ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Из чего состоит двигатель автомобиля схема

Содержание

  1. Автомобиль от А до Я: устройство двигателя внутреннего сгорания
  2. По применяемому топливу
  3. — Бензиновые двигатели
  4. — Дизельные двигатели
  5. — Газовые двигатели
  6. По способу воспламенения
  7. По числу и расположению цилиндров
  8. — Рядный двигатель
  9. — V-образный
  10. — Оппозитный
  11. — VR-образный
  12. — W-образный
  13. Механизмы
  14. Системы
  15. Кривошипно-шатунный механизм
  16. Блок цилиндров
  17. Головка блока цилиндров
  18. Поддон картера
  19. Поршень
  20. Шатун
  21. Коленчатый вал
  22. Маховик
  23. Газораспределительный механизм
  24. Распределительный вал
  25. Клапана
  26. Принцип работы двигателя
  27. Определения
  28. Устройство двигателя. Принцип работы ДВС
  29. Классификация двигателей внутреннего сгорания
  30. Бензиновые
  31. Дизельные
  32. Роторно-поршневые двигатели Ванкеля
  33. Газотурбинные
  34. Устройство двигателя внутреннего сгорания
  35. Принцип работы ДВС
  36. Принцип работы двухтактного ДВС
  37. Четырёхтактный ДВС
  38. Дополнительные системы ДВС
  39. Система зажигания
  40. Впускная система
  41. Топливная систем
  42. Выхлопная система
  43. Система смазки
  44. Система охлаждения
  45. Заключение

Автомобиль от А до Я: устройство двигателя внутреннего сгорания

Новая рубрика, готовьтесь! Будет много познавательного текста с картинками.

Двигатель внутреннего сгорания (ДВС) является сердцем автомобиля. Главная особенность этих двигателей заключается в том, что воспламенение топлива происходит внутри камеры сгорания (КС), а не в сторонних внешних агрегатах.

В процессе работы тепловая энергия, выделяемая, вследствие, сгорания топлива, преобразуется в механическую.

По применяемому топливу

— легкие жидкие (газ, бензин)

— тяжелые жидкие (дизельное топливо)

— Бензиновые двигатели

Бывают двух типов: бензиновые карбюраторные и бензиновые инжекторные.

В первом случае смесеобразование (смешивания топлива с воздухом) происходит в карбюраторе или во впускном коллекторе с помощью форсунок. Далее, смесь попадает в цилиндр, сжимается и поджигается искрой от свечи.

Во втором же случае, топливо впрыскивается во впускной коллектор или в цилиндр с помощью инжекторов (распыляющие форсунки).

— Дизельные двигатели

Специальное дизельное топливо (ДТ) подается в определенный момент (не доходя до мертвых точек) в цилиндр под высоким давлением с помощью форсунки.

Движение поршня сжимает смесь еще сильнее, топливо нагревается, с последующим воспламенением горючей смеси (за счет высокого давления).

Такие двигатели характеризуются малыми оборотами и высоким крутящим моментом.

— Газовые двигатели

В качестве топлива, двигатель использует углеводороды. В основ, такие двигатели работают на пропане, но встречаются и другой газ в качестве топлива.

Главное отличие от других двигателей — высокая степень сжатия. Такие двигатели меньше изнашиваются благодаря тому, что топливо уже подается в газообразном состоянии. Также, экономичность газовых двигателей на лицо — газ дешевле бензина.

Стоит отметить и экологичность — отсутствует дымность двигателя.

По способу воспламенения

— от искры (бензиновые)

— от сжатия (дизельные)

По числу и расположению цилиндров

— Рядный двигатель

Наиболее распространенная компоновка, цилиндры расположены в один ряд перпендикулярно коленчатому валу. Такие двигатели просты в конструкции, но при большом количестве цилиндров — увеличивается размер двигателя в длину.

— V-образный

Для уменьшения длины агрегата, цилиндры располагают под углом от 60 до 120 градусов, при этом, продольные оси цилиндров совпадают с продольной осью коленчатого вала.

Двигатель получается довольно небольших размеров в продольном отношении (короткий).

Из минусов: довольно большая ширина двигатели и раздельные головки блока, что приводит к увеличению себестоимости при изготовлении.

— Оппозитный

Горизонтально-оппозитный двигатель имеет меньшие габариты по высоте, что позволит снизить центр тяжести всего автомобиля. Из плюсов можно выделить: компактность, симметричность компоновки.

— VR-образный

За счет 6-ти цилиндров, расположенных под углом 150 градусов, образуется весьма компактный (узкий и короткий) двигатель. А также, этот двигатель имеет всего одну головку блока.

— W-образный

В этих двигателях соединены два ряда цилиндров в VR-исполнении.

Угол расположения цилиндров равен — 150 градусам, а сами ряды — под углом 720 градусов.

Штатный автомобильный двигатель состоит из 2-х механизмов и 5-ти систем.

Механизмы
  • кривошипно-шатунный механизм;
  • газораспределительный механизм.

Системы
  • охлаждение
  • смазка
  • питание
  • зажигание
  • выпуска отработавших газов

Рассмотрим механизмы двигателя подробнее.

Кривошипно-шатунный механизм

Данный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

В свою очередь, кривошипно-шатунный механизм состоит из:

1) блока цилиндров с картером;

2) головки блока цилиндра;

3) поддона картера двигателя;

6) коленчатого вала;

Блок цилиндров

Представляет собой цельноотлитую деталь, объединяющей цилиндры двигателя. На нем располагаются опорные поверхности для установки коленчатого вала, а к верхней части, как правило, крепится головка блока цилиндров.

Цилиндры в блоке делаются либо отлитыми заедино с блоком, либо представляют собой отдельные сменные втулки.

Также, блок отрабатывает еще, не менее важную, функцию — по отверстия в блоке под давлением подается масло для смазки.

Внутренние стенки цилиндров служат направляющими для поршней во время их перемещения.

Головка блока цилиндров

Непосредственно в головке цилиндров располагается камера сгорания, свечи, клапаны, также в ней, на подшипниках, вращается распределительный вал с кулачками. Присутствуют отверстия, как и в блоке цилиндров, для смазывающих веществ.

Головка крепится к блоку цилиндра, образуя основной агрегат двигателя.

Поддон картера

Картер отливается вместе с блоком цилиндров. Его прямое назначение — резервуар для масла. В нижней части присутствует пробка для того, чтобы была возможность слить старое масло при его замене. Поддон крепится к картеру болтами, а во избежания утечки масла — ставится прокладка.

Поршень

Цилиндрическая деталь, которая совершает возвратно поступательное движение внутри цилиндра.

Поршень состоит из: днища, уплотняющей части, направляющей части (юбка).

Форма днища зависит от возложенных на поршень задач. Вогнутое днище позволяет создать более рациональную камеру сгорания. Выгнутое — делает поршень прочнее, но уменьшается рациональность камеры сгорания.

Днище с уплотняющей частью образуют головку поршня. В уплотняющей части располагаются маслосъемные и компрессионные кольца.

Юбка поршня служит для направления движения в цилиндре.

Шатун

Именно шатун соединяет поршень (с помощью поршневого «пальца») с коленчатым валом (с помощью шатунной шейки коленчатого вала). Предназначен для передачи возвратно поступательного движения.

Для того, чтобы снизить износ шатунных шеек коленчатого вала, между ними и шатунами помещаются антифрикционные вкладыши.

Коленчатый вал

Деталь сложной формы, имеющая шейки для крепления шатунов, от которых воспринимает усилия и преобразует их в крутящий момент.

Коленчатый вал имеет сложную форму и выполняется из сталей или чугунов.

Маховик

Маховик — зубчатое колесо, предназначенное для: запуска двигателя, соединения двигателя с трансмиссией, передачи крутящего момента с двигателя на коробку передач и стабилизирует работу коленчатого вала.

Газораспределительный механизм

— впускных и выпускных клапанов.

Распределительный вал

Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.

Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.

Клапана

Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).

Принцип работы двигателя

Определения

Верхняя мертвая точка – крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка – крайнее нижнее положение поршня в цилиндре.

Ход поршня – расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания – пространство между головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра – пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя – сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра – сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия – показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия – давление в цилиндре в конце такта сжатия.

Такт – процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Источник

Устройство двигателя.

Принцип работы ДВС

Практически все современные автомобили оснащены двигателем внутреннего сгорания, имеющим аббревиатуру ДВС. Несмотря на постоянный прогресс и сегодняшнее стремление автомобильных концернов отказаться от моторов, работающих на нефтепродуктах в пользу более экологичной электроэнергии, львиная доля машин ездит на бензине или дизельном топливе.

Основными принципом ДВС является то, что топливная смесь воспламеняется непосредственно внутри агрегата, а не вне его (как, к примеру, в тепловозах или устаревших паровозах). Такой способ имеет относительно большой коэффициент полезного действия. К тому же, если говорить об альтернативных моторах на электрической тяге, то двигатели внутреннего сгорания обладает рядом неоспоримых преимуществ.

  • большой запас хода на одном баке;
  • быстрая заправка;
  • согласно прогнозам, уже через несколько лет энергосистемы развитых стран не будут в силах погасить потребность в электроэнергии из-за большого количества электрокаров, что может привести к коллапсу.

Классификация двигателей внутреннего сгорания

Непосредственно ДВС отличаются по своему устройству. Все моторы можно разделить на несколько самых популярных категорий в зависимости от принципа работы:

Бензиновые

Наиболее распространенная категория. Работает на главных продуктах нефтепереработки. Основным элементом в таком моторе является цилиндро-поршневая группа или ЦПГ, куда входит: коленвал, шатун, поршень, поршневые кольца и сложный газораспределительный механизм, который обеспечивает своевременное наполнение и продувку цилиндра.

Бензиновые двигатели внутреннего сгорания подразделяются на два типа в зависимости от системы питания:

  1. карбюраторные . Устаревшая в условиях современной реальности модель. Здесь формирование топливно-воздушной смеси осуществляется в карбюраторе, а пропорцию воздуха и бензина определяет набор жиклеров. После этого карбюратор подает ТВС в камеру сгорания. Недостатками такого принципа питания является повышенное потребление топлива и прихотливость всей системы. К тому же она сильно зависит от погоды, температуры и прочих условий.
  2. инжекторные или впрысковые . Принципы работы двигателя с инжектором кардинально противоположны. Здесь смесь впрыскивается непосредственно во впускной коллектор через форсунки, а затем разбавляется нужным количеством воздуха. За исправную работу отвечает электронный блок управления, который самостоятельно высчитывает нужные пропорции.

Дизельные

Устройство двигателя, работающего на дизеле, кардинально отличается от бензинового агрегата. Поджог смеси здесь происходит не благодаря свечам зажигания, дающим искру в определенный момент, а из-за высокой степени сжатия в камере сгорания. Данная технология имеет свои плюсы (больший КПД, меньшие потери мощности из-за большой высоты над уровнем моря, высокий крутящий момент) и минусы (прихотливость ТНВД к качеству топлива, большие выбросы СО2 и сажи).

Роторно-поршневые двигатели Ванкеля

Данный агрегат имеет поршень в виде ротора и три камеры сгорания, к каждой из которых подведена свеча зажигания. Теоретически ротор, движущийся по планетарной траектории, каждый такт совершает рабочий ход. Это позволяет существенно повысить КПД и увеличить мощность двигателя внутреннего сгорания. На практике это сказывается гораздо меньшим ресурсом. На сегодняшний день только автомобильная компания Mazda делает такие агрегаты.

Газотурбинные

Принцип работы ДВС такого типа заключается в том, что тепловая энергия переходит в механическую, а сам процесс обеспечивает вращение ротора, приводящего в движения вал турбины. Подобные технологии используются в авиационном строительстве.

Устройство двигателя внутреннего сгорания

Любой поршневой ДВС (самые распространенные в современных реалиях) имеет обязательный набор деталей. К таким частям относится:

  1. Блок цилиндров, внутри которого двигаются поршни и происходит сам процесс;
  2. ЦПГ: цилиндр, поршни, поршневые кольца;
  3. Кривошипно-шатунный механизм. К нему относится коленвал, шатун, «пальцы» и стопорные кольца;
  4. ГРМ. Механизм с клапанами, распределительными валами или «лепестками» (для 2-х тактных двигателей), который обеспечивает корректную подачу топлива в нужный момент;
  5. Cистемы впуска. О них говорилось выше – к ней относятся карбюраторы, воздушные фильтры, инжекторы, топливный насос, форсунки;
  6. Системы выпуска. Удаляет отработанные газы из камеры сгорания, а также снижает шумность выхлопа;

Принцип работы ДВС

В зависимости от своего устройства, двигатели можно разделить на четырехтактные и двухтактные. Такт – есть движение поршня от своего нижнего положения (мертвая точка НМТ) до верхнего положения (мертвая точка ВМТ). За один цикл двигатель успевает наполнить камеры сгорания топливом, сжать и поджечь его, а также очистить их. Современные ДВС делают это за два или четыре такта.

Принцип работы двухтактного ДВС

Особенностью такого мотора стало то, что весь рабочий цикл происходит всего за два движения поршня. При движении вверх создается разреженное давление, которое засасывает топливную смесь в камеру сгорания. Вблизи ВМТ поршень перекрывает впускной канал, а свеча зажигания поджигает топливо. Вторым тактом следует рабочий ход и продувка. Выпускной канал открывается после прохождения части пути вниз и обеспечивает выход отработанных газов. После этого процесс возобновляется по новой.

Теоретически, преимуществом такого мотора более высокая удельная мощность. Это логично, ведь сгорание топлива и рабочий такт происходит в два раза чаще. Соответственно, мощность такого двигателя может быть в два раза больше. Но эта конструкция имеет массу проблем. Из-за больших потерь при продувке, большого расхода топлива, а также сложностей в расчетах и «норовистой» работе двигателя, эта технология сегодня используется только на малокубатурной технике.

Интересно, что полвека назад активно велись разработки дизельного двухтактного ДВС. Процесс работы практически не отличался от бензинового аналога. Однако, несмотря на преимущества такого мотора, от него отказались из-за ряда недостатков.

Основным минусом стал огромный перерасход масла. Из-за комбинированной системы смазки топливо попадало в камеру сгорания вместе с маслом, которое потом попросту выгорало или удалялось через выпускную систему. Большие тепловые нагрузки также требовали более громоздкой системы охлаждения, что увеличивало габариты мотора. Третьим минусом стал большой расход воздуха, который вел к преждевременному износу воздушных фильтров.

Четырёхтактный ДВС

Мотор, где рабочий цикл занимает четыре хода поршня, называется четырехтактным двигателем.

  1. Первый такт – впуск. Поршень двигается из верхней мертвой точки. В этот момент ГРМ открывает впускной клапан, через который топливно-воздушная смесь поступает в камеру сгорания. В случае с карбюраторными агрегатами поступление может осуществляться за счет разрежения, а инжекторные двигателя впрыскивают топливо под давлением.
  2. Второй такт – сжатие. Далее поршень движется из нижней мертвой точки вверх. К этому моменту впускной клапан закрыт, а смесь постепенно сжимается в полости камеры сгорания. Рабочая температура поднимается до отметки 400 градусов.
  3. Третий такт – рабочий ход поршня. В ВМТ свеча зажигания (или большая степень сжатия, если речь идет о дизеле) поджигает топливо и толкает поршень с коленчатым валом вниз. Это основной такт во всем цикле работы двигателя.
  4. Четвертый такт – выпуск. Поршень снова движется вверх, выпускной клапан открывается, а из камеры сгорания удаляются отработанные газы.

Дополнительные системы ДВС

Независимо от того, из чего состоит двигатель, у него должны быть вспомогательные системы, которые способны обеспечить его исправную работу. К примеру, клапаны должны открываться в нужное время, в камеры поступать нужное количество топлива в определенной пропорции, вовремя подаваться искра и т. д. Ниже рассмотрены основные части, способствующие корректной работе.

Система зажигания

Эта система отвечает за электрическую часть в вопросе воспламенения топлива. К основным элементам относится:

  • Элемент питания. Основным источником питания является аккумулятор. Он обеспечивает вращение стартера на выключенном двигателе. После этого в работу включается генератор, который питает двигатель, а также подзаряжает саму аккумуляторную батарею через реле зарядки.
  • Катушка зажигания. Устройство, которое передает одномоментный заряд непосредственно на свечу зажигания. В современных автомобилях количество катушек равносильно количеству цилиндров, которые работают в двигателе.
  • Коммутатор или распределитель зажигания. Специальной «умное» электронное устройство, которое определяет момент подачи искры.
  • Свеча зажигания. Важный элемент в бензиновом ДВС, который обеспечивает своевременное воспламенение топливно-воздушной смеси. Продвинутые двигатели имеют по две свечи на цилиндр.

Впускная система

Смесь должна вовремя поступать в камеры сгорания. За этот процесс отвечает впускная система. К ней относится:

  • Воздухозаборник. Патрубок, специально выведенный в место, недоступное для воды, пыли или грязи. Через него осуществляется забор воздуха, который потом попадает в двигатель;
  • Воздушный фильтр. Сменная деталь, которая обеспечивает очистку воздуха от грязи и исключает попадание посторонних материалов в камеру сгорания. Как правило, современные автомобили обладают сменными фильтрами из плотной бумаги или промасленного поролона. На более архаичных моторах встречаются масляные воздушные фильтры.
  • Дроссель. Специальная заслонка, которая регулирует количество воздуха, попадающего в впускной коллектор. На современной технике действует посредством электроники. Сначала водитель нажимает на педаль газа, а потом электронная система обрабатывает сигнал и следует команде.
  • Впускной коллектор. Патрубок, который распределяет топливно-воздушную смесь по различным цилиндрам. Вспомогательными элементами в этой системе являются впускные заслонки и усилители.

Топливная систем

Принцип работы любого ДВС подразумевает своевременное поступление топлива и ее бесперебойную подачу. В комплекс также входит несколько основных элементов:

  • Топливный бак. Резервуар, где хранится топливо. Как правило, располагается в максимально безопасном месте, вдали от мотора и сделан из негорючего материала (ударопрочный пластик). В нижней его части установлен бензонасос, который осуществляет забор топлива.
  • Топливопровод. Система шлангов, ведущая от топливного бака непосредственно к двигателю внутреннего сгорания.
  • Прибор образования смеси. Устройство, где смешиваются топливо и воздух. Об этом пункте уже упоминалось выше – за эту функцию может отвечать карбюратор или инжектор. Основным требованием является синхронная и своевременная подача.
  • Головное устройство в инжекторных двигателях, которое определяет качество, количество и пропорции образования смеси.

Выхлопная система

В ходе того, как работает двигатель внутреннего сгорания, образуются выхлопные газы, которые необходимо выводить из мотора. Для правильной работы эта система обязана иметь следующие элементы:

  • Выпускной коллектор. Устройство из тугоплавкого металла с высокой устойчивостью к температурам. Именно в него первоначально поступают выхлопные газы из двигателя.
  • Приемная труба или штаны. Деталь, обеспечивающая транспортировку выхлопных газов далее по тракту.
  • Резонатор. Устройство, снижающее скорость движения выхлопных газов и погашение их температуры.
  • Катализатор. Предмет для очистки газов от СО2 или сажевых частиц. Здесь же располагается лямда-зонд.
  • Глушитель. «Банка», имеющая ряд внутренних элементов, предназначенных для многократного изменения направления выхлопных газов. Это приводит к снижению их шумности.

Система смазки

Работа двигателя внутреннего сгорания будет совсем недолгой, если детали не будут обеспечиваться смазкой. Во всей технике используется специальное высокотемпературное масло, обладающее собственными характеристиками вязкости в зависимости от режимов эксплуатации мотора. Ко всему, масло предотвращает перегрев, обеспечивает удаление нагара и появление коррозии.

Для поддержания исправности системы предназначены следующие элементы:

  • Поддон картера. Именно сюда заливается масло. Это основной резервуар для хранения. Контролировать уровень можно при помощи специального щупа.
  • Масляный насос. Находится вблизи нижней точки поддона. Обеспечивает циркуляцию жидкости по всему мотору через специальные каналы и его возвращение обратно в картер.
  • Масляный фильтр. Гарантирует очистку жидкости от пыли, металлической стружки и прочих абразивных веществ, попадающих в масло.
  • Радиатор. Обеспечивает эффективное охлаждение до положенных температур.

Система охлаждения

Еще один элемент, который необходим для мощных двигателей внутреннего сгорания. Он обеспечивает охлаждение деталей и исключает возможность перегрева. Состоит из следующих деталей:

  • Радиатор. Специальный элемент, имеющий «сотовую» структуру. Является отличным теплообменником и эффективно отдает тепло, гарантируя охлаждение антифриза.
  • Вентилятор. Дополнительный элемент, дующий на радиатор. Включается тогда, когда естественный поток набегающего воздуха уже не может обеспечить эффективное отведение тепла.
  • Помпа. Насос, который помогает жидкости циркулировать по большому или малому кругу системы (в зависимости от ситуации).
  • Термостат. Клапан, который открывает заслонку, пуская жидкость по нужному кругу. Работает совместно с датчиком температуры движка и охлаждающей жидкости.

Заключение

Первый двигатель внутреннего сгорания появился еще очень давно – почти полтора столетия назад. С тех пор было сделано огромное количество разных нововведений или интересных технических решений, которые порой меняли вид мотора до неузнаваемости. Но общий принцип работы двигателя внутреннего сгорания оставался прежним. И даже сейчас, в эпоху борьбы за экологию и постоянно ужесточающийся норм по выбросу СО2, электромобили все еще не в силах составить серьезную конкуренцию машинам с ДВС. Бензиновые автомобили и сейчас живее всех живых, а мы живем в золотую эпоху автомобилестроения.

Ну а для тех, кто готов погрузиться в тему еще глубже, у нас есть отличное видео:

Источник

Устройство двигателя автомобиля — Статьи

Устройство двигателя автомобиля одновременно простое и сложное. Каждый профессиональный механик должен знать принцип его работы для осуществления ремонта. Водителю также не помешает знать строение данной системы, если он часто восстанавливает неполадки самостоятельно.

Это самая важная деталь машины и от его работоспособности зависит качество движения, скорость и динамика. Основной функцией данной системы является конвертация тепловой энергии в электрическую энергию путём сжигания бензина или другого вида топлива. Схема устройства показывает, что двигатель состоит из нескольких компонентов, и мы предлагаем обсудить основные моменты работы ДВС.

Какие бывают двигатели?

Системы различают согласно методу взаимодействия с топливом различного типа:

Способ подготовки горючей смеси может быть разным – бывает карбюраторный, инжекторный или газовый двигатель автомобиля, который относится к категории внешнего типа подготовки смеси для сжигания.

Также есть системы внутреннего образования смеси. Двигатели разделяют по типу используемого топлива – это может быть бензиновый, газовый или дизельный вариант. Также есть электродвигатель, однако он имеет совершенно другое строение. Охлаждаются данные системы жидкостью или воздушным потоком. Двигатель использует цилиндры, которые располагаются в ряд или в форме буквы V. Жидкость может сжигаться в случае поворота ключа зажигания или в результате возгорания после сжатия.

Устройство и работа двигателя автомобиля зависят от типа использования топлива. Различают бензиновые, дизельные или газовые. Бензиновый вариант начинает вырабатывать энергию от воспламенения после поворота ключа зажигания. Топливо смешивается с воздухом и получается горючая смесь. Карбюратор или инжектор отвечает за её дозирование. Порция смеси зажигается от искры свечи.

Устройство двигателя на дизеле работает несколько по-другому. Топливо смешивается с воздухом, однако возгорание происходит в результате сжатия. Дизельная система подготавливает смесь внутри цилиндра – воздух и топливо поступает в цилиндр из разных источников. После поступления двух компонентов эта смесь сжимается и из-за большой разницы температуры воспламеняется. Некоторые производители используют системы быстрого впрыска топлива, где топливо зажигается от электрической искры.

Что касается газового двигателя автомобиля ВАЗ, то данный вид системы работает на газе пропан-бутан. Газ смешивается с воздухом и подаётся внутрь цилиндра. Принцип функционирования данной системы мало чем отличается от бензинового ДВС. Но если машина работает на газу, то рекомендуется изучать его характеристики и устройство работы.

Из каких механических компонентов состоит двигатель:

Механизм криво-шатунного типа. Система распределения газа. Топливная система. Система для удаления выхлопных газов. Механизм для зажигания. Система для охлаждения двигателя. Смазывающий механизм. Из чего состоит двигатель внутреннего сгорания?

Рассмотрим особенности строения ДВС на примере стандартного двигателя с одним цилиндром. Внутри этой системы протекают различные процессы, и благодаря этому возникает крутящий момент. Колёса приводятся в движение, и вся конструкция перемещается по дороге.

Одна из самых важных запчастей ДВС – это цилиндр, внутри которого располагается поршень и коленвал. Поршень двигается вверх и вниз, а криво-шатунный механизм отвечает за преобразование движения коленвала.

К коленвалу прикрепляется маховик, который делает вращение коленчатого вала равномерным. В верхней части цилиндр закрыт головкой, и внутри этой части также находится впускной и выпускной клапан – эти клапаны закрывают каналы.

За открывание этих клапанов отвечает распредвал и передаточные детали. Распредвал работает за счёт шестерней коленчатого вала. Чтобы двигатель работал стабильно, в цилиндры постоянно должна поступать смесь топлива и воздуха. Эти два компонента должны подаваться в определённом количестве. Чтобы уменьшить трение деталей, уменьшить температуру и предотвратить быстрое изнашивание компонентов двигателя используется масло. Чтобы снизить температуру всего ДВС, используется система охлаждения воздухом или водой.

Как происходит работа ДВС?

Что касается двигателей поршневого типа, то они состоят из поршня, а верхняя часть шатунного механизма постоянно перемещается выше и ниже. В это время коленвал и другая часть шатунного механизма вращается по кругу. Если посмотреть на всю эту конструкцию со стороны, то коленвал вращается по кругу. За время оборота вала поршень успевает подняться выше и опуститься ниже.

Коленчатый вал вращается с постоянной скоростью, а быстрота колебания поршня может повышаться и уменьшаться. Самый маленький показатель быстроты колебаний наблюдается, когда поршень находится в самой высокой или нижней точке – ведь в верхней и нижней части поршень должен остановиться.

Четыре такта функционирования двигателя

Сердце автомобилей работает в четыре этапа, который называют тактами. Рассмотрим принцип работы:

Впуск. Коленвал ДВС совершает оборот на 360 градусов, а поршень продолжает движение вверх и вниз. Клапан открывается и закрывается. Внутри цилиндра формируется разрежение, благодаря которому одна порция смеси воздуха и топлива попадает в цилиндр. Также эта субстанция смешивается с выхлопными газами. Сжатие. Когда в цилиндр попадает топливо, коленвал продолжает делать обороты и поршень продолжает двигаться. Температура понижается, и давление топливной смеси повышается. Расширение и рабочий ход. Топливо зажигается от свечи – вся субстанция очень быстро сгорает, и температура внутри камеры значительно возрастает. Поршень быстро поднимается вверх и опускается вниз. Когда газообразная субстанция расширяется, то КПД поршня становится положительным.

Это явление называется рабочим ходом. Выпуск. Совершается ещё один оборот коленвала и одно движение поршня. Через открытый клапан выбрасываются отработанные газы, и всё начинается сначала.

Отметим, что принцип работы двигателей различного типа может отличаться от вышеописанного процесса. Если вы хотите серьёзно заняться ремонтом этой системы, то следует ознакомиться с конкретным видом ДВС, а уже потом делать соответствующие выводы. Для каждого водителя важно, чтобы его машина функционировала стабильно. По этой причине следует как можно чаще проводить диагностику автомобиля, чтобы можно было на раннем этапе определить поломку. Грамотный владелец машины всегда консультируется с мастером, а уже потом пытается устранить поломку самостоятельно.

Стоит ли ремонтировать всё самому или лучше поехать в ближайший автосервис для осмотра мотора? На этот вопрос вы можете ответить только сами. Если машина новая, то её можно обслужить по гарантии. Но если вы приобрели подержанный автомобиль, то можно произвести ремонт самому при наличии своих собственных инструментов.

Но самый простой и, чаще всего, быстрый вариант – это воспользоваться услугами СТО. Мы предлагаем не тратить время на поиски исполнителя, а отправиться на сайт Uremont.com, где собраны самые лучшие автосервисы вашего города. Там можно заказать услугу или связаться с компанией для уточнения деталей работы.

Как работает Uremont?

01

Создаете заявку

с кратким описанием работ и желаемой датой ремонта. Потратите не более 3 минут

02

Получаете предложения

от специализированных автосервисов в личном кабинете

03

Сравниваете ответы

наиболее подходящие по стоимости, отзывам, местоположению и другим параметрам

04

Подтверждаете запись

а также все условия ремонта и можно смело ехать в автосервис

Создание заявки абсолютно бесплатно и займет у вас не более 5 минут

Создать заявку

Конструкция сердечника электродвигателя 101: Материал, форма и характеристики

Конструкция электрической машины в лучшем случае сложна. Это всегда компромисс между технологичностью и производительностью. Некоторые могут сказать, что это также баланс формы и производительности.

В конструкции двигателя с осевым потоком теоретически поток будет двигаться в противоположном направлении, но на значительно меньшем уровне. Итак, вы определяете, как этого добиться — обрабатывая лишнее, тратя в процессе много материала.

Сегодня двигатели с осевым потоком переходят к нетрадиционным конструкциям. В любом случае, материалы, которые вам понадобятся в вашей следующей конструкции электродвигателя , зависят от того, как двигатель должен работать, где он будет работать и так далее.

Когда дело доходит до материалов для электродвигателя, вы можете выбрать либо электротехническую сталь, порошковый металл, либо вообще ничего. В этой статье основное внимание будет уделено электротехнической стали (также известной как стальные пластины), а также двум формам порошкового металла.

Есть и другие статьи, которые прекрасно объясняют использование материалов для других компонентов двигателя, таких как вал. Сегодня мы сосредоточимся на трех «основных» элементах.

Материал электродвигателя: проектирование компонентов ротора и статора 

Промышленные электродвигатели требуют высокоэффективных материалов для эффективного преобразования электрической энергии в механическую. Давайте рассмотрим, где порошковая металлургия стоит с этими тремя ключевыми компонентами электродвигателя:

  • Статор
  • Ротор
  • Подшипники

Как вы увидите, материал сердечника электродвигателя уже по колено в порошковом металле или, по крайней мере, имеет потенциал для использования преимуществ порошковой металлургии.

Итак, из чего сделаны эти компоненты двигателя? Компоненты из порошкового металла для двигателей обычно состоят из железа, никеля и кобальта.

  • Железо является самым дешевым из трех, поэтому многие дизайнеры обращаются к нему в первую очередь.
  • Кобальт редко используется сам по себе, но иногда его добавляют к железу.
    Кобальт придает вашей части больше индукции насыщения.
  • Никель
  • дорог, но ценен для двигателей. Это повышает производительность, облегчая намагничивание компонента.

Теперь обратимся к более широкой картине:

Материал статора электродвигателя

В статорах с традиционным стальным ламинированием потери в сердечнике высоки. Этот может снизить их эффективность в зависимости от использования двигателя и частоты. Если для вашей конструкции важно предотвратить потери в сердечнике, электротехническая сталь может оказаться неоптимальной.

Многослойный материал сердечника статора также имеет двумерную индивидуальность. Ламинированный материал статора может создать красивую плоскую деталь, но что, если ваша конструкция не плоская или требует других наворотов?

К счастью, есть более новая и эффективная замена. Можно включить магнитомягкий композит (SMC) для эффективной работы в тандеме с ротором.

Магнитомягкие композиты представляют собой металлические порошки, которые легче намагничиваются и размагничиваются по сравнению с твердым магнитом.

Комбинация усилий

Одной из уникальных возможностей является комбинирование магнитомягкого композита с пластинами из электротехнической стали. Существуют так называемые «гибридных» ситуаций, когда вы получаете преимущества как 9, так и . Правильно спроектированная комбинированная сборка позволяет вам использовать преимущества электротехнической стали (более низкие производственные затраты), добавляя уникальные функции с SMC (благодаря его потрясающей способности формовать).

Если ваша текущая конструкция электродвигателя работает с КПД 60-70%, можете ли вы улучшить его с помощью SMC? Подумайте о долгосрочной экономии на счетах за электроэнергию , которую вы могли бы предложить конечному потребителю.

У нас есть еще одна идея для тех, кто добавляет магниты в конструкцию ротора. Можете ли вы создать полностью двигатель на основе порошкового металла, полагаясь на спеченные магнитные порошки в качестве материала, к которому вы прикрепляете магниты? Теперь вы можете объединить две концепции дизайна — SMC и спеченный порошковый металл — используя все преимущества порошковой металлургии.

Подробнее об этом ниже.

Материал ротора электродвигателя

Материал сердечника ротора обычно основан на пластинах из электротехнической стали. Внешняя и внутренняя части двигателя — ротор и статор — штампуются одновременно для минимизации брака . Традиционно, из чего бы вы ни штамповали статор, вы штампуете и ротор.

Однако в новых двигателях инженеры обращают внимание на магниты на двигателе для повышения крутящего момента и характеристик шин.

Мягкие магнитные композитные материалы НЕ рекомендуются для роторов, поскольку они разработаны в настоящее время. SMC не спекаются, и поэтому им не хватает прочности, чтобы выдерживать эти приложения.

Но спеченные магнитомягкие материалы … они могут быть отличной альтернативой .

Возможно, вас интересует разница между спеченными магнитомягкими материалами и SMC. А пока просто знайте, что магнитомягкие композиты не спекаются. (Мы обсудим больше позже. )

Подшипники

Подшипники являются основным продуктом традиционной порошковой металлургии. Это крупносерийная, недорогая работа, и они легко доступны в самых разных материалах и формах.

Порошковые металлы используются в подшипниковой промышленности с 1930-х годов и являются проверенным материалом для многих смежных областей применения. Первоначально они начинались как бронза, но благодаря инновациям в порошковой металлургии в последующие годы можно использовать более экономичные материалы, такие как железо.

В этих небольших металлических компонентах используется губчатое железо , спрессованное до низкой плотности , чтобы вы могли пропитать их смазочным маслом.

Подшипники двигателя такие, какие они есть. Инновации происходят на уровне статора и ротора.

Двигатели с радиальным потоком? Или что-то другое?

Для обычных двигателей с радиальным магнитным потоком на 60 Гц магнитно-мягкие композиты не являются отличной альтернативой. … Но можем ли мы вместо этого использовать гибридный дизайн, чтобы оптимизировать его?

Что делать, если вам не нужен простой радиальный дизайн? Что, если вам нужны другие полезные свойства материала, из которого изготовлен ваш электродвигатель? Это возможно с ламинированием электротехнической стали, но это будет намного сложнее. Теперь вам действительно нужно полностью сосредоточиться на магнитомягких композитах из-за их способности формообразования.

SMC идеально подходят для новых конструкций или конструкций, в которых можно комбинировать SMC и ламинирование для получения преимуществ в производительности. Возможные варианты:

  • Двигатели с осевым и поперечным магнитным потоком для упрощенной или трехмерной обмотки статора и ротора
  • Мотор-колеса
  • Тихоходные двигатели

Изображение выше — классический пример. Этот инверторный двигатель с прямым приводом в часах LG Signature находится прямо в рулевой рубке из мягкого магнитного композита. И когда вы разрабатываете новые конструкции ротора, начните спрашивать себя: «Можем ли мы также перевести их на порошковый металл?»

В транспортном пространстве SMC предоставляют новые возможности формообразования и магнитов:

  • Электровелосипеды
  • Электросамокаты
  • Электромотоциклы
  • Подробнее

SMC может помочь заполнить пробел, придав форму, которая наилучшим образом соответствует конструкции вашего электродвигателя.

Роль спеченного металла

Это преобразование конструкции может касаться не только SMC, но и спеченных магнитомягких материалов. Эта смежная с SMC ветвь порошковой металлургии предлагает более высокую прочность, чем SMC (в обмен на несколько меньшие магнитные характеристики).

Электромагнитная конструкция постоянного тока представляет собой растущее применение спеченных магнитомягких материалов. Чем еще он отличается от других материалов?

  • Быстродействующие соленоиды
  • Стойкость к поверхностным повреждениям
  • Более высокая плотность для увеличения индукции насыщения

 

Больше не нужно соглашаться на традиционные материалы электродвигателя

Компоненты электродвигателя не должны быть компромиссом — по крайней мере, не в том виде, к которому вы привыкли.

Поэкспериментируйте с идеей сочетания ламинирования кремнистой стали, магнитомягкого композита (для конструкций электродвигателей переменного тока) и спеченных магнитомягких материалов (для двигателей постоянного тока). Обязательно сообщите о своих конкретных потребностях в конструкции производителю оборудования для порошковой металлургии. Поставщик должен быть в состоянии определить жизнеспособность порошковых компонентов для вашего проекта.

Вы можете узнать больше о SMC и конструкции электродвигателя, просмотрев бесплатный Центр ресурсов инженера  ниже:

Связанные ресурсы по проектированию электродвигателей переменного тока

  • Битва за эффективность и будущее электрификации: постоянный магнит против. Асинхронные двигатели

  • Дизайн автомобильной трансмиссии: крутящий момент + 3 других соображения и тенденции

  • КОМПОНЕНТ: электрическое ламинирование + сборка SMC

 

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 г. и был недавно обновлен.)

Темы: Материалы, Приложения, Расходы, Дизайн, Характеристики, моторы, Ламинированная сталь, Мягкий магнитный композит

электродвигатель | Определение, типы и факты

трехфазный асинхронный двигатель

Смотреть все СМИ

Ключевые сотрудники:
Никола Тесла Томас Давенпорт Ипполит Фонтейн Майкл Фарадей
Похожие темы:
синхронный двигатель линейный двигатель ротор серводвигатель двигатель переменного тока

См. всю связанную информацию →

электродвигатель , любой из классов устройств, преобразующих электрическую энергию в механическую, обычно с использованием электромагнитных явлений.

Большинство электродвигателей развивают свой механический крутящий момент за счет взаимодействия проводников с током в направлении, перпендикулярном магнитному полю. Различные типы электродвигателей различаются способами расположения проводников и поля, а также управлением, которое может осуществляться над механическим выходным крутящим моментом, скоростью и положением. Большинство основных видов описаны ниже.

Простейший тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме «звезда», обычно без внешнего соединения с нейтральной точкой, либо по схеме «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены друг с другом на каждом конце ротора проводящим концевым кольцом.

Основу работы асинхронного двигателя можно разработать, если сначала предположить, что обмотки статора подключены к трехфазному источнику электропитания и что в обмотках статора протекает набор из трех синусоидальных токов формы, показанной на рисунке. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная петля проводника для каждой фазной обмотки. В данный момент t 1 на рисунке ток в фазе a является максимальным положительным, а в фазах b и c вдвое меньше отрицательного значения. Результатом является магнитное поле с примерно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. е. на одну шестую цикла позже) ток в фазе c максимален, а в обеих фазах b и фазы a имеют положительное значение половины значения. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Изучение распределения тока для t 3 , t 4 , t 5 и t 5 и t 6 показывает, что магнитное поле продолжает вращаться во времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совместное действие трех равных синусоидальных токов, равномерно смещенных во времени и протекающих по трем равномерно смещенным по угловому положению статорным обмоткам, должно создавать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, зависящей от частоты электроснабжение.

Викторина «Британника»

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Вращательное движение магнитного поля по отношению к проводникам ротора вызывает индуцирование в каждом из них напряжения, пропорционального величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко друг с другом на каждом конце, эффект будет заключаться в том, что в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны наведенному напряжению, деленному на сопротивление проводника. Картина токов ротора на момент t 1 рисунка показан на этом рисунке. Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать крутящий момент против часовой стрелки на роторе (т. е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока проводника ротора и крутящего момента. Скорость ротора достигает устойчивого значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому при этой скорости нагрузкой, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, как раз достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае возникло бы. токами ротора на рисунке. Тогда общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90°, чтобы обеспечить требуемую электрическую мощность. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть периода или 90°. При номинальной нагрузке эта составляющая намагничивания обычно находится в диапазоне от 0,4 до 0,6 величины составляющей мощности.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазной сети постоянного напряжения и постоянной частоты. Типичное линейное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно малой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для мощных двигателей мощностью до 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со временем изменения магнитного потока в статоре машины. Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *