ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Honda Civic Система VTEC SOHC, работа на пальцах

Случайная статья узнай что то новое



Как работает VTEC система: расположение и типы

Система VTEC — The Variable Valve Timing and Lift Electronic Control, электронно-управляемая система фазы клапанов, ее наличие обусловлено моделью двигателя, а именно моделью ГБЦ, соленоидами подачи масла и блока управления двигателям ECU с распределенным впрыском. На нижнем изображении показано место на ГБЦ, где находятся соленоиды VTEC, отвечающие за включение рокера с большим ходом. На втором изображении показано, где находится VTEC — бочонок соленоида говорит о том, что в двигателе установлен VTEC. Существуют разновидности одновальной SOHC системы VTEC, к сожалению, вторая система DOHC VTEC не устанавливалась на моторах серии D D14, D15, D16. Сопротивление клапана соленоида VTEC 14-30ом, при 12 Вольт.

Вид соленоида двустэйжевой системы VTEC

Место расположения соленоида на блоке ГБЦ Honda Civic

Что такое VTEC, как работает VTEC, смысл системы

По простому, электронно-управляемая система фазы клапанов, или просто VTEC.

достаточно понять пару основ для чего она нужна и все встанет на своим места. Обычный 4х тактный двигатель, тянет воздух из атмосферы при давление в 1 бар, тоесть примерно 760ммрт (Так же это 1 атмосфера или 101кПа). С увеличением оборотов, возрастает и скрость движения поршня. На низких оборотах поршень засасывает воздух максимально чисто на сколько возможно, тоесть поршень медленно опускаясь засывает объем с давелнием в 1 атмосферу. С увеличением скорости поршня, давление снижается, тк уже не хватает времени чтобы воздух был при нормальных условиях. Вы наверное видели графики с диностенда, где пиковая мощность около 5000-6000 оборотов, а дальше линия мощности падает. Это потому что двигатель не может засосать воздуха больше, он на столько разрежен (тоесть молекул воздуха мало) что становиться
трудно раскрутить мотор
. Вариантов решения много, убрать сопротивление воздуха путем установки нулевого фильтра, холодного впуска, увеличением диаметра дроселя, портирование каналов впуска или нагнетать воздух под давелнием. Но, Honda придумала свой способ. При достижение критической точки достижения мотора мощности (примерно 5500 оборотов), включается система VTEC на впускных клапанах, которая держит клапана немного дольше открытыми чем обычно, что дает дополнительное время на «всос» воздуха. теперь мертвая точка смещается в диапазон 7000. Любая работа с впускной системой типа портинга дает прибавку к мощности на верхах но может отнять очки по тяге на низах, так как момент так же смещается на более выскокие обороты, до которых еще надо расскрутить двигатель, воздуха очень много. что делать? душить двигатель на низах, уменьшийть пропускаемость воздуха к примерну уменьшив диаметр дроссельной заслонки. Наверное вы слышали что 8 клапанный двигатель на низах имеет больший потенциал чем 16 клапанный. Вот это тоже самое. Инженеры Honda придумали систему ECO-VTEC, принцип работы которого не просто сохранить топливо а еще и «задушить» двигатель до 2500 оборотов (примерно) чтобы вытащить максимальную тягу, при работе всего 12 клапанов.
В сумме получается, что при полном VTEC 3-Stage, низы задушенны и имеют хороший момент, далее работа в нормальном 16 клапанном режиме, и активация на высоких оборотах уже VTEC чтобы воздуха попало больше. Вот и все что нужно знать из азов по VTEC.

Принцип работы VTEC

Покажу на примере самого известного и простого анимационного изображения, объясняющего принцип работы VTEC. По достижению давления масла в двигателе, а также достижению оборотов, обычно 5500 RPM за счет соленоида открывается клапан VTEC, который подает масло в систему газораспределения.

Анимационная демонстрация части работы системы VTEC

Давления масла толкает «защелки» рокеров, которыми блокируется основные и средний рокер. Теперь клапаны открываются глубже — дольше. В этот же момент в блоке управления двигателем мозге ECU переключаются топливные карты и карты зажигания. За счет обогащенной смеси и более длительного открытия клапанов появляется более мощный импульс для толкания поршня.

Принцип действия включения рокера VTEC

Длительность открытия клапана VTEC

Как вы понимаете, длительность открытия клапана VTEC зависит от оборотов двигателя RPM. Примерно на 5500 оборотах VTEC включается, при 4600 (примерно) VTEC выключается. На автоматической коробке до 4 передачи включение VTEC составляет не более 5 секунд, система автоматизирована и при достижении оборотов и скорости переключает передачу, а значит, сбрасывает обороты RPM. По времени работы системы VTEC это всего несколько секунд, но именно они дают настоящий прирост. Втек не включается на нетралке, и режиме парковки в автомате и вараторе.

VTEC 3-Stage: что это такое

Наконец я расскажу о системе VTEC 3-Stage, (3 стейдж). Данная система установлена так же в ГБЦ, устанавливалась после 1996 года. Имеет 2 соленоида. Управляется 12вольтами, при подаче открывается клапан подачи масла, если есть конечно давление масла. Ставился на JDM моторе D15B, одновальной SOHC, и конечно не B серии. Вещь довольно интересная и пользуется спросом. Имеет 3 стадии, совмещает все режимы работы всех видов SOHC D серии. ECU были нескольких типов, но только OBD2 серии, ниже список всех ECU p2j 3-Stage

  • OBD2A 37820-P2J-J62 Вариатор
  • OBD2A 37820-P2J-J63 Вариатор
  • OBD2A 37820-P2J-J61 Вариатор​
  • OBD2A 37820-P2J-003 Механика
  • OBD2B 37820-P2J-J11 Механика
  • OBD2B 37820-P2J-J81 Вариатор от Vi-RS
  • OBD2B 37820-P2J-J71 Вариатор

VTEC 3-Stage: Автомат

В 6 поколление, с которого пошел 3-Stage VTEC, были комплектации только с механической и вариаторной коробкой передач. Но в 7 поколение с 2001 по 2003 год, на моторы 1.6 так-же устанавливалась голова P2J (PLL), и управлялась соответственно мозгом 37820-PLL-D52. Мотор 3-Stage VTEC назывался D16W9 и имел мощность 130лсю

VTEC 3-Stage: принцип работы

Как работает VTEC 3-Stage, первая стадия начинается от 0 RPM и заканчивается в 4000 RPM. в этой стадии ГБЦ работает как VTEC-E. Работает только 12 клапанов. в каждом цилиндре работает два выпускных клапана но только один впускной. Это позволяет делать экономичный и плавный разгон.
Следующая стадия, это работа всех 16 клапанов. Включается первый VTEC соленоид. Обычный режим, работает от 4000 до 6000

Последняя третья стадия, включается второй клапан, впускные клапана открываются на больший период, что позволяет дать больше топливной смеси. Работа от 6000 и до конечной точки работы
Отключается вся система в обратном порядке, сначала 2й соленоид, потом 1 соленоид.

Пора за работу

Теперь когда вы знаете как работает VTEC пора его ставить на свой D14A3 или D14A4, предлагаю воспользоваься переводом статьи DoDo Joris, которой пользовался я, либо воспользоваться моей статьей об установке VTEC. Тем неменее, удачи в ваших экспериментах.


Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 и CIVIC FERIO (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

Что такое система VTEC двигателя автомобиля и её разновидности

VTEC расшифровывается как — электронная система изменения фаз газораспределения и высоты подъема клапанов двигателя машины. Расскажем о системе VTEC для авто, рассмотрим принцип работы и разновидности.

Основные принципы работы

Если сравнить характеристики различных двигателей авто, нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (1800-3000 об/мин), у других — на более высоких (3000-4500 об/мин). Объясняется тем, что эффективное наполнение цилиндров топливо-воздушной смесью и получение высокого крутящего момента, возможно только при определенных оборотах и зависит от конструкции впускного тракта и настройки газораспределительного механизма. Иными словами, темперамент двигателя полностью определяется фазами газораспределения, которые задаются профилем кулачков распредвала.

Представим двигатель, который работал бы на оборотах 20 об/мин, соответственно впускные и выпускные клапана действовали бы 10 раз в минуту, т. е. редко. Для снятия максимального момента на данных оборотах, впускной клапан должен открываться в самом начале такта всасывания, когда поршень начинает двигаться от ВМТ (верхняя мертвая точка), и закрываться в момент прихода поршня в НМТ (нижняя мертвая точка). Аналогично должен работать и выпускной клапан, т. е. никаких задержек или опережений в работе клапанного механизма не допустимо, иначе крутящий момент упадет. В этом случае наполнение цилиндров свежим зарядом будет эффективным.

Если увеличить частоту вращения двигателя до 4000 об/мин, впускной и выпускной клапана в этом случае будут открываться и закрываться уже 2000 раз в минуту или 33 раза в секунду, т. е. часто.


В таком режиме времени на всасывание поршнем свежей порции заряда остается мало. Только к моменту когда поршень достигнет НМТ ее скорость, а значит и расход через проходное сечение впускных клапанов достигнут максимума, но в этот момент впускной клапан закроется и основная порция свежего заряда не попадет в цилиндры, наткнувшись на преждевременно закрытый клапан — двигатель начнет «задыхаться».
В результате мощность будет незначительна, а максимальные обороты невелики. Это заслуга существующих фаз газораспределения. Можно настроить по иному, например, для улучшения наполнения цилиндров рабочей смесью на высоких оборотах впускной клапан заставить открываться немного раньше до прихода поршня в ВМТ, а закрываться немного позже после прохода поршнем НМТ. Для улучшения очистки цилиндров от отработавших газов на высоких оборотах выпускной клапан заставить открываться немного раньше до прихода поршня в НМТ, а закрываться немного позже после прохождения им ВМТ. В этом случае пик крутящего момента будет достигаться на высоких оборотах и возрастет мощность.

В реальных условиях конструкторы силовых агрегатов вынуждены усреднять регулировку фаз газораспределения «на все случаи жизни», выбирая при этом определенный профиль кулачков распредвала. Такой подход не оптимален.


Чтобы мотор автомобиля работал в условиях максимально приближенных к идеальным на любых оборотах — создана система VTEC. Двигатели с VTEC имеют специальный газораспределительный механизм, распредвал которого имеет различные кулачки для низких и высоких оборотов коленчатого вала двигателя, чем достигается различный момент открытия/закрытия и высота подъема клапанов. Таким образом, обеспечивается стабильность работы на низких и средних оборотах и высокая мощность на высоких.

Двигатели семейства DOHC VTEC

Основой для конструирования DOHC VTEC стал применяемый 4-клапанный газораспределительный механизм. Для каждого ряда клапанов (впускных и выпускных) предусмотрено устройство отдельного распредвала. На каждые два клапана приходиться три кулачка на распределительном валу. Боковые два предназначены для работы двигателя на низких и средних оборотах, центральный — на высоких. Кулачки воздействуют на клапана через рокера, которых тоже три на два клапана. Все три рокера оборудованы гидравлически управляемыми поршеньками, которые при наличии управляющего воздействия сдвигаются и соединяют их в единое целое. Средний рокер оборудован специальной пружиной, которая обеспечивает постоянный контакт кулачка с рокером на низких и средних оборотах.

При работе двигателя на малых оборотах рокера не заблокированы и каждый из них совершает независимое движение по закону описываемому соответствующим кулачком. При этом средний кулачок хотя и вращается вместе с остальными, но в работе газораспределительного механизма участия не принимает.


Как только двигатель перейдет на режим высоких оборотов, электронный «мозг» отдаст команду на исполняющее устройство, в результате давление масла заставит поршеньки в рокерах начать перемещаться, что приведет к блокировке последних. Таким образом, все элементы этой группы станут подконтрольными одному центральному кулачку, который теперь самостоятельно станет управлять работой обоих клапанов.

Двигатели семейства SOHC VTEC

SOHC VTEC имеет один распредвал и используется только для впускных клапанов. Эффективность работы несколько ниже чем у DOHC VTEC, но она конструктивно проще и обеспечивает двигателю меньшие габариты и массу. Основная задача SOHC VTEC-E — максимально снизить расход топлива и улучшить экологические показатели. На малых оборотах двигатель работает на обедненной топливо-воздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Попав туда рабочая смесь интенсивно завихряется, благодаря чему обеспечивается устойчивое ее сгорание. При увеличении оборотов срабатывает система VTEC и тогда оба клапана начинают совместную работу.

Газораспределительный механизм 3-stage SOHC VTEC. Она имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов.


На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности.

Двигатели семейства i-VTEC

Конструкция i-VTEC предполагает использование дополнительную систему VTC, непрерывно регулирующую момент начала открытия впускных клапанов. Фазы открытия впускных клапанов задаются в зависимости от нагрузки двигателя и регулируются посредством изменения угла установки впускного распределительного вала относительно выпускного.

Применение системы VTC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, что выражается в увеличении мощности двигателя на 20%, крутящего момента на 10%, снижении расхода топлива и уменьшении вредных выбросов на 10-20%.

Устройство и принцип работы системы VTEC

Увеличение времени и высоты открытия клапанов – это простой способ повысить мощность атмосферного силового агрегата. Благодаря незначительному внесению изменений в конструкцию газораспределительного механизма – установке распредвала с измененной геометрией кулачков, обеспечивается улучшенное наполнение цилиндров топливовоздушной смесью, а соответственно – и выход мощности.

Но на деле не все просто – максимальная мощность нужна на высоких оборотах, при средней же и малой нагрузке на двигатель увеличенное время открытия клапанов приводит к снижению тяги и перерасходу топлива. Поэтому автопроизводители при разработке двигателей подбирают геометрию кулачков распределительного вала так, чтобы работа ГРМ обеспечивала функционирование двигателя на всех режимах.

Решение сложившейся ситуации с ГРМ предложили конструкторы Honda и внедрили его на силовые агрегаты, которыми комплектуют автомобили. Японцы разработали систему электронного изменения хода и времени открытия клапанов, которую обозначили аббревиатурой VTEC. Она позволяет регулировать газораспределение в зависимости от режима функционирования мотора, что обеспечивает максимальный выход мощности на высоких оборотах и при этом не влиять на расход топлива и тяговое усилие при средней и малой нагрузке.

VTEC – проста по конструкции, но эффективна и доказательством тому тот факт, что атмосферные двигатели автомобилей Honda по мощностным показателям не уступают турбированным.

VTEC – разработка не новая, ее конструкторы Honda разработали и внедрили более 25 лет назад и используют сейчас. При этом по мере усовершенствования моторов модернизировалась и VTEC – она применима на моторах с системой газораспределения DOHC и SOHC. Honda применяет VTEC на авто и на мотоциклах.

Общая концепция

Чтобы разобраться, что такое VTEC, рассмотрим, чем отличаются обычный и спортивный распредвалы. Конструктивно оба валы одинаковы, но у последнего высота кулачков больше, чем у обычного, а геометрия их – более плавная. За счет такой формы кулачков спортивные распредвалы обеспечивают лучшее наполнение цилиндров из-за увеличенных времени и высоты открытия клапанов.

VTEС совмещает в себе конструктивные особенности простого и спортивного распредвалов, что позволяет автоматически регулировать фазы газораспределения в зависимости от условий работы мотора. На малых оборотах система задействует кулачки с обычной геометрией, поэтому экономно расходуется топливо, а на высоких – с увеличенной высотой, обеспечивая максимальный выход мощности.

Конструктивные особенности

Рассмотрим, что такое ВТЕК на Хонде на примере двигателя с системой ГРМ DOHC, поскольку на этом моторе она впервые начала использоваться и является конструктивно самой простой. Особенность этого газораспределительного механизма — применение 4 клапанов на каждый цилиндр (по паре впускных и выпускных, работающих синхронно) и двух распредвалов, каждый из которых отвечает за открытие своих клапанов.

Принцип действия включения рокера VTEC

Выключение рокера VTEC

VTEC на этом двигателе имеет два режима работы и подразумевает использование трех кулачков на пару клапанов (как впускных, так и выпускных), вместо двух. Третий кулачок – с увеличенной высотой и плавной геометрией (повторяет форму кулачка спортивного распредвала) и размещен он между двумя обычными.

Крайние кулачки (с обычной формой) воздействуют на клапаны не напрямую, а через рокеры, коромысла, толкатели (в зависимости от конструкции ГРМ). У центрального кулачка тоже есть рокер (коромысло), но они никакого воздействия на клапаны не имеют. Зато в них проделан масляный канал и установлены выдвигающиеся штифты, которые заходя в специальные углубления крайних рокеров (кромысел), соединяют между собой рокеры и обеспечивают их синхронное движение.

Масляный канал, проделанный в осях рокеров и центральном рокере, оснащен клапаном-соленоидом, управляемым ЭБУ мотора, что позволяет контролировать подачу масла, которое подаётся в VTEC.

Принцип работы

Как работает VTEC

При работе двигателя на малых и средних оборотах ЭБУ «держит» закрытым клапан-соленоид, давление масла в каналах рокеров отсутствует, и открытие клапанов осуществляется от кулачков с обычной геометрией. Центральный же кулачок воздействует на рокер (коромысло), но поскольку они не связаны с крайними рокерами, то он работает «вхолостую».

При достижении определенных оборотов коленчатого вала, ЭБУ открывает соленоид и масло под давлением подается в каналы, затем поступает в полость центрального рокера (коромысла) и выталкивает из посадочных мест штифты. Эти штифты выдвигаясь, попадают в проточки крайних рокеров. Благодаря этому, рокеры получаются соединенными и двигаются синхронно, как единая конструкция. При этом, поскольку высота центрального кулачка больше, чем боковых, он начинает «задавать» движение рокерам, что и обеспечивает большее время и высоту открытия клапанов.

Одновременно с переходом на использование центрального кулачка распредвала ЭБУ корректирует работу впуска, подавая в цилиндры больше топлива, и как итог повышая мощность.

После снижения оборотов до средних ЭБУ закрывает соленоид, рокеры разъединяются и открытие клапанов снова происходит от боковых кулачков с обычной геометрией.

VTEC конструкторами Хонда постоянно совершенствуется, поэтому помимо DOHC VTEC она включает в себя несколько видов с разными конструктивными особенностями.

SOHC VTEC

Конструкция VTEC на двигателях с газораспределительным механизмом SOHC отличается от DOHC. В этом ГРМ используется только один распредвал, который приводит в действие впускные пары клапанов цилиндра и выпускные. Из-за этого установка по три кулачка на каждую пару привела бы к увеличению длины вала, а соответственно и головки блока. Дополнительно невозможность использования VTEC на выпускных клапанах обусловлена тем, что между ними проходит свечной колодец. Поэтому конструкторы Хонда на двигателях SOHC применили VTEC только на впускных.

Что касается функционирования, то у SOHC VTEC принцип работы не отличается от DOHC VTEC.

VTEC-E

Следующим этапом развития стала VTEC-E на тех же моторах SOHC. Конструкторы сделали ставку на максимальную экономичность двигателя. И сделано это было путем уменьшения высоты профиля одного из боковых кулачков. В результате, при малых нагрузках впускные клапаны открывались на разную высоту (один оставался почти закрытым), что позволило использовать на этом режиме функционирования мотора обедненную смесь. После же задействования соленоида оба открывались на одинаковую высоту.

Вас также заинтересует:

SOHC VTEC 3-stage

SOHC VTEC 3-stage отличается наличием трех режимов работы, что позволило подстраивать функционирование ГРМ под рабочие условия мотора. Конструкторы в этом виде совместили SOHC VTEC и VTEC-E, что и позволило получить три режима работы:

  1. Малые обороты коленвала. При таком режиме система копирует работу VTEC-E – из двух впускных открывается только один, который обеспечивает высокую экономичность мотора;
  2. Средняя нагрузка. При достижении таких рабочих условий включается в действие второй впускной.
  3. Высокие обороты. На этом режиме открытием клапанов начинает «заведовать» центральный кулачок с высоким профилем.

Трехрежимная работа VTEC реализована путем установки дополнительного клапана-соленоида. В результате открытием первого осуществляется подключение второго впускного клапана, а задействованием второго – переход на работу клапанов с высокопрофильным кулачком.

Современные разработки

Последующие модификации – i-VTEC серий «K», «R» и «J», AVTEC и VTEC Turbo реализованы на основе SOHC VTEC 3-stage, но они дополнительно функционируют с другими системами – изменяемых фаз газораспределения, отключения части цилиндров, турбонаддувом, непосредственного впрыска. Такая комбинация позволила конструкторам Хонда добиться еще лучших рабочих показателей силовых установок.

Видео: Как работает система HONDA V-TEC

Как работает VTEC система: расположение и типы

Система VTEC — The Variable Valve Timing and Lift Electronic Control, электронно-управляемая система фазы клапанов, ее наличие обусловлено моделью двигателя, а именно моделью ГБЦ, соленоидами подачи масла и блока управления двигателям ECU с распределенным впрыском. На нижнем изображении показано место на ГБЦ, где находятся соленоиды VTEC, отвечающие за включение рокера с большим ходом. На втором изображении показано, где находится VTEC — бочонок соленоида говорит о том, что в двигателе установлен VTEC. Существуют разновидности одновальной SOHC системы VTEC, к сожалению, вторая система DOHC VTEC не устанавливалась на моторах серии D D14, D15, D16. Сопротивление клапана соленоида VTEC 14-30ом, при 12 Вольт.

Вид соленоида двустэйжевой системы VTEC

Место расположения соленоида на блоке ГБЦ Honda Civic

Что такое VTEC, как работает VTEC, смысл системы

По простому, электронно-управляемая система фазы клапанов, или просто VTEC. достаточно понять пару основ для чего она нужна и все встанет на своим места. Обычный 4х тактный двигатель, тянет воздух из атмосферы при давление в 1 бар, тоесть примерно 760ммрт (Так же это 1 атмосфера или 101кПа). С увеличением оборотов, возрастает и скрость движения поршня. На низких оборотах поршень засасывает воздух максимально чисто на сколько возможно, тоесть поршень медленно опускаясь засывает объем с давелнием в 1 атмосферу. С увеличением скорости поршня, давление снижается, тк уже не хватает времени чтобы воздух был при нормальных условиях. Вы наверное видели графики с диностенда, где пиковая мощность около 5000-6000 оборотов, а дальше линия мощности падает. Это потому что двигатель не может засосать воздуха больше, он на столько разрежен (тоесть молекул воздуха мало) что становиться трудно раскрутить мотор. Вариантов решения много, убрать сопротивление воздуха путем установки нулевого фильтра, холодного впуска, увеличением диаметра дроселя, портирование каналов впуска или нагнетать воздух под давелнием. Но, Honda придумала свой способ. При достижение критической точки достижения мотора мощности (примерно 5500 оборотов), включается система VTEC на впускных клапанах, которая держит клапана немного дольше открытыми чем обычно, что дает дополнительное время на «всос» воздуха. теперь мертвая точка смещается в диапазон 7000. Любая работа с впускной системой типа портинга дает прибавку к мощности на верхах но может отнять очки по тяге на низах, так как момент так же смещается на более выскокие обороты, до которых еще надо расскрутить двигатель, воздуха очень много. что делать? душить двигатель на низах, уменьшийть пропускаемость воздуха к примерну уменьшив диаметр дроссельной заслонки. Наверное вы слышали что 8 клапанный двигатель на низах имеет больший потенциал чем 16 клапанный. Вот это тоже самое. Инженеры Honda придумали систему ECO-VTEC, принцип работы которого не просто сохранить топливо а еще и «задушить» двигатель до 2500 оборотов (примерно) чтобы вытащить максимальную тягу, при работе всего 12 клапанов. В сумме получается, что при полном VTEC 3-Stage, низы задушенны и имеют хороший момент, далее работа в нормальном 16 клапанном режиме, и активация на высоких оборотах уже VTEC чтобы воздуха попало больше. Вот и все что нужно знать из азов по VTEC.

Принцип работы VTEC

Покажу на примере самого известного и простого анимационного изображения, объясняющего принцип работы VTEC. По достижению давления масла в двигателе, а также достижению оборотов, обычно 5500 RPM за счет соленоида открывается клапан VTEC, который подает масло в систему газораспределения.

Анимационная демонстрация части работы системы VTEC

Давления масла толкает «защелки» рокеров, которыми блокируется основные и средний рокер. Теперь клапаны открываются глубже — дольше. В этот же момент в блоке управления двигателем мозге ECU переключаются топливные карты и карты зажигания. За счет обогащенной смеси и более длительного открытия клапанов появляется более мощный импульс для толкания поршня.

Принцип действия включения рокера VTEC

Длительность открытия клапана VTEC

Как вы понимаете, длительность открытия клапана VTEC зависит от оборотов двигателя RPM. Примерно на 5500 оборотах VTEC включается, при 4600 (примерно) VTEC выключается. На автоматической коробке до 4 передачи включение VTEC составляет не более 5 секунд, система автоматизирована и при достижении оборотов и скорости переключает передачу, а значит, сбрасывает обороты RPM. По времени работы системы VTEC это всего несколько секунд, но именно они дают настоящий прирост. Втек не включается на нетралке, и режиме парковки в автомате и вараторе.

VTEC 3-Stage: что это такое

Наконец я расскажу о системе VTEC 3-Stage, (3 стейдж). Данная система установлена так же в ГБЦ, устанавливалась после 1996 года. Имеет 2 соленоида. Управляется 12вольтами, при подаче открывается клапан подачи масла, если есть конечно давление масла. Ставился на JDM моторе D15B, одновальной SOHC, и конечно не B серии. Вещь довольно интересная и пользуется спросом. Имеет 3 стадии, совмещает все режимы работы всех видов SOHC D серии. ECU были нескольких типов, но только OBD2 серии, ниже список всех ECU p2j 3-Stage

  • OBD2A 37820-P2J-J62 Вариатор
  • OBD2A 37820-P2J-J63 Вариатор
  • OBD2A 37820-P2J-J61 Вариатор​
  • OBD2A 37820-P2J-003 Механика
  • OBD2B 37820-P2J-J11 Механика
  • OBD2B 37820-P2J-J81 Вариатор от Vi-RS
  • OBD2B 37820-P2J-J71 Вариатор

VTEC 3-Stage: Автомат

В 6 поколление, с которого пошел 3-Stage VTEC, были комплектации только с механической и вариаторной коробкой передач. Но в 7 поколение с 2001 по 2003 год, на моторы 1.6 так-же устанавливалась голова P2J (PLL), и управлялась соответственно мозгом 37820-PLL-D52. Мотор 3-Stage VTEC назывался D16W9 и имел мощность 130лсю

VTEC 3-Stage: принцип работы

Как работает VTEC 3-Stage, первая стадия начинается от 0 RPM и заканчивается в 4000 RPM. в этой стадии ГБЦ работает как VTEC-E. Работает только 12 клапанов. в каждом цилиндре работает два выпускных клапана но только один впускной. Это позволяет делать экономичный и плавный разгон.
Следующая стадия, это работа всех 16 клапанов. Включается первый VTEC соленоид. Обычный режим, работает от 4000 до 6000
Последняя третья стадия, включается второй клапан, впускные клапана открываются на больший период, что позволяет дать больше топливной смеси. Работа от 6000 и до конечной точки работы
Отключается вся система в обратном порядке, сначала 2й соленоид, потом 1 соленоид.

Пора за работу

Теперь когда вы знаете как работает VTEC пора его ставить на свой D14A3 или D14A4, предлагаю воспользоваься переводом статьи DoDo Joris, которой пользовался я, либо воспользоваться моей статьей об установке VTEC. Тем неменее, удачи в ваших экспериментах.

Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

  • Автоэкзотика — 1 мая
  • Jap Days — 22 Июня
  • JAP CAR FEST — 19-21 июля

Вот наглядное объяснение об устройстве японских двигателей VTEC Honda.

Если вы автолюбитель вы вероятно слышали термин «VTEC», но возможно не знаете, что он означает в автопромышленности. Если это так, то для вас есть интересное объяснение об устройстве этого типа двигателей, которые производят компания Хонда.

VTEC — это двигатель с регулируемой системой газораспределения. Например, эту систему использует компания Honda в своих двигателях. VTEC — это сокращенное название (аббревиатура) Variable valve Timing and lift Electronic Control.

В мире существует множество различных систем с изменяемой системой газораспределения (изменяется ход и времени движения клапанов).

По сути, VTEC — это технология, которая использует впускные и выпускные клапана двигателя, контролируя объем (и скорость) газов, которые входят в цилиндры и выходят из них. Латинская буква «V» в названии мотора Хонда означает Variable valve (изменяемые клапана).

В большинстве обычных двигателей ход клапанов как правило имеет стандартный размер. В двигателях VTEC клапана могут менять свой ход между различными уровнями.

Система VTEC изменяя давление масла позволяет переключаться между различными профилями кулачков, толкающие клапана силового агрегата. Например, при более высоких оборотах двигателя кулачковые профиль позволяет увеличить подъем клапанов. Это позволяет подавать в цилиндры двигателя больше кислорода, в результате чего генерируется больше лошадиных сил.

Двигатели VTEC появились в конце 1980-х годов. С тех пор компания Хонда использовала эти силовые агрегаты на многих своих автомобилях, включая NSX, Integra Type R, S2000 и Civic Type R.

Кстати, двигатели Хонда с изменяемой системой газораспределения отличается от таких же моторов других компаний.

Так, большинство других производителей для изменения фазы газораспределения используют повышенное давление масла и изменение угла распредвала относительно шкива, что позволяет выставлять системе определенное зажигание (раннее, позднее, среднее). Система VTEC от Хонда же использует совершенно другой принцип работы системы газораспределения.

Объяснение этого процесса одними словами недостаточно. Лучше всего, конечно, если посмотрите несколько роликов, объясняющих что же это за двигатели Хонда с системой VTEC.

Устройство и принцип действия автомобильных технологий, узлов и агрегатов

VTEC, Variable valve Timing and lift Electronic Control: система электронного управления фазами газораспределения и подъемом клапанов фирмы Honda, разновидность технологий VVL и CVVL. В последних версиях включает в себя технологии VTC (разновидность технологий CVVT) и VCM.

Технология VTEC была разработана инженером Ikuo Kajitani и выпущена на рынок в 1989 году на модели Honda Integra XSi (двигатель B16).

Принцип действия VTEC

Система VTEC обеспечивает работу клапанов двигателя в различных режимах (с различной высотой подъема и степенью перекрытия фаз), в зависимости от оборотов и с автоматическим переключением между режимами.

Все двигатели с системой VTEC, независимо от их вида (DOHC, SOHC) имеют два впускных клапана и два выпускных на каждый цилиндр. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный:

Примерно до 5500 об/мин работают только крайние кулачки через свои коромысла. Среднее коромысло тоже движется, но на клапана не действует (VTEC отключен). При дальнейшем росте оборотов по команде блока управления штифт (sinchronizing pin), сдвигаясь под давлением масла, замыкает между собой все три коромысла. Теперь они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров.

Разновидности VTEC

  • DOHC VTEC 1989-2001гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001гг, попроще и послабже
  • SOHC VTEC-E 1991-2001гг, самый экономичный VTEC, лишен взрывного характера
  • 3-stage VTEC 1995-2001гг, трехрежимный гибрид SOHC VTEC и VTEC-E
  • DOHC i-VTEC c 2001 года
  • DOHC i-VTEC I c 2001 года
  • SOHC i-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Разница между реализацией технологии VTEC на двигателях DOHC и SOHC в том, что на DOHC система VTEC используется и на впуске и на выпуске, а на одновальной SOHC только на впуске.

Варианты с приставкой «i» (Inteligent VTEC или i-VTEC) появились в начале 2001 года вместе с 7-м поколением Honda Civic и применяются до настоящего момента.

Конструкция системы VTEC

Кулачки распредвала VTEC:

Слева рокеры, справа группа кулачков (над рокерами):

DOHC VTEC

«Классический» VTEC, как описано выше. Создавался с целью резкого увеличения удельной мощности двигателя на высоких оборотах. Впервые появился в Японии в 1989 году на модели Integra XSi с двигателем серии B16A. Одновременно в Европе поступила в продажу Honda CRX 1.6i-VT с двигателем B16A1. В США VTEC впервые появился в 1991 году на Acura NSX с двигателем DOHC VTEC V6 (3 литра, 270 кобыл).

SOHC VTEC

Упрощенная версия VTEC, работающая только на впускных клапанах, т.к. свечи зажигания на таких двигателях расположены между двумя выпускными клапанами, делая невозможным размещение нескольких профилей кулачков.

Эта система имеет ряд технологических преимуществ: простоту конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того, SOHC VTEC намного легче использовать для модернизации двигателей предыдущих поколений.

SOHC VTEC-E

Создавался с целью экономии топлива (приставка «E» — econom»). Двигатели этого типа отличаются прекрасной экономичностью, но начисто лишены драйва. На малых оборотах такие двигатели работают на обедненной топливо-воздушной смеси, поступающей в цилиндры только через один впускной клапан, т.е. один из двух кулачков на низких оборотах попросту отключен. Такое решение обеспечивает интенсивное завихрение смеси, благодаря чему сгорание становится более эффективным и устойчивым. При росте оборотов выше 2500 подключается второй клапан, двигатель становится «обычным» и выходит из режима экономии.

3-stage VTEC-E

Представляет собой трехрежимный гибрид систем SOHC VTEC и SOHC VTEC-E.

  • В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов.
  • На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент.
  • На высоких оборотах оба клапана управляются одним центральным кулачком, что обеспечивает максимальную удельную мощность.

Принцип действия VTC

VTC, Variable Timing Control: технология изменения фаз (фазовращения) за счет доворота впускного распределительного вала относительно выпускного с помощью давления масла. Дебют технологии состоялся в 2001 году (на рынке США — в 2002-м).

При высоких оборотах времени на открытие-закрытие клапанов значительно меньше, хотя топливо-воздушной смеси нужно подавать больше. Система VTC позволяет доворачивать распредвал для более раннего открытия клапанов. Это помогает более эффективно продувать цилиндры и таким образом создает «благоприятные условия» для эффективной работы VTEC.

В отличие от VTEC, режимы которой переключаются на фиксированных оборотах, VTC работает постоянно и непрерывно, регулируя момент открытия впускных клапанов в зависимости от нагрузки на двигатель.

Исполнительная часть системы VTC интегрирована в шкив впускного распредвала. Если обычный шкив это цельная конструкция, один кусок металла, то шкив VTC состоит из нескольких частей.

Одна из частей — корпус шкива VTC, который жестко закреплен цепью ГРМ со шкивами выпускного и коленчатого валов. Другая часть — лопатка шкива VTC, она имеет свободный ход внутри шкива VTC и жестко закреплена с впускным распредвалом. Полость внутри корпуса шкива VTC, в которой лопатка имеет свободный ход, заполнена моторным маслом. Подвод масла в полость шкива организована с двух сторон от лопатки. Таким образом, подавая давление масла в одну из сторон мы крутим лопатку в другую сторону. А перемещение лопатки напрямую воздействует на распредвал с кулачками и, как следствие, изменяет угол положения впускных кулачков относительно выпускных.

Роль управляющего в этом процессе играет соленоид VTC. Получая данные о нагрузке на двигатель с блока управления (ECU), соленоид направляет давление масла в одну из сторон.

К соленоиду VTC под определенным давлением подведено моторное масло. Внутри соленоида происходит разделение направления масла на два канала — назовем их условно красный канал и желтый канал. Оба канала ведут от соленоида к полости шкива VTC, в котором, как сказано выше, лопатка шкива имеет свободный ход. Красный канал подведен с одной стороны лопатки, а желтый — с другой.

Угол перекрытия (перекрытие клапанов) – это угол положения впускных клапанов относительно выпускных (момент времени), при котором впускные и выпускные клапаны одновременно открыты. В зависимости от условий работы двигателя соленоид направляет давление масла либо в красный, либо в желтый канал, заставляя лопатку смещаться в одну или другую сторону.

На холостых и низких оборотах (при малой нагрузке) система VTC доводит угол перекрытия клапанов до минимума, чтобы двигатель работал стабильно. При увеличении нагрузки система плавно увеличивает угол перекрытия. На высоких оборотах (при большой нагрузке) система доворачивает распредвал (увеличивает угол перекрытия) до максимально возможного уровня. Величина угла перекрытия клапанов зависит от модели двигателя и, как правило, находится в пределах 25-50 градусов.

DOHC i-VTEC

DOHC i-VTEC имеет два подвида, основанные на предыдущем поколения VTEC:

  • DOHC i-VTEC: DOHC VTEC + VTC, VTEC на впуске и выпуске, порог высокооборотного режима — 5800 об/мин.
  • DOHC i-VTEC I: SOHC VTEC-E + VTC + «не-VTECовый» (стандартный) выпускной распредвал, порог режима — 2500 об/мин.

VTC у обоих систем стоит на впускном распредвале. По большому счету префикс «i» в названиях системы как раз подразумевает наличие VTC.

DOHC i-VTEC I

Принцип действия DOHC i-VTEC I точно такой как и у VTEC-E первого поколения. Отличие лишь в том, что в DOHC i-VTEC I два распредвала — впускной с VTEC-E и стандартный выпускной. Если DOHC i-VTEC настроен на максимальную производительность, то главная задача для DOHC i-VTEC I — экономия топлива при «достойной тяге».

Суть системы в том, что на малых оборотах двигатель работает на обедненной топливо-воздушной смеси, которая поступает в его цилиндры только через один впускной клапан (превращая 16-клапанный 4-х цилиндровый двигатель в 12-ти клапанный). Если у DOHC i-VTEC применяется дополнительный третий кулачок, то в случае с DOHC i-VTEC I один из двух кулачков на низких оборотах попросту отключен. Попадая в цилиндр только через один клапан, рабочая смесь начинает интенсивно завихряться, благодаря чему сгорание становится более эффективным и устойчивым. При увеличении оборотов (2500 об/мин и выше) оба клапана начинают совместную работу.

SOHC i-VTEC

Принцип работы i-VTEC отдаленно напоминает традиционный VTEC, но фазорегуляция построена совершенно иначе. Например, DOHC i-VTEC работает в паре с системой VTC, тогда как одновальный i-VTEC работает в одиночку. Рассмотрим вопрос на примере двигателей R-серии, в частности мотора R18A, который появился в 2006 году на Honda Civic и стал первым носителем новой системы SOHC i-VTEC.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель и управляется педалью газа. В зависимости от количества поступаемого воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаете на педаль газа, тем шире открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала), которая в закрытом состоянии является препятствием для прохождения воздуха.

По идее, такое поведение дроссельной заслонки способствует экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается, что поршень двигателя, опускаясь в цилиндре вниз, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию — вместо того, чтобы отдать эту энергию колесам. Этот побочный эффект прозвали «насосными потерями». И именно «игра» с подачей воздуха и устранением насосных потерь является «фишкой» SOHC i-VTEC.

Принцип действия SOHC i-VTEC гениально прост. На низах дроссельная заслонка остается широко открытой, а система i-VTEC берет на себя регулировку подачи топливно-воздушной смеси.

Рабочей зоной системы SOHC i-VTEC является период, когда дроссельная заслонка полностью открыта, а на подачу воздуха действуют другие силы. В этот период во впускную систему поступает чрезмерно много воздуха, что создаёт избыток топливно-воздушной смеси в цилиндрах. Фишка системы SOHC i-VTEC состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает низшей мертвой точки, впускные клапана закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Двигатель с SOHC i-VTEC работает иначе. На фазе впуска все как обычно – поршень движется к нижней мертвой точке, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к высшей мертвой точке, но! Один из впускных клапанов остается открытым, давая возможность поршню выдавить лишнюю топливно-воздушную смесь, которая беспрепятственно прошла в цилиндр благодаря полностью открытой дроссельной заслонке, обратно в систему впуска.

Конечно, профиль VTEC-ового кулачка, благодаря которому один из клапанов остается дольше открытым, разработан таким образом, что клапан закрывается до встречи с поршнем и в момент, когда в цилиндре остается оптимальное количество топливно-воздушной смеси.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный vtec-овый. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC каждый рокер работает независимо друг от друга. Внешние кулачки обеспечивают открытие клапанов, а центральный кулачок, хотя и вращается вместе с остальными, но до поры до времени работает вхолостую.

Как только двигатель переходит в режим, определяемый системой управления как благоприятный для i-VTEC, посредством давления масла система смещает пистоны внутри рокеров таким образом, что два из трех рокеров превращаются в одну единую конструкцию. До этого работавший вхолостую VTEC-овый кулачок вступает в игру. Теперь один из крайних рокеров начинает работать по законам VTEC-ового кулачка, загоняя один из впускных клапанов цилиндра глубже и на дольше. Практически, как обычный VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

В обычной VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный подключается на высоких оборотах, загоняя в цилиндры как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор, по которому система управления двигателем (ECU) определяет момент включения и выключения i-VTEC. SOHC i-VTEC в паре с ECU умеет определять нагрузку на двигатель и в зависимости от ее величины принимать решение, включаться или нет. Т.е. система работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому ECU, определяющая оптимальные условия (красная зона на графике выше), является наиважнейшей составляющей системы в целом.

В целом SOHC i-VTEC направлен на рост экономичности, но без ущерба аппетиту и мощности. Кроме того, в двигателях с системой SOHC i-VTEC применены новые технологии снижения трений, более легкие материалы, что позволило снизить потери и поднять степень сжатия.

i-VTEC VCM (Variable Cylinder Management)

В 2003-м году Honda представила i-VTEC V6 (обновленной J-серии), включающий технологию отключения цилиндров и закрытия клапанов на трех цилиндрах в режимах малой нагрузки и скорости (ниже 80 км/ч). Принцип действия VCM — автоматически отключать «лишние» цилиндры, когда мощности и так достаточно, и тем самым экономить топливо. Данные двигатели способны работать на 3-х, 4-х или всех 6-ти цилиндрах, в зависимости от потребной мощности. Технология была внедрена в США в 2005-м году на минивэне Honda Odyssey, а впоследствии также появилась на Honda Accord Hybrid, Honda Pilot (с 2006-го года) и на обычном Honda Accord (с 2008-го). Также применена в 4-цилиндровом двигателе объема 1.3 литра (Honda Civic Hybrid).

i-VTEC i

Версия i-VTEC с непосредственным впрыском, впервые использована на Honda Stream (2003).

AVTEC

Двигатель AVTEC (Advanced VTEC) был впервые анонсирован в 2006 году. В нем комбинируются технологии непрерывного управления клапанами и непрерывного управления фазами газораспределения. Предполагается освоение данной технологии в ближайшем будущем. Первоначальные планы выпустить AVTEC на модели Honda Accord в 2008-м году реализованы не были.

VTEC TURBO

Двигатели серии VTEC TURBO комбинируют в себе непосредственный впрыск, турбонаддув и технологию VTEC. Эти двигатели были представлены фирмой 19 ноября 2013 года и включают в себя 1-литровый 3-цилиндровый, 1.5-литровый 4-цилиндровый, 2-литровый 4-цилиндровый. Старший двигатель из заявленной линейки предполагается к внедрению на модели Honda Civic Type R и будет соответствовать нормам Euro 6.

Что такое система VTEC в двигателях Honda?

Двигатель с системой VTEC – еще экономичнее, еще продуктивней

Если вы уже читали наш материал: «Как работает двигатель автомобиля?», то знаете о клапанах, которые впускают в двигатель воздух и выводят из него выхлопной газ. Клапанами управляет распределительный вал. Чтобы открывать и закрывать клапаны, распредвал использует вращающиеся кулачки.

Существует связь между вращением кулачков, и тем, сколько оборотов в минуту делает двигатель. Представьте, что автомобильный мотор вращается крайне медленно – всего 10-20 оборотов в минуту, поэтому один полный цикл оборота поршня занимает несколько секунд. В реальности невозможно заставить мотор работать на таких оборотах, но мы только представляем для примера. В нашем «идеальном» примере распредвал будет работать так, чтобы, как только поршень начинал движение вниз в такте впуска воздуха и бензина, открывался впускной клапан. Впускной клапан закроется как раз в тот момент, когда поршень достигнет нижнего предела. Тогда выпускной клапан будет открываться, когда поршень достигнет нижнего предела в такте сгорания, и закроется, когда поршень завершит такт выхлопа. Расписанный процесс позволил бы мотору работать с максимальным коэффициентом полезного действия. При описанной схеме работы газораспределительной системы камеры сгорания эффективно наполняются топливно-воздушной смесью и эффект работы мотора становится наивысший. Но описанная идеальная схема возможна только на очень маленькой скорости.

При увеличении оборотов движка, эта конфигурация для распределительного вала не срабатывает. Если двигатель работает на скорости в 4 000 оборотов в минуту, то клапаны за одну минуту открываются и закрываются 2 000 раз, или от 30 до 40 раз каждую секунду. Когда впускной клапан открывается во время верхней части такта впуска, то газораспределительная система не успевает всосать эффективное количество воздуха в цилиндр за предельно короткое время (доли секунды). Поэтому, для эффективной работы мотора на более высоком диапазоне оборотов в минуту, вы бы предпочли, чтобы входной клапан открывался прежде чем начнется такт впуска. А еще лучше, если он начал бы открываться еще во время выхлопного такта (или такта выпуска), чтобы к тому времени, когда поршень начнет двигаться вниз во время такта впуска, клапан был уже открыт и давал свободный ток воздуху в цилиндр в течение всего такта впуска. Это немного упрощенное объяснение, уверены, вы поняли основную идею процесса.

Японские инженеры просчитали, что для максимальной производительности мотора Honda на низких оборотах, клапаны должны открываться и закрываться иначе, чем, если бы они это делали на высоких скоростях двигателя. Если в двигатель поставить низкооборотистый распределительный вал, то на высоких оборотах он будет не эффективен. Если поставить распредвал высоких оборотов, на низких оборотах толку от него будет мало. С таким распредвалом вы даже не сможете завести автомобиль.

Что такое система VTEC в двигателях Honda?

Купив автомобиль Honda c системой VTEC, получаешь интеллектуального помощника, который контролирует все процессы газораспределения двигателя внутреннего сгорания, без дополнительной помощи. VTEC – система переменного хронометража открытия клапанов и электронный контроль за их поднятием (Variable Valve Timing and Lift Electronic Control). Это электронная и механическая система в двигателях Honda, которая позволяет мотору использовать несколько валов одновременно, эффективно их сочетая. Когда мотор работает в разных скоростных диапазонах, компьютер активирует альтернативные кулачки на распределительном валу и меняет хронометраж открытия клапанов. Так, двигатель Honda получает лучшие показатели высокоскоростного и низкоскоростного распределительного вала одновременно. От этого уменьшается износ движка, и увеличивается коэффициента полезного действия. Двигателя с системой VITEC имеют усредненные настройки фаз газораспределения за счет специального профиля кулачков распределительного вала. Для оптимальной работы усредненной настройки фаз газораспределения японцами создан специальный газораспределительный механизм.

Последний разработанный двигатель Honda DOHC с четырехклапанным механизмом газораспределения, имеет два распредвала с тремя кулачками на каждый ряд клапанов как впускных, так и выпускных. На каждый два клапана идет по три кулачка.  Боковые кулачки нужны для низких и средних оборотов, а средний кулачок служит для высоких.

Подобную систему пытались внедрить в BMW Zagato Coupe немецкие инженеры BMW, но проект остался на стадии разработки.

Производители двигателей часто экспериментируют с системами, позволяющими бесконечный переменный хронометраж открытия клапанов. О попытках инженеров Zap-Online.ru уже писали здесь. Представьте себе эффективность мотора, если бы каждый клапан имел бы соленоид управляемый через компьютер. Тогда не пришлось бы полагаться на работу распределительного вала. Вы бы получили максимальную производительность мотора на каждом диапазоне оборотов. Это что-то, чего мы так с нетерпением ждем в будущем.

Ну и на последок система VTEC в действии.

Как работает система VTEC Honda |

Среди множества технологий Хонда, есть одна прочно ассоциирующаяся с брендом — VTEC. Уникальная динамическая система контроля клапанов помогла сивикам и интеграм 90-ых быть круче, чем Ford Aspires и Daewoo Lanos. VTEC это сокращенно Variable Valve Timing and Lift Electronic Control. Другими словами система изменения фаз газораспределения и электронного контроля высоты подъема клапанов. Это более точное определение, чем «пинок под жопу» из интернета. За время существования система сменила ряд версий. Первое массовое внедрение было на Integra XSi или RSi B16A 1989 года в Японии.

Сегодня система VTEC — одно из лучших решений, позволяющее создавать производительные двигатели с приемлемым уровнем выхлопа.

История системы VTEC начинается гораздо раньше, чем вы можете представить, из ранних 80-ых, и не имеет ничего общего с вашим свапнутым civic-ом с двигателем K-серии. Все началось с мотоциклетного подразделения Хонды и технологии REV. Система позволяла переключать работу в мощностных режимах с двух на четыре клапана. Иными словами, когда не было необходимости вжаривать, два из четырех клапанов бездействовали. C 1984 года Honda запустила проект NCE (новый концепт двигателя) в котором компания продолжила развивать эти идеи, сфокусировавшись уже на распределительном вале.

На фото весь смысл VTEC. Средний кулачок с более агрессивным профилем действует на свое коромысло. Более спокойные кулачки справа и слева работают в спокойном режиме, давят на рокеры непосредственно связанные с клапанами. Средний рокер свободно движется до поры до времени. Специальный механический штырь в нужный момент под давлением масла фиксирует все три коромысла, и движение крайних коромысел теперь повторяет траекторию среднего рокера, на который давит более агрессивный кулачок. Т.о. на высоких оборотах клапана открываются сильнее, и находятся в открытом виде дольше.

В Америку Honda привезла технологию VTEC впервые с моделью NSX, но тогда ее должным образом не оценили. Признали систему vtec в 1992 году, когда она проявила себя во всей красе на автомобиле Acura Integra GS-R. В середине 90-ых Honda захватила сегмент компактных спортивных авто, выпустив VTEC-трио del Sol с B16A3, Integra с мотором B18C1 и Prelude на h32A1. Прошли годы, пока другие автопроизводители не предложили на массовый рынок свои системы изменения фаз газораспределения.

система VTEC

Принципы устройства VTEC не поменялись с годами. Простое, элегантное механическое решение позволяет двигателю переключаться между двумя профилями распределительных валов. В конфигурации с двумя распредвалами, каждый из них оснащен тремя кулачками на цилиндр — парой основных и одним увеличенным. В нормальных условиях центральный кулачок не задействован. Но если двигатель раскрутить до определенных оборотов, ЭБУ двигателя подает 12-вольтовый сигнал на соленоид VTEC, который разблокирует клапан. Через открытый клапан давление масла загоняет на свои места металлические штыри. Штыри фиксируют основные рокеры с рокером VTEC, траекторию которого задает большой кулачок VTEC. Таким образом основные рокеры теперь двигаются по VTEC-кулачку, открывая клапана на более длинный отрезок времени и большую высоту. Как только сигнал прекращается, все происходит в обратном порядке. Средний рокер расфиксируется, двигатель работает в обычном режиме.

система i-VTEC

Дальнейшее развитие VTEC технологии. Тут применяется VTC (Variable Timing Control) в дополнении к самому VTEC. Здесь тоже все оригинально. В зависимости от оборотов двигателя, шестерня впускного распредвала позволяет изменять его фазу на значительный градус. Система также контролируется электроникой, а в движение приводиться гидравликой. Используются такие параметры как угол опережения зажигания, состав выхлопа, положение дросселя, для вычисления угла поворота шестерни. Она может изменить угол до 50 градусов, хотя на двигателе K24A2 только на 25. Таким обрахом буковка «i» в аббревиатуре i-VTEC подразумевает «умную» систему (intelligent) регулирующую работу сразу двух систем VTEC и VTC, достигая беспрецендентный баланс мощности и экономичности.

Honda предложила две системы i-VTEC неофициально названные экономичный i-VTEC и мощностной i-VTEC. Производительная версия i-VTEC работает как любой другой VTEC плюс VTC. Экономичный i-VTEC странноватая штука. На такие i-VTEC ставили один впускной клапан, впускной распредвал имел лишь два кулачка, при этом головка блока оставалась двухвальной. Впускной клапан открывался лишь до щели, позволяя двигателю лишь потягивать топливно-воздушную смесь. А мощностной режим в таком двигателе — то же что и в обычном без VTEC. Клапана просто открываются нормально.

У таких двигателей естественно очень низкий расход и выхлоп, но они слабые. Нормально работает с 2200 оборотов, когда клапана начинают подниматься нормально. По состоянию на 2012 год, к сожалению фанатов, лишь такие двигатели остались.

a-VTEC

С годами Хонда зарегистрировала патенты на ряд технологий, одна из которых a-VTEC. Если ее начнут производить, она станет логичным продолжателем VTEC. Главный смысл — обеспечить плавное, бесступенчатое изменение высоты подъема клапанов. Вкупе с VTC это позволит держать механизм газораспределения в оптимальном состоянии в любом режиме. Учитывая, что на подходе возрожденная NSX, это даёт надежду на повторение успеха VTEC технологии

Десятка отличных VTEC-моторов

Если вы подумываете о вышей первой хонде под проект, или размышляете о двигателе под своп, то данный список будет интересен

B16A

Куда ставили:1989-1993 JDM Integra XSi, RSi; 1989-1991 Civic CRX SiR

Мощность/Момент:160л. с./152Н.м.

Чем хорош: Первый DOHC VTEC, который вы можете себе позволить.

B16B Type R

Куда ставили:1997-2000 JDM Civic Type R

Мощность/Момент:185л.с./160Н.м.

Чем хорош:Версия B18C с уменьшенным ходом поршня, хорошо держит высокие обороты.

B18C1

Куда ставили:1994-2001 Integra GS-R

Мощность/Момент:170л.с./173Н.м.

Чем хорош:Первый 1.8 VTEC, с двухступенчатым впускным коллектором.

B18C Type R

Куда ставили:1995-2001 JDM Integra Type R

Мощность/Момент:200л.с./185Н.м.

Чем хорош:Самый мощный из B-серии

C32B Type R

Куда ставили:2002-2005 JDM NSX-R

Мощность/Момент:290л.с./303Н.м.

Чем хорош:Скурпулезно сбалансированная версия стандартного NSX двигателя. Нереально дорого, не найти.

F20C1

Куда ставили:2000-2005 S2000

Мощность/Момент:240л.с./207Н.м.

Чем хорош:Считается наиболее производительным четырехцилиндровым двигателем, отлично раскручивается, не в ущерб средним оборотам.

h32A1

Куда ставили:1993-1996 Prelude VTEC

Мощность/Момент:190л.с./214Н.м.

Чем хорош:Первый биг-блок Хонды. За ним рекорды в драге и история марки.

J37A4

Куда ставили:2009-2013 TL SH-AWD

Мощность/Момент:305л.с./370Н.м.

Чем хорош:Самый мощный на сегодня Хондовский мотор

K20A Type R

Куда ставили:01-05 Civic, Integra Type R

Мощность/Момент:212л.с./202Н.м.

Чем хорош:Топовый двигатель K-серии, вариант сваперам

K24A2

Куда ставили:04-08 TSX

Мощность/Момент:205л. с./222Н.м.

Чем хорош:Легко найти, много тюнинга.

Материал для перевода:
www.superstreetonline.com/how-to/engine/1306-how-vtec-ivtec-works/

Что такое двигатель Vtec

На сегодняшний день DOHC i-VTEC – это вершина технологий, которые Honda применяет к дорожным автомобилям. Civic Type R, Civic Si, RSX Type S, Accord Euro-R, S2000 – все они связаны красным сердцем под названием DOHC i-VTEC.

DOHC i-VTEC — система управления газораспределением в двигателе. И чтобы приступить к объяснениям самой сути системы не лишним было бы вспомнить, что такое газораспределение и основные ее составляющие.

Газораспределение – это ничто иное как процесс впуска в цилиндры двигателя свежего заряда топливно-воздушной смеси и выпуска отработавших газов. Мощность и крутящий момент, расход топлива и токсичность выхлопов напрямую зависят от эффективности газораспределения, т.е. на сколько эффективно цилиндры наполняются свежим топливом и насколько эффективно избавляются от продуктов ее сгорания.

Двигатель Honda с DOHC i-VTEC

 

Если капнуть глубже, то окажется, что непосредственное влияние на процесс газораспределения оказывают кулачки распределительных валов. Вернее их профиль, высота и угловое положение кулачков впускных относительно выпускных.

Если бы существовала возможность создать кулачки с профилем и углом, обеспечивающие наилучшие мощностные, экономичные и токсичные показатели во всем диапазоне оборотов двигателя, появление таких систем как VTEC было бы необъяснимым. Разумеется, такие кулачки создать невозможно, поэтому VTEC существует.

Во время работы на высоких оборотах время, в течение которого клапаны открыты, сокращается. Для того, чтобы достигнуть оптимального наполнения цилиндра топливно-воздушной смесью, а после сгорания избавиться от отработавших газов, клапаны должны открываться раньше и закрываться позже, увеличивая тем самым время «открытости» клапанов. Подобрать кулачкам соответствующий профиль очень легко, однако на низких оборотах за такое газораспределение придется расплачиваться. Через преждевременно отрытый выпускной клапан из цилиндра в выпускной тракт попадут отработавшие газы, еще имевшие нерастраченную на полезную работу энергию, т.е. не догоревшее топливо.

По причине позднего закрытия того же выпускного клапана вслед за этим в выпускной коллектор до воспламенения может попасть часть свежей горючей смеси. Другая часть свежего заряда может оказаться также «за бортом» через не успевший закрыться впускной клапан. Эта часть топливно-воздушной смеси попадет обратно во впускной коллектор. Понятно, что такая работа двигателя далеко не эффективна, а потери и по расходу топлива и по мощности очевидны.

DOHC i-VTEC позволяет избежать вышеописанных неприятностей на низких оборотах и обеспечить существенную отдачу на «верхах» и средних оборотах. В принципе, с этим не плохо справлялся DOHC VTEC предыдущего поколения, однако у DOHC i-VTEC больше тяги на низах, чем старый DOHC VTEC похвастаться не может. Возможно, это не единственное различие между старым и новым двухвальным VTEC. К сожалению, на красноголовых DOHC i-VTEC не ездил, поэтому проводить дальнейшее сравнение просто не имею права. Уверен, что у каждого из них найдутся свои плюсы и минусы. Однако новый DOHC i-VTEC производительней и этот факт стоит признать.

В ходе длинного вступления вы, наверное, подумали, что DOHC i-VTEC система не имеющая разновидностей. Впрочем, сама Honda позиционирует ее без деления, хотя на самом деле DOHC i-VTEC имеет два подвида, которые берут свои корни с предыдущего поколения VTEC.

Разновидности DOHC i-VTEC

* DOHC i-VTEC DOHC VTEC + VTC
* DOHC i-VTEC I SOHC VTEC-E + VTC + не втековый выпускной распредвал

Система Тип VTEC VTC
DOHC i-VTEC VTEC на впуске и выпуске. Момент срабатывания VTEC — 5800 об.мин. на впускном распредвале
DOHC i-VTEC I VTEC-E на впуске, выпускной распредвал стандартный. Момент срабатывания VTEC — 2500 об.мин. на впускном распредвале

По большому счету префикс «i» в названиях системы подразумевает, что в паре с системой VTEC работает VTC. Но перед тем как разобраться, что такое VTC вспомним принцип работы традиционных VTEC и VTEC-E, так как DOHC i-VTEC в обоих его проявлениях основан именно на принципах работы VTEC первого поколения.
DOHC i-VTEC

Вспомним, что в стандартном двигателе на каждый клапан в цилиндре приходится свой кулачок на распредвале. Однако, в моторах с DOHC i-VTEC на каждые два клапана предусмотрено 3 кулачка на распредвале – два стандартных крайних и один центральный кулачок с более агрессивным профилем, который вступает в работу с момента включения системы VTEC. Т.е принцип действия нового DOHC VTEC (составляющую DOHC i-VTEC) абсолютно идентичен работе DOHC VTEC первого поколения

Устройство и принцип работы VTEC, как составляющей системы DOHC i-VTEC

Два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный подключается на высоких оборотах. Обратите внимание, что кулачки воздействуют на клапана не непосредственно, а через так называемые коромысла/рокеры, которых тоже три на два клапана.

До тех пор пока система VTEC отдыхает, каждый рокер работает независимо друг от друга. Внешние кулачки обеспечивают открытие клапанов, а центральный кулачок, хотя и вращается вместе с остальными, но до поры до времени работает в холостую. Как только двигатель переходит в режим высоких оборотов система VTEC включается (5800 оборотов в минуту). Посредством давления масла система смещает специальные поршеньки (synchronizing pin) внутри рокеров таким образом, что все три рокера превращаются в одну единую конструкцию. До этого работавший вхолостую центральный кулачок вступает в игру. Теперь два крайних рокера начинают работать по законам центрального кулачка, загоняя клапана глубже.

Таким образом, в режиме VTEC в цилиндры поступает больше топливно-воздушной смеси, и как следствие, значительное увеличение мощности.

VTC

VTC — это та дополнительная составляющая, которая превращает DOHC VTEC в новый «DOHC i-VTEC» и «VTEC-E» в «DOHC i-VTEC I». Это механизм, который доворачивает впускной распределительный вал относительно выпускного с помощью давления масла.

Аббревиатура VTC расшифровывается как Variable Timing Control, что в переводе означает «Система изменения фаз газораспределения». По сути, расшифровка названия имеет тот же смысл, что и VTEC. В принципе цель этих систем одна и та же, но каждая это делает по разному и в тоже время дополняет друг друга. Дополнительная система VTC установлена и воздействует только на впускной распредвал.

При высоких оборотах времени на открытие-закрытие клапанов значительно меньше, хотя топливо-воздушной смеси нужно подавать больше. Следовательно, необходимо увеличить фазу открытия и высоту подъема клапана чем и занимается VTEC, а система VTC «создает благоприятные условия» для эффективной работы VTEC.

Если система VTEC с помощью дополнительного кулачка позволяет вогнать клапаны глубже и незначительно увеличивает время открытого состояния, то VTC дает возможность довернуть распредвал таким образом, что клапаны откроются раньше, что способствует более эффективному продуванию цилиндров.
В отличие от основной системы VTEC, которая включается в определенном диапазоне оборотов, дополнительная система VTC работает постоянно и непрерывно, регулируя момент открытия впускных клапанов в зависимости от нагрузки на двигатель. Давайте разберемся, как она это делает.

Механизм работы VTC

 

Исполнительная часть системы VTC интегрирована в шкив впускного распредвала. Если обычный шкив это цельная конструкция, один кусок металла, то шкив VTC состоит из нескольких частей.

Одна из частей — корпус шкива VTC, который жестко закреплен цепью ГРМ со шкивами выпускного и коленчатого валов. Другая часть — лопатка шкива VTC — деталь которая имеет свободный ход внутри шкива VTC и которая жестко закреплена с впускным распредвалом. Полость внутри корпуса шкива VTC, в которой лопатка имеет свободный ход заполнена моторным маслом. Подвод масла в полость шкива организована с двух сторон от лопатки. Таким образом, подавая давление масла в одну из сторон мы крутим лопатку в другую сторону. А воздействуя на лопатку шкива VTC мы напрямую воздействуем на распредвал с кулачками и, как следствие, изменяем угол положения впускных кулачков относительно выпускных.

Роль управляющего в этом процессе играет соленоид VTC. Получая данные о нагрузке на двигатель с ECU соленоид направляет давление масла в одну из сторон.

Как это происходит. К соленоиду VTC подведено моторное масло, которое имеет определенное системное давление, которое передается соленоиду VTC. Внутри соленоида происходит разделение направления масла на два канала — назовем их условно красный канал и желтый канал. Оба из этих каналов ведут от соленоида к полости шкива VTC, в котором лопатка шкива VTC имеет свободный ход. Красный канал подведен с одной стороны лопатки шкива, а желтый — с другой.

 

Угол перекрытия (перекрытие клапанов) – это угол положения впускных клапанов относительно выпускных, при котором впускные и выпускные клапаны одновременно открыты. Проще говоря, это момент времени, когда впускные и выпускные клапаны одновременно открыты.

В зависимости от условий работы двигателя соленоид направляет давление масла либо в красный либо в желтый канал. И если давление направлено, например, в красный канал, то с желтого канала происходит слив — воздействуя на лопатку шкива с одной стороны, система заставляет лопатку выдавливать масло с другой стороны.

На холостых оборотах и на низких оборотах при малой нагрузке двигателя система VTC доводит угол перекрытия клапанов до минимума, чтобы двигатель работал стабильно. При увеличении нагрузки система плавно увеличивает угол перекрытия. На высоких оборотах при большой нагрузке система доворачивает распредвал (увеличивает угол перекрытия) до максимально возможного уровня. Величина угла перекрытия клапанов зависит от модели двигателя и как правило находится в пределах 25 — 50 градусов.

* * *

Если не вдаваться в особенности конструкции моторов с DOHC i-VTEC можно утверждать, что суть темы в этой статье раскрыта. На самом деле, новый DOHC i-VTEC в обоих его проявлениях это старый добрый VTEC дополненный новой интеллектуальной «фишкой» VTC. И именно за счет VTC моторы с DOHC i-VTEC (оба подвида) стали работать гораздо эластичнее моторов с VTEC первого поколения и имеют больше тяги на низах.

Несомненно, новые моторы производительнее, технологичнее и лучше, однако новый VTEC кое-что утратил — за счет приобретенных качеств включение VTEC, которое так «заводило» стало, практически, незаметным. И все же DOHC i-VTEC впечатляет. «вгоняет» и «доворачивает».

VTEC — это… Что такое VTEC?

VTEC (англ. Variable valve Timing and lift Electronic Control)

Система изменения фаз газораспределения с электронным управлением. Используется в двигателях внутреннего сгорания фирмы Honda. Система позволяет управлять наполнением топливно-воздушной смесью камер сгорания. На низких оборотах двигателя система обеспечивает экономичный режим работы, на средних — максимальный крутящий момент, на максимальных оборотах — максимальную мощность.

Введение в VTEC

В обычном четырёхтактном двигателе внутреннего сгорания впускные и выпускные клапаны управляются кулачками распредвала. Форма этих кулачков определяет момент, ход и продолжительность открытия клапана. Момент открытия (и закрытия) определяет момент открытия (или закрытия) клапана относительно процесса работы двигателя. Ход определяет высоту открытия клапана, а продолжительность открытия отвечает на вопрос «Как долго клапан был открыт». Из-за различного поведения газов (топливо-воздушной смеси) в цилиндре до и после зажигания на разных оборотах двигателя, требуются различные настройки работы клапанов. Так, оптимальное соотношение момента, хода и продолжительности клапана на низких оборотах, выльются в недостаточное наполнение цилиндров на высоких оборотах, что сильно уменьшит выходную мощность. И наоборот, оптимальные настройки для высоких оборотов приведут к неустойчивой работе на холостом ходу. В идеале двигатель должен уметь изменять эти установки в широких пределах, подстраиваясь под ситуацию.

На практике спроектировать и создать такой двигатель достаточно трудоёмко и нерентабельно. Предпринимались попытки использования соленоидов вместо обычных подпружиненных кулачков, но такие схемы не дошли до массового производства по причине дороговизны и сложности в исполнении.

VTEC — это попытка компромисса между производительностью двигателя на высоких оборотах и его стабильностью на низких.

Кроме того, в Японии существуют налоги на объём двигателя, заставляя производителей выпускать высокопроизводительные двигатели с относительно маленьким рабочим объёмом. В спортивных машинах, таких как Toyota Supra и Nissan 300ZX, мощность достигается турбонаддувом, Mazda RX-7 и RX-8 используют высокооборотистый роторный двигатель. VTEC — это ещё один подход к созданию мощного, малообъёмного двигателя.

SOHC VTEC

С ростом популярности и рыночного успеха, Honda выпустила упрощенную версию VTEC — SOHC VTEC. Поскольку в SOHC двигателях используется один, общий распредвал для впускных и выпускных клапанов, VTEC работает только на впускных клапанах. Причина лежит в свечах зажигания, которые расположены между двумя выпускными клапанами, делая невозможным размещение нескольких профилей кулачков.

SOHC VTEC-E

Следующая версия SOHC VTEC, VTEC-E была разработана не для повышения производительности на высоких оборотах, а для повышения экономии топлива на низких. Для этого, на низких оборотах открывался только один впускной клапан, впуская обедненную смесь и тем самым экономя топливо. При высоких оборотах, давление масла подключало второй клапан и повышало мощность.

3-stage SOHC VTEC

Также, Honda представила на некоторых рынках 3-stage SOHC VTEC. Эта система является комбинацией SOHC VTEC и SOHC VTEC-E. На низких оборотах работает только один клапан, на средних оба клапана, а на высоких в действие вступают высокопроизводительные кулачки. Таким образом экономичность и мощность повышены по сравнению с предыдущими версиями.

i-VTEC

i-VTEC (i значит интеллектуальный (англ. intelligent)) представил непрерывно изменяемые фазы газораспределения на распредвале впускных клапанов в системе DOHC VTEC. Технология впервые применялась на хондовских четырёхцилиндровых двигателях серии К в 2001 году (в 2002 в США). Подъём и продолжительность открытия клапанов по-прежнему управлялся разными профилями кулачков, но впускной распредвал получил способность регулировать угол опережения от 25 до 50 градусов (в зависимости от двигателя). Фазы управляются компьютером, используя давление масла и изменяемой передачи распредвала. Регулирование фаз зависит от оборотов и нагрузки двигателя и могут варьироваться от отсутствия опережения на холостом ходу до максимального опережения под полным газом и низкими оборотами. Как следствие, увеличивается момент на низких и средних оборотах.

Для моторов серии К существуют две разновидности i-VTEC. Первая создана для мощных моторов, таких как в RSX Type-S, TSX, Odyssey Absolute, а вторая для экономичных моторов, таких как в CR-V, Odyssey или Accord. Оба мотора можно легко различить по выдаваемой мощности: производительные системы выдают около 206 л.с., а экономичные моторы не превышают 173 л.с.

См. также

Ссылки

Как работает VTEC — объяснение фаз газораспределения Honda Variable Valve Timing

Если вы автолюбитель, то наверняка слышали термин «VTEC» раньше, но, возможно, не знаете, что он означает. Если вы этого не сделаете, вот объяснение.

VTEC — это тип системы изменения фаз газораспределения, разработанный и используемый Honda. Это означает V ariable Valve T iming & Lift E lectronic C ontrol. Как и большинство других систем с изменяемыми фазами газораспределения, VTEC изменяет давление масла для переключения между различными профилями кулачка.На более высоких оборотах двигателя профиль кулачка обеспечивает больший подъем клапана, что позволяет большему количеству воздуха попадать в цилиндр. Это помогает генерировать больше лошадиных сил. С момента своего появления в конце 1980-х годов VTEC использовался во многих автомобилях Honda с лучшими характеристиками, включая NSX, Integra Type R, S2000 и Civic Type R.

Но способ переключения профилей кулачков VTEC совершенно другой. Большинство систем изменения фаз газораспределения используют повышенное давление масла для изменения фаз газораспределения, открывая клапаны раньше; VTEC использует совершенно другой набор кулачков на высоких оборотах.

Объяснение процесса одними словами не дает ему должного. Джейсон Фенске из Engineering Explained собрал видео, показывающее, как именно работает VTEC, с использованием реальных двигателей Honda и визуальных диаграмм. Если вы хотите знать, что происходит внутри двигателя, обязательно посмотрите этот клип.

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Как объясняет Фенске, двигатели с системой VTEC имеют два коромысла с собственными низкопрофильными кулачками для каждого цилиндра и центральный коромысел с собственным высокопрофильным кулачком, который не используется на низких оборотах. По мере увеличения оборотов двигателя поршень внутри коромысел находится под давлением масла, блокируя все три кулачка вместе, чтобы увеличить подъем клапана. Отсюда и характерный звук «VTEC работает».

Теперь, когда вы в следующий раз «войдете в VTEC» за рулем своей Honda, вы будете точно знать, что происходит внутри вашего двигателя.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Как работает двигатель Honda i-VTEC®?

Вы готовы узнать о мощности автомобильных двигателей и о том, что ими движет? Представляем вам двигатель Honda i-VTEC®! Оригинальная система VTEC Honda была изобретена инженером Honda Икуо Каджитани.Он решил проблему получения максимальной мощности от двигателей малого рабочего объема, сохранив при этом эффективность расхода топлива при обычной повседневной вождении. Изменяя внутренний подъем клапана и синхронизацию, Каджитани смог повысить производительность без дорогостоящего (и требующего значительного обслуживания) добавления турбокомпрессора или нагнетателя.

Уловка? Система VTEC (система электронного управления регулировкой фаз газораспределения и подъема) использует отдельные профили распределительного вала для низких и высоких характеристик, а компьютер двигателя выбирает между профилями.Используя отдельные профили распределительного вала, можно регулировать как подъем, так и продолжительность открытия клапана, вместо того, чтобы просто изменять фазы газораспределения, что является обычным для обычных систем VVT (регулируемых фаз газораспределения).

Оригинальная система VTEC заменила один кулачок кулачка и коромысло блокируемым, состоящим из нескольких частей коромыслом и двумя профилями кулачков: один оптимизирован для стабильности на низких оборотах и ​​топливной экономичности, а другой разработан для максимизации выходной мощности на высоких оборотах. Система VTEC по существу сочетает в себе топливную экономичность и стабильность на низких оборотах с характеристиками на высоких оборотах.Переход происходит плавно, обеспечивая плавную работу во всем диапазоне мощности.

Операцией переключения между двумя кулачками управляет компьютер двигателя. В зависимости от скорости, нагрузки и оборотов двигателя компьютер переключается между эффективным кулачком и высокопроизводительным кулачком. Приводится в действие соленоид, который зацепляет коромысла высокопроизводительного кулачка. В этот момент клапаны открываются и закрываются в соответствии с профилем высокого подъема, открывая клапаны дальше и на более длительное время.Это позволяет большему количеству воздуха и топлива проникать и сжигать, создавая более высокий крутящий момент и мощность.

В любом двигателе фазы газораспределения, продолжительность и высота подъема, которые оптимизируют работу на низких оборотах, сильно отличаются от требований высоких оборотов. Настройки клапана на низких оборотах приводят к плохой работе при более высоких оборотах, а настройки высоких оборотов приводят к грубому холостому ходу и плохой работе на низких оборотах. Если вы думаете о маслкаре, который имеет грубый холостой ход и почти не работает на низких оборотах, но кричит по гоночной трассе на высоких оборотах, это потому, что у автомобиля есть распределительный вал, который оптимизирован для максимальной мощности на этих высоких оборотах.Для сравнения: суперэффективный пригородный автомобиль имеет плавный холостой ход и может даже иметь «резкую» производительность, он быстро теряет мощность на средних и высоких оборотах.

Оригинальная система VTEC была внедрена в двигателях Honda DOHC (Dual OverHead Camshaft) в 1989 году Honda Integra XSi и впервые была доступна в Соединенных Штатах в 1991 году в Acura NSX. Integra Type R 1995 года (доступный только на японском рынке) производил невероятные 197 лошадиных сил с 1,8-литровым двигателем. Этот двигатель имел большую мощность на литр рабочего объема, чем большинство суперкаров того времени.

Honda продолжала совершенствовать оригинальную систему VTEC, которая теперь превратилась в Honda i-VTEC® (интеллектуальный VTEC). Эта технология была впервые доступна в 2001 году, и к 2002 году большинство 4-цилиндровых автомобилей Honda использовали i-VTEC®. Система i-VTEC® сочетает в себе оригинальный VTEC с системой Honda VTC (Variable Timing Control). Представив возможность использования двух профилей распределительных валов в сочетании с регулируемыми фазами газораспределения, Honda еще больше оптимизировала характеристики. Хотя система VTEC контролирует продолжительность подъема клапана, она по-прежнему может выбирать только между профилями низких и высоких оборотов.Но, кроме того, впускной кулачок может перемещаться от 25 до 50 градусов, оптимизируя фазы газораспределения для каждого диапазона оборотов.

С помощью VTEC компания Honda создала двигатель, который работает на невероятных уровнях в более широком диапазоне оборотов, чем большинство двигателей. Это обеспечивает плавную передачу мощности с большим расходом топлива практически в любой дорожной ситуации. Если вам нужна дополнительная информация о системе Honda VTEC или вы хотите протестировать отличный автомобиль Honda, оснащенный этой технологией, зайдите сегодня к Нилу Хаффману Хонде в Кларксвилле.

Опубликовано в Кларксвилл, Индиана, дилер Honda | Нет комментариев »

VTEC

VTEC — один из величайшее изобретение. Хотя бесспорный эксперт в области турбонаддува, так как о чем свидетельствуют годы доминирования в Формуле-1, когда Honda была активна в гонках. спорт, инженеры Honda считают, что турбонаддув имеет недостатки, в первую очередь плохая экономия топлива, что сделало его не совсем подходит для уличного использования. В в то же время преимущества работы с двигателями меньшего размера означали, что двигатели меньшей мощности с максимально возможной выходной мощностью (т. е. очень двигатели с высокой удельной мощностью) желательны для уличных двигателей.

Таким образом, Honda изобрела VTEC, который позволяет извлекать специфичные для турбо-уровня выход из его двигателей, не страдая от недостатков турбонаддува (хотя VTEC имеет собственные недостатки).

Храм VTEC специально создан Джеффом Палмером как приверженность этой великой технологии и Храм VTEC Asia посвящен дому VTEC и компании Honda, Япония. и регион Азии.

В этой постоянной функции мы рассмотрим основной механизм, который составляют технологию VTEC, а также различные реализации VTEC.

Основным механизмом, используемым в технологии VTEC, является простой гидравлически активированный штифт. Этот штифт гидравлически подталкивается горизонтально, чтобы соединить соседние коромысла. Пружинный механизм используется для возврата штифта в исходное положение. исходное положение.

Механизм VTEC подробно описан в другом месте, поэтому он избыточно, чтобы пройти через весь механизм здесь. Вместо этого мы посмотрим на основные принципы работы, которые могут быть использованы в следующих разделах: объясните различные реализации VTEC от Honda.

Чтобы начать с основного принципа, рассмотрите простую диаграмму ниже. Он состоит из распределительного вала с двумя расположенными рядом кулачками. Эти доли приводят два расположенных рядом коромысла клапана.

Две пары кулачок / коромысло работают независимо друг от друга. Один из два кулачка намеренно изображены разными. Тот, что на left имеет более «дикий» профиль, он откроет свой клапан раньше, откроет больше, и закройте его позже, по сравнению с тем, что справа.При нормальной работе каждая пара узла кулачок-кулачок / коромысло будет работать независимо от каждого Другой.


VTEC использует механизм приведения в действие штифта для соединения коромысла с мягким кулачком и коромысло wild-cam. Это эффективно заставляет работать два коромысла. как один. Этот «составной» коромысло (и) теперь четко следует за профилем дикого кулачка левого коромысла. По сути, это основной принцип работы всех двигателей Honda VTEC.

В настоящее время Honda внедрила VTEC в четырех различных конфигурациях. В оставшейся части этой функции мы рассмотрим эти четыре разных реализации VTEC.

Вершиной внедрения VTEC является двигатель DOHC VTEC. Первый двигатель, получивший выгоду от VTEC, — это легендарный B16A с объемом двигателя 1595 куб. См. рядный 4-цилиндровый 16-клапанный двигатель DOHC с VTEC мощностью 160 л. с. и впервые появился в 1989 году на JDM Honda Integra XSi и RSi.


Изучите схему типичного двигателя Honda DOHC PGM-Fi без VTEC на слева, в В данном случае это двигатель ZC DOHC объемом 1590 куб. см.Обратите внимание, что каждая пара кулачка-лепестка и их соответствующие коромысла хотя и расположены рядом, разнесены друг от друга.

В реализации DOHC VTEC Honda поставила дополнительный кулачок / коромысло между каждая пара впускных и выпускных лопастей / коромысел. Три кулачка / рокера сборки теперь рядом друг с другом. Новая средняя доля — «дикая» настроенный на гонку кулачок. Использование VTEC для подключения всех три коромысла вместе, Honda может использовать как мягкий, так и дикий кулачки по желанию.


Примечание: хотя ZC и B16A хорошо подходят для иллюстрации разница между обычным DOHC и DOHC-VTEC, двигатель B16A не происходит от ZC. На самом деле ZC и B16A имеют разный диаметр цилиндра и ход поршня. То же самое касается двигателей B18A и B18C, используемых в JDM Integra. серии.

DOHC Реализации VTEC могут обеспечивать чрезвычайно высокие удельные выходные данные. B16A для стандартного уличного использования сначала производил 160 л.с., а теперь 170 л.с.в супер-настроенная реализация B16B, используемая для новой JDM EK-серии Honda Civic Type-R, 185ps производился из того же 1595cc.

DOHC VTEC также может легко предложить конкурентоспособные выходная мощность на двигатели с турбонаддувом для нормального уличного использования . Например, E-DC2 Integra Si-VTEC производит 180 л.с. от двигателя DOHC VTEC B18C объемом 1797 куб. См. Это выгодно отличается от Версия 1,8 л RPS-13 Nissan 180SX, в которой используется 1,8 л DOHC Двигатель с турбонаддувом мощностью 175 л.с.

Альтернативная реализация VTEC для высоких (по сравнению с очень высоких) удельная мощность используется в двигателях Honda SOHC.Двигатели SOHC VTEC часто были ошибочно приняты за «плохую» второстепенную производную DOHC VTEC, но это не совсем так. Головка двигателя SOHC имеет преимущества перед DOHC. голова в основном по размеру (она уже) и по весу. Для большего При строгих требованиях двигатель SOHC предпочтительнее двигателя DOHC. SOHC VTEC — это силовая реализация VTEC для двигателей SOHC с явным намерением получения высокой удельной производительности.

Изучите схему стандартного кулачкового узла SOHC справа.Обратите внимание, что пара коромысел впускных клапанов разделены, но примыкают друг к другу.

В реализации SOHC VTEC (диаграмма справа), Хонда поставила дикий кулачок лепесток для впускных клапанов в пространстве между двумя коромыслами.

Обратите внимание, что два коромысла выпускных клапанов разделены двумя впускными коромысла и «туннель» для разъема кабеля свечи зажигания. Это причина, по которой Honda применила VTEC только на впускных клапанах.

Двигатели SOHC VTEC представляют собой стандартные формы с высокой удельной мощностью. Двигатели SOHC. Двигатель D15B, используемый в моделях Civic / Civic Ferio VTi (EG-серия с 1991 по 1995 год) дает 130 л.с. при объеме 1493 куб. См. Имейте в виду, что такие уровни мощности обычно связаны с 1,6 л. DOHC или даже более умеренно настроенные двигатели с впрыском топлива 1,8 л DOHC!

Новым воплощением VTEC в двигателях SOHC является VTEC-E реализация (E для экономики).VTEC-E использует принцип завихрения для способствуют более эффективному смешиванию воздуха и топлива в камерах двигателя. VTEC-E работает путем отключения одного впускного клапана. Изучите диаграмму ниже.

В реализации SOHC VTEC-E только один кулачок впуска реализован на распредвале. На самом деле это действительно плоское «кольцо». В процессе работы это означает, что соответствующее коромысло не будет активируется, заставляя двигатель эффективно работать в 12-клапанном режиме. Это способствует завихрению во время цикла всасывания.VTEC используется для активации неактивного клапана, заставляя двигатель работать. в 16-клапанном режиме в более сложных условиях и при высоких оборотах. Хонда смогла реализовать топливовоздушную смесь более 20: 1 в VTEC-E при 12-клапанном режиме работы. Civic ETi серии EG с двигателем SOHC VTEC-E может вернуться расход топлива не менее 20 км / литр !!

SOHC VTEC, реализованный для мощности, часто ошибочно принимается за SOHC VTEC-E который реализовано для экономии.Стоит отметить, что 1,5-литровый SOHC VTEC-E используемый в JDM Honda Civic ETi производит 92 л. Это на самом деле На меньше, чем на , чем произведено 100 л.с. стандартного 1,5-литрового двигателя SOHC, в котором используется двойной Keihin боковые карбюраторы. SOHC VTEC в D15B выдает 130ps. Это На 30% больше, чем в стандартной реализации SOHC!

Изучите реализации SOHC VTEC и SOHC VTEC-E. Умный Инженеры Honda увидели, что это логический шаг к объединению двух реализаций в одну.Это По сути, это трехступенчатая реализация VTEC. Реализован 3-х ступенчатый VTEC. на двигателе D15B 1,5 л SOHC, в котором механизм VTEC-E совмещен с силовой механизм VTEC.

Многие из нас, наверное, смеялись над бедным невежественным мирянином, который сказал: «Я хочу мощности И экономии от моей Хонды». Мы знаем конечно что мощность и экономия — взаимоисключающие реализации. Хонда решил, что , а не , будет соблюдать это правило. Теперь, с 3-ступенчатым VTEC, мы получить ОБЕ мощность и экономичность !.

На приведенной ниже схеме показана трехступенчатая реализация VTEC. В коромысла впускных клапанов имеют два штифтовых исполнительных механизма VTEC. VTEC-E исполнительный узел расположен над распределительным валом, в то время как VTEC (мощность) исполнительный узел представляет собой стандартный узел кулачка и коромысла.

Ниже 2500 об / мин и при небольшом давлении акселератора ни один штифт не попадает в активирован. Двигатель работает в режиме 12 В с очень хорошим сгоранием топлива. эффективность. Когда правая нога становится более активной и / или превышает 2500 об / мин, срабатывает верхний штифт.Это механизм VTEC-E в работе и двигатель эффективно входит во «2-ю стадию». Теперь D15B 3-х ступенчатый работает в 16V режим (оба впускных клапана работают от одного и того же мягкого кулачка).

Этап 2 работает от 2500 до 6000 об / мин. Когда частота вращения превышает 6000 об / мин, механизм VTEC активирует дикий кулачок толкает двигатель к «3-й ступени», силовой ступени. Сейчас же двигатель в полной мере раскрывает свой потенциал 130 л.с.!

Трехступенчатый двигатель VTEC D15B используется на JDM текущей серии EK. Civic / Civic Ferio VTi / Vi вместе с новым Multimatic CVT от Honda коробка передач.Ступень-1 12В или режим работы «обедненное горение». обозначается водителю светодиодом на приборной панели. Переключение на 2500 об / мин от обедненного горения до нормального режима работы 16 В фактически зависит от нагрузки и требования к водителю. При щадящем вождении обедненная смесь может работать до 3000 об / мин или выше. Этап-3 не всегда может быть активирован. Мультиматик трансмиссия имеет селектор экономичного режима, режима движения и спортивного режима. В В экономичном режиме, например, ЭБУ работает с максимальной частотой вращения около 4800 об / мин. даже в положениях с широко открытой дроссельной заслонкой.

Суть 3-ступенчатого VTEC — мощность И экономия, реализованная на 1,5 л. Двигатель SOHC PGM-Fi. Многие люди ошибочно принимают трехступенчатый VTEC как «превосходный». эволюция энергоориентированной реализации DOHC VTEC, описывающая DOHC VTEC как «более старый двухступенчатый VTEC» и подразумевает подчиненное отношение. Это совершенно неверно, потому что DOHC VTEC настроен исключительно на высокую специфичность. выходные и спортивные / гоночные требования. Трехступенчатый VTEC на самом деле эволюция SOHC VTEC и VTEC-E, объединение двух реализаций в один.

DOHC VTEC — это реализация, производящая самые мощные двигатели. и используется в самых эффективных моделях линейки Honda. Наименьший Двигатель DOHC VTEC — это легендарный B16A. Двигатель объемом 1595 куб. См 160-170 л. С., Который впервые появился в 1989 году в Honda Integra XSi и RSi, теперь он используется в известные модели Civic SiR. B16B — специальный сверхвысокий производная от B16A, дающая 185 л.с. и используемая в Civic Type-R.

B18C — двигатель 180 л. С. 1797 куб. Состав компании Integra.B18CSpec96 — это специальный настраиваемый вручную сверхвысокий выходной сигнал. версия B18C, дающая 200 л.с. и используемая в легендарном Integra Type-R.

Реализации DOHC VTEC теперь присутствуют в большинстве великолепных модельных рядов Honda. Accord SiR раньше имел расстроенный 190s h32A 2.2l DOHC VTEC, который был также использовал в тот же период Prelude Si-VTEC, в котором он выдавал 200ps. В Текущая линейка Accord теперь оснащена двигателем 2,0 л DOHC VTEC, который дает 180 л. 200ps в моделях Accord SiR и SiR-T соответственно, в то время как Текущая версия Prelude SiR по-прежнему использует h32A 2.Двигатель 2l DOHC VTEC, выдающий 200 л.с. Специальная настроенная вручную версия h32A используется в Prelude Type-S и дает 220ps.

Высший уровень Реализация DOHC VTEC, конечно же, есть в NSX. Реализован V6 DOHC VTEC, первоначально объемом 3,0 л, а теперь увеличенным объемом 3,2 л. формы, он превосходит «законную» 280ps ограничение, установленное правительством Японии для серийных трамваев.

SOHC VTEC появляется в модельном ряду Honda в большем количестве обликов. Наименьший Двигатель SOHC VTEC — это D15B, используемый на моделях Civic и Civic Ferio VTi / Vi. в Японии.Двигатель D16A 1590 куб. См SOHC VTEC (мощность), выдающий 130 л.с., также используется на Civic Coupe и Civic Ferio EXi (полноприводная модель). SOHC VTEC также присутствует на моделях Accord, но не на Integra или Prelude. расстановка. Фактически на рынках, которые Honda считает недостаточно продвинутый, чтобы гарантировать двигатели DOHC VTEC (Малайзия является одним из них), Honda позиционирует SOHC VTEC как лучший двигатель для своей линейки.

В этой постоянной функции мы рассмотрели основной принцип, по которому VTEC работает так же, как и различные реализации VTEC.В дальнейшем особенность, мы рассмотрим альтернативные механизмы изменения фаз газораспределения, которые реализуются другими производителями.

Автор: Вонг, Конг-Нгай
Авторские права: Храм VTEC и Храм VTEC ASIA

Примечание: большинство иллюстраций, используемых в этом функции взяты без разрешения из журналов и Honda Japan домашняя страница. Они могут быть отозваны или заменены без предварительного уведомления.

i-VTEC

i-VTEC

Smart-VTEC — Следующее поколение

Последняя эволюция Honda Система VTEC появилась еще в 1995 году, когда была представлена ​​известная ныне трехступенчатая система VTEC.Затем трехступенчатый VTEC был разработан для оптимального баланса сверхэкономии топлива и высокой мощность с управляемостью. В течение следующих 5 лет Honda по-прежнему использовала обычный DOHC VTEC. системы для их моделей максимальной мощности, от B16B до F20C в S2000. Сейчас же Honda анонсировала следующую эволюцию своей легендарной системы VTEC — i-VTEC.

i означает i ntelligent: i-VTEC — это интеллектуальный VTEC. Honda представила много нововведений в i-VTEC, но наиболее значительным из них является добавление в систему VTEC механизма перекрытия регулируемого открытия клапана.Именованный VTC for Variable Timing Control, текущая (начальная) реализация находится на впускном распредвале. и позволяет постоянно перекрывать открытие клапана между впускным и выпускным клапанами. менялось в процессе работы двигателя. Это позволяет дополнительно усовершенствовать подачу мощности. характеристики VTEC, позволяющие точно настроить передачу мощности в средней полосе двигатель.

Принцип работы с переменной синхронизацией

Принцип работы Honda VTC в основном аналогичен принципу обычного регулируемого клапана. реализация синхронизации (эта общая реализация также используется Toyota в своих VVT-i и BMW в их системе VANOS / double-VANOS).Универсальная система изменения фаз газораспределения реализация использует механизм, прикрепленный между звездочкой кулачка и распредвал. Этот механизм имеет косозубое зубчатое соединение со звездочкой и может перемещаться относительно звездочку с помощью гидравлических средств. При перемещении косозубая шестерня эффективно вращается. шестерня по отношению к звездочке и, следовательно, к распределительному валу.

Рисунок выше служит чтобы проиллюстрировать основной принцип работы VTC (и общую систему изменения фаз газораспределения). A обозначает звездочку кулачка (или шестерню кулачка), которая приводится в движение ремнем газораспределительного механизма.Обычно распределительный вал привинчивается непосредственно к звездочке. Однако в VTC промежуточный шестерня используется для соединения звездочки с распределительным валом. Эта шестерня с маркировкой B имеет косозубую шестерню снаружи. Как показано на рисунке, эта шестерня соединяется с основным звездочка с соответствующими косозубыми шестернями на внутренней стороне. Распределительный вал, обозначенный C крепится к промежуточной шестерне.

На дополнительной диаграмме справа показано, что происходит, когда мы перемещаем промежуточную шестерню по держателю в звездочке кулачка.Потому что из взаимосвязанных косозубых шестерен промежуточная шестерня будет вращаться вдоль своей оси, если взолнованный. Теперь, поскольку распределительный вал прикреплен к этой шестерне, распределительный вал будет вращаться на его ось тоже. Что мы сейчас достигли, так это то, что мы переместили относительное выравнивание между распредвалом и ведущей звездочкой распредвала — мы изменили синхронизацию распредвала!

VTC и другие реализации универсальной системы изменения фаз газораспределения могут изменять только относительное совмещение распредвала и его ведущей звездочки.Что это эффективно это изменение относительной синхронизации между впускным и выпускным кулачками и таким образом, их циклы открытия клапана или открытие впускного и выпускного клапана перекрываются. Обратите внимание, что никакие другие параметры фаз газораспределения, например, величина подъема клапана или абсолютный клапан продолжительность открытия может быть разной. Единственное, что меняется VTC — это открытие клапана. перекрывает. VTEC может изменять все параметры фаз газораспределения, кроме текущих реализаций делает это в два или три отдельных этапа (или профилей).Добавление VTC позволяет клапану перекрытия открывания должны постоянно изменяться и, таким образом, обеспечивать подачу мощности от стандартная система VTEC требует дальнейшей доработки. Наибольшее влияние будет на среднечастотная передача мощности двигателя. Самое главное, что VTC (и общие параметры фаз газораспределения систем) не заменит VTEC, но повысит его эффективность.

Текущее состояние i-VTEC

На данный момент i-VTEC реализован только с относительно низкой удельной выходной мощностью. двигатель нового фургона JDM Honda STREAM.Используемый в двигателе 2,0 л DOHC i-VTEC, он позволяет Honda повысит мощность этого двигателя на низких и средних оборотах, что очень желательно. для этой модели. На мой взгляд, VTC — самое важное нововведение, которое внедрила Honda. i-VTEC. Среди других важных нововведений — изменение ориентации двигателя (а также как направление его вращения). Двигатели i-VTEC устанавливаются таким образом, чтобы впускные клапаны были обращены к спереди автомобиля и выпускные клапаны сзади, как у японского Grand-Touring Чемпионат гоночных автомобилей .Другие улучшения касаются важных областей экономии топлива. и выбросы.

Honda анонсировала i-VTEC в специальной статье в разделе tech их официального сайта. Как обычно, японский специалист по статьям Каз Мори перевел ту статью, которую мы воспроизводим в своем целиком в поле ниже.

26/10/00 — Объявлено о новом поколении «DOHC i-VTEC»

Компания Honda Motor Company анонсировала недавно разработанный 2-литровый двигатель, получивший название «DOHC i-VTEC» для вязки с грядущей новой моделью «Stream.«Двигатель сочетает в себе мировой класс топливная эффективность с низким уровнем выбросов, малым весом и высокой производительностью.

В этом новом двигателе используется технология Honda VTEC, которая регулирует фазы газораспределения и подъем. на основе оборотов двигателя, но добавляет «VTC» — переменный контроль времени, который постоянно регулирует перекрытие впускных клапанов в зависимости от нагрузки двигателя. Два комбинированных урожая в высокоинтеллектуальный механизм фаз газораспределения и подъема.

Помимо такой техники, доработки во впускном коллекторе, выхлопной системе заднего хода, каталитический нейтрализатор, оптимизированный для сжигания обедненной смеси * 1 поможет создать двигатель, который выдает 113 кВт (154 л.с.) при 6500 об / мин, * 2 и обеспечивает достаточный крутящий момент в среднем диапазоне.Это тоже год удовлетворяет Стандарт топливной экономичности 2010 года — 14,2 км / л * 3 (примерно 35 миль на галлон) и получает государственный стандарт «LEV» * 4 . Очень прочный нижний блок и кулачок с цепным приводом были просто некоторые улучшения, направленные на создание более компактного двигателя, в результате чего двигатель это на 10% легче * 5 , чем у обычных 2-литровых двигателей.


Honda назвала эти двигатели с высокой экономией топлива «интеллектом» как свою новую «серию i». двигатели.К 2005 году Honda планирует заменить все свои двигатели двигателями i-Series. Согласно этому плану, все автомобили, продаваемые в Японии, будут сертифицированы правительством как LEV. * 4 к 2002 г. и к 2005 г. планы по удовлетворению стандарт топливной экономичности 2010 года во всех весовых категориях.

Двигатель «i-Series» также включает новый метод производства. В префектуре Сайтама, была создана новая линейка двигателей для создания блока цилиндров, механики и двигателя в сборе, и вступил в строй с августа 2000 года.Благодаря этой новой линейке двигатель и шасси могут производиться одновременно. Это также помогает за счет уменьшения количества движущегося запаса двигателя, и значительно сокращает время от начального производства до завершения транспортного средства. Количество инвестиций, необходимых для новых моделей, сокращается вдвое, а восемь различных комбинаций могут быть созданы — создавая высокоэффективную гибкую производственную линию.

Honda реализует свой план инвестировать 360 миллиардов йен (~ 3,5 миллиарда долларов США) в произвести революцию в методе производства четырехколесных автомобилей.Даже при производстве трансмиссии Только по линии, к 2003 году планируется потратить 150 миллиардов иен (~ 1,5 миллиарда долларов США). Конечная цель — достичь двойной эффективности использования ресурсов — чтобы создать «Зеленая фабрика» 21 века.

* 1 — Каталитические нейтрализаторы NOx, совместимые с обедненным сжиганием, установлены на модели Stream 2.0L. iL, iS, FF

* 2 — поток 2.0L, iL, iS, FF Net

* 3 — поток 2.0L, iL, режим FF 10 * 15

* 4 — Обозначение для транспортных средств, которые на 50% меньше Стандарты выбросов 2000 года.

* 5 — По сравнению с типичной Honda 2,0 л.

Примечание: статья переведена дословно из раздела tech официальный веб-сайт Honda of Japan по адресу http://www.honda.co.jp. Эта статья предназначена исключительно для читателей Temple of VTEC Asia. Оригинал в статье не было графика кривой мощности. Это было добавлено для улучшения статья.

Будущее

С этого момента, несомненно, будут предприниматься бесчисленные попытки угадать, что Хонда сделает i-VTEC.Есть большая вероятность, что Honda будет внедрять i-VTEC на его двигатели производительности. Наиболее вероятными бенефициарами станут Integra и Civic, две модели, которые всегда были в авангарде флага высоких характеристик Honda.

Здесь важно еще раз выделить что базовая система DOHC VTEC более чем способна обеспечить чрезвычайно высокая удельная мощность. i-VTEC — это , а не . Посмотрите на 125 л. С. / Литр мощность питания F20C, используемого на S2000.Опять же, i-VTEC do позволяет Honda стремится к небесам с точки зрения удельной выходной мощности, но при этом сохраняет хороший уровень средней мощности. Уже очень авторитетные рецензенты, такие как BEST MOTORing жаловались на отсутствие широкой средней мощности, например, двигателя F20C. В плотном На ветреной трассе, такой как Цукуба и Эбису, S2000 очень сложно обгонять Integra Type-R в битвах на 5 кругов, несмотря на то, что у него на 50 л. с. или 25% больше мощности.Наблюдение за «битвой» болезненно приносит одно очко Чисто. F20C остро нуждается в мощности ниже 6000 об / мин. Каждый раз, когда S2000 подкрадывается сзади ITR, он не может выполнить хороший обгон, потому что мощности у F20C на удивление недостаточно. Причина этого в том, что DOHC VTEC позволяет со слиянием двух различных кривых мощности. Чтобы получить максимальную мощность F20C, Кривая мощности диких кулачков настолько узкая, что фактически существует большая дыра в композитной мощности кривая ниже 6000 об / мин.Что i-VTEC может сделать в этой ситуации, так это позволить точная настройка кривой мощности для ее расширения путем изменения перекрытия открытия клапана. Таким образом, это восстановит большую среднюю мощность сверхмощных двигателей DOHC VTEC, что позволит Honda, если они так желают достичь еще более высоких удельных результатов без особых жертв средняя мощность.

На данный момент двигатель 2,0 л DOHC i-VTEC на STREAM развивает мощность 154 л. около 6500 об / мин. Это относительно нетехнологично для двигателей Honda DOHC VTEC.Там Наверное, сейчас на дизайнерских досках Honda много устрашающих двигателей DOHC i-VTEC. ТОВА читателям, которым интересно взглянуть на то, что ходят слухи, рекомендуется посетить главную площадку TOVA — Храм VTEC за одного из лучшего источника информации о будущих моделях Honda в сети.

Однако читатели, которые предпочитают читать только о достоверных фактах, могут не сомневаться. что как только выйдет ожидаемый сверхмощный двигатель DOHC i -VTEC, TOVA будет первым, кто выделил это, так же, как мы теперь первые , чтобы объяснить вам, что такое i-VTEC о.

WongKN
Ноябрь 2000 г.
и копия Temple of VTEC Asia

VTEC vs VVT-i — Различие и сравнение

Системы VTEC и VVT-i были разработаны Honda и Toyota соответственно для повышения эффективности двигателей автомобилей. VTEC ( Variable Valve Timing and Lift Electronic Control ) — это система клапанного механизма, разработанная Honda, которая позволяет двигателям достигать выходной мощности на уровне турбонаддува без плохой топливной эффективности, которую обычно вызывает турбонаддув. VVT-i ( Variable Valve Timing with Intelligence ) — аналогичная система, разработанная Toyota и имеющая несколько вариантов, среди которых VVTL-i (интеллектуальная система Variable Valve Timing and Lift) аналогична VTEC. VVTL-i впервые использовался в 1999 году в Toyota Celica SS-II, но производство было прекращено, так как он не соответствует требованиям Euro IV по выбросам.

Таблица сравнения

Сравнительная таблица VTEC и VVT-i
VTEC VVT-i
Спущен на воду 1983 1996
Принцип работы Это система клапанного механизма для повышения объемного КПД четырехтактного двигателя внутреннего сгорания.Он не только меняет время, но и поднимает клапаны. Он изменяет синхронизацию впускных клапанов, регулируя соотношение между приводом распределительного вала (ременным, ножничным механизмом или цепью) и впускным распредвалом. Не поднимает клапаны.
Разработано Honda Тойота
Стенды для Intelligent-VTEC (Электронное управление с изменяемой синхронизацией клапана и подъемом) Регулируемая синхронизация клапана с интеллектом
Распредвал впускных клапанов Распределительный вал впускных клапанов может поворачиваться на 25–50 градусов при работающем двигателе. Время впускных клапанов изменяется путем регулировки соотношения между приводом распределительного вала (ремень, ножничный механизм или цепь) и впускным распредвалом
Переключение фаз Переключение фаз осуществляется с помощью регулируемого кулачкового механизма с масляным приводом и компьютерного управления • Давление моторного масла подается на привод для регулировки положения распределительного вала.
Perfomance Фазирование определяется комбинацией нагрузки двигателя и числа оборотов в диапазоне от полностью замедленного на холостом ходу до некоторого опережения при полном газе и низких оборотах Регулировка времени перекрытия между закрытием выпускного клапана и открытием впускного клапана приводит к повышению эффективности двигателя.

Принцип работы

В автомобильном двигателе впускной и выпускной клапаны перемещаются на распределительный вал. Время, подъем и продолжительность клапана определяются формой лепестков, которые заставляют вал двигаться. Время относится к измерению угла, когда клапан открывается или закрывается по отношению к положению поршня, а подъем относится к тому, насколько открыт клапан.

i-VTEC использует не только синхронизацию, но и аспект подъема клапанов, в то время как VVTi использует только аспект синхронизации.Технология, в которой используются параметры синхронизации и подъемной силы, разработанные Toyota, называется VVTL-i и может быть приравнена к технологии i-VTEC от Honda.

i-VTEC

Компания Honda представила технологию i-VTEC в семействе четырехцилиндровых двигателей Honda серии K в 2001 году.

  • Впускной распределительный вал может поворачиваться на 25–50 градусов при работающем двигателе.
  • Переключение фаз осуществляется регулируемым кулачковым механизмом с масляным приводом и компьютерным управлением.
  • Фазирование определяется комбинацией нагрузки двигателя и числа оборотов в диапазоне от полностью замедленного на холостом ходу до некоторого опережения при полном открытии дроссельной заслонки и низких оборотах.
  • Результатом является дальнейшая оптимизация выходного крутящего момента, особенно на низких и средних оборотах.
  • Высота подъема клапана и продолжительность по-прежнему ограничены отдельными профилями низких и высоких оборотов.

VVTi

Toyota представила VVT-i в 1996 году. С этой технологией

  • Выбор времени впускных клапанов зависит от соотношения между приводом распределительного вала (ременным, ножничным или цепным) и впускным распредвалом.
  • Давление моторного масла подается на привод для регулировки положения распределительного вала.
  • Регулировка времени перекрытия между закрытием выпускного клапана и открытием впускного клапана приводит к повышению эффективности двигателя.

Видео о VTEC и VVT-i

Вот несколько полезных видеороликов о VTEC и VVT-i.

Механизм изменения фаз газораспределения на Toyota

Как работает VTEC

Список литературы

Поделитесь этим сравнением:

Если вы дочитали до этого места, подписывайтесь на нас:

«VTEC против VVT-i.» Diffen.com. Diffen LLC, n.d. Web. 6 марта 2021 г. <>

Двигатель

— Что такое технология Honda i-VTEC

В дополнение к ответу Заида.
VTEC — V ariable Valve T iming and Lift E lectronic C ontrol)
По сути, он выбирает между двумя различными профилями кулачка в зависимости от числа оборотов в минуту.
Вот анимация —

Вот как кулачок управляет тарельчатыми клапанами. Читайте о профиле камеры здесь

Для увеличения объема мы хотим, чтобы такт впуска заполнял цилиндр максимальным количеством воздуха-топлива.
Я перехожу к необходимости иметь другой профиль кулачка на более высоких оборотах

ГРМ

Впускной — Клапан не открывается достаточно долго, чтобы воздух (или топливовоздушная смесь) полностью заполнил цилиндр при заданном градиенте давления. Мы могли бы помочь в этой ситуации, используя другой профиль кулачка, который позволяет кулачку открываться дольше. Это означает, что впускной клапан открыт даже после того, как поршень достигает нижней части такта впуска. Воздух с этой скоростью имеет достаточный импульс, чтобы продолжать толкать и сжимать цилиндр, даже когда поршень движется вверх для такта сжатия.

Выхлоп — и здесь можно было бы сделать что-нибудь умное. Если мы открываем такт впуска (перекрытие) в конце такта выпуска, мы в конечном итоге используем импульс выпуска для всасывания воздуха из впускного отверстия!

ПОДЪЕМ
Управление лифтом в основном приравнивается к изменению эффективной площади «отверстия». На более высоких оборотах мы выиграем, используя большее «отверстие», и, следовательно, профиль кулачка таков, что он также толкает тарелки глубже. Поскольку размер порта является настраиваемым параметром, постоянное использование отверстия большего размера приведет к резкой работе двигателя.
Таким образом, vtec переключает два разных профиля кулачка, которые выбираются ЭБУ в зависимости от числа оборотов в минуту. В точке переключения можно почувствовать явный всплеск.

Но, конечно, мы могли бы получить еще больше, имея постоянный контроль над подъемом и синхронизацией.

ДОПОЛНЕНИЕ
Вот два видеоролика, в которых подробно показано, как работает система на самом двигателе.
1. Фазирование кулачка
2. Соленоид Vtec

Что такое система изменения фаз газораспределения и как она на самом деле работает?

VVT — это аббревиатура от Variable Valve Timing:

.

Попробуем разобраться вначале, почему нужно варьировать Valve Timing / VVT?

Во-первых, прочтите здесь сначала, что такое «Регулировка фаз газораспределения»? Автомобильный двигатель фактически «дышит» (вдыхает / выдыхает) через свои клапаны, как это делают люди.Скорость, с которой люди дышат, в основном зависит от работы, выполняемой людьми. Например, если человек сидит или спит, он будет дышать медленнее, чем при ходьбе или беге. Кроме того, при занятиях плаванием или поднятием тяжестей людям также необходимо открывать рот, чтобы получить больше воздуха.

Это происходит потому, что когда человеческое тело подвергается тяжелой работе, увеличивается потребность во всасывании воздуха. Таким образом, это вызывает более быстрое дыхание и / или более широкое открытие рта для получения большего количества воздуха.Аналогично, когда двигатель работает на высоких оборотах; ему необходимо открывать впускные клапаны раньше, быстрее и на более длительный период. Это связано с тем, что для выработки большей мощности он должен всасывать больше топливовоздушной смеси (заряда) для горения.

В более старых традиционных двигателях время, в течение которого клапаны оставались открытыми, было оптимизировано только для одной скорости двигателя. Однако по мере увеличения частоты вращения значительно сокращается время, необходимое для полного заполнения цилиндров, в результате чего двигатель будет получать меньшее количество заряда (воздушно-топливной смеси), что приводит к потере мощности, особенно когда двигатель работает на высоких оборотах. скорость.

Чтобы преодолеть этот недостаток, инженеры разработали VVT или механизм «регулируемого времени клапана». VVT изменяет время открытия и закрытия клапанов для нескольких оборотов двигателя. На высокой скорости впускные клапаны открываются гораздо раньше, так что в цилиндры поступает больше топливовоздушной смеси или «заряда». Это помогает улучшить «дыхание» двигателя, что также в значительной степени улучшает его «объемный КПД».

Как работает VVT?

Система изменения фаз газораспределения дополнительно оптимизирует время открытия и закрытия клапанов для нескольких оборотов двигателя.В конструкции VVT первого поколения используется двухступенчатая вариация, которая оптимизирует двигатель для двух различных скоростей вращения. Эта конструкция позволяет использовать два разных набора таймингов, включая один для состояния «частичной нагрузки», то есть до 3500 об / мин, и другой для состояния «полной нагрузки», то есть выше 3500 об / мин. Кроме того, VVT чаще повышает производительность и снижает выбросы. Кроме того, VVT предлагает лучшее из обоих миров. Таким образом, он обеспечивает плавный холостой ход на низких оборотах и ​​максимальную мощность на высоких оборотах.

Диаграмма изменения фаз газораспределения

Кроме того, в конструкции VVT нового поколения реализована система непрерывной регулировки фаз газораспределения или CVVT.Кроме того, CVVT непрерывно (или бесконечно) изменяет фазы газораспределения, которые в цифровом виде контролируются ЭБУ двигателя. Кроме того, он оптимизирует фазы газораспределения для всех оборотов двигателя и условий. Хотя существуют разные механизмы для достижения изменения, это в основном достигается за счет использования «распределительного вала с изменяемой синхронизацией» и соленоидных клапанов.

Кроме того, в CVVT используется гибкое гидравлическое соединение между распределительным валом и его звездочкой. Он приводится в действие давлением моторного масла и электромагнитным клапаном управления маслом, которым управляет ЭБУ двигателя.Кроме того, он перемещает распределительный вал вперед и опережает время открытия впускных клапанов. Некоторые более продвинутые конструкции используют «Dual» системы, то есть «Dual VVTi» — по одной для независимого изменения времени впускного и выпускного клапана.

Двойной двигатель VVTi (изображение любезно предоставлено Toyota)

Что такое VVL / VVEL / VVTL?

Термин VVL означает « Variable Valve Lift », а VVEL означает « Variable Valve Event and Lift ». Термин VVTL означает « Variable Valve Timing and Lift », который представляет собой усовершенствованную систему поддержки для изменения «подъема» клапанов.В настоящее время система «VVL» все чаще используется в сочетании с системами «Variable Valve Timing» (VVT) для повышения производительности.

Кроме того, эта конструкция также изменяет подъем (или ход) впускных клапанов вместе с фазами газораспределения в зависимости от частоты вращения двигателя. Таким образом, это облегчает работу впускных клапанов « с малым подъемом » на холостом ходу или малых скоростях и « с высоким подъемом » на высоких скоростях. Также он обеспечивает точное управление клапанами при открытии / закрытии. Кроме того, чтобы соответствовать более строгим нормам выбросов, производители разработали множество других вспомогательных систем.Это электромеханические или электрогидравлические подъемники клапанов, системы без кулачковых клапанов и т. Д.

VVL: Схема регулируемого подъема клапана

Кроме того, разные производители используют специальные сокращения для своих систем VVT, а именно:

Сокращения

SL. Сокращение

Полная форма

Компания

1 CVVT

Непрерывная регулировка фаз газораспределения

Рено

2 CVVT

Непрерывная регулировка фаз газораспределения

Volvo

3 ДКТ

Регулируемая синхронизация кулачка

Форд

4 VVT

Регулируемая синхронизация клапана

Сузуки

5 VVT

Регулируемая синхронизация клапана

Фольксваген

6 DCVCP

Двойное непрерывное регулирование фаз газораспределения

GM

7 VVTi

Регулируемая синхронизация клапана (интеллектуальная)

Тойота

8 ВТВТ

Переменная синхронизация и клапанный механизм

Hyundai

9 Н-ДКТ

Nissan-Variable Cam Timing

Nissan

10 S-VT

Последовательная синхронизация клапана

Мазда

11 MIVEC

Инновационная электронная система управления фазами газораспределения Mitsubishi

Мицубиси

12 i-VTEC

Intelligent — Электронное управление с изменяемой синхронизацией клапана и подъемом

Хонда, Акура

13 Camtronic

Мерседес Бенц

14 VANOS

Переменный Nockenwellensteuerung

BMW

15 Клапанный подъемник

Audi

16 VarioCam

Порше

Кроме того, посмотрите анимацию Honda i-vtec здесь:

Подробнее: Что такое синхронизация клапанов двигателя? >>

О компании CarBikeTech

CarBikeTech — технический блог.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *