ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Октановое число углеводородного газа 108

Октановое число углеводородного газа 108

11.11.2017

Исследования опровергли устоявшееся мнение, что использование газа вместо бензина — вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше.

Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца.

В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) — токсичное для человека вещество.
И газовые, и бензиновые автомобили выбрасывают в атмосферу одинаковое количество углеводородов.

Для здоровья человека опасны не сами углеводороды, а продукты их окисления. Двигатель, работающий на бензине, выбрасывает сравнительно легко окисляющиеся вещества — этил и этилен, а газовый двигатель — метан, который из всех предельных углеводородов наиболее устойчив к окислению. Поэтому углеводородный выброс газового автомобиля менее опасен (см. рис. 1.5 книги «Источники энергии»).

Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам.
Двигатель внутреннего сгорания автомобиля работает по классическому четырехтактному циклу. Газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень и двигает шатунный механизм, а затем выбрасывается из цилиндра.

Чем сильнее можно сжать топливо без возникновения детонации(Детонация [лат. detonare прогреметь] — распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе.), тем больше мощность двигателя.

Антидетонационную способность топлива определяют октановым числом. Чем оно выше, тем лучше топливо. Среднее октановое число природного газа — 108 — недостижимо для любых марок бензина.

Двигатель внутреннего сгорания работает на смеси воздуха и распыленного топлива. Для воспламенения смеси нужна определенная концентрация топлива. Газ, в сравнении с бензином, горит при меньших концентрациях, т.е. при более «бедных» смесях. В случае повышения концентрации газа и обогащения смеси можно добиться увеличения мощности двигателя. Обедняя смесь, наоборот, можно понизить мощность. Возникает возможность изменением состава смеси регулировать мощность двигателя: газ как топливо значительно «послушнее» бензина.
Эксплуатация показала, что автомобили на газе более выносливы — в полтора-два раза дольше работают без ремонта. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Кроме того, масляная пленка дольше держится на металлических поверхностях — ее не смывает жидкое топливо, и, наконец, газ практически не вызывает коррозию металла.


Несмотря на многочисленные достоинства природного газа, закрывать заправочные станции и выбрасывать бензиновые канистры еще рано.

Метан

В переходе на газовое топливо есть свои сложности. Так, например, плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20…25 МПа (200…250 атмосфер).

Для хранения в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.

Природный газ-метан способен резко уменьшать объем (в 600 раз) при его низкотемпературном cжижении. Такой жидкий газ можно перевозить в специальных «бензобаках» при давлении не более 6 атмосфер (давление воды в водопроводном кране). Имеется множество технических разработок и патентов по реализации такой технологии получения жидкого метана.

Во всем мире уже производится и потребляется много миллионов тонн охлажденного (до температуры около -120°C) метана. Крупнейшими производителями является Индонезия, Алжир, Ливия, США, Норвегия и т.д. Для перевозки используются танкеры-метановозы водоизмещением до 120 000 тонн (Япония) Продуктами полного сгорания метана являются безвредные вещества — углекислый газ и вода. Именно поэтому мы не испытываем неудобств на наших кухнях, где иногда целый день горят газовые (метановые) горелки.

Пропан-бутан

Пропан-бутан — синтетическое топливо. Его получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). Газобаллонная аппаратура для сжиженного пропан-бутана несколько проще. Процесс заправки машин на газонаполнительных станциях несложен и очень похож на заправку бензином.

По своим свойствам сжиженный пропан-бутан почти не отличается от сжатого природного газа. То же высокое октановое число, те же неплохие экологические и эксплуатационные показатели. Есть у сжиженного пропан бутана и преимущество перед метаном — 225 литров этого горючего хватает на пробег около 500 километров, а метана, помещающегося в восьми баллонах — на вдвое меньший.

Лаврус В.С. Источники энергии. К.: НиТ, 1997
 

Каким газом заправляют автомобили, пропан и бутан в чем разница

С появлением двигателей внутреннего сгорания поиск экономных и экологичных видов топлива не прекращается. Углеводородные газы уверенно, постепенно занимают нишу в этой области.

Несколько десятилетий владельцев транспортных средств волнует вопрос: какой вид газа оптимально решает проблемы экономичности топлива, пропан-бутан или метан?

Для чего нужно знать особенности пропана и метана?

Когда-то наиболее экономичным топливом было дизельное. Водители выбирали автомобили с соответствующим двигателем либо выполняли переоборудование. Со временем стоимость дизельного горючего намного увеличилась, самым дешёвым современным способом экономии топлива стало использование газа.

Сегодня газовые автомобильные системы активно внедряются в автопарках коммерческих, производственных предприятий, бюджетных учреждений. Переводят на ГБО свои автомобили многие владельцы частных транспортных средств.

Подключился и автопром. Появляются модели марок машин отечественного и зарубежного производства, которые на конвейере оборудованы газобаллонной системой. Причины понятны — газ позволяет существенно экономить средства на заправках. Если для кого-то не важен финансовый вопрос, экологичность применения газового топлива не оставляет сомнений.

Какой газ лучше для авто — пропан-бутановая смесь или метан? У каждого претендента на замену бензина есть положительные и отрицательные стороны. Автовладельцы делают выбор, исходя из условий использования альтернативного топлива. Разобраться в эксплуатационных характеристиках пропана и метана, значит сделать осознанный, просчитанный во всех отношениях выбор для своего автомобиля.

Если принято решение об установке газовой системы, следует учесть ряд особенностей. Нужно знать, как правильно заправлять автомобиль, определиться, ГБО какого поколения и производителя приобретать, куда обращаться за установкой, какой вид газового топлива для авто выбрать. Для начала нужно разобраться: чем отличается пропан от бутана и метана?

Метан, пропан и бутан

Пропан-бутановое топливо — сжиженная газовая смесь, метановое горючее — сжатая субстанция. Два вида газового горючего имеют различия по составу, особенностям и специфике применения.

Углеводородный газ пропан имеет органическое происхождение. Является продуктом переработки нефтепродуктов либо выделенным компонентом природного газа.

Каким газом заправляют автомобили? Существуют две марки газовых смесей:

  1. Пропан бутан автомобильный, используется как транспортное топливо;
  2. Техническая пропан-бутановая смесь, для расхода в быту.

Потребительские свойства пропановому горючему придают следующим образом:

  • газ подвергается процедуре тщательной очистки;
  • пропан соединяют с этаном и бутаном, в сжиженном состоянии нагнетают в ёмкости с давлением 10-15 атм.

Таким образом, в состав горючего входят пропан и бутан разница у которых заключается в том, что первый — зимний газ, второй — летний.

Сжиженный бутан не работает на морозе. Чистому «зимнему» пропану противопоказано лето, высокая температура повысит давление в газовом баллоне.

По госту содержание бутана в топливной газовой смеси не должно быть более 60%, для северных регионов и зимой доля пропана не должна быть ниже 75%. Такая газообразная субстанция хорошо ведёт себя в цилиндрах двигателя автомобиля.

C3H8 тяжелее воздуха, становится взрывоопасным, вредным для человека, если концентрация превышает 2,1%.

Сжиженный нефтяной газ сохраняет газообразные свойства при нормальном температурном режиме, любом давлении. Тот факт, что пропан-бутан может сжижаться, позволяет загружать в автомобиль большие объёмы топлива, значительно увеличивая запас хода. Пропан авто не повредит, если будет высокого качества.

Метан газ — это углеводород, легче воздуха, практически не растворим в воде. Добывают газ из недр земли.

Чтобы попасть к потребителю, CH4 проходит несколько технологических этапов:

  1. Газ фильтруют.
  2. Дополняют одорантами.
  3. Метан сжимают компрессором до 200-250 атм.
  4. Автомобильную топливную смесь помещают в тяжёлые толстостенные резервуары повышенной прочности.

Взрывоопасным газ становится при концентрации в окружающей среде более 4,4%. Метан топливо имеет способность к накоплению в закрытых пространствах, быстро рассеивается. Стоит дешевле пропана, относится к самому чистому газовому топливу, в отличие от пропана, примесей в нём ничтожно мало, не требуется глубокая очистка.

На заметку! Влияние на человеческий организм метана минимально на открытых площадях из-за низкого веса.

В качественном компримированном метане не менее 90% природного газа.

Какое газовое горючее принесёт больше экономии автовладельцу?

Сравнительные характеристики метана и пропан-бутана:

  1. Установка пропанового газобаллонного оборудования обойдётся более чем в два раза ниже по цене.
  2. По стоимости топлива — метан гораздо дешевле пропан-бутана.
  3. Суг снижает показатели мощности автомобиля по сравнению с бензином до 3-5%, что проявляется на скорости от 140 км в час. Метан способен «ослабить» двигатель автомобиля до 20%. Современные поколения ГБО этот показатель нивелируют.
  4. По степени экологичности — у сжиженного газа больше примесей, пропан-бутан не относится к полностью безопасным веществам. Метановый газ отличается тем, что на данный момент это самый чистый топливный ресурс наряду со спиртовым, превосходит по безопасности электродвигатели.
  5. По весу газовых баллонов и объему горючего, у пропана-бутана, сжатого под невысоким давлением, явное преимущество, его объёма хватит на путь в три раза длиннее.
  6. Уровень взрывоопасности метана, который моментально рассеивается на открытом воздухе, в два раза ниже. Прочные метановые резервуары при аварии меньше подвержены деформации.
  7. По доступности заправочных азс — пропановые искать не нужно, они почти на одном уровне с бензиновыми. Метановые автозаправки — в крупных городах.
  8. Октановое число у пропан-бутановой смеси 100, у метановой 110.

Итоговая разница следующая: газ метан дешевле и безопасней, но дороже по монтажу и обслуживанию. Чтобы заправляться пропан-бутаном, не обязательно жить в большом городе. ГБО доступное по цене, баллоны более лёгкие, но газ более вредный и опасный.

Поэтому понятно, почему владельцы частных и коммерческих грузовых автомобилей останавливают выбор на метане. Машины не чувствуют веса баллонного оборудования, потеря мощности не чувствительна. Экономия на горючем существенная.

Почему выгодно заправлять авто газом

При всех достоинствах и недостатках, у разновидностей газового горючего есть общие «бонусы», привлекательные для автовладельцев:

  • автогаз имеет более низкую стоимость относительно бензина;
  • высокая экологическая составляющая, газ оказывает меньшее негативное воздействие на человека, токсичность газовых выхлопов незначительна;
  • установка ГБО увеличивает запас гсм в автомобиле, если залить полный бак бензина и наполнить газовый баллон;
  • использование газа в комплексе с бензиновым горючим замедляет износ деталей машины (эффективнее, если двигатель приспособлен к газу с завода).

Эти качества позволяют автовладельцам использовать газ вместо бензина, сеть агзс год от года расширяется.

Мнение о том, что газобаллонное оборудование способно выводить из строя верхнюю часть блока цилиндров двигателя внутреннего сгорания, справедливо, когда ГБО на автомобиль установлено кустарным способом.

Газовая система будет иметь статус отличной надёжности, полную безопасность, высокий кпд, если устанавливать её у профессионалов, заправлять автомобиль качественным газом, не игнорировать регулярное прохождение технического осмотра. Правильно выполненный монтаж газового баллона поможет избежать повреждения оборудования в ДТП.

На заметку! Что касается утечек газа, то добавленные в газ меркаптаны с характерным запахом позволят сразу заметить дефекты в системе.

Газ – соперник бензина. Cтатьи. Наука и техника

Виктор Лаврус

Газ (фр. gaz, от греч. chaos – хаос), агрегатное состояние вещества, в котором оно равномерно заполняет весь предоставленный ему объем.

В тридцатые годы прошлого века англичанин Барнетт получил патент на газовый двигатель, а в 1860 году француз Э. Ленуар построил мотор, работающий на смеси воздуха и газа. Такой выбор горючего никого не удивил – бензина еще не было.

Бензин в качестве горючего был использован спустя два десятилетия, когда Г. Даймлер создал бензиновый двигатель внутреннего сгорания. Бензиновый мотор заменил лошадь в первых «самодвижущихся колясках» – автомобилях.

Повсеместный рост количества автомобилей потребовал значительного увеличения объемов производства бензина. О газе как о возможном моторном топливе надолго забыли. Лишь через 100 лет после Барнетта, в конце тридцатых годов нашего столетия, возродилась мысль о его использовании. Тогда появились первые газогенераторные автомобили. Газ вырабатывался в топке, а оттуда подавался в двигатель.

Бензин дорожает, и сегодня его пытаются заменить. И природным газом, и синтезированными газами и жидкостями, например – спиртом, который гонят из самого разного сырья: от тростника до апельсиновых корок.

Все эти виды топлива менее опасны для окружающей среды, чем бензин.

Октановое число 105?

Исследования опровергли устоявшееся мнение, что использование газа вместо бензина – вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше.

Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца.

В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) – токсичное для человека вещество.

И газовые, и бензиновые автомобили выбрасывают в атмосферу одинаковое количество углеводородов. Для здоровья человека опасны не сами углеводороды, а продукты их окисления. Двигатель, работающий на бензине, выбрасывает сравнительно легко окисляющиеся вещества – этил и этилен, а газовый двигатель – метан, который из всех предельных углеводородов наиболее устойчив к окислению. Поэтому углеводородный выброс газового автомобиля менее опасен (см. рис. 1.5 книги «Источники энергии»).

Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам.

Двигатель внутреннего сгорания автомобиля работает по классическому четырехтактному циклу. Газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень и двигает шатунный механизм, а затем выбрасывается из цилиндра.

Чем сильнее можно сжать топливо без возникновения детонации*, тем больше мощность двигателя. Антидетонационную способность топлива определяют октановым числом. Чем оно выше, тем лучше топливо. Среднее октановое число природного газа – 105 – недостижимо для любых марок бензина.

* Детонация [лат. detonare прогреметь] – распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе.

Двигатель внутреннего сгорания работает на смеси воздуха и распыленного топлива. Для воспламенения смеси нужна определенная концентрация топлива. Газ, в сравнении с бензином, горит при меньших концентрациях, т.е. при более «бедных» смесях. В случае повышения концентрации газа и обогащения смеси можно добиться увеличения мощности двигателя. Обедняя смесь, наоборот, можно понизить мощность. Возникает возможность изменением состава смеси регулировать мощность двигателя: газ как топливо значительно «послушнее» бензина.

Эксплуатация показала, что автомобили на газе более выносливы – в полтора-два раза дольше работают без ремонта. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Кроме того, масляная пленка дольше держится на металлических поверхностях – ее не смывает жидкое топливо, и, наконец, газ практически не вызывает коррозию металла.

Несмотря на многочисленные достоинства природного газа, закрывать заправочные станции и выбрасывать бензиновые канистры еще рано.

Метан

В переходе на газовое топливо есть свои сложности. Так, например, плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20…25 МПа (200…250 атмосфер). Для хранения в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.

Природный газ-метан способен резко уменьшать объем (в 600 раз) при его низкотемпературном cжижении. Такой жидкий газ можно перевозить в специальных «бензобаках» при давлении не более 6 атмосфер (давление воды в водопроводном кране). Имеется множество технических разработок и патентов по реализации такой технологии получения жидкого метана. Во всем мире уже производится и потребляется много миллионов тонн охлажденного (до температуры около –120°C) метана. Крупнейшими производителями является Индонезия, Алжир, Ливия, США, Норвегия и т. д. Для перевозки используются танкеры-метановозы водоизмещением до 120 000 тонн (Япония). Продуктами полного сгорания метана являются безвредные вещества – углекислый газ и вода. Именно поэтому мы не испытываем неудобств на наших кухнях, где иногда целый день горят газовые (метановые) горелки.

Пропан-бутан

Пропан-бутан – синтетическое топливо. Его получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). Газобаллонная аппаратура для сжиженного пропан бутана несколько проще. Процесс заправки машин на газонаполнительных станциях несложен и очень похож на заправку бензином.

По своим свойствам сжиженный пропан-бутан почти не отличается от сжатого природного газа. То же высокое октановое число, те же неплохие экологические и эксплуатационные показатели. Есть у сжиженного пропан бутана и преимущество перед метаном – 225 литров этого горючего хватает на пробег около 500 километров, а метана, помещающегося в восьми баллонах – на вдвое меньший. На сжиженном газе работает вдвое меньше машин, чем на сжатом и вот почему. Пропан бутана получают в 20…25 раз меньше, чем добывают природного газа.

 

Источники информации:

Лаврус В.С. Источники энергии. К.: НиТ, 1997.

Дата публикации:

27 августа 1999 года

Какой бензин лучше — гоночный АИ-102 или обычный АИ-98? — журнал За рулем

Сравниваем два бензина АИ-102 с обычным АИ-98. Что дает высокое октановое число? И кому оно полезно?

01

Еще недавно самые динамичные отечественные машины с ладьей на решетке радиатора требовали 93‑й бензин. Нынче самый востребованный — 95‑й. Но многие модели, особенно с наддувом, просят уже 98‑й. Тенденция простая: чем круче мотор, тем больший октан ему подавай.

А ведь в природе есть и более серьезные бензины — с октановым числом 102, 106 и даже 110! Их на АЗС не купишь — только в специализированных фирмах. Жутко дорого, но вдруг машина полетит?

Итак, вопрос: что дает высокое октановое число? И дает ли хоть что-то? И кому оно полезно?

БЕНЗИНОВОЕ БОРОДИНО

Выбор 102‑х бензинов в России небольшой. Но наша задача не сравнительная, а аналитическая. Мы хотим понять, откуда берется эффект и насколько он значим. А для этого вполне хватит двух сортов спортивных бензинов.

02

Мы раздобыли российский бензин ТОТЕК Торнадо С‑102 и французский ELF LM S АИ‑102. Такое вот мини-Бородино: наш против «француза». А в качестве эталона берем заведомо качественный бензин АИ‑98‑К5.

Материалы по теме

Результаты анализа физико-химических показателей образцов топлива мы свели в таблицу. Отметим, что у обоих спортивных бензинов октановое число по исследовательскому методу (ОЧИ) чуть меньше, чем заявленное в названии «102», — примерно 101,6–101,8. На это обращают внимание и разработчики — мол, это сделано специально, чтобы ни в коем случае не выйти за предельное значение ОЧИ, определенное правилами FIA. Аналогичная ситуация с октановым числом по моторному методу (ОЧМ) — чуть недотягивает до нормированных 90 единиц.

Кроме того, в 102‑х бензинах выше содержание связанного кислорода, хотя и в меру: в бензине ТОТЕК Торнадо его нашлось 2,9%, в бензине ELF — 2,6%. Углеводородный анализ показал, что ароматических углеводородов в ТОТЕКе больше — это определяет его более высокую теплотворность. А в бензине ELF обнаружились следы азотсодержащих соединений, но в разрешенном количестве.

В общем, мы убедились, что оба бензина вполне соответствуют требованиям FIA к спортивным бензинам. А заодно выяснили, что им соответствует и обычный 98‑й.

table-01

Так зависит давление в цилиндре от изменения угла опережения зажигания при одинаковой частоте вращения коленчатого вала и одном и том же положении дроссельной заслонки. Чем раньше поджигаем топливо, тем выше максимальное давление в цилиндре — ведь большая часть сгорания происходит на ходе сжатия. При слишком раннем зажигании появляется детонация. Обратите внимание на мощность при разных углах опережения зажигания по коленвалу (УОЗ ПКВ): мотору не нравятся ни слишком ранние, ни слишком поздние — нужна оптимальная регулировка, при которой мощность будет максимальной, а расход топлива минимальным.

Так зависит давление в цилиндре от изменения угла опережения зажигания при одинаковой частоте вращения коленчатого вала и одном и том же положении дроссельной заслонки. Чем раньше поджигаем топливо, тем выше максимальное давление в цилиндре — ведь большая часть сгорания происходит на ходе сжатия. При слишком раннем зажигании появляется детонация. Обратите внимание на мощность при разных углах опережения зажигания по коленвалу (УОЗ ПКВ): мотору не нравятся ни слишком ранние, ни слишком поздние — нужна оптимальная регулировка, при которой мощность будет максимальной, а расход топлива минимальным.

СТЕНДОВЫЕ МОТОРНЫЕ ИСПЫТАНИЯ

Основных вопросов два. Что получится, если использовать 102‑й в двигателях, изначально ориентированных на бензин с октановым числом 95–98? И как отреагируют заряженные версии этих моторов?

Для первого «заезда» на моторный стенд был установлен обычный вазовский шестнадцатиклапанник ВАЗ‑21126 со штатной системой управления. При замерах нас в первую очередь интересовало изменение мощности двигателя и расхода топлива.

Одна из известных страшилок, до сих пор бытующая в народе, гласит, что при использовании слишком высокооктанового топлива можно спалить клапаны. А причиной этого является повышенная температура отработавших газов — из-за якобы более медленного горения топлива с увеличенной детонационной стойкостью. Что же, проконтролируем и температуру.

table-02

Метан или пропан. Статьи компании «ГБО » Арсика «»

Химия углеводородов.

Очень часто на автомобильных форумах когда говорят о ГБО, то упоминают о чистоте топлива, высоком октановом числе, летучести газа, огромном давлении. В умах людей далеких от газовой темы все перепутано, и часто рассказывают о газе люди оооочень далекие от этого. Я попробую разобраться в этом вопросе.
Бензин — прозрачная жидкость, состоящая из смеси предельных углеводородов (С5 — С9). Получают главным образом перегонкой или крекингом нефти. Применяется как топливо для карбюраторных авто- и авиадвигателей, а также как экстрагент и растворитель для жиров, смол, каучуков. Легко воспламеняется. Пары бензина с воздухом образуют взрывоопасную смесь.
Бутан (C4h20) — органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутанаCH(Ch4)3. Название происходит от корня «бут-» (английское название масляной кислоты — butyric acid) и суффикса «-ан» (принадлежность к алканам). Ядовит, вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата.
Пропан, C3H8 — органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Ядовит.

Метан — простейший углеводород, бесцветный газ без запаха, химическая формула — Ch5. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляютодоранты со специфическим «запахом газа». Сам по себе метан не токсичен и не опасен для здоровья человека. Обогащение одорантами делается для того, чтобы человек вовремя заметил утечку газа. На промышленных производствах эту роль выполняют датчики и во многих случаях метан для лабораторий и промышленных производств остается без запаха.
Взрывоопасен при концентрации в воздухе от 5 % до 15 %. Самая взрывоопасная концентрация 9,5 %.

Что такое С5-С9, это количество атомов углерода в молекуле углеводорода. Вообще углеводороды (даже из названия видно) состоят из атомов углерода С и атомов водорода Н. Углерод может привезать к себе 4 других атома. Если в углеводороде 1 атом углерода то формула будет СН4 (метан).

Если 3 атома углерода то формула С3Н8 (пропан).

Если в молекуле от 5 до 9 атомов углерода то получается углеводороды из смеси которых и состоит бензин. Как видите бензин мало чем отличается от пропано-бутановой смеси. Бензин — это смесь более тяжелых углеводородов, поэтому скорость его испарения меньше чем у пропана и тем более метана. Только поэтому пропан или метан это газ, а бензин жидкость. В остальном они обладают практически одинаковыми свойствами.

Бензин, пропан, метан — как автомобильное топливо.

На заре автомобиле-строения нефтепереработка еще не достигла тех вершин, что мы наблюдаем сегодня. И на чем будут ездить автомобили еще было не совсем ясно, приведу ряд интересных фактов:

— Рудольф Дизель разработав свой двигатель, планировал, что он будет работать на угольной пыли.

— До середины 20 века автомобили работающие на дереве (двс работающие на древесном газе получаемом при нагреве древесины) были не редкостью.

Сейчас же в связи с массовым использованием бензина, в умах автомобилистов твердо сидят стереотипы. Бензин безопасен, газ опасен, газ взрывается, газом сложно заправиться, двс не предназначен для работы на газе и тому подобное. Выше я уже писал — пропано-бутановая смесь очень близка к бензинам, и обладают они теми же свойствами.

Они горят, но в отличии от бензина газ не липнет к поверхности — поэтому он безопасней. Бензин «безопаснее» только потому что вы привыкли к нему, и этим он опасен! Он как враг который втерся в доверие и может воткнуть в спину нож. А газ всегда держит владельца в режиме бдительности, ага запахло… что-то не так!

Они взрываются, но чтобы достичь концентрации для взрыва должно очень не повезти. И 99,9% взрыва ГБО это не взрыв газа, а пучение баллона изза не соблюдений правил безопасности (удаление ограничителя заправки).

Самая главная опасность ГБО это кривые руки ремонтников. Если все сделано хорошо то бояться не чего.

Автомобильное газовое топливо делиться на два вида:

— Сжатый газ метан (он же природный газ, CNG — Compressed natural gas) — его получают на АГНКС, к станции по сжатию подходит обычный газопровод. Компрессионная установка сжимает газ до 200 атмосфер и заливает в газовые баллоны автомобиля. В связи с огромным давлением до недавнего времени этим газом пользовались тяжелые грузовики, и это не удивительно. Если рассматреть метановые баллоны советского производства то будет видно, что в огромный баллон объемом 50 л. умещается всего 10 кубов природного газа, а куб это эквивалент 1 л. бензина. С появлением современных композитных баллонов ситуация немного улучшилась, но все равно этот сегмент топлива очень слабо развит. К примеру на территории СНГ не многим более 400 заправок данного типа.

— Сжиженный газ пропан-бутан (LPG- Liquefied petroleum gas) — его получают из попутного нефтяного газа и транспортируют в баллонах до места продажи. Гораздо более распространенное топливо, давление пропано-бутановой смеси меньше 10 атмосфер, что позволяет использовать для его хранения емкости гораздо легче и мобильней. Балон длинной 87 см и диаметром 31 см вмещает 60 литров топлива, что примерно эквивалентно 60 литрам бензина.

Сжиженный нефтяной газ (СНГ) по физико-химическим свойствам является высококачественным полноценным топливом для автомобильных двигателей. основные компоненты СНГ — пропан и бутан, представляющий собой побочные продукты добычи или переработки нефти на газо-бензинных заводах.

Газ хорошо смешивается с воздухом для образования однородной горючей смеси, обеспечивает высокую теплоту сгорания, не детонирует при сгорании. В газе минимально содержание веществ, способствующих нагарообразованию загрязняющих систему питания, а также вызывающих коррозию деталей. При сгорании газовой горючей смеси вредных веществ выбрасываемых в атмосферу образовывается минимальное количество.

В состав СНГ входят преимущественно пропановые и бутановые фракции, а также этан, этилен бутилен пентаны. Суммарное их количество по отношению к основной фракции газа (пропана и бутана) не превышает 5-6%.

Компоненты СНГ позволяют формировать моторные свойства газового топлива.
При перемешивании пропана может быть обеспечено оптимальное давление насыщенных паров в газовой смеси, что особенно важно для эксплуатации газобаллонных автомобилей в различных климатических условиях и в разное время года. Поэтому, пропан является желательных компонентом СНГ.

Бутан относится к числу обладающих высокой теплотой сгорания и легко сжигаемых компонентов СНГ. Однако из-за низкого давления насыщенных паров бутан в нашей стране в чистом виде в качестве моторного топлива не применяют. Опыт эксплуатации газобаллонных автомобилей показал, что соотношение в СНГ пропана к бутану зимой должен быть 70-75% выше, чем в летнее время.

Сжиженный нефтяной газ не имеет цвета и запаха, поэтому для обеспечения безопасности при его использовании на автомобилях ему придают особый запах — одорируют.

Мифы о газе.

1. Газ сгорая дает значительно меньше вредных веществ чем бензин, тут нужно выяснить какой бензин и газ сравнивается. Хороший бензин как и хороший газ в идеале сгорает в воду и углекислый газ. Но не идеальные условия накладывают свои коррективы. Бензин может содержать тетраэтилсвинец, бензол, толуол. Сгорая такой бензин даст выхлоп хуже чем любой газ. Но газ трудно подсжечь, и порой (при плохих свечах, или плохой погоде 🙂 ) могут быть пропуски зажигания результатом которых будет повышение СН (не сгоревших углеводородов) в выхлопе, или при плохой настройке повыситься СО (угарный газ).

2. Газ горит медленнее и этим он меньше наносит вреда поршневой группе — все бы хорошо, но как бы клапана раньше не сгорели от медленного горения. .

3. Газ не оставляет нагара на стенках цилиндров — к сожалению оставляет. И в интернете есть фотографии ужасного нагара, правда нет уверенности что это изза газа.

Итоги.

Не смотря на развитие оборудования для сжатого газа, пропано-бутановые системы все еще остаются неоспаримыми лидерами в сфере газового топлива. Ограниченность распространения АГНКС делает возможным использование метана лишь в черте города.

Бензин — Gasoline — qaz.wiki

Прозрачная жидкость нефтяного происхождения, которая используется в основном в качестве топлива.

«Бензин» перенаправляется сюда. Для использования в других целях, см Бензин (значения) .

Бензин ( æ с ə л я н / ), или бензин ( ɛ т г ə л / ) (см этимологии для обозначения различий) является явным петролейным -derived горючей жидкости , которая используется главным образом в качестве топлива в большинстве двигателей внутреннего сгорания с искровым зажиганием . Он состоит в основном из органических соединений, полученных фракционной перегонкой нефти, с добавлением различных добавки . В среднем из барреля сырой нефти объемом 160 литров (42 галлона США) может быть получено около 72 литров (19 галлонов США) бензина после переработки на нефтеперерабатывающем заводе , в зависимости от анализа сырой нефти и от того, что еще очищается. продукты также добываются. Характеристика конкретной бензиновой смеси по сопротивлению преждевременному воспламенению (которое вызывает детонацию и снижает эффективность поршневых двигателей ) измеряется ее октановым числом , которое производится в нескольких марках. Когда-то широко использовавшийся для повышения октанового числа, тетраэтилсвинец и другие соединения свинца больше не используются в большинстве областей (они все еще используются в авиации и автогонках). В бензин часто добавляют другие химические вещества, чтобы улучшить химическую стабильность и рабочие характеристики, снизить коррозионную активность и обеспечить очистку топливной системы. Бензин может содержать кислородсодержащие химические вещества, такие как этанол , МТБЭ или ЭТБЭ, для улучшения сгорания.

Бензин может попадать в окружающую среду несгоревшим, как в жидком, так и в парообразном виде, в результате утечки и обращения во время производства, транспортировки и доставки (например, из резервуаров для хранения, в результате разливов и т. Д.). В качестве примера усилий по контролю такой утечки, многие подземные резервуары-хранилища должны иметь обширные меры для обнаружения и предотвращения таких утечек. Бензин содержит бензол и другие известные канцерогены .

Этимология

«Бензин» — это английское слово, обозначающее топливо для автомобилей . Оксфордский словарь английского языка датирует свое первое зарегистрированное использование в 1863 году, когда она была прописана «газолин». Термин «бензин» был впервые использован в Северной Америке в 1864 году. Это слово является производным от слова «газ» и химических суффиксов «-ol» и «-ine» или «-ene».

Однако на этот термин также могло повлиять товарный знак «Cazeline» или «Gazeline». 27 ноября 1862 года британский издатель, торговец кофе и общественный деятель Джон Касселл разместил в лондонской Times объявление :

Запатентованное масло Cazeline Oil, безопасное, экономичное и блестящее… обладает всеми необходимыми качествами, которые так давно были необходимы для создания мощного искусственного света.

Это самое раннее обнаруженное слово. Касселл обнаружил, что владелец магазина в Дублине по имени Сэмюэл Бойд продавал поддельный казелин и написал ему, чтобы попросить его прекратить. Бойд не ответил и заменил каждую букву «C» на «G», таким образом получив слово «газелина».

В большинстве стран Содружества этот продукт называется «бензин», а не «бензин». «Бензин» впервые был использован примерно в 1870 году, как название очищенного нефтепродукта, продаваемого британской оптовой компанией Carless, Capel & Leonard , которая продавала его как растворитель . Когда позже этот продукт нашел новое применение в качестве моторного топлива, Фредерик Симмс , сотрудник Готтлиба Даймлера , предложил Carless зарегистрировать товарный знак «бензин», но к тому времени это слово уже было широко употреблено, возможно, навеянным Французский петрол , и регистрация не разрешилась. Компания Carless зарегистрировала несколько альтернативных названий продукта, но, тем не менее, термин «бензин» стал общим для топлива в Британском Содружестве.

Британские нефтепереработчики первоначально использовали «моторный спирт» как общее название автомобильного топлива и « авиационный бензин » для авиационного бензина . Когда Carless было отказано в использовании товарного знака «бензин» в 1930-х годах, его конкуренты перешли на более популярное название «бензин». Однако «моторный дух» уже вошел в законы и постановления, поэтому этот термин по-прежнему используется в качестве официального названия бензина. Этот термин наиболее широко используется в Нигерии, где крупнейшие нефтяные компании называют свой продукт «автомобильный спирт премиум-класса». Хотя слово «бензин» проникло в нигерийский английский язык, «моторный дух премиум-класса» остается официальным названием, которое используется в научных публикациях, правительственных отчетах и ​​газетах.

Слово « бензин» вместо « бензин» используется нечасто за пределами Северной Америки, хотя « бензин» используется в испанском и португальском языках, особенно с учетом обычного сокращения бензина до газа , поскольку в качестве автомобильного топлива также используются различные формы газообразных продуктов, например сжатый природный газ (CNG) , сжиженный природный газ (LNG) и сжиженный нефтяной газ (LPG) .

Во многих языках название продукта происходит от бензола , такие как Benzin на персидском ( фарси : بنزین), турецком и немецком, BENZINA по — итальянски, или bensin в индонезийской; но в Аргентине, Уругвае и Парагвае разговорное название нафта происходит от названия химической нафты .

История

Первые двигатели внутреннего сгорания, подходящие для использования на транспорте, так называемые двигатели Отто , были разработаны в Германии в последней четверти XIX века. Топливом для этих первых двигателей был относительно летучий углеводород, полученный из угольного газа . Благодаря температуре кипения около 85 ° C (185 ° F) ( октановое число кипит примерно на 40 ° C выше), он хорошо подходил для ранних карбюраторов (испарителей). Разработка карбюратора с распылительной форсункой позволила использовать менее летучие виды топлива. Дальнейшие улучшения эффективности двигателя были предприняты при более высоких степенях сжатия , но первые попытки были заблокированы преждевременным взрывом топлива, известным как детонация .

В 1891 году процесс крекинга Шухова стал первым в мире коммерческим методом расщепления более тяжелых углеводородов в сырой нефти с целью увеличения процента более легких продуктов по сравнению с простой перегонкой.

1903-1914 гг.

Развитие бензина последовало за эволюцией нефти как основного источника энергии в индустриальном мире. До Первой мировой войны Великобритания была крупнейшей индустриальной державой мира и зависела от своего военно-морского флота в защите доставки сырья из своих колоний. Германия также переживала индустриализацию и, как и Британия, испытывала недостаток во многих природных ресурсах, которые нужно было отправлять в страну происхождения. К 1890-м годам Германия начала проводить политику глобального признания и начала строить военно-морской флот, чтобы конкурировать с британским. Уголь был топливом, питавшим их флот. Хотя и Великобритания, и Германия имели природные запасы угля, новые разработки в области нефти в качестве топлива для кораблей изменили ситуацию. Суда, работающие на угле, были тактической слабостью, потому что процесс погрузки угля был чрезвычайно медленным и грязным и оставил корабль полностью уязвимым для нападения, а ненадежные поставки угля в международные порты делали дальние рейсы непрактичными. Преимущества нефтяной нефти вскоре обнаружили, что военно-морские силы мира переходят на нефть, но у Британии и Германии было очень мало внутренних запасов нефти. Британия в конечном итоге решила свою военно-морскую нефтяную зависимость, получив нефть от Royal Dutch Shell и Anglo-Persian Oil Company, и это определило, откуда и какого качества будет поступать ее бензин.

На раннем этапе развития бензиновых двигателей самолеты были вынуждены использовать автомобильный бензин, поскольку авиационного бензина еще не существовало. Эти первые виды топлива назывались «прямогонными» бензинами и представляли собой побочные продукты перегонки одной сырой нефти для производства керосина , который был основным продуктом для сжигания в керосиновых лампах . Производство бензина не превосходило производство керосина до 1916 года. Первые прямогонные бензины были результатом перегонки восточной сырой нефти, и не было смешивания дистиллятов из разных видов нефти. Состав этих ранних видов топлива был неизвестен, а качество сильно варьировалось, поскольку сырая нефть из разных нефтяных месторождений появлялась в разных смесях углеводородов в разных соотношениях. Эффекты двигателя, вызванные аномальным сгоранием ( детонация двигателя и преждевременное зажигание ) из-за некачественного топлива, еще не были идентифицированы, и в результате не было никакой оценки бензина с точки зрения его устойчивости к аномальному сгоранию. Общая спецификация, по которой измерялись первые бензины, заключалась в удельном весе по шкале Боме, а позже — в летучести (тенденции к испарению), определяемой в терминах точек кипения, которые стали основным приоритетом для производителей бензина. Эти ранние восточные нефтяные бензины имели относительно высокие результаты испытаний по Боме (от 65 до 80 градусов Боме) и назывались бензинами Пенсильвании «High-Test» или просто «High-Test». Они часто используются в авиационных двигателях.

К 1910 году увеличение производства автомобилей и, как следствие, увеличение потребления бензина привело к увеличению спроса на бензин. Кроме того, растущая электрификация освещения привела к падению спроса на керосин, создав проблемы с поставками. Оказалось, что растущая нефтяная промышленность окажется в ловушке чрезмерного производства керосина и недостаточно производимого бензина, поскольку простая дистилляция не может изменить соотношение двух продуктов из любой данной сырой нефти. Решение появилось в 1911 году, когда разработка процесса Бёртона позволила термический крекинг сырой нефти, что увеличило процентный выход бензина из более тяжелых углеводородов. Это сочеталось с расширением зарубежных рынков для экспорта излишков керосина, в котором внутренние рынки больше не нуждались. Считалось, что эти новые термически «крекированные» бензины не имеют вредных воздействий и будут добавлены к прямогонным бензинам. Также существовала практика смешивания тяжелых и легких дистиллятов для достижения желаемых показателей Боме, и все вместе они назывались «смешанными» бензинами.

Постепенно волатильность стала более предпочтительной по сравнению с тестом Бауме, хотя оба варианта будут по-прежнему использоваться в комбинации для определения бензина. Еще в июне 1917 года Standard Oil (крупнейший переработчик сырой нефти в Соединенных Штатах в то время) заявила, что наиболее важным свойством бензина является его летучесть. Подсчитано, что номинальный эквивалент этих прямогонных бензинов варьировался от 40 до 60 октановым числом, а «High-Test», иногда называемый «боевым качеством», вероятно, имел в среднем октановое число от 50 до 65.

Первая Мировая Война

До вступления Америки в Первую мировую войну европейские союзники использовали топливо, полученное из сырой нефти с Борнео, Явы и Суматры, что обеспечивало удовлетворительные характеристики их военных самолетов. Когда Соединенные Штаты вступили в войну в апреле 1917 года, США стали основным поставщиком авиационного бензина для союзников, и было отмечено снижение характеристик двигателей. Вскоре выяснилось, что автомобильные топлива непригодны для авиации, и после потери ряда боевых самолетов внимание обратилось на качество используемых бензинов. Более поздние летные испытания, проведенные в 1937 году, показали, что снижение октанового числа на 13 пунктов (со 100 до 87) снизило характеристики двигателя на 20 процентов и увеличило взлетную дистанцию ​​на 45 процентов. Если произойдет ненормальное сгорание, двигатель может потерять мощность, достаточную для того, чтобы взлететь было невозможно, и разбег при взлете стал угрозой для пилота и самолета.

2 августа 1917 года Горное управление Соединенных Штатов организовало исследование топлива для самолетов в сотрудничестве с авиационным отделом Корпуса связи армии США, и общее обследование пришло к выводу, что не существует надежных данных о надлежащем топливе для самолетов. В результате начались летные испытания на месторождениях Лэнгли, Маккука и Райта, чтобы определить, как разные бензины работают в разных условиях. Эти испытания показали, что на некоторых самолетах автомобильные бензины работали так же, как «High-Test», но на других типах приводили к горячему запуску двигателей. Также было обнаружено, что бензины из ароматической и нафтеновой сырой нефти из Калифорнии, Южного Техаса и Венесуэлы приводили к плавной работе двигателей. Эти испытания привели к появлению первых государственных спецификаций на автомобильные бензины (авиационные бензины использовали те же спецификации, что и автомобильные бензины) в конце 1917 года.

США, 1918–1929 гг.

Конструкторы двигателей знали, что в соответствии с циклом Отто мощность и КПД увеличиваются с увеличением степени сжатия, но опыт с ранними бензинами во время Первой мировой войны показал, что более высокие степени сжатия увеличивают риск ненормального сгорания, обеспечивая более низкую мощность, более низкий КПД, работу в горячем состоянии. двигатели и потенциально серьезное повреждение двигателя. Чтобы компенсировать это плохое топливо, ранние двигатели использовали низкие степени сжатия, что требовало относительно больших тяжелых двигателей для обеспечения ограниченной мощности и эффективности. Братьев Райт первый бензиновый двигатель ‘используется коэффициент сжатия , как низко как 4,7-к-1, разработанный только 12 лошадиных сил (8,9 кВт) с 201 кубических дюймов (3290 CC) и весил 180 фунтов (82 кг). Это было серьезной проблемой для авиаконструкторов, и потребности авиационной промышленности вызвали поиск топлива, которое можно было бы использовать в двигателях с более высокой степенью сжатия.

С 1917 по 1919 год количество утилизированного бензина термического крекинга почти удвоилось. Также значительно увеличилось использование природного бензина . В течение этого периода многие штаты США установили спецификации для автомобильного бензина, но ни один из них не согласился и не был удовлетворительным с той или иной точки зрения. Более крупные нефтеперерабатывающие предприятия начали указывать процентное содержание ненасыщенных материалов (продукты термического крекинга вызывали смолистость как при использовании, так и при хранении, а ненасыщенные углеводороды более химически активны и имеют тенденцию соединяться с примесями, что приводит к смолистому покрытию). В 1922 году правительство США опубликовало первые спецификации для авиационных бензинов (две марки были обозначены как «боевой» и «отечественный» и определялись температурой кипения, цветом, содержанием серы и тестом на образование смол) вместе с одной маркой «моторный». для автомобилей. Испытание на смолу по существу исключило использование бензина термического крекинга в авиации, и, таким образом, авиационные бензины вернулись к фракционированию прямогонной нафты или смешиванию прямогонной и сильно обработанной нафты термического крекинга. Такое положение сохранялось до 1929 года.

Автомобильная промышленность с тревогой отреагировала на рост объемов бензина термического крекинга. При термическом крекинге образуется большое количество как моно-, так и диолефинов (ненасыщенных углеводородов), что увеличивает риск смолообразования. Кроме того, летучесть снижалась до такой степени, что топливо не испарялось и прилипало к свечам зажигания и загрязняло их, создавая затрудненный запуск и резкую работу зимой и прилипание к стенкам цилиндров, минуя поршни и кольца и попадая в масло картера. В одном журнале говорилось: «… на многоцилиндровом двигателе дорогостоящего автомобиля мы разбавляем масло в картере на 40 процентов за 200 миль пробега, так как анализ масла в масле — пан показывает «.

Будучи очень недовольны последующим снижением качества бензина в целом, производители автомобилей предложили ввести стандарты качества для поставщиков масла. Нефтяная промышленность, в свою очередь, обвинила автопроизводителей в том, что они не делают достаточно для улучшения экономичности транспортных средств, и спор стал известен в двух отраслях как «топливная проблема». Между отраслями росла враждебность, каждая из которых обвиняла другую в том, что она ничего не делает для решения проблем, и отношения ухудшались. Ситуация была разрешена только после того, как Американский институт нефти (API) инициировал конференцию по «Проблеме с топливом», а в 1920 году был создан Комитет по совместным исследованиям топлива (CFR) для наблюдения за совместными исследовательскими программами и решениями. Помимо представителей двух отраслей, Общество автомобильных инженеров (SAE) также сыграло важную роль, при этом Бюро стандартов США было выбрано в качестве беспристрастной исследовательской организации для проведения многих исследований. Изначально все программы касались волатильности и расхода топлива, легкости запуска, разжижения картерного масла и разгона.

Споры о свинцовом бензине, 1924–1925 гг.

С увеличением использования бензинов термического крекинга возникла повышенная озабоченность по поводу его воздействия на аномальное сгорание, что привело к исследованиям антидетонационных присадок. В конце 1910-х годов такие исследователи, как А. Х. Гибсон, Гарри Рикардо , Томас Миджли-младший и Томас Бойд, начали исследовать аномальное горение. Начиная с 1916 года Чарльз Ф. Кеттеринг начал исследовать добавки, основанные на двух направлениях: раствор с «высоким процентным содержанием» (где добавлялись большие количества этанола ) и раствор с «низким процентным содержанием» (где требовалось всего 2–4 грамма на галлон). . Раствор с «низким процентным содержанием» в конечном итоге привел к открытию тетраэтилсвинца (TEL) в декабре 1921 года, результат исследований Мидгли и Бойда. Это нововведение положило начало циклу повышения эффективности использования топлива, который совпал с крупномасштабным развитием нефтепереработки, чтобы производить больше продуктов с диапазоном кипения бензина. Этанол нельзя было запатентовать, но TEL — можно, поэтому Кеттеринг получил патент на TEL и начал продвигать его вместо других вариантов.

К тому времени опасность соединений, содержащих свинец, была хорошо известна, и Кеттеринга прямо предупредили Роберт Уилсон из Массачусетского технологического института, Рид Хант из Гарварда, Янделл Хендерсон из Йельского университета и Чарльз Краус из Потсдамского университета в Германии о его использовании. Краус много лет работал над тетраэтилсвинцом и назвал его «ползучим и злобным ядом», убившим члена его диссертационного комитета. 27 октября 1924 года в газетных статьях по всей стране говорилось о рабочих нефтеперерабатывающего завода Standard Oil недалеко от Элизабет , штат Нью-Джерси, которые производили TEL и страдали от отравления свинцом . К 30 октября число погибших достигло пяти. В ноябре Комиссия по труду Нью-Джерси закрыла нефтеперерабатывающий завод в Бэйуэй, и было начато расследование большим жюри, в результате которого к февралю 1925 года обвинения не предъявлены. Продажа свинцового бензина была запрещена в Нью-Йорке, Филадельфии и Нью-Джерси. General Motors , DuPont и Standard Oil, которые были партнерами в Ethyl Corporation , компании, созданной для производства TEL, начали утверждать, что не существует альтернативы этилированному бензину, которая сохраняла бы топливную эффективность и все же предотвращала бы детонацию двигателя. После того, как некорректные исследования определили, что бензин, обработанный TEL, не представляет проблемы для общественного здравоохранения, споры утихли.

США, 1930–1941 гг.

За пятилетний период до 1929 г. было проведено большое количество экспериментов по различным методам испытаний для определения устойчивости топлива к аномальному сгоранию. Оказалось, что детонация двигателя зависит от множества параметров, включая степень сжатия, опережение зажигания, температуру цилиндров, двигатели с воздушным или водяным охлаждением, форму камеры, температуру впуска, обедненную или богатую смесь и другие. Это привело к появлению сбивающего с толку множества тестовых движков, которые давали противоречивые результаты, а стандартной шкалы оценок не существовало. К 1929 году большинством производителей и пользователей авиационного бензина было признано, что в правительственные спецификации должны быть включены какие-то антидетонационные характеристики. В 1929 году была принята шкала октанового числа , а в 1930 году были установлены первые октановые спецификации для авиационного топлива. В том же году ВВС США в результате проведенных исследований определили топливо с октановым числом 87 для своих самолетов.

В течение этого периода исследования показали, что углеводородная структура чрезвычайно важна для антидетонационных свойств топлива. Прямая цепь парафины в диапазоне кипения бензина имели низкие антидетонационные свойства в то время как кольцевые молекулы , такие как ароматические углеводороды (пример может служить бензолом ) имели более высокое сопротивление к детонации. Это развитие привело к поиску процессов, которые позволили бы производить больше этих соединений из сырой нефти, чем достигается при прямой перегонке или термическом крекинге. Исследования, проведенные крупнейшими нефтеперерабатывающими предприятиями, привели к разработке процессов, включающих изомеризацию дешевого и большого количества бутана в изобутан и алкилирование для соединения изобутана и бутиленов с образованием изомеров октана, таких как « изооктан », который стал важным компонентом смешивания авиационного топлива. Чтобы еще больше усложнить ситуацию, по мере того, как характеристики двигателя увеличивались, увеличивалась и высота, на которой самолет мог достичь, что вызывало опасения по поводу замерзания топлива. Среднее снижение температуры составляет 3,6 ° F (2,0 ° C) на каждые 1000 футов (300 метров) увеличения высоты, а на высоте 40 000 футов (12 км) температура может приближаться к -70 ° F (-57 ° C). Присадки, такие как бензол, с температурой замерзания 42 ° F (6 ° C) замерзнут в бензине и закупорят топливопроводы. Замещенные ароматические углеводороды, такие как толуол , ксилол и кумол, в сочетании с ограниченным количеством бензола решили проблему.

К 1935 году существовало семь различных авиационных классов на основе октанового числа, два армейских класса, четыре военно-морских и три коммерческих сорта, включая введение 100-октанового авиационного бензина. К 1937 году армия установила 100-октановое число в качестве стандартного топлива для боевых самолетов, и, чтобы добавить путаницы, правительство теперь признало 14 различных марок в дополнение к 11 другим в зарубежных странах. В связи с тем, что некоторым компаниям требовалось хранить 14 классов авиационного топлива, ни одно из которых не подлежало обмену, это сказалось на нефтепереработчиках. Нефтеперерабатывающая промышленность не могла сконцентрироваться на процессах преобразования большой мощности для такого количества различных сортов, и необходимо было найти решение. К 1941 году, главным образом благодаря усилиям Совместного комитета по исследованиям топлива, количество марок авиационного топлива было сокращено до трех: с октановым числом 73, 91 и 100.

Разработка 100-октанового авиационного бензина в экономическом масштабе была частично связана с Джимми Дулиттлом, который стал менеджером по авиации в Shell Oil Company. Он убедил Shell инвестировать в перерабатывающие мощности для производства 100-октанового числа в масштабах, которые никому не нужны, поскольку не существовало самолетов, которые требовали бы топлива, которое никто не производил. Некоторые сослуживцы назвали бы его усилия «ошибкой Дулиттла на миллион долларов», но время покажет, что Дулиттл прав. До этого армия рассматривала 100-октановые испытания с использованием чистого октана, но цена за галлон 25 долларов не позволяла этого сделать. В 1929 году Stanavo Specification Board, Inc. была организована компаниями Standard Oil из Калифорнии, Индианы и Нью-Джерси для улучшения авиационного топлива и масел и к 1935 году выпустила на рынок свое первое топливо с октановым числом 100, Stanavo Ethyl Gasoline 100. Оно использовалось Армией, производителями двигателей и авиакомпаниями для испытаний, а также для воздушных гонок и рекордных полетов. К 1936 году испытания на Райт-Филд с использованием новых, более дешевых альтернатив чистому октановому числу доказали ценность топлива с октановым числом 100, и Shell и Standard Oil выиграли контракт на поставку контрольных количеств топлива для армии. К 1938 году цена упала до 17,5 цента за галлон, что всего на 2,5 цента больше, чем топливо с октановым числом 87. К концу Второй мировой войны цена упадет до 16 центов за галлон.

В 1937 году Юджин Гудри разработал процесс каталитического крекинга Houdry , в результате которого был получен высокооктановый базовый компонент бензина, который превосходил продукт термического крекинга, поскольку он не содержал высокой концентрации олефинов. В 1940 году в США действовало всего 14 единиц Houdry; к 1943 году это количество увеличилось до 77, либо по процессу Хаудри, либо по типу каталитического или жидкого катализатора Thermofor.

Поиск топлива с октановым числом выше 100 привел к расширению шкалы путем сравнения выходной мощности. Топливо марки 130 будет производить на 130 процентов больше мощности двигателя, чем на чистом изооктане. Во время Второй мировой войны топливам с октановым числом выше 100 были присвоены две категории: богатая и бедная смесь, и они были названы «числами производительности» (PN). 100-октановый авиационный бензин будет относиться к классу 130/100.

Вторая Мировая Война

Германия

Нефть и ее побочные продукты, особенно высокооктановый авиационный бензин, могут стать движущей силой того, как Германия вела войну. В результате уроков Первой мировой войны Германия накопила запасы нефти и бензина для своего блицкрига и аннексировала Австрию, добавив 18000 баррелей в день добычи нефти, но этого было недостаточно для поддержания запланированного завоевания Европы. Поскольку захваченные припасы и нефтяные месторождения были необходимы для подпитки кампании, немецкое верховное командование создало специальный отряд нефтяных специалистов, набранных из рядов отечественной нефтяной промышленности. Их отправили тушить нефтяные пожары и как можно скорее возобновить производство. Но захват нефтяных месторождений оставался препятствием на протяжении всей войны. Во время вторжения в Польшу оценки потребления бензина в Германии оказались сильно заниженными. Хайнц Гудериан и его танковые дивизии потребляли почти 1 галлон США на милю (2,4 л / км) бензина по пути в Вену . Когда они сражались на открытой местности, потребление бензина увеличилось почти вдвое. На второй день боя часть XIX корпуса была вынуждена остановиться, когда у нее закончился бензин. Одной из главных целей польского вторжения были их нефтяные месторождения, но Советы вторглись и захватили 70 процентов польской продукции, прежде чем немцы смогли добраться до них. Посредством германо-советского торгового соглашения (1940 г.) Сталин в расплывчатых условиях согласился поставить Германии дополнительную нефть, равную той, которая добывается на ныне оккупированных Советским Союзом польских месторождениях Дрогобыч и Борислав в обмен на каменный уголь и стальные трубы.

Даже после того, как нацисты завоевали огромные территории Европы, дефициту бензина это не помогло. До войны этот район никогда не был обеспечен нефтью. В 1938 году территория, которая станет оккупированной нацистами, будет производить 575 000 баррелей в день. В 1940 году общий объем производства под контролем Германии составил всего 234 550 баррелей (37 290 м 3 ) — дефицит на 59 процентов. К весне 1941 года и к истощению запасов немецкого бензина Адольф Гитлер увидел во вторжении в Россию с целью захвата польских нефтяных месторождений и российской нефти на Кавказе решение проблемы нехватки бензина в Германии. Уже в июле 1941 года, после начала операции «Барбаросса» 22 июня , некоторые эскадрильи люфтваффе были вынуждены свернуть наземные операции поддержки из-за нехватки авиационного бензина. 9 октября немецкий генерал-квартирмейстер подсчитал, что армейским машинам не хватало 24 000 баррелей (3 800 м 3 ) баррелей бензина.

Практически весь авиационный бензин в Германии производился на заводах по производству синтетического масла, которые гидрировали уголь и угольные смолы. Эти процессы были разработаны в 1930-х годах в целях достижения топливной независимости. В Германии в больших объемах производились авиационные бензины двух марок: B-4, или «синий», и «C-3», или «зеленый», на долю которых приходилось около двух третей всего производства. B-4 был эквивалентен с октановым числом 89, а C-3 был примерно равен 100-октановому числу в США, хотя бедная смесь была оценена около 95-го октана и была хуже, чем в США. Максимальный выход, достигнутый в 1943 году, достиг 52 200 баррелей за день до этого. Союзники решили атаковать заводы по производству синтетического топлива. Благодаря захваченным самолетам противника и анализу обнаруженного в них бензина, как союзники, так и державы оси знали о качестве производимого авиационного бензина, и это побудило к гонке октанового числа для достижения преимущества в летных характеристиках самолетов. Позже, во время войны, сорт C-3 был улучшен до уровня 150 США (рейтинг богатой смеси).

Япония

Япония, как и Германия, почти не имела внутренних поставок нефти и к концу 1930-х гг. Производила только 7% собственной нефти, а остальную часть импортировала — 80% из США. По мере роста японской агрессии в Китае ( инцидент с военно-воздушным судном Панай ) и до сведения американской общественности о бомбардировке японцами гражданских центров, особенно о бомбардировке Чунцина, общественное мнение начало поддерживать эмбарго США. Опрос Gallup в июне 1939 года показал, что 72 процента американской общественности поддерживают эмбарго на поставки военных материалов в Японию. Это усиление напряженности в отношениях между США и Японией привело к тому, что США ввели ограничения на экспорт, и в июле 1940 года США выпустили прокламацию, запрещающую экспорт авиационного бензина с октановым числом 87 или выше в Японию. Этот запрет не помешал японцам, поскольку их самолеты могли работать с топливом с октановым числом ниже 87, и при необходимости они могли добавить TEL для увеличения октанового числа. Как оказалось, Япония закупила на 550% больше авиационного бензина с октановым числом ниже 87 за пять месяцев после запрета на продажу в июле 1940 года бензина с более высоким октановым числом. Возможность полного запрета на поставку бензина из Америки вызвала трения в японском правительстве по поводу того, какие действия предпринять для увеличения поставок из Голландской Ост-Индии, и потребовала увеличения экспорта нефти от изгнанного голландского правительства после битвы за Нидерланды . Это действие побудило США перебросить свой Тихоокеанский флот из Южной Калифорнии в Перл-Харбор, чтобы укрепить британскую решимость остаться в Индокитае. С вторжением Японии во французский Индокитай в сентябре 1940 г. возникли большие опасения по поводу возможного вторжения Японии в Голландскую Индию для обеспечения своей нефти. После того, как США запретили весь экспорт стали и лома железа, на следующий день Япония подписала Тройственный пакт, и это заставило Вашингтон опасаться, что полное американское нефтяное эмбарго подтолкнет японцев к вторжению в голландскую Ост-Индию. 16 июня 1941 года Гарольд Икес, который был назначен координатором по нефти для национальной обороны, остановил поставку нефти из Филадельфии в Японию в связи с нехваткой нефти на восточном побережье из-за увеличения экспорта в страны союзников. Он также телеграммировал всем поставщикам нефти на восточном побережье, чтобы они не отправляли нефть в Японию без его разрешения. Президент Рузвельт отменил приказ Икеса, сказав Икесу, что «… у меня просто не хватает флота для обхода, и каждый маленький эпизод в Тихом океане означает меньше кораблей в Атлантике». 25 июля 1941 года США заморозили все японские финансовые активы, и лицензии потребуются для каждого использования замороженных средств, включая покупку нефти, которая могла бы производить авиационный бензин. 28 июля 1941 года Япония вторглась в Южный Индокитай.

Дебаты внутри правительства Японии по поводу ситуации с нефтью и бензином привели к вторжению в Голландскую Ост-Индию, но это означало бы войну с США, чей Тихоокеанский флот представлял угрозу для их фланга. Эта ситуация привела к решению атаковать флот США в Перл-Харборе, прежде чем продолжить вторжение в Голландскую Ост-Индию. 7 декабря 1941 года Япония напала на Перл-Харбор, а на следующий день Нидерланды объявили войну Японии, что положило начало голландской Ост-Индской кампании . Но японцы упустили прекрасную возможность в Перл-Харборе. «Во времена Перл-Харбора вся нефть для флота находилась в надводных танках», — сказал позже адмирал Честер Нимиц, ставший главнокомандующим Тихоокеанским флотом. « У нас было около 4 1 / 2   миллиона баррелей [720000 м 3 ] нефти там и все это было уязвимы для пуль калибра 0,50. Если бы японцы уничтожили нефть,» добавил он, «было бы продлили войну еще два года.»

Соединенные Штаты

В начале 1944 года Уильям Бойд, президент Американского института нефти и председатель Военного совета нефтяной промышленности, сказал: «Союзники, возможно, плыли к победе на нефтяной волне в Первой мировой войне, но в этой бесконечно великой Второй мировой войне, мы летим к победе на нефтяных крыльях ». В декабре 1941 года в Соединенных Штатах было 385 000 нефтяных скважин, добывающих 1,4 миллиарда баррелей нефти в год, а мощность производства 100-октанового авиационного бензина составляла 40 000 баррелей в день. К 1944 году США производили более 1,5 миллиарда баррелей в год (67 процентов мировой добычи), а в нефтяной промышленности было построено 122 новых завода по производству 100-октанового авиационного бензина с производительностью более 400 000 баррелей в день, что на порядок больше. более чем в десять раз. Было подсчитано, что США производили достаточно 100-октанового авиационного бензина, чтобы позволить сбрасывать 20 000 коротких тонн (18 000 метрических тонн) бомб на врага каждый день в году. Учет потребления бензина армией до июня 1943 года был нескоординированным, так как каждая служба снабжения армии закупала собственные нефтепродукты, а централизованной системы контроля и учета не существов

типов топливных молекул — метан, этан, гексан, октан

Что такое топливо?

Топливо — это любой материал, который может реагировать с кислородом для высвобождения энергии из потенциальной формы в пригодную для использования форму. Там есть много разных видов топлива. К твердому топливу относятся уголь, древесина и торф. Все эти виды топлива горючие, они создают огонь и тепло. Уголь — это ископаемое топливо, добываемое из земли при добыче полезных ископаемых.Это легко горючий черная или буровато-черная порода. Он состоит в основном из углерода и углеводородов, а также из различные другие элементы, включая серу. К нетвердым видам топлива относятся нефть и газ (оба вида топлива имеют разные разновидности).

Масло — это общий термин для несмешиваемых жидкостей. с водой. Название происходит от латинского oleum для оливкового масла. В Соединенных Штатах, нефть называется преимущественно нефтью.Например, «нехватка нефти» будет означать неадекватное снабжение нефтью, а не кулинарным или минеральным маслом. Нефть часто используется в политике и СМИ, когда речь идет о зависимости. на «иностранную нефть» или нефть, которая импортируется из других стран.

сырая нефть состоит из смеси нефтяных жидкостей и газов (вместе с попутными примеси), откачиваемые из грунта через нефтяные скважины.

Нефть (от латинского petrus – rock и oleum – oil) или минеральное масло — густая, темно-коричневая или зеленоватая легковоспламеняющаяся жидкость, которая в определенных точках существует в верхних слоях земной коры. Он состоит из сложной смеси различных углеводородов, в основном метанового ряда, но могут сильно различаться по внешнему виду, составу и свойствам. Его можно сократить до приставки petro-, например, от «petrodiesel».

Натуральный газ, который составляет около 80% метана, с различными пропорциями этана, пропана и бутана, и используется как топливо.

Топливо не обязательно горючее. Например, в ядерной реакции топливо расщепляется. Это по-прежнему обеспечивает полезный источник энергии, но не за счет сжигания. Также в звездах (и нашем Солнце) водород — топливо для ядерного синтеза. В организме большинства животных Источниками топлива являются углеводы, жир, белок, который снабжает энергией мышцы.

нефть | Энергия, продукты и факты

Нефть , сложная смесь углеводородов, встречающихся на Земле в жидкой, газообразной или твердой форме.Этот термин часто ограничивается жидкой формой, обычно называемой сырой нефтью, но, как технический термин, нефть также включает природный газ и вязкую или твердую форму, известную как битум, которая содержится в битуминозных песках. Жидкая и газовая фазы нефти составляют наиболее важное из основных ископаемых видов топлива.

Британская викторина

Нефть: факт или вымысел?

Сырая нефть обычно черная? Природный газ — это разновидность нефти? Увеличьте обороты своего ума и получите удовольствие от этой викторины по высокооктановому бензину.

Жидкие и газообразные углеводороды настолько тесно связаны по своей природе, что стало общепринятым сокращать выражение «нефть и природный газ» до «нефть», когда они относятся к обоим. Слово нефть (буквально «каменная нефть» от латинского petra , «порода» или «камень» и oleum , «нефть») впервые было использовано в 1556 году в трактате, опубликованном немецким минералогом Георгом Бауэром. , известный как Георгий Агрикола.

При сжигании всех видов ископаемого топлива (включая уголь и биомассу) в атмосферу выделяется большое количество диоксида углерода (CO 2 ).Молекулы CO 2 не позволяют большей части длинноволновой солнечной радиации, поглощенной поверхностью Земли, переизлучаться с поверхности и уходить в космос. CO 2 поглощает распространяющееся вверх инфракрасное излучение и отводит его часть вниз, в результате чего нижние слои атмосферы остаются более теплыми, чем они были бы в противном случае. Это явление усиливает естественный парниковый эффект Земли, вызывая то, что ученые называют антропогенным (вызванным деятельностью человека) глобальным потеплением.Имеются веские доказательства того, что более высокие концентрации CO 2 и других парниковых газов в значительной степени способствовали повышению средней приповерхностной температуры Земли с 1950 года.

История использования

Эксплуатация поверхностных водосливов

Небольшие поверхностные залежи нефти в виде природного газа и выходов нефти были известны с давних времен. Древние шумеры, ассирийцы и вавилоняне использовали сырую нефть, битум и асфальт («смолу»), собранные из крупных просачиваний в Туттуле (современный Хит) на Евфрате, для многих целей более 5000 лет назад.Жидкое масло впервые использовалось в качестве лекарства древними египтянами, предположительно, в качестве перевязочного материала, мази и слабительного средства. Ассирийцы использовали битум в качестве наказания, поливая им головы нарушителей закона.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Нефтепродукты ценились как оружие войны в древнем мире. Персы использовали зажигательные стрелы, обернутые пропитанными маслом волокнами при осаде Афин в 480 г. до н. Э. В начале нашей эры арабы и персы перегоняли сырую нефть для получения легковоспламеняющихся продуктов для военных целей.Вероятно, в результате арабского вторжения в Испанию промышленное искусство перегонки в осветительные приборы стало доступным в Западной Европе к XII веку.

Несколько столетий спустя испанские исследователи обнаружили выходы нефти на нынешних Кубе, в Мексике, Боливии и Перу. Масло просачивалось в изобилии в Северной Америке, а также были отмечены первыми исследователями на территориях нынешних Нью-Йорка и Пенсильвании, где американские индейцы, как сообщалось, использовали масло в лечебных целях.

Добыча из подземных резервуаров

До начала 19 века освещение в Соединенных Штатах и ​​во многих других странах было мало улучшено по сравнению с тем, которое было известно во времена месопотамцев, греков и римлян.Греческие и римские лампы и источники света часто полагались на масла, производимые животными (такими как рыба и птицы) и растениями (такими как оливковое, кунжутное и ореховое). Древесина также была воспламенена, чтобы произвести освещение. Поскольку древесины в Месопотамии было мало, «каменный асфальт» (песчаник или известняк, пропитанный битумом или нефтяными остатками) добывался и смешивался с песком и волокнами для использования в качестве дополнения к строительным материалам. Потребность в лучшем освещении, сопровождающая растущее развитие городских центров, вызвала необходимость поиска новых источников нефти, тем более что китов, которые долгое время служили топливом для ламп, становилось все труднее и труднее найти.К середине 19 века керосин или каменноугольное масло, полученное из угля, было широко распространено как в Северной Америке, так и в Европе.

Промышленная революция вызвала постоянно растущий спрос на более дешевый и удобный источник смазочных материалов, а также на осветительное масло. Это также потребовало более эффективных источников энергии. Раньше энергия обеспечивалась мышцами человека и животных, а позже — сжиганием таких твердых видов топлива, как древесина, торф и уголь. Они были собраны со значительными усилиями и кропотливо транспортированы к месту, где был необходим источник энергии.С другой стороны, жидкая нефть была более легко транспортируемым источником энергии. Нефть была гораздо более концентрированной и гибкой формой топлива, чем что-либо ранее доступное.

Все готово для первой скважины, специально пробуренной для добычи нефти, проекта американского предпринимателя Эдвина Л. Дрейка на северо-западе Пенсильвании. Завершение скважины в августе 1859 года заложило основу для нефтяной промышленности и положило начало тесно связанной с этим современной индустриальной эпохе.В течение короткого времени недорогая нефть из подземных резервуаров перерабатывалась на уже существующих угольных нефтеперерабатывающих заводах, а к концу века нефтяные месторождения были обнаружены в 14 штатах от Нью-Йорка до Калифорнии и от Вайоминга до Техаса. В тот же период были открыты месторождения нефти в Европе и Восточной Азии.

Значение нефти в наше время

В начале 20-го века промышленная революция достигла такого уровня, что использование очищенного масла для осветительных приборов перестало иметь первостепенное значение.Нефтегазовая промышленность стала основным поставщиком энергии в значительной степени из-за появления двигателей внутреннего сгорания, особенно в автомобилях. Хотя нефть является основным сырьем для нефтехимии, ее первостепенное значение — как источник энергии, от которого зависит мировая экономика.

Значение нефти как мирового источника энергии трудно переоценить. Рост производства энергии в ХХ веке был беспрецедентным, и увеличение добычи нефти на сегодняшний день внесло основной вклад в этот рост.К 21 веку огромная и запутанная цепочка добавленной стоимости перемещала около 100 миллионов баррелей нефти в день от производителей к потребителям. Добыча и потребление нефти имеют жизненно важное значение для международных отношений и часто являются решающим фактором при определении внешней политики. Положение страны в этой системе зависит от ее производственных мощностей по отношению к потреблению. Владение нефтяными месторождениями иногда является определяющим фактором между богатой и бедной страной.Для любой страны наличие или отсутствие нефти имеет серьезные экономические последствия.

В масштабе времени в рамках предполагаемой истории человечества использование нефти в качестве основного источника энергии будет временным делом, которое продлится всего несколько столетий. Тем не менее, это будет делом огромной важности для мировой индустриализации.

Бензиновые улучшители октанового числа / оксигенаты — Справочник по химической экономике (CEH)

Оглавление

Краткое содержание 8

Резюме 10

Этанол 12

Производство 13

Потребление 14

Цена 17

Метилбутил третичный эфир (МТБЭ) 18

Вместимость 19

Основная статистика 21

Потребление 21

Цена 23

Метанол 23

Этилтрет-бутиловый эфир (ЭТБЭ) 26

Третичный амилметиловый эфир (ТАМЭ) 28

Другие оксигенаты 29

трет-бутиловый спирт (ТВА) 29

Разное 29

Введение 31

Производственные процессы 34

Метил-трет-бутиловый эфир (МТБЭ) 34

трет-бутиловый спирт (ТВА) 36

третичный -Амилметиловый эфир (ТАМЭ) 36

Этилтрет-бутиловый эфир (ЭТБЭ) 37

Свинец-алкил-антидетонационные смеси 38

Окружающая среда проблемы 40

США 40

Европа 40

Ближний Восток и Африка 45

Азия 45

Спрос и предложение по регионам 47

США 47

Производство автомобильного бензина и спрос на оксигенаты 47

Этанол 48

Производящие компании 48

Основная статистика 55

Потребление 56

Метил-трет-бутиловый эфир (МТБЭ) 61

Производящие компании 61

Основная статистика 63

Потребление 64

Цена 65

Третий 66

Торговля 66

-бутиловый эфир (ЭТБЭ) 66

Метанол 67

Третичный амилметиловый эфир (ТАМЭ) 68

трет-Бутиловый спирт (ТВА) 68

Диизопропиловый эфир (изопропиловый эфир, DIPE) 69

Прочие эфиры 69

Метилциклопентадиенил-трикарбонил марганца (ММТ) 69

Свинцово-алкильные антидетонационные смеси 70

Канада 70

Потребность в кислородсодержащих соединениях 70

Этанол 71

Производящие компании 72

Основные статистические данные 72

Потребление 73

МТБЭ 74

Метанол и ЭТБЭ 74

Мексика 74

Спрос на оксигенаты 74

Производители этанола 75

Компании, производящие этанол 75

76

Основная статистика 77

ETBE 77

TAME 78

Центральная и Южная Америка 78

Спрос на оксигенаты 78

Этанол 79

Производственные компании 79

Основная статистика 84

Потребление 85 88

Метил-трет-бутиловый эфир (МТБЭ) 89

Компании-производители 89

Важная статистика 89

Потребление 90

ETBE 91

Западная Европа 92

Спрос на автомобильный бензин и характеристики 92

Спрос на оксигенаты 94

Этанол

Производящие компании 95

Потребление 98900 05

Метил-трет-бутиловый эфир (МТБЭ) 99

Компании-производители 99

Важная статистика 100

Потребление 101

Цена 102

Этилтретбутиловый эфир (ЭТБЭ) 103

Производящие компании 103

104

Статистика компании

Потребление 105

Цена 106

Торговля 106

Третичный амилметиловый эфир (ТАМЭ) 106

третичный бутиловый спирт (ТВА) 108

Производящие компании 108

Потребление 108

Метанол 109

Производственные компании 109

Потребление 110

Свинцовые алкил-антидетонационные смеси 111

Центральная Европа 111

Потребность в оксигенатах 111

Этанол 112

Производственные компании 112

Производство 113

Потребление 114

Метиловый эфир (МТБЭ) 115

Производящие компании 115

Основная статистика 115

Потребление ция 116

ETBE 117

Метанол 118

Страны СНГ и Балтии 118

Потребность в кислородсодержащих соединениях 118

Этанол 119

Метил-трет-бутиловый эфир (МТБЭ) 120

Производственные компании 120

Статистика потребления 121 9000 122

ETBE 123

TAME 124

Метанол 124

Другие оксигенаты топлива 124

Ближний Восток 125

Потребность в кислородсодержащих соединениях 125

Этанол 125

Метил-трет-бутиловый эфир (MTBE) 127

Компании-производители

Важная статистика 127

Потребление 128

ETBE 130

TAME 130

Метанол 130

Африка 130

Потребность в кислородсодержащих соединениях 130

Этанол 131

Метил-третичный бутиловый эфир (MTBE) 133

Компании-производители

Важная статистика 133

ETBE 135

TAME 135

Metha nol 135

Прочие эфиры 135

Индийский субконтинент 135

Потребность в кислороде 136

Этанол 136

MTBE 142

ETBE и TAME 144

Метанол 144

Северо-Восточная Азия 144

Обзор Потребность в кислороде

144 Обзор

Этанол 145

Производящие компании 145

Производство 147

Потребление 147

Метил-трет-бутиловый эфир (МТБЭ) 149

Производственные мощности 149

Основные статистические данные 149

Производство 150

Потребление 151 151 ТАМЭ 152

Метанол 152

Китай 153

Этанол 153

Производство 153

Потребление 154

Метил-трет-бутиловый эфир (МТБЭ) 155

Производственные компании 155

Статистика ETAME 4

159

TBA 159

Метанол 160

Дж apan 161

Спрос на автомобильный бензин и его характеристики 161

Этанол 162

Метил-трет-бутиловый эфир (МТБЭ) 163

ETBE 164

Свинец-алкил-антидетонационные смеси 165

Южная Корея 166

Этанол 6

MTBE

ЭТБЭ и ТАМЭ 167

Метанол 167

Тайвань 167

Этанол 167

МТБЭ 167

ЭТБЭ и ТАМЭ 168

Метанол 168

Юго-Восточная Азия 168

Компании-производители оксигенатов

Основная статистика 171

Производство 172

Потребление 173

MTBE 174

Производственные компании 174

Основная статистика 175

Потребление 175

ETBE 176

ТАМЭ Метанол 176

Дополнительные ресурсы 176

Редакции 179

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *