Что значит четырехтактный двигатель и почему четыре такта?
Дорогой друг, сегодня поговорим о том, что значит четырехтактный двигатель. О истории его изобретения, принципе работы, особенностях, технических характеристиках и сферах применения.
Конечно, если у вас есть водительское удостоверение, то вы по крайней мере слышали этот термин, когда учились в автошколе. Но вряд ли тогда стали вникать во все тонкости, поэтому сейчас самое время разобраться, что же там происходит под капотом вашего железного коня.
Как всё начиналось
В 19 веке уже были двигатели, но это были в основном большие механизмы, работающие на пару. Они конечно частично обеспечивали развивающуюся промышленность, но имели много недостатков.
Были тяжелые, имели низкий КПД, большие габариты, требовалось много времени на запуск и остановку, для эксплуатации нужны были квалифицированные рабочие.
Промышленникам нужен был новый агрегат без перечисленных недостатков они уже поняли что значит четырехтактный двигатель. И как при определенных условиях с его помощью можно повысить прибыль.
Его и разработал изобретатель Эжен-Альфонс Бо де Роша, а в 1867 году воплотил в металл Николаус Август Отто.
В то время это было чудо техники. Двигатель внутреннего сгорания отличался низкими эксплуатационными расходами, небольшими размерами и не требовал постоянного присутствия обслуживающего персонала.
Работало устройство по особому алгоритму, который и сейчас называют «цикл Отто». Спустя 8 лет, после запуска первого экземпляра, компания Отто выпускала уже более 600 силовых установок в год.
Очень быстро, из-за автономности и компактности, двигатели внутреннего сгорания получили широкое распространение.
Из чего состоит двигатель
Чтобы понять принцип работы, познакомимся с основными составляющими движка:
- блок цилиндров;
- кривошипно-шатунный механизм (включает коленвал, поршни, шатуны) ‒ он необходим для преобразования поступательно-возвратных движений поршня во вращательное движение коленвала;
- головка блока вместе с газораспределительным механизмом, который открывает впускные и выпускные клапаны, для того чтобы поступала рабочая смесь и выходили отработавшие газы. ГРМ может включать один или более распредвалов, которые состоят из кулачков для толкания клапанов, самих клапанов и клапанных пружин. Для стабильной работы четырехтактного движка существует ряд вспомогательных систем:
- система зажигания ‒ для поджига горючей смеси в цилиндрах;
- впускная система ‒ для подачи воздуха и рабочей смеси в цилиндр;
- топливная система ‒ для непрерывной подачи топлива, получения смеси воздуха и горючего;
- система смазки – для смазки трущихся деталей, а также одновременного удаления продуктов износа;
- выхлопная система – для удаления отработанных газов из цилиндров, снижения токсичности выхлопа;
- система охлаждения – для поддержки оптимальной температуры движка.
Что значит четырехтактный двигатель и почему четыре такта
- Теперь, когда вы более-менее представляете устройство четырехтактного двигателя, можно рассмотреть рабочий процесс.
Он состоит из следующих этапов:впуск – поршень движется вниз, цилиндр заполняется горючей смесью из карбюратора через впускной клапан, который открываются кулачком распределительного вала.При движении поршня вниз, создается отрицательное давление в цилиндре, тем самым происходит всасывание рабочей смеси, а именно воздуха с парами топлива. Впуск продолжается пока поршень не достигнет НМТ (нижняя мертвая точка). В этот момент закрывается впускной клапан; - сжатие или компрессия – после того как будет достигнута НМТ поршень начинает двигаться вверх к ВМТ (верхняя мертвая точка). При движении поршня вверх происходит сжатие, рабочая топливо-воздушная смесь сжимается, давление внутри цилиндра возрастает. Впускной и выпускной клапан закрыты;
- рабочий ход или расширение – в конце цикла сжатия (в ВМТ), рабочая смесь воспламеняется от искры в свече зажигания. Поршень от микровзрыва устремляется к НМТ.В процессе движения поршня от ВМТ к НМТ смесь сгорает, а увеличивающиеся в объеме газы толкают поршень, выполняя полезную работу. Именно по этой причине движение поршня в этом такте назвали рабочий ход. Впускной и выпускной клапан закрыты;
- выпуск выхлопных газов – в заключительном четвертом такте открывается выпускной клапан, поршень поднимается в верхнюю точку и выталкивает продукты сгорания из цилиндра в выхлопную систему, пройдя через глушитель, они попадают в атмосферу. После достижения поршнем ВМТ выпускной клапан закрывается, затем цикл повторяется. Эти четыре такта представляют собой рабочий цикл мотора. Тактом же именуется движение поршня вверх или вниз. Один оборот коленчатого вала соответствует двум тактам, а два оборота – 4 тактам. Отсюда пошло название четырёхтактного двигателя.
От чего зависит мощность четырехтактного ДВС
Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:
- объёмом цилиндров;
- степенью сжатия рабочей смеси;
- частотой вращения.
Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).
Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.
Применение в настоящее время
Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.
Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.
Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.
И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.
Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.
Теперь, дорогой друг, ты в общих чертах знаешь что значит четырехтактный двигатель, где он используется. Теперь ты стал на голову выше. Но не скупись полученой информацией, поделись с друзьями. К твоим услугам кнопки социальных сетей.
Да и подписаться можно на наш блог, чтобы всегда быть в курсе интересного материала, а его всегда много и будет еще больше.
До новых встреч!
auto-ru.ru
📌 ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
- ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
- ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
-
— отдельные процессы, протекающие в цилиндре за один ход поршня и составляющие полный рабочий цикл двигателя внутреннего сгорания. Например, в четырехтактном двигателе рабочие процессы (всасывание, сжатие, рабочий ход и выхлоп), составляющие рабочий цикл, совершаются за 4 хода поршня, а в двухтактных двигателях за 2 хода. См. также Двигатели внутреннего сгорания.
Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941
- ТАКЕЛЬГАРН
- ТАКСИМЕТР
Смотреть что такое «ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ» в других словарях:
Поршневой двигатель внутреннего сгорания — 4 тактный цикл двигателя внутреннего сгорания Такты: 1. Всасывание горючей смеси. 2. Сжатие. 3. Рабочий ход. 4. Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх сжатие топливной смеси в … Википедия
Бензиновый двигатель внутреннего сгорания — Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и … Википедия
Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем … Википедия
Объём двигателя — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… … Википедия
Поршневой авиационный двигатель — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… … Википедия
Четырёхтактный двигатель — Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты Четырёхтактный двигатель поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за… … Википедия
Пятитактный роторный двигатель — роторный двигатель с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов. История Впервые такая схема расширительной машины в виде… … Википедия
Четырехтактный двигатель — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… … Википедия
Четырёхтактный мотор — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… … Википедия
Дизельный двигатель — Дизельный двигатель поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1] Спектр топлива для дизелей весьма широк, сюда включаются все… … Википедия
dic.academic.ru
Четырехтактный двигатель внутреннего сгорания ДВС
June 20, 2012
Как устроен двигатель внутреннего сгорания
ДВС или двигатель внутреннего сгорания – это механизм, который принадлежит к тепловым машинам. Принцип действия двигателя внутреннего сгорания – преобразование тепловой энергии, получаемой от сгорания жидкого топлива, в механическую.
Поршни и шатуны
Простейший ДВС состоит из блока двигателя – чугунной или алюминиевой детали, в которой вырезается рабочий цилиндр. По цилиндру, совершая возвратно-поступательные движения движется поршень. Поршень, как правило сделан из легкого и прочного сплава поскольку должен выдерживать значительные нагрузки и температуры, длительное время, при этом не разрушаясь и не деформируясь.
С одной стороны поршень соединен с шатуном. Это узел, обеспечивающий связь поршня с коленчатым валом. Представляет из себя цельнолитую деталь, со сквозным неразъемным отверстием со стороны поршня и сквозным разъемным кольцом со стороны коленчатого вала. Шатун, соединенный с поршнем называется поршневой группой, поскольку сами по себе они практически бесполезны.
Коленчатый вал
Коленчатый вал – это вторая по массивности деталь двигателя. Представляет собой сложный вал, разбитый на условные сектора, некоторые из которых смещены относительно центра вращения вала. Каждый такой сектор отполирован до зеркальной поверхности и называется шейкой. Каждая шейка коленчатого вала – создана для того, чтобы работать в скользящей паре “шейка – шатун” или “шейка – опорный подшипник”. Подшипники, на которых лежит коленвал, как правило скольжения. Он отполирован до зеркального состояния. На противоположной стороне колена, называемого шейкой, обычно делается наплыв для балансировки вала. Такая система называется кривошипно-шатунный механизм (КШМ).
Вал, соединенный с поршнем через шатун, создает жесткую структуру, которая обеспечивает преобразование вращательных движений коленвала в возвратно-поступательные движения поршня в цилиндре и наоборот.
Сверху блок цилиндров закрывается головкой двигателя, в которой находится распределительнй вал, клапана и каналы впуска-выпуска. Распредвал жестко связан с коленвалом посредством цепной или ременной передачи. Распредвал открывает и закрывает впускные и выпускные клапана. Такая конструкция применяется в четырехтактном двигателе Отто. Этот механизм ДВС называется газораспределительный механизм (ГРМ). Он обеспечивает отвод выхлопных газов из цилиндра, впуск топливовоздушной смеси в цилиндр перед тактом сжатия, обеспечивает герметичность камеры во время сжатия и сгорания топливной смеси.
Система запускается с помощью стартера. Стартер представляет собой либо механический привод, например педаль в мопедах и некоторых мотоциклах, или шнур в мотопилах или газонокосилках. В четырехтактных двс используется, как правило электрический стартер, который приводится в движение с помощью аккумуляторной батареи.
Двигатель внутреннего сгорания может быть двух, четырех и даже шести тактным. Про последний тип двигателей мы позже расскажем в отдельной статье.
Такты двс
Каждый такт поршневого двигателя внутреннего сгорания обозначает завершенное действие. Например в двухтактном двигателе тактов два – первый – рабочий, когда топливо засасывается, одновременно с выходом наружу отработанных газов, второй – когда топливо сжимается и происходит его сгорание. В двухтактном двигателя каналы впуска и выпуска входят прямо в цилиндр, но расположены на разному ровне, что позволяет отработанным газам выходить раньше, чем поршень открывает второй, впускной канал.
Четырехтактный двигатель соответственно имеет четыре этапа действия.
Первый – поршень идет вниз, при этом открыт впускной клапан открыт – в рабочий объем засасывается порция топливно-воздушной смеси (ТВС).
Второй такт – оба клапана закрыты, поршень идет вверх, сжимая ТВС. Когда поршень доходит до верхней мертвой точки (ВМТ), второй такт заканчивается.
Начинается третий такт – поршень проходит ВМТ, коленвал при этом поворачивается примерно на два-три градуса и происходит запал ТВС путем мощной искры из свечи зажигания. ТВС воспламеняется и начинает расширяться, активно сгорая. Поршень уходит вниз. В нижней мертвой точке НМТ, заканчивается третий такт.
Четвертый такт – поршень идет вверх, открывается выпускной клапан цилиндра – отработанные газы выходят в выхлопной коллектор.
Таким образом получается, что любой ДВС – это по сути насос, который способен черпать энергию из прокачиваемого топлива, сгораемого в нем в процессе прокачки.
Работа ДВС невозможна без двух дополнительных систем – системы подачи топлива и системы зажигания. Об этом беспокоятся инжектор или карбюратор со свечами зажигания. О них мы расскажем в следующих статьях.
Сборка ДВС видео
lab-37.com
Глава 1 — Двигатель | whatisvehicle
Итак, начнём. Двигатель автомобиля (Engine), что же это такое?
Автомобиль – сложный организм, сродни человеческому. У него много различных механизмов(органов), без которых он не будет работать. Но как и у человека, у автомобиля есть «сердце» и этим сердцем является автомобильный двигатель.
История автомобильного двигателя
Чуть-чуть истории. Двигатель прошёл долгую историю развития. По сути, первыми двигателями являлись парус и водяное колесо. Водяным колесом широко пользовались в странах Древнего мира(таких как Египет, Китай, Индия) для оросительных систем, а в средние века в Европе использовали как основу энергетической базы производства. Дальше появились двигатели внешнего сгорания. Широкое распространение получили паровые двигатели.
Паровой двигатель(Steam engine) — двигатель ВНЕШНЕГО сгорания, который преобразовывает энергию пара в механическую работу. Советую почитать очень интересную и непростую историю развития данного двигателя: http://www.bibliotekar.ru/encAuto/5.htm
Далее в процессе развития двигателей появились двигатели внутреннего сгорания, ДВС. Одним из них, нашедший наибольшее распространение — бензиновый двигатель.
Бензиновые двигатели (petrol engine, gasoline engine)
Позже появились дизельные двигатели.
Дизельный двигатель — это двигатель внутреннего сгорания, работающий по принципу воспламенения распыленного дизельного топлива от соприкосновения с разогретым сжатым воздухом. Плюсом является экономичность топлива, более высокий крутящий момент. Однако, минусом является сложность систем, дороговизна изготовления и эксплуатации.
Ну и заглянем в будущее автомобилей. Итак, существуют так же электрические двигатели.
Электрический двигатель — Это установка, в которой электрическая энергия превращается в механическую работу и тепло. Это развивающееся направление в автомобилестроении. Однако, на дорогах большинство машин имеют бензиновый или дизельный двигатель, поэтому, оставим будущее и вернёмся к настоящему.
Принцип действия
Итак, автомобильный двигатель. Прежде чем рассматривать его устройство, давайте чуть-чуть разберёмся с тем, как работает автомобильный двигатель не вдаваясь в детали.
У каждого двигателя есть свой рабочий цикл.
Рабочий цикл двигателя — периодически повторяющиеся процессы в двигателе по преобразованию тепловой энергии в механическую.
У каждого двигателя есть цилиндры, в которых ходят поршни. Это главное место, где происходит самый главный процесс.
ВМТ — Верхняя Мёртвая Точка.
НМТ — Нижняя Мёртвая Точка.
Такт — это движение поршня от ВМТ к НМТ или от НМТ к ВМТ;
Двигатели могут быть двухтактные и четырёхтактные. Двухтактные двигатели на автомобиле не используются, однако предлагаю быстренько ознакомиться с принципом их работы. Для общего образования, так сказать.
Двухтактные двигатель
Перед нами двухтактный двигатель. Здесь всё предельно просто.
Первый такт — Поршень двигателя движется вверх(картинка А), открывает отверстие(1) и сжимает смесь, которая уже находится в цилиндре. После чего, свеча зажигания воспламеняет горючее(картинка В).
Второй такт — После загорания опускающийся поршень(картинка С) сначала открывает выпускное отверстие(2), а затем переходное отверстие(3). После этого через него впускается новая порция воздушно-топливной смеси.
Таким образам поршень также заменяет клапаны двигателя, и в горючее добавляется масло для смазки поршня. Многие двухтактные двигатели снабжены ребрами для воздушного охлаждения цилиндра.
Четырёхтактный двигатель
А теперь вернёмся к четырёхтактном автомобильному двигателю.
Автомобильные двигатели, как мы уже сказали, могут быть бензиновыми и дизельными. И поэтому предлагаю рассмотреть их такты вместе. Несмотря на то, что они схожи, но в них есть так же и различия.
1-й такт впуск (наполнение).
Поршень движется от ВМТ к НМТ, впускной клапан открыт. Под действием перепада давления, возникающего в результате движения поршня:
Бензиновый двигатель: бензовоздушная смесь через впускной канал наполняет цилиндр.
Дизельный двигатель: воздух через впускной канал наполняет цилиндр.
2-й такт сжатие.
Поршень движется от НМТ к ВМТ, все клапана закрыты. Давление и температура в цилиндре поднимаются.
бензиновый двигатель: в конце такта сжатия на свечу зажигания подается высокое напряжение, между электродами свечи проскакивает искра и поджигает бензовоздущную смесь
дизельный двигатель: через форсунку высокого давления подается дизельное топливо, которое воспламеняется от нагретого в процессе сжатия воздуха.
3-й такт рабочий ход. Поршень движется от ВМТ к НМТ, все клапана закрыты. В начале такта продолжается сгорание топлива, начавшееся в конце такта сжатия. Температура и давление газов повышается. Давление передается поршню и перемещает его к НМТ. Тепловая энергия сгоревшего топлива превращается в механическую работу движения поршня.
4-й такт выпуск. Поршень движется от НМТ к ВМТ, выпускной клапан открыт. Происходит выталкивание
отработавших газов из цилиндра.
Для большей наглядности взгляните на следующие рисунки:
Такты бензинового двигателя:
Такты дизельного двигателя:
Таким образом 1 рабочий цикл 4-х тактного двигателя происходит за 2 оборота коленчатого вала (720° его поворота). Отличие между бензиновым и дизельным двигателем лишь в топливе и способе его воспламенении на такте сжатия. Однако, это вносит свои изменения в применяемые агрегаты, но об этом речь пойдёт потом.
Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания топлива, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).
Основные параметры
Полный объем цилиндра ( Va ) — объем, заключенный между головкой, цилиндром и поршнем при нахождении его в НМТ;
Объем камеры сжатия ( VC ) — объем, заключенный между головкой, цилиндром и поршнем при нахождении его в ВМТ;
Рабочий объем цилиндра ( Vh ) — объем, образующийся при движении поршня от ВМТ к НМТ ( Vh = Va-Vc );
Полный объем двигателя ( iVh ) сумма рабочих объемов всех цилиндров двигателя; Он же литраж двигателя.
Степень сжатия ( E ) отношение полного объема к объему камеры сжатия ( E = Va/Vc = 1 + Vh/Vc );
Степень сжатия показывает, во сколько раз сжимают горючую смесь в цилиндре. Чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно и больше мощность двигателя. Увеличивать степень сжатия очень выгодно — от той же порции топлива можно получить больше полезной работы. Однако при чрезмерном увеличении степени сжатия наступает самовоспламенение рабочей смеси, и смесь сгорает с большой скоростью — происходит детонация топлива. Детонация — это недопустимо быстрое сгорание рабочей смеси, вызывающее неустойчивую работу двигателя. У двигателя при детонации появляется резкий стук, мощность его снижается, из глушителя выходит черный дым. Конструкторы изыскивают способы борьбы с детонацией топлива и постепенно повышают степень сжатия. В зависимости от степени сжатия применяют определенный сорт топлива.
Мощность двигателя
Мощность — это физическая величина, равная отношению работы, совершенной за определенное время, к этому времени. В системе единиц СИ мощность измеряется в Ваттах (Вт). Поднимая груз массой 1 килограмм на высоту 1 метр за 1 секунду, мы развиваем мощность 1 кг x 9,8 м/с2 x 1 м/с = 9,8 Вт.
Мощность автомобильных двигателей обычно измеряют в лошадиных силах.
Термин «лошадиная сила» был введен в конце XVIII в. английским изобретателем Дж. Уаттом. Наблюдая за работой лошадей, вытягивающих из угольных шахт при помощи блоков корзины с углем, ученый измерил общий вес извлеченной ими породы и высоту, на которую он был поднят за определенное время. Уатт рассчитал, что 1 лошадь за 1 минуту с глубины 30 м вытягивает в среднем 150 кг угля. Эта единица мощности и получила название лошадиной силы (horsepower).
После принятия в 1960 г. системы единиц СИ лошадиная сила стала вспомогательной единицей мощности, равной 736 Вт. Средняя мощность человека равна 70—90 Вт, что составляет 0,1 лошадиной силы
1 л.с. = 0,73549875 кВт
Порядок работы цилиндров двигателя
Для наибольшей равномерности нагрузки коленчатого вала многоцилиндрового двигателя необходимо, чтобы рабочие такты в цилиндрах повторялись в определенной последовательности, которая называется порядком работы цилиндров. Порядок работы цилиндров зависит от числа цилиндров двигателя и его тактности; при этом последовательно работающие цилиндры не должны стоять рядом.
Полный цикл у четырехтактного двигателя осуществляется за два оборота вала, т. е. за 720°, у двухтактного за 360°. Для того чтобы в любой момент вал двигателя имел некоторое постоянное усилие от воздействия газов на поршень, колена вала необходимо смещать относительно друг друга на угол ф. Этот угол зависит от числа цилиндров г и тактности двигателя и равен цикловой продолжительности поворота вала в градусах, отнесенной к числу цилиндров. Следовательно, для четырехтактного двигателя ф = 720°/г, для двухтактного ф = 360°/z.
Определим, например, порядок работы цилиндров, расположенных в один ряд, у четырехтактного четырехцилиндрового двигателя. В этом случае ф = 720° : 4 = = 180°. Вал имеет конфигурацию, при которой поршни 1 и 4 перемещаются в направлении, противоположном движению поршней 2 и 3. Получающееся при этом чередование процессов в цилиндрах показано в табл. 8. Если в первом цилиндре осуществляется рабочий ход, то поршень второго цилиндра движется вверх, при этом из двух возможных процессов (сжатие и выпуск) примем выпуск. Тогда поршень третьего цилиндра, также перемещающийся вверх, должен осуществлять сжатие. В четвертом цилиндре поршень движется вниз одновременно с поршнем первого цилиндра, осуществляющим рабочий ход, поэтому в четвертом цилиндре должен быть впуск. Чередование процессов в последующих тактах всех цилиндров определяется цикловой последовательностью. Из табл. 8 видно, что процессы расширения (рабочего хода) будут проходить в цилиндрах в следующем порядке: 1—3—4—2. Если во втором цилиндре в первом такте принять вместо процесса выпуска сжатие, то порядок работы цилиндров изменится и будет 1—2—4—3. Следовательно, для четырехтактного четырехцилиндрового однорядного двигателя возможны два порядка работы цилиндров.
Для более полного усвоения предлагаю визуально взглянуть на следующие рисунки:
а — чередование тактов 1-2-4-3; б — чередование тактов 1-3-4-2
И напоследок, видео ролик о работе(бензиновый и дизельный):
Итак, начальные сведения мы получили. Теперь мы можем приступать к изучению устройства двигателя внутреннего сгорания.
Понравилось это:
Нравится Загрузка…
whatisvehicle.wordpress.com
📌 Четырёхтактный двигатель — это… 🎓 Что такое Четырёхтактный двигатель?
Работа четырёхтактного двигателя в разрезе. Цифрами обозначены тактыЧетырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:
- Впуск — (такт впуска, поршень идёт вниз) свежая порция топливо-воздушной смеси всасывается в цилиндр через открытый впускной клапан.
- Сжатие (такт сжатия, поршень идёт вверх) впускной и выпускной клапаны закрыты, и топливо-воздушная смесь сжимается в объёме.
- Рабочий ход (такт рабочего хода, поршень идёт вниз) сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз. Фактически на такте рабочего хода происходит работа двигателя.
- Выпуск (такт выпуска, поршень идёт вверх) на этом такте открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр.
По окончании 4-го такта всё повторяется в том же порядке.
История
Цикл Отто
Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V): такт впуска(A) , представляющий собой изобарическое расширение; за ним следует такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующимитакт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка
Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.
Первым человеком, реально построившим четырёхтактный двигатель, был немецкий инженер Николаус Отто. Вот почему четырёхтактный принцип сегодня известен, в основном, как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, часто называется двигателем Отто.
Цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В случае четырёхтактного цикла Отто имеется также изобарическое сжатие и изобарическое расширение, которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли в сообщении рабочему газу теплоты или в совершении газом работы.
Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)Октановое число топлива
Мощность на коленчатый вал двигателя внутреннего сгорания передаётся на вал от расширяющихся газов, в основном, во время такта рабочего хода. Сжатие топливо-воздушной смеси до очень малого объёма повышает эффективность рабочего хода, но увеличение степени сжатия в цилиндре также сильнее нагревает сжимающуюся топливо-воздушную смесь (согласно закону Шарля).
Если топливо легковоспламеняемое, с низкой температурой вспышки, то это может привести к возгоранию топливо-воздушной смеси до того, как поршень достигнет верхней мёртвой точки. Это, в свою очередь, будет заставлять поршень двигаться в сторону, противоположную требуемому направлению вращения коленчатого вала. Топливо, которое воспламеняется в верхней мёртвой точке, но до того, как поршень начнёт двигаться вниз, может повредить поршень и цилиндр из-за наличия в малом объёме очень большого количества тепловой энергии, не имеющей возможности выхода. Это повреждение часто проявляет себя как стук двигателя, и оно ведёт к перманентному повреждению двигателя, если случается постоянно.
Октановое число является мерой сопротивления топлива к самовоспламенению под воздействием возрастающих температур. Топлива с более высокими октановыми числами позволяют осуществлять более высокую степень сжатия без риска повреждения двигателя вследствие самовоспламенения.
Для работы дизельных двигателей самовоспламенение необходимо. Они предотвращают возможное повреждение двигателей путём раздельного впрыска топлива под большим давлением в цилиндр очень незадолго до того, как поршень достигнет верхней мёртвой точки. Воздух без топлива может быть сжат очень сильно без опасности самовоспламенения, и в то же время, находящееся под высоким давлением топливо в системе подачи топлива не может самовоспламениться без присутствия воздуха.
Факторы, ограничивающие мощность двигателя
Четырёхтактный цикл1=верхняя мёртвая точка
2=нижняя мёртвая точка
A: такт впуска
B: такт сжатия
C: такт рабочего хода
D: такт выпуска
Максимальная мощность двигателя вырабатывается при максимальном количестве всасываемого воздуха. Мощность, вырабатываемая поршневым двигателем, связана с его размерами (объёмом цилиндра), объёмным КПД, потерь энергии, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Это справедливо как для двухтактных, так и для четырёхтактных двигателей. Частота вращения в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На слишком высоких оборотах двигателя могут происходить физические повреждения и дрожание поршневых колец, и это приводит к потерям энергии и даже разрушению двигателя. Поршневые кольца колеблются вертикально в каналах, в которых они находятся. Эти колебания колец ухудшают уплотнение между кольцами и стенками цилиндра, что приводит к потерям давления в цилиндре и мощности. Если вал двигателя вращается слишком быстро, то пружины клапанов не успевают достаточно быстро срабатывать, и клапана не успевают закрываться. Эта ситуация называется «плаванием клапанов» (англ.), и она может привести к контакту поршня и клапанов, вызвав серьёзные повреждения. На высоких скоростях условия смазки на границе поверхностей поршня и цилиндра ухудшаются. Это ограничивает скорость поршней промышленных двигателей величиной около 10 м/с.
Потоки через впускной и выпускной каналы
Выходная мощность двигателя зависит от всасывающей способности, и от возможностей выхлопных газов быстро перемещаться через клапанные каналы, как правило расположенные в головках цилиндров (англ.). Для увеличения выходной мощности можно минимизировать количество изгибов тех каналов, по которым движутся всасываемые и выхлопные потоки, а также сделать их более плавными, благодаря чему уменьшится сопротивление этим потокам. Для этого радиусы поворотов клапанных каналов и сёдла клапанов можно модифицировать таким образом, чтобы их аэродинамическое сопротивление было минимальным. Можно, кроме того, использовать разделение потока на несколько частей.
Принудительное нагнетание воздуха в цилиндры
Один из путей увеличения мощности — это принудительное нагнетание дополнительного количества воздуха в цилиндры, благодаря чему при каждом рабочем ходе может вырабатываться больше мощности. Такое принудительное нагнетание может производиться некоторыми типами компрессорных устройств, называемых нагнетателями. Последние могут приводиться в движение от коленчатого вала или выхлопных газов.
Нагнетание повышает предел мощности двигателя внутреннего сгорания при том же самом объёме цилиндра. В общем случае, нагнетатель всегда работает, но есть конструкции, позволяющие отключать его, или позволяющие ему работать с разными скоростями (относительно скорости двигателя).
Недостатком механически осуществляемого нагнетания является то, что часть выходной мощности расходуется на приведение в движение нагнетателя. Воздух в цилиндре сжимается дважды, но расширяется только в один этап. Поэтому часть мощности понапрасну расходуется с выхлопами высокого давления.
Турбонагнетание
Турбонагнетатель или турбокомпрессор (ТК, ТН) — это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На вале, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет «закачивать» под давлением воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание воздуха обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.
На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.
Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.
Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).
Отношение длины шатуна к длине хода поршня
Более длинный шатун уменьшает боковые нагрузки со стороны поршня на стенки цилиндра, и уменьшает ударные нагрузки. Как следствие двигатель с длинным шатуном служит дольше, и он надёжнее. Однако увеличение длины шатуна ведёт к увеличению габаритов двигателя, его массы и стоимости. Кроме того, при возрастании длины шатуна увеличивается время нахождения поршня в верхней мёртвой точке. Как следствие, увеличивается время, в течение которого газ в цилиндре находится при высокой температуре, что ведёт к повышенному нагреву двигателя.
В настоящее время более актуальным параметром оценки ДВС является отношение хода поршня к диаметру цилиндра или наоборот. Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, чуть больше диаметра цилиндра.
Газораспределительный механизм
Клапаны обычно управляются через распределительный вал, вращающийся со скоростью, равной половине скорости коленчатого вала. Распределительный вал имеет несколько кулачковых механизмов, каждый из которых рассчитан так, чтобы открывать и закрывать «свой» клапан в определённое время цикла.
Во многих двигателях используются один или несколько распределительных валов, расположенных над рядом цилиндров (или над каждым рядом цилиндров). Помимо верхнего расположения распредвала часто встречается, казалось бы, забытое на легковых авто нижнее положение распредвала в блоке цилиндров. При этом кинематическая цепочка включает (снизу вверх) толкатели штанги и коромысла. Эта система, применение которой обусловлено простотой, надёжностью и компактностью, успешно себя зарекомендовала на грузовых автомобилях. Эта схема позволяет конструировать моторы с более низким центром тяжести.
Первая из описанных выше конструкций газораспределительного механизма обычно позволяет двигателям работать с бо́льшими скоростями, поскольку в этом случае имеется более короткая кинематическая цепь от кулачка к клапану.
Баланс энергии
Двигатели Отто имеют КПД около 35 % — иными словами, 35 % энергии, генерируемой при сжигании топлива, преобразуется в энергию вращательного движения выходного вала двигателя, а остальное теряется в виде тепла. Для сравнения: шеститактный двигатель может преобразовывать в полезную вращательную энергию более 50 % энергии, высвобождаемой при горении топлива.
Современные двигатели часто конструктивно имеют намеренно меньший КПД, чем они могли бы иметь. Это необходимо для уменьшения выбросов с помощью таких средств как система рециркуляции выхлопных газов и каталитический конвертер.
Уменьшению КПД можно препятствовать с помощью системы контроля двигателя (англ.), использующей технологии эффективного сжигания топлива.[1]
Применение
Сегодня двигатели внутреннего сгорания в легковых и грузовых автомобилях, самолётах и во многих других машинах в большинстве случаев используют четырёхтактный цикл. Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными.
Примечания
- ↑ Air pollution from motor vehicles By Asif Faiz, Christopher S. Weaver, Michael P. Walsh
dic.academic.ru
Принцип работы двигателя внутреннего сгорания в 4 такта
Двигатель внутреннего сгорания, который сейчас стоит едва ли не на каждом автомобиле в мире, был создан настолько давно, что сейчас это даже сложно представить. Ведь датой появления первого образца такого агрегата считается 1860 год.
То есть, механизм, который, пусть и претерпел ряд изменений, но остался всё тем же устройством, был создан ещё в девятнадцатом столетии. Причиной такой популярности стал простой и понятный принцип работы двигателя внутреннего сгорания.
Проведём небольшой экскурс в историю. Уже упомянутое выше изобретение Ленуара, созданное в 1860 году, имело ряд конструктивных недоработок, что серьёзно его снижало КПД. Потому, широкого распространения этот двигатель не получил.
Зато стал плодом для размышлений другого конструктора, чьё имя так же вошло в историю. Им стал немец Николаус Отто, который смог доработать механизм, создав двухтактный двигатель.
В итоге работа двигателя внутреннего сгорания Отто показала КПД выше 15%, таким образом полностью вытеснив двигатели первооткрывателя. Конечно же, созданный в 1863 году двигатель не был верхом совершенства.
И спустя некоторое время, после значительных коррекций своего механизма, Отто выпускает четырёхтактный двигатель внутреннего сгорания – предка тех моторов, работу которые мы каждый день видим, наблюдая за современным автотранспортом.
В разное время механизм, созданный Отто многократно улучшали. Но принцип работы двс существенно не изменился.
Четыре такта Отто — так происходит работа ДВС
Гениальный немец создал принцип, который никто не сумел не только превзойти, но и существенно улучшить так, чтобы вытеснить оригинал.
Работа ДВС это четыре повторяющихся действия, которые получили название «цикл Отто». Первым идёт такт впуска, затем – сжатие, рабочий ход, и, наконец – выпуск. Чтобы понять, как работает ДВС, рассмотрим каждый такт работы двигателя отдельно.
Шаг первый в работе двигателя внутреннего сгорания — впуск
В процессе этого такта топливо, смешиваясь с воздухом, попадает в цилиндр, благодаря действию поршня.
Клапан впуска при этом находится в открытом состоянии. К слову, в наше время есть масса двигателей, где клапанов сразу несколько. И это делается с целью повышения мощности двигателя.
Ещё одним способом повышением мощности стали двигатели, в которых педалью газа можно регулировать количество топлива, попадающего в цилиндры, путём удержания клапанов в открытом состоянии. На время ускорения машины это влияет весьма положительно.
Шаг второй в работе ДВС — сжатие
В ходе второго такта, поршень из нижней точки начинает постепенно подниматься. Благодаря этому, топливовоздушная смесь сжимается и попадает уже в таком состоянии в камеру сгорания. Движение поршня обеспечивается вращением коленчатого вала и шатуна.
Третий шаг в принципе работы двигателя внутреннего сгорания — рабочий ход
Такт сжатия завершается воспламенением горючей смеси в результате попадания искры зажигания. Полученные в результате сжигания газы имеют больший объём, потому двигают поршень вниз, и он через шатун двигает коленвал. Это называется рабочим циклом.
Четвертый шаг в работе двигателя внутреннего сгорания — выпуск
Четвёртый такт называется выпуском. При перемещении поршня в верхнее положение, происходит открытие впускного клапана. Теперь газы могут выйти наружу а цилиндр получает вентиляцию.
Современные двигатели внутреннего сгорания, типы и принципы работы
Автомобильный рынок предлагает очень много различных типов двигателей, созданных по знакомому нам принципу.
Сейчас мы привыкли считать классикой карбюраторный двигатель, который обычно устанавливается на ВАЗ 2106. Что примечательно, его создал наш соотечественник Огнеслав Костович. Произошло это в 1880, или чуть позже. Сейчас нет точной информации об этом. Тем не менее, это был первый шаг к появлению того, что мы привыкли считать стандартным карбюраторным ДВС.
Работа двигателя стала более производительной. Пользуясь этой разработкой, немцы Даймлер и Майбах (сейчас эти фамилии известны всем автолюбителям), создали облегчённую версию карбюраторного двигателя на бензине. Первым такой двигатель получил не автомобиль из Германии, а мотоцикл.
Дизельные двигатели
Казалось бы, всё, что можно было придумать, уже создано. Но, так не считал талантливый изобретатель из Германии Рудольф Дизель. Его интересовало, как можно ещё изменить и усовершенствовать принцип Отто. В результате его трудов, появился ещё один двигатель, который по сей день используется повсеместно, особенно – в грузовом автотранспорте.
В чём же принцип работы дизельного двигателя? В таких двигателях, дизельное топливо, или как его ещё называют, солярка, впрыскивается в нужное время под давлением. В результате, горючая смесь образуется непосредственно в двигателе, где частички сжатого топлива соединяются с воздухом и под давлением происходит возгорание.
Увидеть, как работает двигатель внутреннего сгорания можно здесь:
Также на эту тему вы можете почитать:
Поделитесь в социальных сетях
Alex S Октябрь 8th, 2013
Опубликовано в: Полезные советы и устройство авто
Метки: Как устроен автомобиль
avto-all.com
Рабочие циклы четырехтактных двигателей | Двигатель автомобиля
Рабочий цикл карбюраторного четырехтактного двигателя
Рассмотрим подробно каждый такт цикла.
Такт впуска
Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.
Такт сжатия
При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.
Такт расширения
Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.
Такт выпуска
Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.
Далее рабочий цикл повторяется.
Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.
Рабочий цикл четырехтактного дизеля
В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.
Такт впуска
Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.
Такт сжатия
Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.
Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска
В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.
Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.
Такт расширения
Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.
Такт выпуска
Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.
Далее рабочий цикл повторяется.
У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.
Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:
- на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
- работа на более дешевом топливе, которое менее пожароопасно
Недостатки дизеля:
- более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
- пуск его затруднен, особенно в зимнее время
Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.
ustroistvo-avtomobilya.ru