ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Постройка турбо-Ваза 2110(Городской вариант) | Turbobazar.ru




Масломагистраль. Для смазки турбины используется масло. Подача берется от датчика давления масла, туда вкручивается тройник с Классики и от него надо проложить магистраль в турбину. В турбине (если мы про Субаровские) есть типа жиклера который тоже обязательно использовать, для VF10 я соорудил чудовищный бутерброд — в тройник вкурутил кусочек трубки, в ней нарезал резьбу, в нее вкрутил 2 тормозные шланги Таврические, в шлангу вкрутил хитрый болт (заказанный у токаря) М10 1,25 с одной стороны и М10 1,5 с другой, втутри резьба под топливный карбюраторный жиклер который рассверлил до 1,5 мм, вообщем оно текло со всех щелей и жизнь отравляло прилично. Впринципе можно заказать фирмовый шланг, но стоит он в р-не 100$ На TD04 мне было проще, там уже была фирмовая магистраль, которую только пришлось сдружить с тройником классическим, тут все гуд, не течет. Слив масла идет в поддон, туда надо вварить трубку и шланг, хомуты, тут все просто.

Тосол. Подачу тосола организовать не сложно, 2 шланги, 4 хомута и немного фантазии откуда этот тосол взять.

Ресивер. Ресивер для турбины нужен не большой, некоторые варят из трубы 60-й, у меня кастом ресивер Гремлин, известного в Московских тюнинг кругах мастера. Сверху покрыл его клеем (типо резинового) для шумоизоляции, поскольку заметил еще на атмосфернике, что на определенных оборотах мотора, в ресивере резонансные звонкие звуки, который ДД иногда видел как детонацию. Да и просто звук противный.

Интеркулер. Интеркулер я использовал от Audi A6. Брал на разборке, тут важно не ошибиться при выборе, мне вывалили штук 5 кулеров, 2 из которых я сразу отбросил из-за явных дыр, 1 был очень маленький, 1 был вообще не интеркулером, а радиатором кондиционера, ну и последний кондидат вроде устроил. Залил в него литр растворителя, и долго потом Галой мыл, у предидущего владельца мотор сдорово кидал масло, долго его вымывал. Расположил я кулер как на Субару Импрезе, такой расположение дает ряд плюсов: не надо резать кузов как на фронтальной схеме, короче пайпинг — меньше лаг, но и имеет недостатки: хуже охлаждается потоком и надо резать капот для заборника воздуха


Пайпинг. Это воздушная магистраль от турбины к мотору. Пришел на тюнинг контору, говорю «продайте набор для пайпинга», отвечают «легко, давай 500$», глянул вживую на набор — мусор, красивые алюминиевые трубки без вальцовки и красивые резиновые соеденители из тонкой резины, которые на 1баре уже надуются как воздушный шарик. Пошел на авторынок, проявил излбретательность и собрал вот такой некрасивый, но держущий 1,5 избытка пайпинг. Из чего сделал не скажу, пусть будет комерческой тайной, думаю и по фотке многие догадаются

Смотрим на фотку выше и становится понятно как организован забор воздуха и фильтрация. Один нюанс — внутри резиновой шланги труба металическая, чтобы не сложился. Также видно, что модуль зажигания переехал левее и провода пришлось удлинить, по распорке проходит проводка к ДАДу и ДТВ, белая шланга с ресивера с тройником идет один конец к РДТ, второй к ДАДу. Адсорбера нет, его магистраль не заглушена, на ней стоит бензофильтр карбовый. Фотка старая, на ней еще первая турбина, сейчас масломагистраль выглядит иначе и шланг с вакуумника который за турбиной можно видеть там проходить не должен.

Как показал опыт возле турбины все дохнет, сгорел шланг с вакуумника и оббивка моторного щита. Так что это тоже надо учитывать. Часть выпуска обмотана термобинтом, что положительно сказывается на температуре под капотом.

Клапан сброса. В моем варианте стоит байпас с Эволюшина в режиме Блоуоффа, т.е. сбрасывает в атмосферу а не на впуск, если бы строил на расходомере, то пришлось бы на впуск стравливать, управляющий шланг подсоединен к нижнему штуцеру дросельной заслонки.

Мозги. Поскольку давление турбины у меня сравнительно не малое, то расходомер не справился бы с таким потоком. Установлен ДАД Motorolla 4250AP понимающий 1,5 избытка, ДТВ от Ланоса, Январь 5.1 41, спец прошивка TRS от Энди Фроста, настраивалось спец софтом по ДК. Теоретически если много не дуть, то можно отстроиться и на расходомере на стандартном серийном софте, только РДТ нужен обязательно в рампе и обратка. Это я к тому, что и владельцам свежих ВАЗов на Январе 7.2 можно 0,7-0,9 надуть не корчуя проводку.

Собрали ездеет. Давлю 1,5 избытка, с ~2000 едет лучше стока, к 4000 подрыв суровый, машину на дороге переставляет и при резком разгоне 3 первые передачи буксуют. Пытались заснять видео, не красиво получилось, оператор стремался и на дорогу все смотрел вместо камеры. Но по видео посчитал примерно разгон до 100 в р-не 6-7 секунд, до 130 около 10, и это с полным салоном, музыкой, немелким пассажиром, запаской, инструментом, полным баком, на тяжеленных 15-х Турецких колесах и по холодному асфальту на задубевшей летней резине, рекордов особых нет, но ездеет машинка для ВАЗика очень бодро.

Добавления 2009г, весна. Планы, хотелки и реальные изменения

Пришла весна, из боксов и гаражей стали выползать всякие корчи

Прикупил свечи. Хотя калильного зажигания не наблюдается, но для «профилактики» не помешает В своей статье Сандер советует ngk ZFR7F, в наших условиях такие найти не удалось. Продавцы совершенно безсовесно пытались всунуть всякие иридиумные и пр. «навороченные» свечки по 20 доларов за штуку, по каталогу NGK я подобрал аналог с нужным калильным числом. Ставятся на Сааб турбированный. Будем смотреть.

Не дает покоя идея заменить кулер на WRX-овый, он покрупнее и имеет красиво штатно установленный байпас, компоновочно не влазит, думаю.

Замучил бензобак. Везде пишут, что Вальбровский насос взаимозаменяемый с ВАЗовским, брехня , он немного длиннее, и пока я его сто раз снимал\ставил, посрезал 2 резьбы, и теперь насос не достаточно плотно прикручивается к баку, в итоге — иногда течет, что совсем ни гуд Какие уроды придумали в таком ответственном месте использовать такие хлипкие болты?

Фрост прислал новый софт для настройки, хочу опробовать. Хочу настроить определитель передач, и выставить буст «по передачам», на первой и пятой меньше. Также хочу «срезать» резкий пик момента, чтобы продлить жизнь коробке и сцепе, так получается, что пик момента распредвалов совпадает с полным выходом на буст улитки и это капец просто, килограм 35-38 момента точно. Я как первый раз ехал, не понял, что произошло, начинало буксовать все и кидать машину в бок +\- метр, типа динамический корридор, как на спорт карах.

В итоге сильно заужен рабочий диапазон. Треть дроселя и 3000+ и дальше буксует.

Также прикупил LM1 для настройки, так что если мой LC1 не склеил ласты полностью, то поставлю на постоянку в машину и буду использовать\попробую функцию широкополосного лямбда регулирования.

Продолжение (серия 2)

Поскольку тюнинг никогда доделать до конца нельзя, движемся дальше. За последнее время позанимался немного машиной в плане комфорта и недоделок. Устранил наконец текущий бензонасос, установил соленоид управления наддувом и его настроил, починил стеклоподъемники. Попробовал настроиться на малом бусте (0,45) с 2500 до 7000 практичсеки ровный — комфортно и приятно ездить по городу. Разумно было бы так и оставить, в этом режиме и ресурс деталей был бы неплохим, но как поет Игги Поп «I need more…» Весьма приятной штукой оказался буст по дросселю, на одной прошивке можно иметь несколько вариантов управления ДВС, практически многорежимка, т.е. на разных дроселях удается координально изменять динамику и прожорливость машины.

От почти стока, с чуть большим, чем у стока аппетитом (все же СЖ 7,6) до «реально валящего ТАЗа» с расходом — на все 100% дюти 360 кубовых форсов.

Планы на ближайшее время: Таки установить ГП 3,7 (уже лежит), попробовать как поедет машинка на распредвалах с бОльшим подъемом и узкой фазой, настроиться на бОльшем давлении, сделать профилактику передней подвеске и рулевому.

Пока все, буду рад если кому-то статья поможет построить мотор, но возможно я в чем-то не прав, я не профи и могу где-то заблуждаться, все на свой страх и риск, без гарантий и т.п.

Материал предоставлен Александром С. из Украины г.Донецк, в сети известен под ником cho, занимается настройком ЭСУД софтом ТРС Энди Фроста

Турбо ВАЗ, тюнинг автомобиля ВАЗ

Как собрать оптимальный для города турбо мотор.

В последнее время многие владельцы автомобилей ВАЗ интересуются, как собрать оптимальный для города турбо мотор. В связи с этим мы решили предоставить вам конкретные рекомендации, как собрать его наиболее грамотно и без лишних затрат.

Основой нашего будущего турбо-двигателя будет служить весьма популярный в настоящее время ВАЗовский шестнадцатиклапанник с индексом 21126 от автомобиля Лада-Приора. Но наше руководство можно считать универсальным, ведь следуя ему, вы сможете собрать турбо мотор на любой другой базе. Ключевым моментом выступает не столько специфика отдельных двигателей, сколько сам подход и объём будущих их трансформаций.

И так, первым делом нужно разобрать двигатель и оценить его состояние. Если двигатель «с хорошим пробегом», то блок цилиндров отдаётся на расточку под следующий ремонтный размер. При сборке блока используются так называемые турбо-поршни. Самый распространённый и хорошо зарекомендовавший себя вариант – это турбо-поршни, доработанные из заводских «Нивских» поршней. Они отличаются увеличенной (до 20 куб. см) камерой сгорания и цековками под шестнадцатиклапанную ГБЦ. Штатные «Приоровские» шатуны также не подойдут для двигателя с турбонаддувом. Лучшей их заменой станут стандартные шатуны ВАЗ 2110.

А вот коленчатый вал остаётся «родной» – 75,6 мм. В результате мы получаем двигатель с прежним объёмом (1.6L), но с уменьшенной до 7.6:1 степенью сжатия. Подобные конфигурации «низа» активно используются при построении турбо моторов с мощностью до 400 л.с.

На следующем этапе нужно определиться с самой турбиной. На наш взгляд наиболее подходящим для повседневной эксплуатации является турбокомпрессор TD04L (штатный для Subaru Impreza WRX), ему свойственен ранний подхват и достаточно широкий рабочий диапазон – прекрасный выбор для езды в условиях города. Максимальная мощность порядка 250 л.с., что в том числе позволит демонстрировать достойные результаты в любительских соревнованиях Drag-racing. Хотите больше мощности, тогда выбирайте турбокомпрессор TD05 или же GT28. Для выбранной турбины понадобится соответствующий турбоколлектор. Также к турбине нужно подвести масло и реализовать масло-слив, организовать подачу и слив охлаждающей жидкости. Очень важно использовать армированную маслоподачу и силиконовые армированные тосольные магистрали.

Именно армирование этих узлов позволит вам навсегда забыть о возможных с ними проблемах.

Выбирая интеркулер, помните, что обдув со штатным бампером весьма плох. При установке большого интеркулера, обдув радиатора окажется совсем неэффективным, а значит, постоянный перегрев вам гарантирован. Для эксплуатации в городе можно ограничиться интеркулером 450х180х65. Он подходит под стандартный бампер, полностью удовлетворяя потребности в охлаждении. К тому же лучше не создавать воздушную магистраль с большим диаметром в автомобиле для города. Не стоит усложнять себе процесс установки и получить в результате турболаг – это медленная реакция мотора с турбонаддувом на нажатие педали газа из-за потребности в увеличении давления в самой воздушной магистрали. Исходя из этого, чем меньше её объём, тем меньше будет турболаг. Используйте алюминиевый пайпинг-кит диаметром 51 мм – это лучший выбор для установки воздушной магистрали. Если же вы строите мотор с мощностью под 300 л.с. и планируете довольно часто участвовать в соревнованиях, выбирайте интеркулер 550х230х65 и пайпинг диаметром 57 мм.

Штатный ресивер потребуется заменить специальным турбо-ресивером, отличающимся от атмосферных версий маленьким объёмом и изменённой геометрией. Желательно заменить и стандартный дроссельный патрубок. Наиболее подходящим является патрубок с диаметром заслонки 54 мм. Перед заслонкой на воздушную магистраль устанавливается клапан сброса избыточного давления, другими словами блоу-офф. Именно эта деталь издаёт эффектный «пшик» при переключении передач, т.е. при отпускании педали газа.

Не забудьте правильно подобрать топливные форсунки. Делать это нужно исходя из мощности мотора, ведь возросшее количество воздуха важно обеспечить в нужном объёме подачей топлива. Планируемая мощность двигателя 200 л.с. – остановитесь на форсунках ACCEL 378 cc. Для нужд мотора в 250 л.с. следует использовать форсунки с производительность 432 см3/мин от FORD RACING или ACCEL 462 см3/мин. А вот для движка более 300 л.с. рекомендуются форсунки с производительность более 600 сс/min, например, SIEMENS Deka 630 cc/min или их аналоги.

Вместе с форсунками меняем и топливный насос, так же отличающийся большей производительностью. Например, для бензонасоса Walbro характерно то, что он может выдержать нагрузки мощнейших двигателей, которые можно встретить на большинстве гоночных автомобилей.

Кроме подачи топлива доработайте и саму систему управления двигателем. В частности, лучше не использовать традиционный датчик массового расхода воздуха (ДМРВ), его обычно заменяют датчиком абсолютного давления (ДАД) и датчиком температуры воздуха (ДТВ). Таким образом, вы обеспечите себе надёжность и возможность работать со всеми сверхсовременными программами, контролирующими работу мотора.

Подбирая датчик абсолютного давления, остановитесь на модели, верхний диапазон которого наиболее всего близок к рабочим характеристикам. Другими словами, если в ваших планах использовать давление в турбо моторе приблизительно в один бар, то нецелесообразно применять ДАД с верхним значением в 3 бара, иначе вам не удастся точно настроить турбо мотор. Решая проблему выбора оптимальных вариантов для датчиков и форсунок, рациональнее всего будет воспользоваться советами мастера, который будет заниматься настройкой собранного турбо мотора.

Ещё один ответственный момент – подбор распределительных валов. Вся сложность в том, что их выбор индивидуален для отдельного турбо мотора. Так, для простого проекта хватит и стандартных распредвалов. Но их придётся заменить, если планируется рост мощности в самом верхнем диапазоне. Наш совет — установка распределительных валов, разработанных специально для турбо-двигателей. Такие турбо-распредвалы позволяют отлично работать мотору, как в городском цикле, так и в условиях соревнований.

Сборка турбо-двигателя затрагивает и вопросы ГБЦ. Так, для езды по городу можно ограничиться стандартной головкой блока. Но если вы планируете выжать из мотора по максимуму, и автомобиль готовится для участия в дрэг-рейсинге, то целесообразна установка головки блока цилиндров с увеличенными каналами и клапанами. Это позволит получить большую мощность и переместит полку момента на более высокие обороты.

Отдача турбодвигателя будет максимальной при увеличении диаметра выпускной магистрали, начиная от самого даунпайпа и до оконечной банки. Помните, что заузив магистраль хотя бы в одном месте, вы уменьшите весь её диаметр. Для двигателей с мощностью от 200 л.с. оптимальным считается использование выхлопной системы с диаметром трубы 60 мм. В качестве готового решения можно смело использовать резонатор, гиб и универсальный глушитель из нержавеющей стали от Российского производителя MG-RACE. Эти элементы выпускной системы отлично себя зарекомендовали и часто используются нами на практике.

Сцепление для турбомотора, в частности городского – особенно важный момент. Мы рекомендуем использовать комплект PILENGA Sport с металлокерамическим ведомым диском с демпфером. Конечно, использование такого сцепления в условиях городских пробок доставляет некоторые неудобства, но зато оно отлично справляется с передачей крутящего момента двигателя мощностью до 300 л. с.

Из всего вышесказанного можно сделать важный вывод, что переоборудовать стандартный двигатель в турбо мотор гораздо проще, дешевле и выгоднее, чем работать с моделью, прошедшей полноценный атмосферный тюнинг, т.к. замене подвергаются практически все элементы двигателя. Тщательно подбирайте комплектующие, при сборке уделяйте внимание каждой мелочи, не экономьте на квалифицированной настройке собранного турбо мотора – именно это гарантирует высокий ресурс и мощностные характеристики вашего двигателя. 

Для вашего удобства мы добавили в каталог полноценные турбо киты, включающие в себя все необходимые детали для сборки турбо-двигателя. Приобретая такой комплект, вы существенно экономите своё время и деньги.

Morgan выпустил раллийный автомобиль — с турбомотором BMW и каркасом из ясеня

Небольшая британская компания Morgan редко радует своих поклонников новинками, да и имидж у нее не тот – ведь каждую ее модель можно снимать в фильмах про истинных джентльменов. Впрочем, даже такие преданные фанаты аутентичности, как владельцы Morgan, не могут игнорировать автомобильные тренды – именно поэтому в модельном ряду появилась внедорожная версия Morgan Plus Four.

На заре автомобилизации существовало множество подобных небольших компаний – выпускать и продавать автомобили пытались многие талантливые инженеры и предприниматели. Такие заводы открывались и закрывались. Morgan же все последнее столетие никуда не спешил.

Эта автомобилестроительная компания из центральной Англии существует с 1909 года – первым ее изделием стал трехколесный самоходный экипаж с мотором Peugeot мощностью всего в 7 лошадиных сил, рассчитанный на одного человека.

close

100%

Трициклы с двумя передними и одним задним колесом Morgan выпускал в последующие 25 лет – лишь в 1936-м была представлена первая четырехколесная модель. Позднее автомобили совершенствовались, мощность двигателей росла – но так или иначе,

общий облик изделий этой британской фирмы остался где-то в двадцатых-тридцатых годах прошлого века.

История Morgan доказывает, что автомобили, созданные по технологиям из далекого прошлого с применением натуральных материалов, характерных для давно ушедших эпох, тоже могут иметь успех у состоятельных клиентов. Иначе как объяснить тот факт, что такой мануфактурный подход к работе фирме до сих пор пользуется спросом.

На фоне современных автогигантов фирма выглядит образцом консерватизма: кузовные детали из авиационного алюминия по-прежнему собирают в небольших ангарах по технологиям 1930-х,

а для изготовления каркаса, как и много лет назад, используется дерево – ясень.

Правда, из дерева сейчас вытачивают лишь силовые элементы верхней части пассажирского кокпита – нагрузки они практически не несут. Пару лет назад фирма провозгласила переход на новую алюминиевую платформу взамен стальной рамы. Но еще недавно деревянным был практически весь «скелет» автомобиля, включая, например, несущую основу боковин и дверей.

Впрочем, «старинная» у этих родстеров марки только внешность – традиции ручной сборки и натуральные материалы в них успешно сочетаются с относительно современной технической составляющей – моторы, коробки передач и другие важные детали используются вполне актуальные, равно как и электронные компоненты. Сейчас «Морганы» оснащаются двигателями BMW, а когда-то силовые агрегаты закупали у британских Triumph или Rover, успешно использовали англичане и моторы Ford.

close

100%

Прививка «Дакаром»

Внедорожный родстер Plus Four носит индекс CX-T, и создан он в память о гоночных достижениях Morgan. В машине стоит 4-цилиндровый турбомотор BMW, который выдает 258 лошадиных сил – ровно столько, что и обычная дорожная версия Morgan. А вот ходовая часть была серьезно доработана –

рычаги подвески, амортизаторы и пружины взяли от подходящего внедорожного донора, установили более крупные колеса, увеличили дорожный просвет.

Не забыли и про защиту от возможных повреждений – днище машины прикрыто алюминиевыми листами. Конечно, багги получилось тяжелее стандартного родстера (около 1300 кг), да и привод остался задним, хотя для повышения проходимости в него и внедрили задний дифференциал производства той же BMW.

К постройке автомобиля привлекли фирму Rally Raid UK – собственно, изготовлением гоночных машин для ралли-рейдов она и занимается, ее продукция не раз участвовала в легендарном ралли-рейде «Дакар».

close

100%

Завершает образ автомобиля, способного поучаствовать в гонке вне асфальта, мощный трубчатый каркас и множество дополнительных фар. Ну и открытый багажный отсек с запасными колесами и непромокаемыми кофрами также весьма уместен в «боевом» прототипе. Лопата для вызволения застрявшей машины из песка также прилагается.

Цены на раллийный Morgan Plus Four CX-T стартуют с отметки 170 тысяч фунтов стерлингов, выпустить планируется всего восемь экземпляров.

Но решится ли кто-то участвовать на коллекционном родстере, выпущенном ограниченным тиражом, в каком-то серьезном испытании? По правде говоря, представить это сложно.

Следующий седан Acura ILX получит мощный турбомотор — ДРАЙВ

В конце января 2015 года марка Acura отпраздновала выпуск своего двухмиллионного автомобиля в США. Им стал седан ILX, собранный на заводе в Мэрисвилле (штат Огайо). В Штатах Acura производит машины уже 20 лет.

К концу года компания Honda запустит производство двигателей новой серии VTEC Turbo (напомним, в ней три агрегата — 1.0, 1.5 и 2.0) на своём предприятии в городе Анна (Огайо). В него инвестировано $340 миллионов, в том числе для постройки новой сборочной линии. Предполагается, что турбомоторы постепенно распространятся на североамериканские легковушки Хонды, начиная, скорее всего, с седана и купе Civic. А так как последняя модель тесно связана с Акурой ILX, журналисты издания Car and Driver поинтересовались у Гэри Робинсона, отвечающего в Акуре за планирование продуктов, стоит ли ждать турбоверсии четырёхдверки? Напрямую «да» Робинсон отвечать не стал, но дал понять, что такой ход неизбежен.

Линия VTEC Turbo — это турбонаддув, непосредственный впрыск, изменяемые фазы газораспределения, различные меры по снижению трения. Моторы спроектированы с нуля. На рисунке показан двухлитровый агрегат.

Топ-менеджер сказал: «Acura всегда будет получать лучшие двигатели, которые создаёт Honda. Очевидно, что 2.0 Turbo — просто must have в мире роскоши, к тому же сейчас это мейнстрим». Робинсон пояснил, что с турбомоторами Acura и Honda могли бы вновь, как когда-то, задеть струны в душах любителей тюнинга. Мол, нынешние атмосферные «движки» не особо настраиваемые, а турбокомпрессор — то, что нужно. Особенно для привлекающего своей простотой чип-тюнинга.

Сейчас под капотом ILX стоит агрегат 2.4 K24W7 с непосредственным впрыском из семейства Earth Dreams, выдающий 204 л.с.

Сложив два и два, спрогнозируем, что на ILX может появиться вариация мотора, приготовленного для нового хот-хэтча Honda Civic Type R (он дебютирует в Женеве в марте). Такая турбочетвёрка на ILX могла бы развивать более 300 «лошадей». А будет ещё интереснее, если компания адаптирует к Акуре шестиступенчатую «механику». Но, увы, маловероятно, что и двухлитровый турбомотор, и такую трансмиссию мы увидим в нынешнем поколении «ай-эль-икса». Робинсон заявил, что подобные переделки сложны и едва ли будут реализованы до радикальной перекройки модели. А она случится в 2018 году. Тогда как раз придёт время следующей генерации, ведь нынешний седан появился в 2012-м.

Наши работы | AGP motorsport

Еще один интересный проект Stage3 от AGPmotorsport. Максимальная эффективность мотора 1.8TSI с оригинальной турбиной k04-64. Это Skoda Octavia Scout – полноприводный универсал улучшенной проходимости на МКПП.На эту Шкоду установлен был полный прямоточный выпуск, система холодного впуска, увеличенный интеркулер и пайпинг с переносом байпаса к дросселю и конечно же оригинальная турбина K04-64 и усиленное сцепление. Далее мы установили насос в бак с контроллером от Audi RS3, чуть более производительные форсунки от 2.0TSI моторов и …
Подробнее
Здравствуйте, друзья.Краткий отчет о доработке очередного V8 4.0 TFSI мотора Audi S7, который в стоке имеет максимальную мощность 420 л.с. и 550 нм крутящего момента. В этот раз рассказ о доработке Stage2 для изначально слабой модификации 4.0 biturbo моторов. Stage2 это максимальная форсировка двигателя с освобождением дыхания мотора. На автомобилях s6 s7 A8 устанавливается по-сути дефорсированная версия двигателей RS6 RS7 S8. Отличия этих двигателей в том числе сводятся к различным турбокомпрессорам и более куцой системе …
Подробнее
Решение двигаться на Unlim500 нами было принято спонтанно буквально за пару недель до мероприятия. По настройке и динамике автомобиль удивлял нас самих иногда, стабильные низкие 6 сек и иногда из 6ти на гражданском 98 бензине давали надежду на достойное выступление. Зарегистрировавшись и посмотрев списки участников, где одних только Lamborghini за 1000 сил несколько, стало понятно, что нужно готовить машину. Благо класс, в который мы попали позволял неограниченно модернизировать автомобиль. Установили систему впрыска метанола для …
Подробнее
Mercedes-Benz G500 V8 — изготовление полной выпускной системы с разводкой под пороги. Выхлоп создан от коллекторов из нержавеющей стали, TIG-сварка в среде аргона. Теперь Mercedes-Benz G-класс имеет новую выпускную магистраль и правильный брутальный звук.Изготовление выпускных и впускных систем любой сложности. Постройка турбомоторов. Разработка программного обеспечения блоков управления двигателем и кпп. Индивидуальный чип-тюнинг стандартных и доработанных двигателей. Подготовка автомобилей к соревнованиям.Как создается …
Подробнее
  К нам приехал Seat Altea Freetrack с просьбой сделать наконец то так, чтобы его машина поехала. Много сил и денег в нее вложено, а результат 100-200= около 14 сек. Установлена в машину КПП DQ500, на 2.0 мотор поставлена турбина Loba LO412, холодный впуск, фронтальный интеркулер, полный выпуск на 76мм, форсунки увеличенной производительности, модернизирована топливная система, модернизирован грм… После комплекса работ с железом, нескольких ночных настроек и моторных доработок мы создали программу управления двигателем под этот …
Подробнее
21-22 мая на подмосковном Дмитровском автополигоне состоится шестнадцатый фестиваль суперкаров UNLIM 500+. Около пятидесяти участников будут соревноваться между собой в скорости прохождения дистанции, которая на этот раз составит 1/2 мили.В соревнованиях Unlim 500+ традиционно принимают участие автомобили таких легендарных производителей, как Lamborghini, Ferrari, Jaguar, Porsche, Aston Martin, BMW, Mercedes-Benz, Audi и др. Главное требование к участникам – наличие более 500 л.с. под капотом.В этом году длина прямой составит 1/2 мили. Ранее …
Подробнее
Крайне сложная и ювелирная работа под заказ. Разместить в очень плотном пространстве равнодлинные коллектора — каждый на 5 цилиндров с правильной геометрией, диаметром, входом и выходом. С соблюдением всех технологий сварки. Сварка TIG в среде аргона с поддувом. Изготовлены полностью из нержавеющей стали AISI304 2.5мм, нержавеющий фланец ГБЦ 10мм, выход 63мм через v-band. Из Audi S8 был вынут двигатель, далее изделия рассчитывались и после кропотливо пошагово изготавливались. Ожидалось, что работа займет меньшее время, однако растянулась …
Подробнее
В один из дней к нам приехал очередной шикарный автомобиль. Это был еще один Bentley. В этот раз рестайлинговый Continental GT. Автомобиль 2011 года с пробегом 12000 км. Практически новый в действительно идеальном состоянии. Оснащен Бентли давно известным 12 цилиндровым 6.0 литровым мотором с двумя турбонагнетателями. Мощность силового агрегата 575 сил и 700 нм момента. После диагностики исправность автомобиля не вызвала сомнений, да и что может случиться с машиной, собранной вручную, за 12000 пробега. Автомобиль полностью …
Подробнее
Пилотный и наиболее комплексный проект AGP motorsport. Модификации подвергалось практически всё.Страница машины на DRIVE2.ruМощность 650 сил по замерам, 7.8 сек. разгон 100-200, последние доработки позволили улучшить разгон до 7.5 сек. Полный привод и механическая коробка передач с такой мощностью дает выход адреналину.V6 3.0 BiTurbo сделан из V6 2.8(ACK)+2.7T(AJK)+…-строкер кит 3.0-коленвал 3.0-поршня кованые JE, СЖ 8.5-шатуны Н-образные Eurospec-болты ARP-впускные распредвалы RS4-выпускные клапана и пружины 2.7Т-ГБЦ атмосферные …
Подробнее
Я тут подумал, нужно и на странице компании рассказывать о наших машинах. Хоть они все есть на драйве, но коротко о доработках и модификациях тут:Audi RS6 C6 V10 5.0 TFSI в стоке 580hp Страница машины на драйве— Модифицированные нами гибридные турбины— Мы изготовили полную выпускная система 2 х 76мм с изменяемой геометрией— Модифицированная впускная система AGP motorsport— Модификация топливной системы— Кастом настройка ЭБУ Stage3+ AGP motorsportТолько лишь на модифицированных турбинах и выпуске автомобиль на стенде показал с колес 680hp и …
Подробнее

ВАЗ 2101 Турбо (Киев)

Лучшее время прохождения дистанции 402 м (без закиси, с полностью собранным салоном) 13,2! сек. Максимальная скорость 225 км/ч.

1. Кузов/салон

Архаичный внешний вид ВАЗ 2101 было решено особо не изменять. Ограничились легким стайлингом. Машина готовится к полному преображению внешне, обвес тюнинг для ВАЗ 2101, кастом капот, арки.

  • установлена реплика легендарной юбки Вихур
  • передняя линзованная оптика (изготавливаем под заказ, справки по тел. 063 280 31 16)
  • задние фонари тюнинг 2101, тонированные

В салоне

  • легкому тюнингу подверглась панель приборов: приборы тюнинг
  • доп приборы Depo Racing

2. Мотор

  • блок ВАЗ 21230
  • установлены маслофорсунки
  • сделана проекция блока
  • поршни Нива, под низкую СЖ, доработки Amag
  • плита усиления блока 12 мм
  • полуторный маслонасос
  • башмак с шестерней вместо стандартного
  • автоматический натяжитель цепи Пилот

3. ГБЦ (за основу взята ГБЦ ВАЗ 2101)

  • увеличены каналы (впуск 35*36 мм , выпуск 34*33 мм)
  • большие клапана 40*34 мм
  • дюралевые тарелки клапанов
  • бронзовые направляющие
  • доработаны камеры сгорания («нарезаны» уши)
  • плоскость ГБЦ подготовлена под установку стальной прокладки
  • cтальная прокладка ГБЦ
  • установлен спорт-распредвал ОКБ Двигатель 680
  • разрезная шестерня

4. Трансмиссия

  • коробка передач вазовская доработанная
  • установлен R1 ряд
  • валы и синхронизаторы изготовлены на заказ
  • главная пара использована от ВАЗ 2106 с червячной блокировкой
  • диск сцепления металлокерамика PILENGA
  • редуктор заднего моста с червячной блокировкой

5. Впуск/Выпуск

  • установлена турбина TD04Lсо встроенным вестгейтом
  • алюминиевый пайпинг от специалистов Amag
  • силиконовые 4-х слойные патрубки, гибы и переходы
  • Т-образные хомуты
  • дроссельная заслонка увеличенного диаметра 56 мм
  • выхлопная система 2.5дюйма изготовлена из нержавеющей стали
  • спортивный резонатор
  • прямоточный глушитель

6.Система охлаждения

  • основной вентилятор использован от полноприводной Нивы 21213
  • cпаренные вентиляторы от все той же Нивы 21213
  • интеркуллер HandMade от Mirsubishi EVO 9

Понравилась машина? Есть вопросы?

Если Вы хотите быть в курсе последних доработок, либо обсудить и задать вопросы владельцу — подписывайтесь Вконтакте.

Больше фото постройки: фото постройки 2101 турбо

10 автомобилей, которые удивили мощностью и динамикой :: Autonews

«Заряженные» модели от автопроизводителей становятся все экстремальнее. Причем, речь идет не только о быстрых хэтчбеках, седанах и купе, но и о кроссоверах. BMW, например, уже пообещала расширить семейство M-кроссоверов, добавив к X5 и X6 мощные варианты X3 и X4.

Peugeot планирует совершить революцию в массовом сегменте: кроссовер 3008 получит полноприводную гибридную версию с турбомотором и электродвигателем на задней оси. Похоже, автокомпании собираются оставить тюнинг-ателье без заказов.

Alfa Romeo Stelvio Quadrifoglio

Alfa Romeo Stelvio, первый кроссовер итальянской марки, сразу же получил «заряженную» версию Quadrifoglio, а простую заднеприводную модификацию и базовые силовые агрегаты показали только через несколько месяцев. Двигатель V6 объемом 2,9 л, созданный при участии инженеров Ferrari, был позаимствован у рекордсмена Нюрбургринга седана Giulia Quadrifoglio. Его 510 л.с. и 600 Нм хватает, чтобы разогнать кроссовер до 100 км/ч за 3,9 секунды. А максимальная скорость Stelvio Quadrifoglio заявлена на отметке 285 км в час. На вооружении кроссовера – восьмиступенчатый «автомат», система полного привода с активным дифференциалом на задней оси и карбон-керамические тормоза.

Mercedes-AMG GLC 63

Stelvio Quadrifoglio недолго носил титул самого быстрого кроссовера на рынке. Концерн Daimler ответил тубромотором V8 4,0 л от суперкара AMG GT, установленном на кроссовере GLC. В варианте Mercedes-AMG GLC 63 он развивает 476 л.с. и 650 Нм, а разгон до 100 км/ч занимает 4 секунды. GLC 63 S выдает 510 л.с. и 700 Нм и разгоняет его до «сотни» за 3,9 с – новый рекорд в сегменте. Выбор кузова – обычный или Coupe – на динамику кроссоверов не влияет. Машины оснащены пневмоподвеской со спортивными настройками и усиленными тормозами. Девятиступенчатый «автомат» AMG Speedshift MCT такой же, как у моделей Mercedes-AMG E 63. Система полного привода – новая, где тягу на передние колеса передает многодисковая муфта. У GLC 63 сзади установлен самоблок, а у S-версии – активный дифференциал.

Chevrolet Tahoe RST

Раллийно-спортивной версией обзавелся даже внедорожник-гигант Chevrolet Tahoe: приставка RST расшифровывается как Rally Sport Truck. И при его создании в General Motors вдохновлялись работами различных тюнинг-ателье. Tahoe можно отличить по черной глянцевой отделке и 22-дюймовыми колесами. Внедорожник снабдили адаптивными амортизаторами, новыми редукторами, усиленными тормозами Brembo и новой выхлопной системой Borla. Но главное – это мотор V8 объемом 6,2 л, форсированный до 426 л.с. и 624 Нм момента. Он комплектуется девятиступенчатым «автоматом» от Camaro и обеспечивает разгон до 60 миль/ч (97 км/ч) за 5,7 секунды.

GMC Yukon Denali

Если кому-то покажется, что Chevrolet Tahoe заслуживает большего, на помощь придет американское ателье Hennessey. Оно известно постройкой одного из самых быстрых автомобилей в мире – Hennessey Venom GT. Благодаря «механическому» нагнетателю, промежуточному охладителю, другим головкам блока и распредвалам, специалисты компании сняли с мотора V8 объемом 6,2 л. 674 л.с. и 892 ньютон-метра. В результате внедорожник GMC Yukon Denali разгоняется до 60 миль/ч (97 км/ч) всего за 4,5 секунды. Тот же самый пакет доработок HPE650 Supercharged подойдет и для его ближайшего родственника Chevrolet Tahoe. Причем, Hennessey предлагает на свой комплект трехлетнюю гарантию.

Kia Stinger

Заднеприводный лифтбек Stinger – самая спортивная и самая быстрая модель корейской компании. У топ-версии полный привод и турбомотор V6 объемом 3,3 л с отдачей 370 л.с с восьмиступенчатым «автоматом». Во время премьеры в Детройте было озвучено, что автомобиль разгоняется до 100 км/ч за 5,1 секунды. К автосалону в Сеуле динамические характеристики уточнили, и машина стала на 0,2 с быстрее. Теперь корейский лифтбек даже чуть быстрее, чем BMW 440i xDrive Gran Coupe, результат которой – 5 секунд. Кстати, Альберт Бирманн, работавший над «Стингером», перешел в Kia из BMW и ориентировался как раз на баварские машины.

Audi RS5

Audi, глядя на успехи конкурентов, сменило экстремальному купе силовой агрегат: на место 450-сильного V8 объемом 4,2 л пришел более скромный V6 c наддувом объемом всего 2,9 литра. Он развивает ту же мощность, но выигрывает в крутящем моменте (600 ньютон-метров). Разгон с места до 100 км/ч теперь занимает всего 3,9 с – на 0,7 с быстрее, чем раньше. Максимальная скорость традиционно ограничена на отметке 250 км/ч, но за доплату можно сдвинуть рамки до 280 км в час.

Honda Civic Type R

Honda работала над первым Civic Type R на протяжении нескольких лет, а сложности возникли как раз с созданием турбомотора. Японский производитель не спешит раскрывать секреты хот-хэтча нового поколения. Осенью прошлого года машину показали в Париже в статусе концепта с затонированными стеклами. Тогда же стали известны технические подробности: турбомотор, безальтернативная «механика» и многорычажка сзади вместо полузависимой балки. Мощность двигателя подняли до 320 л.с., а крутящий момент остался прежним – 400 ньютон-метров. В Женеве показали серийный хот-хэтч, но его динамические характеристики снова оставили в тайне. Во всяком случае, понятно, что новинка будет быстрее предшественника, разгонявшегося до 100 км/ч за 5,7 секунды.

Dodge Challenger SRT Demon

Chrysler выдает подробности о своем суперкупе Dodge Challenger SRT Demon маленькими порциями по четвергам. Уже известно, что ради снижения массы он будет одноместным, получит новый гидротрансформатор, самый большой воздухозаборник и трансбрейк – альтернативу лонч-контролю, которая используется на дрэгстерах. Кроме того, «Демона» оснастят дрэговыми шинами и режимом для работы на гоночном топливе октановым числом выше 100. По предварительным данным, разгон до «сотни» с мотором V8 Hemi мощностью 757 л.с. занимает всего 3 секунды. Машину можно увидеть в новом фильме «Форсаж-8» с Вином Дизелем.

Hennessey Exorcist

Вряд ли стоит недооценивать тюнинг-ателье: пока Chrysler интриговал тизерами своего «Демона», упомянутое ателье Hennessey придумало для него «Экзорциста». За основу своей машины техасская фирма взяла главного конкурента «Челенджера» Chevrolet Camaro ZL1 c компрессорным V8 мощностью 659 лошадиных сил. Благодаря более производительному нагнетателю и новой системе выпуска, мотор теперь развивает фантастические 1014 лошадиных сил. А пиковый крутящий момент составил 1310 ньютон-метров. Разгон до «сотни» Hennessey Exorcist занимает менее 3 секунд. Создатели утверждают, что их купе универсально и подходит для поездок по дорогами общего пользования.

Pogea Racing

Немецкая фирма Pogea Racing пошла дальше и создала на базе Fiat 500 Abarth суперкар мощностью 420 лошадиных сил. Причем, столько сняли с мотора объемом всего 1,4 л, ранее выдававшего 135 лошадиных сил. Немцы полностью переделали и усилили двигатель, добавили кованые поршни, перепробовали несколько вариантов турбокомпрессоров и систем впрыска. Коробку передач усилили и оснастили двойным сцеплением. Всего на разработку машины потратили четыре года. Pogea Racing Ares с крыльями, бамперами и капотом из углепластика весит менее тонны и способен разгоняться до 288 км в час. Чтобы достичь 100 км/ч, автомобилю требуется 4,7 секунды. Для сравнения, самый быстрый заводской Abarth 695 biposto c 190-сильным мотором разгоняется до «сотни» за 5,9 секунды.

Как собрать двигатель для турбокомпрессора — CarTechBooks

Обычный вопрос среди энтузиастов — может ли данный двигатель иметь турбонаддув. Ответ на этот вопрос варьируется в зависимости от нескольких соображений. Прежде всего, исправен ли двигатель и находится ли он в хорошем состоянии с механической точки зрения? Какова ожидаемая польза от двигателя и какова ваша цель в лошадиных силах?

Если ваша цель состоит в том, чтобы создать машину для улиц / разметки, которая также будет служить в качестве ежедневного водителя, то вам следует принять во внимание общее состояние двигателя.Турбокомпрессор не является лекарством от неэффективного двигателя, который потерял мощность из-за возраста и внутреннего износа. Если ваш двигатель силен с относительно небольшим пробегом, и ваш автомобиль в целом стоит потраченного времени и инвестиций, то турбокомпрессор может быть именно тем, что прописал врач! Однако существуют ограничения для стандартных компонентов, и мы их тоже обсудим.

По большей части, современные двигатели с впрыском топлива могут оснащаться турбонаддувом для увеличения мощности на 50 процентов без каких-либо реальных внутренних модификаций двигателя.Это соответствует примерно 7-8 фунтам наддува. Это предполагает, что рабочий цикл двигателя относительно невелик, что означает, что потенциал высокой мощности используется только изредка и для относительно коротких импульсов.

Небольшой блок Chevrolet с двумя турбинами от компании Gale Banks Engineering собирается в машинном отделении Бэнкса. Эта комната, вероятно, прошла бы проверку на чистоту в больнице! Когда Бэнкс создает двигатель для одного из своих двойных комплектов, он начинает снизу вверх, чтобы убедиться, что все в порядке.Слабые звенья убивают двигатели. (Предоставлено Gale Banks Engineering)

Эта соревновательная установка Buick Grand National рассчитана на середину восьмилетнего возраста. Двигатель объемом 3,8 литра принадлежит Дэну Стрезо, владельцу компании DLS Engine Development в Уитфилде, штат Индиана.

Обратите внимание, что в этой книге конкретно не обсуждаются достоинства отдельных двигателей или их способность оснащаться турбонаддувом. Большинство двигателей за последние 10 лет были разработаны с более прочными характеристиками для повышения качества и увеличения срока службы.Турбонаддув двигателя для повышения уровня мощности может сократить его полезный срок службы, но насколько все зависит от того, как часто используется мощность и насколько хорошо настроена ваша система. Помните, что производители двигателей используют более высокие уровни мощности, чем двигатель предназначен для проведения ускоренных испытаний на долговечность.

Итак, перед тем, как начать свой проект, вы можете проверить свою конкретную платформу движка, чтобы выяснить, где находятся ее слабые звенья, если таковые имеются, и учесть эти вещи.Этот шаг может избавить вас от головной боли и страданий в будущем.

Все вышесказанное верно для небольших уличных / полосовых проектов и горячих уличных автомобилей, но если двигатель вашего проекта немного устал и / или вы хотите увеличить мощность, то вам, возможно, придется рассмотреть некоторые внутренние модификации, чтобы справиться с этим. стресс. Помимо увеличения мощности на 50–100 процентов, вам нужно будет спланировать это. Увеличение мощности выше этого диапазона обычно наблюдается в автомобилях для соревнований, и здесь есть что учитывать.

По большей части, вы можете рассматривать свой уровень наддува как основу необходимости модификации двигателя. Опасность в том, что это говорит о том, что наддув и мощность связаны друг с другом, но это не обязательно. Помните, что наддув и противодавление турбины являются нежелательными величинами, но по своей сути необходимы для увеличения массового расхода воздуха в двигатель. Поэтому, предполагая, что вы выполнили свою домашнюю работу правильно, и уровень наддува, который вы собираетесь использовать, является эффективным и точным для предполагаемого уровня желаемой мощности, мы можем сказать, что до 7-8 фунтов наддува вам, вероятно, сойдет с рук доработок двигателя практически нет.В этой ситуации вы, вероятно, сможете работать на бензиновом насосе премиум-класса с октановым числом от 91 до 94 с соотношением воздух-топливо примерно 12-12,5: 1 для максимальной мощности. Выше этого уровня наддува трудно найти топливо с октановым числом, достаточным для устранения детонации, которая быстро разрушит ваш двигатель и ваш кошелек.

Детонация будет происходить при разных уровнях наддува на разных двигателях. Порог детонации будет зависеть от нескольких факторов, таких как степень статического сжатия, вес транспортного средства, конструкция камеры сгорания, конструкция распределительного вала, зазор и синхронизация клапанов, температура всасываемого воздуха и другие.Просто непрактично ожидать, что уличный двигатель будет работать с наддувом более 15 фунтов. Независимо от переменных, у вас, скорее всего, возникнет проблема с детонацией, которая нарушит цель работы турбо-системы. Несмотря на это заявление, я знаю, что будут люди, которые будут настаивать на оборудовании гоночного уровня на улице, и они всегда есть. Я знаю это, потому что я вырос с несколькими из них! Но, например, уличные удилища высокого класса, которые легки и хорошо сложены и используются теми, кто понимает эти переменные, могут в некоторой степени сойти с рук.Это возможно благодаря тому, что турбины чувствительны к нагрузке, и наддув разрабатывается по запросу. Мудрый старый уличный роддер, которому нужен двигатель с высоким наддувом для этой случайной поездки на трассу, чтобы похвастаться низким уровнем ET, будет знать, что его двигатель в автомобиле весом 2300 фунтов не взорвется почти так же быстро, как тот же самый двигатель в автомобиле весом 3500 фунтов. фунт пули автомобиля. Кроме того, если у вас нет под рукой гоночного газа, просто держитесь подальше от дроссельной заслонки. В этом одно из преимуществ двигателей с турбонаддувом по сравнению с мельницей с высокой степенью сжатия и без наддува, которая обнаружит детонацию намного быстрее, если просто слегка поджать дроссель.Когда вы наберете более 20–25 фунтов наддува, вам понадобится немного реального октанового числа или просто переключитесь на алкоголь! Текущая тенденция к увеличению количества этанола в бензине для насосов, таком как E85, где до 85 процентов топлива составляет этанол, на самом деле повышает эффективное октановое число и может обеспечить большую детонационную стойкость турбомотора.

Было бы невозможно охватить специфику подготовки для всех конструкций двигателей в одной книге, но в этой главе будут рассмотрены модификации, которые относятся к двигателям с турбонаддувом в целом.Большинство следующих рекомендаций необходимы при радикальном увеличении мощности на 100 процентов и более. В этом случае вам также следует найти книгу, в которой подробно рассматриваются особенности этого конкретного двигателя. Большинство рекомендаций по сборке безнаддувных двигателей большой мощности включают усиление нижнего предела. Применимы даже многие рекомендации по двигателям высшего класса, такие как установка клапанов увеличенного размера, установка портов, лучший дизайн головки и т. Д. Не забывайте мыслить как молекула воздуха. Многие из приемов оптимизации воздушного потока, которые лучше всего работают в безнаддувном двигателе, также будут полезны для двигателя с наддувом.Хотя конкретное увеличение может быть не таким значительным, поскольку воздух заполняет камеру сгорания с немного другой характеристикой (так как он заполняется от заряда статического давления), у вас все еще есть очень короткое время, чтобы заполнить камеру на высоких оборотах, поэтому есть необходимо сделать улучшения, чтобы минимизировать сопротивление заряду цилиндра. Считайте воздух ленивым; вам понадобятся все уловки из книги, чтобы заставить его двигаться.

Качество, количество и баланс: философский подход

Я заявлял, что большинство тех же рекомендаций по производству двигателей для высокомощных безнаддувных двигателей применимы и к двигателям с турбонаддувом.Но задумывались ли вы когда-нибудь, почему одни двигатели производят больше мощности и живут дольше, чем другие? Если вы планируете расширить диапазон лошадиных сил, пора применить философский подход.

Создание чрезвычайно мощного двигателя — это качество, количество и баланс. Эти простые слова могут стать основой успеха. Под качеством понимается правильный выбор ключевых компонентов с высококачественным дизайном для вашего предполагаемого использования и материалов, из которых они изготовлены. Напряжения, передаваемые на форсированный двигатель, будут намного превосходить то, на что был рассчитан оригинальный двигатель, поэтому вы должны подвергнуть сомнению прочность и долговечность каждой отдельной детали.Кроме того, качество сборки вашего двигателя включает в себя то, потратили ли вы время на измерение всех критических зазоров, чтобы убедиться, что они такие, какими должны быть.

Количество является ключом к потенциальной выработке лошадиных сил. Мощность в лошадиных силах определяется фунтами сожженного топлива. Давление наддува не дает мощности, а сжигание большего количества топлива дает. Но наличие правильного количества воздуха и топлива является ключом к производству энергии. Количество также может быть примерно размером отверстия, например впускного клапана или подъема и продолжительности распредвала.Максимизация всех переменных, относящихся к количеству, даст максимальную мощность, но это может поддерживаться только качеством компонентов.

Balance — это пропорции, а также буквальный баланс вращающихся и совершающих возвратно-поступательное движение частей двигателя. Сбалансированный двигатель не только прослужит дольше, но и будет производить больше лошадиных сил. Баланс так же важен, когда он относится к сбалансированным пропорциям, таким как размеры камеры сгорания, соотношение воздух-топливо и баланс давления в двигателе.Повышение давления наддува с 20 фунтов до 30 фунтов с помощью регулировки перепускной заслонки вряд ли поможет вам, если вы перешли от противодавления турбины с 19 фунтов до 38 фунтов. Вы потеряли баланс давления в двигателе, обеспечивающий эффективную мощность. Теперь у вас есть двигатель, который усердно работает, чтобы преодолеть огромные насосные потери. Пришло время для другого турбонаддува с другой пропускной способностью. Следующие ниже обсуждения будут философски относиться к тем модификациям, которые необходимы для двигателей с наддувом.Они предназначены для того, чтобы направить ваше мышление на сочетание качества, количества и баланса для достижения успеха в двигателях, где удельная мощность в лошадиных силах приближается или превышает 200 л.с. на литр.

Блок

Лучше всего начать с блока двигателя. Блок двигателя — это ваш фундамент. Если не до табака, то все остальное не имеет значения. Блоки двигателя бывают как из алюминия, так и из чугуна. Изучение вашего конкретного двигателя подскажет вам, где найти самый прочный заводской блок, или если послепродажный блок — единственный путь.Например, даже лучшие OEM-блоки Ford объемом 5,0 л не живут долго на уровне 500 л.с. и выше. Если ваш турбо-проект выполняется на старом чугунном блоке, убедитесь, что у вас есть хороший. Один из способов узнать, претерпел ли ваш блок сдвиг сердечника во время первоначального литья. Один из способов проверить это — просто взглянуть на литейную втулку, на которой установлены подшипники кулачка. Если вокруг этой области обработано неравное количество отливок, это может указывать на блок, в котором произошел сдвиг литейного стержня.Дело здесь в том, чтобы найти доказательства того, все ли отверстия цилиндра были вырезаны прямо в отливке, что дает более равномерную толщину стенки цилиндра и, следовательно, более прочную стенку цилиндра.

Помимо силы, это старый трюк уличных гонщиков, который подсказывает лучшим кандидатам на блокирование больших отверстий для горных двигателей, когда царили грубые кубические дюймы. Времена изменились. В форсированном двигателе забудьте о расточке ради преимущества рабочего объема. Если вам нужно освежить блок, сделайте самый легкий срез (наименьшее внутреннее отверстие), для которого вы можете найти поршни.Стенки цилиндра должны быть толстыми для прочности и сохранения тепла. Ваш турбокомпрессор с лихвой компенсирует ту небольшую разницу, которую добавит 0,030–0,060-дюймовая расточка. Во многих вариантах есть компромиссы, и отказ от нескольких кубических дюймов ради силы — это разумный шаг.

После проверки цилиндров следующим этапом подготовки блока является настил блока, чтобы убедиться, что он не только гладкий для уплотнения прокладки, но и точно перпендикулярен цилиндрам. Вы не можете рассчитывать на то, что заводская производственная обработка достаточно хороша.

Алюминиевые и железные блоки более поздних моделей, вероятно, отливаются более точно, но есть хороший способ убедиться, что у вас есть жизнеспособный кандидат на высокопроизводительный турбомотор. Дэн Стрезо, президент DLS Engine Development, на сегодняшний день, пожалуй, один из лучших производителей двигателей Buick Grand National объемом 3,8 литра. В то время как его специализация — 3,8-литровый двигатель, он также обычно строит малоблочные автомобили Chevrolet и Honda. Он фактически развил 700 л.с., используя стандартные 3,8-литровые компоненты с мощностью от 26 до 27 фунтов.Это примерно на 200 процентов больше, чем рейтинг акций.

Философия

Дэна такова: сделайте двигатель звучным, сильным и мощным, а затем добавьте турбонаддув. Это соответствует нашим принципам качества, количества и баланса. Дэн использует трехэтапный процесс для подготовки всех использованных блоков двигателя.

  1. Блок сначала нагревают в духовке при температуре 500 градусов по Фаренгейту в течение 30 минут. Это высушит все масла и нагар.
  2. Блок подвергается струйной очистке, чтобы удалить оставшийся мусор и удалить ржавчину.
  3. Затем встряхиватель удаляет абразивную среду и другой мусор.

Сразу после этого процесса блок помещается в бак для мытья под высоким давлением для тщательной очистки блока. Следующим шагом будет магнафлюкс отливки, чтобы найти трещины. Дэн также верит в необходимость проведения акустической проверки стенок цилиндров блока на предмет толщины как на основных, так и на второстепенных осевых поверхностях. Это стороны стенок цилиндра, перпендикулярные коленчатому валу. Как правило, акустическая проверка обычно выявляет толщину стенок цилиндра равную 0.От 180 до 0,210 дюйма. При подготовке двигателя для соревнований с высоким наддувом он будет искать блок цилиндров с толщиной стенки 0,210 дюйма. Если у вас тонкий, избавьтесь от него! Ваши измерения и стандарты могут отличаться в зависимости от того, с каким двигателем вы работаете. Исследование вашего конкретного двигателя должно направить вас.

Одно из распространенных заблуждений, с которым сталкивается Дэн, — это гонщик, который считает, что сломанная крышка коренного подшипника означает, что коренным крышкам требуются пояски или другие дополнительные компоненты для повышения прочности.В то время как мудрость по усилению седел и основных крышек в блоке основана на общепринятом мнении и глубоких знаниях, Дэн видит много повторяющихся отказов двигателя из-за неправильной диагностики отказов. Диагностика отказов является таким же ключом к анализу отказов двигателя, как и к анализу отказов турбонаддува. У 3,8-литрового двигателя, как и у многих других, литой коленчатый вал, изгибающийся под давлением. Усиление сети не исправит коленчатый вал, который крутится вокруг и ломает крышки коренных подшипников. В таком случае усиление основной крышки направлено на устранение симптома, а не причины.Наконец, не забудьте использовать хонинговальные пластины для окончательной чистовой обработки блока. Хонинговальные пластины — это плоские пластины, которые закручивают на деку блока цилиндров, чтобы имитировать деформацию цилиндра, которая может возникнуть при затяжке болтов головки. Это помогает обеспечить идеальную круглую форму отверстия после полной сборки двигателя. Несмотря на то, что блок цилиндров — самая тяжелая часть любого двигателя, отверстия в нем легко прогнуться. Вы можете убедиться в этом сами, просто поместив циферблатный индикатор с 10-ю показаниями внутри отверстия точно перпендикулярно коленчатому валу, где ваши показания находятся на большой и малой упорных поверхностях поршня.Затем, используя свою силу мышц, сожмите внешнюю часть блока и наблюдайте за изменениями на циферблате. Теперь подумайте о гораздо большей силе внутри отверстия, вызванной крутящим моментом болтов головки. Если это упражнение не убедит вас в ценности хонинговальных пластин, ничто не поможет. Ожидается, что турбомотор выдержит очень высокое давление при мощности 700, 800 или более 1000 л.с. Кольца не могут выполнять свою работу по поддержанию давления сгорания в цилиндре, если отверстие не имеет круглой формы. Некоторые гонщики даже заполняют водные рубашки разными составами, чтобы дополнительно усилить отверстия от деформации во время работы.

Коленчатый вал

Некоторое исследование вашего конкретного двигателя покажет вам, как повезло людям с различными доступными шатунами, как заводскими, так и послепродажными.

Во многих случаях стандартный литой коленчатый вал не соответствует требованиям к долговечности мощного турбомотора. Коленчатый вал — негде экономить на вашем бюджете. Потратьте деньги на качественную ковку! Strezo будет использовать кованые коленчатые валы из стали 4340 на двигателях мощностью до 1000 л.с.При мощности более 1000 л.с. он использует кривошип, также изготовленный из 4340 материала.

Отливки более слабые, потому что металл был разлит из расплавленного состояния. Отливки содержат пористость, которая представляет собой очень маленькие пустоты в металле, такие как воздушные карманы, и они вызывают структурную слабость, потому что нет однородного состояния материала. Кроме того, нет стабильной зернистой структуры; это баран в природе. В поковке почти не будет пустот из-за пористости, будет присутствовать зернистая структура, и, следовательно, материал будет более прочным.Заготовка коленчатого вала или что-либо еще — это заготовка, в которой вся деталь была сформирована и обработана из цельного блока и где материал наиболее однороден. Деталь, сформированная из заготовки, обычно является самым надежным методом изготовления детали в соответствии со спецификацией материала.

При обработке коленчатого вала используйте типичную фаску масляных отверстий для улучшения распределения масла, но не сверлят крест-накрест шейки шатунов или коренных подшипников, потому что улучшение смазки не добавляет достаточно значительной ценности, но ослабляет коленчатый вал, что, как ожидается, работать с очень высоким давлением сгорания.Когда дело доходит до масляных насосов, Дэн будет использовать внутренний насос высокого давления и большого объема из таких источников, как Меллинг. На критически важных двигателях с высокой мощностью и высокой частотой вращения вы можете даже рассмотреть возможность использования внешних систем смазки.

Это коленчатый вал Dan Strezo с гоночной подготовкой. Отверстия для масла скошены, но шатун не просверлен. Дэн использует стандартные масляные зазоры и питает масляные галереи с помощью высокопроизводительного масляного насоса высокого давления от Melling.

Изучите модель своего двигателя и выберите масляные зазоры, которые лучше всего подходят для предполагаемого применения.Когда я перешел с больших блоков Chrysler на большие блоки Chevrolet во время драг-рейсинга (просьба спонсора), я разыскал одного из лучших производителей двигателей Chevrolet с большими блоками в стране, Джона Маттингли из Mattingly Automotive в Гринфилде, штат Индиана. Его двигатели для соревнований всегда выдавали уйму лошадиных сил и никогда не подводили. Он сказал мне заточить кривошип до 0,001 дюйма по низкому стандарту, 0,010 под. Это произвело масляные зазоры 0,0035 дюйма на стержнях и 0,0045 дюйма на магистрали, и немного снизило наземную скорость.Мне это показалось пугающим, но это сработало, и за пять лет соревнований мы ни разу не сломали двигатель. Суть здесь в том, чтобы помнить, что часть умения — это «знать, в чем вы тупица». Я был совершенно не осведомлен о том, как очистить новый двигатель, поэтому я провел свое исследование. Заводские спецификации относятся к заводским двигателям. Если вы собираетесь участвовать в гонках на собственном автомобиле, сделайте домашнее задание! Проведите сезон в боксах, покиньте трибуны и установите контакты, которые научат вас, чего следует избегать.

Обязательно проверьте прямолинейность коленчатого вала перед окончательной сборкой.Сделать это очень просто. Просто поместите только две внешние вкладыши коренных подшипников в опоры коренных подшипников и слегка смажьте их маслом для защиты подшипника. Поместите индикатор с длинной стрелкой или очень маленький индикатор (противовесы коленчатого вала могут мешать) на центральной шейке коренного подшипника, под которой нет вкладыша подшипника. Медленно проверните коленчатый вал рукой и обратите внимание на изменение показаний индикатора. Другие производители двигателей могут иметь собственное мнение, но я никогда не собирал двигатель, который давал какие-либо измеримые показания при выполнении этой проверки прямолинейности коленчатого вала.Я ищу, чтобы стрелка индикатора оставалась полностью неподвижной.

Поршни и кольца

Выбор поршня и кольца может иметь самый уникальный набор характеристик и соображений при создании двигателя с высоким наддувом и большой мощностью. При выборе поршней для двигателя с наддувом необходимо учитывать степень сжатия, материал, тип конструкции, тип и материал кольца, положение контакта верхнего кольца по отношению к головке, зазоры до отверстия относительно размера юбки и покрытия.Эти вопросы в основном принимаются во внимание при выборе поршней, предназначенных для вашего конкретного использования. Стандартные поршни обычно не имеют этих конструктивных особенностей, и, следовательно, они являются одним из первых элементов, ограничивающих мощность, которую вы можете получить с помощью форсированного стандартного двигателя. Давайте рассмотрим основы работы с поршнями, чтобы понять, какие особенности поршня необходимы в двигателе с наддувом. Базовый поршневой двигатель существует уже почти 140 лет. Хотя концепция использования поршня в качестве нижней половины камеры сгорания не изменилась, дизайн и конструкция изменились.С годами юбки поршней укорачиваются, чтобы снизить внутреннее сопротивление и потери на трение. Это означает, что зазоры между поршнем и стенкой стали более плотными, чтобы стабилизировать поршень в цилиндре, что сводит к минимуму раскачивание поршня в отверстии.

Заводские двигатели

, построенные в течение последних нескольких десятилетий, должны быть сертифицированы по выбросам, а также рассчитаны на максимальную экономию топлива. Критическим фактором для управления теплом и выбросами является расположение верхнего кольца по отношению к днищу или верхней части поршня.Если верхнее кольцо расположено ближе к верхней части поршня, остается меньше площади, чтобы стать мертвой зоной сгорания, которая находится между днищем поршня, стенкой цилиндра и верхним кольцом. Эта маленькая щель создает укрытие для топливных смесей, которые не сгорают во время сгорания и, следовательно, вызывают более высокие выбросы. Хотя площадь относительно мала, величина, которую необходимо учитывать, умножается на количество цилиндров, умноженное на частоту вращения двигателя, и тогда она становится значительной. К сожалению для энтузиастов турбо, это приводит к тому, что более тонкая головка поршня выдерживает повышенное давление двигателя, а также подвергает верхнее кольцо более высокому нагреву от сгорания.Поршни были отлиты, кованы и изготовлены из порошкового металла. Материалы поршней в прошлом были легированы алюминием, например SAE 332, который называется доэвтектическим. Он содержит от 8,5 до 10,5% кремния. Многие современные производственные конструкции будут использовать больше поршней из эвтектических сплавов, которые содержат от 11 до 12 процентов кремния, в то время как заэвтектические поршни будут содержать от 12 до 16 процентов кремния. Содержание кремния повышает прочность в условиях высоких температур. Он также снижает коэффициент теплового расширения, обеспечивая более жесткие допуски без чрезмерного задира поршня о стенку.Заэвтектические сплавы также примерно на 2 процента легче стандартных сплавов. Более прочный сплав также позволяет использовать более тонкие отливки для дальнейшего снижения веса. Заэвтектические поршни сложнее отливать, потому что силикон не всегда равномерно распределяется по алюминию при его охлаждении. Некоторые из этих поршней проходят термообработку для дополнительной прочности. Термическая обработка Т-6, часто применяемая для рабочих поршней, увеличивает прочность на 30 процентов.

Однако ничто не может заменить кованый поршень для достижения максимальной прочности в двигателе с высоким наддувом.Если сомневаетесь, выбирайте кованые поршни, но знайте, что зазоры стенок вашего цилиндра могут отличаться от тех, которые рекомендует производитель, если ваш выбор поршня включает в себя смену сплава. В то время как термообработанные заэвтектические поршни должны хорошо работать для мощных уличных машин, поковки следует использовать на всех тяговых двигателях. Главное помнить, что используемый сплав является важным определяющим фактором при выборе размера отверстия цилиндра для обеспечения надлежащего зазора поршня до стенки. Обязательно спросите у производителя поршня рекомендации по зазору между поршнем и стенкой, а также спросите несколько успешных гонщиков, использующих тот же двигатель.

Стрезо из DLS Engine Development предпочитает поршни JE для двигателей соревнований. Он также использует покрытия Lo-Ko для покрытия юбок поршней для уменьшения трения и металлокерамическое покрытие на заводной головке для создания теплового барьера. Тепловой барьер помогает удерживать энергию в цилиндре, где он может выполнять больше работы, а также поддерживает охлаждение поршня и колец. У такого покрытия поршня есть обратная сторона. Склонность к детонации увеличивается из-за более высокой температуры в камере сгорания.По этой причине, возможно, нецелесообразно использовать покрытия на уличных двигателях, поскольку октановое число топлива станет более серьезной проблемой. Один из способов борьбы с этим состоянием — уменьшить тайминг, немного замедлив его, но тогда вы, возможно, также просто отошли от своей оптимальной точки настройки. Лучше всего держать покрытие поршня на полосе, а не на улице.

Покрытия поршней

Lo-Ko Performance Coatings, Incorporated из Oak Lawn, штат Иллинойс, использует поликерамическое покрытие для днища поршня и специальную смесь из четырех составов, включая тефлон, для юбок, что снижает трение и улучшает передачу тепла от поршня к поршню. стенка цилиндра.Эта формула превосходит только тефлон. Тестирование, проведенное гоночными командами Indy, показало, что увеличение мощности составляет около 2 процентов, частично за счет тепла, сохраняемого в камере сгорания, но также за счет уменьшения трения между юбкой поршня и стенкой цилиндра.

Поршень JE, используемый DLS Engine Development слева, закончен и готов к сборке, по сравнению с поршнем без предварительной подготовки справа. Обратите внимание на керамическое покрытие на заводной головке и черное покрытие с низким коэффициентом трения на юбке.

Этот поршень JE специально разработан для двигателей с турбонаддувом для соревнований и имеет верхнее кольцо, расположенное примерно на 1/4 дюйма ниже головки поршня.

Показан стандартный поршень от 3,8-литрового атмосферного двигателя Buick. Обратите внимание на тонкую толщину днища поршня (1). Этот поршень не выдержит высокого давления.

Эта поршневая секция от 1987 г. 3.8-литровый заводской двигатель Buick Grand National с турбонаддувом. Обратите внимание на более прочную конструкцию, в которой поршень имеет более толстую головку (1) и более тяжелую верхнюю часть (2). Также обратите внимание на выпуклый верх, который снижает степень статического сжатия для турбонаддува (3).

Это секционный поршень для соревнований JE, используемый Дэном Стрезо. Обратите внимание на толстую головку (1), как у заводского турбопоршня, на аналогичную выгнутую верхнюю часть (2), а также обратите внимание на то, что называется обратным куполом (3) для дополнительной прочности там, где предохранительный клапан обрабатывается для кулачков с высоким подъемом, используемых на соревнованиях.

По словам Джона Вандер-Мейлена, президента Lo-Ko Coatings, при использовании этого покрытия он рекомендует увеличить зазор между поршнем и стенкой еще на 0,0005 дюйма. Покрытие, приклеиваемое к юбке, толще, чем у некоторых заводских покрытий. Lo-Ko добавляет около 0,0007 дюйма с каждой стороны или 0,0014 дюйма к диаметру. Джон говорит, что от 0,0001 до 0,0002 дюйма будут истираться во время обкатки двигателя. Оставшееся увеличение диаметра затрудняет посадку, но это компенсируется тем фактом, что поршень теперь работает более прохладно и не будет расширяться так сильно.

Степень сжатия

Степень сжатия является серьезной проблемой при создании двигателя с наддувом. Опять же, ваше предполагаемое использование и выбор топлива будут играть важную роль в этом выборе. Никакой волшебной формулы для правильной степени сжатия просто не существует, потому что необходимо учитывать слишком много переменных. Если на улице вы хотите получить более высокий наддув, вам следует использовать более низкую степень сжатия, чтобы избежать детонации. Однако, если вы планируете умеренное увеличение, скажем, от 7 до 10 фунтов, степень статического сжатия будет в диапазоне от 9 до 9.5: 1 может дать вам лучшую маневренность и ускорение на холостом ходу. По сути, чем выше уровень усиления, тем ниже должна быть степень сжатия.

Другие переменные включают шлифовку кулачков, синхронизацию кулачков, конструкцию камеры сгорания, опережение зажигания, октановое число топлива, вес автомобиля и другие. Поскольку конструкция каждого двигателя различается в зависимости от того, насколько он чувствителен к детонации, было бы разумно изучить ваш конкретный двигатель и узнать, что другие узнали об оптимальной степени сжатия для вашего конкретного уровня давления наддува.

Необходимый компромисс заключается в том, что более высокая степень сжатия приведет к более сильному запуску транспортного средства и сделает вашу дроссельную заслонку более отзывчивой, но если она станет слишком высокой, вы войдете в детонацию на максимальных уровнях наддува, что приведет к нарушению выработки мощности и, возможно, двигателя вместе с Это. Для среднего уличного двигателя вы должны оставаться в диапазоне от 8 до 8,5: 1. Если у вас довольно легкий автомобиль, вы, вероятно, сможете обойтись с соотношением 9: 1 или чуть больше, но следите за своим порогом разгона и детонации.Если вы бежите по полосе, количество металлических головок может составлять более 9: 1, в то время как алюминиевые головки, используемые на большинстве спортивных компактных дисков, обычно могут иметь соотношение 9,5: 1.

У ребят из DLS есть интересный подход, когда они чувствуют, что в тормозном двигателе вам все равно нужно запустить машину, и вам понадобится статическое сжатие, чтобы нарастить мощность, прежде чем турбонагнетатель начнет разгоняться. Есть гонщики, использующие более 10: 1, что является довольно высокой степенью сжатия для форсированного двигателя, но они, как правило, используют спирт или очень высокооктановый бензин.

Никогда не модифицируйте куполообразный поршень любого типа путем механической обработки, чтобы снизить степень сжатия. Если да, то вы напрашиваетесь на проблемы. Это ослабит всю конструкцию, сделав головку более тонкой и сужая верхнее кольцо до прочности головки поршня. Короткие пути этого типа, предназначенные для экономии денег, могут в конечном итоге обойтись вам дороже, прежде чем все закончится. Будьте осторожны при создании двигателя, исходя из степени сжатия ваших поршней, когда вы их покупали. Это приблизительный рейтинг.Различия в производственных допусках позволяют камерам сгорания различаться по размеру. Вы также должны учитывать толщину прокладки головки блока цилиндров, что может быть предметом особого внимания в двигателях с форсированным двигателем из-за популярности использования более толстых медных прокладок, а также высоты блока блока. Все это помогает определить фактическую степень сжатия вашего двигателя. Если вы создаете серьезный двигатель с форсированным двигателем, вам также следует подумать о полном чертеже, который позволит вам более точно рассчитать степень сжатия.

«Чертеж двигателя» — это часто употребляемый термин, который означает гораздо больше, чем просто создание равных по объему камер сгорания и уравновешивание вращающихся и совершающих возвратно-поступательное движение частей. Все дело в том, чтобы удостовериться, что каждое измерение во всем двигателе в точности соответствует тому, что указано в чертеже конструкции двигателя: размер, вес, зазоры и т.д. это область, за которой стоит погоняться, если вы собираетесь построить серьезный двигатель.Даже если ваши планы не включают чертежи, вам следует точно измерить степень сжатия, чтобы знать, где вы находитесь, при создании форсированного двигателя. Это также включает в себя обеспечение того, чтобы все камеры сгорания были одинакового размера для сбалансированной выработки мощности и чтобы вы знали степень сжатия во всех цилиндрах. Также важна балансировка вращающихся частей двигателя. Это не просто жизнь на высоких скоростях; сбалансированный двигатель даст больше лошадиных сил.

Было бы очень легко подумать, что у вас 9.Мотор 5: 1, но на самом деле окончательная сборка составляет всего 8,9: 1, и вы просто не работаете с пакетом. Если вы не потратили время на изучение своего движка, вы будете бесконечно гоняться за функциями настройки, пытаясь найти правильную комбинацию для соревнований, хотя ответ может заключаться в исходной сборке движка. Процесс фактического расчета степени сжатия описан далее в этой главе.

Поршневые кольца

Поршневые кольца также очень важны.Примите во внимание тот факт, что все проблемы, с которыми вы сталкиваетесь, чтобы построить двигатель и набить больше воздуха в цилиндры, чтобы соответствовать вашему надлежащему расходу топлива, сводятся к тому, сможете ли вы удержать его целиком и удерживать в камере сгорания. Вся работа и проблемы, связанные с проектированием и настройкой двигателя, будут потеряны, если эти мелкие детали не будут выполнять свою работу. Поршневые кольца будут способствовать успеху вашего мотора или сломать его.

Поршни

обычно используют три кольца: компрессионное кольцо вверху, второе компрессионное / скребковое кольцо, за которым следует маслосъемное кольцо внизу.У поршневых колец есть три основных конструктивных особенности. Они должны иметь возможность герметизировать поршень в канале ствола, отводить тепло от поршня к стенке цилиндра с водяным охлаждением, и они должны иметь надлежащую прочность на разрыв, чтобы выдерживать нагрузки, которые будет испытывать двигатель, включая некоторый процент детонации. В форсированном двигателе эти черты одинаковы, за исключением более серьезных. По этой причине существует несколько типов материалов, используемых для успеха двигателей, которые предъявляют высокие требования в этих областях.Правильный выбор сплава поршневых колец и размера кольца должен соответствовать предполагаемому применению двигателя.

Некоторые серийные двигатели используют более тонкие и более низкие натяжные кольца для повышения экономии топлива. Контакт поршневого кольца со стенкой цилиндра составляет почти 40 процентов потерь на внутреннее трение в двигателе. Это главное соображение при проектировании, когда ваша цель проектирования — выбросы и экономия топлива. Кроме того, по оценкам, от 60 до 70 процентов тепла поршня отводится через поршневое кольцо к контакту с цилиндром.Если поршневое кольцо не выполняет одну из своих функций, например, передает тепло от поршня, может произойти отказ. Старые конструкции колец были чугунными, и они хорошо работали, потому что чугун был мягким и довольно быстро садился в отверстие. Чугунные кольца не подходят для мощных двигателей. Они хрупкие и имеют температуру плавления около 2000 градусов по Фаренгейту. Кольца из хромированного железа прочнее, а их температура плавления составляет около 3200 градусов по Фаренгейту. Кольца из чугуна с шаровидным графитом, покрытые молибденом, обычно используются в двигателях соревнований.Молибден имеет температуру плавления более 4700 градусов по Фаренгейту. В двойных наборах колец Moly используется комбинация верхней части Moly и второго компрессионного кольца. Это хороший выбор для мощных уличных / дорожных двигателей. В ленточных двигателях с высоким наддувом и высокой мощностью также будет использоваться комбинация верхнего кольца из нержавеющей стали и второго кольца Moly. В приложениях с очень высоким наддувом обычно требуется, чтобы зазор торца верхнего кольца был немного шире, чтобы обеспечить большее расширение при пиковой мощности. Большинство высокопроизводительных наборов колец будут больше, чем вы хотите, чтобы вы могли отрегулировать зазор на концах для вашей конкретной конструкции.Это еще одна важная область, в которой стоит спросить нужных людей, что лучше всего подходит для вашего движка и приложения. Не спрашивайте продавца в местном магазине скоростных автомобилей, что лучше всего подходит для колец, которые вы покупаете, если только они не построили двигатель с турбонаддувом.

Лучшая политика при определении того, какую переменную, например, зазор в торце кольца или зазор поршня, использовать в конструкции двигателя, — это получить три источника данных. Для чего-то вроде поршневого кольца вы могли бы логично попросить технического специалиста из компании, чьи кольца вы приобрели, представителя вашего поставщика поршней и успешного гонщика, который работает с вашим же двигателем.Причина наличия трех источников на самом деле довольно проста. Если вы спросили один, у вас нет оснований для сравнения, если вы действительно хорошо не знаете свой источник. Если вы спросите двоих, и они ответят на разные вопросы, кто будет прав? Вопрос к третьему источнику — это поиск последовательности. Если все три источника дают одинаковый ответ, вы, вероятно, получили хорошую информацию. Если двое из трех согласны, вы знаете, какой из них выбросить. Если вы раньше не создавали подобный движок, простое логическое исследование может быстро сделать вас достаточно умным, чтобы добиться успеха, вместо того, чтобы частным образом финансировать свою собственную подвижную исследовательскую платформу, полную головных болей и разочарований.Иногда просто знать, какие вопросы задавать и кому их следует задавать, — это половина дела.

Шатуны

Двигатель — это воплощение поговорки о том, что что-то «настолько сильно, насколько сильно его самое слабое звено». Многие двигатели выходят из строя, потому что шатуны не могут справиться с силами, которые возникают в двигателе с высоким наддувом и большой мощностью. У шатуна тяжелая работа. Он должен обладать высокой прочностью на сжатие, высоким пределом прочности на растяжение или растяжение, а также иметь возможность выдерживать высокие усилия сдвига благодаря своей механической конструкции.Все эти функции также объединены в компонент, который должен быть как можно более легким. Это сложная задача.

На рынке есть много удилищ известных торговых марок. Хорошая идея — сразу же сразу приобрести удилища Zyglo или Magnaflux, даже новые послепродажные. Если вы намереваетесь использовать стандартный железный стержень, обязательно отполируйте балки, чтобы удалить линии поковки, которые, как правило, представляют собой концентраторы напряжения, где различные силы могут концентрироваться и вызывать поломку стержня. Затем их подвергают дробеструйной обработке, чтобы снять поверхностное напряжение, которое может перемещаться внутрь и вызывать полный отказ.Как и в случае с любой нижней частью двигателя с турбонаддувом, думайте о силе.

Спасибо DLS Engine Development за это сравнение 3,8-литровых штоков. Независимо от типа вашего двигателя, ваши стержни будут выглядеть на удивление похожими (хотя размеры будут сильно отличаться!). Слева направо: приклад, двутавровая балка Carillo, двутавровая балка Oliver Parabolic и двутавровая балка Кроуэра. Фаворит Дэна Стрезо в настоящее время — двутавровая балка Crower, потому что он никогда не ломал ее.

Шатун двутавровой балки Crower крупным планом. Эта штанга зарекомендовала себя очень хорошо в двигателях с высоким наддувом и большой мощностью. Конечно, можно было сделать намного хуже.

Сверхпрочные шатуны Giannone производятся компанией Giannone Performance Products в Глендейле, Калифорния. Они используются DLS Engine в двигателях чрезвычайно высокой мощности и являются фаворитом многих гонщиков в рейтинге NHRA Comp Eliminator.

В конце штока и крышке Giannone используется серия взаимосвязанных лабиринтов для точного совмещения штока и крышки по осям X и Y, что помогает ускорить сборку двигателя и обеспечить идеальную посадку. Это также обеспечивает равномерную упорную поверхность между стержнями, имеющими одну и ту же основную шейку подшипника.

С учетом сказанного, для подавляющего большинства двигателей с турбонаддувом требуются кованые стержни вторичного рынка. Для двигателей с легким и умеренным форсированием необходим хороший набор кованых штоков.Как и поршни, они обладают максимальной прочностью. Первый шаг — это кованые двутавровые балки, доступные от многих производителей. Некоторые производители также предлагают кованые стержни двутавровой балки для еще большей прочности. Стержни получают обозначения «H» или «I» из-за их формы (примеры см. На фотографиях поблизости). Небольшое исследование вашего конкретного двигателя, вероятно, покажет, какие стержни могут выдерживать какие уровни мощности.

Болты тяги обычно являются слабым звеном в шатунах. Если вы используете стандартные штанги, рекомендуется перейти на болты штанги большего размера.Такие компании, как ARP, предлагают стержневые болты увеличенного размера. Многие производители двигателей всегда заменяют болты тяги при каждой сборке двигателя, в то время как другие производят магнафлюкс для всех болтов тяги новыми или используемыми в качестве гарантии и гарантии качества своей сборки.

Головки цилиндров и клапаны

Я слышал, что в двигателе с турбонаддувом действительно нет необходимости делать все перетяжки и полировку головок, которые обычно выполняются в гоночном двигателе без наддува. Не правда! Что верно, так это то, что двигатель с турбонаддувом может достичь более высокого объемного КПД со стандартными портами и камерами сгорания, чем безнаддувный двигатель с головками на миллионы долларов.Двигатель с турбонаддувом усилен для достижения более 100% объемного КПД, и работа с головкой будет способствовать этому. Хотя улучшения обычно не дают такой большой процент прироста, как в двигателях без наддува, они действительно помогают, особенно если вы говорите о конкуренции.

Во-первых, давайте еще раз рассмотрим объемную эффективность. Проще говоря, VE — это мера того, насколько фактический объемный расход воздуха близок к теоретическому. Немногие безнаддувные двигатели выдерживают около 90 процентов, а большинство опускается ниже этого уровня.Двигатель с турбонаддувом превысит 100% VE, поскольку турбонаддув обманывает формулу, нагнетая воздух в цилиндр под давлением.

Гоночные головки Dan Strezo объемом 3,8 литра с турбонаддувом полностью перенесены, а камеры сгорания отполированы. Эти головы были профессионально подготовлены и стоят очень дорого. Такой уровень вложений не для всех. Но есть несколько модификаций, которые вы можете сделать.

Это крупный план Стрезо 3.Камера сгорания головки 8 литров. Литые направляющие клапана были полностью сточены, после чего новые направляющие клапана были запрессованы на место. Отверстия впускных и выпускных клапанов сиамские и имеют настолько большие размеры, насколько позволяет конструкция головки.

Двигатель с турбонаддувом фактически имеет статическое давление, находящееся на стороне коллектора впускного клапана, так что как только клапан открывается, он заполняет цилиндр. Это очень похоже на садовый шланг, уже заполненный водой под давлением, а распылительное сопло закрыто.Когда вы полностью сжимаете форсунку, а затем снова позволяете ей закрыться, вы получаете вытеснение воды, очень похожее на процесс наполнения баллона. Если вы повторите тот же процесс, но в два раза быстрее, вы получите примерно вдвое меньше воды, потому что отверстие не открывалось так долго. Это не настоящее откровение, но тот же принцип в двигателе с точки зрения проблем с заполнением цилиндра. Совершенно очевидно, что если бы мы использовали распылительную форсунку, которая была вдвое больше первой, мы бы получили больше воды, вытесненной за то же время открытия клапана.Отчасти это сводится ко времени. Чем быстрее двигатель набирает обороты, тем меньше времени остается для зарядки цилиндров воздухом и топливом, и в этом вся цель. Способность двигателя развивать мощность на более высоких оборотах ограничена его способностью вдыхать воздушно-топливную смесь, когда на наполнение цилиндра так мало времени. Но мы не можем ничего поделать с тем фактом, что время является функцией оборотов двигателя, или можем? Этот аспект является важным компонентом базовой конструкции кулачка, который будет обсуждаться позже в этой главе.

Другими ограничениями для потока являются препятствия на пути этого потока, а также размер отверстия. Воздух видит препятствия, и они замедляют поток. В ГБЦ все преграда, клапан, литье направляющей клапана, даже сама стенка порта. Открытие этих путей и сглаживание их пути для уменьшения сопротивления пограничного слоя создаст более легкий путь для потока воздуха, с турбонаддувом или без него.

Конечно, я не потворствую полному занятию портами.Модификация головки требует времени, но важна для общего воздушного потока. Головка, размер и форма порта, а также отверстие клапана являются основными факторами, влияющими на наполнение цилиндра. Все тонкие модификации головки, которые вы делаете с мощным безнаддувным двигателем, стоит сделать и с вашим двигателем с турбонаддувом, если вы стремитесь к максимальной мощности.

Клапаны

Если вы хотите улучшить свой поток, но не хотите тратить деньги на высокодолларовые головы, вы многое можете сделать сами.Вы можете сказать, что ваши клапаны настолько велики, насколько это возможно, что еще вы можете сделать? Вы по-прежнему можете открыть отверстие порта, манипулируя краем клапана и седлом. Многие седла клапана имеют ширину около 3/32 дюйма, но адекватное уплотнение может быть достигнуто при ширине седла всего лишь 1/16 дюйма или даже меньше. Седло клапана — это то, где и как клапан охлаждается. Уменьшение ширины седла может быть опасным делом, и вам придется использовать высокотемпературные клапаны. Это также значительно увеличивает давление на клапане, и слабые клапаны могут не выдержать этого давления.Это может быть рискованная модификация, но если вы участвуете в гонках, это часть игры. Уточните у производителя клапана, будут ли такие модификации совместимы с вашим двигателем и выбранным клапаном; это может буквально спасти вас в будущем. Эта модификация не представляет особой сложности, но ее нужно делать осторожно.

Для увеличения расхода воздуха откройте впускное отверстие так, чтобы буква «B» была шире «A», и уменьшите диаметр клапана так, чтобы «D» была меньше «C.На верхнем рисунке показаны клапан и седло стандартной шлифовки. Пунктирными линиями показано, как нужно сузить сиденье. Это иллюстрирует, как клапаны того же размера могут по-прежнему допускать большее отверстие за счет модификаций, которые обеспечивают больший поток воздуха. Это не редкость, но многие не понимают этого. Дело в том, что дело не только в размере клапана, но и в способе шлифовки клапана для максимального открытия порта.

Вы можете уменьшить диаметр клапана, установив клапан в шлифовальной машине и удалив желаемое количество материала.Внешний край должен быть закруглен с помощью тонкой наждачной бумаги, чтобы создать хороший гладкий радиус, но не следует уменьшать толщину клапана, поскольку радиус используется для слияния суженного седла с корпусом клапана.

Камеры сгорания

Камеры сгорания необходимо измерить и согласовать для расчета конечной степени сжатия. Процесс подбора камер сгорания не так уж и сложен, но требует очень много времени и даст вам представление о том, почему головки с большим расходом стоят больших денег — они очень трудозатратны.Все, что вам действительно нужно, чтобы соответствовать камерам сгорания, — это небольшой воздушный компрессор, пневматическая ручная шлифовальная машина с наждачными валками и оправкой, калиброванная бюретка объемом около 100 куб. См и круглый кусок оргстекла диаметром около 6 дюймов. небольшое отверстие в центре. Установите модифицированные клапаны с пружинами, которые имеют достаточное натяжение для уплотнения клапанов. Закрепите головку блока цилиндров на верстаке стороной с прокладкой вверх так, чтобы ее монтажная поверхность была идеально ровной. Модифицируйте свечу зажигания, заполнив ее эпоксидной смолой, чтобы она не содержала объема, и заглушите первую камеру сгорания.

Используйте вазелин для уплотнения поверхности прокладки вокруг камеры сгорания и поместите оргстекло на поверхность головки так, чтобы камера сгорания была герметичной, за исключением отверстия. Заполните откалиброванную бюретку до максимального значения смесью керосина с достаточным количеством ATF для лучшей видимости. Расположите бюретку над отверстием и заполните камеру сгорания полностью до дна отверстия, не оставляя воздушных карманов. Вычтите показание, оставшееся на бюретке, из начальной точки, и это будет ваш объем камеры сгорания для этой камеры.Повторите этот процесс для каждой камеры сгорания и запишите их показания, отметив размер прямо на поверхности прокладки несмываемым маркером.

Начиная с самой большой камеры, отполируйте все острые края и удалите ровно столько материала, сколько нужно для сглаживания отливки. Снова измерьте этот цилиндр, и он станет вашим целевым размером. Подойдите к следующей по величине камере сгорания, чтобы лучше понять, сколько материала нужно удалить. Отполируйте и измеряйте взад и вперед, пока не закончите полировку и все камеры не станут одинакового размера.Максимальный разброс, которого вы хотите достичь, зависит от производителя, но хорошим ориентиром будет половина точной градуировки вашей калиброванной бюретки. Теперь вы можете рассчитать фактическую степень статического сжатия.

Прокладки головки

Метод прикрепления ваших голов к колоде блока может быть разным. Люди уже много лет используют толстые медные прокладки. Они часто используются в сочетании с канавкой, прорезанной в головке цилиндра, где помещается небольшое проволочное кольцо, чтобы обеспечить сжатие в медном материале, когда головка затягивается на место.Это часто называют уплотнительным кольцом. Любой двигатель, производящий 200 л.с. и более на литр рабочего объема, обязательно должен использовать уплотнительную прокладку головки блока цилиндров положительного типа, такую ​​как Oringing. Шпильки с головкой также рекомендуются для обеспечения истинного крутящего момента и равномерного усилия зажима.

Поверхность уплотнения палубы подготовлена ​​для установки кольцевого уплотнения. Эту модификацию может выполнить практически любой квалифицированный механический цех.

Компания по производству прокладок Cometic также производит прокладку с тремя регулировочными шайбами, размер отверстия которой немного больше.В этой области находится заполненное азотом уплотнительное кольцо. Уплотнительное кольцо покрыто серебром для лучшей герметизации. Не все двигатели могут использовать эту конструкцию. Если цилиндры особенно сиамские, значит, для работы конструкции недостаточно места. Однако, если ваш двигатель примет это, этот процесс работает хорошо и сэкономит время и деньги механического цеха по сравнению с традиционным уплотнительным кольцом.

Измерение степени сжатия

Определить фактическую степень сжатия не так уж и сложно, это требует времени.Степень сжатия — это просто общий объем цилиндра и камеры сгорания, когда поршень находится в нижней мертвой точке (НМТ), деленный на объем камеры сгорания, когда поршень находится в верхней мертвой точке (ВМТ). Частью этого упражнения, отнимающей много времени, является измерение необходимых элементов.

Формула выглядит так:

CCV + HGV + DH + PDV + CV

—————————————— = Степень сжатия

CV + HGV + DH + PDV

Где:

CCV = Объем камеры сгорания

HGV = Объем прокладки головки (сжатый)

DH = Высота днища поршня

PDV = Объем поршня (купола или тарелки)

CV = Объем цилиндра

У вас должно быть значение CCV с момента настройки камер сгорания на равный объем.Если нет, вам нужно будет найти точную цифру для вашего конкретного двигателя. Ваш грузовой автомобиль — легкая проблема; просто измерьте толщину использованной прокладки головки блока цилиндров того типа, который вы собираетесь использовать. Толщина в сжатом состоянии также может быть предоставлена ​​производителем. Затем примените расчет, чтобы найти объем цилиндра, используя базовую геометрию, потому что прокладка головки — это всего лишь очень короткий цилиндр.

Объем = πr² x Высота

Или,

более простая версия:

Диаметр отверстия² x ход x 0.7854 = Объем цилиндра (0,7854 — постоянная величина, равная четверти значения π)

DH (высота платформы) — это просто подведение поршня к ВМТ с помощью циферблатного индикатора, а затем измерение другого очень короткого цилиндра, который представляет собой расстояние от платформы до днища поршня. Ваш циферблатный индикатор легко справится с этой задачей. Теперь, когда у вас есть высота, вы используете диаметр цилиндра и рассчитываете объем по той же формуле, что и выше.

PDV, пожалуй, сложнее всего получить (при условии, что вы теперь знаете значение головы cc).Если у вас есть куполообразные поршни, которых у вас быть не должно, купол — это отход от ваших объемов. В этом случае введите его в формулу в том виде, в каком оно выражено, но как отрицательное значение. Если у вас есть тарелка или обратный купол, как их иногда называют, это положительное значение. Вы можете получить значение купола / антенны двумя относительно простыми способами. Самый простой способ — позвонить производителю и спросить его. Если это невозможно, вы можете сделать слепок купола поршня в большой массе пластилина, использовать калиброванную бюретку и самостоятельно измерить объем вмятины.Если это тарелка, снова воспользуйтесь измерительным оборудованием камеры сгорания и выровняйте один поршень.

Ваш цилиндр прост, все, что вам нужно, — это диаметр цилиндра и ход поршня. Пропустите числа по формуле, используемой для HGV и DH. Теперь вы готовы к математическим вычислениям!

Распредвалы

К счастью, при добавлении турбонагнетателя к уличному двигателю стандартный распредвал обычно подходит. Этот аспект, наряду со стандартными степенями сжатия 8.От 5 до 9,5: 1, это то, что делает умеренную турбо-настройку в основном проблемой внешней установки и дополнительной настройки. Но если вы создаете двигатель с чрезвычайно высокой мощностью, кулачок, как и большинство внутренних деталей двигателя, следует оптимизировать. Безусловно, все различные компоненты, которые вы планируете использовать, способствуют развитию более высокого крутящего момента и мощности. Однако для развития крутящего момента и мощности в определенном диапазоне оборотов кулачок становится критически важным. Это верно независимо от того, какой тип распредвала вы используете, обычный двигатель с толкателем, SOHC или DOHC.Мы говорим об управлении событиями клапана, связанными с положением поршня, и качеством этого критического события, измеряемого по времени.

При обсуждении кулачков предполагается определенный уровень базовых знаний о распределительных валах, поскольку эта глава не посвящена всей теории конструкции, относящейся к распределительным валам. Я много раз видел, как кулачки являются одним из наименее изученных компонентов двигателя, но на самом деле так быть не должно. Понимание кулачков может стать проще, если вы будете рассматривать концепцию поэтапно.Кулачок — это очень старая механическая концепция, которая просто преобразует вращательное движение в линейное. Другими словами, кулачок поворачивается и создает линейное движение для управления клапанами. Движение передается на клапан либо посредством срабатывания толкателя на коромысло клапана, либо непосредственно на клапан в случае двигателя с верхним расположением кулачков. Поскольку четырехтактный двигатель должен совершить два полных оборота для каждого цилиндра, чтобы завершить все четыре цикла, распределительный вал имеет передаточное число 2: 1, что означает, что он движется со скоростью 1/2 скорости вращения коленчатого вала.Поскольку срабатывание клапана критически зависит от положения поршня, характеристики кулачка, в которых обсуждается продолжительность или время срабатывания клапана, всегда выражаются в градусах поворота коленчатого вала.

Клапаны открываются всего на доли секунды на высокой скорости. Степень открытия клапана и характеристика того, как долго он открыт до максимального подъема, имеют решающее значение для VE, независимо от того, имеет двигатель турбонаддув или нет. Максимальное увеличение объемного КПД — основная цель конструкции любого распределительного вала.Независимо от конструкции кулачка, впускной и / или выпускной клапан может быть открыт только на максимальное время. Конечно, время зависит от оборотов двигателя, потому что кулачок не открывает клапан в течение определенного времени, он открывает его на определенное количество градусов. Более длительная продолжительность означает, что кулачок дольше открывает клапан для данного числа оборотов в минуту. Максимальный подъем, линейное расстояние, на которое перемещается клапан, также определяется кулачком.

Помните, что поршень в двигателе почти всегда ускоряется, положительно или отрицательно (ускорение = скорость изменения скорости).Когда поршень находится на полпути к отверстию, шатунная шейка движется почти линейно, что обеспечивает максимальную скорость поршня. Если впускной клапан в этот момент полностью открыт, возможность открытия клапана будет максимальна, потому что клапан будет максимально открываться, когда поршень движется с максимальной скоростью. Этот быстро движущийся воздух развивает значительную силу (сила = масса x ускорение). Однако как только поршень достигает НМТ или приближается к нему, он значительно замедляется. Из-за инерции всасываемого воздуха коленчатый вал может поворачиваться на несколько градусов даже после того, как коленчатый вал начинает выталкивать поршень обратно в отверстие, где открытый клапан помогает заряжать цилиндр.

Было сказано, что наиболее критичным из всех событий клапана (поскольку оно связано с созданием лошадиных сил) является момент закрытия впускного клапана. На более низких оборотах двигателя у цилиндра больше времени для зарядки, а всасываемый воздух имеет очень небольшую инерцию. Следовательно, впускной клапан предпочитает закрываться раньше, прежде чем давление поршня, возвращающееся вверх, заставит всасываемый воздух обратно выйти из впускного клапана. Это обеспечивает более плавный холостой ход. В двигателе с высокими оборотами закрытие впускного клапана позже максимизирует инерцию всасываемого воздуха, и дополнительная зарядка цилиндра выполняется, потому что этот высокоскоростной воздух будет иметь силу, превышающую силу, прилагаемую поршнем к воздушному заряду в цилиндре. , в точку.Вот почему рабочие кулачки обычно имеют идеальный диапазон оборотов в минуту, когда их продолжительность более совместима с более высокими оборотами двигателя, но при этом вызывает нестабильное и неустойчивое качество холостого хода.

В двигателе с турбонаддувом динамика немного другая. Поскольку наддув всасываемого воздуха теперь нагнетается под давлением, давление наддува воздуха в цилиндре повышается более быстрыми темпами, поэтому люди обычно хотят закрыть клапан немного раньше. Вот почему стандартный распредвал очень хорошо работает с системой принудительного впуска воздуха.Но основной принцип задержки закрытия впускного клапана для работы на более высоких оборотах все еще остается в силе. Помните, что впускной клапан — это прибор для измерения времени. В экстремальном двигателе, таком как гоночный Bonneville, первоочередной задачей является развитие мощности на устойчиво высокой скорости, достигаемой за счет максимального VE. Даже если у вас есть давление наддува, количество времени, которое вам нужно для зарядки цилиндра, является постоянной проблемой для развития лошадиных сил. В шоссейных гонках развитие крутящего момента на более низких скоростях имеет решающее значение для ускорения, и вы хотите, чтобы двигатель свободно двигался вверх и вниз по диапазону оборотов.

Перекрытие клапанов — еще один критический фактор для турбо-кулачков. Перекрытие клапанов — это ситуация, когда впускной и выпускной клапаны открыты одновременно. Обычно, когда выпускной клапан почти закрыт, впускной клапан начинает открываться. Продолжительность поворота коленчатого вала на градусы, когда оба клапана находятся в нерабочем положении, называется перекрытием. В безнаддувном двигателе, работающем на высоких оборотах, происходит небольшая продувка цилиндра во время перекрытия, когда сила поступающего воздуха помогает полностью выхлопнуть цилиндр.В двигателе с турбонаддувом это происходит очень быстро, так как всасываемый заряд увеличивается. Если выпускной клапан остается открытым слишком долго, это позволит цилиндру потерять слишком много заряда. По этой причине угол осевой линии лепестка обычно составляет 110 градусов или более, чтобы минимизировать перекрытие клапана.

Форма выступа кулачка имеет решающее значение, поскольку она связана с качеством измеряемого по времени события открытия клапана. Два кулачка с одинаковым подъемом и продолжительностью могут иметь совершенно разные механические профили.Данный кулачок может открывать и закрывать клапаны намного быстрее, тем самым увеличивая время нахождения клапана на максимальном подъеме. Это максимизирует общий средний размер открытия измеренного во времени события. Это также означает, что клапан будет двигаться намного быстрее. Чтение рекламируемой подъемной силы и продолжительности на видеокарте не скажет вам форму лепестка. Только нанесение этого на график, сняв показания индикатора часового типа примерно через каждые 10 градусов и построив их, даст вам реальную картину того, что происходит. Отчасти поэтому разные кулачки с почти одинаковыми характеристиками могут по-разному работать в вашем двигателе.

Кулачки должны иметь въездные и закрывающие пандусы. Это постепенные наклоны на каждом конце выступа кулачка, которые позволяют клапанному механизму загружаться и разгружаться без слишком сильного удара для всей системы. Наклоны обеспечивают плавное включение клапанного механизма, а аппарель на выходе предохраняет клапан от захлопывания. Без этих функций кулачок раздробил бы клапанный механизм. Рекламируемая продолжительность раньше вводила в заблуждение много лет назад, потому что не было стандарта, с какой точки начинается подъем.Поток ниже определенного уровня подъема минимален, поэтому в настоящее время в промышленности используется стандарт 0,050 дюйма, от которого можно отсчитывать продолжительность. Следовательно, если продолжительность кулачка «@ 0,050» составляет 275 градусов, это означает, что от 0,050 дюйма подъема до 0,050 дюйма перед закрытием требуется 275 градусов вращения коленчатого вала.

Агрессивные кулачки будут иметь очень крутые боковые стороны или пандусы, где клапан ускоряется до полностью открытого положения, чтобы максимизировать продолжительность подъема клапана быстрого хода, тем самым увеличивая среднее открытие клапана как функцию времени.Более старые кулачки с плоским толкателем в этой области несколько ограничены, потому что очень агрессивный выступ кулачка с быстрыми боковыми сторонами может практически врезаться в боковую часть подъемника. По этой причине в большинстве современных двигателей используются кулачки с роликовыми толкателями. Распространено мнение, что роликовые кулачки уменьшают трение. Хотя это теоретически верно, это не настоящая причина их использования, они помогают нам улучшить профиль камеры. Кулачки обычно рассматриваются с точки зрения подъемной силы и продолжительности, поскольку эти элементы ориентированы на то, как долго клапаны открыты.Это логично, но важно и то, как долго они будут закрыты. Средний уличный энтузиаст обычно не думает об этом, но вторым по важности событием, связанным с клапаном, является открытие выпускного клапана.

Выпускной клапан обычно начинает открываться до того, как поршень достигнет НМТ. Удерживание клапана закрытым дольше позволяет приложить большее общее давление сгорания к поршню, повышая среднее эффективное давление, которое напрямую преобразуется в лошадиные силы. Однако слишком позднее открытие выпускного клапана заставляет поршень выполнять большую часть работы по выталкиванию расширенных газов из цилиндра и, таким образом, отдает больше энергии на насосные потери.Есть золотая середина. В случае двигателя с турбонаддувом горение длится немного дольше из-за увеличения массового расхода. Если выпускной клапан открывается слишком рано, это вызовет продувку цилиндра и позволит двигателю потерять BMEP (среднее эффективное давление в тормозной системе).

Два кулачка могут иметь одинаковый подъем и продолжительность, как показано на рисунке, но они будут работать по-разному. Синяя доля, очевидно, имеет ту же общую продолжительность, что и красная, но вы можете увидеть большую продолжительность в синей доле при полном подъеме.

Это графическое изображение двух кулачков, показанных на рисунке слева. Использование циферблатного индикатора и градусного колеса и размещение кулачка между центрами позволит вам получить данные, необходимые для построения этого типа графика для вашего распределительного вала. Снимая показания подъема циферблатного индикатора каждые 5-10 градусов поворота, вы сможете изобразить свой кулачок на графике. Анализ вашего кулачка таким образом по сравнению с другими размерами кулачков, которые вы выполняли, и сравнение их с результатами вашего трека может помочь вам понять, чего хочет ваш двигатель в плане шлифования кулачков для достижения наилучших результатов.

Большинство кулачков отшлифованы симметрично, что означает, что профиль каждого выступа выглядит одинаково по обе стороны от центральной линии кулачка. Обычно это так, но не всегда. Традиционный подход к двигателям с турбонаддувом, такой как меньшее перекрытие, меньшая продолжительность работы и более раннее закрытие впускного отверстия, обычно применяется к массам уличных и улично-полосных двигателей для хорошей управляемости и мощности. Это логично, но есть и другая сторона. Если вы создаете гоночный движок, и у вас есть доступ к дино и приличный бюджет, вы можете добиться большего.Общепринятая мудрость не обязательна к вам. В разговоре, который я вел с Гейлом Бэнксом, я насмехался над ним, задавая вопрос, намеренно наполненный общепринятой мудростью. Я спросил: «В двигателе с турбонаддувом вы не хотите держать впускной клапан открытым так долго, как в двигателе без наддува, не так ли?» Гейл никогда не думает об общепринятых взглядах; он любит толкать конверт. Его ответ был: «Почему бы и нет?»

В экстремальных классах профессионального автоспорта, таких как дрэг-рейсинг или автомобили типа Bonneville, общепринятое мнение улетучивается.Эти автомобили не должны работать на улице, иметь хорошее качество холостого хода и тянуть пылесос для аксессуаров. Они чистокровные, созданы для скорости и силы.

В этих ситуациях тестирование кулачков с все большей и большей продолжительностью, вероятно, принесет дивиденды. Одним из способов прогнозирования оправданного увеличения продолжительности было бы размещение отвода давления либо внутри порта головки цилиндров как можно ближе к клапану, либо во впускном коллекторе как можно ближе к головке, где он не мог «видеть» »Соседние порты.Если ваш двигатель был рассчитан на работу, скажем, при 9000 об / мин, и вы тестировали впускной клапан в течение длительного времени, при котором впускное отверстие закрывалось очень поздно, вы могли бы увидеть это с помощью датчика давления. Вам нужен сигнал 75 Гц, который сообщит вам, что клапан закрывается слишком поздно. Если в диапазоне скоростей, который вы намереваетесь работать, сигнал не достигает этого уровня, вы можете менять кулачки и проверять постепенно позже, а затем закрытие клапана, чтобы максимально увеличить время открытия клапана. Вот и настройка! Вычисление частоты, которую вы ищете, будет:

Обороты двигателя / 2 = количество впускных импульсов в минуту

Впускных импульсов в минуту / 60 = Гц

Самым трудным может быть поиск кулачкового шлифовального станка, который сделает ваши индивидуальные шлифовки.Вряд ли вы найдете кого-нибудь, кто будет создавать специальные разовые асимметричные лепестки. Но Дэйв Кроуэр из Crower Cams сказал мне, что если кто-то делал такую ​​настройку, он, как правило, может изменять углы осевой линии кулачка, регулировать продолжительность и рекомендовать установку вперед или назад, чтобы в основном достичь того, какого типа события фаз газораспределения вы ищете.

Следует отметить один интересный момент: дизельный двигатель Banks Sidewinder Duramax будет создавать волну давления, которую вы можете почувствовать рукой на расстоянии 12 дюймов от воздухозаборника турбонагнетателя, когда двигатель работает на холостом ходу.Но, как говорит Бэнкс: «Кого волнует, что гоночная машина работает ниже предполагаемого рабочего диапазона?»

Написано Джеем К. Миллером и опубликовано с разрешения CarTechBooks

ПОЛУЧИТЕ СДЕЛКУ НА ЭТУ КНИГУ!

Если вам понравилась эта статья, вам понравится вся книга. Нажмите кнопку ниже, и мы отправим вам эксклюзивное предложение на эту книгу.

Конструкция и принцип действия турбокомпрессора — турбина

Турбонагнетатель основные функции принципиально не изменились со времен Альфреда Бюхи.Турбокомпрессор состоит из компрессора и турбины, соединенных общим валом. Турбина с приводом от выхлопных газов обеспечивает приводную энергию для компрессора.

Дизайн и принцип действия

Турбина турбонагнетателя, состоящая из турбинного колеса и корпуса турбины, преобразует выхлопные газы двигателя в механическую энергию для привода компрессора. Газ, который ограничен площадью поперечного сечения потока турбины, приводит к при перепаде давления и температуры между входом и выходом.Это падение давления преобразуется турбиной в кинетическую энергию для привода турбинного колеса.

Есть два основных типа турбин: осевые и радиальные. В осевом типе, поток через колесо идет только в осевом направлении. В радиальных турбинах приток газа центростремительный, т.е.в радиальном направлении снаружи внутрь, и газ отток в осевом направлении.

До диаметра колеса около 160 мм используются только радиальные турбины.Этот соответствует мощности двигателя около 1000 кВт на турбокомпрессор. От 300 мм и более используются только осевые турбины. Между этими двумя значениями оба варианта возможны.

Поскольку турбина с радиальным потоком является наиболее популярным типом для автомобильной промышленности, следующее описание ограничено конструкцией и функциями этой турбины. тип. В улитке таких радиальных или центростремительных турбин давление выхлопных газов преобразуется в кинетическую энергию и выхлопные газы по окружности колеса направлен с постоянной скоростью к турбинному колесу.Передача энергии от кинетической энергия на валу происходит в турбинном колесе, которое сконструировано таким образом, чтобы почти вся кинетическая энергия преобразуется к тому времени, когда газ достигает колеса торговая точка.

Рабочие характеристики

Производительность турбины увеличивается по мере падения давления между входом и выходом. увеличивается, т. е. когда больше выхлопных газов забивается перед турбиной в результате более высоких оборотов двигателя, или в случае повышения температуры выхлопных газов из-за к более высокой энергии выхлопных газов.

Характерное поведение турбины определяется удельным поперечным сечением потока, поперечное сечение горловины в зоне перехода впускного канала к спиральной камере. За счет уменьшения поперечного сечения горловины больше выхлопных газов задерживается перед турбина и производительность турбины увеличивается в результате более высокого давления соотношение. Таким образом, меньшее поперечное сечение потока приводит к более высокому давлению наддува.
Площадь поперечного сечения потока турбины может быть легко изменена путем замены турбины. Корпус.

Помимо площади проточного сечения корпуса турбины, площадь выхода на колесо Впуск также влияет на пропускную способность турбины по массе. Обработка турбины Литой контур колеса допускает площадь поперечного сечения и, следовательно, давление наддува, быть отрегулированным. Увеличение контура приводит к увеличению площади поперечного сечения потока. турбины.

Турбины с изменяемой геометрией турбины изменяют поперечное сечение потока между улитками. канал и вход колеса. Площадь выхода на турбинное колесо изменяется на переменную направляющие лопатки или регулируемое скользящее кольцо, закрывающее часть поперечного сечения.

На практике рабочие характеристики турбин турбонагнетателя отработавших газов описываются картами, показывающими параметры потока в зависимости от давления в турбине. соотношение.Карта турбины показывает кривые массового расхода и КПД турбины для различные скорости. Чтобы упростить карту, кривые массового расхода, а также КПД, можно показать средней кривой

Для высокой общей эффективности турбокомпрессора согласование компрессора и Диаметр турбинного колеса имеет жизненно важное значение. Положение рабочей точки на карте компрессора определяет частоту вращения турбокомпрессора. Диаметр турбинного колеса должен быть таким, чтобы КПД турбины был максимальным в этом рабочем диапазоне.

Турбины с двойным входом

Турбина редко подвергается постоянному давлению выхлопных газов. В импульсном режиме с турбонаддувом коммерческие дизельные двигатели, турбины с двойным входом позволяют снизить пульсации выхлопных газов. оптимизирован, поскольку более высокий коэффициент давления турбины достигается за более короткое время. Таким образом, за счет увеличения степени сжатия эффективность повышается, улучшая очень важный временной интервал, когда через него проходит высокий, более эффективный массовый расход турбина.В результате этого улучшенного использования энергии выхлопных газов двигатель характеристики давления наддува и, следовательно, характеристики крутящего момента улучшаются, особенно при низких оборотах двигателя.

Турбокомпрессор с двухкамерной турбиной

Чтобы различные цилиндры не мешали друг другу во время зарядки В циклах обмена три цилиндра соединены в один выпускной коллектор.Двойной вход Затем турбины позволяют отдельно пропускать поток выхлопных газов через турбину.

Кожухи турбины с водяным охлаждением

Турбокомпрессор с корпусом турбины с водяным охлаждением для морского применения

При проектировании турбокомпрессора необходимо также учитывать аспекты безопасности. На корабле Например, в машинном отделении следует избегать горячих поверхностей из-за опасности возгорания.Таким образом, корпуса турбин с водяным охлаждением или корпуса турбин, покрытые изоляционным материалом. материал используется для морских применений.

Что такое турбокомпрессор и как он работает?

Турбокомпрессор — это устройство, устанавливаемое на двигатель транспортного средства, которое предназначено для повышения общей эффективности и производительности. Это причина, по которой многие производители автомобилей предпочитают использовать турбонаддув в своих автомобилях. Новые Chevrolet Trax и Equinox предлагаются с двигателями с турбонаддувом, и с течением времени ими будет оснащаться все больше и больше автомобилей.

Как это работает?

Турбина состоит из двух половин, соединенных валом. С одной стороны, горячие выхлопные газы вращают турбину, соединенную с другой турбиной, которая всасывает воздух и сжимает его в двигателе. Это сжатие дает двигателю дополнительную мощность и эффективность, потому что чем больше воздуха может попасть в камеру сгорания, тем больше топлива может быть добавлено для большей мощности.

Преимущества

Помимо дополнительной мощности, турбокомпрессоры иногда называют устройствами, которые предлагают «бесплатную мощность», потому что, в отличие от нагнетателя, для его привода не требуется мощность двигателя.Горячие и расширяющиеся газы, выходящие из двигателя, приводят в действие турбокомпрессор, поэтому нет утечки полезной мощности двигателя. Двигатели с турбонаддувом также не подвержены такому воздействию, как двигатели без наддува, когда они едут на больших высотах. Чем выше высота набирает атмосферный двигатель, тем труднее ему получать кислород из-за разреженной атмосферы. Турбонагнетатель решает эту проблему, потому что он нагнетает кислород в камеру сгорания двигателя, иногда при давлении в 2 раза превышающем атмосферное.

Турбокомпрессоры также улучшают топливную экономичность транспортного средства, однако существует неправильное представление о транспортных средствах с турбонаддувом и топливной экономичности. Если взять двигатель без наддува и установить на нем турбонагнетатель, это не улучшит топливную экономичность. Способ, которым производители повышают эффективность использования топлива с помощью турбонаддува, заключается в уменьшении размера двигателя и его последующем турбонаддуве. Например, возьмите рядный 4-цилиндровый атмосферный двигатель 2,5 л и уменьшите рабочий объем до 1.4L, а затем турбокомпрессор. Меньший двигатель с турбонаддувом по-прежнему будет иметь те же показатели производительности (или немного лучше), но из-за меньшего рабочего объема он также будет потреблять меньше топлива.

Что такое двигатель с турбонаддувом и как он влияет на время в пути?

Когда вы слышите термин «с турбонаддувом», вы, вероятно, автоматически связываете его со словом «быстрый». И вы не ошибетесь — этот тип двигателя имеет репутацию того, что позволяет вам по-настоящему нажать на педаль.Однако знаете ли вы, как работает двигатель с турбонаддувом и на что он влияет на время в пути? Компания Toyota из Клермона пришла с ответами.

Что такое двигатели с турбонаддувом?

Двигатели с турбонаддувом обычно используются в автомобилях, рассчитанных на скорость, таких как новая Clermont Toyota Supra. У него есть турбокомпрессор под капотом его рядного шестицилиндрового двигателя, и ходят слухи, что в 2021 модельном году на рынок появятся ДВА варианта двигателей с турбонаддувом, чтобы водители могли выбирать между ними.Но чтобы действительно понять, как этот тип зарядного устройства может увеличить время вождения, давайте рассмотрим подробнее.

  • Турбированный двигатель или двигатель с турбонаддувом может повысить топливную экономичность и мощность вашего автомобиля (опять же, почему он так популярен среди водителей, которые любят быстро добираться до места назначения). Вот основная разбивка того, что происходит под капотом в этом сценарии:
  • Мощность турбины используется для создания принудительной индукции — в основном, дополнительный сжатый воздух проталкивается в камеру сгорания вашего двигателя.

Турбокомпрессор, нагнетатель или и то, и другое?

Дополнительный воздух, проталкиваемый в камеру, означает, что, в свою очередь, в камеру будет втягиваться больше топлива. Это увеличивает мощность и ускоряет работу вашего двигателя, потому что дополнительное топливо сгорает быстрее, чем двигатель, который использует «нормальное» всасывание.

Однако двигатели с турбонаддувом не всегда назывались этим именем — они изначально назывались турбокомпрессорами, потому что в те времена «нагнетатель» означал любой двигатель, который использовал принудительную индукцию (или принудительный сжатый воздух) для повышения мощности и топливной эффективности.Однако теперь есть различие между двумя типами зарядных устройств — вот и положение дел:

  • Двигатель с турбонаддувом использует турбину, которая приводится в действие выхлопными газами двигателя, чтобы впоследствии нагнетать этот дополнительный сжатый воздух в камеру сгорания.
  • Двигатель с наддувом, с другой стороны, использует процесс с механическим приводом. Этот тип зарядного устройства обычно приводится в действие ремнем, прикрепленным к коленчатому валу.

И просто для справки, двойной нагнетатель — это двигатель, в котором используется и то, и другое.

К чему вы должны стремиться, пытаясь увеличить мощность вашего автомобиля? Вот несколько ключевых моментов, которые следует учитывать перед тем, как украшать ваш Clermont Toyota:

  • Двигатели с турбонаддувом имеют отставание. Почему? Потому что между моментом, когда вам требуется увеличенная мощность (или открытием дроссельной заслонки), и фактическим действием подачи дополнительного сжатого воздуха в камеру сгорания проходит небольшой промежуток времени. Почему? Поскольку турбокомпрессоры используют выхлопные газы для питания турбины, и когда ваша Clermont Toyota работает на холостом ходу или движется с низкой скоростью, требуется немного больше времени для накопления необходимых выхлопных газов.
  • Не лишены недостатков и двигатели
  • с наддувом. Этот тип зарядного устройства подвергает двигатель дополнительному износу, поскольку он имеет механический привод. Кроме того, он использует часть мощности, которую двигатель изначально создает, для создания БОЛЬШЕ мощности. Вы выйдете вперед по мощности, но не без дополнительного износа двигателя. Эти типы зарядных устройств также создают больше избыточного тепла, что заставляет ваш двигатель работать тяжелее, чтобы он оставался холодным.

Готовы лично проверить двигатель с турбонаддувом? Приезжайте в Toyota в Клермон и посмотрите, что находится под капотом Toyota Supra 2020 года! Мы открыты семь дней в неделю по адресу 3575 Vineland Road.

Конструкция турбокомпрессора: конструкция и работа турбокомпрессоров

Введение

В предыдущей статье описывалось, что такое турбонаддув и почему он важен для судовых двигателей. В этой статье подробно описываются конструктивные характеристики и рабочие особенности турбокомпрессора, подробно объясняется, как выхлоп двигателя приводит в движение турбину и как компрессор совершает возвратно-поступательное движение.

Конструкция турбокомпрессора

Турбокомпрессор представляет собой комбинацию компрессора и турбины, установленных на общем валу.Турбокомпрессор использует выхлопные газы самого двигателя, чтобы вращать турбину, которая, в свою очередь, приводит в движение компрессор.

В турбокомпрессоре используются в основном компрессоры двух типов.

  • Центробежные компрессоры
  • Осевые компрессоры

Центробежные компрессоры обычно используются в приложениях, где размер турбокомпрессора должен быть небольшим, например, турбокомпрессор в автомобильной системе.

Компрессоры с осевым потоком используются в более крупных радиальных агрегатах, где могут потребоваться внутренние модификации.Они наиболее эффективны с двигателями, использующими тяжелые масла.

Основные детали

Турбокомпрессор состоит из трех основных частей:

  • Турбина
  • Рабочее колесо / компрессор
  • Центральная ступица

Колеса турбины и компрессора находятся в собственном коническом корпусе. Количество подаваемого воздуха зависит от размеров этих колес. Вал удерживается в центральной ступице с помощью подшипников и соединяет турбину и рабочее колесо на противоположных сторонах.Из-за высокой скорости вращения ступица сильно нагревается. Для предотвращения повышения температуры предусмотрено водяное охлаждение или любая другая система охлаждения.

Между компрессором и турбиной имеется достаточное уплотнение для предотвращения смешивания газов. Со стороны турбины предусмотрен фильтр, гарантирующий, что воздух, поступающий на сторону компрессора, не содержит каких-либо примесей.

Сторона турбины

Сторона турбины обычно изготавливается из чугуна.На входной стороне турбины имеется сопловое лопаточное кольцо, которое используется для двух целей:

  • Для направления поступающего газа на рабочее колесо турбины
  • Для размещения подшипников турбины

Выходная сторона корпуса турбины состоит из нагнетателя и воздуховоды для подачи воздуха к лабиринтным уплотнениям.

Сторона компрессора

Сторона компрессора обычно изготавливается из алюминиевых сплавов и также состоит из двух частей. Впускная часть или кожух предназначен для забора воздуха из окружающих областей i.е машинное отделение или палубные помещения. Если воздух забирается из палубных пространств, для этого делают специальные воздуховоды. Преимущество забора воздуха из палубных пространств — низкая температура и влажность воздуха. Преимущество забора воздуха из моторного отсека состоит в том, что воздух находится под давлением, и нет необходимости в длинных и сложных воздуховодах.

Основными частями со стороны компрессора являются индуктор, крыльчатка, диффузор, а также впускной и выпускной кожух.

Рабочий

Турбина использует энергию выхлопных газов для преобразования тепловой энергии во вращательное движение.Это вращательное движение турбины приводит в действие компрессор, который втягивает окружающий воздух из окружающей среды и нагнетает сжатый воздух с высокой плотностью и давлением во впускной коллектор.

Выхлопной газ поступает на входную сторону турбины турбокомпрессора через камеру высокого давления и ряд фильтров. Кольца лопастей сопла концентрируют выхлопные газы на турбинном колесе. Движение турбинного колеса вращает вал, который, в свою очередь, вращает крыльчатку компрессора.Часть этого воздуха попадает в лабиринтное уплотнение с выходной стороны турбины.

Когда рабочее колесо вращается, воздух всасывается через центр рабочего колеса и из-за сильного вращательного движения испытывает окружную скорость, которая толкает его наружу. Достигается радиальная скорость, которая толкает воздух дальше наружу к индуктору. Дополнительная результирующая скорость достигается за счет точно рассчитанного угла входа индуктора, который обеспечивает максимальную эффективность компрессора.

Чрезмерное давление приводит к порче или загрязнению поверхностей рабочего колеса и индуктора. Это приводит к изменению угла падения и, как следствие, снижению эффективности.

Все двигатели, работающие на тяжелом топливе, подвержены сильным колебаниям нагрузки, что приводит к колебаниям давления выхлопных газов. Продолжительные колебания давления приводят к пагубным воздействиям на внутренние части компрессора. По этой причине в большинстве двигателей предусмотрены камеры постоянного давления. Выхлопной газ вместо того, чтобы напрямую поступать из двигателя, сначала попадает в камеру высокого давления, а оттуда циркулирует в турбину с постоянным давлением.Это снижает чрезмерную нагрузку на подшипник вала и уплотнение. О помпажах турбонагнетателя мы узнаем в следующей статье.

Ссылки

Введение в морскую инженерию — 2-е издание Д.А. Тейлора

Авторы изображений

https://www.lotusespritturbo.com/Garrett_AiResearch_T3_Turbocharger.jpg.

org.uk/images/turbochr.gif

https: //upload.wikimedia.org / wikipedia / commons / 7/76 / Turbocharger.jpg

Этот пост является частью серии: Турбокомпрессор: конструкция и работа

В этой серии статей объясняется важность турбокомпрессора в судовом дизельном двигателе. Изучите конструкцию и работу турбокомпрессора, а также связанные с этим эксплуатационные трудности.

  1. Турбокомпрессоры: питание двигателей
  2. Компоненты турбокомпрессора
  3. Турбокомпрессоры: что происходит?

Конструкция, работа, материал турбокомпрессора в судовом дизельном двигателе

На рисунке ниже показан турбонагнетатель осевого типа с важными деталями.
Конструкция

> Турбина

Состоит из впускного корпуса для выхлопных газов с сопловым кольцом, выпускного корпуса для выхлопных газов, кованого колеса турбины, выполненного за одно целое с валом, и лопаток, которые устанавливаются через боковые входные прорези.

На входной стороне турбины имеется лопаточное кольцо сопла, которое используется для направления поступающего газа на колесо турбины, а также для размещения подшипников турбины. Выходная сторона корпуса турбины состоит из нагнетателя и воздуховодов для подачи воздуха к лабиринтным уплотнениям.

> Компрессор

Сторона компрессора обычно изготавливается из алюминиевых сплавов и также состоит из двух частей. Впускная часть или кожух предназначен для забора воздуха из окружающих областей. Основными частями со стороны компрессора являются индуктор, крыльчатка, диффузор, а также впускной и выпускной корпус. Крыльчатка выбрасывает воздух наружу с центробежной силой. Диффузор на выпускном конце преобразует кинетическую энергию, то есть его скорость, в энергию давления и направляет воздух к спиральному корпусу.Корпус спиральной формы дополнительно снижает скорость и увеличивает давление.

> Подшипники

Подшипники представляют собой комбинированные шарико-роликовые подшипники или подшипники с опорной втулкой, и они устанавливаются в корпусах упругого типа.

> Уплотнения

Лабиринтные уплотнения используются для предотвращения утечки выхлопных газов в воздушную сторону и в корпус подшипника. Воздух через уплотнение со стороны воздуха выходит для охлаждения и уплотнения вала.

Материал

> Колесо турбины, сопловое кольцо, вал ротора и лопасти изготовлены из Nimonic 90 (никель-хромовый сплав).Они обладают ударопрочностью, прочностью, термической стабильностью и сопротивлением ползучести при высоких температурах непрерывной работы до 650 градусов. C.

> Корпус турбины из чугуна

> Крыльчатка компрессора, спиральный корпус, диффузор и индуктор из алюминиевого сплава, обеспечивающие легкую прочность и гладкую поверхность.

Можно ли поставить турбонаддув в любой безнаддувный автомобиль?

Если вы хотите увеличить мощность своего автомобиля, внесите изменения в систему воздухозаборников и выхлопных газов.И хотя настройка шин и подвески может добавить скорости в поворотах, в какой-то момент требуется больше мощности, чтобы ехать быстрее. Это часто достигается за счет принудительной индукции, что обычно для тюнеров и OEM-производителей означает турбокомпрессор. Но так ли просто установить турбонаддув на безнаддувный автомобиль?

Турбокомпрессор только часть процесса

Установка турбонагнетателя на двигатель без наддува принципиально не меняет принцип работы двигателя.Воздух по-прежнему засасывается в камеру сгорания, где он смешивается с топливом и сгорает. Разница в том, что турбонагнетатель раскручивается выхлопными газами. Это позволяет подавать больше свежего воздуха в камеру сгорания. Больше воздуха означает большую стрелу, что означает большую мощность.

Два турбокомпрессора Garrett GTX3582R Gen II | Гаррет через Instagram

Однако, хотя работа турбокомпрессора в теории кажется простой, в действительности она может быть довольно сложной. Например, турбины разного размера лучше подходят для разных частей диапазона оборотов, объясняет Hot Rod .Кроме того, как сообщает CarThrottle , следует учитывать различные геометрические формы лопастей и места для размещения самих турбин.

СВЯЗАННЫЙ: R32 Skyline GT-R мощностью 2100 л.с. — самый быстрый в мире тягач с полным приводом

Но турбонаддув двигателя требует большего, чем просто выбор типа турбонаддува, который вам нужен. Как объясняет Хейнс, , когда турбины начинают вращаться, они нагреваются, особенно со стороны выпуска. Это нагревает поступающий воздух, делая его менее плотным и богатым кислородом, что снижает выходную мощность.Вот почему двигатели с турбонаддувом имеют промежуточные охладители — для охлаждения воздуха после его сжатия турбонаддувом.

Также необходимо убедиться, что в турбины поступает достаточно воздуха. Да, воздухозаборники и выхлопные системы на вторичном рынке мало что предлагают для безнаддувных двигателей. Однако для двигателей с принудительным впуском все обстоит иначе.

Кроме того, для увеличения мощности требуется не только больше воздуха, но и дополнительное топливо. И работа электронного блока управления автомобиля — правильно измерять и контролировать расход воздуха и топлива.Итак, чтобы не отставать от поступающего воздуха, двигателю требуется модифицированный блок управления двигателем и модернизированные форсунки, поясняет ItStillRuns . Также может потребоваться модернизированный топливный насос.

И даже после этого все еще есть потенциальные подводные камни.

На что обращать внимание при сборке

Все упомянутые детали и модификации касаются максимизируя, насколько эффективно работает ваш турбо. Но пока турбокомпрессор Увеличьте мощность, это также может повредить или даже разрушить ваш двигатель при неправильном использовании.

СВЯЗАННЫЙ: Наддув Toyota 86 — хорошая идея?

Дополнительная мощность исходит от более сильного взрыва в камерах сгорания вашего двигателя. И поршни, клапаны и другие внутренние компоненты вашего автомобиля могут не справиться с этим. Как объясняет TorqueCars , это не редкость, когда тюнеры устанавливают более крупные клапаны, увеличивают размер порта и компенсируют это более прочными и дорогими поршнями. Кроме того, дополнительная мощность может увеличить износ сцепления.Вот почему ItStillRuns рекомендует устанавливать модернизированное или гоночное сцепление, если вы устанавливаете турбонаддув в автомобиле.

Также есть вопрос о самом процессе повышения. Один из простых способов увеличить мощность двигателя с турбонаддувом — это увеличить настройки наддува. Однако это не только увеличивает нагрузку на внутренние компоненты, но также увеличивает вероятность преждевременного воспламенения. Это страшный «стук» или «детонация», который возникает из-за неконтролируемого сгорания топлива.И это может еще больше повредить ваш двигатель.

Моторный отсек Toyota Celica GT4 1994 года | Принесите трейлер

СВЯЗАННЫЙ: Почему одинаковые турбодвигатели имеют разную мощность?

Чтобы избежать этого, помимо промежуточных охладителей, иногда двигатели с турбонаддувом поставляются с впрыском воды. Его часто устанавливают на раллийные автомобили, но только недавно автомобили с высокими характеристиками стали поставляться с ним с завода. Вот почему Toyota Celica GT4 ST205 1994 года так широко известна тем, что имела такой автомобиль в то время.Это еще больше охлаждает поступающий воздух, делая его более плотным и предотвращая детонацию.

Предотвращение детонации — вот почему автомобили с турбонаддувом часто требуют высокооктановое топливо. Октан — это показатель ударопрочности — чем выше число, тем меньше вероятность детонации.

Уход за турбиной

СВЯЗАННЫЙ: Yamaha возвращается в мотоциклы с турбонаддувом

Короче хотя теоретически можно добавить турбокомпрессор практически для любого двигателя без наддува это не метод plug-and-play.Там много частей, требующих внимательного рассмотрения. К счастью, немного тюнинга компании исключили из этого процесса некоторые догадки. Например, в Колорадо Flyin ’Miata предлагает полные турбо-комплекты, которые добавляют заявленные 75-85 л.с. без модернизация инжектора.

Однако после установки турбонагнетателя и всего необходимого оборудования стоит обратить внимание на несколько дополнительных советов по уходу. Некоторые производители оригинального оборудования, например, указывают более частую замену свечей зажигания в своих турбинах Cars.com сообщает. Также не следует буксировать двигатель или ездить на высокой передаче на низких оборотах, если он с турбонаддувом, сообщает R&T .

Кроме того, моторное масло не только смазывает турбокомпрессоры, но и может сильно с ним справляться, сообщает Mobil . Некачественное масло и нечастая замена масла могут привести к отказу турбины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *