались при их очистке, заключается в том, чтобы очищающие химические вещества и нагар не попадали в цилиндры двигателя.

Используйте аэрозольный продукт, который может ослабить и удалить нагар, например очиститель тормозов (хорошо подходит CRC Green), Sea Foam или Очиститель впускного коллектора на впускных клапанах.

Распылите очиститель прямо во впускное отверстие так, чтобы лужа образовалась на верхней части клапана. Дайте ему впитаться примерно 30 минут, чтобы удалить отложения. Вы также можете использовать небольшую щетку или кирку, чтобы соскребать отложения во время работы очистителя. Через 30 минут смочите остатки чистящего средства тряпкой или бумажными полотенцами. После того, как очиститель полностью испарится и остатки углерода высохнут, вы можете использовать магазинный пылесос, чтобы высосать мусор из портов.

ВНИМАНИЕ: НЕ используйте промышленный вакуум, если во впускных отверстиях все еще присутствует жидкий растворитель.Большинство ареозольных растворителей легко воспламеняются и могут взорваться при воспламенении от искры от электродвигателя пылесоса. Также не курить будет с помощью легковоспламеняющегося аэрозольного очистителя! И убедитесь, что имеется соответствующая вентиляция, поскольку пары растворителей могут быть токсичными.

. .
Накопленный нагар на впускных клапанах может препятствовать потоку воздуха. После очистка, воздушный поток значительно улучшен.

Теперь поверните коленчатый вал, чтобы закрыть оставшиеся открытые клапаны, и повторите процесс очистки, если необходимо, на других клапанах, которые теперь закрыты, до тех пор, пока не будут очищены все клапаны.

Если отложения на впускном клапане настолько толстые и твердые, что химическая очистка не работает, вы можете попробовать струйную очистку клапанов с помощью пескоструйного пистолета и мягких струйных средств, таких как скорлупа грецких орехов, пищевая сода или пластиковые шарики. Закройте или заклейте все остальные отверстия в верхней части двигателя, чтобы абразивная среда и остатки не могли попасть в картер, охлаждающую жидкость или масляные каналы. После очистки клапанов остатки струи можно отсосать из входных отверстий с помощью вакуума.

ВНИМАНИЕ: Убедитесь, что клапаны ЗАКРЫТЫ, прежде чем распылять абразивную среду во впускные отверстия, и НИКОГДА не используйте какие-либо твердые абразивные среды, такие как песок (кремнезем), стеклянные шарики или металлические шарики, поскольку они могут серьезно повредить кольца и цилиндры, если струя воздуха проходит через клапан.

Если ничего не помогает, в крайнем случае необходимо снять головку блока цилиндров, разобрать все клапаны и очистить их вручную металлической щеткой, абразивоструйным аппаратом или другой абразивной струей или погрузить клапаны в горячий резервуар или ультразвуковой бак для очистки.

Некоторые автосалоны хотят заменить всю головку блока цилиндров на новую, если клапаны сильно закоксованы. Но это ненужные расходы, потому что в большинстве случаев клапаны можно разобрать, очистить и снова собрать в существующей головке блока цилиндров после снятия головки с двигателя. Разборка головки цилиндров и очистка клапанов занимает больше времени и трудозатрат и может потребовать некоторых специальных инструментов, таких как компрессор пружины клапана, съемник шестерен или инструменты для снятия верхнего кулачка.Но это может сэкономить на замене всей головы. Единственный раз, когда будет рекомендована замена головки, — это если двигатель пробегает много миль (скажем, более 100000 миль), а голова имеет другие проблемы, такие как изношенные направляющие клапана и / или седла, трещины или другие повреждения.



.

Устранение неполадок при низком давлении масла

Первым признаком неисправности может быть мигающий индикатор давления масла или показание низкого давления масла на приборной панели. Если предупреждение остается незамеченным или игнорируется, следующим признаком того, что что-то не так, может быть стук клапана, поскольку гидравлические подъемники или регуляторы зазора испытывают нехватку масла и всасывают воздух. Если автомобилист продолжит движение, несмотря на очевидные предупреждения и слышимые протесты из-под капота, следующим звуком, который он услышит, может быть стук или стук подшипников шатуна, за которым в конечном итоге последует мертвая тишина, поскольку двигатель заклинивает и автомобиль движется по инерции до остановки.

Все двигатели со временем теряют определенную величину давления масла, поскольку нормальный износ увеличивает зазоры подшипников двигателя. Но необычно низкое давление масла в двигателе независимо от пробега часто является признаком того, что что-то серьезно не так и требует немедленного внимания. Поэтому в любое время, когда в автомобиле низкое давление масла или вы знаете о каких-либо симптомах, которые могут быть связаны с потерей давления масла (горит или мигает сигнальная лампа, низкие показания манометра, шум клапана или шум подшипников), не задержка в расследовании причины.


Масляная система двигателя
ПРИЧИНЫ НИЗКОГО ДАВЛЕНИЯ МАСЛА

Изношенные подшипники двигателя: В двигателе с большим пробегом низкое давление масла часто возникает из-за износа коренных и стержневых подшипников. Сам масляный насос давления не создает. Он создает поток, а сопротивление этому потоку создает давление. Сопротивление создается за счет отверстий в блоке цилиндров, через которые протекает масло, и величины зазора между подшипниками и шейками коленчатого вала.По мере износа подшипников зазоры увеличиваются, что позволяет увеличить поток, который снижает давление.

Чрезмерные зазоры подшипников (более примерно 0,001 дюйма на дюйм диаметра шейки коленчатого вала) могут вызвать падение давления масла до 20 процентов или более, что, в свою очередь, может отрицательно сказаться на смазке в других частях двигателя (например, как распределительный вал и верхний распределительный вал, особенно в двигателях с верхним расположением распредвала). Низкое давление масла также может вызвать проблемы в двигателях верхнего распредвала с регулируемой синхронизацией клапана.Не имеет значения, вызваны ли чрезмерные зазоры нормальным износом или «слабыми» допусками сборки, потому что конечный результат точно такой же. Чрезмерные зазоры подшипников также увеличивают шум двигателя и удары, что со временем может привести к усталости подшипников и их выходу из строя.

Рекомендуемые зазоры в подшипниках сильно различаются в зависимости от области применения двигателя, но многие производители двигателей сегодня стремятся к зазору от 0,001 до 0,002 дюйма в коренных и стержневых подшипниках. Это для сравнения.004 дюйма зазора, который может присутствовать в некоторых новых двигателях с завода!

Чрезмерные зазоры в других частях двигателя также могут снизить давление масла. Это включает износ отверстий подъемника, чрезмерные зазоры между шейками распредвала и подшипниками кулачка, а также чрезмерный осевой люфт в кулачке. Конечно, любые трещины в масляных камбузах, протекающие пробки камбуза или утечки между масляным насосом и блоком также уменьшат давление.

Единственное лекарство от низкого давления масла из-за чрезмерных зазоров подшипников — уменьшить зазоры путем замены подшипников или капитального ремонта двигателя.Установка нового масляного насоса или насоса более высокого давления не поможет, потому что подшипники имеют слишком большую скорость утечки, чтобы поддерживать необходимое давление. Установка масляного насоса большего объема может увеличить поток и восстановить немного потерянное давление. Но основная проблема с зазором все равно останется, что приведет к увеличению шума, износу и усталости подшипников.

Изношенный масляный насос: Другой распространенной причиной низкого давления масла является износ или чрезмерные зазоры внутри масляного насоса. Технические характеристики различаются, но, как правило, масляные насосы шестеренчатого типа должны иметь менее 0.003 дюйма люфта между шестернями и крышкой. Зазоры между зубьями и корпусом насоса обычно не должны превышать 0,005 дюйма. В насосах роторного типа зазор между внешним ротором и корпусом насоса обычно должен быть менее 0,012 дюйма и не более 0,010 дюйма между внутренними и внешними лопастями ротора. Слишком большой зазор внутри насоса снижает способность насоса перекачивать масло, что снижает расход и давление.

Из-за жестких допусков, которые требуются внутри масляного насоса, любой мусор может вызвать разрушение, если он попадет в насос.Все, что превышает минимальный внутренний зазор, может порезать или заблокировать насос. Мусор, такой как куски старых уплотнений штока клапана, материал прокладок, пластмассовые стружки от изношенной шестерни цепи привода ГРМ, материал подшипников, отливки, песок, грязь и т. Д., Могут быть опасными или смертельными при проглатывании.

Но как такая грязь может попасть внутрь насоса, спросите вы? Экран, который находится на всасывающей трубке масляного насоса в картере, предотвращает попадание в насос только относительно больших частиц мусора, и даже в этом случае это не всегда происходит, потому что большинство всасывающих решеток имеют какой-либо тип перепускного клапана или вентиляционного отверстия, которое позволяет масло для обхода сетки, если сетка забивается или масло слишком густое, чтобы проходить через сетку.Отверстия в самом экране имеют размер около 0,040 квадратных дюймов, и это огромные отверстия для мусора. Но отверстия большие по конструкции, поэтому через экран будет поступать достаточное количество масла, когда двигатель холодный, а масло в картере густое (вот почему вы всегда должны следовать рекомендациям производителя транспортного средства по вязкости масла). Все это означает, что масляный насос — единственный компонент двигателя, который постоянно смазывается нефильтрованным маслом! Масло не проходит через фильтр, пока не покинет насос.Таким образом, любой абразивный мусор, который попадет в картер, сначала пройдет через насос, прежде чем он попадет в фильтр. Не зря масляные насосы изнашиваются и ломаются.


Внутренний износ и утечки насоса могут вызвать потерю давления масла.

Ограничения на сетке всасывающей трубки могут блокировать поток масла в насос, снижая расход и давление. Даже относительно небольшое количество лака на сетке может ограничить поток масла при более высоких оборотах двигателя. Только покрытие.005 дюймов на экране уменьшит общую «открытую» площадь каждого отверстия до 0,030 дюйма, что приведет к колоссальному снижению потока масла на 44 процента!

Слабый или негерметичный предохранительный клапан давления масла: Предохранительный клапан, который может быть расположен на корпусе насоса или в другом месте на двигателе, может быть еще одной причиной низкого давления масла, если клапан заедает в открытом положении или удерживается открытым из-за небольшой кусочек мусора. Предохранительный клапан предназначен для ограничения давления масла при увеличении частоты вращения двигателя.Клапан открывается, когда давление достигает заданного значения (обычно от 40 до 60 фунтов на квадратный дюйм). Это отводит масло обратно в картер и ограничивает максимальное давление масла в двигателе. Причина в том, чтобы не допустить, чтобы давление масла достигло опасного уровня. Слишком высокое давление масла может быть так же плохо, как и слишком маленькое, потому что избыточное давление может привести к разрыву масляного фильтра или даже к повреждению запрессованных пробок масляной камбуза в блоке.

Аэрированное масло: Низкое давление масла также может быть результатом наличия воздуха в насосе.Если в поддоне слишком мало масла, в насос может попасть воздух. Но это также может произойти, если картер был переполнен. Масло может стать аэрированным (наполниться крошечными пузырьками), потому что оно соприкасается с вращающимся коленчатым валом и превращается в пену.

Грязное масло и двигатель: Иногда двигатель может испытывать нехватку масла на более высоких оборотах, потому что масло недостаточно быстро возвращается в картер. Основной причиной здесь обычно является сильное накопление лака, ограничивающего отверстия для возврата масла в головке.

Утечки в масляной системе: Утечки между маслозаборной трубкой и насосом, а также между насосом и блоком также могут засасывать воздух в насос. Нередко можно найти двигатели, у которых всасывающая трубка полностью отвалилась, что привело к полной потере давления масла.

Засоренный масляный фильтр: Засоренный масляный фильтр может быть еще одной причиной низкого давления масла. Когда масло покидает насос, оно проходит через фильтр, прежде чем попасть в подшипники и масляные камбузы.Все фильтры создают определенное сопротивление потоку, которое увеличивается с увеличением скорости потока. Но сумма небольшая, обычно всего пара фунтов. Но по мере того, как фильтр забивается мусором, создаваемое ограничение увеличивается. В конце концов может быть достигнута точка, при которой масло не будет проходить через фильтрующий элемент. Таким образом, чтобы предотвратить такое засорение, предохранительный клапан, расположенный в фильтре или там, где фильтр крепится к блоку, предназначен для открытия, если перепад давления на фильтре превышает заданное значение (обычно от 5 до 40 фунтов на квадратный дюйм).Это позволяет маслу обходить фильтр и продолжать течь. Но давление масла в двигателе будет уменьшено до давления перепускного клапана. Замена забитого фильтра решит проблему.

ДИАГНОСТИКА НИЗКОГО ДАВЛЕНИЯ МАСЛА

Хорошее место для начала диагностики состояния низкого давления масла — это щуп. Проверьте уровень масла, чтобы убедиться, что он на должном уровне (не низкий и не переполненный). Если он низкий, возможно, в двигателе горит масло, происходит утечка масла и / или им пренебрегают.Добавление масла может временно исправить состояние низкого давления масла, но, если ваш клиент не поддерживает надлежащим образом уровень масла, проблема может возникнуть снова.

Если из двигателя течет масло, порекомендуйте новые прокладки или уплотнения для устранения утечки. Если двигатель горит маслом, направляющие клапана и уплотнения, скорее всего, изношены, но кольца и цилиндры также могут быть повреждены. Испытание на влажное сжатие и / или испытание на герметичность покажет, изношены ли направляющие клапана, кольца и цилиндры. Наименее затратное решение в случае изношенных направляющих — установка новых уплотнений направляющих клапана (если возможно) без снятия головки.Но лучшим решением было бы потянуть головки и выровнять направляющие, накатать их, заменить или развернуть для стержней клапанов большего размера. Изношенные кольца и цилиндры потребуют капитального ремонта.

Также обратите внимание на состояние масла и убедитесь, что его вязкость соответствует области применения. Масла с более высокой вязкостью, такие как 20W-50, прямые 30W и 40W, могут помочь поддерживать хорошее давление масла в жаркую погоду, но они слишком густые для езды в холодную погоду и могут вызвать проблемы со смазкой при запуске, особенно в двигателях с верхним расположением кулачка.С другой стороны, масла с низкой вязкостью, такие как прямое масло 10W или 5W-20, могут улучшить запуск и смазку в холодную погоду, но могут быть слишком жидкими для движения в жаркую погоду, чтобы поддерживать хорошее давление масла. Вот почему сегодня большинство OEM-производителей рекомендуют 5W-30 для круглогодичной эксплуатации современных двигателей.

Если уровень масла в порядке, следующим, что нужно проверить, вероятно, будет блок отправки давления масла. Отключите устройство и проверьте контрольную лампу или показания манометра. Если сигнальная лампа продолжает гореть при отключенном передающем устройстве, вероятно, в цепи сигнальной лампы произошло короткое замыкание на массу.Аналогичным образом, если показания манометра не изменились, проблема в контрольно-измерительных приборах, а не в двигателе.

Неисправные блоки передачи давления масла — довольно распространенное явление, поэтому многие техники заменяют блок, не проверяя что-либо еще, чтобы увидеть, решит ли это проблему. Такой подход может сэкономить вам время, но он рискован, потому что, если вы не измеряете давление масла непосредственно с помощью манометра, прикрепленного к двигателю, у вас нет возможности узнать, находится ли давление в пределах спецификации или нет. Большинство сигнальных ламп не загорится, пока давление масла не станет опасно низким (менее 4 или 5 фунтов.). Поэтому не думайте, что отсутствие сигнальной лампы означает, что давление масла в порядке, особенно если двигатель издает шум клапанов или подшипников.

Если проверка давления масла показывает необычно низкие значения, проверьте фильтр. Возможно, фильтр забит мусором. Спросите клиента, когда он в последний раз менял масло и фильтр. Или замените фильтр и посмотрите, имеет ли это значение.

Следующим шагом будет опускание масляного поддона и проверка приемного экрана масляного насоса.Если экран забит мусором, проблема обнаружена. Также убедитесь, что всасывающая трубка правильно установлена ​​и расположена, надежно прикреплена к масляному насосу (нет утечек) и не забита.

Если масляный насос установлен внутри картера, следующим шагом может быть снятие и осмотр насоса. Откройте крышку насоса и измерьте зазоры. Также проверьте, нет ли царапин или других повреждений. Сломанный привод насоса скажет вам, что что-то вошло и заклинило насос. Если насос изношен или поврежден, единственный выход — замена.

Если насос в порядке, следующим шагом будет измерение зазоров штока и коренных подшипников. Проверьте зазоры на главном подшипнике, ближайшем к насосу (так как это оказывает наибольшее влияние на давление), и зазоры на самом дальнем подшипнике штока (так как это будет показывать наибольший износ). Если подшипники изношены, их необходимо заменить. Но прежде чем сделать это, внимательно осмотрите и измерьте шейки коленчатого вала на предмет износа, задиров, овальности и конусности. Если цапфы требуют внимания, кривошип также придется переточить или заменить.

Другие проверки могут включать люфт распредвала и / или снятие крышки клапана или впускного коллектора для проверки подшипников кулачка и подъемников. Помните, что чрезмерные зазоры или утечки где-либо в системе маслоснабжения двигателя могут способствовать низкому давлению масла.

РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ МАСЛЯНОГО НАСОСА

Если вы обнаружили изношенный или поврежденный масляный насос, который требует замены, прочтите все инструкции, прежде чем пытаться установить новый насос. Это совет здравого смысла, но удивительно, как много людей думают, что знают, как заменить масляный насос на двигателе, на котором они никогда раньше не заменяли насос.Могут быть сюрпризы, поэтому потратьте несколько минут на изучение инструкций.

Большинство производителей насосов не рекомендуют использовать герметик для крепления насоса. Используйте прилагаемую прокладку или уплотнительное кольцо. Риск использования герметика заключается в том, что если его нанести слишком много, часть его может оказаться внутри насоса или заблокировать проходы насоса.

Выбросьте старую всасывающую трубку и сетку и замените новыми. Да, вы можете попытаться очистить и повторно использовать старый экран, но это рискованно. Нижняя крышка часто скрывает много мусора, а растворитель может разрыхлить «спрятанный» мусор внутри трубки, который позже будет всасываться в насос.

Используйте подходящий установочный инструмент, чтобы вставить всасывающую трубку в насос. Не вдавливайте его молотком, так как это может деформировать корпус насоса и / или повредить трубку.

Перед заменой масляного поддона убедитесь, что насос правильно установлен и всасывающая трубка установлена ​​правильно. Экран приемника обычно должен быть примерно на полдюйма выше дна масляного поддона. Это снизит риск попадания мусора на дно посуды.Убедитесь, что подборщик не слишком высок, потому что вы не хотите, чтобы он всасывал воздух.

Перед запуском двигателя насос следует залить. Это можно сделать, добавив немного масла в насос перед его установкой (не рекомендуется набивать насос консистентной смазкой). Если насос приводится в движение от распределителя, распределитель можно снять, чтобы насос можно было повернуть дрелью для заполнения системы.

Другой альтернативой для всех типов насосов является использование вторичной системы заливки аэрозолей, которая подает масло под давлением в двигатель через штуцер узла отправки давления масла.Этот тип системы был первоначально разработан для восстановленных двигателей, но может использоваться в любом приложении, где двигатель должен быть заправлен перед его запуском.

Установите новый масляный фильтр и заполните его маслом (к сожалению, это не работает с фильтрами, которые устанавливаются сбоку на двигателе), чтобы устранить задержку смазки, которая обычно возникает при первом запуске двигателя после замены фильтра.

Наконец, запустите двигатель и убедитесь, что давление масла в пределах спецификации.Используйте механический манометр и не полагайтесь на приборную панель или контрольную лампу, чтобы убедиться, что произведенный ремонт устранил проблему низкого давления масла.


Щелкните здесь, чтобы загрузить или распечатать эту статью.



Другие статьи по моторному маслу и моторным смазкам:
Горит сигнальная лампа давления масла в двигателе

Выявление причин отказа двигателя

Диагностика масляного насоса

Масляные насосы: сердце двигателя

Вам действительно нужен масляный насос большого объема?

Утечки масла

Как часто следует менять масло?

О синтетических моторных маслах

Вязкость масла

Что следует знать о подшипниках двигателя

Причины высокого расхода масла

Диагностика шума двигателя

Нажмите здесь, чтобы увидеть больше технических статей Carley Automotive

Требуется заводская информация в руководстве по обслуживанию для Ваш автомобиль?
Mitchell 1 DIY инструкции по ремонту


.

Как работают автомобильные двигатели | HowStuffWorks

Используя всю эту информацию, вы можете начать понимать, что существует множество различных способов улучшить работу двигателя. Производители автомобилей постоянно играют со всеми перечисленными ниже параметрами, чтобы сделать двигатель более мощным и / или более экономичным.

Увеличение рабочего объема: Чем больше рабочий объем, тем выше мощность, потому что вы можете сжигать больше газа за каждый оборот двигателя.Вы можете увеличить рабочий объем, увеличив цилиндры или добавив их. Двенадцать цилиндров кажутся практическим пределом.

Объявление

Увеличьте степень сжатия: Чем выше степень сжатия, тем больше мощность, до определенного предела. Однако чем сильнее вы сжимаете топливно-воздушную смесь, тем больше вероятность самопроизвольного воспламенения (до того, как свеча зажигания воспламенит его). Бензины с более высоким октановым числом предотвращают такое преждевременное сгорание.Вот почему высокопроизводительным автомобилям обычно нужен высокооктановый бензин — их двигатели используют более высокую степень сжатия, чтобы получить большую мощность.

Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше мощности от цилиндра (точно так же, как если бы вы увеличили размер цилиндра). цилиндр) без увеличения количества топлива, необходимого для сгорания. Турбокомпрессоры и нагнетатели сжимают входящий воздух, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха: Сжатие воздуха повышает его температуру. Однако вы хотите, чтобы в цилиндре был как можно более холодный воздух, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании. Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его перед попаданием в цилиндр.

Позвольте воздуху поступать легче: Когда поршень опускается во время такта впуска, сопротивление воздуха может лишить двигатель мощности.Сопротивление воздуха можно значительно уменьшить, установив по два впускных клапана в каждый цилиндр. В некоторых новых автомобилях также используются полированные впускные коллекторы для устранения сопротивления воздуха. Большие воздушные фильтры также могут улучшить воздушный поток.

Позвольте выхлопу легче выходить: Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности. Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан к каждому цилиндру. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что улучшает рабочие характеристики.Когда вы слышите объявление об автомобиле, в котором говорится, что у автомобиля четыре цилиндра и 16 клапанов, в рекламе говорится, что двигатель имеет четыре клапана на цилиндр.

Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет такой же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и глушители со свободным потоком для устранения противодавления в выхлопной системе. Когда вы слышите, что у автомобиля «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов за счет использования двух выхлопных труб вместо одной.

Сделайте все легче: Легкие детали помогают двигателю работать лучше. Каждый раз, когда поршень меняет направление, он расходует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии он потребляет. Это приводит к повышению топливной экономичности и производительности.

Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо в каждый цилиндр. Это улучшает характеристики и экономию топлива.

В следующих разделах мы ответим на некоторые распространенные вопросы читателей о двигателях.

.

Почему турбина гонит масло – причины течи турбины


Зачастую автолюбитель делает вывод о неисправности турбины по причине утечки масла через холодную и/или горячую улитки во впускной либо в выпускной коллектор. После этого сразу начинает искать сервис, где смогут выполнить качественный ремонт турбин, либо бросается в поиски новой турбины. Однако масло из турбины довольно часто может течь при неправильном обслуживании и эксплуатации двигателя, а также при изношенном двигателе либо по причине неправильной установки турбины на двигатель.

Чтобы удостовериться, что турбина гонит масло по причине её поломки, необходимо изначально проверить основные узлы, системы и агрегаты двигателя на предмет их возможной неисправности. При выявлении таковых, устранить их.

Откуда масло в интеркулере

Рассмотрим основные причины утечки масла через исправный турбокомпрессор. А для лучшего восприятия материала, напомним основные конструктивные моменты по работе турбины – смазка подается в турбину из масляной магистрали двигателя под давлением, а вот сливается масло из турбокомпрессора в картер двигателя уже самотеком. Поэтому очень важно при проведении слесарных либо монтажных работ не деформировать сливную и подающую в турбину масло трубку.

1) На рисунке слева приведен пример деформации сливной трубки. В результате чего масло вытекает из турбокомпрессора с затруднениями, а масло которое не успело вытечь самотеком, выдавливается через уплотнения в холодную или горячую улитку в турбине. Препятствием сливу также может послужить закоксованность, попадание посторонних предметов, деформация либо изгиб сливной магистрали.

2) Контролируйте уровень масла в картере двигателя, он должен находиться между отметкой «Min» и «Max». Если необходимо, долейте масло. Когда уровень выше отметки «Max», создается подпор самотечному его сливу из турбокомпрессора. При переливе уровня во время технического обслуживания, слейте излишнее масло! Пословица «Кашу маслом не испортишь» в данной ситуации не подходит.

3) Износ цилиндро-поршневой группы (ЦПГ) двигателя приводит к прорыву отработанных газов в поддон и созданию повышенного давления в масляном картере двигателя. Данный факт также препятствует самотечному сливу масла и, соответственно, по этой причине турбина выгоняет его через уплотнения.

4) Конструктивные особенности некоторых двигателей также влияют на создание сопротивления самотечному сливу масла из турбокомпрессора. Это происходит когда масло забрасывается в сливной маслопровод противовесом коленчатого вала двигателя.

5) Проверьте давление картерных газов. Зачастую, давление газов в картере повышается из-за забитой системы вентиляции картера, либо сапунного фильтра. А в холодное время года в системе вентиляции картера может образоваться ледяная пробка (замерзает конденсат). Оба данных факта приводят к тому, что турбина визуально бросает масло. Очистите либо замените систему вентиляции картера (сапунный фильтр).

6) На данном рисунке показаны идеальные условия для работы турбины. Уровень в норме. Сливной маслопровод имеет правильную форму – прямая трубка, без изгибов ведущая в масляный картер двигателя. Трубка подведена к картеру в правильном месте – чуть выше уровня масла в картере двигателя.

Не течет ли масло из вашего турбокомпрессора? Общие вещи, чтобы проверить, если он протекает

У вас турбо-масло течет?

Опубликовано Тимом Скоттом 5 июня 2015 г.

«Мой турбонагнетатель подтекает масло».

Когда вы запускаете мастерскую по ремонту турбокомпрессоров, вы часто слышите эти 5 слов. Следующие слова обычно звучат так: «Мне просто нужно заменить уплотнения». Хммм, нет.

Хорошо, поэтому я подумал, что напишу для вас пост по этому поводу. Во-первых, вы не взорвали уплотнение турбокомпрессора.Практически все уплотнения представляют собой поршневые кольца из стали. У некоторых есть карбоновые уплотнения со стороны компрессора. Углеродные уплотнения изначально предназначались для систем с протяжкой через карбюратор, низко установленных турбин и систем литья кривошипа высокого давления. Карбюраторы будут иметь высокий вакуум на уплотнении компрессора. Это, в свою очередь, вытянет масло из турбокомпрессора. Вам действительно не нужно больше беспокоиться об этих системах. Эта система умерла в середине 80-х годов. Некоторые из мустангов SVO управляли ими. Тем не менее, углеродные уплотнения все еще используются сегодня.

Общие типы турбинных уплотнений

Хорошо, перейдем к уплотнениям турбины. Теперь существует несколько различных типов уплотнений для вала турбины. Наиболее популярным является стальное поршневое кольцо с одинарным зазором. Отлично работает уже много лет. Вещи, которые ему не нравятся: высокое давление в картере, низкие турбины, слишком большое давление масла. Сколько из них взорвут эту печать ???? НИКТО!!! Следующее уплотнение — беззазорное кольцо. Вы можете сделать это двумя способами. Запустить поршневое кольцо с фиксатором лабиринта на зазор.Или вы можете сложить 2 кольца один за другим, а затем компенсировать два промежутка. Это очень популярно в автомобилях Porsche. Многие из этих автомобилей работают с давлением масла 6 бар, низкими турбинами и масляными насосами. Для настоящего уплотнения лучшая установка — это два кольца без зазора в отдельных канавках. Это очень хорошо запечатает. Однако есть и обратная сторона. К тому времени, как вы заметите утечку, мало надежды на дешевый ремонт.

Что нужно проверить при утечке масла в турбонагнетателе

Хорошо, вернемся к теме негерметичного турбокомпрессора.Если с вашим турбонаддувом годами все в порядке, и он начинает протекать. Вам нужно обратить внимание на несколько вещей. Прежде всего проверьте люфт вала. Всегда есть немного стороны. Но он не должен касаться корпуса компрессора. Затем проверьте игру на входе и выходе. Вы действительно не должны ничего особо чувствовать. Если это так, значит, вы находитесь на начальной стадии выхода из строя упорного подшипника. Все это может быть в порядке и все еще течет. У вас может быть углеродный сбой. Это когда мазут порезал сталь на валу турбины. Это делает канавку слишком большой для уплотнения, чтобы удерживать масло.Это самая популярная неисправность, которую я вижу в турбонагнетателях с малой рамой. Далее следует проверить давление в картере. Плохая система PCV может вызвать турбо-утечку. Также из-за сильного удара поршня. Почему эти две причины могут привести к утечке турбонагнетателя? Что ж, это так же просто, как перекрыть обратный маслопровод турбонагнетателя. Обратный трубопровод соединен с картером двигателя. Удар поршня назад идет вверх по обратной магистрали. Затем он протолкнет масло через уплотнения. И уплотнения больше предназначены для удержания давления турбины и наддува вне картера.

У вас есть вопросы?

Этот пост становится все длиннее, поэтому я сделаю часть 2. Есть вопросы? Просто застрели меня строчкой. Всегда рады помочь!

Как работает турбонагнетатель — подробности и принципы конструкции

Принцип работы турбонагнетателя зависит от принципов конструкции, которые мы сейчас объясним в этом подробном и эффективном объяснении:

Турбонагнетатель состоит из турбины и компрессора, соединенных между собой по общей оси.На вход турбины поступают выхлопные газы из выпускного коллектора двигателя, заставляя турбинное колесо вращаться. Это вращение приводит в движение компрессор, сжимающий окружающий воздух и подающий его к воздухозаборнику двигателя.

Целью турбокомпрессора является повышение эффективности двигателя по отношению к выходной мощности путем устранения одного из его основных ограничений. В автомобильном двигателе без наддува используется только ход поршня вниз, чтобы создать зону низкого давления для втягивания воздуха в цилиндр.Поскольку количество молекул воздуха и топлива определяет потенциальную энергию, доступную для прижимания поршня к такту сгорания, и из-за относительно постоянного давления атмосферы, в конечном итоге будет ограничение на количество воздуха и, следовательно, топливо, заполняющее камера сгорания. Эта способность заполнять цилиндр воздухом и есть его объемный КПД. Поскольку турбонагнетатель увеличивает давление в точке, где воздух входит в цилиндр, а количество воздуха, поступающего в цилиндр, в значительной степени зависит от времени и давления, при увеличении давления будет втягиваться больше воздуха.Давление на впуске, в отсутствие турбонагнетателя, определяемое атмосферой, может быть управляемо увеличено с помощью турбонагнетателя.

Применение компрессора для увеличения давления в точке входа воздуха в цилиндр часто называют принудительной индукцией. Центробежные нагнетатели работают так же, как и турбонагнетатели; однако энергия для вращения компрессора берется из выходной энергии вращения коленчатого вала двигателя, а не из выхлопных газов. По этой причине турбокомпрессоры в идеале более эффективны, поскольку их турбины фактически являются тепловыми двигателями, преобразующими часть кинетической энергии выхлопных газов, которая в противном случае была бы потрачена впустую, в полезную работу.Нагнетатели используют выходную энергию для достижения чистой выгоды за счет некоторой части общей мощности двигателя.

Компоненты

Турбокомпрессор состоит из четырех основных компонентов. Каждое колесо турбины и крыльчатки заключено в собственный сложенный конический корпус на противоположных сторонах третьего компонента, узла вращения центральной ступицы (CHRA).

Кожухи, установленные вокруг крыльчатки компрессора и турбины, собирают и направляют поток газа через колеса во время их вращения.Размер и форма могут определять некоторые рабочие характеристики турбокомпрессора в целом. Площадь конуса к радиусу от центральной ступицы выражается отношением (AR, A / R или A: R). Часто тот же самый базовый узел турбонагнетателя доступен от производителя с несколькими вариантами AR для корпуса турбины, а иногда и крышки компрессора. Это позволяет разработчику системы двигателя адаптировать компромисс между производительностью, откликом и эффективностью в зависимости от приложения или предпочтений.Оба корпуса напоминают раковины улиток, и поэтому на сленге турбокомпрессоры иногда называют сердитыми улитками.

Размеры турбины и крыльчатки также определяют количество воздуха или выхлопных газов, которые могут проходить через систему, и относительную эффективность, с которой они работают. Как правило, чем больше колесо турбины и колесо компрессора, тем больше пропускная способность. Размеры и форма могут различаться, а также кривизна и количество лопастей на колесах.

Узел вращения центральной ступицы вмещает вал, соединяющий крыльчатку компрессора и турбину.Он также должен содержать подшипниковую систему для подвешивания вала, позволяющую ему вращаться с очень высокой скоростью с минимальным трением. Например, в автомобильной промышленности CHRA обычно использует упорный подшипник или шариковый подшипник, смазываемый постоянной подачей моторного масла под давлением. CHRA также можно рассматривать как «охлаждаемый водой», так как он имеет точки входа и выхода охлаждающей жидкости двигателя, подлежащей циклическому регулированию. Модели с водяным охлаждением позволяют использовать охлаждающую жидкость двигателя для охлаждения смазочного масла, избегая возможного коксования масла из-за сильного нагрева турбины.

Повышение давления

Повышение давления означает повышение давления в коллекторе, которое создается турбонагнетателем во впускном тракте или, в частности, во впускном коллекторе, которое превышает нормальное атмосферное давление. Это также уровень наддува, показанный на манометре, обычно в барах, фунтах на квадратный дюйм или, возможно, в кПа. Это представляет дополнительное давление воздуха, которое достигается по сравнению с тем, что было бы достигнуто без принудительной индукции. Давление в коллекторе не следует путать с количеством или «весом» воздуха, который может пропускать турбонагнетатель.

Давление наддува ограничено, чтобы вся система двигателя, включая турбонагнетатель, находилась в расчетном рабочем диапазоне, путем управления перепускным клапаном, который отводит выхлопные газы от турбины на стороне выпуска. В некоторых автомобилях максимальный наддув зависит от октанового числа топлива и регулируется электроникой с помощью датчика детонации, см. Автоматический контроль производительности (APC).

Многие дизельные двигатели не имеют перепускных клапанов, потому что количество энергии выхлопных газов напрямую зависит от количества топлива, впрыскиваемого в двигатель, и небольшие колебания давления наддува не влияют на работу двигателя.

Wastegate

При вращении на относительно высокой скорости турбина компрессора втягивает большой объем воздуха и нагнетает его в двигатель. Когда объем выходного потока турбокомпрессора превышает объемный поток двигателя, давление воздуха во впускной системе начинает расти, что часто называется наддувом. Скорость вращения узла пропорциональна давлению сжатого воздуха и общей массе перемещаемого воздушного потока. Поскольку турбонагнетатель может вращаться до оборотов, намного превышающих то, что необходимо или на которые он способен безопасно, скорость необходимо контролировать.Вестгейт — это наиболее распространенная механическая система управления скоростью, которая часто дополняется электронным регулятором наддува. Основная функция вестгейта — позволить некоторой части выхлопных газов обходить турбину при достижении заданного давления на впуске.

Топливная эффективность

Поскольку турбонагнетатель увеличивает удельную мощность двигателя, двигатель также будет производить повышенное количество отходящего тепла. Иногда это может быть проблемой при установке турбокомпрессора на автомобиль, который не был рассчитан на высокие тепловые нагрузки.Это дополнительное отработанное тепло в сочетании с более низкой степенью сжатия (точнее, степенью расширения) двигателей с турбонаддувом способствует несколько более низкому тепловому КПД, который имеет небольшое, но прямое влияние на общую эффективность использования топлива.

Это еще одна форма охлаждения, которая оказывает наибольшее влияние на топливную эффективность: охлаждение заряда. Даже с учетом преимуществ промежуточного охлаждения общая компрессия в камере сгорания выше, чем в двигателе без наддува. Чтобы избежать детонации при одновременном извлечении максимальной мощности из двигателя, обычно добавляют дополнительное топливо в заряд с единственной целью охлаждения.Хотя это кажется нелогичным, это топливо не сжигается. Вместо этого он поглощает и уносит тепло, когда меняет фазу с жидкого тумана на газовый пар. Кроме того, поскольку он более плотный, чем другое инертное вещество в камере сгорания, азот, он имеет более высокую удельную теплоемкость и большую теплоемкость. Он «удерживает» это тепло до тех пор, пока оно не будет выпущено в поток выхлопных газов, предотвращая разрушительный удар. Это термодинамическое свойство позволяет производителям достигать хорошей выходной мощности с обычным топливным насосом за счет экономии топлива и выбросов.Оптимальное соотношение воздух-топливо (A / F) для полного сгорания бензина составляет 14,7: 1. Обычное соотношение A / F в двигателе с турбонаддувом при полном наддуве составляет примерно 12: 1. Более богатые смеси иногда используются, когда конструкция системы имеет недостатки, такие как каталитический нейтрализатор, который имеет ограниченную стойкость к высоким температурам выхлопных газов, или двигатель имеет степень сжатия, которая слишком высока для эффективной работы с заданным топливом.

Наконец, эффективность самого турбонагнетателя может влиять на эффективность использования топлива.Использование небольшого турбонагнетателя обеспечит быструю реакцию и низкую задержку на низких и средних оборотах, но может задушить двигатель на стороне выпуска и генерировать огромное количество тепла, связанного с перекачкой, на стороне впуска при повышении числа оборотов. Большой турбокомпрессор будет очень эффективным на высоких оборотах, но это нереально для уличного автомобиля. Технологии с регулируемыми лопастями и шарикоподшипниками могут сделать турбонагнетатель более эффективным в более широком рабочем диапазоне, однако другие проблемы не позволили этой технологии появиться в большем количестве дорожных автомобилей (см. Турбонагнетатель с изменяемой геометрией).В настоящее время Porsche 911 (997) Turbo — единственный производимый бензиновый автомобиль с таким турбокомпрессором. Одним из способов использования преимуществ различных режимов работы двух типов турбонагнетателей является последовательный турбонаддув, при котором используется небольшой турбонагнетатель на низких оборотах, а больший — на высоких.

Системы управления двигателем большинства современных транспортных средств могут контролировать наддув и подачу топлива в зависимости от температуры заряда, качества топлива и высоты, среди других факторов. Некоторые системы более сложные и нацелены на более точную подачу топлива в зависимости от качества сгорания.Например, система Trionic-7 от Saab обеспечивает немедленную обратную связь о возгорании, когда оно происходит с использованием электрического заряда.

Новый турбомотор 2,0 л FSI от Volkswagen / Audi включает технологию сжигания обедненной смеси и прямой впрыск для экономии топлива в условиях низкой нагрузки. Это очень сложная система, которая включает в себя множество движущихся частей и датчиков для управления характеристиками воздушного потока внутри самой камеры, что позволяет использовать расслоенный заряд с отличной атомизацией.Прямой впрыск также обладает огромным эффектом охлаждения заряда, что позволяет двигателям использовать более высокие степени сжатия и давления наддува, чем в типичном турбомоторе с впрыском через порт.

Детали автомобильной конструкции

Закон идеального газа гласит, что когда все другие переменные сохраняются постоянными, при повышении давления в системе увеличивается и температура. Здесь существует одно из негативных последствий турбонаддува — повышение температуры воздуха, поступающего в двигатель, из-за сжатия.

Турбо вращается очень быстро; наиболее пиковое значение между 80 000 и 200 000 об / мин (при использовании турбонагнетателей с низким моментом инерции, 150 000–250 000 об / мин) в зависимости от размера, веса вращающихся частей, давления наддува и конструкции компрессора. Такие высокие скорости вращения могут вызвать проблемы со стандартными шарикоподшипниками, что приведет к их выходу из строя, поэтому в большинстве турбонагнетателей используются жидкостные подшипники. Они имеют текучий слой масла, который задерживает и охлаждает движущиеся части. Масло обычно забирается из масляного контура двигателя. В некоторых турбонагнетателях используются невероятно точные шарикоподшипники, которые обеспечивают меньшее трение, чем жидкостные подшипники, но они также подвешены в полостях, демпфированных жидкостью.Более низкое трение означает, что вал турбины может быть изготовлен из более легких материалов, что снижает так называемую задержку турбонаддува или задержку наддува. Некоторые автопроизводители используют турбокомпрессоры с водяным охлаждением для увеличения срока службы подшипников. Это также может объяснить, почему многие тюнеры модернизируют свои стандартные турбины с опорными подшипниками (например, T25), которые используют упорный подшипник на 270 градусов и латунный опорный подшипник, который имеет только 3 масляных канала, до подшипника на 360 градусов, который имеет более мощный упорный подшипник. и шайба, имеющая 6 масляных каналов, чтобы обеспечить лучший поток, реакцию и эффективность охлаждения.Разрабатываются турбокомпрессоры с фольгированными подшипниками. Это устраняет необходимость в системах охлаждения подшипников или подачи масла, тем самым устраняя наиболее частую причину отказа, а также значительно сокращая турбо-лаг.

Для управления давлением воздуха на верхней палубе поток выхлопных газов турбокомпрессора регулируется перепускным клапаном, который обходит избыточный выхлопной газ, попадающий в турбину турбокомпрессора. Это регулирует частоту вращения турбины и мощность компрессора. Вестгейт открывается и закрывается сжатым воздухом из турбонагнетателя (давление на верхней палубе) и может подниматься с помощью соленоида для регулирования давления, подаваемого на мембрану вестгейта.Этим соленоидом можно управлять с помощью системы автоматического управления производительностью, электронного блока управления двигателем или компьютера управления послепродажным повышением. Другой метод повышения давления наддува заключается в использовании обратных и спускных клапанов, чтобы поддерживать давление на мембране ниже, чем давление в системе. Некоторые турбокомпрессоры (обычно называемые турбокомпрессорами с изменяемой геометрией) используют набор лопаток в выхлопном корпусе для поддержания постоянной скорости газа в турбине, такой же тип управления, как и на турбинах электростанций.Эти турбокомпрессоры имеют минимальную задержку, низкий порог наддува (с полным наддувом до 1500 об / мин) и эффективны при более высоких оборотах двигателя; они также используются в дизельных двигателях. [2] Во многих установках эти турбины даже не нуждаются в перепускном клапане. Мембрана, идентичная мембране на вестгейте, управляет лопатками, но требуемый уровень контроля немного отличается.

Первым серийным автомобилем, в котором использовались эти турбины, был ограниченный выпуск 1989 года Shelby CSX-VNT, по сути, Dodge Shadow с двигателем 2.Бензиновый двигатель 2л. В Shelby CSX-VNT использовался турбонагнетатель от Garrett, названный VNT-25, потому что он использует тот же компрессор и вал, что и более распространенный Garrett T-25. Этот тип турбины называется турбиной с регулируемым соплом (VNT). Производитель турбокомпрессоров Aerocharger использует термин «турбинное сопло с переменным сечением» (VATN) для описания этого типа турбинного сопла. Другие общие термины включают в себя турбину с изменяемой геометрией (VTG), турбину с изменяемой геометрией (VGT) и турбину с регулируемой лопастью (VVT). В 1990 году этот турбокомпрессор использовался на ряде других автомобилей Chrysler Corporation, включая Dodge Daytona и Dodge Shadow.Эти двигатели производили 174 лошадиных силы и 225 фунт-футов крутящего момента, такую ​​же мощность, как и стандартные 2,2-литровые двигатели с промежуточным охлаждением, но с крутящим моментом на 25 фунт-футов и более быстрым запуском (меньше турбо-лага). Однако двигатель Turbo III без VATN или VNT выдавал 224 лошадиных силы. Причины, по которым Chrysler не продолжает использовать турбокомпрессоры с изменяемой геометрией, неизвестны, но главной причиной, вероятно, было общественное стремление к двигателям V6 в сочетании с увеличением доступности двигателей V6, разработанных Chrysler.[3] Porsche 911 Turbo 2006 года имеет 3,6-литровую плоскую шестицилиндровую двигатель с двойным турбонаддувом, а в качестве турбин используются турбины BorgWarner с изменяемой геометрией (VGT). Это важно, потому что, хотя VGT использовались в усовершенствованных дизельных двигателях в течение нескольких лет и на Shelby CSX-VNT, это первый раз, когда технология была применена на серийном бензиновом автомобиле с тех пор, как в 1989 году были произведены 1250 двигателей Dodge. 90. Некоторые утверждали, что это связано с тем, что в бензиновых автомобилях температура выхлопных газов намного выше (чем в дизельных автомобилях), и это может иметь неблагоприятные последствия для тонких подвижных лопаток турбокомпрессора; эти агрегаты также дороже обычных турбокомпрессоров.Инженеры Porsche утверждают, что решили эту проблему с новым 911 Turbo.

Существует также тип турбонаддува, называемый центробежным (или просто с ременным приводом), который работает в некотором роде аналогично стандартному турбонагнетателю и в некотором смысле похож на нагнетатель. Поскольку он имеет ременной привод (выхлоп не используется), нет никаких задержек, однако наддув не является «бесплатным», как в стандартном турбонагнетателе. «Стоимость» — это дополнительное сопротивление кривошипу и, как следствие, снижение эффективности. Преимущества заключаются в отсутствии задержек, простоте настройки, поскольку не требуется никаких модификаций выхлопной системы, и, вероятно, более легком доступе для обслуживания.

Конструкции выпускного коллектора для двигателя с турбонаддувом

Конструкция выпускного коллектора для двигателей с турбонаддувом

Конфигурация выпускных коллекторов, используемых в двигателях с турбонаддувом, может существенно повлиять на производительность двигателя. Корпус турбины турбокомпрессора имеет относительно небольшую площадь горловины в сопловой части для создания высокой скорости выхлопных газов на входе в рабочее колесо турбины. Эта высокая входная скорость необходима для того, чтобы турбина могла вырабатывать мощность, необходимую для привода крыльчатки компрессора.Типичный треугольник входных скоростей показан ниже:

Небольшая площадь сечения корпуса турбины ограничивает поток выхлопных газов из цилиндров и приводит к высокому давлению в выхлопном коллекторе перед корпусом турбины. Поскольку поршни в 4-тактных двигателях должны противодействовать этому давлению при вакуумировании цилиндров, уровень давления в выпускном коллекторе вызывает паразитную потерю мощности двигателя.

Если все цилиндры двигателя выпускаются в общий коллектор, давление в коллекторе будет оставаться на высоком уровне для всех поршней двигателя, когда они выталкивают оставшиеся выхлопные газы из цилиндров при движении выхлопа вверх.

Таким образом, желательно разделить выпускной коллектор на несколько ветвей, чтобы ни один последовательный импульс выхлопа не попал в общую ветвь. Например, в рядном 6-цилиндровом двигателе, который имеет порядок работы 1-5-3-6-2-4, выгодно разделить коллектор на две ветви, позволяя цилиндрам 1, 2 и 3 выпускать воздух. в одну ветвь, а цилиндры 4, 5 и 6 выпускать в другую ветвь. Это позволяет уровню давления из цилиндра номер 1 упасть до низкого уровня до того, как цилиндр номер 3 выйдет в эту ветвь и т. Д.для каждого оставшегося цилиндра. Результатом такого разделения коллектора является низкое среднее давление в ответвлениях коллектора, что снижает насосные потери двигателя, увеличивает выходную мощность, снижает расход топлива и снижает дымность при ускорении.

Принципиальная диаграмма, которая иллюстрирует изменение давления выхлопных газов в 6-цилиндровом двигателе с разделенным коллектором, приведена ниже:

Разделив импульсы выхлопа по разделению коллектора, давлению в каждой ветви позволяют упасть до низкого значения до того, как выйдет из следующего цилиндра. в той ветке.Сплошная линия на приведенной выше диаграмме представляет давление в ветви цилиндров 1-2-3, а пунктирная линия представляет давление в ветви 4-5-6 цилиндров. Это разделение коллектора показано ниже, где каждая ветвь соединена с одним отверстием в разделенном корпусе турбины.

В 4-цилиндровом двигателе с порядком зажигания 1-3-2-4 цилиндры должны быть разделены: цилиндры 1 и 2 в одной ветви, а цилиндры 3 и 4 — в другой. Это схематично показано ниже:

В случае двигателя V-8 разделение коллекторов усложняется.Существует ряд различных порядков зажигания, которые можно успешно использовать в 4-тактных двигателях V-8. Один из часто используемых порядков стрельбы — 1-8-4-3-6-5-7-2. Эти цилиндры следует разделить на четыре ветви с помощью двух турбонагнетателей с разделенными корпусами турбин; по одному с каждой стороны двигателя. Это можно проиллюстрировать следующим образом:

Вышеупомянутое разделение коллектора будет одинаково хорошо работать с несколькими другими командами увольнения. Это:

1-8-7-2-6-5-4-3
1-5-4-8-7-2-6-3
1-6-2-5-8-3-7 -4
1-2-7-8-4-5-6-3

Если требуется максимальная производительность двигателя, то разделенные выпускные коллекторы являются абсолютной необходимостью; либо изготовленные, либо литые.По сравнению с неразделенными коллекторами, правильное разделение выпускных коллекторов, используемых в двигателях с турбонаддувом, приведет к очень заметному улучшению характеристик двигателя и транспортного средства.

Чтобы сэкономить турбо, держите масло чистым — и вашу ногу

Турбокомпрессоры — это чувствительное оборудование, которое многократно используется в повседневных условиях вождения. Они проходят через ад, и чтобы выжить, им нужно чистое масло, чистые воздушные фильтры, продувочные трубы, которые не имеют ограничений, и охлаждение выхлопных газов до того, как выключат ключ.

Им также нужна мягкая правая ступня. В течение многих лет я писал, что водителям грузовиков-полуприцепов нужно вести машину так, как будто между правой ногой и дроссельной заслонкой стоит сырое яйцо — легко и легко. Чтобы турбокомпрессор оставался живым и здоровым, вернитесь к основам вождения.

Грязное масло убьет турбо; он атакует турбокомпрессор быстрее, чем любая другая часть дизельного двигателя. На подъеме турбонагнетатель может вращаться со скоростью 112 000 об / мин, а моторное масло — единственное, что поддерживает его охлаждение и смазку, а также предотвращает соприкосновение металла с металлом.Вот почему моторное масло должно быть чистым.

Наконец, дайте двигателю остыть, прежде чем выключать ключ. Прежде чем вынимать ключи из замка зажигания, температура выхлопных газов должна быть ниже 300 градусов.

Вот несколько фотографий поврежденных турбин и их причин:

Этот сломанный вал турбины был вызван слишком сильным нажатием на акселератор, в результате чего колесо турбины слишком быстро раскручивалось. Это также может быть вызвано быстрым замедлением. Дроссельную заслонку нужно вращать мягко в обе стороны.

В это турбинное колесо попали части двигателя, прошедшие через выпускной коллектор.

Эти тепловые трещины возникли из-за того, что двигатель тащил за собой на холмы со скоростью от 1000 до 1300 об / мин, что слишком мало. Такие трещины также вызваны отсутствием работающего пирометра, засорением воздушного фильтра или утечками в системе наддувочного воздуха.

Грязное масло стерло эти подшипники турбины с латунными или медными втулками. Подшипник вращается вдвое медленнее вала турбины: на холостом ходу подшипники вращаются со скоростью 4000 об / мин, а колеса и вал — 8000 об / мин.

— Брюс Маллинсон — владелец Pittsburgh Power, мастерской по оценке характеристик двигателей в Саксонбурге, штат Пенсильвания.

Что делать, когда масло выходит из вашей выхлопной трубы

Когда вы едете по дороге в темноте клубящийся дым начинает выходить из вашей выхлопной трубы… это определенно заметно, не так ли? Вы не пропустите его, как и другие водители на дороге!

А как насчет более скрытых проблем, таких как утечки масла? Как водители узнают, что масло выходит из выхлопной трубы, и что с этим делать?

Утечка масла из выхлопной трубы может привести к более серьезным проблемам, и лучше всего как можно скорее отнести свой автомобиль на ремонт к специалисту.

Вот несколько предупреждающих знаков о том, что возникла проблема и что вам необходимо как можно скорее пройти профессиональную оценку.

Проверьте свой клапан PCV

Голубоватый дым, исходящий от свечей зажигания, и снижение расхода топлива — вот некоторые из первых предупреждающих знаков, на которые следует обратить внимание. Почему? Потому что, когда клапан из ПВХ забивается, это может привести к резкому холостому ходу или, что еще хуже, к остановке.

Если в двигателе повышается давление и масло выходит за уплотнения и попадает в выхлопную трубу, клапан необходимо заменить.

Замена направляющих клапанов

Направляющие клапанов отводят тепло от процесса сгорания от выпускного клапана в головку блока цилиндров. Когда направляющие клапана изнашиваются, смазка из моторного масла просачивается через уплотнения вокруг валов.

Когда масло протекает мимо клапанов, оно попадает в выхлопные газы двигателя. Эта проблема связана с голубоватым дымом двигателя, который вы можете заметить во время вождения.

Ищите перегоревшую прокладку головки

Прокладка головки действует как уплотнение между головкой двигателя и блоком.Вам нужно будет обратить внимание на явные симптомы, такие как снижение производительности двигателя, его перегрев и чрезмерное сжигание топлива. Все эти проблемы могут способствовать утечке масла из выхлопной трубы.

В этом случае для нормальной работы двигателя необходимо заменить прокладку головки блока цилиндров.

Обнаружение цветов дыма

Если вы действительно хотите сыграть в детектива, обратите внимание на цвета, выходящие из выхлопной трубы — они могут быть знаком, указывающим на то, что масло на самом деле делает с выхлопом.Например, голубоватый дым означает, что масло течет в камеру сгорания. Черный дым означает, что двигатель не сжигает катализаторы сгорания. Белый дым является признаком возможной неисправности поршневых колец и требует полного осмотра автомобиля.

В большинстве случаев, если вы заметили масло и даже дым, выходящие из выхлопной трубы, вам следует пропустить метод «сделай сам» и сразу обратиться к своему надежному автомеханику. В Living the Dream Auto Care мы можем решить ваши проблемы и вернуть вашу машину на шоссе в кратчайшие сроки.Звоните нам сегодня!

Типы паровых турбин — обзор

14.2.2 Вращающееся щеточное уплотнение

Конструкция барабанного ротора типична для реактивного типа паровой турбины. В секциях турбин ВД и ПД предпочтительны турбины реактивного типа из-за их высокого КПД. В конфигурации барабанного ротора пространство для межступенчатого корневого уплотнения очень ограничено. В отличие от традиционной конфигурации колеса и диафрагмы, в конструкции ротора барабана нет места для колеса ротора. В результате нельзя применять обычные подпружиненные уплотнения.Вместо этого зубья уплотнения часто прикрепляются к ротору или обрабатываются как неотъемлемая часть ротора для образования уплотнения. Преимущество зубьев ротора заключается в том, что на неподвижный компонент можно надежно нанести истираемое покрытие, чтобы обеспечить небольшой зазор и избежать образования грибовидных грибов на зубьях уплотнения при трении. Пожалуй, наиболее эффективным лабиринтным уплотнением является J-образное уплотнение с истираемым покрытием. На рис. 14.6 показано типичное истираемое J-образное уплотнение в местах расположения корня сопла.

Рисунок 14.6. J-образные уплотнения внутренней крышки форсунки с истираемыми материалами.

J-образные уплотнения способны очень хорошо истирать и разрезать истираемые покрытия. Однако они не соответствуют требованиям. Очень узкий зазор может затруднить запуск турбины и поворотного механизма. После трения во время переходных процессов рабочий зазор может быть большим. Следовательно, податливые и плотные уплотнения необходимы в конфигурации ротора барабана больше, чем в конфигурации колеса и диафрагмы.

Щеточные уплотнения снова являются хорошим решением для уплотнения корневой части форсунки, они соответствуют требованиям и работают более плотно, чем лабиринтные уплотнения.Однако существует несколько факторов, ограничивающих возможность применения традиционных щеточных уплотнений в местах расположения корней сопла. Одной из проблем, особенно в паровых турбинах, является нагрев от трения из-за трения щетины о ротор. Помимо износа щетинок, этот нагрев может также привести к неравномерному тепловому росту ротора, вызывая роторную динамическую нестабильность [7,8]. Кроме того, для конфигурации турбины с ротором барабана применимость стандартных щеточных уплотнений в месте расположения основания сопла ограничена пространственными ограничениями и методами конструкции сопла.

Традиционные щеточные уплотнения прикрепляются к стационарному компоненту турбомашины, где только гибкие кончики щетинок щеточного уплотнения входят в зацепление с ротором во время работы турбомашины, образуя динамическое уплотнение. Традиционные щеточные уплотнения также обычно включают щетинки, расположенные под углом по окружности относительно ротора. Во вращающемся щеточном уплотнении, как показано на рис. 14.7, набор щетинок прикреплен к ротору турбомашины и трется о статические компоненты. Щетинки расположены под углом, по существу, в осевом направлении и поддерживаются конической задней пластиной.Неподвижный конец вращающейся щетины прикрепляется к боковой пластине с помощью сварки или механического крепления, например зажима. Затем узел уплотнения закрепляется в кольцевой канавке ротора [8].

Рисунок 14.7. Вращающееся щеточное уплотнение у основания сопла.

Помимо экономии места на статоре, преимущество вращающегося щеточного уплотнения заключается в том, что тепло, выделяемое щеточным уплотнением, будет оказывать меньшее влияние на изгиб ротора, чем обычные щеточные уплотнения, поскольку кончики щетинок скользят по неподвижному компоненту.Тепло, генерируемое при трении кончиков набора щетинок о неподвижный компонент, частично переходит в неподвижный компонент, а частично отводится за счет утечки через набор щетинок, при этом меньше тепла поступает в ротор. Напротив, в обычных щеточных уплотнениях кончики щетинок трутся о поверхность ротора, что непосредственно нагревает ротор. Этот нагрев ротора может вызвать изгиб ротора и дальнейшее увеличение нежелательного неравномерного нагрева.

Подобно стандартным щеточным уплотнениям, вращающееся щеточное уплотнение состоит из набора щетинок и при установке образует кольцо.Однако вращающееся щеточное уплотнение прикреплено к ротору, а не к статору. Кроме того, набор щетинок наклонен по существу в осевом направлении, а не в основном по окружности, относительно оси вращения. Уплотнение дополнительно включает коническую заднюю пластину, которая частично поддерживает набор щетинок.

На рис. 14.7 показан пример того, как фиксированный конец набора щетинок может быть установлен или прикреплен к ротору. Коническая опорная пластина и фиксированный конец набора щетинок могут быть вставлены в канавку и прикреплены к ротору с помощью гребня, установочных винтов, ласточкиного хвоста или комбинации этих методов.

В дополнение к характеристикам герметичности конструкция вращающегося щеточного уплотнения должна соответствовать требованиям к напряжению, жесткости и гибкости. Эти показатели зависят от сложного взаимодействия сил между щетинками, зависящих от давления, центробежных сил и сил трения между опорной пластиной и пакетом щетинок, а также от геометрии уплотнения. Во вращающихся щеточных уплотнениях дополнительные конструктивные параметры, такие как наклон щетинок в двух разных плоскостях, а также скорость ротора, усложняют эти взаимодействия.Поэтому для успешного проектирования вращающихся щеточных уплотнений необходимо строгое понимание физических факторов.

Вращающееся щеточное уплотнение — все еще относительно новая технология уплотнения. Соотношение выгод и затрат, долговечность уплотнения и удобство обслуживания еще предстоит доказать. Тем не менее, он действительно открывает пространство для применения щеточных уплотнений в турбомашинном оборудовании, включая уплотнения вала лонжерона в авиационных двигателях и промежуточных ступенях в газовых турбинах.

Как поменять прокладку головки

Майк Бамбек, автомедиа.com
Сложность: Сложность
Расчетное время: 300 минут

Понимание того, почему относительно недорогая прокладка головки так дорого стоит заменить означает сначала понять, что находится между ними. В блоке двигателя находятся поршни, которые перемещаются вверх и вниз в отверстиях цилиндров. Поршни соединены со шатунами, которые, в свою очередь, соединены с вращающимся коленчатым валом от которого автомобиль получает свою мощность. К верхней части двигателя прикручен болтами. ГБЦ. Внутри ГБЦ расположены клапаны, которые открываются и закрываются. для впуска воздуха и топлива в цилиндры и удаления отработавших выхлопных газов.

Прокладка головки зажата между блоком цилиндров и цилиндром. голова. Прокладка головки блока цилиндров в процессе внутреннего сгорания, а также предотвращает смешивание охлаждающей жидкости и масла, когда две жидкости движутся из блок двигателя к головке блока цилиндров. Сами прокладки головки не очень дорогие. То, что в конечном итоге обходится дорого, так и получается. Прокладка головки ремонт означает выполнение основной операции по снятию головки двигателя.

Кипячение
Прокладка головки блока цилиндров может выйти из строя по ряду причин, ни одна из которых не годится.Двигатель перегрев — самый популярный виновник. Металл блока цилиндров и при перегреве голова чрезмерно расширяется. Это расширение может ущемить прокладку головки до точки, где она выйдет из строя. Следующие основные причины головы неисправности прокладки являются преждевременным зажиганием двигателя или детонацией. Суть этих двух Условиями является несвоевременное сгорание, происходящее в цилиндрах. Внутренний сгорание должно происходить как при закрытых клапанах, так и при поршневом в верхней части его рабочего хода. Несвоевременное сгорание создает дополнительную нагрузку на клапаны, поршни и прокладка головки.Как ни странно, перегрев двигателя может также увеличивают вероятность преждевременного воспламенения и детонации. Звук из Звук или стук двигателя — это коварный звук повреждения.

Замена прокладки головки
Замена прокладки головки блока цилиндров — задача не для среднего мастера. Хотя срок годности прокладки головки блока цилиндров истекает из-за старости, это случается редко, обычно это означает все остальное тоже изношено до замены. Растрескивание Отключив голову от двигателя и заглянув внутрь, можно обнаружить, что все остальное тоже были полностью приготовлены.Лучший способ предотвратить выход из строя прокладки головки блока цилиндров — поддерживайте систему охлаждения в рабочем состоянии и убедитесь, что двигатель работает. настраивается и работает правильно. Выход из строя термостата за 5 долларов или охлаждающей жидкости за 3 доллара шланг может привести к повреждению двигателя на тысячи долларов в спешке.

Практические советы
Ниже приведены несколько общих советов по замене прокладки головки блока цилиндров. Для процедуры замены прокладки головки блока цилиндров для конкретного автомобиля, всегда консультируйтесь с руководство пользования.

Шаг 1: Переход к прокладке головки блока цилиндров может быть сложным процессом.Всегда отмечайте и проиндексируйте все перед удалением. В этом случае было проще удалить выпускной коллектор, головка и впуск как единое целое.

Добавить комментарий

Ваш адрес email не будет опубликован.