ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Двигатель внутреннего сгорания на водороде: устройство и принцип работы

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Содержание статьи

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

есть ли у них будущее

Загрязнение атмосферы вызывает серьезную озабоченность общественности, организаций по защите окружающей среды. Реальной альтернативой ДВС являются водородные транспортные средства и автомобили на электротяге.

Электричество или водород

В настоящее время существует актуальная проблема, которая заключается в том, что 60% электроэнергии, потребляемой во всем мире, производится на тепловых электростанциях. Для того чтобы обеспечить возросший спрос на электричество, придется сжигать углеводороды в еще больших количествах. Даже при полной замене ДВС электродвигателями произойдет перераспределение вредных выбросов, уменьшение будет не столь значительным. Концентрация CO2 в воздухе снизится в мегаполисах, но возрастет в местах расположения ТЭС. Кроме того, автомобиль не единственный источник загрязнения окружающей среды: об электрических кораблях, самолетах пока не идет даже речи.

Водородная энергетика в этом смысле предпочтительнее. Добыча водорода сопровождается микроскопическими, по сравнению со сжиганием углеводородов, выбросами токсичных веществ. Выхлоп автомобиля на водороде на 99,99% состоит из чистого водяного пара, безвредного для окружающей среды. Но тут возникают другие проблемы, которые носят экономический, технологический, инфраструктурный характер.

Как устроен водородный двигатель

Разработаны два вида двигателей работающих на водороде:

  • обычный ДВС, где вместо бензина используется водород;
  • с применением топливных элементов.

В первом случае используется все тот же двигатель внутреннего сгорания. Инженерные решения направлены на оптимизацию горения смеси водорода с воздухом, разработку системы питания и снижение взрывоопасности. Данная концепция распространения не получила. Водород, который отличается высокой чистотой, в камере сгорания контактирует с маслом. Поэтому отработанные газы, пусть в значительно меньшем количестве, но содержат токсичные компоненты. Помимо этого, эксплуатация таких автомобилей небезопасна, требует значительных затрат.

При использовании топливных элементов транспортное средство, которое приводится в движение водородным двигателем, принципиально является тем же электромобилем. Разница в том, что на чистой электротяге батарея заряжается от внешних источников, а в водородном автомобиле электроэнергия непрерывно черпается из топливных элементов.

Они состоят из двух камер, одна из которых является анодом, а другая катодом. Между ними находится мембрана. Все компоненты покрыты дорогостоящими редкоземельными металлами, играющими роль катализатора. В результате реакции гидролиза водород, находящийся в анодной камере, соединяясь с кислородом из атмосферного воздуха в катоде, превращается в водяной пар. Процесс сопровождается выделением свободных электронов, которые поступают в электрическую сеть автомобиля.

Такая схема значительно эффективнее, практически отсутствуют вредные выхлопы. Львиная доля усилий конструкторов направлена на развитие двигателей на топливных элементах.

Преимущества и недостатки водородных двигателей

Достоинства и недостатки силовых агрегатов с топливными элементами вытекают из особенностей водорода как топлива, технического уровня двигателей. Факторы, считающиеся безоговорочным достоинствами:

  • простота конструкции, соответственно, надежность;
  • КПД, превышающий таковой у бензинового двигателя, но уступающий электрическому;
  • отсутствие каких-либо шумов;
  • почти полное отсутствие вредных выбросов;
  • высокая мощность двигателей;
приемлемая автономность: современные водородные автомобили способны преодолевать на одной заправке до 500 километров.

Среди недостатков можно выделить следующие:

  • увеличенная масса автомобиля;
  • взрывоопасность водорода, которая резко повышается при наличии неисправностей в двигателе;
  • высокая стоимость эксплуатации автомобиля.

Реальная эксплуатация показывает, что километр пути на автомобиле с водородным двигателем обходится минимум на 50% дороже, по сравнению с бензиновым ДВС. Расход водорода в несколько раз меньше, чем бензина, но все перекрывает его цена.

В этом кроется главная проблема водородной энергетики. В виде соединений с другими веществами запасы h3 на Земле безграничны, но в чистом виде его почти нет. Для его получения используется сложная технология. К этому добавляются проблемы хранения, транспортировки, создания инфраструктуры.

Перспективы водородных автомобилей

Для того чтобы полноценно осветить на этот вопрос, необходимо точно знать цель, с которой бензиновый двигатель пытаются заменить водородным. Если речь идет о внедрении технически более совершенного двигателя, то в этом ракурсе перспективы водородоавтомобилей почти такие же, как и у бензиновых агрегатов, немного выше. ДВС, как бы он не совершенствовался, имеет принципиальное ограничение: низкий коэффициент полезного действия.

Водородный двигатель в этом смысле предпочтительнее, но уступает электромобилям. С другой стороны, обогреть салон чистым электричеством, без снижения автономности, невозможно: запас на автомобиле ограничен. Водородные двигатели таких проблем не знают: при гидролизе выделяется тепло.

Если приоритетом является экология, здесь водородный двигатель имеет приоритет перед остальными. Но не все так однозначно. Современные технологии добычи водорода находятся на таком уровне развития, что дешевле всего получать h3 путем сжигания газа или угля. При этом выделяется углекислый газ, для борьбы с которым и внедряют водородный автомобиль. Экологически чистые способы добычи водорода не обладают достаточной производительностью, значительно повышают его стоимость, которая и так немаленькая.

Если удастся разработать экономичную, производительную, экологически чистую технологию добычи водорода, автомобиль на таком топливе, без сомнения, получит широкое распространение. По эксплуатационным характеристикам он уже сейчас превосходит ДВС.

По сравнению с электрическим у водородного двигателя существует ключевое преимущество: на заправку водородом потребуется около 5 минут, тогда как зарядка батареи на специальных станциях занимает несколько часов.

Cummins тестирует двигатель внутреннего сгорания, работающий на водороде – logist.today


После проведения пробных испытаний компания Cummins планирует оценить работу двигателя внутреннего сгорания на водородном топливе в различных условиях эксплуатации. Об этом Логист.Today узнал из сообщения, опубликованного пресс-службой компании Cummins.

Компания Cummins начала испытания двигателя внутреннего сгорания, работающего на водородном топливе. Испытания доказанной концепции опираются на существующие технологии Cummins и опыт производителя в области применения газообразного топлива и силовых агрегатов.


«Мы используем все новые платформы двигателей, оснащенные новейшими технологиями для повышения удельной мощности, снижения трения и повышения тепловой эффективности, что позволяет нам избежать типичных ограничений производительности и эффективности, связанных с переводом дизельных или газовых двигателей на водородное топливо»

Шрикант Падманабхан, президент сегмента двигателей Cummins

Сообщается, что компания «оптимистично» настроена относительно вывода двигателя на рынок. После проведения пробных испытаний планируется оценить работу двигателя в различных дорожных и внедорожных условиях. Испытания являются частью стратегии по ускорению процесса декарбонизации коммерческих автомобилей, утверждают в Cummins.

Водородные двигатели могут использовать экологически чистое водородное топливо, производимое электролизерами, изготовленными компанией Cummins, при этом выбросы CO2 и оксида азота (NOx) через выхлопную трубу практически нулевые. Cummins инвестирует в целый ряд технологий для поддержки транспорта на основе водорода, включая водородные двигатели, топливные элементы, электролизеры и емкости для хранения.


«Программа водородных двигателей может потенциально расширить технологические возможности для достижения более экологичного транспортного сектора, дополняя наш ряд решений в области водородных топливных элементов, электрических аккумуляторов и силовых агрегатов на возобновляемом природном газе»

Джонатон Уайт, вице-президент Cummins по разработке двигателей

Логист. Today напоминает, что общий пробег грузовиков XCIENT Fuel Cells в Швейцарии уже перешел отметку в миллион километров. Ожидается, что к 2025 году парк большегрузов на топливных элементах увеличится на 1,6 тыс. единиц. Далее Hyundai Motor планирует выйти на североамериканский рынок.

Узнать подробности можно из материала «Водородные грузовики Hyundai наездили 1 млн километров».

Участник «Больших вызовов» создал дрон на водородном топливе

Десятиклассник из Орловской области Даниил Толпекин уже несколько лет увлекается беспилотниками. Чтобы пройти отбор на «Большие вызовы», он изучил дроны разных видов: с двигателем внутреннего сгорания, на литиевом аккумуляторе и на водородном топливе. Также он сконструировал собственный дрон на водороде. 

В «Сириусе» на направлении «Беспилотный транспорт и логистические системы» Даниил разрабатывает систему зарядки дрона в воздухе с помощью лазера. 

– Какие показатели у дронов ты сравнивал в своем исследовании и к каким результатам пришел?  

– По моим подсчетам, дрон на водороде дешевле остальных примерно в два-три раза. Но целью моего проекта было увеличение запаса хода дрона на водородном топливе. Принцип его работы прост: установка состоит из 10-литрового баллона со сжатым водородом и клапана, который под давлением передает топливо на решетку, выделяющую электричество.

– Какие преимущества у водорода перед другими источниками энергии?

– Водородный топливный элемент экологически чистый, при его эксплуатации в окружающую среду выделяется только водяной пар. К тому же, это относительно простой метод получения энергии. Вообще, водород сегодня в России недооценен. В других странах его уже вовсю используют, есть машины на водородном топливе, заправки на водороде. У нас, конечно, тоже есть такая заправка, но она всего одна.

За счет большого запаса хода дрон на водороде пригодится в профессиональной съемке. Можно снимать или проводить наблюдения около 90 минут, не приземляясь и не меняя аккумулятор. Затем он садится, с помощью специального механизма меняет баллон, и через 5 минут уже снова готов к полету. Для сравнения, дрон с литиевым аккумулятором придется сажать и заряжать через каждые 15 минут после взлета. А дрон с двигателем внутреннего сгорания неэкологичный и при этом дорогой в эксплуатации за счет затрат на бензин. 

– Как ты узнал о «Больших вызовах»? Как проходил отбор на программу? 

– В школе мне рассказали про региональный центр поддержки одаренных детей «Созвездие Орла» (один из 60 региональных центров, работающих по модели «Сириуса», – прим.ред.) там есть близкая мне программа «Кинематика полетов». Я прекрасно понимал, что мой проект еще немного сырой, но все равно надеялся попасть в «Сириус». Последним этапом отбора было собеседование, к которому я готовился несколько дней и на все вопросы ответил спокойно и без лишних нервов. 

– Чем ты занимаешься здесь, в «Сириусе»?  

– Мы с командой занимаемся передачей энергии на дрон с помощью лазера. Первые пару дней изучали теорию, искали информацию об аналогичных проектах в разных странах и выяснили, что похожих проектов было всего три. Цель нашего исследования – при помощи лазера и солнечной панели обеспечить зарядку дрона в воздухе, не сажая его. 

– Каких успехов вы уже добились?

– Мы уже разработали 3D-модель системы наведения. В ближайшие дни распечатаем ее и приведем в работу, чтобы она могла следить за дроном с помощью GPS-сигнала и искусственного интеллекта. А сейчас проверяем экспериментально, сколько энергии можно подать нашим лазером. 

Считаю, что наш проект станет прорывом в зарядке дронов. Если мы сделаем более практичную систему, которую можно будет применять, это будет действительно классно. 

Анастасия Ковалева, Высшая школа экономики

 

Будущее водородных двигателей | Новости автомобилестроения в Германии | DW

Наши опыты мы проводим вот за этими стальными дверями. Там стоят приборы, при помощи которых мы можем проводить эксперименты, можно сказать, в любых условиях – при самой различной температуре и давлении,

Лаборатория, у входа в которую стоит Михаэль Фельдерхофф, сотрудник Научно-исследовательского института имени Макса Планка, напоминает бункер. Внутри — площадка около пяти квадратных метров, окруженная высокими и массивными железобетонными стенами. На фоне белых, почти светящихся плоскостей в глаза бросается баллон яркокрасного цвета. В нем водород – энергоноситель будущего. По мнению ученых, именно он станет тем самым чудодейственным средством, которое поможет человечеству избавиться от нефтяной «энергозависимости». Ведь теплота сгорания единицы массы водорода почти в два с лишним раза превосходит бензин, а параметры горения позволяют в полтора раза повысить КПД двигателя внутреннего сгорания. Топливо это абсолютно экологичное.

Оно может использоваться не только как основное топливо, но и в качестве добавки к традиционным углеводородам, повышающей экономичность и снижающей токсичность выбросов. Но, по мнению экспертов, самое эффективное применение водорода — это создание электродвигателя с водородным топливным элементом и электроприводом. Попытки использования водорода как топлива начались ещё полтора столетия назад. Первый патент на двигатель, работающий на смеси водорода и кислорода, был выдан в Англии в 1841году. В 20-е годы прошлого столетия началось использование водородных двигателей на дирижаблях фирмы «Цеппелин». Для них в качестве топлива использовался водород, наполнявший дирижабль. Первые энергетические кризисы 70-х годов, а также резкое ухудшение экологической ситуации резко повысили интерес к этому альтернативному виду топлива. К началу 80-х почти во всех ведущих индустриальных странах были созданы экспериментальные водородные автомобили с двигателями внутреннего сгорания, работающие на водороде, бензоводородных смесях и смесях водорода с природным газом. Но до победного шествия водородной энергетики по-прежнему далеко. Учеными предстоит ещё преодолеть немало трудностей. К примеру, дать ответ на вопрос: Как хранить водород? В свободном состоянии — это бесцветный газ с очень малой плотностью, составляющей около 7 процентов плотности воздуха. Поэтому для его хранения и перевозки необходимо поддерживать очень высокое давление или же иметь в распоряжении резервуары гигантского размера. И то и другое неприемлемо для автомобильных двигателей. В настоящий момент исследователи работают над созданием водородного автомобиля, пробег которого без дозаправки достиг бы 500 километров. К сожалению, и жидкий водород для этих целей не подходит, несмотря на то, что занимает в 700 раз меньше места. Для того, что бы довести газ до жидкого состояния необходимо поддерживать температуру минус 253 градуса по Цельсию. Поэтому ученые института имени Макса Планка в немецком городе Мюльгейм-на-Руре сосредоточили внимание на ещё одном — третьем и наиболее перспективном способе хранения водорода — при помощи металлогидридов:

Металлогидриды – это соединения из металла и водорода. На единицу объёма некоторых металлогидридов приходится больше связанного водорода, чем в низкотемпературном контейнере для жидкого водорода той же емкости.

Принцип этот известен уже давно. Несколько лет назад в германские военно-морские силы поступила на вооружение подводная лодка U-31, основной особенностью которой является её уникальная силовая установка. Помимо дизельного двигателя и аккумуляторов, в ее состав входят модули топливных батарей. Горючим для них служит водород, который хранится не в газообразной или сжиженной форме, а в виде металлогидридов. Однако гидриды хранят водород с небольшой плотностью энергии на единицу веса, поэтому топливные модули очень тяжелые:

На субмарине вес блоков, хранящих водород, особого значения не имеет. И, наоборот, вес играет решающую роль, когда речь идет о применении сплавов в других, так сказать, мобильных сферах – автомобилях, а также ноутбуках, бытовой и развлекательной электронике.

В связи с этим Михаэль Фельдерхофф и его коллеги делают ставку на легкие металлы, такие как натрий или алюминий. Смесь водорода с ними – специальный водородный порошок под названием натриумаланат — может хранить до пяти процентов водорода. Это означает, что в 100 килограммовом автомобильном баке можно перевозить до пяти килограммов водорода. На 500 киломеров пробега этого должно хватить. Но не только вес беспокоит мюльгеймских ученых. На то, чтобы зарядить водородом хотя бы 80 процентов такого бака с натриумаланатом, потребуется целый час. Для ускорения процесса в порошок добавляют катализаторы — мельчайшие частицы титана, церия или скандия. Тогда заправка длится не более восьми минут. И всё же до практического применения этой технологии ещё далеко:

Взаимодействие металла с водородом порождает химическую реакцию. В результате при получении металлогидрида выделяется много тепловой энергии. А это в свою очередь означает, что здесь нам нужен хороший теплообменный аппарат, который мог бы отводить тепло за кратчайшие сроки. Это основная проблема, над которой сейчас работают инженеры. Её решение потребует больших усилий.

Итак, заправка позади. Осталось только тронуться с места. Теперь из порошка необходимо выделить водород. Для этого нужно разогреть его до ста градусов. Тепловая энергия при этом должна поступать извне. В идеале можно было бы использовать то самое тепло, которое выделилось во время реакции при образовании металлогидрида.

Михаэль Фельдерхофф уверен, что первые серийные водородные автомобили всё ещё будут оснащены газовыми баллонами. Но когда гидриды легких металлов пройдут боевое крещение в ноутбуках и переносной электронике, настанет черед и автомобиля. В случае же если проблемы с теплообменом, давлением и скоростью позарядки решить так и не удастся, вполне возможно будут применяться съемные топливные баки-контейнеры. На заправке можно будет экономить время, попросту меняя пустые баки на уже заполненные.

В нашей исторической рубрике сегодня мы поговорим о покрышках, камерах и протекторах. Думаю, большинству наших слушателей не нужно объяснять, что всё это – составляющие элементы пневматической шины, изобретенной по сравнению с историей колеса не так уж и давно – всего 160 лет назад. Колесо же в виде деревянного диска появилось более пяти тысяч лет назад. На протяженнии целых тысячелетий оно почти не менялось, разве что в нем появились спицы и само колесо стало металлическим. Поэтому по сравнению с эволюцией колеса развитие шины было процессом бурным и скоротечным. Многие века роль шины для колеса выполнял металлический обруч, который насаживался на обод. Ударяясь о камни и попадая в колдобины, он издавал страшный грохот, но тем не менее со своей задачей справлялся: повышал живучесть или, как принято говорить, «ходимость» колеса. Только в XVIII веке на смену обручам пришли резиновые монолиты из каучука. Появлению пневматической шины способствовало и изобретение Чарльза Макинтоша, который в 1823 году пропитал жидким каучуком льняную ткань, придав ей тем самым водо- и воздухонепроницаемые свойства. Первым же, кто запатентовал пневматическую шину был Роберт Томпсон шотландский инженер железнодорожного транспорта. Жил он в Лондоне, и оживленное столичное движение по булыжным мостовым производило такой невыносимый шум, что выросший в деревенской тиши Томпсон решил всерьез заняться созданием «умягчителя» для колеса. В результате 10 декабря 1845 года Томпсон официально зарегистрировал свое изобретение, а затем и запатентовал пневматическую шину. В приложении была подробно изложена конструкция, а также названы материалы для изготовления шин. Вот что написал сам Томпсон:

Суть моего изобретения состоит в изменении эластичных опорных поверхностей вокруг ободьев колес экипажей с целью облегчения движения и уменьшения шума, который они создают при движении.

Затем изобретение Томпсона было благополучно забыто, и о нем не вспоминали на протяжении 42 лет. В 1887 году ветеринар Джон Бойд Данлоп, поливал растения на своей ферме в Шотландии. Его 10-летний сын катался по участку на трехколесном велосипеде. Особенно ему нравилось переезжать через поливочный шланг. Отец обратил внимание на плавную амортизацию шланга, напряженного под давлением воды. Данлоп отрезал кусок шланга по размеру окружности велосипедного колеса, приспособил к нему ниппель, использовав при этом детскую соску, и заварил его с обоих концов в кольцо. Уже в следущем году…

Королева Виктория выдала ему патент на его изобретение. По сути, это и было рождение фирмы Данлоп,

— рассказывает пресс-секретарь немецкого филиала концерна Данлоп Петер Шмидт. Преимущества пневматической шины современники Данлопа оценили достаточно быстро, ведь именно в то время в Европе разразился настоящий велосипедный бум. Уже в 1889 году на стадионе в Белфасте один из гонщиков выступил на велосипеде с «воздушными шинами» и… неожиданно для зрителей и соперников выиграл во всех заездах.

Я не утверждаю, что мне удалось первому открыть принцип «воздушной шины». Какое-то время я действительно в это верил. По одной простой причине: ведь до недавних пор этого простого приспособления в обиходе не было. Я претендую лишь на звание первого успешного изобретателя шин. На счастье всего мобильного мира я как бы вновь изобрел идею Томпсона.

— писал позднее Данлоп. Первые проданные шины он сделал своими руками. Да и позднее на созданной им впоследствии фабрике практически все операции производились вручную:

Условия труда в те времена были просто несравнимо тяжелее, чем сегодня. Но, несмотря на то, что многое подверглось автоматизации, до сих пор в шинном производстве задействовано немало ручного труда.

— говорит Петер Шмидт. Как и все выдающиеся изобретения шина была воспринята с недоверием. К примеру, французам Андре и Эдуарду Мишлену пришлось выложить немало денег на рекламные цели. В 1894 году они бесплатно роздали шины нескольким сотням парижских извозчиков для того, чтобы те удостоверились в преимуществах этого технического новшества. Эта акция обошлась братьям Мишленам в 800 тысяч франков при том, что средняя зарплата французского рабочего тех времен составляла около 200 франков. Кстати, братья Мишлены первыми изобрели съемную шину, а также первыми установили пневматическую шину на автомобильные колеса.

За 160 лет существования пневматическая шина претерпела массу изменений. Конструкция шин постоянно совершенствовалась: камеру отделили от покрышки, стали вставлять в края покрышки проволочные кольца и сажать её на обод. Во время первой мировой войны начались разработки конструкций шин для грузовых автомобилей и автобусов. Пионерами в этой области были США. В первой половине ХХ века возникли крупные фирмы по производству шин, большинство из которых существуют и по сей день, а именно «Данлоп» вАнглии, «Мишлен» во Франции, «Гудьир» и «Файрстоун» в США, «Континенталь» и «Метцелер» в Германии, «Пирелли» в Италии. В середине 50-х годов появилась новая конструкция шин, разработанная фирмой «Мишлен». У неё был жесткий пояс, состоящий из слоев металлокорда. Нити корда располагались радиально от борта до борта. Такие шины получили название радиальных. Результатом испытания новой шины фирмы «Мишлен» явилось увеличение ходимости почти вдвое. В 70-е годы производители шин сосредоточились на повышении безопасности езды и снижении расхода топлива.

За последние годы конструкция шин изменилась мало. Зато химический состав материалов постоянно усовершенствуется. Например, ещё совсем недавно неразрешимой казалась задача улучшить характеристики зимних шин одновременно на мокром дорожном покрытии и на снегу. Применение полимеров и силикагеля помогло решить эту проблему.

Дальнейшее усовершенствование шин направлено также на увеличение срока службы, допускаемых нагрузок, упрощения технологии производства и увеличения безопасности движения транспортных средств. Однако, несмотря на многочисленные изменения и модернизации, которым подверглась пневматическая шина за 160 лет своего существования, основной принцип её устройства остался прежним. Петер Шмидт:

Это была настоящая революция. Иначе и по сей день мы бы тряслись и подпрыгивали на железных ободах.

Машины на водороде вряд ли приживутся в России | Обзор прессы

Машины на водороде вряд ли приживутся в России

Автомобили на водороде, внедрением которых заинтересовались российские власти, не смогут конкурировать с электромобилями и тем более машинами с двигателем внутреннего сгорания (ДВС), полагают в «Петромаркете». В частности, легковые машины на водородном топливе останутся более дорогими, чем электротранспорт, а стоимость «зеленого» водорода в ЕС будет выше, чем электроэнергии. В случае РФ сам водород может оказаться дешевле, но «водородомобиль» все же окажется более дорогим для владельца, чем электрический аналог.

«Ъ» ознакомился с исследованием «Петромаркета» «Зеленая революция: что она несет России?», посвященном сравнительному анализу перспектив автомобилей на разных видах «зеленого» топлива. Эксперты консалтинговой компании делают вывод, что машины на водородном топливе, применение которого сейчас активно обсуждают власти России, не смогут составить конкуренции электромобилям. В «Петромаркете» считают перспективы водородных машин «исключительно неблагоприятными»: «Даже в случае радикального снижения их цены (ныне очень высокой) по совокупной стоимости владения они будут проигрывать не только электромобилям, но и автомобилям с двигателем внутреннего сгорания на углеродно-нейтральном синтетическом топливе».

В России до сих пор не определились с приоритетами, параллельно идет разработка госпрограмм развития как электро-, так и водородного транспорта. Причем на данный момент у государства не установлены цели по снижению выбросов от автотранспорта, и пока это не планируется. В то же время чиновники активно обсуждают локализацию низкоуглеродных решений, а также развитие заправочной сети одновременно для компримированного газа, СПГ, электромобилей и водородного транспорта. В «Петромаркете» полагают, что для продвижения на рынок автомобилей с низкими и нулевыми выбросами СО2 уже в ближайшие пять лет в РФ потребуется установить достаточно серьезные ограничения на выбросы для новых автомобилей.

Среди проблем так называемых «водородомобилей» эксперты «Петромаркета» выделяют дороговизну «зеленого» водорода (производимого с помощью электричества из возобновляемых источников путем электролиза воды) по сравнению с собственно электричеством. По их оценке, производство водорода более энергоемкое, и разрыв не устранить. По расчетам, чтобы водородный автомобиль мог проехать 1 км, необходимо примерно в 2,5 раза больше электроэнергии из ВИЭ, чем для осуществления той же работы электромобилем, заключают в «Петромаркете».

Также в исследовании говорится о крайне высокой стоимости водородного автомобиля по сравнению со стоимостью электромобиля. «Даже если предположить, что водородный автомобиль к 2050 году упадет в цене в относительном выражении настолько же, насколько электромобиль, то этого все равно будет недостаточно, чтобы соперничать с последним по стоимости владения», — отмечается в исследовании. Такой сценарий падения стоимости водородных машин достижим только при заметном расширении их производства, отмечают в «Петромаркете», а это пока выглядит нереалистичным из-за «почти единодушной ориентации автопроизводителей на выпуск электромобилей».

В дайджесте размещен фрагмент материала, опубликованного в газете «Коммерсантъ» №99 от 10.06.2021

Автор: Ольга Никитина

Полный текст вы можете прочитать на сайте издания

От ворот водород – Газета Коммерсантъ № 99 (7061) от 10.06.2021

Автомобили на водороде, внедрением которых заинтересовались российские власти, не смогут конкурировать с электромобилями и тем более машинами с двигателем внутреннего сгорания (ДВС), полагают в «Петромаркете». В частности, легковые машины на водородном топливе останутся более дорогими, чем электротранспорт, а стоимость «зеленого» водорода в ЕС будет выше, чем электроэнергии. В случае РФ сам водород может оказаться дешевле, но «водородомобиль» все же окажется более дорогим для владельца, чем электрический аналог.

“Ъ” ознакомился с исследованием «Петромаркета» «Зеленая революция: что она несет России?», посвященном сравнительному анализу перспектив автомобилей на разных видах «зеленого» топлива. Эксперты консалтинговой компании делают вывод, что машины на водородном топливе, применение которого сейчас активно обсуждают власти России, не смогут составить конкуренции электромобилям. В «Петромаркете» считают перспективы водородных машин «исключительно неблагоприятными»: «Даже в случае радикального снижения их цены (ныне очень высокой) по совокупной стоимости владения они будут проигрывать не только электромобилям, но и автомобилям с двигателем внутреннего сгорания на углеродно-нейтральном синтетическом топливе».

В России до сих пор не определились с приоритетами, параллельно идет разработка госпрограмм развития как электро-, так и водородного транспорта. Причем на данный момент у государства не установлены цели по снижению выбросов от автотранспорта, и пока это не планируется. В то же время чиновники активно обсуждают локализацию низкоуглеродных решений, а также развитие заправочной сети одновременно для компримированного газа, СПГ, электромобилей и водородного транспорта.

В «Петромаркете» полагают, что для продвижения на рынок автомобилей с низкими и нулевыми выбросами СО2 уже в ближайшие пять лет в РФ потребуется установить достаточно серьезные ограничения на выбросы для новых автомобилей.

Среди проблем так называемых «водородомобилей» эксперты «Петромаркета» выделяют дороговизну «зеленого» водорода (производимого с помощью электричества из возобновляемых источников путем электролиза воды) по сравнению с собственно электричеством. По их оценке, производство водорода более энергоемкое, и разрыв не устранить. По расчетам, чтобы водородный автомобиль мог проехать 1 км, необходимо примерно в 2,5 раза больше электроэнергии из ВИЭ, чем для осуществления той же работы электромобилем, заключают в «Петромаркете».

Также в исследовании говорится о крайне высокой стоимости водородного автомобиля по сравнению со стоимостью электромобиля (см. график). «Даже если предположить, что водородный автомобиль к 2050 году упадет в цене в относительном выражении настолько же, насколько электромобиль, то этого все равно будет недостаточно, чтобы соперничать с последним по стоимости владения»,— отмечается в исследовании. Такой сценарий падения стоимости водородных машин достижим только при заметном расширении их производства, отмечают в «Петромаркете», а это пока выглядит нереалистичным из-за «почти единодушной ориентации автопроизводителей на выпуск электромобилей».

Среди других препятствий к распространению водородных легковых автомобилей — неразвитость на территории ЕС сети водородных заправочных станций, что, с одной стороны, будет негативно сказываться на ценах водорода для конечных потребителей, а с другой — будет заметно ограничивать географию использования «водородомобилей».

В ближайшей перспективе автотранспорт на водородном топливе не сможет заместить электромобили на аккумуляторах или ДВС, согласен директор практики стратегического и операционного консалтинга КПМГ в России и СНГ Максим Малков. Водород является взрывоопасным газом, это значительно ограничивает возможности его использования, говорит он: скорее, речь может идти о его применении в карьерной технике или железнодорожных локомотивах для перевозки грузов.

Дмитрий Бабанский из SBS Consulting полагает, что инфраструктура по водороду «подтянется за парком», причем такие машины «требуют «наименьших усилий» из-за того, что плотность энергии водорода у него значительно выше, чем у дизтоплива и литий-ионных батарей, поэтому заправок нужно будет много меньше». Что касается затрат, при использовании «зеленого» водорода его удельная стоимость на 1 кВт•ч энергии выходит дороже электричества, но для «желтого» водорода (производится с использованием электричества АЭС) в России и при промышленных масштабах затраты примерно сопоставимы, полагает он.

В то же время эксперт согласен, что стоимость владения водородным автомобилем останется выше, чем у электромобиля, а стоимость самой машины будет снижаться медленнее.

Кроме того, отмечает Дмитрий Бабанский, если субсидировать такой транспорт по аналогии с практикой развитых стран — то есть компенсировать примерную разницу между электромобилем и аналогом на ДВС — то финансирования на эти цели потребуется больше.

Ольга Никитина

Cummins начинает испытания двигателя внутреннего сгорания

, работающего на водороде

Cummins Inc. (NYSE: CMI) сделала еще один шаг вперед в продвижении технологии без выбросов углерода, начав испытания двигателя внутреннего сгорания, работающего на водороде. Проверка концепции основана на существующем технологическом лидерстве Cummins в области применения газообразного топлива и лидерстве в области силовых агрегатов для создания новых энергетических решений, которые помогут клиентам удовлетворить потребности в энергии и окружающей среде в будущем.

«Компания Cummins в восторге от потенциала водородного двигателя в плане снижения выбросов и обеспечения мощности и производительности для клиентов», — сказал Срикант Падманабхан, президент сегмента двигателей. «Мы используем все новые платформы двигателей, оснащенные новейшими технологиями для повышения удельной мощности, снижения трения и повышения теплового КПД, что позволяет нам избежать типичных ограничений производительности и компромиссов эффективности, связанных с переводом дизельных или газовых двигателей на водородное топливо.Мы добились значительного технологического прогресса и продолжим двигаться вперед. Мы с оптимизмом надеемся вывести это решение на рынок ».

После проверочных испытаний компания планирует оценить двигатель в различных применениях на дорогах и внедорожниках, поддерживая усилия компании по ускорению декарбонизации грузовых автомобилей.

«Программа водородных двигателей может потенциально расширить технологические возможности, доступные для достижения более устойчивого транспортного сектора, дополнив наши возможности в области водородных топливных элементов, аккумуляторных электрических и возобновляемых силовых агрегатов, работающих на природном газе», — сказал Джонатон Уайт, вице-президент по разработке двигателей.

Двигатели

Hydrogen предлагают OEM-производителям и конечным пользователям преимущество адаптируемости, продолжая использовать знакомые механические трансмиссии с интеграцией транспортных средств и оборудования, отражающей интеграцию существующих трансмиссий, при этом обеспечивая мощность и возможности для удовлетворения потребностей приложений.

Водородные двигатели могут использовать экологически чистое водородное топливо, производимое электролизерами производства Cummins, с почти нулевым выбросом CO2 через выхлопную трубу и почти нулевым уровнем NOx. Прогнозируемые инвестиции в производство возобновляемого водорода во всем мире предоставят растущую возможность для развертывания парка автомобилей, работающих на водороде, использующих либо топливные элементы Cummins, либо энергию двигателей.

Интеграция водородных технологий

Cummins инвестирует в ряд технологий для поддержки транспорта на водородной основе, включая водородные двигатели, топливные элементы, электролизеры и резервуары для хранения.

Высокая плотность энергии водорода позволяет легко интегрировать бортовое хранилище газа без ущерба для полезной нагрузки транспортного средства или рабочего диапазона. Совместное предприятие Cummins со специалистом по хранению водорода NPROXX добавляет возможность интеграции топливного элемента или водородного двигателя с баками газовых баллонов высокого давления и линиями подачи на транспортном средстве.NPROXX также является ведущим поставщиком контейнерных емкостей для хранения, обеспечивающих быструю заправку водородом для конечных пользователей.

Ключевая роль Cummins в расширении водородной экосферы выходит за рамки топливных элементов и решений для хранения и производства декарбонизированного возобновляемого водорода, благодаря опыту более 600 электролизеров по всему миру. Модульная масштабируемость наших электролизеров идеально подходит для целого ряда приложений, от локальных поставок грузовых автомобилей и автобусов до электролиза в коммунальном хозяйстве.Cummins обладает уникальными водородными возможностями, простирающимися от производства топлива до хранения и производства энергии для транспортных средств.

Двигатели внутреннего сгорания, работающие на водороде, могут превзойти топливные элементы, говорит Kawasaki Heavy Industries

По словам Kawasaki Heavy Industries

, двигатели внутреннего сгорания, работающие на водороде, могут превзойти топливные элементы.

Двигатели внутреннего сгорания (ДВС), работающие на водороде, были признаны д-ром Мотохико Нисимура «превосходящими топливные элементы», исполнительным директором Kawasaki Heavy Industries.

Поскольку большая часть промышленности обращается к водородным топливным элементам для обеспечения электропитания мобильных устройств, водородные ДВС рекламируются как захватывающая новая технология, которая может обеспечить преимущество в тяжелых условиях эксплуатации.

Нисимура сказал h3 View: «С точки зрения долговечности и надежности он [водородный ДВС] превосходит топливные элементы, что делает его пригодным для использования в тяжелых условиях на судах, тяжелой технике, а также в автобусах и грузовиках дальнего следования. Естественно, они являются наиболее конкурентоспособным источником энергии.«

Совершенно очевидно, что водородные ДВС обладают огромным потенциалом для декарбонизации нескольких мобильных приложений, однако они также могут предоставить производителям топливных элементов конкурентное преимущество для повышения эффективности их продукции», — пояснил Нишимура в интервью h3 View.

Таким образом, конкуренция может стимулировать исследования и разработки этих технологий для создания более эффективных водородных энергетических систем.

Подробнее: Тяжелые грузовики могут быть первыми, кто начал использовать двигатели внутреннего сгорания, работающие на водороде, говорит Cummins

Признавая потенциал водородных двигателей в морской отрасли, Нисимура сказал: «Фактически, Kawasaki разрабатывает двигатель внутреннего сгорания. большой водородный двигатель для кораблей и энергетики.

Таким образом, Kawasaki уже определила, что группа считает первыми пользователями водородных ДВС — корабли.

«Двигатели имеют отличные затраты на установку и техническое обслуживание, и, хотя малые двигатели уступают топливным элементам с точки зрения эффективности, большие двигатели близки к топливным элементам», — продолжил Нишимура.

«Таким образом, вполне вероятно, что первое применение водородных двигателей будет в больших тяжелых приложениях, особенно на судах».

Ожидается, что технологическое мастерство водородных ДВС может вызвать еще больший интерес к водородным решениям для сектора мобильности.

Это вторит Нисимура, который сказал h3 View: «Двигатели имеют большое преимущество, особенно для тяжелых условий эксплуатации и больших источников энергии.

«Нет сомнений в том, что быстрый прогресс в разработке технологий сжигания водорода в двигателях будет способствовать продвижению использования водорода и ускорению достижения углеродной нейтральности».

Westport Fuel Systems

Потенциал водородных ДВС в декарбонизации сектора мобильности также был признан Андерсом Йоханссоном, вице-президентом OEM-производителя тяжелых грузовиков Westport Fuel Systems, который определил рентабельность технологии как экономическую эффективность. ключевой момент продажи.

Йоханссон сказал h3 View: «Водород в качестве топлива для транспорта — один из самых интересных вариантов декарбонизации транспорта в будущем.

«Преимущества использования водорода в ДВС заключаются в том, что он основан на рентабельной, зрелой и надежной технологии.

«Требуются минимальные инвестиции в производство, разработку, тестирование и время выхода на рынок по сравнению с другими технологиями».

Йоханссон, как и Нишимура, считает, что водородные ДВС могут также достичь аналогичной или более высокой эффективности по сравнению с другими решениями.

«Поскольку водородные решения для ДВС могут достигать такой же или более высокой эффективности, как и другие решения, их следует рассматривать как один из основных вариантов использования водорода в будущем», — сказал он.

Министерство энергетики США, General Motors, Microsoft и Plug Power

Что общего между Министерством энергетики США, General Motors, Microsoft и Plug Power? Все они выступят на Североамериканском виртуальном водородном мероприятии h3 View в октябре. Вы присоединитесь к нам 19 октября?

Северная Америка находится в отличном положении, чтобы возглавить усилия по декарбонизации, но ей еще предстоит преодолеть большие расстояния.В этом регионе наблюдается погоня за зеленым водородом, в которой доминируют Европа и Азиатско-Тихоокеанский регион. Если политики и промышленность смогут работать вместе и предпринять правильные шаги для реализации водородного видения, этот регион станет прекрасным местом для расширения своего глобального энергетического лидерства в масштабах и темпе.

Какие уроки могут быть извлечены европейскими политиками? Какие проблемы необходимо преодолеть? Каковы сильные стороны и возможности? Как может Северная Америка перейти от погони к лидирующей позиции в водороде? Это все вопросы, которые наше виртуальное мероприятие рассмотрит по четырем основным направлениям h3 View: мобильность, мощность, политика и технологии.

Дополнительную информацию о мероприятии, повестке дня и подтвержденных докладчиках можно найти здесь.

Чтобы забронировать виртуальный пропуск делегата, щелкните здесь.

Под кожей: станут ли водородные двигатели внутреннего сгорания жизнеспособными?

Водород до сих пор изо всех сил пытался реализовать свои первые обещания в качестве альтернативного топлива для дорожного транспорта, но это тема, которая просто отказывается уходить.

Его использование в водородных топливных элементах для выработки электроэнергии без вредных выбросов по-прежнему имеет огромный потенциал, но импульс, стоящий за запуском на нем двигателей внутреннего сгорания, уменьшился.Тем не менее интерес остается, примером является разработка Toyota трехцилиндрового гоночного двигателя с водородным двигателем, взятого у GR Yaris и используемого для питания специально разработанной Corolla Sport, участвующей в гонке Fuji 24 Hours.

Хотя водород является более чистым топливом по сравнению с бензином или дизельным топливом, он полностью исключает выбросы только при преобразовании в системе топливных элементов для выработки электроэнергии. Когда сгорает в двигателе внутреннего сгорания, это не совсем так. Хотя несгоревшие углеводороды (HC), монооксид углерода (CO) или CO2 не образуются, оксиды азота (NOx) образуются.Воздух на 78% состоит из азота, и при сгорании он окисляется с образованием токсичных NOx — но насколько сильно зависит от того, насколько горячие предметы попадут в камеру сгорания, и именно здесь водородные двигатели могут иметь преимущество.

Водород гораздо менее требователен, чем бензин или дизельное топливо, он смешивается и сжигается полностью и эффективно в гораздо более широком диапазоне соотношений воздух-топливо. В результате водородный двигатель может работать на очень бедной смеси (больше воздуха, меньше топлива) и при этом производить гораздо более низкие уровни выбросов NOx на выходе из двигателя, чем бензин или дизель.Выбросы из выхлопной трубы могут быть уменьшены до минимального уровня с помощью существующей технологии выхлопных газов.

Эти привлекательные факты зависят от многих вещей. Хотя водород несет большое количество энергии по весу, он намного менее плотен, чем жидкое топливо, поэтому двигатели с впрыском портов, в которых топливо впрыскивается во впускной коллектор и смешивается с воздухом за пределами цилиндров, вырабатывают значительно меньшую мощность, работающую на водороде. чем на бензине. Прямой впрыск улучшает ситуацию и, в сочетании с турбонаддувом с изменяемой геометрией, делает двигатели внутреннего сгорания, работающие на водороде, более жизнеспособными.

Toyota разрабатывает водородные двигатели внутреннего сгорания — для гонок

Toyota пыталась внедрить водородные топливные элементы во все, от легковых автомобилей до автобусов и грузовиков, но теперь автопроизводитель приступает к совершенно другому проекту водородной силовой установки.

Вместо топливных элементов Toyota разрабатывает двигатель внутреннего сгорания, работающий на водороде, а не для использования на дорогах. На этот раз для гонок.

В четверг автопроизводитель объявил о разработке водородного двигателя для использования в 24-часовой гонке на японской гоночной трассе Fuji Speedway, запланированной на 21-23 мая.Гонка является частью японской серии Super Taikyu, в которой используются автомобили, основанные на серийных моделях.

Гонки серии Super Taikyu

1,6-литровый рядный 3-цилиндровый двигатель с турбонаддувом будет использоваться в модифицированной Toyota Corolla Sport, работающей на сжатом газообразном водороде, а не на жидком бензине. Двигатели внутреннего сгорания могут работать на газообразном водороде с некоторыми модификациями, и Toyota даже утверждает, что сгорание водорода происходит более быстрыми темпами, что улучшает отзывчивость.

Идея не нова, но большинство автопроизводителей намеренно избегают такой попытки — отчасти для того, чтобы избежать необходимости производить расчеты эффективности, углеродного следа и выбросов для такого сценария.В начале 2000-х BMW ненадолго предложила водородную версию своего роскошного седана 7-й серии, но по большей части автомобильное использование водорода было сосредоточено на топливных элементах, которые производят электричество для работы электродвигателей. Даже BMW переключила внимание на топливные элементы и фактически сотрудничает с Toyota в разработке.

Аналогичным образом, использование водорода в автоспорте практически не исследовалось. Одна команда планирует запустить экспериментальный автомобиль на топливных элементах на престижной гонке «24 часа Ле-Мана» в 2024 году, но гоночные серии в первую очередь ориентированы на гибридные и аккумуляторно-электрические силовые агрегаты как способ сокращения выбросов.

Однако водородный гоночный двигатель соответствует амбициозным планам автопроизводителя в отношении водорода.

Toyota стремится создать водородную экономику для всего, от промышленного использования до высококлассного использования, например, луноходов. Он также только что подписал с Chevron стратегическое партнерство для достижения этой цели, охватывающее развитие инфраструктуры и исследования, связанные с транспортировкой и хранением водорода.

Автопроизводитель продемонстрировал свою технологию топливных элементов при транспортировке грузов по малой петле и разработал модуль топливных элементов для питания грузовиков и автобусов будущего.Однако Toyota часто избегает рассмотрения того, как поставляется большая часть водорода, и экологических последствий этой цепочки поставок.

Что касается единственного серийного автомобиля Toyota с топливными элементами, мы думаем, что Mirai — лучший или один из лучших седанов Toyota в настоящее время.

Лучше ли внутреннее сгорание водорода, чем топливные элементы?

Хотя водород — и водородные топливные элементы — все еще могут играть важную роль в транспорте будущего, даже многие сторонники водорода признают, что внутреннее сгорание водорода, вероятно, не будет.

Так было не всегда. Около 15 лет назад была большая надежда на идею внутреннего сгорания водорода — по сути, запуск двигателей, мало чем отличающихся от бензиновых, на хранении первого элемента таблицы Менделеева.

BMW предлагала версию BMW 7-й серии 2005-2007 годов под названием Hydrogen 7 с 6,0-литровым двигателем V-12, который мог работать на бензине или водороде. Он заявлял, что КПД на водороде составляет около 40 процентов — по сравнению с большинством бензиновых двигателей.

НЕ ПРОПУСТИТЕ: Энергопотребление для транспортных средств на водородных топливных элементах: выше, чем у электриков, даже у гибридов

Mazda была особенно активна в этой области и утверждала, что ее роторный двигатель Ванкеля особенно хорошо подходит для водорода, поскольку конструкция двигателя уже имеет тенденцию работать при более низких температурах, чем обычные поршневые двигатели, и, таким образом, может снизить опасения по поводу NOx. Сначала у него была двухтопливная версия RX-8, которая могла при необходимости переключаться между водородом и бензином, а затем в Premacy h3 RE как часть серийной гибридной системы.Когда мы ездили на этом автомобиле в первые дни выпуска Green Car Reports , мы обнаружили, что он довольно веселый благодаря своей системе электродвигателя.

Mazda Premacy Hydrogen RE Гибрид

Проблемой для любого из этих транспортных средств — не считая чистой стоимости — была непрактичность хранения достаточного количества водорода для получения значимого диапазона. Hydrogen 7 мог проехать всего 125 миль на 17,6 фунтах водорода, после чего в игру вступил бензин. С другой стороны, нынешний автомобиль на топливных элементах Hyundai Nexo 2019 года может проехать 380 миль на 13.7 фунтов водорода.

В последние годы эффективность транспортных средств на топливных элементах превысила отметку в 50 процентов — это означает, что более половины энергии, содержащейся в водороде, используется для работы транспортного средства. Hyundai, например, заявила, что сама батарея топливных элементов в Nexo работает с КПД до 60 процентов.

ПРОВЕРКА: Эта диаграмма 11-летней давности объясняет проблему с автомобилями на водородных топливных элементах

Хранение водорода в автомобиле по-прежнему остается проблемой, поэтому технология, которая может идти дальше за драгоценную унцию водорода (то есть топливные элементы), является победителем.Топливный элемент Honda Clarity, например, проезжает 366 миль на своих 12 фунтах водорода, хранимых при давлении 10000 фунтов на квадратный дюйм и требующих трех отдельных цилиндрических баков для поддержания достаточно практичной упаковки (даже при этом спинки задних сидений не складываются и не позволяют сквозной.

2017 Honda Clarity Топливный элемент

Кроме того, внутреннее сгорание водорода не решает основную проблему с водородом, а именно его доставку и распределение из устойчивых источников. Ассортимент водородных транспортных средств является еще одним препятствием, поскольку инфраструктура постепенно развивается.

Конечно, должна была быть причина, по которой руководители отделов исследований и разработок и инженеры нескольких крупных автопроизводителей, часто имеющие докторские степени и очень хорошо понимающие, как работают энергия и сгорание, а также проблемы, с которыми сталкиваются топливные элементы и производство водорода, принимали во внимание в первую очередь внутреннее сгорание водорода.

Я посетил несколько таких презентаций. В то время топливные элементы были громоздкими и непомерно дорогими. Сохранение схемы внутреннего сгорания считалось более дешевым и могло производиться наряду с существующими моделями.

ПОДРОБНЕЕ: из-за нехватки водорода автомобили на топливных элементах задыхаются в Калифорнии

Но времена изменились. Топливные элементы стали намного меньше и более энергоемкими и теперь имеют размер примерно с чемодан для ручной клади, а в следующем поколении потенциально могут стать еще меньше.

Водородные двигатели внутреннего сгорания по-прежнему производят одни из самых скандальных загрязняющих веществ, NOx, из-за которых их выбросы «хорошо для колес» не так экологичны, даже до того, как скандал с выбросами Volkswagen сосредоточил внимание на этом компоненте выхлопных газов.

Хотя приведенное ниже видео из Engineering Explained, выпущенное в конце прошлого года, объясняет, почему внутреннее сгорание водорода сейчас выглядит глупой идеей, стоит вспомнить, почему: инженерные разработки и экономическое обоснование того, что работает в настоящее время (и почему), очень сильно развиваются. быстро.

Итак, объявите водородное внутреннее сгорание мертвым. Но мы не готовы делать такие заявления в отношении топливных элементов. По мере того, как растет количество электрических и электрифицированных транспортных средств, топливные элементы могут все больше функционировать как часть всей экосистемы электромобилей; и, возможно, обменять на батареи — в промышленных приложениях или в контурах коммерческих автомобилей, где они, в конце концов, могут оказаться разумной идеей.

Почему бы нам просто не запустить двигатели внутреннего сгорания на водороде?

Мы знаем, что нам нужно найти замену ископаемому топливу. Автопроизводители прилагают все усилия, чтобы найти решение этой дилеммы. Похоже, что большинство из этих решений связано с избавлением от наших любимых двигателей внутреннего сгорания. Но не могли бы мы просто перепроектировать типичный поршневой двигатель, чтобы он работал на чем-то более чистом, например, на водороде?

Если бы это было так просто. Как объясняет Джейсон Фенске из Engineering Explained, вы можете сконструировать поршневой двигатель, работающий на водороде.Это было бы не очень хорошо.

Водород — заманчивое альтернативное топливо. При правильном сжигании выделяется только водяной пар. Уже в этом месяце компания Fenske изучает возможности водорода в нескольких видеороликах, как в качестве топлива для поршневых двигателей, так и для роторных двигателей.

Есть две основные проблемы с водородным двигателем внутреннего сгорания. Во-первых, водород не такой энергоемкий, как другие виды топлива, а это означает, что вам нужно много его, чтобы выполнить небольшую работу. Добавьте к этому присущую поршневому двигателю неэффективность (в лучшем случае вы превращаете только около 30 процентов энергии топлива в поступательное движение), и вы получите рецепт разочарования.

Вторая проблема? Когда вы сжигаете водород, вы получаете другие выбросы, помимо водяного пара. В основном, вы получаете NOx, токсичные выбросы, лежащие в основе скандала с мошенничеством с дизельными двигателями Volkswagen. Если вы ищете чистую альтернативу бензину, выбросы водорода NOx исключают его из эксплуатации.

Ответ? Используйте водород в топливном элементе для выработки электроэнергии. Топливные элементы намного эффективнее двигателей внутреннего сгорания, а водородный топливный элемент имеет более чистые выбросы, чем водородный двигатель внутреннего сгорания.Чтобы узнать больше, посмотрите полное видео Фенске ниже.

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Основы водорода — Двигатели внутреннего сгорания

Водород обладает высокой удельной энергией, высокой скоростью пламени, широким диапазоном воспламеняемости и характеристиками чистого горения, которые предполагают возможность высокой производительности в двигателях внутреннего сгорания (ДВС).Эти атрибуты были реализованы более чем полвека с начала разработки водородных двигателей. В начале 1990-х годов FSEC провела исследования по использованию водорода в ДВС. Результатом этой работы стала разработка смешанного топлива под названием HYTEST. Сегодня производители автомобилей и Министерство энергетики продолжают работать над водородными ДВС.

Заправка водородом / природным газом (топливо HYTEST) Ford Ranger, FSEC h3 Lab
(Фото.Спенсер)
Существует четыре основных вопроса, касающихся двигателей и транспортных средств, работающих на водороде: обратная вспышка двигателя и восприимчивость водорода к воспламенению на поверхности, несколько сниженная мощность двигателя, выбросы большого количества оксида азота (NOx) и проблема хранения топлива на борту и безопасность. Хотя частичные решения были найдены для большинства этих проблем, до сих пор нет единого мнения о наилучшем методе окончательного решения всех этих проблем.

Что касается характеристик водородного двигателя, его предел воспламеняемости в воздухе является наиболее важным фактором. Низкий предел воспламеняемости водорода на обедненной смеси дает возможность довольно успешно использовать концепцию двигателя с обедненной смесью (LBE) с водородными двигателями. Концепция LBE относится к более обедненной работе двигателя (более высокое отношение массы воздуха к топливу), чем к стехиометрической (химически правильное соотношение воздух-топливо). Объем работы, выполняемой в процессе расширения в двигателе, работающем на обедненной смеси, относительно велик (из-за более низкой температуры цикла), что приводит к пропорционально более высокому тепловому КПД.

Концепция LBE с водородом дополнительно облегчает и способствует использованию так называемого «регулирования смеси» или «контроля качества» при малых нагрузках двигателя. В отличие от двигателей, работающих на бензине, которые требуют дросселирования при более низких нагрузках двигателя, двигатели, работающие на водороде, могут работать на пониженных уровнях мощности, ограничивая только скорость подачи топлива, не ограничивая расход всасываемого воздуха. Таким образом, полностью исключаются «насосные потери» двигателя, которые возникают при использовании дроссельной заслонки.Высокая температура самовоспламенения водорода дает возможность эксплуатировать двигатели, работающие на водороде, при более высоких степенях сжатия, чем те, которые обычно используются с бензиновыми двигателями. Результатом является дальнейшее увеличение указанного теплового КПД.

Препятствия для использования водорода в ДВС вызваны его низкой энергией воспламенения и широкими пределами воспламеняемости. Это делает водородные двигатели особенно склонными к преждевременному воспламенению. Ситуация усугубляется высокой скоростью пламени водорода.Предварительное зажигание приводит к опасным обратным вспышкам в карбюратор и плохой работе и, как полагают, происходит из-за развития поверхностных «горячих точек». Индукционное зажигание может произойти из-за чрезмерных температур как компонентов камеры сгорания, так и небольших отложений на поверхности или взвешенных частиц. Исключительно низкая энергия воспламенения водорода требует, чтобы средняя температура, преобладающая в пространстве сгорания во время индукции, была достаточно низкой, чтобы избежать образования горячих точек.Для этого требуется соответствующее охлаждение головки блока цилиндров, поршня, клапанов, стенки камеры сгорания и использование холодных свечей зажигания (свечи зажигания с неплатиновыми наконечниками). Одним из способов уменьшить влияние горячих точек камеры сгорания на преждевременное воспламенение свежего заряда является использование методов термического разбавления. Необычные характеристики тепломассопереноса водорода делают практически необходимым переосмысление конструкции камеры сгорания и системы охлаждения, чтобы в полной мере использовать уникальные свойства водорода.

Другой важный вопрос, связанный с работой двигателя, особенно с почти стехиометрическими смесями водорода и воздуха, — это степень образования NOx. Эта проблема решается с помощью любого типа термического разбавления заряда за счет использования избыточного воздуха (концепция обедненного сжигания), впрыска воды в цилиндр и рециркуляции выхлопных газов. Коллективные результаты многих исследователей, по-видимому, указывают на то, что для того, чтобы в полной мере использовать преимущества концепции сжигания обедненной смеси и широкие пределы воспламеняемости водорода для снижения выбросов NOx до приемлемых уровней, необходимо ограничить работу двигателя коэффициентами эквивалентности, равными примерно 0.65 или ниже. Также возможно достичь низких уровней выбросов NOx с водородными двигателями, использующими внутреннее смесеобразование с помощью DCI или впрыска в порт. В методе внутреннего смесеобразования водород впускается в камеру сгорания непосредственно и под давлением. Этот подход потребовал разработки системы криогенного впрыска под высоким давлением, а также конструктивных элементов камеры сгорания, которые способствуют турбулентности и быстрому перемешиванию водорода и воздуха в цилиндре.Представляется, что возможны мощные водородные двигатели, работающие на обедненной смеси, которые также производят минимальные выбросы NOx.

Персонал

FSEC провел большую работу по использованию водорода и природного газа в качестве топлива для ДВС, изучив перспективы смешивания водорода с природным газом для улучшения характеристик двигателя и снижения выбросов двигателя. Исследователи начали работу со смешивания небольшого количества водорода (от 5 до 10 процентов) с природным газом, но результаты показали, что для достижения желаемого сокращения выбросов потребуются смеси, содержащие более 20 процентов водорода.

Эта работа была сосредоточена на смеси обогащенного водородом природного газа, которая позволила увеличить «предел сжигания обедненной смеси» и, таким образом, снизить выбросы двигателя без использования каталитического нейтрализатора. В ходе этой работы FSEC провела серию испытаний смеси метана, обогащенной водородом более 30%, которая использовалась для работы двигателя V8 объемом 350 кубических дюймов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *