ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Типы двигателей внутреннего сгорания. V-образный, W-образный, U-образный, X-образный, рядный, оппозитный | AQUAdancing

Двигатель внутреннего сгорания предназначен для преобразования энергии сгорания топлива в механическую работу.

Топливо сгорает в камерах сгорания — в цилиндрах. Чем больше объём камер сгорания — тем больше мощность автомобиля.

Увеличение мощности двигателя путём увеличения совокупного объёма камер сгорания эффективно только увеличением числа цилиндров, а не увеличением объема одного или малого числа цилиндров (так как увеличение в размерах деталей поршневой группы приведет к их хрупкости и низкому КПД).

Пример рядного 4-х цилиндрового двигатель

Пример рядного 4-х цилиндрового двигатель

Для примера — рядный 4-х цилиндровый двигатель может иметь объем как 0,8 литра, так и 2,5 литра, это оптимальный совокупный объём камер сгорания для 4-х цилиндров. Если, при проектировании двигателя, требуется поднять его мощность, а из объёма 2,5 литра уже всё «выжали», то эффективнее будет установить турбонаддув или увеличить число цилиндров, так как простое увеличение камер тех же 4-х цилиндров приведет к низкому КПД и хрупкости поршня.

Рядные двигатели внутреннего сгорания

Так вот, количество цилиндров невозможно увеличивать в один ряд, если место для установки двигателя ограничено, поэтому пришлось придумать разные варианты расположения цилиндров, так появились V-образный, W-образный, U-образный, X-образный двигатели.

Рядный двигатель — самый простой в эксплуатации и надежный мотор, обозначается Lx, где L — рядный, x — число цилиндров. На автомобили устанавливаются рядные двигатели до 6 цилиндров, свыше — на трактора, и крупную технику. В авиа и судостроении до 12 цилиндров в ряд.

V-образный двигатель внутреннего сгорания

V-образный двигатель — один из самых распространённых моторов на данное время. Конструкция предполагает расположение цилиндров в виде буквы V, под углом от 10 до 120 градусов. V-образный двигатель решает проблему уменьшения длины двигателя и уравновешивания (уменьшения вибраций). Конструкция при этом усложняется, появляется два блока цилиндров вместо одного. Обслуживание двигателя становится сложнее и дороже.

Пример V-образного двигателя

Пример V-образного двигателя

V-образные двигатели устанавливаются на мотоциклы, автомобили, самолёты и другую крупную технику.

Оппозитный двигатель

внутреннего сгорания

Оппозитный двигатель является разновидностью V-образного, только цилиндры у него развёрнуты на 180 градусов.

Пример оппозитного двигателя

Пример оппозитного двигателя

Вы наверняка встречали оппозитный двигатель вживую — он устанавливался на советские мотоциклы «Днепр» и «Урал» в двухцилиндровом исполнении.

Оппозитный двухцилиндровый двигатель, установленный на мотоцикл

Оппозитный двухцилиндровый двигатель, установленный на мотоцикл

Оппозитный двигатель является самым уравновешенным и имеет самый низкий центр тяжести, поэтому он получил большое распространение при проектировании легковых автомобилей. Например в Porsche 911 используется 6-и цилиндровый оппозитный двигатель.

W-образный двигатель внутреннего сгорания

W-образный устроен почти как V-образный, но вместо двух рядов цилиндров имеет три или четыре ряда цилиндров, используется в мотоциклах, автомобилях и авиации.

Конструкция моторов с четырьмя рядами цилиндров значительно снижает габариты двигателя и позволяет устанавливать высокомощные двигатели под капоты легковых машин.

W-образные моторы устанавливались в Audi A8, VW Touareg, Bugatti, Bentley. Это высокомощные двигатели.

U-образный двигатель внутреннего сгорания

U-образный двигатель — эта два рядных двигателя, коленвалы которых связаны цепью или шестернями, устанавливался такой двигатель на Bugatti Type 45, так же применялся в авиа, судостроении.

X-образный двигатель внутреннего сгорания

X-образный двигатель имеет 4 ряда цилиндров, расположенных крестом, как правило, если смотреть в поперечном разрезе. Такой тип двигателя встречается крайне редко. Несмотря на максимальную уравновешенность и компактность, применение такого двигателя поведет к большим проблемам при эксплуатации и обслуживании.

X-образный двигатель

X-образный двигатель

X-образный двигатель применялся при строительстве военных самолётов, имел 24 цилиндра, а в основе проекта лежал двигатель V-12.

Танковый X-образный двигатель.

Танковый X-образный двигатель.

В статье были приведены типы поршневых двигателей внутреннего сгорания. Кроме поршневых, бывают газотурбинные, роторно-поршневые, реактивные, турбореактивные, турбовинтовые двигатели.

Роторный двигатель. «Двигатель Ванкеля»

«Двигатель Ванкеля» по типу относится к роторно-поршневым двигателям внутреннего сгорания, именно поэтому он подробно рассмотрен в другой статье — ССЫЛКА

Спасибо за внимание! Если было интересно — ставьте лайк!

ПОДПИСАТЬСЯ НА ПАБЛИК «AUTOdansing» ВКОНТАКТЕ

Навигация по каналу — кликай по ССЫЛКЕ

Типы поршневых ДВС по взаимному расположению цилиндров | Мудрый Каа

Ни для кого не секрет, что сердцем любого автомобиля является двигатель — он многое определяет в конструкции аппарата (ведь ДВС — самый тяжелый агрегат автомобиля!), как-то особенно ассоциируется с брендом производителя, к выбору силовой установки относятся с большим вниманием и ответственностью, наконец, двигатель — это то, что с каждым годом все больше совершенствуется и модернизируется.

Первый по-настоящему удачный бензиновый ДВС создан немецким изобретателем Готлибом Даймлером при сотрудничестве с Вильгельмом Майбахом в 1883 году (патент N 28022). Это был четырехтактный одиноцилиндровый агрегат, с диаметром поршня 70 мм, и его ходом 120 мм, рабочий объём 462 см3, мощность 0,8 кВт (1,1 л.с.) при 700 об/мин. «Мобиль» Даймлера, построенный в 1885 году, развивал с этим мотором «потрясающую» максимальную скорость — 16 км/ч.

Но с течением времени этой мощности и этой скорости становилось мало, требовались более сильные движки, первоначально — для грузовых автомобилей и автобусов, чуть позднее — для спортивных аппаратов. Самым логичным решением на тот момент показалось увеличение рабочего объема, т.е. увеличение диаметра поршня/цилиндра и его хода. Однако бесконечным такое движение быть не могло — увеличение хода поршня вело за собой неизбежное увеличение длины шатуна, что требовало увеличения его прочности на излом, а это означало, что увеличивалась и его толщина. В сумме это давало увеличение веса поршня, шатуна, а так же площадь контакта стенок поршня со стенками цилиндра, т.е. увеличение трения, что сводило на нет результат такого «форсирования» двигателя. И это — всего лишь незначительная часть возникших проблем. Хотя… известны примеры одноцилиндровых двигателей объемом под 2,5 литра!!! Ужас, правда?

Вопрос требовал иного решения, и оно было найдено!

Рядные ПДВС (Поршневые Двигатели Внутреннего Сгорания)

Действительно, логично! Почему бы вместо одного цилиндра не использовать несколько, с несколькими шатунами, объединенными с одним коленчатым валом? Естественно, первыми появились двухцилиндровые двигатели, за ними — четырехцилиндровые. Стараясь вытащить наибольшее количество «кобыл», конструктора на заре автомобилестроения создавали просто гигантские моторы. Например, на автомобили «Руссо-Балт» С24/30 устанавливался четырехцилиндровый рядный двигатель объемом 4501 см. куб., мощностью 30 л.с., то есть удельная мощность составляла всего 6,67 л.с. на литр объема — показатель, на сегодняшний день, просто смешной.

Сегодня рядные двигатели бывают двух-, трех-, четырех-, пяти- и шестицилиндровые, но в истории известны примеры и восьмицилиндровых рядных моторов — на автомобилях ГАЗ-М1 (тогда, в 1935 году, Горьковцы не смогли освоить выпуск V-образного восьмицилиндрового Ford-BB). Недостатки такого мотора налицо — большая длина, что приводит к увеличению базы автомобиля и худшему балансу по осям. Кстати, трех- и пятицилиндровые двигатели не так уж и уступают в мощности своим четырех- и шестицилиндровым братьям. Причина — намного меньшее трение, а ведь казалось бы — отрезали всего один цилиндр!

В настоящее время у каждого производителя есть в линейке хотя бы один рядный двигатель, причины — простота производства, малые габариты и вес, высокая ремонтопригодность.

Минусы так же очевидны — ограничение по длине, а, следовательно, ограничение по количеству цилиндров, и, результат — жесткое ограничение по мощности. Кроме того — увеличение числа цилиндров вызывает удлинение коленчатого вала (и увеличение его веса!!!), что означает, кроме новых потерь на трение, увеличение момента инерции. А еще- малая сбалансированность мотора.

Сегодня с рядных двигателей вытаскивают до 70-80 л.с. с литра объема, и это с серийных атмосферных, а со спортивных и турбинированных — еще больше. Кстати, самые быстрые японские автомобили сегодня оснащаются рядными шестерками.

V-образные ПДВС

Уже в конце XIX века конструктора отчетливо понимали, что ряд цилиндров — временное решение. А что говорить о мотоциклах, где, в целях упрощения трансмиссии, двигатель располагался не продольно, а поперечно? На мотоцикле, как и на автомобиле -мотора много не бывает.

И сразу — исторический курьез. Сам V-образный двигатель изобрел и запатентовал в 1889 году Вильгельм Майбах, работая все у того же Г. Даймлера. То есть изобретатель — немец! Но такая компоновка мотора называется «американской».

И тому есть причина: европейские мотоциклы были меньшей длины, чем американские — способствовал стиль езды (в Европе — прямо, в США — вольготно развалившись и вытянув ноги). И меняться консервативное европейское общество отказывалось наотрез. В то же время с США были самые большие доходы на душу населения и самые большие непокоренные территории, т.е. была и необходимость и возможность производить более дорогие и более мощные двигателя. Немногим позже, когда в 1911 году заводская команда «Indian» совершила налет на остров Мэн, где проводилась гонка «Турист Трофи». Американцы на V2 устроили «1-цилиндровым» европейцам полный разгром, заняв первые три места, а потом заглянули на трек «Бруклэндз», где установили целую серию рекордов, европейцы взялись за голову, и тоже обратили свое внимание на V-образники.

V-образный двигатель, имеющий возможность прижиться на автомобиле, появился чуть раньше тех памятных гонок. В начале века и авиация и автомобилестроение развивалось одновременно и параллельно, нередко подбрасывая друг другу дельные идеи, так получилось и в 1905 году, когда французский изобретатель Л. Левавассер построил V-образный двигатель водяного охлаждения «Антуанет», нашедший широкое применение не только в авиации, но и в автомобилестроении.

Вполне естественно, что первые V-образники использовались на грузовиках и автобусах, т.е. там, где большая мощь просто жизненно необходима. Ну и, конечно, на танках, когда они, наконец появились.

Ставить такие моторы на легковые автомобили долгое время считалось безумием и баловством, но, все же, потребитель взял верх над рынком. Одними из первых в освоении V-образников стал Генри Ройс. Ну и, конечно, Генри Форд — куда без него? Именно с его подачи в СССР и была предпринята одна из первых попыток создания V-образного двигателя — в 1933 году по договору от 1929 года с заводом ГАЗ Форд передал на изучение автомобиль Ford-V8-40 с двигателем V8 Ford-BB, послуживший прототипом ГАЗ-М1. Передать-то передал, а вот технологию оставил при себе. ГАЗовцы долго бились, стараясь освоить выпуск V8, но, в результате остановились на рядной восьмерке.

Вообще, кроме достоинств у V-образного ПДВС есть и свои недостатки — куда без них? В частности, на той же длине коленчатого вала находится в два раза больше поршней, а, значит шатунов, т.е. шатуны необходимо делать тоньше, чем на рядных двигателях. Еще одна проблема — система впрыска топливо-воздушной смеси — большой угол развала блоков цилиндров (порядка 45-90 градусов) вызывает необходимость использования на каждом блоке свою головку, свои топливные и воздушные шланги, а здесь уже видится проблема равномерной подачи ТВС. И это не все! Еще есть проблемы большой трудоемкости производства и ремонта двигателя.

Но малая длина при такой же мощности и большая сбалансированность мотора сделало V-образную компоновку одной из самых востребованных. К сожалению, в России такие моторы ставятся, большей частью, только на грузовики, автобусы и танки — производители легковых автомобилей освоить их масштабное серийное производство не смогли или не захотели (об этом история умалчивает).

И, все же, справедливости ради, стоит отметить успешные отечественные V-образники. Например — ГАЗ-13 «Чайка», восьмицилиндровый V-образный бензиновый двигатель объемом 3500 см. куб., мощностью 190 л.с. при 4200 об/мин, а так же ЗИЛовские 114 (V8, объем 6960 см.куб., мощность 300 л.с. при 4400 об/мин) и 117 (V8, 7680 см. куб., 315 л.с.). Хотя, все это — моторы едва ли не единичной сборки для советских «членовозов», а для них, как для детей, шло только лучшее. Что касается двигателя ГАЗ-13, то его ставили даже на БТРы. Чем не характеристика? Из «гражданских» разработок можно вспомнить опытный шестицилиндровый ГАЗ-24-11, нашедший свое место, кстати, и в автоспорте.

Второе возвращение в Европу «американского» двигателя произошло в начале 1960х годов, уже в виде V8, по сути — самого распространенного и сбалансированного двигателя. Именно с появлением такого мотора и появилась возможность создания скоростных родстеров, с которых и началось завоевание рынка США европейскими спортивными автомобилями.

П-образные ПДВС

Вообще, П-образники (т.н. схема Цоллера) в массовом производстве не прижились, почему — об этом ниже. Изначально, как и V-образники, такие моторы применялись на мотоциклах. Первый, по-настоящему удачный опыт относится к 1933 году, когда немецкая фирма (опять немецкая!) DKW начала широко применять подобную компоновку на своих мотоциклах, в том числе — гоночных. Во второй половине 1930х годов это были самые мощные и быстрые мотоциклы в классах 250 и 350 см. куб. С 1934 по 1939 год — всего за пять лет — мотоциклы DKW завоевали 7 чемпионских титулов на чемпионатах Европы (а их конкурентами были BMW, NSU и Silver Arrow — фирмы очень и очень серьезные!), и взяли первое место в гонке «Tourist Trophy» 1938 года!!!

В Советском Союзе П-образниками так же оснащались исключительно мотоциклы — тот же «Иж». Кстати, едва ли не единственный пример использования двигателя с двухпоршневой схемой Цоллера на автомобилях — Советские рекордные автомобили «Звезда» конструкции А. Пельтцера — на «Звезде-1» 1946 года стоял двигатель DKW-ULD350 с водяным охлаждением и поршневым нагнетателем.

Что же представляет из себя П-образный двигатель? Два цилиндра объединены общей камерой сгорания. Поршень, ходящий в одном из цилиндров, управляет открытием и закрытием впускных окон. Поршень другого «командует» выпускными. Выпускной поршень соединен при помощи шатуна с коленчатым валом обычным способом; шатун перепускного поршня присоединяется к боковой проушине на нижней головке выпускного шатуна, т.е.
кинематика кривошипного механизма дает возможность при ходе поршней вверх сначала перекрыть выпускные окна, а чуть позже — перепускные.

Преимущество такой схемы заключается в сдвиге фаз распределения выпускных и перепускных окон. В момент прохода поршнями н. м. т. перепускной поршень несколько отстает от выпускного и перепускные окна закрываются позднее выпускных, благодаря чему можно с успехом применить подачу горючей смеси под давлением от нагнетателя с минимальными потерями на выпуск.

По сути дела П-образный цилиндр представляет собой согнутый цилиндр двигателя с поршнями, двужущимися в противоположных направлениях.

Это в теории. На практике все гораздо сложнее. Во-первых, определенную проблему представляет устройство газораспределительного механизма. Во-вторых, низкая степень сжатия делает П-образники практически бесполезными без организации наддува, но, зато, для наддувных схем «цилиндр Цоллера» — едва ли не идеальное решение!

Крест в развитии П-образных ДВС поставила FIM, запретившая использование наддува в мотоциклетных соревнованиях. Для рядовых потребителей такая схема оказалась слишком дорогой, слишком сложной в эксплуатации, и, наконец, слишком «прожорливой».

Y-образные ПДВС

Эти моторы, как и V-образники, пришли из авиастроения, и на гражданских автомобилях особо не прижились. В принципе, Y-образные двигатели — частный случай весьма распространенного на заре авиастроения (да и после!) авиационного лучевого или звездообразного двигателя.

Если бы не рекордные заезды начала ХХ века, то, возможно, Y-образники так никогда и не встали бы на автомобиль. Но было время, когда безумно храбрые гонщики устанавливали на болиды, больше напоминающие обычные тележки, чудовищные 20-ти, или, даже 40-ка литровые 3-лучевые многорядные моторы, развивая на них свыше 300 км/ч!

Одним из немногих был автомобиль «White Triplex» с тремя авиационными Y-образными моторами, суммарный объем которых составлял 81,2 литра, а суммарная мощность — 1500 л.с. В 1928 году на этом чудовище Рэй Кич в 1928 году показал скорость в 334 км/ч!

Плюсы Y-образной компоновки очевидны — меньшая длина, большая виброустойчивость и сбалансированность.

Из минусов — большую высоту, сложность производства и эксплуатации (целых три головки блока цилиндров!!!), и очень большой нераспределенный вес.

В результате, минусы перевесили плюсы, и зведообразники остались в авиации. Впрочем, нашлось им применение на суше и не только — сегодня моторы такой компоновки с успехом применяются на тепловозах и на судах. В последнем случае это просто суперчудовищные моторы — три-семь лучей, и семь-двенадцать рядов.

Оппозитные ПДВС

Вообще, эти двигатели можно считать частным случаем V-обазников, у которых угол между цилиндрами составляет 180 градусов. Кстати, что в первую очередь приходит в голову, слыша слово «оппозитник»? Porsche? Subaru Impreza? Да, это автомобили, с оппозитными двигателями, но в России они появились задолго до них. Вспомним «ушастый» мотоцикл «Урал» — потому он и ушастый, что стоит на нем оппозитный двухцилиндровый двигатель с воздушным охлаждением!

Впервые, как и большая часть моторов, оппозитники были опробованы на мотоциклах. Сразу выявились плюсы Boxer’ов (так называют оппозитные ДВС в англоязычных странах) — относительная компактность (малая высота — да, но, при этом — большая ширина!), неплохая сбалансированность и вибронагруженность, и отличная приемистость. Еще один несомненный плюс — низкий центр тяжести транспортного средства с таким ДВС, что обусловлено его малой высотой. Подумать только! В 1960х-1970х годах конструкторы спортивных автомобилей «опрокидывали» рядники на бок для снижения центра масс, а здесь — готовое решение!!!

Кстати, именно во многом из-за этого (а еще из-за малой длины) оппозитники прижились на автомобилях Porsche. Первый опыт применения Boxer’ов на автомобилях, хотя и принадлежит тому же Фердинанду Порше (обратите внимание — снова немец!), но не на могучих спорткарах, а на «народном» немецком автомобиле — VW Beetle(небезызвестный Фолькваген Жук). На автомобилях Porsche и Subaru — значительно позднее.

И вот здесь самое время развеять многие мифы об оппозитниках, указав на их слабые стороны. Во-первых геометрия цилиндров подвержена любопытной особенности — когда сетка хона в порядке, цилиндр уже превращается в эллипс. Причина кроется в нераспределенности (а вернее, как раз в точечном распределении) нагрузок. Огромный расход масла — течи сальников и «потение» крышек — родовая особенность оппозитных движков.

Ремень ГРМ расположен так, что называется «локоть — вот он, да не укусишь», а при его обрыве клапана обязательно встречаются с поршнем или друг с другом — мотор в капиталку. А вентиляция картера позволят «быстро и эффективно» засорить двигатель, и, если рядники или V-образники в таких условиях продолжают худо-бедно работать, то оппозитники сразу начинают выдавливать сальники.

Подведя баланс между «дебетом» и «кредитом» производители однозначно, одновременно и независимо друг от друга пришли к выводу, что для гражданских автомобилей повседневного пользования оппозитные ДВС малопригодны, а вот для спортивных и раллийных автомобилей оппозитник — вариант почти идеальный, но, опять же, по одной причине — низкий центр тяжести, а, значит, лучшая управляемость.

VR-образные ПДВС

И у рядных, и у V-образных двигателей есть свои плюсы и минусы. А вот если бы их объединить — создать мотор, заключающий в себе положительные качества и рядных и V-образных агрегатов? Вопрос создания мотора, заключающего в себе отрицательные качества и того и другого, по понятным причинам, не ставился.

В начале 1980х годов немецкая (опять немцы!!!) фирма «Volkswagen» решилась на смелый эксперимент, результатом которого стал VR-образный двигатель. Кто-то скажет — безумие! Рядно-нерядный двигатель — такое бывает? Бывает! Двигатели VR6 имеют небольшой развал между рядами цилиндров — 15 градусов, что позволяет применять на них общую головку. Нет нужды говорить, что всех проблем это не решило, но, зато, получился компактный, мощный, приемистый двигатель.

Чуть позже появилась пятицилиндровая модификация этого двигателя — VR5. То есть, по сути, от VR6 попросту отрезали один цилиндр, скомпенсировав потерю рабочего объема (читай — мощности) значительным уменьшением силы трения.

И, все же, V-образно-рядные двигатели не стали идеальным решением. Да, они обладают меньшей длиной, чем рядные моторы, и меньшей шириной, чем V-образные. Да, более упрощена (по сравнению с V-образниками) система газораспределения.

Но появилась новая проблема — чрезвычайно высокая тепловая напряженность мотора! Ведь теплообмен в пространстве между рядами цилиндров менее интенсивен, чем у V-образных ДВС, а толщина стенок не позволяет увеличить число тосольных каналов! Кстати, по этой же чине — тонких стенок цилиндров с внутренней стороны, VR-образные моторы значительно хуже держат перегрузки.

W- образные ПДВС

Начиная разговор о W-образных двигателях, в первую очередь необходимо заметить, что есть W-образники, а есть W-образники. То есть этот термин, в разные времена, означал разные типы моторов!!!

В первую очередь — частный случай звездообразного трехлучевого мотора, у которого все три луча направлены вверх под разными углами. Такие авиационные моторы часто применялись на рекордных автомобилях 1920х-1930х годов. Наибольшее распространение получил авиационный «Непир-Лайон». Кстати, различные модификации именно таких моторов и ставились на рекордные «Синие Птицы» Малькольма Кэмпбелла, в атмосферном и наддувном исполнении.

В те далекие времена на автомобилях (тем более — мотоциклах!) эти моторы не прижились — не было необходимости в таких мощностях, для нормальных потребностей нормальных автомобилей вполне хватало V-образников.

Второе рождение W-образных моторов, уже в новой форме, относится к концу ХХ века. Вновь появилась потребность в мощных, относительно компактных моторах, для использования их на суперкарах. Ярчайшим примером такого двигателя и, соответственно, автомобиля, является W16 на Bugatti ЕВ16/4 Veyron.

Сегодняшние W-образники — это не трехлучевые авиационные моторы — нет. Это две цилиндро-поршневые группы от моторов VR-типа. Изначально угол между ними составлял 72 градуса, но проблема заключалась в том, что на коленчатом валу примерно той же длины в этом случае размещалось вдвое больше шатунов, чем в VR-двигателе. Поэтому их пришлось делать тоньше. Шатун подвергается в двигателе наибольшим нагрузкам сжимающего, растягивающего и изгибающего вида, и слишком тонкие шатуны на повышенных оборотах начинают «поигрывать».

В двигателе W16 колоссальной мощности в 1001 л.с. для спортивного Bugatti ЕВ16/4 Veyron влияние инерционных моментов на шатуны сократили, увеличив развал между двумя VR-rpyппaми до 90R и снизив скорость поршня до 17,2 м/с. Размеры двигателя при этом выросли, но все равно остались завидно малыми для агрегата с такими показателями: его длина 710, а ширина 767 мм.

Вообще, на сегодняшний день для мощных, быстрых, скоростных автомобилей W-образный двигатель был бы наиболее оптимальным решением, если бы не изобретение еще одного немца — Феликса Ванкеля.

Роторно-поршневой двигатель

Снова мотор, и снова немец — изобретатель. И, опять же, стоит заметить, что и этот двигатель — далеко не сегодняшнее изобретение — Феликс Ванкель запатентовал роторно-поршневой тип двигателя еще в 1934 году!!! А первый действующий образец, адаптированный к установке на автомобиль, появился еще в 1958 году!

Вообще же, РПД — не совсем традиционный поршневой двигатель. В его корпусе овальной формы движутся не поршни на шатунах, а треугольный, с выпуклыми сторонами ротор (он же — поршень). Он описывает внутри корпуса кривую, называемую эпитрохоидой, при этом его вершины, плотно прилегая к стенкам корпуса, образуют 3 отдельные камеры сгорания. В каждой из них последовательно происходит обычный 4-тактный цикл. Из-за отсутствия возвратно-поступательного движения такой мотор почти не вибрирует, а его рабочие обороты значительно выше, чем у поршневого ДВС.

Более подробно этот тип двигателя описан в статье «Поршень или ротор?«.

Вообще, же тенденция пугающая. В первую очередь, проанализировав истоки каждого двигателя, оказывается, что изобрели, или начали первыми использовать какую-либо компоновку именно немцы — Готлиб Даймлер, Вильгельм Майбах, Фердинанд Порше, Феликс Ванкель, компании DKW и VW!!! Японцы со своим прославленным роторным Маздовским Renessis выглядят, скорее, исключением, подтверждающим правило. Опять же, не будем забывать, что одними из первых лицензии на производство «Ванкелей» приобрели тоже немцы — NSU и Mercedes-Benz! Если честно, начиная собирать информацию для этой статьи, сам не ожидал таких «откровений».

Но это — лирика. На деле ничего принципиально нового за последние полвека не придумано, и придумано (кажется!) быть не может — все типы поршневых двигателей опробованы, и, или уже живут под капотами автомобилей, или занимают место в музеях.

Поршневая схема, «отшлифованная» за добрую сотню лет, и нашедшая такое широкое применение едва ли является константой. Более полувека ведутся опыты по применению ГТД, электродвигателей и «Стирлинга» на автомобилях. Дальше опытов, правда, дело пока не доходит, но «завтра» — вообще звучит многообещающе. Но это с одной стороны.

Есть и обратная сторона медали. Не раз говорил, и повторюсь — более 80% процессов, протекающих в современном ДВС остаются неизученными и по сей день! Значит, старый добрый поршневой мотор не показал еще и одной пятой (как минимум!) своих возможностей, и отказываться от ПДВС еще рано.

А еще есть нагнетатели, выпускная и впусная система, газораспределительный механизм, и многое, многое другое, что позволяет многократно увеличить мощность мотора! Напомню — на заре автомобилестроения удельная мощность двигателя составляла около 6-7 л.с. с литра объема, сегодня — до ста, и это — безнаддувные, атмосферные двигатели!!!

Человечество за сорок тысяч лет своего существования и сегодня находится в начале пути научного прогресса (пусть и интенсифицирован этот процесс только последние 250-300 лет), а автомобилю — чуть более ста двадцати лет, но уже сегодня никого не удивишь «гражданскими» суперкарами (те же Bugatti, Lamborghini, Ferrari, Vector, Callaway, Pagani — лишь немногие из тех компаний-производителей!), развивающими по 350-400 км/ч. А что же скрывает за собой это таинственное «завтра»?

Различия и особенности автомобильных ДВС

Современный двигатель внутреннего сгорания (ДВС) — это тепловой вид двигателя, который преобразует энергию взрыва топливной смеси в механическую силу. Взрыв происходит внутри камеры сгорания, что приводит в действие поршневую группу. Так как наибольшее распространение получили поршневые и комбинированные виды двигателей, далее пойдет речь именно о них.

Виды двигателей автомобилей по типу топлива

Конструкторами разработано большое количество автомобильных двигателей в зависимости от типа смеси, количества тактов, а также физического расположения цилиндров.

Как различаются двигатели внутреннего сгорания по типу питания:

  • Бензиновые
  • Дизельные
  • Гибридные

Бензиновый двигатель — самый популярный вид двигателя среди автомобилей. Это обусловлено простой конструкцией, доступностью и дешевизной деталей на замен. Автомобили с данным видом двигателя чаще остальных встречаются на ДОПах.

Подача смеси для бензинового двигателя:

Существует 2 вида доставки топлива в бензиновый мотор. Первый — карбюратор. Смесь из бензина и воздуха готовится в карбюраторе в определенных (зависит от режима) пропорциях и подаётся во впускной коллектор. Данный вид подачи топлива являлся самым популярным на протяжении многих лет из-за простоты конструкции и возможности ремонта «на месте».

Преимущества карбюраторного ДВС:

  • Низкая цена ремонта
  • Прост в конструкции
  • Дешевизна обслуживания

Но также следует упомянуть что карбюраторная система подачи считается устаревшей ввиду ее не экономичности, трудности обслуживания и настройке.

Недостатки карбюраторного двигателя:

  • Сложность настройки
  • Чувствителен к температурным перепадам
  • Низкая экологичность
  • Нестабилен

Большинство видов двигателей с карбюратором не соответствуют Евро-3 и выше.

Инжекторная система питания

На смену карбюратору пришла инжекторная система впрыска. Она в свою очередь делится на моновпрыск и распределённый впрыск горючей смеси. На большинстве двигателей внутреннего сгорания используется именно распределённый впрыск. Бензин из бака через магистраль попадает в топливную рампу, далее через форсунки во впускной коллектор, который отдельно ведёт к каждому цилиндру. Таким образом на каждую секцию отведена отдельная форсунка.

Стоит упомянуть, что существуют конструкции, когда форсунка подаёт топливо прямиком в камеру сгорания. Такой вид двигателя внутреннего сгорания является гораздо более точным в плане дозирования смеси, при котором достигается максимальный кпд бензинового ДВС.

Преимущества инжекторного двигателя:

  • Высокая стабильность
  • Количество вредных выбросов уменьшается до 70%
  • Экономичность
  • Более мощный
  • Не чувствителен к перепадам температур

Инжекторная система впрыска имеет большое количество плюсов для автолюбителей из больших городов, где имеются профессиональные СТО или официальные дилеры, которые смогут провести правильную диагностику и ремонт. Однако за пределами города, если у вас возникнут проблемы с инжектором, скорее всего вы ничего не сможете сделать, в отличие от карбюратора.

Недостатки инжекторного двигателя:

  • Трудный ремонт и диагностика
  • Качество бензина должно быть не менее А-92
  • Очень высокая стоимость замены узлов
  • Дефицит квалифицированных специалистов по ремонту

Принцип работы дизельного двигателя

Главным отличием дизельного вида мотора от бензинового является способ образования зажигательной смеси. В большинстве бензиновых ДВС, смесь попадает через впускной коллектор, тогда как в дизеле смесь всегда подаётся непосредственно в камеру сгорания.

Воспламенение тоже происходит по другому сценарию. В дизельном двигателе внутреннего сгорания, цилиндр сначала втягивает воздух, после поршень путём резкого сжатия доводит температуру воздуха до 700-850 градусов во время сжатия, далее под высоким давлением подаётся дизель и происходит воспламенение. Температура достигает 2400 градусов. Качество смеси сильно зависит от скорости впрыска. Если скорость впрыска малая, бензин может не полностью испаряться. Система зажигания на дизельных ДВС отсутствует.

Из минусов дизельного двигателя можно выделить:

  • Повышенная вибронагруженность
  • Трудность холодного пуска
  • Сложность обслуживания
  • Повышенный вес

Самым важным отличием дизельного мотора от бензинового является система подачи топлива. ТНВД (топливный насос высокого давления) работает по следующему принципу: дизель из бака нагнетается в требуемые порции, далее по индивидуальным магистралям поступает через форсунки и подаётся в каждую камеру отдельно.

ТНВД делится на:
— Распределительные
— Многоплунжерные рядные (редко используются на современных авто)

Ремонт и диагностика дизельных двигателей с ТНВД требует наличия инструкций и специнструментов. С другой стороны, некоторые специалисты утверждают что автомобили концерна VAG (Audi, Skoda, Porsche) легки при настройке.

Роторный двигатель

Принцип работы роторного вида двигателя заключается в повышенных оборотах и отсутствии привычного для ДВС строения. ДВС Ванкеля (РПД) а именно так зовут изобретателя данного вида мотора, предложил расположить ротор непосредственно в цилиндре. У РПД отсутствует коленчатый вал и шатуны, что упрощает его конструкцию.
Среди преимуществ данного вида мотора — отсутствие большого количества деталей. Даже в обычном 4-х цилиндровом двигателе минимум 45 движущихся частей: клапанные пружины, масляные колпачки, поршневые кольца, поршни, коленчатый вал, шатуны, т.д.
Роторный двигатель отличается малыми габаритами, и большими мощностями — 1. 3 мотор выдаёт 190-240 л.с.

Из недостатков стоит выделить следующие пункты:

  • Ограничение в ресурсе (порядка 65-85 тыс.км.)
  • Потребление большого количества бензина
  • Стоимость производства и ремонта
  • Экологичность

Гибридный двигатель

Как работает гибридный вид двигателя? Стоит начать с того, что автомобиль с гибридным мотором набирает всё большую популярность ввиду своей экологичности. Все автомобильные концерны имеют в своей линейке хотя бы одну модель с гибридным видом двигателя.
Принцип работы гибридного мотора заключается во взаимодействии двух видов двигателей — бензинового и электрического.

Всё работает под управление ЭБУ, который решает когда и какой двигатель использовать именно сейчас. К примеру для города обычно используется электрический, сводя к нулю нужду заправляться. Однако на трассе, за городом, обычно система переключается на топливный двигатель. Это обусловлено быстрой разрядкой аккумуляторной батареи. Стоит также упомянуть что во время езды на бензине электрический мотор заряжается. При повышенных нагрузках используются оба вида двигателей.

Гибридный двигатель: плюсы и минусы

Из плюсов можно указать:

  • Высокая экономичность (примерно на 25% ниже от топливных ДВС)
  • Не уступают в мощности моделям из своего класса
  • Меньше шума
  • Заправка происходит таким же образом как у классических автомобилей
  • При езде по городу с частыми остановками экономия вырастает в разы

Учитывая географическую зависимость стоит отметить минусы для гибридного авто в условиях стран бывшего СНГ.

Из минусов можно указать:

  • Очень сложная конструкция
  • Очень дорогой ремонт
  • Коротки срок службы аккумулятора

Гибридный мотор прекрасно подходит для больших городов где находятся специализированные СТО. В маленьких городах и посёлках смысл владения авто с гибридным двигателем сводится к минимуму.

Типы ДВС: Рядный, V образный и оппозитный двигатель.

Какой лучше?

В мире существует большое количество видов моторов не только по виду горючей смеси, но и по типу расположения цилиндров. Ниже приведен перечень самых популярных типов двигателей.

Рядный двигатель

Рядные ДВС считаются классическими, так как именно такой тип был применён впервые в ДВС. Соответственно названию, цилиндры расположены в ряд, и приводят в движение 1 коленчатый вал. Также ГБЦ одна для всех камер сгорания. Количество цилиндров может колебаться от одного до десяти. На практике десятицилиндровые ДВС оказались очень сложными при производстве, поэтому наибольшее распространение получили следующие:

  • Одноцилиндровые
  • Двухцилиндровые
  • Четырехцилиндровые
  • Шестицилиндровые

К достоинствам рядных типов двигателя можно отнести простоту в обслуживании и малые габариты. Такие моторы не идеально сбалансированы, однако это не мешает им пользоваться огромной популярностью у производителей и автолюбителей.

V образный двигатель


Данный тип ДВС ничем не отличается от рядной четвёрки кроме расположения цилиндров. У V образного двигателя цилиндры находятся друг напротив друга, из-за чего конструктивно он гораздо сложнее рядного. Здесь две ГБЦ, другая конструкция ГРМ и подача бензина или дизеля. Также, очень большую роль играет угол, под которым расположены цилиндры. В истории встречаются модели как с 1° наклона, так и 180° (как у субару). Как итог, конструкторы пришли к решению что 45°, 60°, 90° градусов самые оптимальные.

Одним из главных достоинств v двигателя является его компактность.

Из минусов можно выделить:

  • Сложность конструкции
  • Повышенная вибронагруженность на 2-х и 4-х цилиндровых ДВС
  • Более дорогой ремонт по сравнение с рядной «четвёркой»

V образные моторы очень востребованы в различных отраслях. Существуют концерны, которые выпускают только данный вид двигателей.

Оппозитный двигатель


По факту, оппозитный ДВС принадлежит к семейству v образных имея угол между цилиндрами в 180 градусов. То есть, они расположены друг напротив друга. Таким решением конструкторы избавили оппозитный мотор от лишних вибраций, и движок стал более плавно работать.
Кроме того, благодаря такой форме, центр тяжести снижается и качественно улучшается управляемость.
Оппозитный мотор, как и v образный зачастую имеет два распредвала и вертикально расположенный ГРМ.

Виды оппозитных двигателей:
— ОРОС
— «Боксер»

ОРОС — В данной конструкции поршни попарно перемещаются по одному цилиндру, двигаясь друг навстречу другу.

«Боксер» — Поршни располагаются друг перед другом, словно боксёры в бою. Когда один поршень находится в ВМТ(верхняя мёртвая точка) его парный поршень находится в НМТ(нижняя мёртвая точка). При работе они словно «обмениваются ударами» из-за чего и получили название.

Из плюсов оппозитного ДВС можно выделить следующее:

  • Отсутствие вибрации
  • Низкий центр тяжести
  • Малые габариты
  • Большой ресурс (300-500 тыс. км до первого капитального ремонта)

Минусы оппозитного двигателя:

  • Высокая стоимость обслуживания
  • Дефицит СТО, где есть специалисты по оппозитным моторам
  • Сложность обслуживания
  • Дороговизна запчастей

Двухтактный и четырёхтактный двигатель

В чём разница между этими двумя видами?

Двухтактные моторы почти не используются на автомобилях в силу своих особенностей. Они гораздо легче и проще в своей конструкции из-за отсутствия газораспределительного механизма. Тяга равномернее, литровая мощность выше, а вес меньше.
Из минусов можно выделить крайнюю неэкологичность, большее потребление бензина и масла.

В карбюраторном 2-тактнике ещё и придётся готовить смесь из масла и бензина или заказывать специальное масло для двухтактных двигателей.
Использование двухтактного ДВС идеально подходит для негабаритных устройств. К примеру газонокосилки, пилы, снегоуборочные машины. В общем там, где нужны более равномерные обороты.

Принцип работы четырехтактного двигателя

Название ДВС происходит из количества тактов рабочего цикла.
Данный тип используется в большинстве автомобилей из-за своей простоты и лёгкости в обслуживании. Отличаются высокой экологичностью, равномерной работой, при которой не нужно переживать из-за «жора» масла как на двухтактниках.

Пошагово четыре такта делятся на следующие шаги:

1) Камера сгорания заполняется смесью.
Движение поршня в НМТ при котором открывается клапан впуска. Из инжектора или карбюратора топливо всасывается в камеру сгорания. Когда поршень опускается до нижней мертвой точки, впускной клапан закрывается.

2) Сжатие смеси.
Поршень возвращается в верхнюю точку, происходит такт сжатия. Доходя до ВМТ следует взрыв

3) Воспламенение топливной смеси.
Энергия взрыва толкает поршень вниз, происходит механическая работа

4) Расширение газа и очищение цилиндра.
Коленвал возвращает поршень снова вверх, открывается выпускной клапан и сгоревшие газы поступают в выпускной коллектор. Далее снова следует первый такт.

Денис — специалист в сфере автомобилей. Он имеет 5-летний опыт работы на СТО и пишет про новости в мире автомобилей. Теперь он делится своими знаниями с людьми, рассказывает про устройство и ремонт современных авто.

Двс — это… Что такое Двс?

Основные типы ДВС — поршневой…

…роторный…

…и газотурбинный.

Двигатель внутреннего сгорания’ (ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.

Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например на транспорте.

Схема работы четырехтактного цилиндра двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Основные типы ДВС

  • Поршневые двигатели — камерой сгорания является цилиндр, где тепловая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма. По типу используемого топлива делятся на:
    • Бензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), или непосредственно в цилиндре при помощи распыляющих форсунок, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи.
    • Дизельные — специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Возгорание смеси происходит под действием высокого давления и, как следствие, температуры в камере.
    • Газовые — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:
      • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
      • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
      • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твердого топлива используются:
    • Газодизельные — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

      Двухтактный цикл. в двухтакном цикле рабочие ходы происходят вдвое чаще.

  • Роторно-поршневые — за счёт вращения в камере сгорания многогранного ротора динамически формируются объёмы, в которых происходит обычный цикл ДВС.
  • Газотурбинные двигатели — энергия расширяющихся продуктов горения передаётся на лопатки газовой турбины.
  • ДВС с впрыском воды.
  • Комбинированный двигатель внутреннего сгорания — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой (роторно-поршневой) и лопаточной машины (турбина, компрессор), в котором в осуществлении рабочего процесса участвуют обе машины.
    Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув).

Дополнительные агрегаты, требующиеся для ДВС

Недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартёр. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Также ДВС нужны топливная система (для подачи топливной смеси) и выхлопная система (для отвода выхлопных газов).

См. также

Источники и примечания

Ссылки

Wikimedia Foundation. 2010.

Готовая презентация на тему двигатель внутреннего сгорания. Презентация на тему «двс». Основные типы двигателей

Исследовательская работа на тему «История развития двигателей внутреннего сгорания»

Подготовил учащийся

11 класса

Попов Павел


Цели проекта:

  • изучить историю создания и развития двигателей внутреннего сгорания;
  • рассмотреть различные типы ДВС;
  • изучить сферы применения различных ДВС

ДВС

Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.


Внутренней энергией обладают все тела – земля, камни, облака. Однако извлечь их внутреннюю энергию довольно трудно, а порой и невозможно.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь некоторых, образно говоря, «горючих» и «горячих» тел.

К ним относятся: нефть, уголь, горячие источники вблизи вулканов, теплые морские течения и т.п. Применение двигателей внутреннего сгорания чрезвычайно разнообразно: они приводят в движение

самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.


По роду топлива двигатели внутреннего сгорания разделяются на двигатели жидкого топлива и газовые.

По способу заполнения цилиндра свежим зарядом — на 4-тактные и 2-тактные.

По способу приготовления горючей смеси из топлива и воздуха — на двигатели с внешним и внутренним смесеобразованием.

Мощность, экономичность и другие характеристики двигателей постоянно улучшаются, но основной принцип действия остаётся неизменным.

В двигателе внутреннего сгорания топливо сгорает внутри цилиндров и тепловая энергия, выделяющаяся при этом, преобразуется в механическую работу.



Первый двигатель, изобрёл в 1860 году французский механик Этьен Ленуар (1822-1900). Рабочим топливом в его двигателе служила смесь светильного газа (горючие газы в основном метан и водород) и воздуха. Конструкция имела все основные черты будущих автомобильных двигателей: две свечи зажигания, цилиндром с поршнем двустороннего действия, двухтактный рабочий цикл. Её коэффициент полезного действия составлял всего 4 % т.е. лишь 4% теплоты сгоревшего газа тратилось на полезную работу, а остальные 96% уходили с отработанными газами.


Двигатель Ленуара

Жан Жозеф Этьен Ленуар


2-х тактный двигатель

В этом двигателе рабочий ход происходит в два раза чаще.

1 такт впуск и сжатие

2 такт рабочий ход и выпуск

Двигатели такого типа применяются на скутерах, моторных лодках, мотоциклах



4-тактный двигатель Отто

Николаус Август Отто


4-х тактный двигатель

Схема работы четырехтактного двигателя, цикл Отто 1. впуск 2. сжатие 3. рабочий ход 4. выпуск

Двигатели такого типа применяются в машиностроении.


Карбюраторный двигатель

Этот двигатель – одна из разновидностей двигателей внутреннего сгорания. Сгорание топлива происходит внутри двигателя и существенной его деталью является карбюратор – устройство для смешивания бензина с воздухом в нужных пропорциях. Создателем этого двигателя был Готлиб Даймлер.

В течение нескольких лет Даймлеру пришлось заниматься усовершенствованием двигателя. В поисках более эффективных, чем светильный газ, автомобильного топлива Готлиб Даймлер совершив 1881году поездку на юг России, где ознакомился с процессами переработки нефти.

Один из её продуктов, лёгкий бензин, оказался как раз таким источником энергии, который искал изобретатель: бензин хорошо испаряется, быстро и полностью сгорает, удобен для транспортировки.

В 1886году Даймлер предложил конструкцию двигателя, который мог работать и на газе, и на бензине; все последующие автомобильные двигатели Даймлера были рассчитаны только на жидкое топливо.


Карбюраторный двигатель

Готлиб Вильгельм Даймлер


Первый вариант инжекторного двигателя появился в конце 1970-х годов.

В этой системе датчик кислорода в выпускном коллекторе определяет полноту сгорания, а электронная схема устанавливает оптимальное соотношение топливо/воздух. В топливной системе с обратной связью состав топливно-воздушной смеси контролируется и регулируется несколько раз в секунду. Эта система очень похожа на систему карбюраторного двигателя.


Современный инжекторный двигатель

Первый инжекторный двигатель


Основные типы двигателей

Поршневой ДВС

Двигатели такого типа устанавливаются на автомобилях разного класса, морских и речных судах.


Основные типы двигателей

Роторный ДВС

Двигатели этого типа устанавливаются на автомобилях различного типа.


Основные типы двигателей

Газотурбинный ДВС

Двигатели такого типа устанавливаются на вертолетах, самолетах и другой военной технике.


Дизельный двигатель

Одним из видов ДВС является дизельный двигатель.

В отличии от бензиновых ДВС сжигание топлива в нем происходит благодаря сильному сжатию.

В момент сжатия происходит вспрыск топлива, которое благодаря высокому давлению сгорает.


В 1890 году Рудольф Дизель развил теорию «экономичного термического двигателя», который благодаря сильному сжатию в цилиндрах значительно улучшает свою эффективность. Он получил патент на свой двигатель


Двигатель Дизеля

Хотя Дизель и был первым, который запатентовал такой двигатель с воспламенением от сжатия, инженер по имени Экройд Стюарт высказывал ранее похожие идеи. Но он не обратил внимания на самое большое преимущество — топливную эффективность.


В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время.

Востребованный в таком виде высокооборотистый дизель стал пользоваться все большей популярностью как силовой агрегат для вспомогательного и общественного транспорта

В 50 — 60-е годы дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо, на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.



Самый мощный в мире дизель, который устанавливается на морские лайнеры.

Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30 % энергии топлива в полезную работу. Стандартный дизельный двигатель, однако, обычно имеет коэффициент полезного действия в 30-40 %,

дизели с турбонаддувом и промежуточным охлаждением до 50 %.


Преимущества дизельных двигателей

Дизельный двигатель из-за использования впрыска высокого давления не предъявляет требований к летучести топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более что в них не используется система зажигания.


Основные этапы развития ДВС

  • 1860 год Э.Ленуар первый ДВС;
  • 1878 год Н. Отто первый 4х тактный двигатель;
  • 1886 год В.Даймлер первый карбюраторный двигатель;
  • 1890 год Р. Дизель создал дизельный двигатель;
  • 70-е годы 20 века создание инжекторного двигателя.

Основные типы ДВС

  • 2-х и 4-х тактные ДВС;
  • бензиновые и дизельные ДВС;
  • поршневые, роторные и газотурбинные ДВС.

Сферы применения ДВС

  • автомобилестроение;
  • машиностроение;
  • кораблестроение;
  • авиационная техника;
  • военная техника.

Слайд 1


Урок физики в 8 классе

Слайд 2

Вопрос 1:
Какая физическая величина показывает, сколько энергии выделяется при сжигании 1кг топлива? Какой буквой ее обозначают? Удельная теплота сгорания топлива. g

Слайд 3

Вопрос 2:
Определите количество теплоты, выделившееся при сгорании 200г бензина. g=4,6*10 7дж/кг Q=9,2*10 6дж

Слайд 4

Вопрос 3:
Удельная теплота сгорания каменного угля примерно в 2 раза больше, чем удельная теплота сгорания торфа. Что это значит. Это значит, что для сгорания каменного угля потребуется в 2 раза большее количество теплоты.

Слайд 5

Двигатель внутреннего сгорания
Внутренней энергией обладают все тела – земля, кирпичи, облака и так далее. Однако чаще всего извлечь ее трудно, а порой и невозможно. Наиболее легко на нужды человека может быть использована внутренняя энергия лишь некоторых, образно говоря, «горючих» и «горячих» тел. К ним относятся: нефть, уголь, теплые источники вблизи вулканов и так далее. Рассмотрим один из примеров использования внутренней энергии таких тел.

Слайд 6

Слайд 7

Карбюраторный двигатель.
карбюратор – устройство для смешивания бензина с воздухом в нужных пропорциях.

Слайд 8

Основные Основные части ДВС части ДВС
1 – фильтр для всасываемого воздуха, 2 – карбюратор, 3 – бензобак, 4 – топливопровод, 5 – распыляющийся бензин, 6 – впускной клапан, 7 – запальная свеча, 8 – камера сгорания, 9 – выпускной клапан, 10 – цилиндр, 11 – поршень.
:
Основные части ДВС:

Слайд 9

Работа этого двигателя состоит из нескольких повторяющихся друг за другом этапов, или, как говорят, тактов. Всего их четыре. Отсчет тактов начинается с момента, когда поршень находится в крайней верхней точке, и оба клапана закрыты.

Слайд 10

Первый такт называется впуск (рис. «а»). Впускной клапан открывается, и опускающийся поршень засасывает бензино-воздушную смесь внутрь камеры сгорания. После этого впускной клапан закрывается.

Слайд 11

Второй такт – сжатие (рис. «б»). Поршень, поднимаясь вверх, сжимает бензино-воздушную смесь.

Слайд 12

Третий такт – рабочий ход поршня (рис. «в»). На конце свечи вспыхивает электрическая искра. Бензино-воздушная смесь почти мгновенно сгорает и в цилиндре возникает высокая температура. Это приводит к сильному возрастанию давления и горячий газ совершает полезную работу – толкает поршень вниз.

Слайд 13

Четвертый такт – выпуск (рис «г»). Выпускной клапан открывается, и поршень, двигаясь вверх, выталкивает газы из камеры сгорания в выхлопную трубу. Затем клапан закрывается.

Слайд 14

физкультминутка

Слайд 15

Дизельный двигатель.
В 1892 г. немецкий инженер Р. Дизель получил патент (документ, подтверждающий изобретение) на двигатель, впоследствии названный его фамилией.

Слайд 16

Принцип работы:
В цилиндры двигателя Дизеля попадает только воздух. Поршень, сжимая этот воздух, совершает над ним работу и внутренняя энергия воздуха возрастает настолько, что впрыскиваемое туда топливо сразу же самовоспламеняется. Образующиеся при этом газы выталкивают поршень обратно, осуществляя рабочий ход.

Слайд 17

Такты работы:
всасывание воздуха; сжатие воздуха; впрыск и сгорание топлива – рабочий ход поршня; выпуск отработавших газов. Существенное отличие: запальная свеча становится ненужной, и ее место занимает форсунка – устройство для впрыскивания топлива; обычно это низкокачественные сорта бензина.

Слайд 18

Некоторые сведения о двигателях Тип двигателя Тип двигателя
Некоторые сведения о двигателях Карбюраторный Дизельный
История создания Впервые запатентован в 1860 г. французом Ленуаром; в 1878 г. построен нем. изобретателем Отто и инженером Лангеном Изобретен в 1893 г. немецким инженером Дизелем
Рабочее тело Воздух, насыщ. парами бензина Воздух
Топливо Бензин Мазут, нефть
Макс. давление в камере 6 × 105 Па 1,5 × 106 — 3,5 × 106 Па
Т при сжатии рабочего тела 360-400 ºС 500-700 ºС
Т продуктов сгорания топлива 1800 ºС 1900 ºС
КПД: для серийных машин для лучших образцов 20-25% 35% 30-38% 45%
Применение В легковых машинах сравнительно небольшой мощности В более тяжелых машинах большой мощности (тракторы, грузовые тягачи, тепловозы).

Слайд 19

Слайд 20

Назови основные части ДВС:

Слайд 21

1. Назовите основные такты работы ДВС. 2. В каких тактах клапаны закрыты? 3. В каких тактах открыт клапан 1? 4. В каких тактах открыт клапан 2? 5. Отличие ДВС от дизеля?

Слайд 22

Мертвые точки – крайние положения поршня в цилиндре
Ход поршня – расстояние, проходимое поршнем от одной мертвой точки до другой
Четырехтактный двигатель – один рабочий цикл происходит за четыре хода поршня (4 такта).

Слайд 23

Заполнить таблицу
Название такта Движение поршня 1 клапан 2 клапан Что происходит
Впуск
Сжатие
Рабочий ход
выпуск
вниз
вверх
вниз
вверх
открыт
открыт
закрыт
закрыт
закрыт
закрыт
закрыт
закрыт
Всасывание горючей смеси
Сжатие горючей смеси и воспламенение
Газы выталкивают поршень
Выброс отработанных газов

Слайд 24

1. Тип теплового двигателя, в котором пар вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. 2. Обозначение удельной теплоты плавления. 3. Одна из частей двигателя внутреннего сгорания. 4. Такт цикла двигателя внутреннего сгорания. 5. Переход вещества из жидкого состояния в твердое. 6. Парообразование, происходящее с поверхности жидкости.

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.1799 году Филипп Лебонсветильный газ ФранцииЕвропыпаровую машину топке цилиндре двигателя

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебонвынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.1801 году ЛебонкомпрессоргазогенераторацилиндрЛебон 1804 году

Жан Этьен Ленуар В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.паровой машиной Жану Этьену Ленуарудвигатель на основе этой идеи Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Август Отто К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.1864 году Августом Отто В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».1864 году Лангеном

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.1864 году Августом Отто В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».1864 году Лангеном На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени.двигатель Отто

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство. 1877 году Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.Бо де Роша Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.1897 году ЕвропеРоссии МосквеПетербурге

Поиски нового горючего Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом.1872 году Брайтон Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно. Брайтон 1872 году

Бензиновый двигатель Работоспособный бензиновый двигатель появился только десятью годами позже. Вероятно, первым его изобретателем можно назвать Костовича О.С., предоставившим работающий прототип бензинового двигателя в 1880 году. Однако его открытие до сих пор остается слабо освещенным. В Европе в создании бензиновых двигателей наибольший вклад внес немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлервместе со своим другом Вильгельмом Майбахом принял смелое решение в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.бензиновый двигатель Костовича О.С.Готлиб Даймлер ДаймлерВильгельмом Майбахом 1882 году

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр. газогенератора 1883 году калильный бензиновый двигатель раскалённой трубочки цилиндр

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки. Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.карбюратора Донат Банки 1893 годужиклёромбензинмелко распылять его в воздухе Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.объём цилиндра В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.XIX векаXX


Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Двигатель автомобиля Подготовил: Тарасов Максим Юрьевич 11 класс Руководитель: мастер производственного обучения МАОУ ДО МУК «Эврика» Баракаева Фатима Курбанбиевна

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Двигатель автомобиля Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в конструкции автомобиля, служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. Принцип работы двигателя внутреннего сгорания построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через кривошипно-шатунный механизм. Его энергия вращения передается трансмиссии автомобиля. Для запуска двигателя внутреннего сгорания часто используется стартер – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

4 слайд

Описание слайда:

Типы двигателей Существуют следующие типы двигателей (ДВС): бензиновые дизельные газовые газодизельные роторно-поршневые

5 слайд

Описание слайда:

Также ДВС классифицируются: по виду топлива, по числу и расположению цилиндров, по способу формирования топливной смеси, по количеству тактов работы двигателя внутреннего сгорания и т. д.

6 слайд

Описание слайда:

Бензиновые и дизельные двигатели. Рабочие циклы бензинового и дизельного двигателя Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин. Проходя через топливную систему, бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания. Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения. Дизельные ДВС используют специальное дизтопливо. Двигатели автомобиля подобного типа не имеют системы зажигания: топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

7 слайд

Описание слайда:

Газовые двигатели Газовые двигатели используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

8 слайд

Описание слайда:

Принцип работы двигателя внутреннего сгорания Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже. Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко. Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

9 слайд

Описание слайда:

Первый такт — такт впуска Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

10 слайд

Описание слайда:

Второй такт — такт сжатия Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

11 слайд

Описание слайда:

Третий такт — рабочий ход Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля. После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

12 слайд

Описание слайда:

Четвертый такт — такт выпуска Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси. После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов. Презентация подготовлена по материалам сайта http://autoustroistvo.ru

Слайд 2

План

История создания ДВС Типы и принцип работы ДВС 2-х,4-х тактные ДВС Использование ДВС

Слайд 3

История создания ДВС

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

Слайд 4

Жан Этьен Ленуар

Двигатель Ленуара – двусторонний и двухтактный, т.е. полный цикл работы поршня длится в течение двух его ходов. Но этот двигатель оказался малоэффективен. Хотя в 1862 году Ленуар установил двигатель на карету, использовал рулевое колесо и даже совершал пробные поездки вблизи Парижа. В 1863 году уверял, что его двигатель начал работать на бензине

Слайд 5

Август Отто

В 1864 году Август Отто получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

Слайд 6

Типы ДВС

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например в транспорте.

Слайд 7

Поршневые двигатели

Поршневой двигатель — двигател внутреннего сгорания, в котором тепловая энергия, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.

Слайд 8

Бензиновый

Бензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушно смеси в этом случае — её гомогенизированность.

Слайд 9

Дизельный

Дизельные — специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре.

Слайд 10

Газовый

Газовые — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях.

Слайд 11

Газодизельный

Газодизельные — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Слайд 12

2-х тактный

Двухтактный цикл.Такты:1. При движении поршня вверх — сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем.2. При движеннии поршня вниз — Рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую зону цилиндра.

Слайд 13

4-х тактный

4-тактный цикл двигателя внутреннего сгоранияТакты:1.Всасывание горючей смеси. 2.Сжатие.3.Рабочий ход.4.Выхлоп.

Слайд 14

Использование ДВС

ДВС часто используется в транспорте, и для каждого вида транспорта нужен свой тип ДВС. Так для общественного транспорта необходим ДВС имеющий хорошую тягу на низких оборотах, в общественном транспорте применяется ДВС большого объёма развивающий максимальную мощность на малых оборотах. В гоночных болидах формулы-1 используется ДВС,который достигает максимальной мощности на высоких оборотах, но он имеет относительно малый объём.

Посмотреть все слайды

Из чего состоит двигатель внутреннего сгорания. Комбинированные типы двигателей внутреннего сгорания. Основные виды и типы ДВС

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Флюктуации давления газа особенно проблематичны для дымовых газов. Если относительная влажность газа достигает более 80%, возникает подъем воды. Это связано с трубопроводом, который должен быть выбран как можно меньше в отношении газовой конденсации, чтобы избежать толчков воды, образовавшихся в углублениях.

Выработка тепла и электроэнергии

Для содействия обмену используется тепловая энергия, которая может использоваться для извлечения зданий или технологического оборудования. Базовой установкой когенерационных установок для двигателей внутреннего сгорания является, прежде всего, обмен цепями двигателей и обмен дымовых газов. Например, автоматический выключатель может использоваться в качестве автоматического выключателя. В случае обмена дымовых газов мы можем использовать обмен насосно-компрессорных труб, где дымоход течет внутри труб, чтобы дать их тепловую энергию горячей воде.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

Поэтому, используя эту технологию, содержание диоксида углерода в соседнем стекле в два раза выше, чем окружающее. Вспоминая разницу между дизельным дизелем и двигателем с искровым зажиганием, это может быть обычный смертный, который вместо того, чтобы открывать капот автомобиля и обычный пополнение жидкости на шайбе, а не посещать мастерскую по ремонту автомобилей, довольно трудно запомнить. Эта страница будет пытаться выделить различия и показать анимации, которые сделают разницу между ядром.

Дизельный дизельный двигатель — Видео, принцип, схема, демонстрация деятельности

Бензиновый двигатель — видео, принцип, схема, демонстрация деятельности
Состав двигателя, соединение ремня — Видео. Разница между искровым зажиганием и дизельными двигателями. Двигатель зажигания — двигатель внутреннего сгорания, в котором топливно-воздушная смесь в цилиндре зажигается электрической искрой, которая обычно создает свечу зажигания. Это отличается от дизельного двигателя, когда впрыскиваемое топливо самовоспламеняется из-за температуры сжатого воздуха.
  1. КШМ — кривошипно-шатунный механизм.
  2. ГРМ — механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ — кривошипно-шатунный механизм

КШМ — основной механизм поршневого мотора. Он выполняет главную работу — преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

Рабочая фаза бензинового двигателя

Очень важно, чтобы мы использовали бензин в бензиновом двигателе, а дизельное топливо! В рабочем пространстве цилиндра температура и давление получающихся газов резко возрастают. Они расширяются и работают, перемещая поршень вниз. Дымовые газы из рабочей зоны цилиндра выдавливаются в выхлопную трубу.

Рабочие фазы дизельного двигателя
Всасывание — поршень перемещается к нижней мертвой точке, воздух всасывается через всасывающий клапан. Сжигается смесь топлива и воздуха, воспламеняющихся самовоспламенением. Выхлоп — поршень перемещается к верхней мертвой точке. Выхлопная система разделена на две части.
  • Сжатие — поршень перемещается к верхней мертвой точке.
  • Впускная смесь уменьшает ее объем, увеличивает давление и температуру.
  • Незадолго до верхнего тупика смесь зажигается электрической искрой расширения.
  • Оба клапана закрыты.
  • Будет гореть смесь топлива и воздуха, воспламеняемых электрической искрой.
  • Всасываемый воздух уменьшает его объем, увеличивает давление и температуру.
  • Перед самым верхним тупиком топливо впрыскивается в цилиндр.
  • Расширение — оба клапана закрыты.
Ссылка для будущих хороших драйверов.
  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

Это означает, что они обеспечивают очень хорошую производительность при сниженном расходе топлива по сравнению с более старыми аспирационными двигателями. Прямой впрыск топлива и турбонагнетатель являются двумя основными компонентами для повышения эффективности двигателя.

Турбокомпрессор сжимает воздух в двигателе. Бензин вводится непосредственно в цилиндры. Дымовой газ приводит в действие турбину, подключенную к компрессору, которая подает воздух в цилиндры. Вот почему мы говорим о двигателе с наддувом, а не с наддувом.

Турбокомпрессор отвечает за подачу воздуха в двигатель. Воздух не только всасывается, но и зажимается в цилиндры с помощью выхлопных газов. Увеличение количества воздуха позволяет дать больше топлива, а двигатель имеет лучшую производительность. Это двигатель внутреннего сгорания, в котором движение поршня вызвано давлением выхлопных газов, образующимся при сгорании горючей смеси внутри цилиндра двигателя; Обычно используемые поршневые возвратно-поступательные поршневые поршневые возвратно-поступательные двигатели, называемые более короткими двигателями внутреннего сгорания поршневого типа, намного реже, чем роторно-поршневые двигатели.

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В двигателях хода поршень с поршневыми кольцами закрывает цилиндр двигателя; Расстояние между крайним поршневым положением поршня называется ходом поршня, а поршень перемещается от одного конца к другому концу — ход поршня; Поршневое движение поршня изменяется кривошипным механизмом на вращение коленчатого вала; Смешайте смесь с цилиндрами двигателя и отрегулируйте дымовой газ. В четырехтактных двигателях с возвратно-поступательным движением рабочий цикл выполняется в 4 ходах поршня, что соответствует 2 оборотам коленчатого вала; В двухтактных двигателях рабочий цикл выполняется двумя последовательными ходами, соответствующими одному вращению коленчатого вала.

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Двухтактные двигатели имеют менее сложную конструкцию, легче обрабатываются и ремонтируются, дешевле, но их недостатками, как правило, являются более высокий расход топлива и загрязнение воздуха; В современных двухтактных поршневых двигателях, Щелевые однонаправленные клапаны во впускных каналах и поворотных клапанах — в розетке, автоматическом смазывании и управлении мощностью и каталитическом форсаже, а также более общие механизмы синхронизации клапанов используются для управления изменением нагрузки от движения поршня.

Также предварительная загрузка картерного груза часто заменяется загрузкой под давлением груза через специальный зарядный насос. Практическое мастерство прямого впрыска бензина привело к созданию нового поколения двухтактных двигателей, лишенных фундаментальных дефектов традиционной схемы, но используя свои потенциальные преимущества.

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

В зависимости от метода зажигания смесь дифференцируется и в которой зажигание топлива впрыскивается из-за высокой температуры воздуха, содержащегося в цилиндре, в результате его сжатия. Среди поршневых двигателей внутреннего сгорания с воспламенением от сжатия выделяются двигатели с прямым впрыском, предкамерная, вихревая камера и воздушные резервуары. Двигатели с самовозгоранием характеризуются высокой эффективностью, низким расходом топлива и отсутствием электрической системы зажигания, но они имеют более сложную конструкцию, чем двигатели с искровым зажиганием.

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Двигатели с самовозгоранием используются в качестве двигателей для железнодорожного, судового и промышленного, а также в автомобилях и тракторах, а двигатели с искровым зажиганием — в основном на мотоциклах и большинстве автомобилей, а также на небольших самолетах. Для двигателей с искровым зажиганием бензин обычно используется в качестве топлива, а его октановое число выше для бензина: более качественный бензин имеет более высокий октановый показатель. Дизельные двигатели с высокой склонностью к самовозгоранию используются в качестве дизельного топлива.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

В обоих типах двигателей жидкое топливо может быть заменено газом, смешанным с воздухом перед вводом в цилиндры, но в дизельных двигателях несколько процентов топлива по-прежнему поставляются в виде жидкого дизельного топлива, впрыскиваемого в цилиндры, для производства двигателя с самовозгоранием в условиях «двигателя», нет газового топлива. Двигатели внутреннего сгорания с поршневым двигателем могут также поставляться с другими видами топлива, такими как бензино-спиртовые или растительные масла, но для этой цели должны быть адаптированы системы сжигания для таких двигателей.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

До сих пор распространение таких альтернативных видов топлива в мире было незначительным. Особым портом поршневых двигателей с поршневым двигателем являются роторные двигатели; В этих двигателях поршень выполняет вращательное движение, движущееся под переменным давлением рабочего тела. Для большинства производителей двигатели Ванкеля все еще являются экспериментальными двигателями, но они конкурируют с обычными двигателями для небольших спортивных автомобилей, мотоциклов, моторных пил, небольших лодок и небольших самолетов.

В настоящее время компьютер используется для управления работой двигателей внутреннего сгорания. оптимальное время зажигания и впрыск топлива. В двигателях с возвратно-поступательным движением он иногда используется. Значения эффективности современных поршневых двигателей внутреннего сгорания достигают 35% и до 45%.

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Для наших средневековых предков вождение автомобиля может показаться волшебным. Принцип работы двигателя внутреннего сгорания не имеет ничего общего с магией.

  • Каковы наиболее распространенные компоненты двигателя в автомобиле?
  • В чем разница между дизельным двигателем и лучшим?
Цилиндры, коленчатые валы, распределительные валы — все в чугуне. Также стоит упомянуть маховик. Хотя коленчатый вал перемещает только одно движение поршня, но сам плунжер выполняет четыре из них. Особенно проблематичным является сжатие, которое требует высокой энергии, что приводит к уменьшению скорости вращения вала.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива — грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры — воздушный фильтр и патрубки — тоже относятся к топливной системе.

Чтобы работать равномерно, используйте весовое приблизительно 10 кг маховое колесо, которое благодаря импульсу поддерживает скорость двигателя. Во время работы двигатель прогревается, поэтому используется хладагент. Охлаждающая жидкость проходит через разные каналы. Термостат — это термостат, устройство, которое открывает или закрывает путь при достижении температуры. Моторное масло, в свою очередь, необходимо для снижения трения, вызванного движением многочисленных компонентов. Кстати, он поглощает часть тепла, выделяемого двигателем, как и хладагент.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Что такое бензиновый дизельный двигатель, который отличается от дизельного?

Изобретение Рудольфа Дизеля — это дизельный двигатель, который не использует свечу зажигания для зажигания зажигания впрыска топлива. Подробнее: он вообще не использует искры. Зажигание происходит автоматически. Топливо воспламеняется главным образом из-за высокого сжатия смеси — намного выше, чем у бензинового двигателя, а частично благодаря свече накаливания, который действует как нагреватель.

Какой двигатель лучше? У каждого есть свои преимущества и недостатки. Дизель потребляет меньше топлива и более устойчив к влаге, но конструкция тяжелее, громче и дороже в производстве. Более того, несмотря на то, что дизельный двигатель сжигает меньше топлива, его выбросы примерно в двадцать раз более токсичны.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую. Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

  • часто называемый легким;
  • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
  • обладающие повышенными мощностными характеристиками.

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

  • гораздо более компактные размеры;
  • более высокие показатели мощности;
  • оптимальные значения КПД.

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или керосин и даже обычная древесина. Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

А в самом конце позапрошлого века знаменитый немецкий инженер предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

В свою очередь, такие силовые установки принято подразделять на две большие группы:

  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска «Коммон Рейл». Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация — заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием дизельного двигателя внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, — при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.


Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Рядный двигатель — устройство, характеристики, плюсы и минусы

Этим материалом мы начинаем серию статей о типах двигателей внутреннего сгорания. Начнем с самого простого – рядного. Рядным называется двигатель внутреннего сгорания, цилиндры которого расположены в ряд, а поршни вращают один коленчатый вал. Это наиболее простой в конструктивном плане тип двигателя внутреннего сгорания, которым начали оборудовать машины еще на заре автомобилестроения.

Рядный двигатель

Поначалу автомобильные двигатели были одно либо двухцилиндровыми, и эти цилиндры размещались в ряд. Мощь моторов с такими цилиндрами была невелика, а вот весили они порядочно. С развитием автомобильного спорта, который служил своеобразным «двигателем прогресса» в деле создания новых технологий, возникла потребность в более мощных двигателях. Инженеры пошли по пути увеличения количества цилиндров, что приводило к увеличению размеров и веса самого агрегата. От двухцилиндровых моторов конструкторы перешли к трех, четырех, пяти и шестицилиндровым рядным двигателям. Однако эксплуатация этих силовых установок показала, что наиболее эффективно применение моторов с четным количеством цилиндров. Причем, для автомобилей бюджетного класса разрабатывались четырех, а для машин классом повыше — шестицилиндровые двигатели. Трех и пятицилиндровые рядные силовые установки хотя и производились, но процент их по соотношению с двигателями с четным количеством цилиндров был мал.

Фото — Драйв.ру

Причина широкого распространения двигателей с четным количеством цилиндров в том, что эти двигатели лучше противостоят вибрации, чем моторы с нечетным количеством цилиндров. Поэтому наряду с прибавлением у рядного двигателя цилиндров конструкторы выдумывали способы эффективного гашения вибраций. Это дало толчок к развитию узлов и агрегатов, подавляющих вибрацию двигателя. Так на рядные моторы начали устанавливать балансировочные валы (в народе известны как «успокоители»), которые вращались в обратную от вращения коленчатого вала сторону и таким образом в значительной мере уменьшали возникающие во время работы поршней вибрации. В основном балансировочные валы использовались на четырехцилиндровых рядных моторах, так как у шестицилиндровых уровень вибрации был сведен к минимуму за счет того, что цилиндры у них уравновешены.

Рядные бензиновые и дизельные двигатели также разделяют по углу наклона цилиндров на две группы. К первой относят силовые установки, блок цилиндров у которых расположен строго вертикально. Ко второй группе относят моторы, блок цилиндров которых установлен под углом.

Достоинства

К основным положительным сторонам рядных двигателей можно отнести:

а) простоту конструкции;

б) равномерный износ деталей;

в) приемлемые условия для функционирования кривошипно-шатунного механизма;

г) относительную дешевизну обслуживания узлов и агрегатов.

Недостатки

Недостатков у таких моторов немного. В основном они касаются габаритов двигателей, ведь рядное расположение цилиндров предполагает, что такая силовая установка займет под капотом больше места, чем V-образная. Впрочем, если по длине подобный двигатель действительно проигрывает моторам с другим расположением цилиндров, и проблему эту решить нельзя никоим образом, то с высотой конструкторы вопрос решили простым наклоном силовой установки.

Классификация двигателей внутреннего сгорания

Классификация двигателей внутреннего сгорания

Двигатели внутреннего сгорания преобразуют химическую энергию топлива (бензина, дизельного топлива, сжиженного нефтяного газа, природного газа и т. Д.) В механическую энергию. Топливо производит тепловую энергию, вступая в химическую реакцию с воздухом в камере сгорания двигателя. Выделяемое тепло увеличивает давление газа в камере сгорания, что заставляет поршень двигаться.
Двигатели можно классифицировать по следующим критериям:
• Тип топлива
• Расположение цилиндров
• Время работы
• Образование смеси
• Тип зажигания (искровое зажигание — зажигание от сжатия)
• Технология охлаждения (воздушное охлаждение — водяное охлаждение)
• Метод наполнения цилиндров (без наддува — с турбонаддувом — с наддувом)
• Расположение клапанов

Смазочные материалы, используемые в двигателях транспортных средств, оцениваются на основе типа топлива, и соответствующие стандарты и спецификации масла устанавливаются определенными органами.


Мы можем классифицировать двигатели на основе их типов топлива как бензиновые, дизельные, СНГ и КПГ, а также сравнить и сопоставить некоторые из их основных характеристик следующим образом.

Дизельные двигатели и бензиновые двигатели

  • Дизельные двигатели не требуют свечей зажигания.
  • У них более высокая степень сжатия и более высокий тепловой КПД.
  • Риск удара отсутствует, поскольку сжимается только воздух.
  • Поскольку сгорание менее контролируемо, возникают более высокие уровни вибрации и шума.
  • Они имеют более высокий крутящий момент, но работают на более низких скоростях. Они достигают максимального крутящего момента на более низких оборотах.
  • Поскольку они подвергаются более высокому давлению, они должны быть изготовлены из более прочных деталей и, следовательно, тяжелее.
  • Их интервалы технического обслуживания обычно больше; однако затраты на их обслуживание выше.
  • Перегрев происходит реже, так как они работают более эффективно.
  • Проблема холодного пуска при низких температурах встречается чаще.
  • В то время как дизельные двигатели более склонны к образованию сажи и NOx из-за высокого содержания серы и азота в топливе и более высокой температуры в цилиндрах, бензиновые двигатели склонны к более высокому образованию CO из-за более высоких рабочих оборотов.
  • Хотя дизельное топливо более склонно к образованию CO 2 из-за избыточного количества углерода в его молекуле, бензиновые двигатели обычно имеют больше выбросов CO2 из-за меньшего расхода топлива на км.
  • Поскольку в бензиновых двигателях используется более очищенное, легкое топливо, частицы обычно представляют собой большую проблему для дизельных двигателей. NOx более токсичен, чем выбросы CO2, поэтому дизельные двигатели обычно считаются менее экологичными.


Двигатели LPG и двигатели CNG
  • CNG (сжатый природный газ) — это метан, сжатый под давлением 200-250 бар (CH 4 ). LPG (сжиженный нефтяной газ) представляет собой сжиженную форму пропана (C 3 H 8 ), пропилена (C 3 H 6 ), бутана (C 4 H 10 ) и бутилена (C 4 H 8 ) газов в соотношениях в зависимости от региона при температуре 15 ° C и 1.7 — давление 7,5 бар.
  • LPG получают из сырой нефти путем дистилляции, и хотя он выделяет CO2 при использовании в автомобиле, он является более чистым топливом по сравнению с бензином (на 25% меньше CO2). КПГ — более чистое топливо по сравнению со сжиженным нефтяным газом (выбросы парниковых газов на 80% меньше, чем у автомобилей с бензиновым двигателем).
  • Поскольку КПГ легче воздуха, он рассеивается в воздухе в случае утечки и безопаснее бензина. С другой стороны, сжиженный нефтяной газ падает на землю, поскольку он тяжелее воздуха.Этот газ трудно воспламенить; однако это может быть опасно в случае аварии.
  • Поскольку LPG и CNG имеют меньше углеводородных связей, чем бензин и дизельное топливо, они содержат меньше энергии. Сжиженный нефтяной газ (пропан) имеет примерно в 2,5 раза более высокую теплотворную способность, чем СПГ.
  • Все бензиновые двигатели могут быть переведены на LPG и CGN. Поскольку LPG и CNG содержат меньше энергии, чем бензин, это может привести к потере мощности при конверсии бензинового автомобиля (около 10% для LPG).
  • Так как двигатели, работающие на КПГ, имеют меньше остатков сгорания (сажи) (не содержат свинца, бензола и т. Д.)) моторное масло остается более чистым, а свечи зажигания не забиваются.
  • LPG и CNG обладают меньшей смазывающей способностью, чем бензин и дизельное топливо, что вызывает увеличение износа клапанов, но положительно влияет на смазку поршневых колец.
  • Поскольку сжиженный нефтяной газ занимает меньше места, его удобнее использовать в легковых автомобилях.
  • Топливо, используемое для достижения того же уровня мощности в КПГ, увеличивает температуру в цилиндрах примерно на 200 ° C, что сокращает срок службы и снижает прочность этих металлических деталей и ускоряет окисление моторного масла.

Что такое двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — это тип машины, который предназначен для преобразования накопленной химической энергии в кинетическую энергию. Это достигается за счет прерывистого, хотя и точно по времени, сжигания топлива (например, бензина, дизельного топлива) в присутствии окислителя (например, воздуха) в пределах камеры сгорания. В большинстве автомобильных двигателей внутреннего сгорания используется двух- или четырехтактная поршневая конструкция, но роторные двигатели также имеют ограниченное применение.

Двигатели внутреннего сгорания — это сложные машины, которые превращают химическую энергию в кинетическую.

История двигателя внутреннего сгорания

До XIX века развитие двигателей внутреннего сгорания сдерживалось отсутствием подходящих источников топлива. Некоторые очень ранние предшественники современных двигателей внутреннего сгорания использовали такие виды топлива, как водород, угольная пыль и угольный газ. Подходящий источник топлива стал широко доступным только в 1850-х годах, когда в мире появилась нефть, и с тех пор разработка этих двигателей стала быстро развиваться.

Двигатель Ленуара был первым коммерчески успешным двигателем внутреннего сгорания.

Первый коммерчески успешный двигатель внутреннего сгорания появился в 1960 году, а современный цикл Отто появился вскоре после этого. Многие другие известные сегодня инновации также появились в 19 веке, включая свечи зажигания, катушки зажигания, магнето, оппозитный двигатель и дизельный цикл.

Хотя зарождающаяся автомобильная промышленность экспериментировала с рядом типов двигателей и источников топлива, в том числе с очень ранними электрическими и гибридными автомобилями, двигатель внутреннего сгорания с бензиновым двигателем доминировал на протяжении всего 20 века.

См. Также: История двигателя внутреннего сгорания

Типы двигателей внутреннего сгорания

Двигатели внутреннего сгорания можно разделить на категории в зависимости от типа топлива, компоновки и других факторов (например, используют ли они воздушное или водяное охлаждение). Некоторые из наиболее распространенных типов двигателей по типу топлива:

  • Бензиновые двигатели
    • Гибридный электрический
    • Шлейф

Дополнительно основные конфигурации двигателя внутреннего сгорания:

  • Поршень возвратно-поступательный
    • Двухтактный
    • Четырехтактный
    • Дизель

Основные принципы двигателей внутреннего сгорания

На самом базовом уровне двигатель внутреннего сгорания преобразует химическую энергию в кинетическую энергию.Этот процесс включает сжигание топлива в присутствии окислителя в замкнутой среде. В поршневых двигателях с возвратно-поступательным движением поршень вверх сжимает топливно-воздушную смесь, которая воспламеняется либо от искры (бензиновые двигатели), либо самим механизмом сжатия (дизельные двигатели). Быстро расширяющиеся выхлопные газы, создаваемые затем процесс сгорания опускает поршень, и процесс повторяется.

Действие поршней, движущихся вверх и вниз, заставляет вращаться компонент, известный как коленчатый вал, и любая другая система на транспортном средстве использует эту кинетическую энергию.Коленчатый вал каким-то образом связан с трансмиссией, которая передает кинетическую энергию от двигателя на ведущие колеса. Он также соединяется ремнями с различными аксессуарами, такими как генератор переменного тока, насос гидроусилителя рулевого управления и т. Д., Которые необходимы для правильной работы автомобиля.

Основные компоненты двигателя внутреннего сгорания

Различные двигатели имеют множество компонентов, но некоторые из составных частей большинства двигателей с поршневым приводом включают:

  • Цилиндры
  • Поршни
  • Коленчатый вал
  • Шатуны
  • Распредвал
  • Свечи зажигания / свечи накаливания

Бензиновые двигатели внутреннего сгорания

Эта анимация иллюстрирует работу четырехтактного двигателя.

В современных бензиновых двигателях обычно используется цикл Отто, хотя также использовались роторные двигатели Ванкеля, а в некоторых газовых / электрических гибридах используется двигатель с циклом Аткинсона. В любом случае в этих двигателях в качестве источника топлива используется бензин, известный как бензин на британском английском языке.

В то время как многие небольшие бензиновые двигатели являются двухтактными, почти каждый бензиновый двигатель, используемый сегодня в серийных автомобилях, использует четырехтактный цикл Отто. Это означает, что эти двигатели имеют один «рабочий ход» (когда сгорание фактически заставляет поршень вращать коленчатый вал) на каждые четыре хода поршня.В этих приложениях «ход» определяется как движение поршня от верхнего края его хода к низу или наоборот.

В процессе цикла Отто каждый поршень совершает четыре различных хода или ступени:

  1. Впуск
  2. Сжатие
  3. Горение
  4. Выхлоп

Во время такта впуска воздушно-топливная смесь втягивается в камеру сгорания. Это ход «вниз», который увеличивает внутренний объем камеры сгорания, которая втягивает топливно-воздушную смесь (за исключением случая прямого впрыска.) Затем поршень снова движется вверх, что сжимает топливно-воздушную смесь. Эта смесь сжатого воздуха и топлива затем сгорает, что заставляет поршень снова опускаться вниз в такте «мощности».

Роторные бензиновые двигатели

Роторные двигатели также могут использовать бензин в качестве топлива, но работают они немного иначе. Вместо нескольких поршней, которые перемещаются вверх и вниз несколько раз за цикл, роторные двигатели имеют треугольный ротор, который создает три камеры сгорания внутри корпуса примерно овальной формы.

Как и поршневые двигатели, роторные беспоршневые двигатели также имеют четыре ступени:

  • Впуск
  • Сжатие
  • Зажигание
  • Выхлоп

Каждая сторона треугольного ротора образует отдельную камеру сгорания внутри основного овального корпуса, и эти камеры сгорания меняют форму и объем по мере вращения ротора. Когда камера проходит через воздухозаборник, она втягивает смесь воздуха и топлива, которая сжимается из-за измененной овальной формы корпуса.Когда он сжимается, для его воспламенения используется искра, и расширяющиеся выхлопные газы двигают вперед ротор, прежде чем они будут выпущены через выхлоп.

Дизельные двигатели внутреннего сгорания

Дизельные двигатели

используют модифицированный четырехтактный процесс, поскольку самый первый из них был разработан Рудольфом Дизелем специально для улучшения цикла Отто. Для этого у них есть такты впуска, сжатия, сгорания и выпуска. Однако в дизельных двигателях искра не используется для воспламенения топливовоздушной смеси.

В дизельных двигателях на такте впуска втягивается воздух, а не топливно-воздушная смесь, и именно этот объем воздуха сжимается во время такта сжатия. Этот воздух настолько горячий из-за сжатия, что он может воспламенить дизельное топливо, которое распыляется в камеру сгорания, без необходимости использования свечи зажигания.

Поскольку в дизельных двигателях внутреннего сгорания не используются свечи зажигания для воспламенения топливовоздушных смесей, был использован ряд методов холодного пуска. Наиболее распространенный метод использует свечи накаливания, которые нагревают воздух либо в предварительных камерах, либо непосредственно в камерах сгорания.

Двигатель внутреннего сгорания еще не мертв

Вопрос в том, насколько лучше могут быть газовые двигатели. Обычные поршневые двигатели прошли долгий путь, и теперь широко распространены технические усовершенствования, такие как прямой впрыск топлива, регулируемые фазы газораспределения и системы отключения цилиндров. Наряду с инновациями в легких материалах кузова и трансмиссиях с двойным сцеплением, неуклонно растет пробег, поэтому, естественно, теперь труднее добиться дальнейшего прироста — обычно в процентах, выражаемых однозначными числами.

Почему электромобили не приживаются быстрее?

Это зависит от того, что подразумевается под словом «электрический». В Соединенных Штатах сегодня только около дюжины новых моделей работают исключительно на двигателях, работающих от батарей; В пять раз больше моделей в выставочных залах используют комбинацию бензинового или дизельного двигателя и электродвигателя. Эти гибриды, некоторые из которых имеют большие батареи, которые можно перезаряжать, подключившись к электросети, могут быть очень эффективными. Но из-за дополнительного оборудования их начальная стоимость выше.Электрифицированные автомобили всех типов продаются бодро по сравнению с предыдущими годами, но они по-прежнему составляют крошечную часть от общего рынка в этой стране. В июле на долю гибридов и электричества пришлось 44 000 продаж на общем рынке в 1,4 миллиона автомобилей.

Даже европейским планам по запрету продажи новых автомобилей с бензиновым или дизельным двигателем потребуются десятилетия, чтобы полностью реализовать их. Правила вступят в силу только через 20 лет. Кроме того, средний возраст 270 миллионов легковых автомобилей на дорогах в Соединенных Штатах сегодня приближается к 12 годам, поэтому даже если продажи новых бензиновых автомобилей прекратятся немедленно, автопарку потребуется более десяти лет. переключиться.

Но такие автомобили, как Toyota Prius, все же могут быть более экономичными, не так ли?

Гибриды, такие как Prius, могут продолжать экономить деньги при каждой заправке, но это еще не все. В своем тесте минивэна Chrysler Pacifica Hybrid 2017 года, модели с подключаемым модулем, которая, по утверждению правительства, может проехать 33 мили только от батареи, Car and Driver подсчитала, что окупаемость гибридной премии в размере 2100 долларов составит более восьми лет (на основе вождения 12 000 миль в год и до налоговых льгот). Так что да, есть экономия, если вы проезжаете много миль или долго держитесь за транспорт.Расчет изменится, если газ станет дороже. Тем не менее, гибрид более безопасен для планеты с точки зрения выбросов выхлопных газов и парниковых газов.

Чего еще нам следует ожидать от двигателей в будущем?

К 2050 году, согласно исследовательскому проекту доктора Хейвуда, сегодняшняя экономия топлива может быть увеличена вдвое. «От четверти до трети этих улучшений будет связано с улучшением автомобиля», — сказал он, в таких областях, как аэродинамика и снижение веса. Другие многообещающие области включают переменную степень сжатия — технологию, которую Nissan планирует внедрить в следующем году — и более эффективное использование доступного топлива.

Вот вопрос, учить ли горению или электрохимии? Доктор Хейвуд все еще борется с этим, хотя и признает, что ответ — «оба из вышеперечисленных». Эта тема стала темой подготовленной им презентации, а концепцию электрификации можно найти на большинстве страниц.

Заправка двигателей внутреннего сгорания | Давайте поговорим о науке

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

AB Наука о знаниях и возможностях трудоустройства 8, 9 (пересмотрено в 2009 г.) 9 Блок B: Материя и химические изменения

AB Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

AB Наука 20 (2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

AB Наука 7-8-9 (2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

до н.э Химия 11 (июнь 2018) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

до н.э Химия 11 (июнь 2018) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

до н.э Science Grade 10 (март 2018 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

МБ Химия 11 класс (2006) 11 Тема 5: Органическая химия

МБ Старшая 1-я наука (2000) 9 Кластер 2: атомы и элементы

МБ Старший 2 науки (2001) 10 Кластер 2: химия в действии

NB Химия 111/112 (2009) 11 Блок 2: Стехиометрия

NB Химия 121/122 (2009) 12 Раздел 1: Термохимия

NB Химия 121/122 (2009) 12 Раздел 4: Органическая химия

NB 10 класс естественных наук (2002) 10 Физическая наука: химические реакции

NL Химия 2202 (2018) 11 Раздел 3: Органическая химия

NL Химия 3202 (2005) 12 Раздел 3: Термохимия

NL Земляные системы 3209 (н. Д.) 12 Блок 5: Ресурсы Земли: Реальные приложения

NL Наука об окружающей среде 3205 (редакция 2010 г.) 12 Раздел 5: Атмосфера и окружающая среда

NL 9 класс естествознания 9 Раздел 2: Атомы, элементы и соединения (редакция 2011 г.)

NL Наука 1206 (2018) 10 Блок 2: Химические реакции

NL Наука 3200 (2005) 12 Блок 1: Химические реакции

NS Химия 11 (2009) 11 Органическая химия

NS Химия 12 (2009) 12 Термохимия

NS Наука 10 (2012) 10 Физическая наука: химические реакции

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

NT Наука о знаниях и возможности трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

NT Наука 10 (Альберта, 2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

NT Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

NT Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

НУ Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

НУ Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

НУ Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

НУ Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

НУ Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

НУ Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

НУ Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

НУ Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

НУ Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

НУ Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

НА Химия, 11 класс, ВУЗ (СЧ4У) 11 Нить C: химические реакции

НА Химия, 12 класс, техникум (СЧ5С) 12 Строка C: органическая химия

НА Химия, 12 класс, ВУЗ (СЧ5У) 12 Направление B: органическая химия

НА Науки о Земле и космосе, 12 класс, Университет (SES4U) 12 Strand E: Земляные материалы

НА Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand B: Научные решения современных экологических проблем

НА Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand F: Сохранение энергии

НА Экология, 11 класс, рабочее место (SVN3E) 11 Strand D: Энергосбережение

НА Естественные науки 10 класс, академический (SNC2D) 10 Нить C: химические реакции

НА Прикладная наука 10 класс (SNC2P) (2008) 10 Нить C: химические реакции и их практическое применение

НА Естественные науки, 12 класс, рабочее место (SNC4E) 12 Направление C: химические вещества в потребительских товарах

PE Наука 421A (2019) 10 Знание содержания: CK 2.1

PE Наука 421A (2019) 10 Знание содержания: CK 2.2

PE Наука 431A (без даты) 10 Блок 2: Химические реакции

PE Science 7e année (2016) (только на французском) 7 Тема 2: L’univers vivant — Понятие D: Режимы воспроизведения

КК Прикладная наука и технологии Раздел IV Материальный мир

КК Химия Раздел V Энергетические изменения в реакциях

КК Наука и технология Раздел IV Материальный мир

SK Химия 30 (2016) 12 Химическая связь и материаловедение

SK Химия 30 (2016) 12 Химическое равновесие

SK Науки о Земле 30 (фев 2018) 12 Литосфера

SK Физические науки 20 (2016) 11 Основы химии

SK Физические науки 20 (2016) 11 Нагревать

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

YT Science Grade 10 (Британская Колумбия, июнь 2016 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

Двигатели внутреннего сгорания — 3169 слов

Двигатели внутреннего сгорания

Введение

Двигатель внутреннего сгорания, тепловой двигатель, в котором топливо сгорает (то есть соединяется с кислородом) в ограниченном пространстве самого двигателя.
Этот процесс сжигания высвобождает большое количество энергии, которая преобразуется в работу через механизм двигателя. Этот тип двигателя отличается от парового двигателя, в котором двигатель внешнего сгорания сгорает отдельно от двигателя. Основными типами двигателей внутреннего сгорания являются: поршневой двигатель, такой как двигатель Отто, и дизельные двигатели; и роторные двигатели, такие как двигатель Ванкеля и газотурбинный двигатель. В целом двигатель внутреннего сгорания стал средством передвижения в

… показать больше…
Зажигание

Во всех двигателях должны быть предусмотрены средства воспламенения топлива в цилиндре.Например, в системе зажигания двигателей с циклом Отто смесь воздуха и паров бензина доставляется в цилиндр из карбюратора, и следующая операция заключается в воспламенении заряда, заставляя искру перескакивать зазор между электродами свечи зажигания. , который проходит сквозь стенки цилиндра. Один электрод изолирован фарфором или слюдой; другой заземлен через металл вилки, и оба образуют часть вторичной цепи индукционной системы. Основным типом зажигания высокого напряжения, обычно используемым в настоящее время, является система «батарея и катушка».Ток от батареи протекает через катушку низкого напряжения и намагничивает железный сердечник. Когда эта цепь размыкается в точках распределителя кулачком прерывателя, в первичной катушке с помощью конденсатора создается переходный высокочастотный ток. Это вызывает переходный высокочастотный ток высокого напряжения во вторичной обмотке. Это вторичное высокое напряжение необходимо для того, чтобы искра проскочила зазор в свече зажигания. Искра направляется в соответствующий цилиндр, который зажигается распределителем, который соединяет вторичную катушку со свечами зажигания в нескольких цилиндрах в их правильной последовательности зажигания.Кулачок прерывателя и распределитель приводятся в движение от одного и того же

Знакомство с различными типами двигателей

Существуют различные типы двигателей, используемых для различных целей, в основном в автомобильной отрасли. Сегодня в нашей повседневной жизни мы перемещаемся из одного места в другое с помощью транспортных средств, особенно транспортных средств и других средств, которые вы, возможно, знаете. Для тех, кто использует автомобили в коммерческих целях, представьте, что 85% из них даже не знают, какой у них двигатель.Если вы один из них, вам нужно учиться, и для автомобильного инженера, который хочет знать, вы находитесь в нужном месте. Ранее была опубликована статья «Понимание автомобильного двигателя». проверить!

В этой драгоценной статье двигатель объясняется как машина, которая преобразует форму энергии в механическую. Автомобильные двигатели широко известны как двигатели внутреннего сгорания или тепловые двигатели. По типам двигателей я буду говорить о двигателях внутреннего и внешнего сгорания.Эти два типа двигателей классифицируются как тепловые.

Как уже говорилось ранее, «тепловым двигателям» требовался источник тепла для преобразования в механическую энергию. Это может быть горение (небольшой контролируемый взрыв в камере) или отсутствие горения. Эти двигатели также могут быть двигателями с воздушным дыханием. то есть они забирают кислород из атмосферы или двигателей, не дышащих воздухом.

Подробнее: Общие сведения о системе смазки двигателя

Типы двигателей

Ниже перечислены типы двигателей.

Двигатели внутреннего сгорания:

Как следует из названия, двигатели внутреннего сгорания — это популярные типы двигателей, которые позволяют сгоранию топлива происходить внутри двигателя, используя создаваемое давление для повышения температуры. это смесь топлива и воздуха, воспламеняющаяся в различных камерах двигателя. Этот процесс происходит тысячи раз в минуту, давая автомобилю возможность двигаться. Эти типы двигателей сокращенно обозначаются как двигатели IC.

Подробнее: Классификация двигателей внутреннего сгорания

Процесс питания двигателей внутреннего сгорания известен как цикл сгорания, в большинстве двигателей он называется четырехтактным или тактным, поэтому его называют четырехтактным двигателем.Двигатели IC различаются по количеству ходов или циклов, совершаемых поршнем для полного вращения коленчатого вала. Четырехтактные ступени включают в себя;

  • Впуск
  • Сжатие
  • Зажигание
  • Выхлоп

Следовательно, иметь представление о том, как химическая энергия превращается в полезную механическую энергию. Большой двигатель внутреннего сгорания может генерировать 109 000 л.с., что может привести в действие корабль, перевозящий около 20 000 контейнеров.

Прочтите, как работает этот процесс горения

Двигатели внешнего сгорания:

Двигатели внешнего сгорания — это тепловые двигатели, которые также сжигают топливо.Но в этой ситуации он хранит отдельно топливо и продукты выхлопа. То есть топливо сжигается в камере, а рабочая жидкость нагревается внутри двигателя через теплообменник.

Двигатели EC работают аналогично двигателям IC, но имеют некоторые отличия. Этим двум типам двигателей требуется тепло, которое получается, когда источник подвергается тепловому расширению-сжатию или сдвигу по фазе без изменения его химического состава.

В двигателях внутреннего сгорания используемая жидкость представляет собой смесь топлива и воздуха, которая сгорает, изменяя свой химический состав.Жидкость, используемая в двигателях ЕС, может быть газообразной (двигатель Стирлинга), жидкостью (двигатель с органическим циклом Ренкина) или измененной фазой (паровой двигатель) — все это примеры двигателей ЕС.

Подробнее: Все, что вам нужно знать об электросистеме автомобиля

Электродвигатель:

Электромобили появятся в начале 2015 года после многочисленных новостей об их выпуске. Он обладает большими преимуществами по сравнению с предыдущей версией автомобиля, в том числе следующими:

  • Меньше загрязнения, чем бензиновый двигатель, что делает его экологически чистым
  • Он питается от электродвигателя и требует аккумулятора и зарядки.

Подробнее: Что нужно знать об генераторе

Посмотрите видео ниже, чтобы узнать, как работают электрические типы двигателей:

Развитие технологий привело к большим изменениям в автомобильном двигателе. Жидкости (бензин или дизельное топливо) служат в качестве очищающего средства для топливной системы, улучшая работу двигателя и снижая выбросы, а не при движении.

Подробнее: Понимание двигателя стартера двигателя

Это все для этой статьи, в которой объясняются различные типы двигателей, используемых в автомобильной промышленности. Надеюсь, вам понравилось чтение, если да, любезно поделитесь с другими студентами. Спасибо за чтение, увидимся в следующий раз!

Типы двигателей — Изучение инженерного дела

Типы двигателей

Типы двигателей: — Двигатель — это устройство, преобразующее тепловую энергию топлива в механическую.Двигатели в основном используются в автомобильной промышленности. В зависимости от наших требований доступны различные типы двигателей.

Различные типы двигателей

Основное различие между двигателями: 1) Двигатель внутреннего сгорания 2) Двигатель внешнего сгорания.

A) Двигатель внутреннего сгорания

Как следует из названия, в двигателе внутреннего сгорания сгорание топлива происходит внутри двигателя. Наиболее распространенным типом двигателя внутреннего сгорания является четырехтактный двигатель с четырьмя ступенями.

  1. Впрыск смесителя топлива и окислителя (воздуха) внутрь двигателя.
  2. Компрессионный смеситель.
  3. Воспламенение смесителя топлива искрой.
  4. Отказ выхлопа.

В этом двигателе топливо попадает внутрь камеры сгорания, и поршень сжимает его. Из-за сжатия и искрового зажигания на поршень воздействуют высокое давление и температура, которые используются для вращения кривошипа, который соединен с поршнем через шатун.

B) Двигатель внешнего сгорания

Как следует из названия, в двигателе внешнего сгорания сгорание топлива происходит вне двигателя.Здесь дополнительное тепло используется для производства пара низкого давления, который используется в турбине для производства электроэнергии. Здесь топливо сжигается вне двигателя, поэтому мы также можем использовать твердое топливо.

Теперь поговорим о различных типах двигателей на основе разных критериев:

C) На основе конструкции:

1. Поршневой двигатель (поршневой двигатель): (Типы двигателей)

дюйм приведен данный тип поршневой цилиндрической сборки двигателя.Поршень движется внутрь цилиндра и обратно. Это наиболее распространенный тип двигателей, используемых в автомобильной промышленности.

2. Роторный двигатель (двигатель Ванкеля): (Типы двигателей)

Роторный двигатель: В этом типе двигателя вместо поршня есть ротор, который вращает колесо транспортного средства. Он изобретен в 1957 году, но в настоящее время не используется людьми. Давление, создаваемое при сгорании топлива, передается на ротор.

D) По количеству ходов:

1.Четырехтактный двигатель: (Типы двигателей)

Четырехтактный двигатель: В этом двигателе поршень перемещается два раза вверх и вниз, а кривошип поворачивается два раза за одно сгорание топлива. Это очень эффективный тип двигателя. Он используется в мотоциклах, автомобилях и т. Д.

2. Двухтактные двигатели: (Типы двигателей)

Двухтактные двигатели: В этих двигателях поршень перемещается вверх и вниз только один раз. Кривошип вращается только один раз за одно сгорание топлива.

E) В зависимости от используемого топлива:
  1. Дизельный двигатель: В качестве топлива используется дизельное топливо. Бывший. Автобусы, грузовики и т. Д.
  2. Бензиновый двигатель: В качестве топлива используется бензин. Бывший. Автомобиль, велосипед и т. Д.
  3. Газовый двигатель: В качестве топлива используется сжиженный нефтяной газ или сжатый природный газ. Бывший. Авто и т. Д.
  4. Электрический двигатель: Использует электрическую энергию для вращения кривошипа. Бывший. Автомобиль.

F) В зависимости от метода зажигания:

1. Двигатель с воспламенением от сжатия: (Типы двигателей)

Здесь не используется дополнительное оборудование для воспламенения топлива.Из-за сжатия топлива температура увеличивается, что вызывает возгорание топлива.

2. Двигатель с искровым зажиганием: (Типы двигателей)

Здесь для воспламенения топлива используется свеча зажигания. Из-за этого его называют двигателем с искровым зажиганием.

G) В зависимости от количества цилиндров:

1. Одноцилиндровый двигатель: (Типы двигателей)

Здесь мы используем только один цилиндр и поршень в сборе, который соединен с кривошипом.

2.Многоцилиндровый двигатель: (Типы двигателей)

Здесь мы используем более двух цилиндров и поршневой узел, который соединен с кривошипом. Рисунок показан ниже.

H) В зависимости от расположения цилиндров:
  1. Рядный двигатель: Здесь цилиндры расположены в одну линию вместе с коленчатым валом.
  2. V-образный двигатель: Здесь цилиндры расположены под углом к ​​коленчатому валу.
  3. Двигатель с оппозитными цилиндрами: Здесь цилиндры расположены под углом 180 o .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *