Устройство шатуна
Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу. Шатун штампуется из стали.
Для повышения прочности шатуна его подвергают дробеструйной обработке.
Устройство шатуна:
1) верхней головки 1;
2) стержня 3;
3) нижней головки 4 (с крышкой 6).
В верхней головке запрессовывается бронзовая втулка 2 . Во втулке и верхней головке шатуна есть специальные отверстия для подвода масла к изнашиваемой поверхности поршневого пальца. А стержень шатуна выполнен в двутавровом сечении.
Нижняя головка шатуна разъемная. Съемная часть нижней головки шатуна называется крышкой шатуна. Крепится крышка к шатуну с помощью двух болтов с лысками (которые служат для того чтобы болты не проворачивались).
СОДЕРЖАНИЕ:
1. Запрессовка поршневых пальцев из шатуна
2. Выпрессовка поршневых пальцев из шатуна
3. Ремонт шатуна современного двигателя грузового автомобиля
4. Звуки неисправностей двигателя (стуки двигателя)
5. Признаки и причины неисправностей двигателя автомобиля
6. Как проводится диагностика двигателя автомобиля
Как устроен коленвал двигателя и для чего он нужен
О двигателях внутреннего сгорания давно всем все известно, а инженеры лишь усложняют механизмы различными электронными начинками. Людям их представляют как какие-то новые технологические открытия и технологический прогресс. Но существует деталь, которая никогда не заменит никакую другую в двигателе внутреннего сгорания это коленчатый вал. С момента создания двигателя внутреннего сгорания и существует коленчатый вал. Казалось бы, ну что о нем можно рассказать, но современной молодежи приходится постигать все изобретения человечества постепенно, на них и будет рассчитана представленная информация в статье в двух частях.№ | Пояснение |
---|---|
А | Противовесы |
1 | Шейка коренного подшипника |
2 | Смазочное отверстие шатунного подшипника |
3 | Смазочное отверстие коренного подшипника |
4 | Шатунная шейка |
Шатуны и коленчатый вал — Энциклопедия по машиностроению XXL
Примером осуществления конструктивной преемственности в производстве автомобильных и тракторных двигателей и аммиачных компрессоров может служить унификация шатунов и коленчатых валов указанных машин. [c.103]Конструкция центрального ползуна и шатуна показана на фиг. 97. Дополнительные задние салазки ЗС соединяются с главными передними салазками ПС жёсткой ребристой переходной частью, расположенной над шатуном и коленчатым валом. [c.572]
Произвести полную сборку узла ползуна, соединив его с шатуном и коленчатым валом [c.869]
Выкрашивание может быть и в результате усталостных напряжений, например выкрашивание баббитового слоя на вкладышах подшипников шатунов и коленчатого вала, на беговых дорожках колец шариковых подшипников, на профилях зубьев колес и т. п. [c.9]
Двигатель внутреннего сгорания можно рассматривать как средство преобразования шума в механическую энергию — это звучит весьма странно, но так оно и есть. А так как машин с к. п. д., равным 100%, не существует, то не удивительно, что наша шумовая машина выпускает некоторое количество звуковой энергии в окружающ,ее пространство. Вся работа в поршневом двигателе внутреннего сгорания осуществляется в камерах сгорания. Газы, расширяясь, давят на дно поршня, и работа давления через шатуны и коленчатый вал преобразуется в энергию вращения. Если для одного оборота вала измерить зависимость давления в камере сгорания обычного дизельного двигателя от времени и результаты измерений нанести на график, то получится кривая, изображенная на рис. 23, соответствующая двигателю, работающему с полной нагрузкой и постоянным числом оборотов 2000 об/мин. Важно, что эта кривая давления периодически повторяется значит, зависимость давления от времени можно разложить в ряд Фурье, то есть на сумму гармоник, подобно тому, как мы разлагали на гармоники звуки музыкальных инструментов (см. гл. 3), но только с более сложными зависимостями между ними. Результат анализа по методу Фурье давления в цилиндре и шума снаружи двигателя показан на рис. 24. Этот рисунок не дает фазовых зависимостей между составляющими, но они нас и не интересуют. [c.110]
Увеличение диаметра шатунных шеек нецелесообразно, так как хотя при этом крутильная и изгибная жесткости коленчатого вала повышаются, но одновременно увеличиваются и веса шатуна и коленчатого. вала, а также противовесов и в некоторых случаях картера. [c.224]
Поршень подвергается воздействию значительных механических (от действия газовых и инерционных сил) и термических нагрузок. Он должен надежно уплотнять камеру сгорания, препятствовать попаданию в нее излишнего количества масла и передавать действующие на него силы шатуну и коленчатому валу. [c.291]
Замена штампованных шатунов и коленчатых валов литыми. [c.522]
Индикаторная работа, совершаемая газами в цилиндрах, передается на фланец отбора мощности через поршень, шатун и коленчатый вал. Эта передача сопровождается механическими потерями вследствие трения поршней и колец о стенки цилиндров, трения в подшипниках кривошипно-шатунного механизма. Кроме того, часть индикаторной работы затрачивается на преодоление аэродинамических потерь, возникающих при вращении и колебании деталей, на приведение в действие механизма газораспределения, топливных, масляных, водяных и продувочных насосов и других вспомогательных механиз-. MOB двигателя. В четырехтактных двигателях часть индикаторной работы тратится также на удаление продуктов сгорания и заполнение цилиндра свежим зарядом. [c.33]
Поршень, являющийся одной из самых напряженных деталей двигателя, в особенности двухтактного, выполняет следующие функции воспринимает давление газов и передает его на поршневой палец, шатун и коленчатый вал [c.40]
Поршень, шатун и коленчатый вал составляют подвижную часть кривошипно-шатунного механизма. [c.24]
ПОЛЗУНЫ, ШАТУНЫ И КОЛЕНЧАТЫЕ ВАЛЫ [c.30]
Как устроены шатун и коленчатый вал [c.28]
Кривошипно-шатунный механизм. Состоит из блока цилиндров, поршня с шатуном и коленчатого вала с маховиком. [c.6]
Свободной ковкой изготовляют поковки (фиг. 39) разнообразного назначения. Так, куются судовые (прямые и коленчатые) валы весом 120 т и более, турбинные диски, роторы генераторов, валы гидротурбин (170 т), колонны гидравлических прессов (230 т), кольца диаметром до 4 м, барабаны котлов высокого давления, валки прокатных станов (55 т), вагонные оси, крюки и траверсы мостовых кранов, шатуны и коленчатые валы двигателей, фланцы, шестерни, рычаги и т. п. . [c.108]
Назначение. Для изготовления шатунов и коленчатых валов дизелей Л бО, М3 и М4 методом горячей обработки. [c.319]
Кривошипный механизм двигателя состоит из цилиндра (или блока цилиндров), поршня с кольцами, поршневого пальца, шатуна и коленчатого вала с маховиком. [c.21]
Обрыв шатунов и коленчатого вала [c.212]
В процессе сжатия поршень перемещается от н. м. т. до в. м. т., при этом объем газов, поступивших в цилиндр во время впуска, постепенно уменьшается. Для перемещения поршня, сжимающего газы, необходима затрата некоторого количества работы, подводимой через шатун и коленчатый вал от маховика и других цилиндров двигателя. По мере перемещения поршня и сокращения объема сжимаемых газов постепенно возрастают их давление и в меньшей степени их температура. [c.69]
Разрушение деталей машин (например, шатунов и коленчатых валов двигателей) при повторно-переменных нагрузках, изменяющихся как по величине, так и по знаку (растяжение — сжатие), происходит при напряжениях, значительно меньших величины предела текучести, определенного при статических испытаниях (однократном нагружении). В изломе металла после разрушения [c.19]
Надежность и долговечность вкладышей подшипников зависят от целого ряда факторов, основными из которых являются величины й характер нагрузок жесткость и стабильность размеров блока цилиндров, рамы дизеля, шатунов и коленчатого вала конструкция подшипников и их вкладышей материал корпуса и заливки вкладышей материал коленчатых валов и способ обработки шеек вала качество смазки и фильтраций ее качество монтажа и способы эксплуатации подшипников и др. [c.140]
Смолистые отложения (осадки) — мазеобразные сгустки, состоящие из продуктов физико-химического изменения топлива и масла, смешанных с механическими примесями — продуктами изнашивания деталей и пыли. Осадки откладываются чаще всего на поверхностях, омываемых маслом в картере дизеля, маслопроводах, в каналах шатунов и коленчатых валов, на дне баков для масла, фильтрах и т. п. [c.35]
Поршень подвергается воздействию значительных механических и термических нагрузок от действия газовых и инерционных сил. Он надежно уплотняет камеру сгорания, препятствует попаданию в нее лишнего количества масла и передает действующие на него силы шатуну и коленчатому валу. Обеспечение надежной работы поршня при форсировании дизеля является одной из наиболее трудных задач. Повышение температуры поршня сверх допустимых пределов приводит к прогарам днища и загоранию поршневых колец. Материал поршня должен обладать малой плотностью, хорошей износоустойчивостью и прочностью при работе в условиях повышенных температур, а также невысоким коэффициентом линейного расширения. Форма днища поршня зависит от способа смесеобразования. На двигателях с непосредственным впрыском применяется камера сгорания с кольцевым углублением по периферии поршня, обеспечивающим отвод тепла от днища и предохраняющим зоны поршневых колец от перегрева. [c.48]
Главный исполнительный механизм (рис 4.10) состоит из ползуна с пуансонной головкой, шатуна и коленчатого вала. [c.147]
Шатуны и коленчатый вал преобразуют это движение во вращательное. [c.12]
Для шатунов и коленчатых валов двухтактного двигателя со смешанной смазкой применяют подшипники качения. В мотоциклах шатун часто снабжается подшипниками со сплошными роликами без сепаратора. Следует следить за тем, чтобы у такого подшипника суммарный зазор (между первым и последним роликами) был по возможности меньше. Он должен быть равен [c.369]
Поршень, шатун и коленчатый вал составляют кривошипный механизм. [c.27]
Аналогично строится размерная цепь и при левом крайнем положении поршня, шатуна и коленчатого вала. [c.90]
Построение схемы размерной цепи рекомендуется начинать с вектора замыкающего звена Ад, придавая ему отрицательное направление (справа налево). Далее в размерную цепь включают размеры всех деталей, влияющих на величину замыкающего звена Ад, путем последовательного перемещения от конца вектора Ад по размеру А, к контакту 1 между шатуном и коленчатым валом и далее по размеру А2 к контакту 2, по размеру А3 к контакту 3, по размеру А( к контакту 4, по размеру А5 к контакту 5 и по размеру А к концу вектора Ад, замыкая размерную цепь. Полученная таким образом геометрическая схема основной размерной цепи А показана на рис. 1.48. [c.90]
Решение. Механическая система состоит из двух тел шатуна и коленчатого вала. Систему считаем находящейся в равновесии в данный момент времени, т. е. при незначителыюм увеличении силы Р вал приобретает ускорение. [c.83]
Методы расчета деталей машин на. ударную нагрузку весьма сложны. Кроме динамических нагрузок, при проектировании машин и некоторых сооружений очень часто приходится встречаться с переменными нагрузками, вызывающими переменные напряжения, периодически изменяющиеся во времени. Так, например, в поршневом двигателе нагрузки, действующие на шатун и коленчатый вал, непрерывно изменяются и повторяются с каладым оборотом (двухтактный двигатель) или с каждыми двумя оборотами (четырехтактный двигатель). Здесь мы рассмотрим простейшие примеры расчета при динамическом действии нагрузки и несколько более подробно методы расчета деталей при переменных нагрузках. [c.338]
При заводском и деповском ремонтах компрессоров Э400 и Э500 сливают масло из картера, снимают верхнюю крышку, клапанную коробку с цилиндров, освобождают шарнирный болт крепления откидной крышки нижней головки одного из шатунов и проворачивают коленчатый вал так, чтобы головка шатуна заняла наивысшее положение. В этом положении шатун и коленчатый вал разъединяют и извлекают поршень из цилиндра. Таким же способом вынимают второй поршень с шатуном. Затем разбирают подшипники коленчатого вала, извлекают вал из компрессора и устанавливают на специальные подставки. После этого отвинчивают гайку крепления ведущей шестерни на конце вала якоря электродвигателя и с помощью специальной струбцины снимают шестерню. [c.278]
Износу подвергаются все трущиеся поверхности в сопряжениях деталей поршневой группы иногда наблюдается также изгиб стержня шатуна и коленчатого вала. Вследствие износз увеличивается зазор между стенками цилиндра н поршня, кроме того, поверхности обеих деталей приобретают повышенную конусность и овальность, на них образуются задиры. Поршневые кольца становятся менее упругими, увеличивается зазор в [c.217]
Движущий механизм, состоящий из поршней, шатунов и коленчатого вала, служит для преобразования работы газов в цилинд- [c.231]
Перед пуском открывают индикаторные (декомпрессионные) клапаны и проворачивают коленчатый вал двигателя не менее чем на один оборот, чтобы проверить, нет ли в цилиндре воды. Вода мол ет попасть в цилиндр, если лопнула крышка или стала пропускать прокладка. Пуск дизеля при наличии воды в цилиндре приведет к удару (так как вода практически несжимаема), выходу из строя головки, изгибу шатуна и коленчатого вала. Дизель надатго выйдет из строя. [c.255]
Поршень, шатун и коленчатый вал составляют кршошипно-шатунный механизм, преобразующий поступательное движение поршня во вращательное движение вала. [c.212]
Общее устройство. Двигатель состоит из цилиндра 5 и картера 6, который снизу закрыт поддоном 9 (рис. 1.3, а). Внутри цилиндра перемещается поршень 4 с компрессионными (уплотнительными) кольцами 2, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец 3 и шатун 14 связан с коленчатым валом 8, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек 13, щек 10 и шатунной шейки 11. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый крившипн о-ш атунный механизм, преобразующий возвратно-поступательное движение поршня во вращательное движение коленчатого вала (см. рис. 1.3,6). [c.11]
Методом электрошлакового переплава получают высококачественные высоколегированные стали типа 18Х2Н4МА для изготовления шатунов и коленчатых валов дизелей (с. 319), шарикоподшипниковую сталь ШХ15СГ для изготовления крупногабаритных подшипников подвижного железнодорожного состава (с. 324). ЭШП применяется в производстве быстрорежущей стали. Уменьшение величины карбидов и карбидной ликвации приводит к повышению стойкости режущего инструмента. [c.312]
Номенклатура деталей, подвергающихся дробеструйной обработке, с каждым днём расширяется и охватывает уже клапанные пружины, шатуны и коленчатые валы авиационных, танковых и автомобильных двигателей, ьшстерни и валы коробок передач и заднего моста, поворотные кулаки, крестовины кар- ,ана, полуоси, пружины подвесок и рессоры втомобилей, пружины и рессоры и другие ,етали подвижного состава железных дорог. [c.577]
Энергия расширяющихся газов, при такте рабочий ход, от поршня через поршневой палец, шатун и коленчатый вал передается маховику /. Этой энергии оказывается достаточно для проведения следующего четвертого такта — выпуска, а также рассмотренных выше тактов впуска и сжатия последующего цикла, преодоления трения и внешней нагрузки. После полноценно осушествив- шегося такта рабочего хода двигатель в дальнейшем обычно работает самостоя- тельно без принудительного прокручивания коленчатого вала от постороннего источника энергии (заводной рукояткой, стартером, пусковым двигателем и т. п.). [c.24]
как выглядит, из чего состоит, для чего нужен, неисправности
Сделай репост и информация будет всегда под рукой ✅
Коленвал или коленчатый вал – это стальная деталь, которая помогает преобразовывать тепловую энергию сгораемого горючего в механическую, которая нужна для вращения колёс. Простыми словами — коленвал похож на сильно изогнутую стальную железяку в виде вала. Основные детали вала — шатунные шейки, соединённых с коленной шейкой.
Вот как выглядит коленвал
Коленчатый вал относится к кривошипно-шатунному механизму (КШМ). Вал устанавливают прямо под блоком цилиндров.
Коленвал – важная деталь любой машины, имеющая определённую форму. Она зависит от модели мотора. При движении автомобиля элемент будет как бы притираться к двигателю. При диагностике и ремонте коленвала мотористы всегда смотрят, как ходят трущиеся элементы и по издаваемому звуку могут определить проблему. Что держит коленвал в двигателе, зависит от типа машины.
В статье расскажу всё про коленвал – что это такое, как выглядит, как устроен этот механизм, его назначение, поломки и пути их устранения. Обещаю, вам понравится!
Что такое коленвал
Коленвалом называют такую деталь (либо узел деталей, если вал составной), которая работает за счёт работы элементов поршневой группы.
Вал передаёт крутящий момент на маховик, вращающий шестерни трансмиссии.
Затем механическая энергия передаётся на полуоси ведущей пары колёс (передней, задней или обеих сразу). Автомобиль начинает своё движение. По внешней форме коленвал напоминает поднятие и опускание колена.
Коленвал работает как колено
Число деталей вала зависит от количества цилиндров движка, которые соответствуют их форме и размещению. Коренные шейки подсоединяются к поршням благодаря шатунам. Они обеспечивают вращательно-поступательное движение, приводящее коленвал в действие. Устройство обеспечивает пуск мотора автомобиля.
Коленчатый вал передаёт крутящий момент на маховик, а он передаёт вращение на шестерни трансмиссии. Затем крутящий момент переходит на оси и колёса начинают своё движение. Машина начинает двигаться.
Деталь всегда устанавливается с поправкой на число и место расположения цилиндров мотора, порядка и работы, такта, обеспечиваемых цилиндропоршневой группой. От влияния перечисленных факторов, коленчатый вал содержит разное число шатунных шеек. В отдельных моделях на элемент влияет сразу несколько шатунов. Это обеспечивается в ДВС с V-образным строением.
Внимание! Какая деталь соединяет коленчатый вал двигателя с поршнем? Это палец, который при помощи шатуна соединяется с шейкой.
Основная задача производителя – изготовить деталь так, чтобы при вращении на больших оборотах не было вибраций или они бы минимизировались. От числа шатунов и порядка появления вспышек, в коленвалах могут быть противовесы, но есть модели и без этого элемента.
Виды коленвалов:
- Полноопорные. Здесь коренные шейки располагаются по обе стороны от шатунной. Количество коренных шеек увеличивается на единицу при их сравнении с шатунами. Это связано с тем, что по бокам каждой шатунной шейки располагаются опоры, выступающие основной осью кривошипно-шатунного механизма. Такая система считается самой распространённой, потому что позволяет изготовителю применять облегчённый вариант. Такое условие обеспечивает непосредственное действие на КПД.
- Неполноопорные. В этом случае коренные шейки находятся с одной стороны. Детали производят из высокопрочных сплавов и металлов, что предупреждает поломку и деформацию в результате эксплуатации. Недостатком в том, что конструктивный элемент системы значительно увеличивает массу вала. Такое тип вала признан устаревшим, они применялось в машинах с ДВС в 20-м веке в низкооборотных двигателях.
В настоящее время популярны полноопорные типы. Производители ведущих марок машин ценят их за лёгкость и высокую надёжность, потому компоненты широко применяются в современных ДВС. Теперь понятно, что такое коленвал в автомобиле, но стоит понять, для чего он нужен.
Для справки! Кто изобрёл важный элемент двигателя? Это был арабский учёный Исмаил ибн аль-Раззаз аль-Джазари, который жил в Турции в 12 веке. Его ещё называют как Да Винчи исламского мира, потому что он описал конструкцию почти пятидесяти механизмов, таких как человекоподобные роботы, водяные часы, музыкальные аппараты, фонтаны, клапанные насосы и кодовые замки.
Коленвал для 8-цилиндрового мотора Renault Nervastella 1930—1936 годов
Коленвал изготавливается:
- Для недорогих машин – из легированной стали или из чугунного сплава.
- Для мощных и дорогих автомобилей — из углеродистой стали с высоким показателем износостойкости.
Отмечу, что на дизельные моторы ставят очень прочные коленчатые валы. Это связано с тем, что этот механизм работает постоянно с очень высокой нагрузкой. Дополнительно коленвал закаляется высокочастотным током.
Внимание! Коленвал производят из легированной или углеродистой стали, модифицированного чугуна при использовании методики штамповки и литья.
А где находится в машине коленвал? В автомобилях со стандартным мотором коленвал стоит в нижней части мотора, в а оппозитном двигателе – в его центральной его части. Снизу вал защищён картером. На чём держится коленвал? Он закреплён в подшипниках, они не дают сместиться валу. Дополнительно могут применяться дополнительные упоры.
Интересно, что кроме массовых валов, выпускаются и спортивные механизмы, которые обеспечивают более быстрое движение поршней в крайней точке сжатия благодаря вытянутой форме шатунных шеек. Из-за этого характеристики мотора меняют своё значение.
Некоторые автолюбители говорят о том, что маркировка коленчатого вала может дать информацию об особенностях этой детали. Но эти данные лишь её номер и не более, с его помощью проще подбирать запчасти.
Назначение
Главная цель коленчатого вала – преобразование вращательно-поступательных перемещений поршней двигателя внутреннего сгорания в крутящий момент, передаваемый трансмиссией на колёса автомобиля. Главная функция коленвала – превращение поступательного движения во вращательное.
Основной технической характеристикой коленчатого вала цепочки является радиус кривошипа. Это расстояние от осей коренных шеек к шатунным. Коренных шеек выступающих в роли опор, обычно бывает 4, но бывает, встречаются и три. В 6-цилиндровом ДВС коренных шеек целых семь.
Удвоенный радиус представляет собой длину движения поршня, определяющую объем цилиндров. При изменении величины радиуса кривошипа и стабильном диаметре цилиндра, изменится объем последнего. Такую зависимость мотористы часто используют для проведения регулировки, когда надо изменить технические характеристики движка в каком-либо определённом направлении.
Конструктивно коленвал соединяет коренные и шатунные шейки благодаря так называемым «щёкам». Шатунные шейки имеют меньший диаметр, чем у коренных. У щеки есть продолжение, которое является противовесом. Благодаря ему шатунный и поршневой вес находятся в балансе, и силовой агрегат работает без рывков. Оба конца механизма уплотнены во избежание потери смазочной жидкости.
При установлении соотношения длины хода поршня и диаметра цилиндра, мотор можно сделать длинноходным или короткоходным. Последний вариант повышает мощность за счёт прироста числа оборотов. Длинноходные варианты признаны экономичными. Они обеспечивают повышенный крутящий момент при небольших оборотах.
Внимание! Изменение параметров коленчатого вала от исходных (заданных производителем) приводит к полной перемене всех параметров мотора. Это может отразиться на работе целостной системы.
Схема — из чего состоит
Коленчатый вал размещается в нижней части автомобильного мотора под масляным картером. Этот конструктивный и функциональный элемент имеет своё строение. Части коленвала:
- коренная шейка – это опорная часть механизма, так называемая ось вращения. Эта деталь находится в подшипнике, который в свою очередь встраивается в картер двигателя;
- шатунные шейки – это колено коленчатого вала, упоры для шатунов. Они при работе коленвала смещаются по отношению к оси по траектории в форме круга;
- носок коленчатого вала – это выходная часть коленвала, на ней зафиксирован шкив или зубчатое колесо привода газораспределительного механизма (ГРМ), а также дополнительных механизмов. Носок передают энергию приводу ГРМ;
- щека коленчатого вала – обеспечивает соединение шатунных шеек с коренными. Они имеют защитную функцию и не дают коленвалу выйти из строя при самых максимальных нагрузках;
- фланец;
- упорные полукольца;
- вкладыши;
- шестерня;
- шкив;
- противовесы – обеспечивает сохранение баланса во время возвратно-поступательных движений элементов поршневой группы и нейтрализует нагрузку центробежной силы. Помогают уравновесить вес поршней и шатунов;
- хвостовик коленчатого вала – задняя часть механизма, к которому прикреплён маховик. Он приводит в движение шестерни коробки передач.
Полная схема коленвала
В конструкции коленвал имеется кривошип коленвала. Это узел, в который входит 1 шатунная шейка и 2 щеки. Отмечу, что раньше кривошипы были в сборе. Сейчас применяют только цельные коленчатые валы.
Ось коленвала выглядит в форме коренной шейки. Шатунные шейки всегда попеременно смещаются в противоположную сторону друг от друга. Внутри элементов есть отверстия, через которые моторное масло передаётся на подшипники. Кривошип представлен в формате отдельного узла, включающего две щеки и шатунную шейку.
Раньше в машины устанавливали исключительно сборные конструкции кривошипа. Сейчас все двигатели оснащаются цельными элементами. Их производят из стали высокой прочности при помощи ковки. Далее они проходят тщательную обработку на токарных станках. Более дорогие разновидности производятся из чугуна с помощью литья.
Заднюю и переднюю часть коленчатого вала уплотняют сальниками, обеспечивающими защиту от протекания масла. Выпускающие части маховиков могут выходить за пределы блоков цилиндров.
Фото сальника в коленвале
Вращение всех деталей вала создают подшипники скольжения. Они представлены в форме тонких стальных пластов (по-другому их называют вкладыши) с тонким слоем смазки. Для профилактики осевого смещения используется упорный подшипник, который располагается на коренной крайней или средней шейке. Теперь вы назовёте составляющие коленчатого вала без труда.
Подшипник коленвала HONDA
Отмечу, что для 4-цилиндровых моторов (применяют на большинстве серийных автомобилей) применяют плоский коленвал, когда щёки с шейками располагаются в одной плоскости. Это особенно заметно, когда смотришь на вал в «фас». Перейдём к описанию принципа работы коленвала.
Как работает коленчатый вал двигателя?
Несмотря на сложное строение, принцип работы устройства очень простой. Работа этого механизма схожа с работой педалей обычного велосипеда. Только в двигателях автомобилей применяется больше шатунов.
Поршни в моторе двигаются неравномерно. Когда одни поршни спускаются вниз, другие поднимаются вверх. Это увеличивает плавность хода и стабильность нагрузки. Коленвал как бы сдерживает движение поршней и заставляет их вернуться в прежнее положение, чтобы топливно-воздушная смесь смогла сжаться.
Вот как работает коленвал:
- В камере внутреннего сгорания происходит процесс сгорания поступающего внутрь горючего с выделением газов. При расширении они оказывают давление на поршни,
- Поршень выталкивается и производит поступательное действие.
- Элементы передают механическую энергию за счёт сообщения с поршнями, соединёнными посредством втулки.
- Шатун соединяется с шейкой коленвала и подшипником, потому каждое поступательное поршневое движение преобразуется во вращение вала.
- После того как случается поворот на 180 градусов, шатунная шейка следует в обратном направлении и происходит возвратное движение поршня.
- Циклы непрерывно повторяются.
- Вращательная энергия заставляет колёса автомобиля двигаться.
Посмотрите хорошее и понятное видео про коленвал:
Неисправности и их решение
Из чего сделан коленвал? Для его изготовления применяют металлы и сплавы повышенной прочности. Казалось бы, риск поломки исключён или минимален, но это не совсем так. Со временем из-за постоянных экстремальных нагрузок появляется износ, и даже стальной элемент способен выйти из строя.
Деталь постоянно сталкивается с механическими нагрузками от поршневой группы, поступающее давление измеряется в нескольких тоннах. Добавляет нагрузку инерционные силы в элементах коленвала. Помимо этого, при работе двигателя внутреннего сгорания температура коленвала стремительно возрастает и достигает нескольких сотен градусов.
Если вовремя обслуживать автомобиль, то коленчатый вал может без поломок прослужить до 300 тыс. км пробега. Ну а если на станцию техобслуживания ездить редко, то могут возникнуть разные неисправности. Какие основные неисправности коленчатого вала и как их исправить?
Задиры шатунных шеек кривошипа
Износ шатунной шейки встречается довольно часто потому что именно в области данного узла образуется максимальная сила трения при наибольшем давлении. Под воздействием перечисленных условий, в местах приложения нагрузки образуются выработки, создающие препятствия для естественного и свободного хода подшипника. Коленвал может неравномерно прогреваться после пуска мотора и в результате деформироваться.
Внимание! Рассматривать такую проблему как незначительную – не следует, потому что повышается уровень вибрации внутри мотора. Сам механизм набирает температуру, происходит его стремительное разрушение по цепочке (расплавляются вкладыши) и в итоге может пострадать двигатель авто.
Убрать проблему поможет моторист, умеющий делать качественную шлифовку шатунных шеек. Процедура приведёт к существенному уменьшению их диаметра. Для получения одномерности всех кривошипов, манипуляцию выполняют на качественных токарных станках, поскольку точность требуется для размеров меньше, чем 1 мм. Экономить не следует, элемент следует доверять только профессионалу, а не обращаться к сомнительным мотористам.
Задиры на шейке коленвала
После устранения основной проблемы диаметр технических зазоров детали заметно увеличится. После обработки на них стоит установить специальный вкладыш, призванный заполнить пустующее пространство.
Опытные автовладельцы знают – чтобы минимизировать вероятность появления проблемы, стоит постоянно контролировать уровень масла в баке и доливать его время от времени. Если смазки будет недостаточно, задиры появятся с большой вероятностью. Также мотористы рекомендуют смотреть на качество купленной смазки. Ездить на дешёвом или старом загустевшем масле – опасно, ремонт автомобиля потом может стоить гораздо дороже, чем стоимость важного расходника. Дополнительно может выйти из строя масляный насос.
Срез шпонки кривошипа
Что крутит коленвал и за что отвечает этот элемент, становится понятно при обнаружении этой проблемы. Именно шпонка механизма делает возможной передачу крутящего момента с вала на приводной шкив. Оба компонента имеют собственные пазы, в которых заключается специальный клин. При использовании материалов низкого качества в производстве, деталь обрезается. Это случается при заклинивании мотора. Ситуация – редкая.
Когда пазы шкива и КМН целы, можно сменить шпонку. В старых двигателях, манипуляция не даст результатов из-за образования большого люфта при соединении. Примитивный коленчатый вал не сможет работать как надо, потому ремонтники чаще всего советуют сразу менять детали на новые.
Износ отверстий фланца
На хвостике коленчатого вала крепится фланец с несколькими отверстиями, предназначенными для присоединения маховика. Со временем именно они разбиваются. Такое состояние называют износом усталости.
При работе элемента при больших нагрузках на металле образуются незаметные трещины, которые могут быть одиночными или групповыми. Последние чаще всего возникают в местах углубления детали.
Неисправность устраняется при рассверливании отверстий в результате установки болтов большего диаметра. Манипуляцию производят как с маховиками, так и с фланцами.
Течь из-под сальника
На коренных шейках вала есть два сальника. Они находятся с разных сторон. Основная цель элемента – предупредить протекание масла из-под подшипников. При попадании смазки на приводные ремни газораспределительного механизма их ресурс снижается, масло может разъесть резину. Это повышает расход горючего и масла, снижается управляемость автомобиля. А в итоге можно «попасть» на очень дорогой ремонт двигателя. Основные причины появления течи:
- вибрации вала – происходит преждевременный износ внутренней части элемента из-за его неплотного прилегания к шейке;
- длительное нахождение машины на улице зимой – сальник просто пересыхает, утрачивает собственную эластичность, дубеет от мороза;
- плохое качество детали – бюджетный элемент всегда имеет пониженный рабочий ресурс;
- попадание газов в картер, либо отсутствие вентиляции этой детали. Повышенное давление заставит протечь даже новенький сальник;
- неточности при установке – монтаж не должен производиться набивным методом с использованием молотка, чтобы деталь работала полноценно, для её монтажа надо применять специальную оправку.
Текущий сальник коленвала
На что влияет сальник понятно. Это прокладка, являющаяся расходником. Чаще всего происходит одновременный износ обеих элементов. Если произошёл износ одного, все равно лучше менять весь комплект. Износ следует проверять после пробега в 100-200 тыс. км.
Неисправность датчика коленвала
Это важный элемент цепочки, размещаемый на самом двигателе, он обеспечивает синхронную работу инжектора и зажигания. При возникновении неисправности, пуск мотора будет невозможным.
Электромагнитный датчик считывает много данных, которые передаются в бортовой компьютер, а он их регулирует. Главными данными являются впрыск горючего и зажигание. Пока импульс не поступит, бортовой компьютер не отдаст команду на выполнение.
Что указывает на проблемы с датчиком? Ухудшение запуска двигателя, у него нестабильная мощность, а также он может внезапно заглохнуть. На приборной панели горит надпись Check Engine.
Ремонт элемента невозможен, проблема устраняется только при помощи замены. Важно суметь подобрать правильную модель для установки на двигатель определённого типа, иначе мотор будет работать неправильно. При несоблюдении этого параметра, положение коленвала может не соответствовать действительности. ДВС не будет работать полноценно, это может привести к преждевременному износу отдельных элементов цепи.
Ответы на популярные вопросы
Определённые вопросы, связанные с элементом автомобиля, в том числе с коленвалом, владельцы задают чаще других. Чтобы не искать подобные сведения в разных источниках, вниманию читателя представлен блок с ответами.
Чем отличается поршень от коленвала
Поршень двигателя выглядит в форме детали цилиндрической формы. Он совершает вращательно-поступательные движения внутри цилиндра и служит для преобразования изменения показателей давления газа, жидкости и пара в механическую работу. Изначально элемент производится из высокопрочного чугуна, но потом технологию переработали и решили применять алюминий. Если понять, какую работу выполняет поршень, ясно, чем он отличается от коленчатого вала.
Этот конструктивный и функциональный элемент обеспечивает передачу механических усилий на шатун, контролирует герметизацию камеры внутреннего сгорания и способствует своевременному отводу избытка тепловой энергии. Слаженная работа поршней двигателя с коленчатым валом важна при эксплуатации машины в сложных условиях.
Сколько весит коленвал
Вес коленвалов зависит от модели двигателя. Представить среднюю цифру очень сложно, потому целесообразно назвать массу элементов взятых с отдельных моделей машин:
- ВАЗ 2112 – 12 кг 780 г;
- ВАЗ 2108 – 10 кг 980 г;
- LADA Priora и Калина – 10 кг 920 г.
Вес коленвала Тойота Королла
Эта информация позволяет сделать вывод о том, что в среднем вес коленвала находится в диапазоне 10-14 кг. Масса элемента используемого на двигателях грузового авто выше, более 18 кг.
Зачем нужен коленвал для проверки блока цилиндров
Сборку элементов шатунно-поршневой группы специалист начинает с проверки блока цилиндров. Связано это с тем, что именно он является основой всего двигателя, на нём находятся ключевые элементы, детали и узлы. Идеальный по геометрическим правилам цилиндр будет изнашиваться с увеличенной скоростью. Для проверки целостности системы, цилиндр перпендикулярно прикрепляют к оси постелей коленчатого вала. После этого оценивают величину пропуска.
Чем прикручивается коленвал к блоку цилиндров?
Перед установкой коленвала в блок вкладыши и коренные шейки смазываются маслом, желательно тем, которое применяется в данном двигателе. Упорные полукольца ставятся так, чтобы почти не было люфта. Далее болты крепления крышек коренных подшипников слегка затягиваются с правого ряда цилиндров мотора, а затем с левого. Затем болты закручиваются с более высоким усилием.
В каких подшипниках вращается коленчатый вал
Важнейшей деталью в двигателе является коренной подшипник. Он представлен в форме небольшого полукольца средней жёсткости со специальным покрытием. При долгой эксплуатации элемент изнашивается. По сути – это подшипник скольжения, обеспечивающий возможность вращения самого коленвала, которое происходит при сгорании топливной массы внутри камеры.
Сколько коленвалов в двигателе
Коленвал у автомобиля всегда один. Взаимодействие с коробкой двигателя обеспечивается за счёт разных узлов сцепления. Они могут быть механическими и автоматическими.
Почему коленчатый вал называется коленчатым
Действительно, связь названия элемента с человеческой анатомией волнует многих. Но, наименование объяснить довольно легко. Слово произошло от «голенастый». Те самые голени выступают в качестве шатунов и плотно сидят на шарнирах. Так произошло название «коленчастый», а потом его упростили.
Как делается коленвал
Заготовки коленчатого вала получают за счёт применения метода свободной ковки, штамповки и отливки. Из-за сложности конфигурации, полученные заготовки на этом этапе лишь отдалённо напоминают окончательные формы. Далее при обработке удаляется большая часть металла. После ковки заготовки подвергают полноценной термической обработке. Она необходима для улучшения структуры металла, устраняет напряжение и упрощает его дальнейшую черновую обработку. Для обычных автомобилей деталь отливается из чугуна, для мощных и быстрых машин – из кованой стали, а в самых дорогих коленвал вытачивают из цельного куска стали.
Рекомендую посмотреть интересное видео, как в Германии изготавливают коленвалы:
Что одевается на коленвал
Для избежания течи масла при замене сальника мотористы пользуются ремонтными втулками. Это детали в форме гладких тонкостенных гильз, которые одеваются на коленвал и восстанавливает поверхность под сальник.
Коленчатый вал – важная деталь, обеспечивающая работу двигателя машины, без его правильного функционирования, движение невозможно. Конструкция вала разная, зависит от марки мотора. По сути, коленвал это стальной элемент, содержащий множество шатунных шеек, сообщающихся друг с другом при помощи коленной шейки.
Количество элементов конструкции определяется в зависимости от числа цилиндров двигателя в соответствии с их формой и размещением под капотом автомобиля. Шейки соединены между собой при помощи шатунов, обеспечивающих поступательно-вращательное движение для пуска мотора. Устройство может выйти из строя, в таких случаях необходима его регулировка.
И напоследок видео про двухтонный коленвал, который крутится одной рукой:
Сделай репост и информация будет всегда под рукой ✅
Коленчатый вал двигателя (коленвал): работа, устройство, вращение
Коленчатый вал или, как часто говорят автомобилисты, «коленвал» – это одна из самых значительных (и не только по размеру) и ответственных деталей современного двигателя. Он располагается в нижней части блока цилиндров, снизу его закрывает картер – поддон двигателя, заполненный моторным маслом.
Как выглядит
Как видно на фото, этот элемент имеет довольно сложную форму. Его основными составными частями являются:
- коренные шейки;
- шатунные шейки;
- щеки;
- противовесы.
Коренные (опорные) шейки служат для опоры коленвала в так называемых «постелях». В них крепятся не смещающиеся в процессе работы подшипники, обеспечивающие вращение. Поскольку на коренные шейки приходятся более значительные нагрузки, их диаметр больше, чем у шатунных.
Шатунные шейки (колена) – это опорные поверхности шатунов. С учетом порядка работы цилиндров колена смещаются относительно оси вращения на определенные углы.
Если коленчатый вал сконструирован так, что по обе стороны от каждой шатунной шейки находятся опорные, то он называется полноопорным, в противном случае – неполноопорным. В современных автомобильных двигателях наибольшее распространение имеют именно полноопорные коленвалы.
Колена соединены между собой щеками. Противовесы, являющиеся продолжениями щек в сторону противоположную колену, уравновешивают центробежные силы, возникающие при вращении. Внутри коленвала имеется масляные каналы, при помощи которых происходит смазка шатунных шеек.
Из каких материалов и как изготавливается
Материал и технология производства зависят от класса и назначения автомобиля:
- Для стандартных серийных автомобилей коленчатый вал отливается из чугуна, этим достигается минимальная себестоимость производства.
- Коленвал более мощных и спортивных машин кованый и изготовлен из стали. По сравнению с чугунным он обладает улучшенными характеристиками по таким параметрам, как габариты, вес и прочность.
- Самый дорогостоящий вариант, использующийся в люксовых моделях, – коленчатый вал, выточенный из цельного куска стали.
Место перехода щек в шейки является самым нагруженным, так как здесь концентрируются максимальные напряжения. Для того чтобы разгрузить соединение, его выполняют с полукруглым переходом (галтелью). Как правило, галтели делают двойными с промежуточным технологическим пояском. Такое конструктивное решение позволяет сохранить максимальное значение активной площади шеек – поверхности, находящей под вкладышами.
Как раз по причине возникновения высоких нагрузок в соединениях, не нашел широкого применения коленчатый вал составной конструкции, в котором отдельные части соединены между собой крепежом.
Для чего необходим
При помощи кривошипно-шатунного механизма двигателя возвратно-поступательное движение поршней цилиндров двигателя переходит во вращательное движение и передается через трансмиссию к колесам автомобиля. Коленчатый вал как раз и нужен для того чтобы выполнить такое превращение. При работе каждый из поршней четырехтактного двигателя постоянно находится в одном из тактов:
- впуск;
- сжатие;
- рабочий ход;
- выпуск.
В фазе рабочего хода поршень толкает связанный с ним шатун, а тот, в свою очередь, смещает коленчатый вал. Так реализуется вращение. Следующий по порядку работы цилиндров двигателя поршень в это время сжимает горючую смесь и после ее воспламенения толкает свой шатун, в результате чего коленчатый вал непрерывно вращается.
Маховик
К заднему, если смотреть со стороны расположения ремней/цепей механизма газораспределения, концу коленвала через фланец при помощи болтов крепится маховик – массивный чугунный диск с напрессованным зубчатым венцом (см. фото). Для того чтобы маховик не смещался и не нарушалась балансировка, предусмотрены центровочные штифты или специальные болты, расположенные несимметрично. Для предотвращения утечек масла на фланец маховика устанавливается дополнительное уплотнение (сальник).
Маховик накапливает энергию, необходимую для поддержания равномерного вращения в промежутках между воспламенениями горючей смеси в цилиндрах и выводит поршни из мертвых точек (крайних верхних и нижних положений поршня в цилиндре). Зубчатый венец маховика связан с шестерней стартера. При пуске двигателя маховик проворачивается стартером, придавая валу начальное вращение. Наконец, именно через маховик на узлы и агрегаты трансмиссии передается вращательное движение.
Обычно для контроля правильности установки фаз газораспределения на маховике имеются метки, указывающие положение первого поршня в верхней мертвой точке.
Носок
В передней части коленвала, называемой «носком», устанавливается шкив или шестерня привода газораспределительного механизма, элементов системы охлаждения и других агрегатов (см. фото). Носок уплотняется кольцевой манжетой (сальником). Кроме того, с внешней стороны носка в крышке двигателя устанавливается пылеотражатель, препятствующий проникновению загрязнений в картер.
Шатун
Название детали — «шатун» — имеет прямое отношение к характеру выполняемой работы — передачи возвратно-поступательных движений поршня к коленчатому валу. Наиболее заметное распространение деталь получила в эпоху паровозов, в которых была частью привода. При передаче возвратно поступательного движения один конец шатуна перемещается вверх и вниз с ограниченной амплитудой, то есть «шатается».
Шатун — одна из древнейших деталей механизмов. Эту деталь можно видеть, например, в конструкции аппаратов гениального инженера Леонардо Да Винчи
Шатун — одна из наиболее древних деталей, которая применялась еще в древних, деревянных механизмах. Первые известные шатуны работали еще в конструкции привода римской лесопилки третьего века. Они превращали вращение колеса, приводимого в движение водой, в возвратно-поступательное движение пилы. Впервые сочетание шатуна с коленчатым валом встречается в конструкции водяного насоса двенадцатого тысячелетия, изобретенного арабским инженером Аль-Джазари. Его конструкция не была похожа на современный кривошипно-шатунный механизм и была гораздо сложнее, что свидетельствует о том, что Аль-Джазари не вполне представлял себе закон сохранения энергии. В Италии времен эпохи Возрождения конструкцию с применением шатуна можно видеть на полотне художника Пизонелло, изображающем работу водяного насоса. К шестнадцатому столетию конструкция «шатун — коленчатый вал» окончательно приняла современный вид и получила широкое распространение. Свдительство этому содержится на страницах трактата «Theatrum Machinarum Novum» 1588 года Георга Андреаса Боклера, в котором описывается не менее 45 машин, построенных с применением шатуна.
Устройство шатуна
В двигателях современных автомобилей применяюся шатуны, сделанные из стали, но встречаются и другие варианты материала. К примеру, для двигателей спортивных автомобилей для облегчения веса агрегата могут быть изготовлены шатуны из титана или специальных высокотемпературных алюминиевых сплавов (T6-2024 и T651-7075). Кроме того, «спортивные» шатуны отличаются методом изготовления — их получают методом ковки, укрепляющей структуру металла. Кованые поршни и шатуны прочнее обычных, полученных методом литья.
Шатунные вкладыши — обязательная для замены деталь при капитальном ремонте двигателя
Шатуны устроены таким образом, что ни один из их концов не крепится к смежным деталям так, чтобы в этом месте появилось трение. Через верхнюю головку шатуна продевается поршневой палец, к которому, в свою очередь, присоединяется поршень, а нижняя головка надевается на шейку вращающегося коленчатого вала. Естественно, оба крепления подразумевают использование обильной смазки. Для снижения износа шатунных шеек коленчатого места крепление нижней головки снабжают специальными вкладышами, которые имеют антифрикционное покрытие.
Нижнее «кольцо» шатуна, посредством которого он крепится к коленвалу, для облегчения сборки делают разборным — нижняя часть «кольца» — так называемая крышка, может быть отделена.
Особенности эксплуатации и ремонта шатунов
Несмотря на то, что шатуны не образуют пар трения ни на одном из концов, дефекты шатунов встречаются на практике очень часто. Проблема шатунов не в трении, которого почти нет (если не считать трения боковой головки о щеки коленвала), а в нагрузке и в высокой температуре. Нагрузка на шатун, причем разнонаправленная, может достигать нескольких тонн, а порой и нескольких десятков тонн. Такова особенность его работы — шатун попеременно то сжимается, то растягивается на протяжении одного полного цикла, то есть оборота коленвала. Как правило, при возникновении стука шатунных вкладышей принято ограничиваться заменой только самих вкладышей, хотя в результате перегрева двигателя или проворачивания вкладышей шатун почти наверняка деформируется — искривляется. Чтобы понять, параллельны ли оси отверстия головок, и не искривился ли шатун, необходимо провести измерения при помощи специальных приспособлений.
Одна из самых впечатляющих поломок двигателя — дыра, пробитая в блоке цилиндров вылетевшим наружу шатуном
Помимо несоосности частым дефектом шатуна становится износ отверстия верхней головки шатуна, в которое вставляется так называемый плавающий палец. Определить, ровное отверстие или оно разбито, можно только нутромером, так как визуальный осмотр ничего не даст — величины износа слишком малы.
Чтобы определить степень деформации — причины несоосности — шатун можно положить на поверочную плиту — идеально ровную поверхность, позволяющую судить о том, деформирована деталь или нет.
Способы ремонта шатунов
Диаметр отверстия нижней головки после проворачивания вкладышей увеличивается и должен быть восстановлен до номинального предусмотренного заводом размера. Для этото сначала проводят «занижение» крышки шатуна на небольшую величину, измеряемую в микронах — около 0,05-0,1 мм. Если отверсти разбито несильно, крышку шлифуют, если сильно — фрезеруют. Естественно, после занижения отверстие теряет форму, и его необходимо расточить. Помимо возвращения формы расточка способствует восстановлению заводского размера отверстия. Для этой операции используется специальный расточный станок для шатунов, но если его нет, квалифицированный токарь может сделать то же самое с помощью специальной оснастки на универсальном станке (токарно-фрезеровочном). После расточки стенки отверстия доводятся до идеального состояния хонингованием (такую же обработку проходят стенки цилиндров при капремонте блока). Современные двигатели, как правило, относятся к категории высокофорсированных, так как в современном автомобилестроении заметна тендеция повышения отдачи без увеличения рабочего объема. Для этого применяются различные агрегаты, позволяющие повысить степень сжатия при сохранении объема, к примеру, турбонагнетатели. Естественно, при форсировке нагрузка на все без исключения детали, в том числе и на шатуны, существенно увеличивается. Соответственно, при малейшем нарушении работы системы смазки могут иметь необратимые последствия для шатунов. При большом перегреве и серьезных нагрузках в структуре металла, из которого сделаны шатуны, происходят такие изменения, что ремонт шатунов может оказаться невозможным или слишком дорогим, и проще заменить их новыми деталями.
Устройство двигателя и схема работы
В автомобилях наиболее часто используется четырехтактный двигатель с искровым зажиганием, то есть тот, чей поршень выполняет четыре движения, а реакция сгорания топлива вызвана искрой.
Поршневые движения называются Циклом Отто, имя которого происходит от имени изобретателя Николая Отто. Данный процесс приводит автомобиль в движение. Как устроен ДВС?
Если коротко: топливо втягивается в камеру сгорания и поджигается. Вырабатываемая энергия передается двигательной установке, а выхлопные газы удаляются. Все это делается с огромной скоростью и в относительно небольших масштабах. Однако этого объяснения нам недостаточно, поэтому мы углубимся в детали.
Видео про то как устроен ДВС внизу страницы
Схема работы четырехтактного ДВС
- Первым тактом из четырех поршневых движений является всасывание. Поршень движется вниз в герметичный цилиндр, всасывая в него смесь воздуха и топлива. Смесь подается в цилиндр благодаря системе впрыска, в которой также используется небольшой поршень. Он выталкивает небольшие порции топлива через узкое сопло, в результате чего они попадают в цилиндр в виде тумана.
- Второй такт — это сжатие. Поршень, находящийся теперь глубоко внутри цилиндра, начинает двигаться наружу, что означает, что извлеченное топливо «сжимается». Свеча зажигания генерирует искру, и смесь взрывается.
- Третий такт — толчок. Взрыв толкает поршень обратно внутрь цилиндра. Поскольку поршень соединяется с коленчатым валом с помощью шатуна специальной формы, его работа вызывает вращение вала. По-человечески говоря: толкаемый поршень перемещает вал, который начинает вращаться. Таким образом, энергия, генерируемая взрывом, может передаваться двигательной системе и водитель может контролировать ускорение с помощью сцепления и трансмиссии.
- Четвертый такт — выхлоп. В конце цикла открывается клапан через который газы, остающиеся после сгорания, вытесняются из цилиндра. Затем поршень снова движется наверх. Добавим, что подача воздуха и выхлопные газы снаружи отвечают не за сам цилиндр, а за систему газораспределения, то есть, проще говоря, зубчатый ремень, зубчатое колесо или вал с выступающими элементами, которые вращают и открывают или закрывают клапаны в нужные моменты.
После четвертого такта процесс повторяется. Другая часть смеси всасывается, сжимается, взрыв вызывает толкание поршня назад, и коленчатый вал движется, остаточные газы выпускаются. И так до тех пор, пока мы не достигнем нашей цели. Все это происходит чрезвычайно быстро. Вал может вращаться от десятка до ста раз в секунду и это далеко не единственное что удивляет при понимании как устроен ДВС.
Конструкция ДВС: Что еще есть в двигателе?
Цилиндры, коленчатый вал, распределительный вал — все это находится в чугунном корпусе. Стоит упомянуть маховик. Хотя коленчатый вал двигает только один поршень (рабочий), сам поршень делает четыре из них. Сжатие, которое требует много энергии, является особенно проблематичным, что приводит к снижению скорости вращения вала. Для равномерной работы используется маховик весом около 10 кг, который поддерживает частоту вращения двигателя с помощью массы.
Во время работы двигатель нагревается, поэтому используется охлаждающая жидкость. Жидкость протекает по различным каналам. Термостат является устройством, которое открывает или закрывает каналы под воздействием температуры. В свою очередь, моторное масло необходимо для уменьшения трения, возникающего при перемещении многочисленных компонентов. Кстати, он поглощает часть тепла, вырабатываемого двигателем, как и охлаждающая жидкость.
Денис — специалист в сфере автомобилей. Он имеет 5-летний опыт работы на СТО и пишет про новости в мире автомобилей. Теперь он делится своими знаниями с людьми, рассказывает про устройство и ремонт современных авто.
Поршни и шатуны двигателя
Поршень выполняет роль подвижной заглушки в цилиндре, образуя нижнюю часть камеры сгорания. Между поршнем и стенкой цилиндра имеется газонепроницаемое уплотнение, поэтому единственный способ расширения горячих газов сгорания — это прижать поршень вниз. То же самое и с пушечным ядром, но вместо того, чтобы улететь на чей-то любимый пиратский корабль, вращающийся коленчатый вал толкает поршень вверх по цилиндру, и цикл повторяется.
Более 60% трения внутри двигателя происходит за счет движения поршневого узла, и поэтому это одна из основных областей повышения эффективности двигателей. Поршень все еще находится в стадии разработки и исследований, о чем мы вскоре поговорим более подробно.
Огромные силы создаются при изменении направления поршня при его движении вверх и вниз. Более легкий поршневой узел имеет меньший импульс, что приводит к меньшему усилию и позволяет двигателям с более высокими оборотами. Это означает, что происходит постоянный толчок для уменьшения веса шатуна и поршня.
Поршень соединен с коленчатым валом через шатун , часто сокращается до стержень или же шатун . Эти части вместе известны как поршень в сборе . Оба конца шатуна могут поворачиваться: часть шатуна, которая соединяется с поршнем, называется малый конец , а конец, который крепится вокруг коленчатого вала, называется большой конец . Большой конец будет иметь вкладыши подшипники которые минимизируют трение и поддерживают точный масляный зазор с шейкой штока на коленчатом валу.Шатун разделен на две части — с крышка стержня используется для зажима вокруг подшипника шатуна и коленчатого вала.
Компоненты поршневого узла
Поршень
Вся мощность в двигателе достигается за счет силы, воздействующей на верхнюю часть поршня. Эта сила определяется как площадь поршня, умноженная на давление газа. Более крупные поршни и более высокое давление газа обеспечат большую мощность. В целом размер поршня ограничен конструкцией двигателя, но поршень действительно играет жизненно важную роль в поддержании высокого давления газа, создавая газонепроницаемое уплотнение со стенкой цилиндра.
Верхняя поверхность поршня называется кроны (также голова или же купол ). В серийных двигателях есть корона различной формы, но обычно она бывает плоской, выпуклой или выпуклой.
[Различные формы коронки]
Практически все современные поршни включают предохранительные клапаны которые обеспечивают зазор вокруг клапанов в верхней части хода поршня.
Заводная головка, находящаяся в непосредственном контакте с горячими газами сгорания, становится очень горячей.Именно эта область расширяется больше всего, поэтому будет небольшой конус внутрь от нижней части поршня, чтобы обеспечить больший зазор вокруг этой верхней площадки между головкой и верхним поршневым кольцом.
Хотя нам требуется газонепроницаемое уплотнение, нам также необходимо, чтобы поршень плавно перемещался по цилиндру с минимальным трением, поэтому поршню необходимо некоторое клиренс . У обычного поршня зазор между ним и стенкой цилиндра составляет 0,1 мм (0,004 дюйма) — это примерно ширина человеческого волоса.Чтобы сохранить этот зазор, поршень должен быть точно обработан, а сплав, из которого он сделан, будет точно определен с учетом теплового расширения.
Небольшой зазор между поршнем и стенкой цилиндра перекрывается за счет кольца поршневые , которые входят в канавки на поршне в области, известной как ремень поршневой . Пространства между этими канавками называются кольцо приземляется .
Поршень прикреплен к шатуну с помощью короткой полой трубки, называемой штифт на запястье , или же палец поршневой .Эта булавка для запястья несет полную силу сгорания.
На поршень при сгорании действуют не только вертикальные силы, но и боковые силы, вызванные постоянно изменяющимся углом шатуна. Из-за этих боковых сил поршню требуются гладкие поверхности, чтобы прилегать к стенке цилиндра и удерживать поршень в вертикальном положении. Боковые поверхности поршня известны как Юбка поршня .
[Пышная юбка и юбка-тапочка]
Есть два типа юбок.Самый простой — это пышная юбка или сплошная юбка, представляющая собой классический поршень трубчатой формы. Эта конструкция до сих пор используется в двигателях грузовиков и больших коммерческих автомобилей, но уже давно заменена на автомобили и мотоциклы более легкой конструкцией, известной как тапочек поршневой .
У скользящего поршня часть юбки срезана, остались только поверхности, которые опираются на переднюю и заднюю часть стенки цилиндра. Такое удаление сводит к минимуму вес и уменьшает площадь контакта между поршнем и стенкой цилиндра, тем самым уменьшая трение.
Современные производственные двигатели дополнительно уменьшают трение между поршнем и стенкой цилиндра за счет использования Покрытия поршней с низким коэффициентом трения , как тефлон в сковороде с антипригарным покрытием. Эти покрытия обычно наносятся трафаретной печатью в виде заплатки на юбки поршней — например, на изображенном на рисунке покрытии на основе графита двигателя Ford Fiesta Ecoboost.
[Поршень Ford]
Когда поршень опускается на такте сгорания, он будет оказывать боковое усилие в направлении, противоположном наклонному шатуну.Направление цилиндра, на которое действует эта сила, известно как сторона осевого напора, и поршень и стенка цилиндра будут подвергаться большему износу в этой области.
[Схема тяги]
Поршень становится невероятно горячим, и ему необходимо эффективно отводить это тепло. Тепло от поршня идет в три места: в виде лучистого тепла в камеру сгорания, в стенки цилиндра через поршневые кольца и вниз по шатуну. Кроме того, во многих двигателях поршень охлаждается с помощью масла, распыляемого на нижнюю часть.
Поршневые кольца
Поршневые кольца плотно прилегают к поршню, перекрывая небольшой зазор между поршнем и стенкой цилиндра. Обычно на поршне имеется три поршневых кольца, выполняющих разные функции.
Компрессионные кольца
Два верхних кольца называются кольца компрессионные (также известен как кольца нажимные или же газовые кольца ) и их основная роль заключается в предотвращении проникновения газов через небольшой зазор между поршнем и стенкой цилиндра.Этот проход газа через поршень в картер известен как минет и должны быть минимизированы для сохранения сжатия.
Компрессионные кольца обычно изготавливаются из твердого чугуна и оказывают внешнее давление на стенку цилиндра. Это внешнее давление возникает из-за естественной упругости колец, но дополняется во время такта сгорания давлением газа за кольцами, которое более плотно прижимает их к стенке цилиндра.
[Давление газа за компрессионными кольцами]
Важно отметить, что компрессионные кольца не оказывают бокового давления на поршень и не действуют для него как направляющие.Канавка в поршне будет глубже ширины поршневого кольца, что позволит кольцу скользить по масляной пленке.
Компрессионные кольца также передают тепло от поршня к стенке цилиндра, где оно рассеивается в охлаждающей жидкости, протекающей через водяные рубашки.
Эти кольца сломаны с небольшим зазором, который позволяет устанавливать и снимать их поверх поршня. Ширина этого зазор поршневого кольца указывается производителем, и его можно измерить, поместив кольцо внутрь цилиндра и измерив зазор с помощью щупа.На этом рисунке зазоры сильно преувеличены, на самом деле они будут очень тонкими — 0,2 мм или меньше.
Кольца контроля масла
Кольцо нижнее на поршне Кольцо масляное . Масло постоянно разбрызгивается на стенки цилиндров либо из отверстий в шатунах, либо из форсунок, установленных в картере. Для минимального трения нам нужна тонкая масляная пленка, а функция маслосъемного кольца заключается в том, чтобы удалить излишки масла и оставить идеальную масляную пленку для скольжения компрессионных колец и юбки поршня.
Нам определенно не нужно масло в камере сгорания: присутствие масла может вызвать плохое сгорание, высокие выбросы, чрезмерное накопление углерода на клапанах и поршнях и синий дым — все это плохие новости для плавного двигателя.
Маслосъемное кольцо обычно состоит из двух тонких хромированных скребковых колец с проставкой, зажатой между ними для удаления масла. Он разработан, чтобы скользить по маслу при движении вверх и соскребать его при движении вниз. Это называется сегментированным дизайном.В канавке для контроля масла будут просверлены отверстия, чтобы излишки масла могли легко стекать обратно в картер.
Установка новых поршневых колец
Область стенки цилиндра над верхним компрессионным кольцом не охвачена кольцами, что снижает износ. Это может вызвать образование гребня в течение всего срока службы двигателя. Если новые кольца устанавливаются на цилиндр, который не подвергался повторной расточке, тогда может потребоваться кольцо с удаленной выемкой, известное как гребневик, чтобы гарантировать, что новое кольцо не соприкасается с этим гребнем материала.
[Схема смещения колец]
При установке новых колец зазоры должны быть смещены и никогда не должны находиться на одной линии друг с другом, чтобы предотвратить прямой путь для выхода газов.
Булавка на запястье
Поршень прикреплен к шатуну через полую трубку из закаленной стали, известную как штифт на запястье или же палец поршневой . Этот штифт проходит через маленький конец шатуна и позволяет ему поворачиваться на поршне.
Есть два метода закрепления булавки на запястье. А полуплавающий В конструкции штифт закреплен в шатуне, при этом он может свободно вращаться в отверстиях поршня. А полностью плавающий штифт запястья будет свободно вращаться как в малом конце, так и в поршне, и будет зафиксирован на месте с помощью стопорных колец или тефлоновых кнопок на концах штифта. Для полностью плавающей булавки на запястье будет заменяемая втулка внутри малого торцевого отверстия.
Штифт кисти может быть немного смещен в сторону, а не точно по центру поршня.Это известно как палец на запястье со смещением и используется для уменьшения поперечного перемещения поршня внутри цилиндра. Избыточное движение из стороны в сторону известно как удар поршня из-за стука, который он производит.
Шатун
шатун передает силу от поршня к коленчатому валу, он постоянно подвергается растягивающим, сжимающим и изгибающим силам, поскольку он действует как посредник в этих двухтактных отношениях.Шатун должен быть конструктивно прочным, и неслучайно он принимает форму миниатюрной стальной двутавровой балки, похожей на своих более крупных собратьев, поддерживающих небоскребы и мосты. Профиль двутавровой балки обеспечивает максимальную прочность конструкции при минимальной стоимости веса, и, как и в случае с поршнем, мы хотим сохранить как можно меньший вес шатуна.
Требуемая прочность шатуна означает, что он изготовлен из кованой стали или порошковой стали. У экзотических двигателей могут быть титановые стержни.Чугун не используется из-за его веса.
Верхняя часть шатуна, прикрепленная к поршню, называется малый . Он не всегда будет иметь ориентиры. От малого конца стержень проходит по профилю двутавровой балки до самого конца. большой конец который разделен на две части, чтобы он мог плотно прилегать к шейке коленчатого вала. Нижняя часть стержня называется крышка стержня и он будет прикреплен шпильками или болтами к самому стержню.
Стержень в настоящее время обычно изготавливается как одно целое, а затем крышка стержня надрезается и отламывается. Это оставляет неровную поверхность сопрягаемой поверхности, но придает большую прочность. Важно, чтобы крышки шатунов не смешивались с другими шатунами — они принадлежат друг другу как единое целое.
Шатунная головка будет иметь вкладыши подшипника в двух половинах, эти вкладыши подшипника будут изготовлены из того же материала, что и вкладыши для основных цапф. Подшипники шатуна смазываются маслом, поступающим под давлением через каналы в коленчатом валу.
Во многих шатунах просверлено отверстие от большого конца вверх, через вал, до выпускного отверстия где-нибудь по их длине. Этот канал позволяет маслу проходить вверх по шатуну от большого конца и разбрызгиваться на упорную область стенки цилиндра, где трение является максимальным.
Неисправности
Поршневой удар
Износ стенки цилиндра или юбки поршня может привести к слишком большим зазорам между поршнем и стенкой цилиндра.Это допускает чрезмерное перемещение поршня из стороны в сторону. Когда поршень меняет направление вверху и внизу своего хода, это может привести к его ударам о стенку цилиндра, вызывая шум, известный как поршневой удар .
Поршень обычно усиливается, когда двигатель холодный, прежде чем поршень успеет прогреться и расшириться. Его можно вылечить путем механической обработки цилиндра и использования поршня увеличенного размера.
Модификации и апгрейды
Модернизированные поршни и шатуны
Установка набора более прочных и легких штоков и поршней позволит создать более мощный двигатель.Это может быть необходимо для наддува или наддува двигателя. Переход от кованых стержней к титановой или порошковой (спеченной) стали приведет к более мощному двигателю.
Покрытия поршней
Как обсуждалось выше, недавно разработанные двигатели часто имеют покрытие с низким коэффициентом трения, нанесенное на заводе на их поршни. Но эти покрытия также доступны на вторичном рынке для уменьшения трения и увеличения (или уменьшения) теплопередачи.
[Примеры покрытий]
- На юбку нанесено покрытие для уменьшения трения между ней и стенкой цилиндра.
- Керамическое покрытие может быть нанесено на головку и предназначено для отражения тепла обратно в камеру сгорания и уменьшения количества, передаваемого поршню.
- Нижняя сторона поршня может иметь нескользящее покрытие, известное как масляное покрытие который отталкивает масло, тем самым уменьшая вес узла и обеспечивая более эффективное охлаждение масла.
Шатуны — обзор
10.6.3 Характеристики трения подшипников поршневого узла
Шатунные подшипники с малой и большой головкой представляют собой подшипники в поршневом узле. Они работают в суровых условиях при высоких динамических нагрузках и относительно низких скоростях шейки (например, Zhang et al. , 2004). Их моменты трения важны для точности расчета динамики поршневого узла. Сила трения поршневого пальца напрямую влияет на наклон юбки поршня. Их моменты трения необходимо включить в баланс моментов уравнений динамики поршневого узла.Их моменты трения в подшипниках могут быть рассчитаны либо с помощью упрощенного подхода с использованием эквивалентного граничного коэффициента трения, умноженного на действующую нагрузку и радиус подшипника, либо с помощью более сложного подхода, включающего уравнения трения гидродинамической смазки, представленные в предыдущем разделе.
Сухара и др. (1997) измерил трение в подшипнике выступа поршневого пальца полуфланцевого запрессованного поршневого пальца в автомобильном бензиновом двигателе. Они обнаружили, что сила трения подшипника поршневого пальца увеличивается с давлением в цилиндре во второй половине такта сжатия, такте расширения и первой половине такта выпуска.Они заметили резкий скачок силы трения при полной нагрузке сразу после ВМТ срабатывания, когда давление в цилиндре было самым высоким. Еще один гораздо меньший выброс произошел при угле поворота коленвала 90 ° после ВМТ срабатывания, когда шатун изменил направление. Пики силы трения указывали на характеристики граничной смазки поршневого пальца в этих областях. Сухара и др. (1997) обнаружил, что трение поршневого пальца находилось в диапазоне от 6,5% (при половинной нагрузке) до 16% (при полной нагрузке) среднего эффективного давления трения (FMEP) юбки поршня и колец, и им нельзя было пренебречь.Их результаты очень похожи на результаты аналитического моделирования, когда при моделировании предполагается граничное трение для поршневого пальца (Xin, 1999). Поршневой палец и узкий конец шатуна лишь слегка качаются вперед и назад. Силу трения поршневого пальца можно рассчитать, умножив нагрузку на палец на эквивалентный коэффициент трения.
Очень интересная диаграмма Стрибека была опубликована Suhara et al. (1997 г.) для подшипника поршневого пальца. Они заметили, что коэффициент трения уменьшается по мере уменьшения рабочего параметра во второй половине такта сжатия, что указывает на операцию гидродинамической смазки.Коэффициент трения резко увеличивается по мере дальнейшего уменьшения рабочего параметра в течение первой половины хода расширения, указывая на то, что подшипник поршневого пальца работает в режиме смешанной смазки. Сухара и др. (1997) полагал, что повышающийся высокий коэффициент трения с рабочим параметром во второй половине такта расширения был вызван очень тонкой масляной пленкой, которая не утолщалась при увеличении рабочего параметра. Это свидетельствовало о недостаточных поставках смазочного масла в этом регионе.Они отметили, что необходимо сделать упор на усовершенствование конструкции для уменьшения трения как для режима граничной смазки в первой половине такта расширения, так и для режима масляного голодания во второй половине такта расширения.
Небольшое уменьшение шероховатости поверхности может значительно снизить трение поршневого пальца, как указано Suhara et al. (1997) в своем обширном экспериментальном исследовании различных эффектов конструкции на трение поршневого пальца. Улучшение материала подшипника втулки пальца также имеет большое влияние на снижение трения.Уменьшение зазора в подшипнике выступа поршневого пальца, например, для снижения шума, может привести к увеличению трения в режиме граничной смазки из-за более серьезных неровностей контактов, особенно при полной нагрузке и высоком давлении в цилиндре. Чрезмерное уменьшение длины поршневого пальца и толщины стенки по причине уменьшения веса может привести к значительному увеличению нагрузки на агрегат и деформации подшипника выступа пальца. Это может привести к увеличению граничного трения и износа, если не будут приняты другие конструктивные меры для противовеса (например,g., используйте более качественный материал подшипника, уменьшите шероховатость поверхности, улучшите подачу масла).
Объяснение скорости поршня, угла штока и увеличенного смещения.
Внимательный взгляд на ход коленчатого вала и его влияние на среднюю скорость поршня, инерцию и контроль огромных разрушительных сил, действующих внутри двигателя.
Производители двигателей уже давно рассчитывают среднюю скорость поршня своих двигателей, чтобы помочь определить возможные потери мощности и опасные ограничения числа оборотов. Это математическое упражнение было особенно важно при увеличении общего рабочего объема с помощью коленчатого вала с ходовым механизмом, потому что средняя скорость поршня увеличится по сравнению со стандартным ходом, работающим при тех же оборотах в минуту.Но что, если бы существовала другая динамика двигателя, которая могла бы дать строителям лучшее представление о долговечности поршневого узла?
На видео выше показаны два двигателя, один с коротким ходом коленчатого вала, а другой со значительно более длинным ходом. Обратите внимание, что оба поршня достигают верхней мертвой точки и нижней мертвой точки одновременно, но поршень в двигателе с более длинным ходом (слева) должен двигаться значительно быстрее.
«Вместо того, чтобы сосредотачиваться на средней скорости поршня, обратите внимание на влияние силы инерции на поршень», — предлагает Дэйв Фасснер, руководитель отдела исследований и разработок K1 Technologies.
Давайте сначала рассмотрим определение средней скорости поршня, также называемой средней скоростью поршня. Это эффективное расстояние, которое проходит поршень за заданную единицу времени, и для сравнения оно обычно выражается в футах в минуту (фут / мин). Стандартное математическое уравнение довольно простое:
Средняя скорость поршня (фут / мин) = (ход x 2 x об / мин) / 12
Есть более простая формула, но о математике позже. Скорость поршня постоянно изменяется, когда он перемещается от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ) и обратно в ВМТ за один оборот коленчатого вала.В ВМТ и НМТ скорость составляет 0 футов в минуту, и в какой-то момент во время хода вниз и вверх он будет ускоряться до максимальной скорости, а затем замедлится и вернется к 0 футов в минуту.
Когда поршень движется от нижней мертвой точки к верхней мертвой точке, на короткое время он полностью останавливается. Это создает огромную нагрузку на булавки для запястий. Показанные штифты Trend предлагаются с различной толщиной стенки, чтобы выдерживать необходимую нагрузку.Существуют формулы для расчета скорости поршня при каждом градусе вращения коленчатого вала, но обычно это гораздо больше информации, чем требуется большинству производителей двигателей.Традиционно они смотрят на среднюю или среднюю скорость поршня во время вращения кривошипа и, возможно, вычисляют максимальную скорость поршня.
Средняя скорость поршня — это общее расстояние, которое поршень проходит за один полный оборот коленчатого вала, умноженное на число оборотов двигателя. Очевидно, что скорость поршня увеличивается с увеличением числа оборотов в минуту, и скорость поршня также увеличивается с увеличением хода. Давайте посмотрим на небольшой пример.
Чтобы просмотреть все предложения K1 Technologies по коленчатому валу, щелкните ЗДЕСЬ
Большой блок Chevy с 4.Коленчатый вал с ходом поршня 000 дюймов, работающий при 6500 об / мин, имеет среднюю скорость поршня 4333 фут / мин. Давайте еще раз рассмотрим формулу, использованную для расчета этого результата. Умножьте ход на 2, а затем умножьте это число на число оборотов в минуту. Это даст вам общее количество дюймов, которое поршень прошел за одну минуту. В данном случае формула: 4 (ход) x 2 x 6500 (об / мин), что равно 52 000 дюймов. Чтобы прочитать это в футах в минуту, разделите на 12. Вот полная формула:
(4 x 2 x 6500) / 12 = 4333 фут / мин
Вы можете упростить формулу с помощью небольшого математического трюка.Разделите числитель и знаменатель в этом уравнении на 2, и вы получите тот же ответ. Другими словами, умножьте ход на число оборотов в минуту, затем разделите на 6.
(4 x 6500) / 6 = 4333 фут / мин
С помощью этой более простой формулы мы вычислим среднюю скорость поршня при увеличении хода до 4 500 дюймов.
(4,5 x 6500) / 6 = 4875 футов в минуту
Как видите, средняя скорость поршня увеличилась почти на 13 процентов, хотя число оборотов в минуту не изменилось.
Снижение веса поршня играет огромную роль в создании вращающегося узла, способного выдерживать высокие обороты.Кажущийся незначительным граммовый вес поршня увеличивается экспоненциально с увеличением числа оборотов.Опять же, это средняя скорость поршня за весь ход. Чтобы рассчитать максимальную скорость, которую поршень достигает во время хода, требуется немного больше расчетов, а также длина шатуна и угол наклона штока в зависимости от положения коленчатого вала. Существуют онлайн-калькуляторы, которые вычисляют точную скорость поршня при любом заданном вращении коленчатого вала, но вот основная формула, которую часто используют производители двигателей, не требующей длины штока:
Максимальная скорость поршня (фут / мин) = ((Ход x π) / 12) x об / мин
Рассчитаем максимальную скорость поршня для нашего стокера BBC:
((4.5 x 3,1416) / 12) x 6500 = 7658 футов в минуту
Преобразуя футы в минуту в мили в час (1 фут в минуту = 0,011364 мили в час), этот поршень разгоняется от 0 до 87 миль в час примерно за два дюйма, а затем и обратно до нуля в оставшемся пространстве цилиндра глубиной 4,5 дюйма. Теперь представьте, что поршень BBC весит около 1,3 фунта, и вы можете получить представление об огромных силах, приложенных к коленчатому валу, шатуну и пальцу запястья — вот почему Фасснер предлагает посмотреть на силу инерции.
«Инерция — это свойство материи, которое заставляет ее сопротивляться любому изменению в своем движении», — объясняет Фусснер.«Этот принцип физики особенно важен при разработке поршней для высокопроизводительных приложений».
Когда шатун удлиняется, он обеспечивает более мягкий переход при изменении направления поршня. Более длинный шатун также уменьшает высоту сжатия поршня и может помочь снять вес с вращающегося узла.Сила инерции является функцией массы, умноженной на ускорение, и величина этих сил увеличивается как квадрат скорости двигателя.Другими словами, если вы удвоите частоту вращения двигателя с 3000 до 6000 об / мин, силы, действующие на поршень, не увеличатся — они увеличатся в четыре раза.
«Как только поршень поднимается вверх по цилиндру, он пытается продолжить движение», — напоминает Фусснер. «Его движение останавливается и немедленно прекращается только под действием шатуна и импульса коленчатого вала».
Из-за угловатости штока, на которую влияют длина шатуна и ход двигателя, поршень не достигает своей максимальной скорости вверх или вниз примерно до 76 градусов до и после ВМТ с точными положениями в зависимости от длины штока до коэффициент хода », — говорит Фюсснер.
Шатуны Stroker , такие как эта кованая деталь LS7 от K1 Technologies, являются отличным способом увеличения рабочего объема. Однако при увеличении хода поршень должен ускоряться на каждом обороте быстрее, чтобы покрыть большую рабочую площадь стенки цилиндра. Ищете коленчатый вал LS Stroker? Кликните сюда.«Это означает, что поршень имеет угол поворота кривошипа примерно на 152 градуса для перехода от максимальной скорости к нулю и обратно к максимальной скорости в течение верхней половины хода. А затем примерно 208 градусов, чтобы проделать ту же последовательность во время нижней половины гребка.Следовательно, восходящая сила инерции больше, чем нисходящая сила инерции ».
Если не брать в расчет шатун, есть формула для расчета первичной силы инерции:
0,0000142 x вес поршня (фунты) x об / мин2 x ход (дюймы) = сила инерции
Вес поршня включает кольца, палец и фиксаторы. Давайте рассмотрим простой пример одноцилиндрового двигателя с ходом 3.000 дюймов (такой же, как у small-block 283ci и 302ci Chevy) и 1.Поршень в сборе на 000 фунтов (453,5 грамма), работающий при 6000 об / мин:
0,0000142 x 1 x 6000 x 6000 x 3 = 1534 фунта
С помощью некоторых дополнительных вычислений, использующих длину и ход штока, можно получить поправочный коэффициент для повышения точности результатов силы инерции.
Радиус кривошипа ÷ Длина стержня
«Из-за воздействия шатуна сила, необходимая для остановки и повторного запуска поршня, максимальна в ВМТ», — говорит Фусснер. «Эффект шатуна заключается в увеличении первичной силы в ВМТ и уменьшении первичной силы в НМТ на этот коэффициент R / L.”
В этом примере радиус равен половине хода коленчатого вала (1,5 дюйма), деленной на длину штока 6 000 дюймов, что дает коэффициент 0,25 или 383 фунта (1,534 x 0,25 = 383). Этот коэффициент добавляется к исходной силе инерции для хода вверх и вычитается при движении вниз.
Оба кривошипа слева и справа находятся в одной и той же точке при каждом вращении. Однако поршню слева придется двигаться намного быстрее, чтобы достичь верхней мертвой точки одновременно с поршнем справа.«Таким образом, действительная восходящая сила в ВМТ становится 1917 фунтов, а фактическая направленная вниз сила в НМТ — 1151 фунт», — говорит Фусснер. «Эти силы изменяются прямо пропорционально весу поршневого узла и длине штока, а также пропорционально квадрату частоты вращения двигателя. Следовательно, эти цифры можно рассматривать как базовые, чтобы легко оценить силы, создаваемые в двигателе любого другого размера ».
Между прочим, средняя скорость поршня для этого 1-цилиндрового двигателя при 6000 об / мин составляет 3000 футов в минуту, а максимальная скорость поршня (с использованием нашей предыдущей формулы) составляет 4712 футов в минуту.
Что произойдет, если вы увеличите ход с 3.000 дюймов до 3.250 дюймов? Во-первых, средняя скорость поршня увеличивается до 3250 футов в минуту, а максимальная скорость поршня увеличивается до 5105 футов в минуту. Затем основная сила увеличивается с 1534 фунтов до 1661 фунтов. Также есть изменение при добавлении нового коэффициента R / L 0,27 (1,625 ÷ 6.000). Фактическая восходящая сила в ВМТ становится 2 109 фунтов, а фактическая сила, направленная вниз в НМТ, становится 1213 фунтов.
«Если мы увеличим частоту вращения двигателя на 3.Ход от 250 дюймов до 7000 об / мин, при прочих равных условиях первичная сила увеличивается до 2261 фунта », — говорит Фусснер. «Затем примените коэффициент R / L 0,27, и фактическая сила, направленная вниз, станет 1,651 фунта. Фактическая восходящая сила в ВМТ становится 2 871 фунт. Это почти полторы тонны! »
Теперь рассмотрим эффекты более легкого поршня. При сохранении хода 3,20 дюйма и 7000 об / мин, но при использовании поршня, который весит 340 граммов (0,750 фунта), максимальное усилие снижается с 2871 фунта до 2154 фунта, или на 717 фунтов меньшего усилия.Такая же более легкая конфигурация поршня будет иметь силу в 1238 фунтов, необходимую для остановки и перезапуска поршня при НМТ, что на 413 фунтов меньше.
«Таким образом, с каждым полным оборотом двигатель будет испытывать на 1130 фунтов меньше силы инерции с более легким поршневым узлом», — говорит Фусснер. «Это уменьшение силы инерции, конечно, будет применяться к каждому цилиндру в многоцилиндровом двигателе. Двигатель, работающий на 7000 об / мин, будет останавливаться и запускать каждый поршень 14000 раз в минуту ».
Когда поршень достигает верхней мертвой точки на такте выпуска, у него нет подушки сжатия, которая могла бы замедлить его.Вместо этого шатун принимает на себя всю тяжесть силы, действующей на его балку, и пытается отделить ее колпачок. Качественные шатуны имеют первостепенное значение для высокомощного двигателя с высокими оборотами. Ищете кованые шатуны? Кликните сюда!Средняя и максимальная частота вращения поршня по-прежнему являются ценными вычислениями для любого производителя двигателей, который вносит изменения в проверенную формулу. Превышение средней скорости поршня 5000 футов в минуту должно привлечь ваше внимание и побудить к переосмыслению выбора деталей. Чрезмерная скорость поршня может привести к непостоянной смазке стенки цилиндра, а в некоторых ситуациях поршень действительно будет ускоряться быстрее, чем фронт пламени во время сгорания.В то время как первое может вызвать поломку деталей, второе приводит к потере мощности.
Поршни также должны быть максимально легкими без ущерба для требуемой прочности и долговечности. Силы инерции будут растягивать шатуны и сопротивляться ускорению коленчатого вала, что опять же потенциально может привести к отказу деталей и снижению мощности.
«Мы знаем, что обычная мера, используемая в течение многих лет для предположения, что зона опасности структурной целостности поршня в работающем двигателе — это средняя скорость поршня», — резюмирует Фусснер.«Как сказал своему ученику инструктор по прыжкам с парашютом, болит не скорость падения, а внезапная остановка. Так и с поршнями. Поэтому вместо того, чтобы сосредотачиваться только на средней скорости поршня, давайте решим также рассмотреть влияние силы инерции на поршень и то, что мы можем сделать, чтобы уменьшить эту силу. А если это невозможно, убедитесь, что компоненты достаточно прочны, чтобы выдержать поставленную нами задачу ».
«Хотя увеличение длины штока смягчит инерционную нагрузку за счет изменения вышеупомянутого отношения R / L, оно не приведет к снижению средней скорости поршня, потому что до тех пор, пока не будет изменен ход», — продолжает Фусснер.«Поршень должен пройти такое же расстояние за один оборот коленчатого вала, независимо от длины штока. Скорость — это расстояние, пройденное за единицу времени ».
Последнее замечание о скорости поршня — 2,500 футов в минуту считалось верхним пределом скорости поршня не так давно. Важно учитывать, что средняя скорость поршня также используется в качестве ориентира для рассмотрения других компонентов двигателя, таких как шатуны и коленчатые валы. На заре создания горячих родов у большинства двигателей были чугунные кривошипы и штоки, а также литые алюминиевые поршни, которые не так прочны, как детали двигателей сегодня.
«Таким образом, увеличение прочности этих деталей позволило более чем вдвое увеличить безопасную среднюю скорость поршня до 5000 футов в минуту и более», — говорит Фасснер. «Другой фактор — это использование. Будет ли двигатель работать в течение длительного времени с высокой скоростью поршня или для быстрого прохождения по тормозной полосе? Уменьшение времени выдержки при высоких скоростях поршня увеличивает надежность. Прочные и легкие компоненты смогут выдерживать более высокие скорости поршней, чем тяжелые компоненты с меньшей прочностью ».
Шатун | Инжиниринг | Fandom
Поршень(вверху) и шатун типичного автомобильного двигателя (шкала в сантиметрах)
В поршневом двигателе шатун или шатун соединяет поршень с кривошипом или коленчатым валом.
Двигатели внутреннего сгорания [править | править источник]
Сделано из [править | править код]
В современных автомобильных двигателях внутреннего сгорания шатуны обычно изготавливаются из стали [1] для серийных двигателей, но могут быть из алюминия [2] (для легкости и способности поглощать высокие удары за счет долговечности) или титан [3] (для сочетания прочности и легкости за счет доступности) для двигателей с высокими рабочими характеристиками или из чугуна [4] для таких применений, как мотороллеры.
Детали монтажа [править | править код]
Они не закреплены жестко на обоих концах, поэтому угол между шатуном и поршнем может изменяться при движении штока вверх и вниз и при вращении вокруг коленчатого вала.
Малый конец прикрепляется к поршневому пальцу или пальцу, который в настоящее время чаще всего запрессовывается [5] в шатун, но может поворачиваться в поршне, как «плавающий палец на запястье». Шатун соединяется с шейкой подшипника на ходу кривошипа, работая на сменных вкладышах подшипника, доступных через болты шатуна [6] , которые удерживают «крышку» подшипника на головке шатуна; Обычно в подшипнике и большом конце шатуна просверливается точечное отверстие, так что смазочное масло под давлением [7] разбрызгивается на упорную сторону стенки цилиндра для смазки хода поршней и поршневых колец.
Рабочий [править | править код]
Шатун находится под огромным напряжением от возвратно-поступательной нагрузки, представленной поршнем, фактически растягиваясь и расслабляясь при каждом обороте, и нагрузка быстро увеличивается с увеличением скорости двигателя.
Неудачи [править | править код]
Отказ шатуна — одна из наиболее частых причин катастрофического отказа двигателя в автомобилях, при котором сломанный стержень часто проходит через боковую часть картера, что приводит к неисправности двигателя; это может быть результатом перегрева, физического дефекта штока, отказа смазки в подшипнике из-за неправильного обслуживания или выхода из строя болтов штока из-за дефекта, неправильной затяжки или повторного использования уже использованных (напряженных) болтов, если это не так. рекомендуемые.
Надежность [править | править код]
К счастью, несмотря на их частое появление на телевизионных соревнованиях по автомобильным соревнованиям, такие сбои довольно редко встречаются на серийных автомобилях при обычной повседневной вождении.
Производство[править | править код]
При создании двигателя с высокими рабочими характеристиками большое внимание уделяется шатунам, устранению концентраторов напряжений с помощью таких методов, как шлифование краев шатуна до плавного радиуса, дробеструйная обработка для снятия внутреннего напряжения, балансировка всех узлов шатуна / поршня относительно одинаковый вес и магнитное плавление, чтобы выявить небольшие трещины, которые иначе не заметны, что может привести к поломке стержня под нагрузкой.Кроме того, большое внимание уделяется затяжке болтов шатуна с точным указанным значением; часто эти болты необходимо заменить, а не использовать повторно.
Большой конец штока изготавливается как единое целое и разрезается или раскалывается надвое, чтобы обеспечить точную посадку вокруг вкладыша подшипника большого конца. Следовательно, «крышки» шатунов не являются взаимозаменяемыми между шатунами, и при восстановлении двигателя необходимо следить за тем, чтобы крышки разных шатунов не перепутались. Как на шатуне, так и на крышке подшипника обычно тиснится соответствующий номер позиции в блоке цилиндров.
Более поздняя производственная технология заключается в изготовлении стержня как цельной детали из металлического порошка, что позволяет более точно контролировать размер и вес с меньшими затратами на обработку и меньшим количеством лишней массы, которую необходимо обработать для балансировки. Затем крышка отделяется от стержня в процессе разрушения, что приводит к неровной поверхности сопряжения из-за зерна металлического порошка. Это гарантирует, что при повторной сборке крышка будет идеально расположена по отношению к штоку, по сравнению с небольшими перекосами, которые могут возникнуть, если обе сопрягаемые поверхности будут плоскими.
Износ двигателя [править | править код]
Основным источником износа двигателя является боковая сила, действующая на поршень через шатун коленчатым валом, которая обычно изнашивает цилиндр до овального [8] поперечного сечения, а не круглого, что делает невозможным правильное уплотнение поршневых колец. против стенок цилиндра. Геометрически видно, что более длинные шатуны уменьшают величину этой боковой силы и, следовательно, увеличивают срок службы двигателя. Однако для данного блока цилиндров сумма длины шатуна и хода поршня представляет собой фиксированное число, определяемое фиксированным расстоянием между осью коленчатого вала и верхней частью блока цилиндров, где крепится головка блока цилиндров; таким образом, для данного блока цилиндров более длинный ход поршня, обеспечивающий больший рабочий объем и мощность двигателя, требует более короткого шатуна (или поршня с меньшей высотой сжатия), что приводит к ускоренному износу цилиндра.
Смазка [править | править источник]
Смазка изнашиваемых поверхностей играет важную роль в износе двигателя. Поэтому используемый смазочный материал [9] играет важную роль. Самой последней технологией является добавление ПТФЭ [10] к смазке в той или иной форме.
В паровозе шатунные шейки часто устанавливаются непосредственно на одной или нескольких парах ведущих колес, и ось этих колес служит коленчатым валом. Шатуны, также называемые коренными шатунами , проходят между шатунными шейками и подшипниками крейцкопфа, где они соединяются с поршневыми шатунами.
См. Также номенклатуру паровозов.
Шатун: определение, функции, типы, детали, проблема
Шатун , также называемый шатун , является одной из основных частей двигателя внутреннего сгорания. Хотя он также используется в паровом двигателе, но очень важен для транспортных средств.
Шатун соединяет поршень с коленчатым валом, что способствует преобразованию возвратно-поступательного движения поршня во вращение коленчатого вала.Деталь функционирует как плечо рычага, и она должна передавать сжимающие и растягивающие усилия от поршня и вращаться с обоих концов.
Сегодня мы рассмотрим определение, функции, материал, детали, работу и схему шатунов.
Определение шатунаШатун или шатун преобразует линейное движение вверх и вниз или возвратно-поступательное движение поршня в круговое движение коленчатого вала. Во время процесса он испытывает растяжение, компрессионный изгиб и коробление.
Прочтите Все, что вам нужно знать об автомобильном поршне
Материалы шатунаШатуны обычно изготавливаются из литого алюминиевого сплава, который помогает выдерживать нагрузки, возникающие во время процесса.
При массовом производстве шатун обычно изготавливается из стали. Для высокопроизводительных применений используются заготовки, которые изготавливаются из цельной заготовки, а не отливаются или кованы.
Однако чугун можно использовать для более дешевых и низкопроизводительных применений, таких как мотороллеры.
Конструкция Номенклатура- A = площадь поперечного сечения шатуна.
- L = длина шатуна.
- C = предел текучести при сжатии.
- Wcr = нагрузка от повреждения или продольного изгиба.
- Ixx = момент инерции секции относительно оси x
- Iyy = момент инерции секции относительно оси y соответственно.
- Kxx = радиус вращения секции относительно оси x
- Kyy = радиус вращения секции относительно оси y соответственно.
- D = Диаметр поршня r = Радиус кривошипа
Шатун в двигателе внутреннего сгорания состоит из большого конца , стержня и малого конца .
Поршни соединяются с малым концом шатуна с помощью поршневого пальца или пальца, который может поворачиваться в поршне. Этот штифт обеспечивает точку поворота между поршнем и шатуном. Поршневой палец удерживается на месте пружинным зажимом или фиксатором поршневого пальца.
Шатунная часть шатуна крепится к шатунной шейке с помощью подшипника скольжения, что снижает трение. Но в некоторых двигателях меньшего размера используются подшипники, чтобы избежать необходимости смазки насоса.
Обычно в подшипнике на большом конце шатуна просверливается точечное отверстие. Это позволяет смазочному маслу закачиваться в упорную сторону стенки цилиндра для смазывания хода поршней и поршневых колец.
Наконец, на частях шатуна шатун может вращаться с обоих концов, так что угол между шатуном и поршнем может изменяться, когда шатун совершает возвратно-поступательное движение вокруг коленчатого вала.
Читайте: Знакомство с бензиновым двигателем
Функции Conrod- Основная функция шатуна — создавать связь между поршнем и коленчатым валом для передачи мощности.
- Шатун помогает подавать смазочное масло к стенкам цилиндра и поршневому или поршневому пальцу.
зависят от материала, из которого они сделаны. Ниже представлены различные типы доступных шатунов:
Заготовки шатуны:Заготовки шатунов изготавливаются из цельного куска стали или алюминия.Он легче, прочнее и долговечнее, чем другие виды шатунов. Шатуны из заготовок обычно используются для ходовых автомобилей высокого класса.
Изделие иногда предназначено для уменьшения концентраторов напряжений и облегчения проникновения в естественную зернистость материала заготовки.
Литой стержень:Литой стержень более предпочтителен производителями, так как он способен выдерживать нагрузку стандартного двигателя. Стоимость производства ниже, но не может использоваться в приложениях с высокой мощностью от 450 до 6000 об / мин.
Литые шатуны имеют заметный шов посередине, что отличает их от кованых.
Кованый стержень: Кованые стержниизготавливаются путем придания зерну выбранного материала формы стержня. Материалом может быть стальной сплав или алюминий в зависимости от требуемых свойств.
Ну, производители поковок используют разные виды стальных сплавов, хрома и никелевых сплавов. Конечный продукт не должен быть ломким.Никель или хромовый сплав повышают прочность шатуна.
Металлический порошок: Шатуниз порошкового металла также является подходящим выбором для производителей. Он производится из металлической порошковой смеси, которую прессуют в форму и нагревают при высоких температурах. Он плавит смесь в твердую форму.
Может потребоваться легкая механическая обработка, но продукт выходит из формы в основном в виде готового продукта. Шатуны из порошкового металла дешевле в производстве, чем стальные, и прочнее, чем литые.
Прочтите: Классификация двигателей внутреннего сгорания
Проблемы шатунаШатун может испытывать проблемы во время работы. Это потому, что он испытывает различные напряжения в камере сгорания. Некоторые из этих проблем можно исправить, а некоторые потребовали полной замены шатуна. Во время работы шток растягивается и сжимается, что может привести к его поломке. Сломанный шток может полностью повредить двигатель.Ниже приведена неисправность, возникающая на шатуне:
Усталость:Это основная причина поломки шатуна. Часто встречается в старых двигателях. Сжатие и растяжение стержня во время процесса происходит тысячи раз в минуту. Это в конечном итоге приводит к износу детали, пока она не сломается. Отсутствие масла и наличие грязи в двигателе могут ускорить решение этой проблемы.
Новые двигатели также могут испытывать усталость в соединении при ремонте двигателя.Что ж, такое бывает, когда используются дешевые запчасти или неправильные.
Гидрозамок:Гидрозамок возникает, когда вода проникает в камеру поршня и приводит к деформации шатуна. Обычно это происходит, когда автомобиль проезжает затопленную улицу.
Небольшое количество воды в цилиндре может вызвать стук или постукивание, которые легко устранить. Однако, если в цилиндре много воды, все время искры занято, что может привести к изгибу или разрыву штока цилиндра.
Превышение оборотов:Превышение оборотов — это неисправность, которая возникает в новых высокопроизводительных двигателях. Если тахометр показывает красный цвет, это означает, что состояние шатуна находится под угрозой. Это связано с тем, что силы, действующие на шатун, резко возрастают при высоких оборотах.
Отказ контакта:Поршневой палец, соединяющий шатун с поршнем, изнашивается и выходит из строя. В некоторых двигателях это приводит к катастрофическому отказу двигателя.Это когда шатун идет к блоку двигателя или когда коленчатый вал погнут.
Читайте: Типы автомобильных двигателей
В некоторых двигателях вызывает потерю мощности. В таком случае двигатель остановился сразу после поломки пальца. Есть вероятность, что двигатель спасут, иначе может произойти полная поломка.
Вот и все по артикулу «шатун». Надеюсь, вам понравилось чтение, если так любезно комментируйте, поделитесь и порекомендуйте этот сайт другим техническим студентам.Спасибо!
Вращающийся узел101: штоки, поршни и кривошип
Представьте себе ускорение от полной остановки до средней скорости, приближающейся к 5000 футов в минуту, и обратно до полной остановки 125 раз в секунду. А теперь представьте, что вы делаете это в среде, где температура дымовых газов превышает 1400 градусов по Фаренгейту. Похоже на ад, и это именно то, что должен выдержать каждый поршень в вашем двигателе, когда вы гудите на скорости 8000 об / мин (с двигателем с ходом 95 мм).Теперь представьте преобразование поступательного движения поршней в цилиндрах во вращательное движение при воздействии крутящего момента 600, 700 или 800 фунт-фут. Это работа шатуна и коленчатого вала. Очевидно, что поршням, шатунам и коленчатому валу нужна сила, чтобы выдержать исследуемые уровни мощности. Однако минимизация веса вращающегося узла вместе с выбором соответствующих технологий проектирования может привести к дополнительной производительности и надежности.
Текст и фото Майкла Феррары
ДСПОРТ Выпуск №105Что не так со стандартными поршнями, шатунами и кривошипом
Заводская вращающаяся сборка сделана под лозунгом минимизации производственных затрат.В результате, большинство поршней, используемых в современных двигателях, являются литыми, в то время как штоки, как правило, проектируются с небольшим запасом прочности, чтобы выдерживать суровые условия увеличения мощности не более чем на 30 процентов во многих случаях. Что касается коленчатого вала, то большинство коленчатых валов японских двигателей изготовлены из высококачественной кованой стали и, как правило, могут работать практически с любым уровнем мощности при умеренных оборотах. Однако, когда для конкретного применения требуется больший рабочий объем, высококачественный коленчатый вал с «ходовым движением» может добавить к смеси несколько CC для увеличения выходного крутящего момента и отклика на низкой скорости.
Расчет характеристик поршня, штока и коленчатого вала до сборки двигателя поможет вам определить, как ваш двигатель будет работать после сборки.
Идущий свет правильный
В зависимости от частоты вращения двигателя (об / мин), хода двигателя и отношения длины штока к ходу кривошипа, ускорение поршня может приближаться к уровням, в 10000 раз превышающим силу тяжести или 10,000 Gs. Если вы когда-нибудь были на аттракционе, имитирующем свободное падение, представьте, что это ускорение, умноженное на 10 000.Это безумие. Поскольку сила равна массе, умноженной на ускорение, сила, которую поршень оказывает на палец, пропорциональна весу поршня и его колец. Сила, которую поршень, кольца и штифт прикладывают к узкому концу шатуна, пропорциональна совокупному весу поршня, поршневых колец и пальца. Если вы можете уменьшить вес поршня, колец и штифта на 10 или 20 процентов, вы уменьшите нагрузку на малый конец шатуна на ту же величину.Вес шатуна плюс вес поршня, колец и пальца будут влиять на нагрузки, воспринимаемые коленчатым валом. Вес самого коленчатого вала имеет наибольшее влияние на «инерцию» вращающегося узла. Более тяжелый коленчатый вал будет иметь те же характеристики, что и более тяжелый маховик. Без нагрузки двигатель будет вращаться более свободно.
Шесть способов увеличить мощность
Высокопроизводительный поршень для вторичного рынка может повысить производительность шестью различными способами.Во-первых, поршень с коваными характеристиками может изготавливаться с отверстиями различных размеров для увеличения рабочего объема двигателя. Как показывает практика, процентное увеличение рабочего объема обеспечивает равнопроцентное увеличение крутящего момента и мощности. Во-вторых, поршни с характеристиками вторичного рынка можно заказать с более высокой степенью сжатия, чем исходный поршень. Более высокая степень сжатия улучшает тепловой КПД двигателя. Это позволяет двигателю производить больше мощности при одновременном снижении температуры выхлопных газов.Для большинства применений увеличение полной степени сжатия обычно приводит к увеличению мощности и крутящего момента на четыре процента. В-третьих, кованые поршни на вторичном рынке в сочетании с качественным комплектом поршневых колец, как правило, обеспечивают улучшенное кольцевое уплотнение. Это улучшенное кольцевое уплотнение означает, что давление остается в цилиндре, а не уходит в картер. В результате двигатель снова выдает больше мощности и работает более эффективно. В-четвертых, хорошо продуманный поршень для вторичного рынка высвободит дополнительную мощность за счет уменьшения трения в цилиндре.Часто кованые поршни используют более тонкие наборы колец и имеют профиль юбки, который значительно снижает контакт цилиндра с поршнем. Некоторые производители идут еще дальше и наносят смазку с сухой пленкой на юбки поршня, чтобы еще больше минимизировать трение. В-пятых, более прочный сплав, используемый в кованых поршнях, может выдерживать большее давление наддува в асинхронных двигателях. Повышенное давление наддува в сочетании с правильным количеством топлива и опережения зажигания приведет к увеличению мощности. Наконец, поскольку материал и производственный процесс, используемые для изготовления кованого поршня, превосходят литые поршни, часто можно уменьшить вес поршня.Поршень также может быть сконструирован с использованием более короткого поршневого пальца для дальнейшего снижения общего веса. Более легкий поршень позволяет двигателю более комфортно работать на более высоких оборотах, делая его более отзывчивым.
Шесть способов повысить надежность
Помимо предоставления по меньшей мере шести возможностей для повышения выходной мощности, кованый поршень с характеристиками вторичного рынка также может предоставить шесть способов повышения прочности и надежности. Во-первых, кованые поршни доступны из материала 4032 (с низким содержанием кремния) или 2618 (без кремния).Оба этих материала обладают превосходными физическими характеристиками по сравнению с алюминиевым сплавом, используемым в большинстве литых поршней. Это означает, что вы начинаете с превосходного материала. Во-вторых, кованый поршень с характеристиками вторичного рынка может изменить положение канавок для колец, чтобы опустить пакет колец вдали от тепла или увеличить размер контакта с кольцом, который может быть поврежден от детонации. В-третьих, с помощью анализа методом конечных элементов и компьютерного моделирования; Производитель поршня может изменить конструкцию поршня, чтобы обеспечить максимальное соотношение прочности и веса.В-четвертых, в том же духе производитель высокопроизводительных поршней может увеличить толщину материала в критических областях, таких как области днища и выступа пальца поршня. В-пятых, производитель поршня может установить тепловой барьер на головку поршня, чтобы ограничить теплопередачу через поршень. Наконец, разработчик поршня может использовать поршневые пальцы большего диаметра или с более толстыми стенками, чтобы выдерживать высокие нагрузки и нагрузки, связанные с повышенными требованиями к мощности.
Стержни CWI Pro — Crank Works
Вы здесь: Удилища CWI Pro
| |
CWI Pro разработаны для повышения производительности по сравнению с OEM-компонентами.Они обладают превосходной прочностью и долговечностью, что продлевает срок службы каждого стержня. Стержни Pro Rods могут выдерживать большие нагрузки без сбоев, особенно в экстремальных условиях и в гонках, что делает их верным выбором для тех, кто ищет более прочный и эффективный двигатель.
Сплав CWI Choice
Четыре года исследований и испытаний различных композитных материалов привели к окончательному выбору CWI сплава аэрокосмического класса для использования в этих превосходных шатунах.Этот инновационный материал был выбран из-за его превосходных свойств, которые позволяют ему соответствовать экстремальным требованиям высокопроизводительных двигателей, используемых в индустрии силовых видов спорта.
Процесс обработки
Pro Rods начинаются с производства гидроабразивных заготовок, которые обрабатываются на фрезерных станках с ЧПУ с использованием сложных 3D-проектов САПР. Многие из наших стержней являются результатом разработок, прошедших обширные испытания методом FEA и реальных испытаний. Затем со стержней снимаются заусенцы в вибрационном резервуаре для снятия заусенцев, чтобы еще больше уменьшить любые факторы напряжения и помочь сгладить любые дефекты.
Термическая обработка
Наши стержни начинаются с меднения некритических участков. Затем они подвергаются термообработке в соответствии со строгими спецификациями на сертифицированном предприятии по термообработке Nadcap, ISO и AMS. Этот процесс значительно укрепляет стержни для повышения прочности. Оттуда со стержней снимается медь, чтобы их можно было правильно обработать дробеструйной обработкой.
Дробеструйная обработка
Стержни проходят процесс дробеструйной обработки для повышения их прочности и гибкости.Дробеструйная обработка увеличивает прочность компонентов примерно на 30%, позволяя им выдерживать постоянное изгибание и неправильное обращение в течение более длительного времени.
Лазерное травление
Каждой партии стержней присваивается присвоенный номер партии, который наносится на поверхность лазером для отслеживания характеристик материала и термообработки. Лазерное травление также включает общие размеры каждого стержня, включая их межцентровую длину, и фирменный логотип CWI Pro Rods.
Бронзовая втулка премиум-класса
Каждый 4-тактный стержень имеет втулку на малом конце, чтобы предотвратить заедание булавки. Втулки CWI изготовлены из бронзового сплава премиум-класса для обеспечения оптимальной производительности.
Цена: 215 — 295 долларов
Сделайте выбор ниже, чтобы увидеть доступные приложения:
(Нажмите для просмотра)
.