ООО «Центр Грузовой Техники»

8(812)244-68-92

Содержание

Поршень двигателя

Категория:

   Устройство и работа двигателя

Публикация:

   Поршень двигателя

Читать далее:



Поршень двигателя

Поршень представляет собой металлический стакан, установленный в цилиндре с некоторым зазором. При рабочем ходе поршень днищем воспринимает давление газов, а при других ходах осуществляет вспомогательные такты. Верхняя усиленная часть поршня, воспринимающая давление газов, называется головкой, а нижняя направляющая часть — юбкой. Приливы в стенках юбки, служащие для установки поршневого пальца, называются бобышками.

Поршни карбюраторных двигателей изготовляют из алюминиевых сплавов. Алюминиевые поршни обладают малым весом, вследствие чего уменьшаются силы инерции, а следовательно, и нагрузки на детали двигателя при его работе. Кроме того, алюминиевые поршни, так же как и алюминиевые головки, обладают лучшей теплопроводностью, поэтому они меньше нагреваются при работе и способствуют снижению температуры рабочей смеси.

В результате этого можно повысить степень сжатия двигателя, не опасаясь, что возникнет детонационное сгорание топлива.

Рекламные предложения на основе ваших интересов:

В целях повышения износостойкости поршней для их изготовления в последние годы стали применять высококремнистые алюминиевые сплавы с большим содержанием кремния (до 20—25%). Поршни из алюминиевых сплавов изготовляют путем отливки в металлические формы. Для снятия внутренних напряжений в материале литые заготовки поршней подвергают длительному отжигу, а затем подвергают механической обработке.

В карбюраторных двигателях головка поршня имеет плоское днище и толстые стенки с внутренними ребрами, повышающими ее прочность и обеспечивающими хороший отвод тепла. В головке на боковой наружной поверхности имеются канавки для установки поршневых колец. В верхней части головки поршня у двигателей некоторых типов (ГАЗ) делают глубокую узкую канавку, уменьшающую передачу тепла от днища к верхнему компрессионному кольцу, работающему в особенно неблагоприятных условиях, чтобы устранить опасность его пригорания.

В некоторых двигателях (ЗИЛ) в головку при заливке поршня заделывается чугунная кольцевая вставка, в которой протачивается канавка для верхнего компрессионного кольца. Такое мероприятие повышает долговечность поршня.

Для улучшения приработки поршней в цилиндрах и для уменьшения износа на юбку 2 поршня наносят специальные покрытия. Обычно трущуюся поверхность юбки лудят — покрывают очень тонким слоем олова (толщиной 0,004—0,006 мм). В средней части юбки делают приливы-бобышки 3 с отверстиями для установки поршневого пальца.

Для того чтобы при нагревании поршень мог расширяться без заедания в цилиндре, поршень устанавливают с зазором между стенкой цилиндра и юбкой. Алюминий расширяется при нагревании значительно больше, чем чугун. Чтобы в холодном двигателе зазор между поршнем и цилиндром не был чрезмерно большим, что может вызвать стуки поршня и утечку газов из цилиндра, в алюминиевых поршнях применяют пружинящие разрезные юбки. При боковом разрезе по всей длине юбка несколько пружинит, и поршень вставляется в цилиндр холодного двигателя плотно, с малым зазором.

При нагревании поршня разрез дает возможность юбке расшириться без заедания поршня в цилиндре. Применяют также поршни с частичным, несквозным разрезом Т- или П-образной формы, что повышает жесткость юбки.

Для уменьшения бокового зазора сечение юбки делают не круглой формы, а овальной. Величина овальности (разность осей овала) юбки равна примерно 0,15—0,29 мм. Поршень устанавливают в цилиндре холодного двигателя с минимальным зазором по большой оси овала юбки, располагаемой в плоскости качания шатуна, где действуют боковые силы, прижимающие поршень к стенкам цилиндра. При нагревании поршня юбка может расширяться в направлении малой оси овала, где между юбкой и цилиндром имеется большой зазор. Поршни по длине изготовляют ступенчатыми или конусными, так как зазор вверху между стенкой цилиндра и головкой поршня должен быть больше, чем внизу, вследствие большего нагревания головки. Величина зазора между юбкой поршня и цилиндром для двигателей разных марок колеблется в пределах 0,012—0,08 мм.

Рис. 1. Конструкция поршня

Чтобы при нагревании поршни меньше расширялись, а также для повышения их прочности, в поршни двигателей некоторых марок при отливке заделывают пластинки из специальной малорасширяющейся стали. Для уменьшения веса у некоторых поршней вырезают нерабочую часть юбки. Эти вырезы служат также для прохода противовесов при вращении коленчатого вала у короткоходных двигателей.

Для обеспечения лучшего уравновешивания двигателя поршни к каждому двигателю подбирают равного веса. С этой целью на днище поршня, кроме указания группы по размеру, выбивают соответствующую метку весовой группы. Разница в весе поршней, подбираемых для одного двигателя, не должна превышать 6—8 г.

При сборке поршни обычно устанавливают разрезом на левую сторону двигателя, так как во время работы к этой стороне поршень прижимается с меньшей силой. Для удобства сборки на днище поршня в этом случае делают специальную метку, которая должна быть обращена к передней части двигателя.

Рис. 2. Типы поршней

В дизелях применяют поршни из специального чугуна (двухтактные дизели ЯАЗ) или из высококремнистого алюминиевого сплава (четырехтактные дизели ЯМЗ) с неразрезной юбкой, имеющей большую жесткость. Так как в дизелях боковая сила, прижимающая поршень к стенке цилиндра, достигает значительной величины, то для получения нормального удельного давления между цилиндром и поршнем юбку делают большей длины, Днище поршня, воспринимающее значительное давление газов, делают более прочным с усилением его внутренней стороны большим количеством ребер. Для обеспечения хорошего смесеобразования при непосредственном впрыске топлива в днище поршня располагается камера сгорания специальной формы.

Рекламные предложения:


Читать далее: Поршневые кольца

Категория: — Устройство и работа двигателя

Главная → Справочник → Статьи → Форум


Как правильно установить поршни и шатуны

Большие и маленькие хитрости при монтаже поршней и шатунов в двигатель

Когда приходит время собирать двигатель, особенно V-образный, правильная взаимная установка поршней и шатунов, а также по отношению к блоку цилиндров и коленчатому валу, может поставить в тупик многих мотористов. Этой статьей мы постараемся им помочь.
Как правильно устанавливать поршни на шатуны?

Если вы собираете V-образной двигатель, то следует иметь в виду: если нижняя головка шатуна имеет с одной стороны более широкую фаску, то она должна быть обращена к галтели (закруглению) шатунной шейки коленчатого вала. 

Если же шатуны предназначены для использования с коленчатым валом, без четко выраженных галтелей, то они могут быть и без несимметричных фасок. Тогда ориентация шатуна может определяться по положению «замков» вкладышей: обращенных наружу блока или внутрь (в сторону распредвала – если он находится в развале блока цилиндров). 

К примеру, «замки» вкладышей SBC и BBC должны быть обращены наружу. У других вкладышей «замки» могут быть направлены внутрь. На работу собственно вкладышей расположение «замков» не оказывает никакого влияния. Надо лишь правильно ориентировать шатун.

Если же на нижней головке шатуна отсутствуют фаски с обеих сторон, то вкладыш должен быть смещен

от галтели шатунной шейки, чтобы его край не попал на закругление.

Сквозные отверстия в верхней и нижней головках шатуна

Часто шатун имеет на нижней головке сквозное отверстие, которое нужно для смазки стенки цилиндра. Эти отверстия предназначены не для смазывания распределительного вала, как полагают некоторые. 

Бывает, что отверстие расположено только с одной стороны нижней головки шатуна. Подобные шатуны надо устанавливать так, чтобы отверстие в нижней головке было обращено в сторону распределительного вала (в сторону развала блока цилиндров).

Отверстие в верхней головке шатуна (будь оно сверху или под сбоку – углом) служит для смазки поршневого пальца. Поэтому его ориентация в двигателе роли не играет.

«Замки» шатунных вкладышей

«Замки» (фиксирующие выступы) на вкладышах и соответствующие пазы на нижней головке шатуна и его крышки нужны лишь для правильного позиционирования вкладышей. От «проворота» вкладышей они не спасают, поскольку вкладыши в своей «постели» фиксируются за счет натяга, возникающего при правильной затяжке крепежных болтов крышки нижней головки.  

«Правильные» вкладыши, при надлежащем монтаже, слегка выступают за линию разъема нижней головки. Поэтому, после затягивания болтов, они надежно фиксируются в «постели». 

В последнее время во многих двигателях используют «беззамковые» вкладыши (примером могут служить двигатели Chrysler 3.7L и 4.7L). За счет устранения операций по механической обработке пазов в шатуне и его крышке, а также «замков» на самих вкладышах снижаются затраты на их изготовление. При монтаже подобных вкладышей их надо ставить строго посередине нижней головки шатуна.

Рис. 1 Если в V-образном двигателе на одну шатунную шейку коленчатого вала монтируют два шатуна, то сторона нижней головки шатуна с более узкой фаской должна быть обращена к соседнему шатуну…

Рис. 2 … в этом случае бОльшая фаска на нижней головке шатуна оказывается обращенной в сторону галтели шатунной шейки коленчатого вала.

Рис. 3 Фиксирующий выступ («замок») на вкладыше и соответствующий ему паз в нижней головке шатуна нужны только для того, чтобы правильно установить вкладыши в шатуне. «Замки» никогда не удержат вкладыши от проворачивания в шатуне, если при сборке были допущены какие-либо нарушения. К примеру: болты нижней головки шатуна не затянуты как следует или отверстие в нижней головке потеряло свою форму.

Рис. 4 Вкладыши фиксируются в шатуне только за счет радиального усилия, которое возникает от натяга установленных вкладышей, когда крепежные болты нижней головки затянуты надлежащим моментом. Чтобы получить требуемый натяг вкладыш сделан чуть длиннее своего посадочного места. Поэтому, когда вы «от руки» установите вкладыш в «постель», он будет немного выступать над плоскостью разъема. Так и должно быть – ни в коем случае не надо подпиливать или подрезать края вкладышей!

Crush Height Each Half Bearing — выступание вкладышей над плоскостью разъема
Bearing — вкладыш
Cap — крышка нижней головки шатуна
Radial Pressure — радиальное усилие

Рис. 5 Измерять максимальный диаметр поршня надо в строго определенном месте, поскольку юбка поршня имеет «бочкообразный» профиль и результаты измерений, по высоте поршня, будут существенно различаться.

Рис. 6 Сквозное отверстие на боковой поверхности ВГШ (верхней головки шатуна) (верхнее фото) может указывать на прессовую посадку пальца в шатуне. На втором фото показан тот же самый шатун, но снаружи. А вот отверстие сверху ВГШ (третье фото) служит для улучшения смазки «плавающего» поршневого пальца.

Рис. 7 На днище поршня обычно есть специальные метки (например, изображена стрелка и надпись «FRONT» — как на фото) помогающие правильно сориентировать поршень при сборке двигателя.

Рис. 8 Если поршни предназначены для V-образного двигателя, то обычно с «изнанки» таких поршней ставят метку «L» — если их монтируют в левый ряд цилиндров или «R» — для правого ряда цилиндров.

Смещение шатуна

Существуют двигатели, у которых стержень шатуна смещен относительно верхней или нижней головок (если смотреть на шатун сбоку – «в профиль»). Подобные шатуны применяют в V-образных двигателях, у которых левый и правый ряды цилиндров стоят «со сдвигом», вперед и назад, относительно друг друга. В зависимости от конкретной модели двигателя, стержень шатуна может иметь смещение 2,5 мм или даже более. 

Если есть какие-то сомнения, то при монтаже обратите внимание, что верхняя головка шатуна центрируется по поршню – в бобышках под палец.

Нужно ли в двигателях с вращением против часовой стрелки устанавливать поршни в «обратную» сторону?

На двигателе с обратным вращением – когда коленвал вращается против часовой стрелки, если смотреть с передней части двигателя – шатуны обычно устанавливаются так же, как и в обычном моторе, коленвал которого вращается по часовой стрелке. То есть, бОльшая фаска нижней головки шатуна все равно будет обращена к галтели шатунной шейки.

Однако, если применяются поршни со смещенным поршневым пальцем, то в этом случае поршень должен быть установлен «назад» (развернут на 180 град) относительно его «стандартного» положения. Поршневой палец в подобном поршне смещен к нагруженной стороне юбки поршня. 

В двигателе с вращением по часовой стрелке нагруженная сторона цилиндра обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне) стороне. 

В двигателе с обратным вращением давление на стенку цилиндра от поршня направлено в другую сторону: со стороны выхлопа – слева и со стороны впуска – справа. Если поршни симметричны (т. е. не имеют смещенного пальца), то их ориентация зависит только от цековок под клапанные тарелки на днище – они должны быть сориентированы в соответствии с положением клапанов.

Конструкция юбки поршня

Форма, площадь и масса юбки поршня играют важную роль в потерях на трение и стабилизации поршня при перекладке в верхней и нижней мертвых точках. Здесь мы покажем роль нагруженных и ненагруженных сторон поршня и разработку асимметричных юбок, предназначенных преимущественно для снижения веса. 

Левая и правая стороны поршня при работе двигателя нагружены по-разному. Поэтому конструкция юбки поршня играет важную роль в распределении воспринимаемых нагрузок – с точки зрения прочности и веса поршня. 

Юбка поршня должна выдерживать давление на стенку цилиндра при одновременном уменьшении трения. А ее площадь должна быть такой, чтобы быть прочной, обеспечивая при этом стабильность поршня, чтобы свести к минимуму «раскачивание» относительно оси пальца, когда поршень движется вверх-вниз. Причем нагруженная поверхность юбки испытывает наибольшую нагрузку на такте расширения. 

Если коленчатый вал вращается по часовой стрелке (глядя на двигатель спереди), то нагруженная поверхность юбки поршня обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне).  

Менее нагруженная сторона юбки воспринимает усилие на такте сжатия. Эта разница в нагрузках обусловлена положением, углом между шатуном и поршнем, при его перемещении. 

За весь рабочий цикл разница в нагрузке на разные стороны юбки поршня различается в десять раз! Причем, нагрузка на юбку поршня может варьироваться в зависимости от хода поршня, длины шатуна и максимального давления в цилиндре.

Поэтому асимметричные поршни должны быть специальными – для левого и правого ряда цилиндров. На днище поршня в таком случае наносятся стрелки или иные метки, указывающие на переднюю часть двигателя.

Рис. 9 На этом фото показаны асимметричные поршни для левого и правого рядов цилиндров V-образного двигателя. Их особенностью является расширенная часть юбки поршня на нагруженной стороне и зауженная – на стороне с меньшей нагрузкой.

Рис. 10 Другой пример асимметричного поршня. Обратите внимание, как сближены бобышки под поршневой палец, что позволяет сделать поршневой палец короче и легче. Кроме того, хотя это почти невозможно заметить глазом, ось пальца смещена к нагруженной стороне поршня (в сторону более широкой части юбки) на 0,50 мм – для уменьшения дисбаланса из-за разницы в массе «узкой» и «широкой» частей юбки.

Нагруженная сторона юбки поршня

Когда поршень движется вниз на такте расширения, он испытывает значительное сопротивление, пытаясь провернуть коленчатый вал. С ростом нагрузки увеличивается и сопротивление. При этом нагруженная сторона юбки поршня воспринимает боковое давление, которое увеличивает нагрузку (с ростом трения и износа) на соответствующей стороне стенки цилиндра.  

Если на днище поршня имеется какая-либо метка (к примеру точка, или стрелка, или надпись «Front»), важно установить поршень в соответствии с этой меткой, обычно указывающей на переднюю часть двигателя.

 

Ненагруженная сторона юбки поршня

Эта часть юбки поршня противоположна нагруженной стороне. Она работает, когда поршень движется вверх на такте сжатия, из-за сопротивления, создаваемого сжимаемой топливно-воздушной смесью. Основная ее задача, в том, чтобы обеспечить стабильность поршня при движении в цилиндре. Поэтому эта часть юбки может быть поуже, для экономии веса. 

Так что, для точной настройки в распределении этих сил между разными сторонами юбки были разработаны асимметричные поршни, которые имеют более широкую юбку на нагруженной стороне и зауженную юбку с противоположной стороны. Это обеспечивает оптимальное распределение нагрузок на юбку поршня, одновременно снижая массу поршня.  

В качестве примера можно привести «асимметричную» (или Т-образную) конструкцию поршней FSR компании JE Pistons, которые имеют расширенную часть юбки на нагруженной стороне, а со стороны бобышек юбка отсутствует вовсе, что позволяет сделать поршневой палец короче и легче. Подобные поршни изначально разрабатывались для гоночных двигателей. 

Еще одним преимуществом подобных поршней является улучшение условий работы поршневых колец. Но, в основном, подобная конструкция юбки, в сочетании со слегка смещенным пальцем, позволяет существенно снизить потери на трение.

Рис. 11 Из этой схемы видно, как определить нагруженную и ненагруженную стороны юбки поршня.

Thrust Load — действие боковой силы
Minor Thrust Side — ненагруженная сторона цилиндра
Major Thrust Side — нагруженная сторона цилиндра
Красная изогнутая стрелка — направление вращения коленчатого вала

Рис. 12 На этом фото хорошо видно, как различается ширина юбки поршня на нагруженной (слева) и ненагруженной (справа) сторонах поршня.

Рис. 13 Компьютерное моделирование показывает, как распределяются механические нагрузки в поршне, возникающие при работе двигателя на частичных нагрузках. (Чем темнее цвета – тем меньше нагрузка, а чем ярче – тем больше).

Рис. 14 А на этой схеме видно, как нагружен поршень сразу после воспламенения смеси.

Рис. 15 Здесь поршень показан снизу. На этой схеме хорошо видно, что во время рабочего хода наиболее нагружены верхние части отверстий под поршневой палец (они выделены красным цветом) и элементы юбки поршня, непосредственно примыкающие к ним.

Рис. 16 Тонкий слой антифрикционного покрытия (темного цвета) на юбке поршня помогает удерживать масло и снижает трение между поршнем и цилиндром – особенно при холодном запуске мотора.

Смещение пальца

Асимметричные поршни также могут иметь смещение поршневого пальца. При этом ось пальца смещена от оси поршня к нагруженной стороне примерно на 0,51 мм. Это небольшое смещение «балансирует» поршень, компенсируя разницу в массе юбки, а также снижая усилие, прикладываемое к нагруженной стороне поршня. 

Опять же, ссылаясь на опыт компании JE Pistons, асимметричный поршень позволяет сделать поршневые пальцы короче, жестче и легче (примерно на 10 грамм).

 

Заключение

Надеемся, эта статья поможет вам лучше ориентироваться в тонкостях сборки двигателя. Помните, что лучше всего пометить поршни и шатуны перед разборкой. Грамотные ответы на ваши вопросы и помощь в технических проблемах с двигателями – наша главная задача.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Что такое поршень двигателя машины? Поршень двигателя внутреннего сгорания: устройство, назначение, принцип работы.

Поршень является одним из элементов кривошипно-шатунного механизма, на котором основан принцип работы многих двигателей внутреннего сгорания. В приведенной статье рассмотрена конструкция и особенности данных деталей.

Определение

Поршень — это деталь, выполняющая в цилиндре возвратно-поступательные движения и обеспечивающая преобразование в механическую работу изменения давления газа.

Назначение

С участием этих деталей реализуется термодинамический процесс работы мотора. Так как поршень — это один из элементов кривошипно-шатунного механизма, он воспринимает давление, производимое газами, и передает усилие на шатун. К тому же он обеспечивает герметизацию камеры сгорания и отвод от нее тепла.

Конструкция

Поршень — это трехсоставная деталь, то есть его конструкция включает три компонента, выполняющих различные функции, и две части: головку, в которую объединяют днище и уплотняющую часть, и направляющую часть, представленную юбкой.

Днище

Может иметь различную форму в зависимости от многих факторов. Например, конфигурация днища поршней двигателя внутреннего сгорания определяется расположением прочих конструктивных элементов, таких как форсунки, свечи, клапаны, формой камеры сгорания, особенностями протекающих в ней процессов, общей конструкцией двигателя и т. д. В любом случае она определяет особенности функционирования.

Выделяют два основных типа конфигурации днища поршней: выпуклая и вогнутая. Первый обеспечивает большую прочность, но ухудшает конфигурацию камеры сгорания. При вогнутой форме днища камера сгорания, наоборот, имеет оптимальную форму, однако более интенсивно откладывается нагар. Реже (в двухтактных двигателях) встречаются поршни с днищем, представленным выступом отражателя. Это нужно при продувке для направленного перемещения продуктов сгорания. Детали бензиновых двигателей обычно имеют днище плоской или почти плоской формы. Иногда в них присутствуют канавки для полного открытия клапанов. У моторов с непосредственным впрыском поршни характеризуются более сложной конфигурацией. У дизельных двигателей они отличаются наличием камеры сгорания в днище, обеспечивающей хорошее завихрение и улучшающей смесеобразование.

Большинство поршней односторонние, хотя встречаются и двусторонние варианты, которые имеют два днища.

Расстояние между канавкой первого компрессионного кольца и днищем носит название огневого пояса поршня. Очень важно значение его высоты, которое различно для деталей из разных материалов. В любом случае выход высоты огненного кольца за рамки минимально допустимого значения может повлечь прогар поршня и деформацию посадочного места верхнего компрессионного кольца.

Уплотняющая часть

Здесь находятся маслосъемные и компрессионные кольца. У деталей первого типа каналы имеют сквозные отверстия для поступления внутрь поршня удаленного с поверхности цилиндра масла, откуда оно попадает в поддон картера. Некоторые из них имеют ободок из коррозионностойкого чугуна с канавкой для верхнего компрессионного кольца.

Состоящие из чугуна, служат для создания плотного прилегания поршня к цилиндру. Поэтому они являются источником наибольшего трения в моторе, потери от которого составляют 25% от общего количества механических потерь в моторе. Количество и расположение колец определяются типом и назначением двигателя. Наиболее часто используют 2 компрессионных и 1 маслосъемное кольцо.

Компрессионные кольца выполняют задачу предотвращения поступления газов в картер из камеры сгорания. Наибольшие нагрузки приходятся на первое из них, поэтому в некоторых двигателях его канавку укрепляют стальной вставкой. Компрессионные кольца могут быть трапециевидной, конической, бочкообразной формы. Некоторые из них имеют вырез.

Служит для удаления лишнего масла с цилиндра и препятствует его попаданию в камеру сгорания. Для этого в нем есть отверстия. Некоторые варианты имеют пружинный расширитель.

Направляющая часть (юбка)

Имеет бочкообразную (криволинейную) либо конусообразную форму для компенсации На ней находятся два прилива для поршневого пальца. На этих участках юбка имеет наибольшую массу. К тому же там наблюдаются наибольшие температурные деформации при нагреве. Для их снижения используют различные меры. В нижней части юбки может находиться маслосъемное кольцо.

Для передачи усилия от поршня или к нему применяют чаще всего кривошип либо шток. Поршневой палец служит для соединения данной детали с ними. Он состоит из стали, имеет трубчатую форму и может быть установлен несколькими способами. Чаще всего используют плавающий палец, который может проворачиваться в процессе работы. Для предотвращения смещения его фиксируют стопорными кольцами. Жесткое закрепление применяют значительно реже. Шток в некоторых случаях выполняет функцию направляющего устройства, заменяя юбку поршня.

Материалы

Поршень двигателя может состоять из различных материалов. В любом случае они должны обладать такими качествами, как высокая прочность, хорошая теплопроводность, сопротивляемость коррозии и низкие коэффициент линейного расширения и плотность. Для производства поршней используют сплавы алюминия и чугун.

Чугун

Отличается большой прочностью, износостойкостью и невысоким Последнее свойство обеспечивает возможность работы таких поршней с малыми зазорами, благодаря чему достигается хорошее уплотнение цилиндра. Однако вследствие значительного удельного веса чугунные детали используют лишь в тех двигателях, где возвратно движущиеся массы имеют силы инерции, составляющие не более шестой части сил давления на днище поршня газов. Кроме того, из-за низкой теплопроводности разогрев днища чугунных деталей в процессе работы двигателя достигает 350-450 ° С, что особо нежелательно для карбюраторных вариантов, так как приводит к калильному зажиганию.

Алюминий

Данный материал используют для поршней наиболее часто. Это объясняется небольшим удельным весом (алюминиевые детали легче чугунных на 30%), высокой теплопроводностью (в 3-4 раза больше, чем у чугуна), обеспечивающей разогрев днища не более чем до 250 °С, что предоставляет возможность увелич ения степен и сжатия и обеспечивает лучше е наполнени е цилиндро в, и высокими антифрикционны ми свойствами. При этом алюминий имеет больший в 2 раза, чем у чугуна, коэффициент линейного расширения , что вынуждает делать большие промежутки со стенками цилиндров, то есть размеры поршней из алюминия меньше, чем из чугун а, для одинаковых цилиндров . К тому же такие детали и меют меньшую прочность, особенно в нагретом состоянии (при 300 °С она снижается на 50-55%, тогда как у чугун ных — на 10%).

Для снижения степени трения стенки поршней покрывают в качестве которого используют графит и дисульфид молибдена.

Нагрев

Как было упомянуто, в процессе работы могут разогреваться до 250-450 °С. Поэтому необходимо принимать меры, направленные как на снижение нагрева, так и на компенсацию вызываемого им температурного расширения деталей.

Для охлаждения поршней используют масло, которое различными способами подают внутрь них: создают масляный туман в цилиндре, разбрызгивают его через отверстие в шатуне либо форсункой, впрыскивают в кольцевой канал, обеспечивают циркуляцию по трубчатому змеевику в днище поршня.

Для компенсации температурных деформаций на участках приливов юбки с двух сторон обтачивают металл на 0,5-1,5 мм в глубину в виде П- или Т-образных прорезей . Такая мера улучшает ее смазывание и предотвращает появлени е от температурных деформаций задиров, поэтому данны е углубления называют холодильниками. Их используют в сочетании с конусо- или бочкообразной формой юбки. Это компенсирует ее линейное расширение за счет того, что при нагреве юбка принимает цилиндрическую форму. Кроме того, используют компенсационные вставки , чтобы диаметр поршня испытывал ограниченное теплово е расширени е в плоскости качания шатуна. Также можно изолировать направляющую часть от головки, испытывающей наибольший нагрев. Наконец, стенкам юбки придают пружинящие свойства путем нанесения косого разреза по всей ее длине.

Технология производства

По способу изготовления поршни подразделяют на литые и кованые (штампованные). Детали первого типа применяют на большинств е автомобилей, а замена поршней на кованые используется при тюнинге. Кованые варианты отличаются повышенной прочностью и долговечностью, а также меньшей массой. Поэтому установка поршней такого типа повышает надежность и производительность двигателя. Это особо важно для моторов, работающих в условиях повышенных нагрузок, в то время как для повседневной эксплуатации достаточно литых деталей.

Применение

Поршень — это многофункциональная деталь. Поэтому его используют не только в двигателях. Например, существует поршень суппорта тормозной системы, так как она функционирует аналогичным образом . Также кривошипно-шатунный механизм применяют на некоторых моделях компрессоров, насосов и прочем оборудовании.

Когда мы садимся за руль автомобиля, поворачиваем ключ в замке зажигания и нажимаем педаль газа, под капотом начинает происходить множество очень сложных механизмов, которые и производят движение. Эти все механизмы нас совсем не интересуют, главное чтобы автомобиль ехал. Но вот когда происходит поломка – мы начинаем ломать голову над тем, в чем же кроется причина и нам приходится осваивать всю необходимую информацию об устройстве и функционировании каждой отдельной детали. Но чтобы не тратить на это время, когда этого времени у Вас не будет, перед тем как садиться за руль, следует хорошо разобраться в особенностях автомобильных деталей.

В частности, сегодня мы поговорим с вами о поршне. Ведь эта деталь является центральной в процессе переработки топливной энергии в тепловую и механическую. Разберемся с Вами, что такое поршень, его назначение, основные требования к нему и особенности его конструкции.

1. Поршень двигателя и его основные характеристики

Мы конечно надеемся, что опытным автомобилистам не нужно долго объяснять, что же такое поршень двигателя. Однако, если среди наших читателей есть «начинающие», то специально для них мы объясним, что поршень является деталью автомобиля, которая преобразует изменения давление газа, пара и жидкости внутри двигателя в механическую силу. Поршень имеет форму цилиндра, внутри которого постоянно совершаются возвратно-поступательные движения, благодаря которым и образуется механическая сила.

Обязанность у этой детали очень ответственная и от того, насколько он хорошо с нею справляется и зависит его эффективность. На самом деле он является наиболее сложной деталью автомобиля, разобраться в особенностях и противоречивых свойствах которой неподготовленному уму довольно трудно. Мало кто знает, но практически ни один автомобильный концерн не занимается самостоятельным изготовлением поршней для своих автомобилей, а заказывают их специально под свои моторы. Усложняет ситуацию для простых автомобилистов и тот факт, что на сегодняшний день существует большое количество разных форм и размеров поршней. Поэтому, обслуживание и ремонт этой детали может всегда проводиться по-разному.

Каким требованиям должен соответствовать надежный поршень?

Поскольку поршень – деталь довольно сложная, то и требований к ней выставляется великое множество. В связи со сложностями производства, изготовителей поршней двигателей не так уж и много, да и стоит эта деталь на авторынке совсем не мало. И так, давайте разберемся, каким требованиям должен соответствовать хороший поршень:

1. Перемещаясь внутри цилиндра, именно поршень двигателя обеспечивает расширение сжатых газов, которые являются продуктом горения топлива. Благодаря этому газы могут выполнять механическую работу – приводить в действие все остальные механизмы автомобиля. Как следствие, основное требование к поршням – возможность сопротивляться высокой температуре при которой проходят все эти процессы, высокому давлению газов и хорошо уплотнять канал цилиндра (иначе он не сможет влиять на давление газов).

2. Поршень не является одиночным устройством, он действует вместе с цилиндром и поршневыми кольцами. Вместе эти детали образуют линейный подшипник скольжения. В связи с этим подшипник обязательно должен отвечать всем требованиям и особенностям пары трения. Если все требования будут учтены с самой высокой точностью, то это не только поможет минимизировать механические потери при сгорании топлива, но и износ всех деталей.

3. Поршень постоянно находится под сильными нагрузками, самыми сильными из которых являются нагрузки от камеры сгорания топлива и реакции от Его конструкция обязательно должна учитывать все эти факторы и выдерживать такое сильное механическое воздействие.

4. Не смотря на то, что поршень в процессе работы движется с довольно большой скоростью, он не должен сильно нагружать инерционными силами кривошипно-шатунный механизм автомобиля, иначе это может привести к поломке.

2. Назначение поршней или их функциональные обязанности

Мы уже неоднократно упоминали, что поршень выполняет очень важную роль во всей работе автомобильного двигателя. Так, основное назначение поршней заключается в том, чтобы:

— принимать давления газов из камеры сгорания и передавать эти давления на двигателя в виде механической силы;

Уплотнять полость цилиндра двигателя, которая находится над поршнем. Таким образом, он предохраняет весь автомобильных механизм от прорыва газов в кратер и от того, чтобы в него проникало смазочное масло.

Причем вторая функция является более важной, поскольку именно благодаря этому поршень сам себе обеспечивает нормальные условия для работы. Даже о том, в каком техническом состоянии находится двигатель специалисты делают вывод только после осмотра поршневой группы и проверки ее уплотняющей способности. Ведь если расход масла превышает 3% от расхода топлива (а происходит это по причине его угара при проникновении в камеру сгорания), то весь автомобильный двигатель необходимо срочно отправлять в ремонт иле же он вообще может быть снят с эксплуатации. Понять, что с Вашим двигателем происходит что-то не то, можно по дымности отработанных газов. Но такого лучше не допускать.

Наверное, читая о том, что поршень и его элементы работают в условиях с очень высокими температурами, Вы удивляетесь, как это устройство само не выходит из строя? Добавим к этому, что кроме сложных температурных условий работу поршня постоянно сопровождают циклические, резко изменяющиеся, нагрузки. При всем этом элементам описываемой детали даже не всегда хватает смазки. Но об этом все конечно же подумали конструкторы и разработчики поршней.

Во-первых , конструируются они с учетом назначение и типа двигателя, на который они будут устанавливаться (стационарный, дизельный, двухтактный, форсированный или транспортный), поэтому для этого используются только самые устойчивые материалы.

Во-вторых , существует несколько путей, благодаря которым осуществляется охлаждение данной детали. Но сначала немного о том, как и куда перетекает тепло (или даже жар) из камеры сгорания. Оно выходит в окружающий холодный воздух, который омывает радиатор и двигатель, а также блок цилиндров. Но какими же путями поршень одает тепло блоку и антифризу?

1. Через поршневые кольца. Самое главное из них – первое, поскольку оно располагается ближе всего к днищу поршня. Так как кольца одновременно прижимаются и к поршневым канавкам и к стенке цилиндра, то благодаря им отдается около 50% всего потока тепла от поршня.

2. Благодаря второй «охлаждающей жидкость», роль которой выполняет моторное масло. Поскольку масло подступает к самым нагретым частям двигателя, то именно ему удается унести в картерный поддон очень большое количество тепла с наиболее разогретых точек. Однако, чтобы масло могло охлаждать поршни, оно также должно охлаждаться, иначе его очень скоро придется менять.

3. Тепло проходит через бобышки в палец, в шатун и в масло. Менее эффективный путь, однако, и он играет свою важную роль.

4. Как не странно, но топливо также помогает охлаждаться поршню и двигателю в целом. Так, когда в камеру сгорания поступает свежая смесь из топлива и воздуха, она перетягивает на себя довольно много тепла, хотя потом отдает его в еще больших количествах. Однако, количество смеси и тепла, которое она сможет поглотить, напрямую зависит от режима работы автомобиля и того, насколько открыт дроссель. Преимущество данного пути заключается в том, что смесь поглощает тепло именно с той стороны, с которой поршень больше всего и нагревается.

Однако, мы немного забежали наперед, поскольку начали говорить о функционировании поршня, не разобравшись до конца в конструктивных особенностях данной детали. Этому и посвятим следующий раздел.

3. Конструкция поршня: все, что необходимо знать о детали обычному автолюбителю

Вообще говорить о поршне в одиночку – все равно, что говоря о хлебе, обсуждать только свойства муки. Более логично ознакомиться со всей поршневой группой двигателя, которая представлена такими деталями:

— непосредственно сам поршень;

Поршневые кольца;

Поршневой палец.

Подобная конструкция поршневой группы является неизменной еще с момента появления самых первых двигателей внутреннего сгорания. Поэтому, данное описание будет общим практически для всех двигателей.

Естественно, самые важные функции выполняет поршень, конструкция которого не меняется вот уже как 150 лет. Если Вы не желаете стать профессиональным механиком, то Вам необходимо знать только о таких важных зонах поршня и их функциональных предназначениях:

1. Днище поршня. Поверхность детали, которая непосредственно обращена к камере сгорания двигателя. Своим профилем днище и определяет нижнюю поверхность этой самой камеры. Зависть эта форма может от: формы камеры сгорания, от ее объема, особенностей подачи в нее топливно-воздушной массы, от расположения клапанов. Бывают случаи, когда на днище имеется углубление за счет которого увеличивается объем камеры сгорания. Но, поскольку подобное является не желательным, то для уменьшения объема камеры приходится применять специальные вытеснители – определенный объем металла, расположенный выше плоскости днища.

2. «Жаровой (огневой) пояс». Таким термином обозначается расстояние, которое пролегает от днища поршня до его первого кольца. Важно знать, что чем меньше расстояние от днища до колец, тем более высокая тепловая нагрузка будет попадать на эти самые элементы, и тем сильнее они будут изнашиваться.

3. Уплотняющий участок. Речь идет о канавках, которые располагаются на боковой поверхности цилиндрообразного поршня. Эти канавки являются непосредственным путем установки колец, которые, в свою очередь, обеспечивают подвижность уплотнения. Также, в канавке для маслосъемного кольца обязательно должно быть отверстие, благодаря которому излишки масла могут выводиться во внутреннюю полость поршня.

Еще одна функция уплотняющего участка – отводить часть тепла от поршня двигателя используя для этого, как мы уже упоминали, поршневые кольца. Однако, для эффективного отвода тепла очень важно, чтобы поршневые кольца плотно прилегали как к канавкам, так и к поверхности цилиндра. Так, торцевой зазор первого компрессионного кольца должен составлять о 0,045 до 0,070 миллиметра, для второго – от 0,035 до 0,06 миллиметра, а для маслосъемного – от 0,025 до 0,005 миллиметра. А вот между кольцами и канавками показатель радиального зазора может составлять от 1,2 до 0,3 миллиметра. Но и эти показатели не являются значительными для человеческого глаза, их можно определить только при помощи специального оборудования.

4. Головка поршня. Это обобщенный участок, который включает в себя уже описанные выше днище и уплотняющую часть.

5. Компрессионная высота поршня. Расстояние, которое рассчитывается от оси поршневого пальца до днища поршня.

6. «Юбка». Нижняя часть поршня. Включает в себя бобышки с отверстиями, в которые устанавливается поршневой палец. Внешняя поверхность этого участка является опорной и направляющей поверхностью для поршня. Благодаря ей обеспечивается правильное соотношение оси поршня и оси цилиндра двигателя. Не менее важную роль играет и боковая поверхность «юбки», благодаря которой к цилиндру передаются поперечные усилия, возникающие периодически в поршневой группе двигателя. А специально для того, чтобы улучшить прорабатываемость поверхности юбки и уменьшить трение, она покрывается специальным защитным покрытием из олова (в основе покрытия может также использоваться графит и дисульфид молибдена. Или же вместо покрытия на юбку могут наноситься канавки специального профиля, которые удерживают масло и создают гидродинамическую силу, препятствующую контакту со стенками цилиндра.

Как и из чего: особенности изготовления автомобильных поршней

Понятно, что для выполнения таких функций, которые выполняет поршень, требуется достаточно «выносливый» металл. Однако, это далеко не сталь. Изготавливают поршни из сплавов алюминия, в состав которого всегда добавляют кремний. Делается это для того, чтобы снизить коэффициент расширения под воздействием высоких температур и увеличить стойкость детали к износу.

Однако, для изготовления поршней могут использовать сплав с разным процентом содержания кремний. К примеру, чаще всего для этой цели используют 13%-кремневые сплавы, которые называют эвтектическими. Есть сплавы и с более высоким содержанием кремния, которые называются заэвтектическими. И чем больше показатель этого процента, тем выше теплопроводные характеристики сплава. Но это не делает такой материал идеальным для изготовления поршней.

Дело в том, что при охлаждении такой материал начинает выделять зерна кремния, размерами от 0,5 до 1 миллиметра. Очевидно, что подобный процесс отражается на литейных и механических свойствах как материала, так и детали, которая из него изготовлена. По этой причине, кроме кремния в подобные сплавы вводят и следующий перечень регулирующих добавок:

— марганец;

Как же изготавливается основная часть автомобильного поршня? Существует даже два способа, благодаря котором можно получить заготовку этой детали. Первый из них предполагает заливку горячего сплава в специальную форму под названием «кокиль». Данный способ является наиболее распространенным. Второй же вариант изготовления заготовки – это горячая штамповка. Но после механической обработки формы, будущий поршень также подвергают различным термическим обработкам, что позволяет повысить твердость металла, прочность и стойкость к износам. Также, подобные процедуры позволяют снять остаточное напряжение в металле.

Не смотря на то, что благодаря использованию кованого металла повышается прочность детали, у них есть и свои недостатки. Подобные изделия обычно изготавливаются в классическом варианте с высокой «юбкой», из-за чего они получаются слишком тяжелыми. Также, подобные изделия не позволяют использовать вместе с ними термокомпенсирующие кольца или же пластины. По причине увеличенного веса такого поршня, увеличивается и его тепловая деформация, как следствие – приходится увеличивать размер зазора между поршнем и цилиндром.

Последствия подобного совсем не порадуют водителя, поскольку ими являются повышенный шум работы двигателя, быстрый износ цилиндров и высокий расход масла. Оправдывает себя использование кованых поршней только в тех случаях, если автомобиль регулярно эксплуатируется на самых придельных режимах.

На сегодняшний день конструкторы и физики направляют все усилия на то, чтобы сделать конструкцию поршней как можно более идеальной и точной. В частности, самые главные тенденции направлены на следующий перечень:

— уменьшение веса детали;

Использование на поршне только «тонких» колец;

Уменьшение компрессионной высоты поршня;

Уменьшение поршневых пальцев и использование в конструкции поршня только самых коротких;

Усовершенствование защитных покрытий и применение их по всех поверхностях детали.

Подобные достижение сегодня можно увидеть на Т-образной конструкции поршней последнего поколения. называют данную конструкцию Т-образной именно благодаря внешнему сходству детали с буквой «Т». Главное отличие таких поршней – уменьшенная высота юбки и площадь ее направляющей части. Изготавливаются такие поршни из заэвтектического сплава, который содержит в себе достаточно большое количество кремния. А изготавливаются они преимущественно путем горячей штамповки.

Однако, какую именно конструкцию поршня двигателя захотят поставить на автомобиль его разработчики будет зависеть от многих факторов. Такому решению всегда предшествует длительный период подсчетов и анализа поведения всех узлов шатунно-поршневой группы под влиянием новой детали. Расчет всех деталей проводится на их самых предельных возможностях их конструкций и тех материалов, из которых они изготовлены. Однако, как это ни печально, но в этом случае производитель не будет переплачивать. Он выберет тот вариант, который как раз «в пору» обеспечивает необходимый ресурс, и не будет тратиться на его повышение.

Как бы там ни было, но обычным автомобилисту приходится разбираться и эксплуатировать то, что уже было установлено на его автомобиль. Надеемся, что наша статья помогла Вам лучше узнать о том, каким образом функционирует и в чем заключается назначение поршней. Желаем Вам, чтобы с этой деталью у Вас никогда не возникало проблем, для чего необходимо обеспечивать ей правильные условия эксплуатации – слишком не «гонять» и вовремя менять моторное масло.

Подписывайтесь на наши ленты в

В кривошипно-шатунном механизме поршень выполняет несколько функций, среди которых восприятие давления газов и передача усилий на шатун, герметизация камеры сгорания и отвод от нее тепла. Поршень является наиболее характерной деталью двигателя внутреннего сгорания , т.к. именно с его помощью реализуется термодинамический процесс двигателя.

Условия, в которых работает поршень, экстремальны и характеризуются высоким давлением, температурой и инерционными нагрузками. Поэтому поршни на современных двигателях изготавливаются из легкого, прочного и термостойкого материала – алюминиевого сплава, реже из стали. Поршни изготавливаются двумя способами – литьем под давлением или штамповкой, т.н. кованые поршни.

Поршень цельный конструктивный элемент, который условно разделяют на головку (в некоторых источниках ее называют днище) и юбку. Форма и конструкция поршня в значительной степени определяются типом двигателя, формой камеры сгорания и процессом сгорания, протекающим в ней. Поршень бензинового двигателя имеет плоскую или близкую к плоской поверхность головки. В ней могут быть выполнены канавки для полного открытия клапанов. Поршни двигателей с непосредственным впрыском топлива имеют более сложную форму. В головке поршня дизельного двигателя выполняется камера сгорания определенной формы, которая обеспечивает хорошее завихрение и улучшает смесеобразование.

Ниже головки поршня выполняются канавки для установки поршневых колец. Юбка поршня имеет конусообразную или криволинейную (бочкообразную ) форму. Такая форма юбки компенсирует температурное расширение поршня при нагреве. При достижении рабочей температуры двигателя поршень принимает цилиндрическую форму. Для снижения потерь на трение на боковую поверхность поршня наносится слой антифрикционного материала (дисульфид молибдена, графит ). В юбке поршня выполнены отверстия с приливами (бобышки ) для крепления поршневого пальца.

Охлаждение поршня осуществляется со стороны внутренней поверхности различными способами:

  1. масляный туман в цилиндре;
  2. разбрызгивание масла через отверстие в шатуне;
  3. разбрызгивание масла специальной форсункой;
  4. впрыскивание масла в специальный кольцевой канал в зоне колец;
  5. циркуляция масла по трубчатому змеевику в головке поршня.

Поршневые кольца образуют плотное соединение поршня со стенками цилиндра. Они изготавливаются из модифицированного чугуна. Поршневые кольца основной источник трения в двигателе внутреннего сгорания. Потери на трение в кольцах достигают до 25% всех механических потерь в двигателе.

Число и расположение колец зависит от типа и назначения двигателя. Самая распространенная схема – два компрессионных и одно маслосъемное кольцо. Компрессионные кольца препятствуют прорыву газов из камеры сгорания в картер двигателя. Первое компрессионное кольцо работает в наиболее тяжелых условиях. Поэтому на поршнях дизельных и ряда форсированных бензиновых двигателей в канавке кольца устанавливается стальная вставка, повышающая прочность и позволяющая реализовать максимальную степень сжатия. Компрессионные кольца могут иметь трапециевидную, бочкообразную, коническую форму, некоторые выполняются с порезом (вырезом).

Маслосъемное кольцо удаляет излишки масла с поверхности цилиндра и препятствует попаданию масла в камеру сгорания. Кольцо имеет множество дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

Соединение поршня с шатуном осуществляется с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Имеется несколько способ установки поршневого пальца. Самый популярный т.н. плавающий палец , который имеет возможность проворачиваться в бобышках и поршневой головке шатуна во время работы. Для предотвращения смещения пальца он фиксируется стопорными кольцами. Значительно реже применяется жесткое закрепление концов пальца в поршне или жесткое закрепление пальца в поршневой головке шатуна.

Поршень, поршневые кольца и поршневой палец носят устоявшееся название поршневая группа.

Думаю, любой автомобилист, скорее всего знает как выглядит поршень. Но на этом, как правило, познания о главной детали двигателя и заканчиваются. Поэтому восполним пробел и поговорим о назначении поршня, его конструктивных особенностях и материалах для изготовления.

Как выглядит поршень? Сложная деталь. Это подтверждает такой факт – очень мало автомобилестроителей сами изготавливают поршни, поручая это специализированным производителям.

А еще – это главное звено в процессе превращения химической энергии топлива в тепловую, а затем в механическую.

Поршень, я бы сказал, это красивая деталь цилиндрической формы, она выполняет умопомрачительные возвратно-поступательные движения в цилиндре, принимает на себя высокие температуры и изменения давления газа, превращая все это в механическую работу.

То есть, вот какою работу выполняет поршень:

  • принимает на себя давление газов из камеры сгорания и передает это давление на коленчатый вал двигателя;
  • обеспечивает жесткий процесс микровзрывов в цилиндре, при этом герметично изолируя надпоршневую полость от подпоршневого пространства, предохраняя от попадания газов в кратер, а смазочного масла в камеру сгорания.

Как выглядит поршень. Конструкция

Схема подготовлена по материалам Volkswagen AG

  1. головка поршня;
  2. палец;
  3. стопорное кольцо;
  4. бобышки;
  5. головка шатуна;
  6. юбка; вставка стальная;
  7. трапециевидноекомпрессионное кольцо;
  8. коническое с подрезом компрессионное кольцо;
  9. маслосъемное кольцо с пружинным расширителем

Поршень состоит из днища, уплотняющей части с поршневыми кольцами для создания компрессии и удаления масла, и направляющей части (юбки).

В средней части поршня (зона юбки) находятся бобышки с отверстиями для пальца и стопорных колец.

Рабочее днище

Знаете как выглядит поршень и как называется эта часть? Эта часть детали служит для приема усилия от давления газов в камере сгорания и называется рабочее днище . Ее форма зависит от геометрии этой камеры и размещения клапанов.

В случае, когда днище вогнутое, форма камеры сгорания напоминает сферическую. Это увеличивает ее поверхность, но ведет к возрастанию образования нагара, а прочность вогнутого днища ниже, чем плоского.

Выпуклое днище делает камеру сгорания щелевидной формы, что приводит к ухудшению процесса завихрения смеси и охлаждения самого днища, хотя нагарообразование снижается.

Кроме того, такая форма днища уменьшает массу поршня при достаточной прочности.

Плоское днище по своим показателям промежуточный вариант между двумя предыдущими и чаще используется в карбюраторных двигателях.

В дизельных моторах разнообразие форм днищ еще больше, они изменяются в зависимости от степени сжатия, метода образования смеси, расположения форсунок и многих других факторов.

Уплотнительный сектор

Головка поршня герметизирует подвижное соединение поршня с цилиндром за счёт поршневых колец, которые установлены в специальных канавках. В верхних канавках вставлены компрессионные кольца, а в нижней – маслосъёмное кольцо. В канавке для маслосъёмного кольца есть сквозные отверстия, через них происходит отвод излишков масла во внутреннюю полость поршня.

Направляющая юбка, бобышки

Участок поршня, расположенный ниже маслосъемного кольца, называют юбкой поршня, а еще тронковой или направляющей частью.

Ее функция – удержание поршня в нужном направлении и восприятие боковых нагрузок.

С внутренней стороны на юбке есть приливы – бобышки, в них просверлены отверстия для поршневого пальца. А для его фиксации в отверстиях проточены канавки, для запирания пальца стопорными кольцами.

Что скажут металурги

Так как деталь работает в невыносимых условиях, то к металлам, для его изготовления, предъявляются достаточно жесткие требования:

  • для уменьшения инерционных нагрузок у материала должен бить малый удельный вес при достаточной прочности;
  • малый коэффициент температурного расширения;
  • сохранение физических свойств (прочность) при повышенных температурах;
  • значительная теплопроводность и теплоёмкость;
  • минимальный коэффициент трения в паре с материалом стенки цилиндра;
  • значительная сопротивляемость износу;
  • отсутствие усталостного разрушения материала под воздействием нагрузок;
  • низкая цена, общедоступность и легкость механической и других видов обработки в процессе производства.

Понятно, что металла, полностью соответствующего перечисленным требованиям, просто не существует. Поэтому для массовых автомобильных двигателей поршни изготавливаются в основном из двух материалов – чугуна и сплавов алюминия, а если быть точным, то из силуминовых сплавов, содержащих алюминий и кремний.

Чугунный вариант

У чугуна много плюсов, он твёрд, хорошо переносит повышенные температуры, отличается оптимальной сопротивляемостью к износу, имеет низкий коэффициент трения (пара чугун – чугун). И коэффициент температурного расширения у него ниже чем у алюминиевого поршня.

Но есть и недостатки: низкая теплопроводность, из-за чего температура днища у чугунного поршня больше чем у алюминиевого аналога.

Но основной недостаток чугуна ‒ значительная плотность, а значит вес. Для увеличения мощности и эффективности двигателя конструкторы обычно повышают обороты, но тяжелые чугунные поршни не позволяют это делать по причине высоких инерционных нагрузок.

Поэтому для современных автомобильных двигателей, как бензиновых, так и дизельных, отливают алюминиевые поршни.

Алюминиевый вариант

Алюминий имеет значительно меньший вес нежели чугун, но так как он мягче, толщину стенок поршня приходится увеличивать, в результате вес поршня становится легче всего лишь на 30 – 40 процентов по отношению к чугунному.

Коме того у алюминия повышенный температурный коэффициент расширения, поэтому в тело детали приходится вплавлять термостабилизирующие пластины из стали, и делать увеличенные зазоры.

У алюминия довольно малый коэффициент трения (пара: алюминий – чугун), что хорошо для работы алюминиевых поршней в двигателях с чугунным блоком цилиндров или чугунными гильзами.

На современных двигателях немецких марок – Ауди, Фольксваген, Мерседес нет чугунных гильз. Алюминиевые цилиндры там обработаны специальным способом, так что поверхность стенок получается очень твёрдая и имеет сопротивление износу даже выше чем при установке чугунных гильз.

А чтобы уменьшить трение в паре алюминий – алюминий, проводится железнение поверхности юбки. Таким образом отказ от чугунных гильз намного снижает вес блока цилиндров.

В кремнеалюминиевые сплавы, из которых делают поршни основной массы автомобильных двигателей, для улучшения показателей добавляют медь, никель и другие металлы.

Поршни серийных автомобилей производятся методом литья, а на форсированных двигателях применяют изделия, изготовленные методом горячей штамповки. Это улучшает структуру материала ‒ увеличивается прочность и устойчивость к износу. Правда, в штампованный вариант невозможно вмонтировать стальные терморегулирующие пластины.

Вот пожалуй и всё. Вами получен необходимый минимум знаний, как выглядит поршень, его конструкции и условиях работы.

Осталось поделится этой информацией с друзьями в соц.сетях, пригласить их на рюмочку чая и в домашней, непринужденной обстановке пригласить их пополнить ряды читателей нашего блога.

А еще вам будет интересно знать про и . Дерзайте, жмите на ссылку!

До новых встреч, друзья!

Поршень является одним из самых значимых элементов при преобразовании химической энергии топлива в тепловую, а затем — в механическую, как в прямом, так и в переносном смысле. Моторные характеристики во многом зависят от того, насколько хорошо поршень выполняет свои задачи. Это определяет эффективность и, что ещё важнее, надёжность мотора. Особое значение данный параметр принимает, когда идёт речь о модификациях автомобилей в салонах тюнинга, или о спортивном применении. Конструкторы всегда сталкиваются с проблемой использования специальных поршней , когда повышается мощность. Поршень можно считать одной из самых сложных моторных деталей из-за множества выполняемых функций и достаточно противоречивых свойств. Это в высшей степени подтверждает тот факт, что очень мало автостроителей изготавливают поршни для своих моторов, используя лишь свои силы.

В большинстве случаев они прибегают к услугам специализирующихся на этом деле фирм. О поршнях ходит огромное количество тайн и догадок, которые создаёт разнообразие размеров и форм этой детали. В соответствующем разделе нашего сайта вы сможете найти статью . Изготовить поршень в стандартных условиях машиностроения в тюнинговых компаниях технически сложно, практически невозможно, поэтому большинство компаний этим делом отказывается заниматься. К тому же, производство таких сложных деталей поштучно может быть обременительно с точки зрения финансов. Интуитивно тюнеры понимают, что улучшенные двигатели должны иметь улучшенные поршни.

Устройство поршней

Давайте рассмотрим подробнее, какие к поршням обычно предъявляются требования, и как вообще они устроены.

  • Поршень, во-первых, перемещается в цилиндре, что позволяет совершать механическую работу путём расширения продуктов горения топлива, то есть, сжатых газов

Из этого можно сделать вывод, что он должен сопротивляться давлению газов, обладать термостойкостью и уплотнять канал цилиндра.

  • Во-вторых, поршень должен соответствовать требованиям пары трения, чтобы механические потери и износ стали минимальными.
  • В-третьих, он должен выдерживать реакцию шатуна и механическое воздействие со стороны камеры сгорания.
  • В-четвёртых, поршень должен минимально нагружать инерционными силами криво-шатунный механизм, совершая с высокой скоростью возвратно-подступательные движения.

Получается, что все проблемы, связанные с этой значимой частью двигателя, разделить можно на две категории:

  1. Это механические процессы
  2. Тепловые процессы, причём первая намного обширнее второй. Категории имеют достаточно тесную взаимосвязь. Давайте более подробно рассмотрим первую.

Как известно, топливо сгорает в непоршневом пространстве, и при этом выделяет очень большое количество тепла при каждом цикле работы двигателя. Температура уже сгоревших газов в среднем равна 2000 градусов. Часть энергии перейдёт движущимся частям мотора, а остальная станет нагревать двигатель. Энергия, которая останется в итоге, улетит в трубу вместе с обработанными газами. По законам физики два тела могут передавать друг другу тепло до того момента, пока их температуры полностью не сравняются. Соответственно, если поршень периодически не охлаждать, спустя некоторое время он просто-напросто расплавится. Это очень значимый момент для понимания принципов работы всей поршневой группы.

Особенно это важно тогда, когда мотор форсируется. При увеличении мощности мотора автоматически увеличивается количество генерируемого в камере сгорания тепла за одну временную единицу. Конечно, мы видим очень даже нечасто поршни в расплавленном, однако в любой их проблеме обязательно есть упоминается температура, точно также как скорость присутствует в любом ДТП. Конечно, вина здесь лежит на водителе, однако никто бы не пострадал, если бы автомобиль стоял на месте. Дело в том, что высокие температуры ухудшают характеристики всех материалов. Нагрузка в 100 градусов вызовет упругую деформацию, в 300 градусов — деформирует изделие полностью, а в 450 градусов деформирует её. По этой причине нужно либо применять материалы, которые могут выдержать серьёзные нагрузки от высоких температур, либо принимать меры, предотвращающие рост температуры поршня. Обычно делается и то, и другое. Тем не менее, конструкция поршня должна быть такой, чтобы в необходимых местах было определённое количество металла, который способен противостоять разрушению.

Курс общей физики подтверждает тот факт, что тепловой поток направлен к менее нагретым телам от более нагретых. Таким образом, у нас есть возможность увидеть, как температуры распределяются по поршню во время его работы, и определить значимые конструктивные моменты, которые влияют на его температуру, другими словами, понять, каким образом происходит охлаждение. Мы знаем, что больше всех деталей нагревается рабочее тело, то есть, газы в камере сгорания. Совершенно ясно, что в конце концов тепло окажется передано воздуху, который окружает автомобиль — самому холодному, но при определённых обстоятельствах бесконечно теплоёмкому. Омывая корпус двигателя и радиатор, воздух студит блок цилиндров, охлаждающую жидкость и корпус головки. Нам остаётся только найти мостик, по которому поршень отдаёт своё тепло в антифриз и блок . Для этого существую четыре пути. По своему вкладу они абсолютно разные, однако нужно упомянуть о каждом из них, так как они имеют меньшее или большее значение в зависимости от конструкции двигателя.

Первый путь

Это поршневые кольца, он обеспечивает наибольший поток. Так как первое кольцо расположено ближе к днищу, именно оно играет главную роль. Эта самый короткий путь к охлаждающей жидкости через стенку цилиндра. Одновременно кольца прижаты к стенкам цилиндра и к поршневым канавкам. Они обеспечивают более половины всего теплового потока.

Второй путь

Не так очевиден, однако недооценить его трудно. Второй жидкостью для охлаждения двигателя является масло. Несмотря на свою слабую циркуляцию и относительно небольшой объём, масляный туман имеет доступ к самым нагретым частям мотора. Он от самых горячих точек уносит с собой значительную часть тепла, и отдаёт его в поддон картера. В данном разделе нашего сайта вы сможете найти статью про . При применении масляных форсунок, которые направляют струю на внутреннюю поверхность днища поршня, в теплообмене доля масла нередко достигает 30 — 40 процентов. Разумеется, что если мы нагружаем масло больше степени функции теплоносителя, его необходимо будет остудить. Перегретое масло не только потеряет свои свойства, но так же ещё может привести к неисправности подшипников. И чем выше будет температура масло, тем меньше оно сможет перенести через себя тепла.

Третий путь

Через большие бобышки в палец, потом в шатун, и уже затем в масло. Этот способ не так интересен, ведь на пути имеются значительные тепловые сопротивления в виде стальных деталей и зазоров, которые обладают невысоким коэффициентом сопротивления и значительной протяжённостью.

Четвёртый путь

Не связан с охлаждающей жидкостью или маслом. Часть тепла забирает поступившая в цилиндр после такта впуска свежая топливовоздушная смесь. Количество тепла, которое заберёт эта смесь, зависит от степени открытия дросселя и режима работы. Следует отметить, что тепло, которое образуется при сгорании, также пропорционально заряду. Можно сказать, что данный путь охлаждения отличается скоротечностью, обладает импульсным характером, высокоэффективен, пропорционален последующему нагреванию, благодаря тому факту, что тепло отбирается с той же стороны, с которой нагревается поршень.

Также следует рассказать про стандартный приём, который применяется при настройке моторов спортивного типа. Дело в том, что теплоёмкость смеси в значительной степени определяется её составом. Нередко для нормализации работы мотора нужно совсем немного, на 5 — 10 градусов, снизить внутреннюю температуру. Достигается это при помощи лёгкого забогащения смеси. Причём, данный факт никаким образом не влияет на процесс горения, а температура понижается. Порог детонации отодвигается, калильное зажигание исчезает. В данном случае будет лучше немного богаче, чем немного беднее. Моторы, которые работают на метаноле намного меньше предъявляют требований к системе охлаждения из-за теплоты преобразования, которая в 3 раза больше, чем у бензина.

Следует уделить пристальное внимание процессу передачи тепла по поршневым кольцам по причине его большей значимости. Совершенно ясно, что если перекрыть этот путь по каким либо причинам, длительных форсированных режимов двигатель уже не выдержит. Температура станет очень высокой, поршень начнёт плавиться, а двигатель разрушится. Теперь давайте вспомним о такой характеристики, как процессия, которая, казалось бы, никак не влияет на теплообмен. Если человек сталкивался с подержанным автомобилем, он должен чётко представлять себе, что это такое. Это очень значимый параметр, о котором желает знать любой автовладелец, который заботится о состоянии двигателя своего автомобиля. Компрессия косвенно указывает на степень плотности поршневой группы. Это очень важный параметр, если рассматривать его с точки зрения теплопередачи.

Давайте представим ситуацию, что кольцо к стенке цилиндра не прилегает по всей своей длине. В этом случае сгоревшие газы создадут барьер, который будет мешать передаче тепла через кольцо в стенку цилиндра, начиная от поршня, когда будут прорываться в щель. Это равносильно тому, что вы закроете часть радиатора автомобиля, чтобы у него не было возможности охладиться воздухом.

Если у кольца нет тесного контакта с канавкой, мы будем наблюдать ещё более страшную картину. В тех местах, где у газов есть возможность протекать через канавку мимо кольца, участок поршня просто лишается возможности охлаждаться, попадая в своеобразный тепловой мешок. В результате получаем выкрашивание и прогар части огневого пояса, которая прилегает к месту утечки. Именно по этой причине так много внимания уделяется износу канавки и геометрии цилиндра кольца. И главная причина вовсе не ухудшение энергетики. Ведь небольшое количество газов, которые прорываются в картер, не несёт в себе достаточной энергии, чтобы оказать влияние на потерю давления в такте рабочего хода и, соответственно, на потерю двигателем момента. Тем более, если речь идёт о высокооборотном моторе. Намного больше вреда двигателю наносит небольшая плотность в смысле потери надёжности и жёсткости и локальных тепловых перегрузок. Именно по этой причине очень быстро ломаются восстановленные методом перегильзовки блока или замены колец поршни, которые уже вышли из строя. Именно поэтому в первую очередь у спортивных моторов разрушается цилиндр, который имеет меньшую компрессию.

Здесь, видимо, следует коснуться вопроса, обязательно обсуждаемого при изготовлении специальных поршней для тюнинговых или спортивных приложений. Сколько именно у нового поршня будет колец? Какой толщины будут эти кольца? С точки зрения механики лучше, когда колец немного. Чем уже они будут, тем меньше будет потерь в поршневой группе. Однако при уменьшении толщины и высоты колец, будут ухудшаться условия охлаждения поршня, и увеличиваться тепловое сопротивление. Поэтому при выборе конструкции всегда приходится идти на компромисс. Жёсткость рамок увеличивается с быстроходностью мотора. В данном разделе нашего сайта вы сможете найти статью про . Скоротечность процессов снижает требования к уплотнению. Механические потери растут вместе со скоростью, и их нужно уменьшать, иначе всё, что преобразовалось ранее в механическую мощность, просто не достигнет колёс. Между тем, количество вырабатываемого тепла становится больше, поэтому охлаждающий мостик должен быть расширен. Из этого получаем, что кольца должны быть как узкими, так и широкими. Для быстроходности их нужно два, а для эффективности охлаждения поршня — три. Найти оптимальное решение этой задачи должен конструктор. Результаты его работы покажет сбалансированность двигателя.

На сегодняшний день инженеры, которые работают в крупных научных центрах и производственных компаниях, имеют огромный эмпирический материал, на основе которого создают расчётные методы, позволяющие предсказать поле характеристик и температур конкретного изделия с очень большой точностью. Это доступно очень и очень немногим тюнинговым компаниям. В этой статье специально не упоминаются многие значения конкретных величин, которые бы побудили бы некоторых читателей взять в руки калькуляторы. Делать же тепловые расчёты на пальцах совсем не перспективное и абсолютно никому не нужное занятие. Эта статья раскрывает ту сторону происходящих в двигателе процессов, которая очень редко рассматривается, но всегда подразумевается. Я лишь хотел раскрыть необходимость и важность влияния тепла на общую эффективность работы двигателя. Что касается механической части этого вопроса, то о нём мы подробно поговорим в следующий раз.

Днища поршней — Энциклопедия по машиностроению XXL

Предельные отклонения размеров здесь даются исходя из технических условий на компрессор. К таким размерам относятся размер 30 0,1 — о1 днища поршня до оси отверстия под палец, размер 98 0,75 —длина шатуна, размер 26 0,7 —плечо кривошипа.  [c.97]

Размер 30 0,1 означает, что наибольший допустимый размер будет 30+0,1= 30,1 мм, а наименьший —iO —0,7 =29,9 мм. Контролер признает детали годными, если размер от днища поршня до оси отверстия окажется не больше 30,1 мм и не меньше 29,9 мм.  [c.97]


При опоре днища поршня непосредственно на головку шатуна 5 или на поршневой палец через вырез в головке шатуна 6 днище н поршневой палец полностью разгружены от изгиба.  [c.564]

Примером может служить клапан двигателя внутреннего сгорания (рис. 53, а). При поломке клапанной пружины клапан провисает в направляющей втулке и начинает ударяться в днище поршня. Если к тому же выходят из своих гнезд конические сухари 1 крепления клапанной тарелки, то клапан проваливается в цилиндр. Тогда неизбежна серьезная авария в результате упора штока клапана в потолок камеры сгорания.  [c.48]

Алитирование применяется при изготовлении тиглей для закаливания и цементации, печей для отжига, работающих при температурах до 950°С, труб и деталей рекуператоров, нагревателей, труб для дымовых газов, днищ поршней для двигателей внутреннего сгорания, тиглей, реторт, реакторов для плавления цинка и пр.  [c.107]

Черновая обработка наружной цилиндрической поверхности головки, юбки и днища поршня на шести-или восьмипозиционных агрегатных станках с поворотным столом без вращения деталей предопределяет получение разностенности стенки юбки не менее 0,4 мм. В этом отношении целесообразно осуществлять черновую обработку на станках с вращением детали, что может снизить разностен-ность до 0,1—0,15 мм.  [c.136]

Яд—диаметр выточки в днище поршня в лиг, а — глубина выточки в мм  [c.404]

На верхнем конце штока нарезают резьбу под гайку, препятствующую выпадению штока из направляющей. Направляющую вместе со штоком устанавливают взамен форсунки, фланец направляющей закрепляют, а шток опускают так, чтобы нижний конец его уперся в днище поршня. Проворачивая двигатель, отмечают на штоке в.м.т. и н.м.т. На длине между этими двумя отметками, равной ходу поршня, наносят, по данным завода, все фазы распределения в процентах хода поршня, затем шток устанавливают на место, и, проворачивая вал двигателя, проверяют фазы распределения.  [c.406]

Кольца из маслостойкой резины вводят в канавки посредством монтажных конусов, устанавливаемых на днище поршня. Чугунные поршневые кольца перед постановкой в канавки разводят специальными щипцами (см. стр. 398). Развод этих колец во избежание перенапряжения материала должен быть строго ограничен.  [c.497]

Толщина днища поршней  [c.62]

Минимальные значения S имеют стальные поршни и поршни с рёбрами в днище. В современных карбюраторных двигателях и почти как правило в двигателях Дизеля днище поршня обычно имеет рёбра жёсткости. Для первых при наличии рёбер на  [c.116]

Материал Напряжения в кг см в днищах поршней  [c.117]

Двигатели Длина поршня Н Длина трущейся части L Расстояние от днища поршня до оси пальца h  [c.117]


Напряжения в днище поршней современных двигателей, подсчитанные по формуле (23), приведены в табл. 17.  [c.117]

Напряжения в днище поршней современных двигателей, подсчитанные по формуле (23)  [c.117]

Днище поршня для большей жёсткости обычно снабжается рёбрами, связывающими днище с бобышками.  [c.155]

Поршень штампованный из дуралюмина. Очертание днища поршня обеспечивает эффективное смесеобразование.  [c.198]

Шатун из хромистой стали. В нижней головке шатуна монтируются тонкостенные стальные вкладыши с заливкой из свинцовистой бронзы. В верхней головке запрессованы две втулки из оловянистой бронзы. Верхняя головка шатуна имеет специальную форсунку 7 с четырьмя отверстиями, служащими для подачи масла на днище поршня с целью его охлаждения. Для подвода масла к форсунке в теле шатуна высверлен канал, закрытый снизу пробкой с калиброванным отверстием, дозирующим расход масла.  [c.202]

Поршень литой, из ковкого чугуна. Толщина стенок и днища поршня необычно тонкая с точки зрения теоретического представления о тепловом потоке от днища к стенкам, что объясняется интенсивным принудительным охлаждением поршня маслом.  [c.202]

Предкамера имеет две полости, сообщающиеся друг с другом при помощи горловины 4, имеющей форму диффузора. Распылитель предкамеры имеет прорезь, через которую направляется поток смеси газов и распылённого топлива плоским веером в камеру сгорания, размещённую в днище поршня. Форма камеры сгорания в поршне соответствует форме веера смеси, вырывающейся из предкамеры.  [c.209]

Если тормозная колодка воспринимает усилие непосредственно от кулачка, то соответствующий её конец имеет опорную площадку. Для уменьшения износа опорных площадок их снабжают часто специальными стальными пластинами. В сварных колодках, выполненных из листовой стали, между колодкой и кулачком предусматривается ролик. Если тормозная колодка воспринимает усилие от поршня колёсного гидравлического тормозного цилиндра, то на её конце предусматривают выступ, упирающийся в днище поршня (фиг. 148, а). Иногда между поршнем и тормозной колодкой вводится шток (фиг. 148, б).  [c.126]

Величина износа поршневых колец определяется удаленностью их от днища поршня. Максимальный износ по высоте и радиальной толщине наблюдается на компрессионных кольцах, износ маслосъемных колец в 10—18 раз меньше износа компрессионных колец. Износ канавок для колец в поршне зависит от износа нижней части III и IV пояс) гильзы, большему износу гильзы в III поясе соответствует больший износ кольцевых канавок. Эти наблюдения позволяют  [c.61]

Начало координат совместим с плоскостью днища поршня в начальный момент времени (-с = 0) и направим ось jf в сторону свободного конца трубы, расположенного на бесконечности. К началу перемещения поршня пар, заполняющий трубу, неподвижен.  [c.265]

Пар, соприкасающийся с поверхностью днища поршня, движется с такой же скоростью, с какой перемещается поршень, т. е. при X = — б-с /2 скорость w = и = — 6-с. Подставим значения w х ъ (8-20) будем иметь  [c.266]

Уравнение (8-22) описывает распределение скоростей в области между днищем поршня и передним фронтом волны разрежения при безотрывном течении. Иными словами, уравнением охватывается отрезок времени от начала движения ( I = 0) и до момента, когда скорость поршня достигнет предельного значения, выражаемого формулой  [c.266]

Свободный водород реагирует с кислородом значительно быстрее и активнее, нежели углерод. Существование таких реакций наглядно подтверждается тем, что при впрыске воды во всасывающий коллектор двигателей внутреннего сгорания, как указывалось ранее, нагара и сажи на днище поршня, в головке цилиндра и на выхлопном патрубке, как правило, не обнаруживается.  [c.253]

Уменьшение коэффициента теплоотдачи от поршня к охлаждающему маслу на 35% при постоянной температуре по сравнению с рассчитанным (а , = 550 ккал/м -час-град) увеличивает максимальную температуру днища поршня на 3—4%, а верхнего поршневого кольца на 2—-2,5%.  [c.451]

Пример последовательного упрочнения шатунно-поршневого сочленения приведен на рнс. 409. В конструкции 1 днище поршня, поршневые бобышкн н поршневой палец подвергаются изгибу действием газовых сил. Соединение бобышек с днищем ребрами 2 или сплошными перемычками 3 резко уменьшает пзгнб. Для увеличения жесткости н прочности днищу придают сферическую вогнутую форму 4.  [c.564]


Качество горелочных устройств во многом определяется процессом смесеподготовки, т.е. смешением горючего и окислителя, конечная цель которого — создание гомогенной смеси компонентов топлива [34—40, 62, 63, 106, 141, 144, 245]. Для этого в камерах сгорания, горелочных устройствах широко используют криволинейные линии тока, закрутку потока и другие способы образования течения с интенсивной завихренностью [62, 106]. Примером может служить камера сгорания поршневого двигателя со стратифицированным зарядом (рис. 1.9). Закрутка поступающего воздуха и всасывающе-выталкивающее движение смеси, так называемое хлюпание, возникающее из-за выемки в днище поршня, позволяют решить две проблемы снизить эмиссию загрязняющих веществ и повысить КПД. Эти же моменты используются и для организации хорошей смесеподготовки в двигателях, работающих по циклу Дизеля. Закрутку потока используют  [c.29]

В двигателях внутреннего сгорания (ДВС) топливо и необходимый для его сгорания воздух вводятся в объем 7ш-линдра двитателя, ограниченный днищем крышки 5, стенками 2 цилиндра и днищем поршня 6 (рис. 5 1). Образующиеся при сгорании топлива высокотемпературные газы оказывают давление на поршень 6 и перемещают его. Поступательное движение поршня через шатун 7 передается установленному в картере коленчатому валу 8 и, таким образом, преобразуется во вращательное движе-  [c.220]

По способу смесеобразования бескомпрессорные дизели делятся на двигатели со струйным смесеобразованием (рис. 74, а), двигатели с предкамерой (рис. 74,6) и Гс вихревой камерой (рис. 74, б). В двигателях со струйным смесеобразованием топливо впрыскивается непосредственно в камеру сгорания. В этих двигателях скорость движения воздуха в камере сжатия мала, поэтому для хорошего перемешивания топлива с воздухом впрыск его производится под большим давлением (300—400 бар, а в отдельных случаях до 1400 бар). Для улучшения смесеобразования днища поршней этих двигателей изготовляют фигурными, приспособленными к форме струи топлива, выбрасываемой форсункой. Для улучшения распыливания топлива форсунка имеет несколько отверстий (3—9). Чем больше отверстий, тем лучше распространяется топливо по камере сгорания. При данном способе смесеобразования стремятся к тому, чтобы впрыснутое топливо не попадало на стенки камеры сгорания, так как попадание топлива на стенки, температура которых ниже 200 или 400° С, затрудняет смесеобразование, ведет к повышенному нагарообра-зованию и ухудшает показатели работы дизеля. Компактность неразделенных камер сгорания и малые удельные поверхности теплоотдачи обусловливают минимальные тепловые потери, поэтому преимуш,еством дизелей с неразделенной камерой сгорания являются высокие экономические показатели и более легкий пуск, чем у дизеля с разделенными камерами.  [c.171]

При поступлепип жидкости в цилиндр 1, выполненный заодно с крышкой, поршень 2 перемещается, сжимая пружины 3 я 4, одни концы которых опираются на днище поршня, а другие — на тарелку 5, упирающуюся в стойку. При сжатии пружин аккумулируется энергия, которая может быть использована при падении давления в системе. При поднятии давления свыше установленного жидкость удаляется через радиальные отверстия, просверленные в цилиндре (на рисунке не показаны) и открывающиеся при определенном перемещении поршня.  [c.346]

Точность измерения силы в ПС позволяет судить о действующих на образец нагрузках по давлению в цилиндре и использовать уплотненные пары. В качестве уплотнений применяют кожаные, резиновые, полимерные манжеты U-образной формы, установленные в расточке цилиндра, или Г-образной формы, установленные на днище поршня. Применяют уплотнительные резиновые кольца и комбинированные резинофторопластовые уплотнения. С совершенствованием технологии изготовления прецизионных цилиндров широкое распространение получают неуплотненные цилиндры с малыми зазорами (0,03— 0,05 мм в зависимости от диаметра).  [c.60]

В дизелях с неразделёнными камерами сгорания пространство сгорания представляет единый объём, ограниченный днищем поршня и поверхностью головки, в котором производится основной рабочий процесс распыла. К неразделённым камерам могут быть также отнесены все те конструкции камер, в которых хотя и имеет место разобщение пространства сжатия на два объёма, однако большое проходное сечение между ними не вызывает значительных гидравлических потерь.  [c.245]

Во время проведения опытов на дизеле 1ЧА постоянно контролировалось состояние топливной аппаратуры и системы подачи эмульсии к дизелю. В течение этого времени (380 ч) топливная аппаратура дизеля работала нормально. Следов подтекания, коррозии, а также зависания иглы форсунки обнаружено не было. Разборка дизеля показала, что нага-рообразование на днище поршня и на цилиндровой крышке было незначительным нагар был сероватого оттенка и легко снимался при очистке.  [c.252]

I — станина-картер 2 — корениыа подшипники, снаб-женные цельными вкладышами с заливкой баббитом 3 — коленчатый вал 4 -противовесы 5 — шатун 6 — поршень 7 — уплотняющие поршневые кольца S — маслосъемное коль цо 9 — прилив к днищ поршня (козырек) 10 — поршневой палец U -рабочий цилиндр J2 — продувочные окна цилиндра 13 — канал продувочного воздуха М — выхлопные окна 15 — водо-капельник 16 — крышка цилиндра J7 — калоризатор ]8 — калильная лампа 19 — форсунка 20 — топливный насос 21 — профилированная кулачная шайба 22 — центробежный регулятор >23 — центробежный водяной насос 24 — винтовые шестерни. передающие движение водяному касосу 2Ь— топливный расходный бак 26 — глушнт11ль, помещенный под топливным баком, с помощью которого достигается подогре тяжелого топлива 27 — маховичок для регулирования подогрева топлива  [c.301]


Фундаментная рама, блок цилиндров и стойки изготовлены из чугуна. Чугунные поршни двигателя соединены с коленчатым валом шатунами 7 вкладыши 6 ниж1них головок шатуна залиты баббитом. Нижняя головка скрепляется двумя стальными шатунными болтами. Верхняя не разъемная головка шатуна надевается на поршневой палец 10, проходящий через залитый баббитом вкладыш. Каждый из чугунных поршней снабжен шестью уплотняющими поршневыми кольцами II. Вогнутое днище поршня служит для образования камеры сжатия. В крышках цилиндров расположены впускной клапан 13, выпускной И, форсунка 15 и предохранительный клапан 16, автоматически открывающийся при резких повышениях давления.  [c.315]

В двигателях с неразделёнными камерами сгорания объём камер ограничивается днищем поршня и поверхностью цилиндровой крышки. К неразделённым камерам относятся также две камеры, связанные между собой большими проходными сечениями, не вызываюш,ими больших гидравлических потерь.  [c.372]

Двигатель имеет трехканальную петлевую продувку (левый и задний продувочные каналы 9 видны на рисунке). Такая продувка увеличивает наполнение цилиндра, улучшает охлаждение днища поршня, повышает износостойкость деталей цилиндропоршкевой группы, снижает расход топлива.  [c.65]


Поршни автомобиля — процесс изготовления


Поршни автомобиля — процесс изготовления

 

Поршни являются ключевым элементом рабочего процесса в двигателях внутреннего сгорания. Поршень – это фактически втулка, которая двигается внутри цилиндра вниз-вверх. Таким образом, она в верхней точке своего поступательного движения сжимает воздушно-топливную смесь, которая в дизельных двигателях воспламенятся за счёт давления, а в бензиновых за счет искры на свече зажигания. Энергия, которая образовывается в это время, давит на поршень, и он, поскольку соединен с коленчатым валом, оборачивает его. Таким образом двигатель приводится в действие; начинает работать.

Одна из компаний-производителей производит девять тысяч различных моделей поршня: от кроссовых мотоциклов до автомобильных двигателей. На самом начале своего становления поршень представляет собою трёхметровый алюминиевый стержень. Алюминий для таких целей и режимов работы подходит идеально, поскольку он не поддаётся коррозии, и легко режется. Стержень отправляется на станок, где режущая пила разрезает его на заготовки, длину которых по надобности изменяют, регулируя подающий механизм, проталкивающий стержень, с разными интервалами. Для нашей модели поршня, например, требуются заготовки длиной в 7 сантиметров. На фабрике также перерабатывают и повторно используют оставшуюся алюминиевую стружку.

Затем штамповальный пресс и форму раскаляют до 426 ºС – именно такая температура необходима для штамповки заготовок поршня. Заготовки раскаляются до бела, до такой же температуры, в печи. Тогда их кладут под пресс, и он силой своего давления в 2000 тонн формирует исходную форму поршня. Примерно каждая 10-тая заготовка поршня после штамповки опускается в воду для проверки на наличие дефектов. Чтобы как-то облегчить процесс штамповки поршней, заготовки, перед тем как накалять, покрывают смазкой, через что заготовка вспыхивает, когда на неё опускается горячий (раскалённый) пресс. Пресс выполняет операцию штамповки заготовки всего за 2 секунды, но заготовки такие горячие, что должны остывать около часа до начала следующего этапа. Затем рабочие раскаляют заготовки ещё 2 раза. Сначала раскаляют при очень высокой температуре, для того, чтобы укрепить металл, и во второй раз уже не так сильно, чтобы добиться устойчивости.

Затем рабочие обрабатывают каждую заготовку на токарном станке, чтобы придать штамповке соответствующую форму для механизмов, на которых её будут обрабатывать позже. Затем станком просверливаются маленькие дырки по кругу поршня – через них будет подаваться масло, которое служит смазкой для поршня в процессе его работы. Ещё один токарный станок уменьшает диаметр поршня на три миллиметра. Также этот же станок прорезает три паза на верхнем краю заготовки: два для компрессионных колец и один для маслосъёмного кольца. Эти кольца предназначены для того, чтобы поршень двигался плавно, обеспечивал герметичное прилегание к цилиндру, и не допускал излишки масла в камеру сгорания.

Затем станок сверлит отверстие для поршневого пальца, который соединяет поршень с шатуном. Затем, на фрезерном станке с обеих сторон поршня, со стороны отверстия для поршневого пальца, стачивается до двух сантиметров металла, чтобы уменьшить его вес. Во всех этих случаях во время обтачивания и сверления подается белая жидкость, являющаяся смазкой, которая охлаждает поверхность поршня двигателя в процессе обтачивания. Ещё на одном фрезерном станке срезается часть заготовки поршня, которая называется «куполом». Таким образом, он не будет задевать другие части, двигаясь внутри цилиндра двигателя.

У поршня должна быть строго определенная форма и размер. Некоторые из поршней при работе двигателя делают до шести тысяч движений вверх и вниз. Затем, на токарном станке, с наружной стороны, срезается очередной слой метала, толщиной с волос человека. Этот срез дает возможность поршню немного увеличится в объёме, когда внутри цилиндра повышается температура. Затем, автоматическое сверло делает два перекрещивающихся масло-спускных отверстия, чтобы улучшить смазку поршневого пальца.

После всего этого механизм гравирует на поршне модель и дату производства изделия, после чего рабочие удаляют с изделия образовавшиеся острые края от выполнения предыдущих операций, которые могут повредить стенки цилиндра Чтобы сделать поверхность еще более гладкой, они используют ленточно-шлифовальный станок. После этого поршни помещаются на метало резальный станок, на котором срезается немного метала с внутренней части отверстия под поршневой палец, для того, чтобы он мог идеально входить внутрь поршня.

После того, как фрезирование завершено, струи горячей ионизированной воды омывают поршни. После такой чистки удаляются все следы смазки и масла. И после сушки под «воздушной пушкой» эти поршни готовы начать своё бесконечное движение в тёмном нутре цилиндра двигателя.

Поршень для применения в двигателях внутреннего сгорания

Изобретение касается поршня для двигателя внутреннего сгорания согласно ограничительной части п.1 формулы изобретения. Ограничительную часть составляет поршень заявки DE 102008002536 A1.

В двигателях внутреннего сгорания периодически в конце такта сжатия и в начале такта расширения воспламеняется и сжигается топливно-воздушная смесь. У двигателей с линейным движением поршня это происходит в камере сгорания, которая ограничивается в направлении картера поршнем, движущимся в цилиндре вверх и вниз. Поршень шатуном соединен с коленчатым валом. Для соединения поршня с шатуном служит, в свою очередь, поршневой палец, который помещен в пальцевой бобышке, выполненной в поршне.

В последние годы у двигателей возникла усиленная тенденция к непосредственному впрыску в сочетании с турбонаддувом. Для разработки поршней это развитие несет с собой новые требования, в частности, в отношении постоянно повышающихся давлений вспышки вместе с увеличивающимся запаздыванием основного сгорания, которые выражаются в высоких нагрузках на юбку поршня от боковых усилий. Вследствие повышенных нагрузок традиционные концепции поршня все реже оказываются достаточными для выполнения требований, в частности, в отношении требуемой долговечности.

Для того чтобы справиться с повышенными нагрузками, в DE 102009032379 A1 описан поршень с коробчатыми стенками на стороне юбки поршня, оказывающей боковое давление на зеркало цилиндра, которые проходят прямолинейно и таким образом наискосок, что расстояние между коробчатыми стенками в области пальцевых бобышек больше, чем в области стенки юбки на стороне юбки поршня, оказывающей боковое давление на зеркало цилиндра. Это должно улучшать привязку стенки юбки и коробчатой стенки.

В EP 0913566 A2 описан охлаждаемый поршень для двигателей внутреннего сгорания, у которого внутри поршня выполнен канал охлаждения, отличающийся местом входа, которое находится вне юбки поршня. Благодаря этому достигается улучшенное охлаждение.

В DE 2008002536 A1, которая уже была процитирована в качестве ограничительной части, описывается поршень, который на стороне давления отличается соединительными стенками, являющимися практически прямыми, а на стороне юбки поршня, противоположной давлению на зеркало цилиндра, изогнутыми стенками. Это сокращает испускание шума и способствует более высокой нагрузочной способности.

Из DE 4019968 C2 известен поршень, у которого так называемая юбочная часть поршня на наружной стороне по меньшей мере в отдельных областях имеет эллиптическую форму.

Также под термином «поршень с уменьшенной поверхностью трения» или «юбка с уменьшенной поверхностью трения» стали известны поршни, включающие в себя стенки юбки и коробчатые стенки, которые при низком весе должны обеспечивать высокую нагрузочную способность.

У высоконагруженных поршней возникает тенденция к трещинам в коробчатой стенке в области привязки коробчатой стенки к юбке поршня. Эти трещины вызываются изгибающим моментом, который возникает при деформации юбки поршня при давлении вспышки и действует в области перехода от юбки поршня к коробчатой стенке. Традиционные методы, в частности попытка более или менее большого переходного радиуса между коробчатой стекой и боковой стенкой, не смогли решить эту проблему удовлетворяющим образом.

В основе изобретения лежит задача создать поршень с уменьшенным образованием трещин в коробчатой стенке в области привязки юбки поршня к коробчатой стенке.

Решение этой задачи осуществляется с помощью поршня, описанного в п.1 формулы изобретения.

Соответственно этому предусмотрен поршень для применения в двигателях внутреннего сгорания, причем этот поршень имеет юбку поршня, включающую в себя стенки юбки и коробчатые стенки, при этом стенки юбки и коробчатые стенки ограничивают выемку, при этом по меньшей мере одна стенка юбки предусмотрена для использования на стороне давления в смонтированном состоянии, и который отличается тем, что в области этой стенки юбки выемка ограничена по существу в форме параболы, эллиптического участка или катеноиды, причем эта парабола, этот эллиптический участок или эта катеноида лежат в плоскости, которая по существу параллельна днищу поршня. Другими словами, описанная форма выемки имеет место по меньшей мере в одном сечении плоскостью сечения, перпендикулярной оси поршня.

В частности, форма катеноиды, то есть форма, которую принимает свободно висящая цепь или свободно висящий трос под действием силы тяжести, обладает тем преимуществом, что при ее использовании в качестве опорной линии нагрузка от боковых усилий в идеальном случае уравновешивается только нормальными усилиями, т.е. изгибающий момент не возникает. Но также формы, более простые в изготовлении, чем катеноиды, могут компенсировать разные состояния нагрузки. Потому что оказалось, что целесообразно не допускать возникновения горизонтальной компоненты, обусловленной действующим нормальным усилием. На практике это приближенно реализуется путем применения эллиптического участка или параболы. Преимущество этой конфигурации в том, что реализуется возможность передачи высоких боковых усилий поршня при только умеренном увеличении веса.

Ось симметрии катеноиды или параболы или главная ось эллипса располагается предпочтительно по прямой, которая исходит от соответствующей стенки юбки, предпочтительно ее середины вдоль окружной протяженности. Иначе говоря, точка вершины катеноиды или параболы или главная вершина эллипса лежит на каждой соответствующей стенке юбки и предпочтительно на ее середине вдоль окружного направления.

Кроме того, предпочтительно, чтобы ось симметрии или, соответственно, главная ось проходила между двумя коробчатыми стеками. Ее направление при этом предпочтительно по существу параллельно коробчатым стенкам и/или перпендикулярно прямой, проходящей через центральные точки возможных бобышек поршня. В частности, в случае эллипса малая ось предпочтительно проходит между коробчатыми стенками и в области между соединительной линией между центральными точками бобышек поршня и участком стенки юбки. Соответственно этому рассматриваемый эллипс может, например, доходить от участка стенки юбки до области между бобышками поршня. Таким образом, длина малой оси эллипса по существу соответствует расстоянию между коробчатыми стенками, а главная ось эллипса соответствует по существу половине диаметра поршня. Предпочтительно малая ось эллипса проходит параллельно оси поршня, то есть соединительной линии между центральными точками бобышек поршня.

Здесь и в остальной части заявки под стенками юбки понимается та часть наружного периметра поршня, которая при использовании прилегает к стенкам цилиндра двигателя внутреннего сгорания и соответственно этому по существу является цилиндрической. Коробчатые стенки, в отличие от этого, представляют собой отодвинутые назад (внутрь) части наружного периметра поршня.

Предпочтительные варианты осуществления описаны в зависимых пунктах 2-13 формулы изобретения.

Кроме того, предпочтительно, чтобы область в направлении, перпендикулярном днищу поршня, проходила на участке, который одновременно включает в себя противолежащий днищу поршня край юбки поршня. Это имеет то преимущество, что край поршня, который относится к сильнее всего нагруженным частям, выигрывает от предлагаемой изобретением конфигурации и поэтому, в частности, здесь предотвращаются разрушения и ослабления материала.

Кроме того, предпочтительно, чтобы указанная по меньшей мере одна область в направлении, перпендикулярном днищу поршня, проходила на участке, который заканчивается днищем поршня. Благодаря этому предотвращаются переходы между участками выемки с формой в соответствии с изобретением и другими без этой формы, что предотвращает потенциальные напряжения между этими областями. Это имеет, кроме того, то преимущество, что дополнительно повышается стабильность поршня, так как теперь большего размера поверхность поршня становится более жесткой.

Также предпочтительно, чтобы область выемки, которая имеет вышеназванную геометрическую форму, проходила по меньшей мере по всей ширине стенки юбки. Это имеет то преимущество, что здесь также дополнительно повышается жесткость стенки юбки. Кроме того, здесь также предотвращаются переходы между участками стенки выемки с геометрической формой и участками без этой конфигурации, благодаря чему здесь также предотвращаются напряжения, которые могли бы способствовать ослаблению материала.

Кроме того, предпочтительно, чтобы отдельная область выемки, которая имеет вышеназванную геометрическую форму, проходила по одной или всем коробчатым стенкам поршня. Здесь также имеется то преимущество, что жесткость и прочность стенки юбки дополнительно повышаются по сравнению с предыдущими предпочтительными вариантами осуществления. Такие области могут, например, составлять соответственно 10%, 20%, 50% или 100% окружной протяженности каждой коробчатой стенки.

Кроме того, эта конфигурация позволяет расположить коробчатые стенки, если смотреть от центра поршня, радиально «внутри» на пальцевых бобышках. В то время как в других поршнях пальцевые бобышки большей частью находятся внутри коробчатых стенок, у предлагаемого изобретением поршня это предпочтительно иначе. Это имеет то преимущество, что предлагаемая изобретением опорная линия не прерывается. Таким образом, поршень отличается еще раз увеличенной прочностью. Кроме того, это приводит к усилению жесткости блочной опоры.

Другой предпочтительный вариант осуществления заключается в том, что все пальцевые бобышки имеют конфигурацию, как описано выше. Это имеет то преимущество, что теперь уже обе стороны поршня ведут себя симметрично, и поэтому нагрузка с обеих сторон воспринимается примерно одинаково, что выражается в уменьшенном износе.

Другой предпочтительный вариант осуществления заключается в том, что стенка юбки на стороне давления, начиная от прямой, которая находится напротив линии вершин геометрической фигуры выемки ближе всего к наружной стенке, по меньшей мере в одном окружном направлении имеет увеличивающуюся толщину. Это имеет то преимущество, что на сторонах поршня большим количеством материала воспринимаются более сильные нагрузки. Благодаря этому увеличивается нагрузочная способность поршня.

Другой предпочтительный вариант осуществления заключается в том, что стенка юбки на стороне давления, начиная от прямой, которая находится напротив линии вершин геометрической фигуры выемки ближе всего к наружной стенке, в обоих окружных направлениях имеет увеличивающуюся толщину. Это имеет то преимущество, что теперь уже обе стороны стенки юбки ведут себя одинаково и таким образом предотвращаются напряжения и износ стороны, выполненной с меньшей толщиной.

Кроме того, предпочтительно, чтобы обе названные последними формы конфигурации имели место также на стороне противодавления. Даже если эта сторона подвержена меньшему давлению, все же и здесь целесообразно предотвращать износ и напряжения, поэтому эти варианты осуществления выражаются в уменьшенном износе.

Кроме того, предпочтительно, чтобы в поршне стенки юбки на переходе к коробчатым стенкам были толще них. Это имеет то преимущество, что можно работать, экономя материал, так как стенки юбки являются частями поршня, которые подвержены сильным нагрузкам, в то время как коробчатые стенки нагружаются сравнительно мало.

Кроме того, предпочтителен поршень, у которого толщина одной, предпочтительно всех коробчатых стенок увеличивается по мере движения от линии, которая лежит на поверхности выемки и находится ближе всего к центральной оси поршня, в направлении стенок юбки. Это имеет то преимущество, что благодаря этому переход к стенкам юбки может выполняться более непрерывным, так как при этом можно избежать перехода между стенками с очень разными толщинами.

Фиг.1 представляет собой вид предлагаемого изобретением поршня снизу.

Подробное описание одного из предпочтительных вариантов осуществления изобретения

Один из предпочтительных вариантов осуществления изобретения теперь описывается со ссылкой на фиг.1.

Изображенный на ней поршень 10 имеет бобышки 18 поршня, которые выполнены в юбке 24 поршня, для приема поршневого пальца (не изображен). Юбка 24 поршня включает в себя две стенки 12, 14 юбки и две коробчатые стенки 16, которые охватывают выемку 20. В смонтированном состоянии поршневой палец (не изображен) проходит сквозь бобышки 18 поршня, которые выполнены в коробчатых стенках 16, и выемку 20.

Стенки 12, 14 юбки, в зависимости от того, предусмотрены ли они для использования на стороне DS давления, или на стороне GDS противодавления, выполнены различно: внутренняя сторона 22 стенки 12 юбки на стороне давления выполнена в виде параболы, причем эта парабола выполнена сплошной от края стенки юбки до днища поршня, в то время как внутренняя сторона стенки 14 юбки на стороне противодавления не выполнена таким образом.

При этом эта парабола располагается так, что ее вершина лежит в окружном направлении в середине соответствующей стенки 14 юбки. Кроме того, ось симметрии параболы проходит перпендикулярно соединительной линии между центральными точками бобышек 18 поршня.

Кроме того, коробчатые стенки 16 находятся «внутри» на пальцевых бобышках 18, т.е. они проходят, если смотреть от центральной оси поршня, через наружную поверхность соответствующей коробчатой стенки 16 наружу за ее пределы. Кроме того, в изображенном поршне стенки 12, 14 юбки в месте их стыка с коробчатыми стенками 16 шире их, и место стыка отличается также переходом между коробчатой стенкой и стенкой юбки, в котором наружная поверхность на переходе имеет выступ наружу. Этот выступ получается оттого, что стенка юбки по существу следует форме поршня, в то время как коробчатая стенка по меньшей мере в местах стыка между коробчатой стенкой и стенкой юбки располагается примерно перпендикулярно к этой поверхности. Кроме того, стенка 12, 14 юбки становится толще по мере удаления от прямой, которая в случае стороны давления удаляется от точки вершины геометрической фигуры или в случае стороны противодавления — от диаметрально противоположной линии GDS.

Ремонт и восстановление канавок поршней двигателей внутреннего сгорания автомобилей

УДК 62-242.2

Захаров Юрий Альбертович1, Шарагин Алексей Евгеньевич2
1Пензенский государственный университет архитектуры и строительства, кандидат технических наук, доцент
2Пензенский государственный университет архитектуры и строительства, студент


Аннотация
В большинстве случаев 40-50 % дефектуемых поршней двигателей внутреннего сгорания автомобилей подлежат вторичному использованию. Такая ситуация возможна только при условии возможности восстановления поршневых канавок, причем, как правило, наибольший износ имеет первая канавка под компрессионное кольцо. То есть, восстановление геометрии поршневых канавок является лимитирующим фактором влияющим на дальнейшее определение назначение поршня ДВС.

Ключевые слова: восстановление, компрессионные кольца, маслосъемные кольца, поршень, поршневой палец, поршневые канавки, ремонт, цилиндро-поршневая группа


Zakharov Yury Albertovich1, Sharagin Alexey Evgenyevich2
1Penza state university of architecture and construction, Candidate of Technical Sciences, associate professor,
2Penza state university of architecture and construction, student, Penza state university of architecture and construction


Abstract
In most cases 40-50% of the checked pistons of internal combustion engines of cars are subject to recycling. Such situation is possible only on condition of possibility of restoration of piston flutes, and, as a rule, the first flute under a compression ring has the greatest wear. That is, recovery of geometry of piston flutes is the limiting factor influencing further definition purpose of the DVS piston.

Keywords: compression rings, oil scraper rings, piston, piston finger, piston flutes, repair, restoration, tsilindro-piston group


Рубрика: 05.00.00 ТЕХНИЧЕСКИЕ НАУКИ

Библиографическая ссылка на статью:
Захаров Ю.А., Шарагин А.Е. Ремонт и восстановление канавок поршней двигателей внутреннего сгорания автомобилей // Современные научные исследования и инновации. 2015. № 1. Ч. 1 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/01/46086 (дата обращения: 09.11.2021).

В связи с высоким износом основной части машинно-тракторного парка и низким его обновлением, а также высокой стоимостью запасных частей и ремонтов на стороне актуальным становится вопрос о ремонте и восстановлении деталей внутри предприятия [1-6]. Это относится и к цилиндро-поршневой группе, в состав которой входит поршень.

Поршень является одной из основных деталей поршневого двигателя внутреннего сгорания машин, именно он совместно с компрессионными кольцами и гильзой цилиндра обуславливает величину компрессии двигателя, его мощностные характеристики и стабильность работы. Поршень при работе двигателя воспринимает колоссальные нагрузки, совершая возвратно-поступательное движение, формируя условия для выполнения тактов работы ДВС. Соответственно, поршень во время эксплуатации подвержен износу и появлению эксплуатационных дефектов. При дефектации поршней обращают внимание на размеры и состояние посадочных отверстий под поршневой палец, на размеры и состояние самого поршневого пальца, а самое главное на состояние поршневых канавок, выточек на теле поршня под компрессионные и маслосъемные кольца. Как правило, 40-50% поршней бывших в эксплуатации пригодны к эксплуатации при условии надлежащего состояния поршневых канавок [1, 6]. Таким образом, техническое состояние поршневых канавок их макро и микрогеометрия определяют дальнейшую «судьбу» поршня при дефектации.

Главным выбраковочным параметром служит – размер первой поршневой канавки, так как сопряжение первое поршневое кольцо – канавка поршня изнашивается больше, чем другие.

В индивидуальном производстве в таких поршнях работоспособность сопряжения первое поршневое кольцо – канавка поршня может быть восстановлена применением дополнительной ремонтной детали [2-4].

Для этого в предварительно проточенную канавку поршня устанавливают пружинное кольцо в комплекте с поршневым кольцом номинального размера. Размеры пружинного кольца и канавки выбирают из условия обеспечения требуемого зазора между кольцом и канавкой поршня. Пружинные кольца изготавливают из стальной ленты У-7 или У-8 методом навивки с последующей термофиксацией. Толщина ленты должна быть в пределах 0,75…1 мм, а ширина равна размеру дополнительной канавки над первым кольцом. Температура термофиксации 400С° [4-5].

Достоинством данного метода восстановления работоспособности поршней является простота технологического процесса. Недостатком является недолговечность восстановленной части.

С целью увеличения срока службы гильз цилиндров ДВС промышленность выпускает увеличенные ремонтные поршни с наружным диаметром рабочей части больше нормальных на 0,7 мм [6]. Одновременно с этим отработанные поршни увеличенных размеров с незначительными износами наружной цилиндрической поверхности также могут продолжать работать.

Поршни, отвечающие техническим условиям для дальнейшей работы, отправляют на участок механической обработки для проточки с ремонтного размера на нормальный размер. После проточки наружную поверхность поршня шлифуют.

Обрабатывают поршни на токарно-винторезном станке, поршень укрепляют в приспособлении. Приспособление состоит из основания (конус Морзе), цилиндрической части, диска. Диск сделан для упора и центровки при обработке поршней двигателей различных марок [4-5].

Для углубления канавок поршней под компрессионные и маслосъемные кольца используют обычные резцы с пластинами твердого сплава и с шириной режущей грани, точно соответствующей размеру ширины канавок поршневых колец.

При соблюдении технических условий при механической обработке поршней на уменьшенные размеры и точном выполнении слесарно-подгоночных работ поршневые группы будут работать надежно.

Достоинством данного метода является большая экономия т. к. для восстановления работоспособности не требуется дополнительных материалов.

Недостатком является то, что данным методом можно восстанавливать поршневые канавки с небольшим износом.

Также применяют для восстановления поршневых канавок аргонно-дуговую наплавку. Для наплавки используют неплавящиеся вольфрамовые электроды. Их затачивают в виде карандаша. В зону дуги под определенным давлением подается аргон. Дуга разрушает поверхностную оксидную пленку, а аргон предохраняет расплавленный и присадочный материал от окисления. Присадочным материалом может быть проволока или полоса из того же сплава, что и основной материал. Допускается применение алюминиевой проволоки марки АК, содержащей до 5% кремния. Для сварки используют специальные установки УДГ-301, УДГ-501, УДАР-500 [4-5]. Защитный газ в этих установках подается автоматически с помощью электромагнитного клапана. Источником питания служит сварочный трансформатор с дросселем насыщения.

Достоинством является то, что восстановление производится материалом сходным по составу с основным, а так же высокая скорость наплавки.

Недостатком данного способа является наличие высокой температуры в зоне наплавки, что может привести к деформации детали.

Применяется для восстановления геометрии поршневых канавок метод пластического деформирования материала, заключающийся в осаждении наружного диаметра поршня в местах разделения поршневых канавок с последующим выглаживанием высаженного материала. Достоинством данного способа является простота и дешевизна его реализации. К недостаткам относят невозможность многократного восстановления таким способом.

Возможно для восстановления канавок поршней  применение гальванического осаждения покрытий. Метод заключается в формировании на изношенной поверхности поршневых канавок слоя металла осажденного из электролита под действием химических реакций и электрического тока. Метод весьма эффективен при условии обеспечения высокой прочности сцепления осаждаемого покрытия с материалом поршня.

В настоящее время все чаще при восстановлении деталей машин находят полимерные материалы. К сожалению, для восстановления поршней ДВС они пока не подходят ввиду невысокой устойчивости полимеров к высоким температурам и ударно-вибрационным нагрузкам. Но возможно в ближайшем будущем полимерные материалы избавятся от этих недостатков и займут свое место среди технологий восстановления поршней ДВС автомобилей.


Библиографический список
  1. Захаров, Ю.А. Основные способы упрочнения рабочей поверхности гильз цилиндров двигателей автомобилей [Текст] / Ю.А. Захаров, Л.А. Рыбакова // Молодой ученый. – 2015. – №1. – С. 157-160.
  2. Захаров, Ю.А. К вопросу о совершенствовании гальванических способов восстановления деталей мобильных машин [Текст] / Ю.А. Захаров, И.А. Спицын, Е.В. Ремизов, Г.А. Мусатов // Модели, системы, сети в экономике, технике, природе и обществе. – 2014. – №4(12). – С. 99-104.
  3. Захаров, Ю.А. Восстановление металлизацией деталей транспортно-технологических машин и комплексов [Текст] / Захаров, Е.В. Ремизов, Г.А. Мусатов // Молодой ученый. – 2014. – №19. – С. 199-201.
  4. Голубев, И.Г. Анализ технологических процессов восстановления деталей гальваническими покрытиями [Текст] / И.Г. Голубев, В.В. Быков, А.Н. Батищев, В.В. Серебровский, И.А. Спицын, Ю.А. Захаров //  Состояние и перспектива восстановления, упрочнения и изготовления деталей / Сб. материалов. науч.-практ. конф. – Москва: МГУЛ, 1999 – С. 127-128.
  5. Голубев, И.Г. Мониторинг технологических процессов восстановления деталей [Текст] / И.Г. Голубев, В.В. Быков, А.Н. Батищев, В.В. Серебровский, И.А. Спицын, Ю.А. Захаров //  Технический сервис в лесном комплексе / Сб. материалов. науч.-практ. конф. – Москва: МГУЛ, 2000.– С.31.
  6. Родионов, Ю.В. Производственно-техническая инфраструктура и основы проектирования станций технического обслуживания автомобилей и автотранспортных предприятий: учебное пособие [текст] / Ю.В. Родионов. – Пенза: ПГУАС, 2012. – 267 с.


Количество просмотров публикации: Please wait

Все статьи автора «Захаров Юрий Альбертович»

Поршень

: определение, детали, функции, материалы, выпуск, рабочий

В двигателе внутреннего сгорания поршень — один из важнейших компонентов, помогающих работе цикла сгорания. Часть двигателя заключена в блок цилиндров, в котором используется поршневое кольцо, не оставляющее места для утечки газа.

Поршни помогают преобразовывать тепловую энергию в механическую работу и наоборот. Он движется вверх и вниз внутри цилиндра, чтобы расширяться и сжимать топливовоздушную смесь.По этой причине поршень в двигателе внутреннего сгорания неизбежен.

Сегодня мы рассмотрим определение, функции, работу, типы, детали, материалы и схему автомобильного поршня.

Читайте: Компоненты автомобильного двигателя

Что такое поршень?

Поршень — это механическое устройство, которое движется вверх для сжатия газа и вниз из-за взрыва в цилиндре, чтобы преобразовать тепловую энергию в механическую работу.

Поршень следует циклическому процессу для продолжения процесса преобразования тепла. процесс достигается тремя способами:

  • Обеспечение теплом газа внутри баллона для полезной работы
  • Отвод тепла от цилиндра для снижения давления, чтобы газ можно было легко сжать.
  • Применить работу к поршню, когда он находится в исходном состоянии и готов к повторному выполнению цикла.

Функции поршня в двигателях внутреннего сгорания

Поршни играют жизненно важную роль в автомобильном двигателе, включая бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия.Процессы в этих двух двигателях внутреннего сгорания различаются, но в них используется поршень. Ниже приведены функции поршня автомобильного двигателя:

  • Основная функция поршня — передавать выходное усилие небольшого взрыва газа в цилиндре на коленчатый вал. Это обеспечивает вращательный момент маховику.
  • Он движется вперед, так что газы могут сжиматься, и может произойти взрыв при движении назад.
  • Поршень содержит штифт, называемый поршневым пальцем, который позволяет газу из камеры не выходить.
  • Шатун, прикрепленный к днищу поршня, позволяет передавать механическую работу.
  • Поршни помогают переносить топливовоздушную смесь в течение цикла сгорания.
  • Поршни помогают контролировать поток масла в стенках цилиндра с помощью масляного регулирующего кольца.

Как работает поршень?

Спросив, как работает поршень, вы познакомитесь со всем принципом работы двигателя внутреннего сгорания. Это связано с тем, что поршень выполняет основную работу во время четырехтактного цикла.

Как уже упоминалось ранее, двигатель внутреннего сгорания бывает двух типов, и они работают двумя разными способами. Один из них работает со свечой зажигания, поэтому его называют «двигатель с искровым зажиганием», а другой — «двигатель с воспламенением от сжатия». Их работа совсем другая. Что ж, о работе этого движка рассказано в другой статье.

Читайте: Применение дизельного двигателя

Видео ниже показывает работу поршня в двигателе внутреннего сгорания en :

Материал поршня

Чугун — самый ранний материал, используемый для изготовления поршней.Однако современный двигатель выигрывает от использования более легких материалов для балансировки двигателя. Хорошие поршни должны выдерживать температуры сгорания двигателя. Сплавы, такие как Y-сплавы и алюминий, специально используются для получения таких свойств.

Поршни изготовлены из алюминиевых сплавов методом литья. Некоторые поршни, используемые в гоночных автомобилях, требуют большей прочности и долговечности, поэтому они кованые.

Поршни

Billet также используются в гоночных двигателях, поскольку они не зависят от размера и архитектуры имеющихся поковок, что приводит к изменению конструкции в считанные минуты.Хотя обычно это не видно невооруженным глазом.

ниже представлена ​​схема поршня:

Основные части поршней и их функции

Ниже приведены пояснения к основным частям поршня:

Юбка поршня:

Юбка поршня представляет собой материал цилиндрической формы, прикрепленный к круглой части поршня. Обычно он изготавливается из чугуна, чтобы противостоять износу и обладать самосмазывающимися свойствами.На юбке есть канавки, которые позволяют поршневым кольцам идеально сидеть. Юбка поршня предназначена для перемещения вверх и вниз по цилиндру.

Поршневые кольца:

Поршневые кольца — это части разъемных колец, которые устанавливаются в области выемки поршня. В двигателе обычно три поршневых кольца. Иногда кольцо может быть одно, в зависимости от типа двигателя.

Подшипники поршневые:

Подшипники представляют собой отличные поршневые детали, повышающие эффективность движения.Он расположен в точках поворота. Эти подшипники обычно представляют собой полукруглые металлические детали, которые входят в отверстия этих точек.

Поршневой палец:

Поршневой палец — это часть поршня, также известная как поршневой палец или поршневой палец. Этот штифт представляет собой полый или цельный вал в секции юбки. На этом пальце шарнирно закреплен шток поршня, удерживаемый во втулке поршневого кольца. Функция поршневого пальца заключается в обеспечении опоры подшипника, чтобы поршень мог нормально функционировать.

Головка поршня:

Эта часть поршня также известна как корона или купол, которая представляет собой верхнюю поверхность. Это часть, которая контактирует с дымовыми газами, заставляя их испытывать чрезвычайно высокую температуру. Функция поршня — воспринимать давление, температуру и другие напряжения расширяющегося газа.

Болт шатуна:

Еще одна деталь поршня, которую нельзя оставлять позади, — это шатунный болт. Он используется для крепления штока к коленчатому валу.На нижнем конце болтов тяги находится крышка шатуна и подшипник. Затем используется гайка для фиксации компонентов вместе с болтом.

Шатун:

Шатун — одна из основных частей поршня, чаще всего укорачиваемая как шатун или шток. Он соединяет поршень с коленчатым валом двигателя и позволяет поршню двигаться в камере. Компонент рассчитан на механическую нагрузку, поэтому он достаточно прочный. Детали поршня изготавливаются методом ковки, а иногда и литья.

Читайте: Четырехтактный двигатель: все, что вам нужно знать

Типы поршней

Ниже представлены три типа поршней:

Поршни тарелки: Поршень тарелки имеет форму пластины со слегка загнутыми вверх краями. Это легко и просто, а также создает меньше проблем для инженеров. Он часто используется в приложениях с наддувом, где не требуется распредвал с большим подъемом или высокая степень сжатия.

Поршни с плоским верхом: поршень с плоским верхом имеет плоский верх.У него наименьшая площадь поверхности, что дает возможность создавать наибольшую силу. Он идеально подходит для эффективного сгорания.

Поршни с плоским верхом создают сильный взрыв в камере, но сжатие может быть слишком большим для небольших камер сгорания.

Купольные поршни: концепция тарелочных поршней совершенно противоположна тарельчатым поршням. Средний пузырек для увеличения площади поверхности, оставшейся на верхней части поршня. Что ж, большая площадь поверхности означает меньшее сжатие, в то время как большее сжатие означает большее усилие.

Камера сгорания имеет верхний предел, с которым она может справиться, поэтому уменьшение степени сжатия — лучший вариант предотвращения поломки двигателя.

Прочтите Все, что вам нужно знать о системе трансмиссии

Общая проблема поршня

Проблема развития поршня — это не что иное, как трещина. Эта трещина возникает на верхней части головки поршня, известной как корона. Обычно это вызвано чрезмерным сжатием или превышением угла опережения зажигания из-за давления сгорания в бензиновых двигателях.Головка поршня трескается, потому что она работает вне пределов допустимого давления.

В дизельном двигателе возникают проблемы с поршнем из-за состояния, известного как термическая усталость. Термическая усталость возникает, когда двигатель работает с большой нагрузкой вместе с легкой. Эти постоянные резкие изменения температуры сгорания внезапно приводят к термическим трещинам в головке поршня.

Трещины также возникают в юбке поршня из-за постоянной чрезмерной нагрузки двигателя и усталости при большом пробеге.В некоторых случаях причиной является конструкция поршня. Чаще всего производитель исправляет последнее, поставляя заменяемую деталь.

Юбка поршня может по-прежнему треснуть на ранней стадии отремонтированного двигателя, когда поршень неправильно установлен на шатуны. Это вызывает трещины под напряжением, которые вызывают серьезные трещины на юбке.

Прочтите: Как работает автомобильный двигатель

Вот и эта статья, в которой освещаются определение, работа, детали, типы, материал, проблема поршня.Я надеюсь, что знание будет получено, если да, дайте знать свою мысль и не забудьте поделиться. Спасибо!

Диаметр цилиндра и ход поршня

Диаметр цилиндра и ход поршня
Гленн

Исследовательский центр

На этой странице мы представляем некоторые технические определения, которые используются описать двигатель внутреннего сгорания.На рисунке показана компьютерная анимация одного цилиндра братьев Райт. Авиадвигатель 1903 года. Небольшой раздел коленчатый вал показан красным, поршень и шток показаны серым, а цилиндр, в котором находится поршень, показан синим цветом. Мы сократили цилиндр, чтобы мы могли заметить движение поршня.

Коленчатый вал делает один оборот при движении поршня. сверху цилиндра (внизу слева на рисунке) вниз (вверху справа) и обратно вверх.Поскольку поршень соединен с коленчатым валом, можно отметить движение поршня по углу поворота коленчатого вала.

Нулевые градусы возникают, когда поршень находится в верхней части цилиндра. С тех пор составляют 360 градусов за один оборот, поршень находится внизу, когда угол поворота коленвала составляет 180 градусов. Расстояние, пройденное поршнем от нуля градусов до 180 градусов называется ходом — S поршня. Это объясняет, почему двигатель Райта и современные автомобильные двигатели называют четырехтактные двигатели.2/4

Этот объем называется объемом рабочего тела , потому что Работа выполняется движущимся газом под давлением, равным давлению газа, умноженному на объем перемещаемого газа. Для своего двигателя 1903 года братья Райт выбрали диаметр цилиндра 4 дюйма и диаметр цилиндра. ход 4 дюйма. Объем рабочей жидкости для одного поршня составляет 50,26 куб. дюймы. Братья использовали четыре поршня, так что сумма всех рабочих объем 201 куб. дюйм. Для любого двигателя внутреннего сгорания сумма все рабочие объемы всех цилиндров называется полным рабочим объемом двигателя.


Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Музей поршневых колец | Функция поршневого кольца | Базовая функция звонка

Функция поршневого кольца

B-2 Основная функция звонка


Цитируется из «Enjin ha kounatteiru エ ン ジ ン は こ う な て い る» (Grand Prix BOOK PUBLISHING CO.LTD.,)

Функция газового уплотнения

Это означает, что камера сгорания должна быть максимально газонепроницаемой, чтобы давление, создаваемое быстро горящими газами сгорания, перемещало поршень в цилиндре, вызывая вращение коленчатого вала, обеспечивая доступную мощность.Не только важна для такта сгорания / расширения, газонепроницаемость также очень важна для тактов впуска, сжатия и выпуска. Эту общую функцию можно просто назвать «газовым уплотнением».

Функция теплопередачи

Поршневые кольца отводят тепло от горячего поршня к охлаждаемой стенке цилиндра / блоку двигателя. Тепловая энергия течет из канавки поршня в поршневое кольцо, а затем в стенку цилиндра, где в конечном итоге передается охлаждающей жидкости двигателя.Эта функция теплопередачи очень важна для поддержания приемлемых температур и стабильности поршня и поршневых колец, так что герметичность не ухудшается.

Функция контроля масла

Для смазки поршневых колец требуется немного масла, однако желательно свести это количество к минимуму. Кольца действуют как царапающие, удерживая излишки масла в камере сгорания. Таким образом, потребление масла поддерживается на приемлемом уровне, а вредные выбросы сокращаются.

В трех прямоугольниках выше показаны основные функции, выполняемые поршневыми кольцами. Почти во всех случаях каждое отдельное кольцо в наборе из трех колец будет спроектировано таким образом, чтобы оптимизировать или улучшить функции двух других колец. Таким образом, легко понять, что, хотя каждое кольцо в пакете из трех колец уникально, пакет колец в целом действительно спроектирован как « система », где каждое кольцо « настроено » так, чтобы образовать комплект из трех частей. наиболее эффективно настроить работу в двигателе.

Цитируется из «Enjin ha kounatteiru エ ン ジ ン は こ う な っ て い る» (Grand Prix BOOK PUBLISHING CO.ООО,)

определение поршня по The Free Dictionary

поршень

в двигателе внутреннего сгорания

поршня

(пĭстьн) н.

1. Цельный цилиндр или диск, который плотно входит в больший цилиндр и движется под давлением жидкости, как в поршневом двигателе, или смещает или сжимает жидкости, как в насосах и компрессорах.

2. Музыка Клапанный механизм в медных духовых инструментах для изменения высоты звука.


[французский, от итальянского порш, пестон, большой пестик, , от pestare, до фунта, давка , от позднего латинского пистара, частого от латинского pīnsere, pīnsāre.]

Словарь английского языка American Heritage® , Издание пятое. Авторские права © 2016 Издательская компания Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company. Все права защищены.

поршень

(ˈpɪstən) n

(Automotive Engineering) диск или цилиндрическая часть, которая скользит взад и вперед в полом цилиндре.В двигателе внутреннего сгорания он приводится в движение расширяющимися газами в головке блока цилиндров и прикреплен поворотным шатуном к коленчатому валу или маховику, таким образом преобразуя возвратно-поступательное движение во вращение

[C18: с французского с древнеитальянского поршневой, от поршневой к фунту, измельчению, от латинского pinsere сокрушить, разбить]

Словарь английского языка Коллинза — полное и несокращенное, 12-е издание, 2014 г. © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014

pis • ton

(ˈpɪs tən)

n.

1. диск или твердый цилиндр, движущийся внутри более длинного цилиндра и оказывающий давление на жидкость или газ или принимающий давление от них.

2. насосный клапан, используемый для изменения шага в корнете и т.п.

[1695–1705; <Французский <Итальянский поршень Поршень , научная переделка. pestone big pestle = pest (are) to pound (вариант средневековой латыни histare, производное от латинского pīstus, причастие прошедшего времени от pīnsere to pound) + -one увеличивающий суффикс

] 9 Пис • тон

(ˈпɪс тəн)

н.

Уолтер, 1894–1976, композитор из США.

Random House Словарь колледжа Кернермана Вебстера © 2010 K Dictionaries Ltd. Авторские права 2005, 1997, 1991, Random House, Inc. Все права защищены.

поршень

Топливно-воздушная смесь в левой камере расширяется при воспламенении от свечи зажигания, толкая поршень вниз и поворачивая вал, к которому он прикреплен. Поворотный вал приводит в движение поршень правого цилиндра вверх. Затем он будет выталкиваться вниз таким же образом, когда топливно-воздушная смесь входит в эту камеру и воспламеняется.Поочередное действие двух поршней заставляет вал вращаться.

поршня

(pĭs’tən)

Цельный цилиндр или диск, который плотно входит в полый цилиндр и перемещается вперед и назад под давлением жидкости, как во многих двигателях, или перемещает или сжимает жидкость, как в насосе или компрессоре.

Научный словарь для студентов American Heritage®, второе издание. Авторские права © 2014 Издательская компания Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company.Все права защищены.

Руководство для покупателей по выбору лучших деталей поршня

Он поднимается, сжимает сильный взрыв и опускается. Работа поршня достаточно проста для понимания, но если вы посмотрите, что от него требуется, вы можете удивиться, что он вообще работает. Подумайте об этом — при 6500 об / мин поршень перемещается вверх и вниз по каналу 108 раз в секунду, полностью останавливаясь дважды за каждую поездку. Поршень в двигателе 440 при этих оборотах достигает скорости 6627 футов в минуту к тому моменту, когда кривошип поворачивается на 76 градусов после ВМТ.Это от 0 до 75 миль в час всего за 1,66 дюйма от ВМТ; сравните это с вашим 60-футовым временем. С увеличением числа оборотов или хода цифры становятся злее, поэтому стоит серьезно отнестись к выбору поршня, если вы серьезно относитесь к надежной работе.

Литой или кованый Одно из первых различий в способе изготовления поршня — литье он или ковка. Мы все слышали, что эти термины применяются к поршням, но в чем разница? Фактически, разница заключается в способе создания заготовки поршня.В процессе литья расплавленный алюминий формуют в форме по общей форме поршня. Литье имеет ряд преимуществ с производственной точки зрения. Могут соблюдаться строгие допуски в отношении качества конечной обработки поршня. Это сводит к минимуму затраты на окончательную обработку и позволяет изготавливать более легкий поршень с меньшими усилиями, чем при ковке. Литые поршни обладают отличными износостойкими и термическими характеристиками, что обеспечивает длительный срок службы кольца и юбки, а также малые рабочие зазоры для бесшумной работы.Главный недостаток — литой алюминий имеет ограниченную пластичность. Другими словами, перенапряженный литой поршень внезапно и разрушительно сломается при выходе из строя.

Посмотреть все 13 фото

Поковки, напротив, имеют металлургические характеристики, отличные от литых алюминиевых поршней. Заготовки для кованых поршней создаются из заготовки твердого алюминия под экстремальным давлением в ковочном прессе. Алюминий прессуется в тяжелые ковочные красители, чтобы получить грубую форму поршня, образуя заготовку поршня.В отличие от литого поршня, кованая деталь дает более плотный и пластичный материал. Матрица для ковки поршня должна быть спроектирована так, чтобы можно было разделить две половины матрицы и удалить заготовку поршня. Это исключает возможность создания поднутрений в необработанной поковке. В результате кованая заготовка поршня требует значительной механической обработки для создания современного легкого кованого гоночного поршня, который мы привыкли видеть. Кованый поршень по своей природе более прочный и более прощающий при превышении его пределов, обычно искажающий, а не гранулирующий.

Рабочие характеристики кованых и литых поршней значительно различаются в зависимости от материала и процессов, используемых при их производстве. Не все литые поршни одинаковы, и то же самое можно сказать о кованых поршнях. Как правило, производитель учитывает предполагаемое применение поршня при определении проектных характеристик. При принятии решения о том, подходит ли определенный тип поршня для конкретного применения, стоит следовать их рекомендациям.

Типы и материалы литых поршней Производители оригинальных комплектующих оснащали свои серийные двигатели литыми поршнями, за исключением нескольких специальных высокопроизводительных или заводских гоночных приложений.Экономическая экономия на инструментах для больших партий деталей, желаемые характеристики малых зазоров юбки для бесшумной работы и присущая силиконовому алюминиевому сплаву износостойкость отвечают всем требованиям производителей оригинального оборудования. Двигатели OE Mopar, как правило, оснащались литыми поршнями со стальными стойками, залитыми в области пальца для ограничения расширения и создания очень узких зазоров. Поршни OE Mopar были относительно тяжелыми, но были сконструированы таким образом, чтобы обеспечить долговечность при эксплуатации. Насколько далеко можно продвинуть стандартные поршни Mopar? Как и все остальное, они хороши до того дня, когда они разойдутся, и время перерыва зависит от удачи розыгрыша.Разумным пределом было бы поддерживать мощность менее 1 л.с. на кубический дюйм и менее 6000 об / мин. Мы знаем, что ребятам сошло с рук гораздо больше, и мы сами значительно расширили эти пределы, но это авантюра.

Выбор литых поршней на вторичном рынке начинается с недорогих заменяемых оригинальных поршней. Эти нижние части обычно изготавливаются по образцу прямой замены и обычно подбираются по весу близко к штатным поршням, поэтому двигателю не потребуется настраиваемая балансировка во время восстановления.Компоновка литого поршня обычно не рассчитана на использование с высокими эксплуатационными характеристиками. Не будут обнаружены такие особенности, как выемки клапана для зазора с высокопроизводительными кулачками, адекватная высота сжатия для более высокой степени сжатия или эффективный зазор закалки. В каталогах оригинальных запасных поршней вы найдете множество тарельчатых поршней с низким уровнем сжатия без выемок для клапанов или поршней, которые сидят глубоко в отверстии в ВМТ. Еще вы обнаружите, что прочность и надежность зачастую намного ниже заводских, установленных в вашем двигателе Mopar, и обычно это урок, усвоенный на горьком опыте.При создании высокопроизводительного двигателя эти типы поршней почти всегда являются рискованной покупкой.

Значительным шагом вперед являются литые заэвтектические поршни. Гиперэвтектика получила свое название от алюминиевого сплава, используемого в производстве. Литые поршневые сплавы содержат силикон в качестве ключевого легирующего элемента, который повышает износостойкость, долговечность и термические характеристики алюминия. Существует предел того, сколько силикона может быть добавлено в алюминий и все еще впитано в структуру металла.Этот уровень, называемый точкой эвтектики, составляет около 12 процентов. Литые поршни оригинального производителя обычно легированы не более чем 9% силикона, который полностью растворяется в основном алюминии. Сверхэвтектические поршни увеличивают количество силикона, превышающее количество, которое может быть сплавлено с металлом, и отсюда происходит забавное название: гипер, что означает «выше или выше»; и эвтектика, максимальный уровень силикона, который может быть полностью легирован основным металлом. Сверхэвтектический силикон-алюминий будет содержать 16-18 процентов силикона в сплаве и будет содержать свободный силикон в своей структуре.Заэвтектический сплав, используемый для поршней, был разработан путем тщательного контроля процесса для получения оптимального размера зерна и распределения свободного силикона в алюминии.

Просмотреть все 13 фотографий

Хотя поршни из заэвтектического сплава по-прежнему считаются литыми поршнями, этот материал обладает рядом преимуществ по сравнению с обычными поршневыми сплавами. Заэвтектические сплавы улучшают термические характеристики, смазывающую способность, сопротивление истиранию, коррозионную стойкость, твердость, характеристики расширения и жаропрочность.Есть причина рекомендовать заэвтектические поршни; однако пластичность материала далека от ковки, и в этом заключается самый большой недостаток. Выведенные за пределы своих возможностей, они сломаются так же, как и обычный литой поршень. Keith Black Silvolite и Federal Mogul / Speed ​​Pro — основные игроки на рынке заэвтектических поршней, и мы безошибочно использовали обе марки в сборках высокопроизводительных двигателей.

Кованые поршни Хотя практически все двигатели Mopar оснащались на заводе литыми поршнями, кованые поршни были и остаются предпочтительной заменой при создании двигателя с высокими рабочими характеристиками.Есть несколько уровней кованых поршней, от запасных частей до экзотических гоночных моделей. В течение многих лет самой популярной заменой поршней была линейка Speed ​​Pro PowerForged от Federal Mogul, которую старожилы помнят как TRW. Эти поршни были разработаны как долговечные заменяемые детали, в которых использовалась внутренняя сила поковки. Чтобы создать настоящую замену, эти поршни соответствовали по весу поршням оригинального производителя, что исключало необходимость индивидуальной балансировки двигателя. Эти поршни сконфигурированы в соответствии со стандартными спецификациями, поэтому их конструкция соответствует оригинальному оборудованию с точки зрения высоты сжатия, выемок клапана (если они есть) и тарелки.

Посмотреть все 13 фотографий Поршни Keith Black обладают множеством инновационных функций, например, срезанной кромкой на предохранительном клапане. Компания KB называет это «канавкой аттенюатора», предназначенной для устранения потенциального перегрева острого выступа на краю разгрузочного клапана. Мини-канавки на верхней кольцевой площадке помогают отводить тепло; Утверждается, что в сочетании с пересмотренной щелью верхней площадки зазор резко снизил вероятность перегрева верхнего кольца и выхода из строя контакта контакта верхнего кольца.

В то время как характеристики расширения кованого поршня обычно диктуют увеличенный зазор от стенки цилиндра, в сменных поршнях Speed ​​Pro используются канавки для возврата масла с прорезями в пазах маслосъемного кольца. Прорези значительно сокращают путь теплопередачи от головки поршня к юбке, обеспечивая при этом большую гибкость юбки. Этот ход обеспечивает небольшой зазор между поршнем и стенкой за счет общей прочности. С заменой линейки Speed ​​Pro вы получаете более сильный поршень, который опускается вместо штабеля.В их гоночной линии поршней с высокой степенью сжатия, основанных на тех же поковках, возврат масла с прорезями заменен просверленными отверстиями, что значительно увеличивает прочность поршня, но требует большего зазора в отверстии.

С производственной точки зрения процесс ковки превращает производство специализированных поршней в небольшие партии. Это к счастью, поскольку это позволяет процветать индустрии гоночных поршней, изготовленных по индивидуальному заказу. Кованые поршни современного спортсмена и гоночные поршни — это мир, вдали от тяжелых литых патронов, используемых производителями оригинального оборудования.Более легкий поршень создает меньшую нагрузку на шатуны и кривошип и, в свою очередь, позволяет использовать более легкий противовес на коленчатом валу и более быстрый и надежный двигатель. Помимо поршней для двигателей стандартной конфигурации, поршни штокера доступны для многих комбинаций кривошипов, изготовленных по индивидуальному заказу. Нередко в современном кованом поршне можно найти особенности, которые можно было найти только в области изготовленных на заказ гоночных поршней несколько лет назад. Современные поршни с плоским верхом обычно производятся с установкой высоты сжатия, чтобы сделать высоту установки с нулевым уровнем деки легко достижимой без чрезмерного настила блока.Положения для плавающей фиксации поршневого пальца, глубоких пазов клапана, уменьшенного диаметра поршневого пальца, более узких пакетов колец, полых куполов, реверсивных куполов дефлектора и многое другое можно найти в стандартных поршнях многих производителей, доступных сегодня. Единственным недостатком является то, что эти современные, легкие конструкции поршней требуют индивидуальной балансировки как части конструкции двигателя, но в любом случае это должно быть частью любой сборки высокопроизводительного двигателя, учитывая грубые допуски заводской балансировки.

Посмотреть все 13 фотографий

Материалы кованых поршней Мы уже обсуждали некоторые характеристики силиконовых сплавов в литых алюминиевых поршнях, а также некоторые различные сплавы, используемые в конструкции кованых поршней.Наиболее распространенные сплавы, предлагаемые основными производителями кованых поршней, — это 2618, алюминий с низким содержанием силикона, и 4032, сплав, содержащий примерно 11 процентов силикона. Дополнительный силикон придает кованым поршням некоторые из характеристик, которые обсуждались в отношении литых поршней. Сплав 4032 более жесткий, имеет меньшую теплопроводность и расширение, а также большую износостойкость. Этот сплав часто выбирают для использования на улицах и полосах, поскольку он выбирается из-за более узкого зазора между поршнем и стенкой, достигаемого за счет более низкой скорости расширения и более длительного срока службы юбки и кольцевого контакта, обеспечиваемого большей износостойкостью силиконового сплава.

Напротив, 2618 представляет собой сплав с низким содержанием силикона, и, хотя он лишен преимуществ, полученных от силикона, он является лучшим материалом для поршней в тяжелых условиях эксплуатации. Сплав с низким содержанием силикона имеет более высокую плотность и предел прочности на разрыв, чем 4032, и гораздо большую пластичность и сопротивление разрушению. Поршень 2618 можно растолочь в крендель, но он не расколется на куски. Высокая теплопроводность алюминия с низким содержанием силикона будет передавать больше тепла юбкам. В сочетании с более высокой степенью расширения материала поршням 2618 обычно требуется значительно больший зазор в отверстии.Поршень 2618 из-за отсутствия высокого содержания силикона более подвержен износу на кольцевых площадках и юбках.

Посмотреть все 13 фото Эти кованые гоночные поршни 2618 обычно проводят большое количество тепла, но термобарьерное покрытие на головке поршня предназначено для значительного уменьшения теплопередачи. Также обратите внимание на молибденовое покрытие, нанесенное на юбку, чтобы свести к минимуму возможность истирания.

Это гоночные поршни, а не пули, которые можно поставить в грузовик, который должен проехать более 100 000 миль.Если план требует серьезной закиси азота, наддува или оборотов, а пуленепробиваемость — это то, что вам нужно, поршень 2618 — правильный выбор. Современные технологии обработки и проектирования улучшили поршень 2618, позволив использовать более сложные конструкции юбок. Производители, воспользовавшись этими достижениями, смогли значительно уменьшить зазор в отверстии по сравнению с традиционными требованиями.

Соображения по поводу гребешка Создание гребенчатых комбинаций Mopar никогда не было так популярно, и почему бы и нет? С появлением недорогих коленчатых валов дверь в мир малых блоков была распахнута настежь, в то время как в лагере больших блоков популярные комбинации включают проверенный и надежный 451, который использует кривошип 440 в 400 low-деке. .Другие комбинации поддерживаются легко доступными комбинациями кривошипов вторичного рынка. Еще одним фактором, способствующим этому, является постоянно улучшающееся положение с головкой блока цилиндров. Послепродажный рынок предлагает много, чтобы накормить все эти лишние кубики и сделать перспективу создания комбо-строкера. В отличие от некоторых конкурирующих конструкций двигателей, блоки Mopar были наделены внушительными размерами деки цилиндра. Чтобы заполнить это пространство, двигатели Mopar были оснащены относительно длинными шатунами и высокими поршнями. Расстояние от центральной линии запястья поршня до верхней части поршня называется высотой сжатия.

Посмотреть все 13 фото

В двигателях Mopar предусмотрена чрезмерная высота сжатия, из-за чего поршни тяжелее, чем они должны быть. В комбинации с ходовым механизмом добавленный ход толкает поршень выше по отверстию — ровно на половину расстояния увеличения хода. Для компенсации высота сжатия поршня уменьшается на соответствующую величину. В некоторых двигателях просто недостаточно места для сокращения высоты сжатия без того, чтобы поршневой палец не попал в область масляного кольца поршня.Фактически, Chevrolet использовала более короткий шатун в своем производстве длинноходный малый блок 400, что усугубило и без того плохое передаточное число. Не стоит беспокоиться о том, чтобы не найти место в двигателе Mopar. Перенесите большой или малый блок Mopar, и масса поршня значительно уменьшится. Когда-то доступный только через специально заказанные индивидуальные поршни, теперь широкий ассортимент поршневых поршней входит в каталоги таких компаний, как Diamond, Probe, JE, CP, Arias, Ross, Wiseco, KB и других.

Право на покупку При таком большом количестве поршней на выбор довольно сложно сузить круг выбора и выбрать подходящую деталь.На самом деле, следует учитывать два фактора: приложение по сравнению с долларом. Имея выбор, мы не можем придумать причины, кроме цены, кто-то предпочел бы заменяющий поршень литым современным заэвтектическим или кованым. Но, опять же, важно рассмотреть всю картину в целом. Если целью является экономичный ремонт двигателя с низкой частотой вращения, низким уровнем сжатия и мощностью, эти дешевые отливки подойдут. С другой стороны, если вы хотите увеличить мощность, но бюджет сборки ограничен, эти 360 поршневые литые заменяющие поршни стоят очень дешево, но низкая степень сжатия приведет к снижению производительности и эффективности.За сэкономленную пару сотен долларов вы застряли со сжатием 8: 1, а эффективность сгорания снизилась из-за слишком большой площади гашения. Кроме того, у вас будет потенциальная бомба замедленного действия, если эта штука когда-нибудь действительно вырабатывает реальную мощность или вращается на более высоких оборотах. Некоторые ребята будут костылять дешевый поршень с низкой степенью сжатия с массивной фрезеровкой головки, которая получит некоторое передаточное число. Однако теперь толкатели стали слишком длинными, впускной канал не поместится без дополнительной фрезерования на впускной поверхности, а зазор между клапаном и поршнем, которого и так не хватало без выемок клапана, уменьшился на величину фрезерования.Сложите расходы и разочарование, и этот подход не имеет смысла.

Посмотреть все 13 фотографий Spiro Lox — самый распространенный тип фиксатора штифта, который используется в высокопроизводительных поршнях, обычно объединенный по два на каждом конце. Их установка требует некоторой практики, а снять их может быть сложно. Некоторые поршни могут быть приобретены с выемками для снятия замков, которые позволяют легче извлекать замки.

Реалистичные ожидания относительно предполагаемого использования и целей — ключ к правильной покупке. Другая крайность может быть такой же расточительной.Если целью является восстановление мертвого запаса в приложении для восстановления, нет необходимости в чрезмерно хитром поршне. Заменяемого типа Speed ​​Pro или Hypereutectic более чем достаточно для работы на небольшой уличной мельнице, с надежностью, намного превышающей стандартную. Если мы поднимемся по лестнице на более серьезный уличный / полосовой завод, современная легкая поковка начнет окупаться уменьшенной внутренней нагрузкой на высоких оборотах и ​​меньшим весом боба для более отзывчивого двигателя. Большинство этих поршней рассчитаны на использование более узких 11/416-дюймовых компрессионных колец, в отличие от стандартных 51/464-дюймовых деталей, что снижает трение о стенку цилиндра при покупке.

На уровне гонок решение о покупке включает в себя более конкретные знания о двигателе при выборе каталожной гонки или нестандартного поршня. Здесь нам может потребоваться рассмотреть конфигурацию купола поршня, чтобы соответствовать головке блока цилиндров; нестандартные диаметры поршневых пальцев; удержание штифта; расположение и глубина выемки клапана; высота сжатия; положения по смазке булавок; размещение и спецификация кольцевой канавки; газопровод; и / или индивидуальные варианты освещения. Список возможностей можно продолжать и продолжать, но, к счастью, у компаний, производящих эти высококлассные гоночные поршни, есть технические представители, которые помогут в процессе выбора.

Как узнать, когда заменять поршень в вашем мотоцикле или квадроцикле

Поршень является одним из многих изнашиваемых элементов вашей машины PowerSports. Он может прослужить дольше, чем шины или цепь, но когда придет время, его следует рассматривать как обычное техническое обслуживание. Здесь мы рассмотрим ключевые советы, которые помогут вам узнать, когда пора обновить.

Поршень двигателя внутреннего сгорания, возможно, является одним из самых важных компонентов двигателя.Когда дело доходит до высокопроизводительных двигателей, используемых в приложениях PowerSports, это также компонент, который регулярно заменяется и обслуживается. Знание того, когда следует заменить поршень и как он изнашивается, является ключом к поддержанию надежности двигателя. Чтобы помочь вам принять это решение, мы определили интервалы замены, износ поршня, почему так важно заменять поршень и варианты замены поршня.

Интервалы замены поршней обычно указаны в заводском руководстве по обслуживанию вашей машины.На примере внедорожников многие производители определяют график замены поршней и колец каждые шесть гонок или 15-30 часов для четырехтактных, в зависимости от машины. Если вы новичок в спорте или никогда не просматривали заводское руководство по обслуживанию, эти интервалы обслуживания могут показаться шокирующе короткими. Интервалы обслуживания основаны на графиках обслуживания, необходимых для обслуживания машины гонщика высокого уровня. К сожалению, для среднего гонщика указанные интервалы обслуживания обычно оказываются консервативными.

Рекомендуемые интервалы обслуживания поршней, указанные в вашем руководстве, могут шокировать, но фактическое требуемое время обслуживания зависит от многих переменных, которые различаются у каждого гонщика.

На самом деле интервалы замены поршней должны устанавливаться в зависимости от того, как отдельный владелец ездит и обслуживает свою машину. Верно, что кованые поршни обладают большей прочностью и износостойкостью, но переменные, связанные с ездой и техническим обслуживанием, по-прежнему применяются. Объем двигателя, марка двигателя, техническое обслуживание воздушного фильтра, условия окружающей среды, стиль езды и тип езды на машине будут влиять на то, как долго двигатель должен работать перед его обслуживанием.Мониторинг состояния двигателя посредством периодических проверок, таких как тесты на сжатие и утечку, — лучший способ для большинства водителей правильно рассчитать время выполнения основных сервисных работ, таких как замена поршня и колец. Из-за множества переменных, влияющих на износ двигателя, просто невозможно указать график замены, который подходит всем, кроме очень консервативного графика.

На самом деле существует слишком много переменных, чтобы установить официальное рекомендуемое время замены поршня.Придерживаться короткого промежутка времени, рекомендованного в руководстве, для некоторых может быть излишним, но это поможет сохранить безопасность.

Износ поршня обычно происходит в четырех основных областях как для двухтактных, так и для четырехтактных двигателей, включая юбку поршня, отверстие под палец, канавки под кольца и головку поршня. В следующий раз, когда вы будете разбирать верхнюю часть, обратите внимание на эти точки износа.

Износ юбки поршня

Юбки поршней испытывают нагрузки со стороны большой и малой осевой нагрузки, что приводит к износу в этих областях.

В настоящее время в четырехтактных двигателях юбка поршня очень короткая и ограничивается большими и малыми упорными поверхностями поршня. Для справки, упорные поверхности соответствуют сторонам впускного и выпускного клапанов головки блока цилиндров. Двухтактные поршни имеют ту же номенклатуру, но имеют гораздо более длинные и выраженные юбки.

Износ юбки поршня происходит из-за осевой нагрузки, которая возникает из-за внутренней геометрии кривошипно-шатунного механизма при запуске двигателя. Пиковое давление сгорания возникает немного после верхней мертвой точки, что вызывает толчок поршня в стенку цилиндра.

Износ юбки можно наблюдать как визуально, так и путем измерения диаметра юбки и сопоставления его с диаметром, указанным в инструкции по эксплуатации. Износ юбки проявляется в виде полированной поверхности на основной и малой упорных поверхностях поршня.

Обратите внимание на полированные следы износа на кованом поршне слева и отметки вертикального износа на двухтактном литом поршне справа. Они отражают износ после значительного времени работы. Канавки на двухтактном поршне являются потенциальным признаком попадания пыли / грязи в цилиндр.

Ваши поршни могут иметь один из нескольких типов покрытия юбки. В поршнях Wiseco используются различные типы покрытий юбки в зависимости от поршня, включая покрытия ArmorGlide и ArmorFit. Эти покрытия наносятся трафаретной печатью и остаются на юбке в течение всего срока службы поршня. Вы, скорее всего, заметите некоторый износ покрытия юбки после того, как потратите время на поршень (-ы), но если он изношен на всем протяжении покрытия, есть большая вероятность, что есть основная проблема, требующая изучения.Слишком маленький зазор, посторонний материал в цилиндре и неправильная подготовка цилиндра могут быть причинами чрезмерного износа юбки.

Этот поршень снабжен покрытием юбки ArmorGlide. Однако характер износа указывает на возможность попадания постороннего материала, например грязи, в цилиндр.

В двухтактных двигателях износ юбки иногда может быть слышен во время работы двигателя, что обычно называется «хлопком поршня». Ритмичный металлический звук часто сопровождает ослабленный или изношенный поршень при работе двигателя на холостом ходу.Что можно услышать, так это то, что поршень раскачивается назад и вперед в своем отверстии, когда он совершает возвратно-поступательное движение.

Корона поршня

Износ короны поршня может произойти в результате агрессивной или неправильной настройки, а на четырехтактных двигателях — из-за повреждения или несинхронизации клапанного механизма. Двигатели, работающие на обедненной смеси при полном открытии дроссельной заслонки, будут иметь аномально высокую температуру сгорания, что может вызвать детонацию. Результаты детонации будут видны на головке поршня в виде изъязвленной или эродированной поверхности.

Ямка в центре — довольно явный признак детонации.Во многих случаях точечная коррозия и точечная коррозия будут тем более очевидными, чем меньше условия эксплуатации.

Повреждение днища поршня из-за контакта с клапанным механизмом будет видно в виде вмятин или трещин возле карманов клапана. Контакт клапанного механизма может происходить из-за смещения клапана, вызванного чрезмерным числом оборотов в минуту или несинхронизированными клапанами.

Обратите внимание на полукруги на предохранительных клапанах. Это явный признак контакта клапана с поршнем.

Износ канавки кольца

Поршневые кольца входят и выходят из своих канавок из-за воспламенения топливовоздушной смеси в камере сгорания.Как только смесь воспламеняется, давление в цилиндре увеличивается, что приводит в действие компрессионное кольцо и прижимает его к стенке цилиндра, заставляя его скользить в своей канавке.

В четырехтактных двигателях компрессионное кольцо переходит из положения в нижней части кольцевой канавки в верхнюю кольцевую канавку в конце такта выпуска из-за сил инерции, действующих на кольцо.

Движение кольца во время работы в конечном итоге приведет к износу канавок кольца за пределами их расчетного размера.Значительное время работы может также привести к образованию отложений нагара в кольцевых канавках, что отрицательно скажется на уплотнении кольца и его характеристиках.

Износ колец и канавок может происходить из-за скольжения и возвратно-поступательного движения колец, а также может усугубляться отложениями углерода, которые скапливаются в канавке кольца. Износ кольца и канавки можно оценить, тщательно очистив кольцо и канавку, а затем измерив каждую из них. В большинстве руководств по обслуживанию приводятся спецификации для ширины кольца, ширины канавки и зазора между поршневым кольцом и кольцевой канавкой.

Износ колец можно легко наблюдать визуально, но его можно подтвердить, измерив осевую высоту и радиальную ширину и сравнив их с исходными характеристиками.

Износ отверстия для пальца запястья

Износ отверстия пальца кисти происходит в результате нагрузки на шарнир пальца кисти из-за инерции и нагрузки сгорания. Отверстие для булавки на запястье обычно приобретает продолговатую форму. В некоторых двигателях износ отверстия под палец будет виден в верхней и нижней части отверстия.Обычно часть отверстия выглядит полированной или отполированной. В качестве альтернативы отверстие для пальца запястья можно измерить сверху вниз и из стороны в сторону. Оба измерения можно сравнить друг с другом, чтобы определить, насколько отверстие стало некруглым и соответствовало диаметрам, указанным в руководстве по обслуживанию.

Отверстия под палец обычно изнашиваются, приобретая вертикальную овальную форму из-за толкающих и тянущих сил при работе двигателя. Визуальный осмотр может показать чрезмерный износ, а измерение диаметра по вертикали и горизонтали покажет, насколько он неправильный.Если что-то не так, вероятно, пришло время для замены.

Невозможно переоценить важность регулярной замены поршня в высокопроизводительных двигателях для силовых видов спорта. Если оставить его без присмотра, результирующий кумулятивный износ поршня в конечном итоге приведет к катастрофическому и дорогостоящему отказу двигателя. Как правило, слишком большое время на поршне может привести к постепенному и, наконец, к полному выходу из строя юбки как в двухтактных, так и в четырехтактных двигателях.

Между поставщиками послепродажного обслуживания и производителями оригинального оборудования существует множество вариантов замены поршня, которые могут быть огромными.Наиболее распространенное обновление, с которым сталкивается большинство гонщиков, — переходить на кованый поршень или нет. Кованые поршни могут быть хорошим обновлением для многих гонщиков, потому что они могут предложить дополнительную прочность и износостойкость по сравнению с литыми поршнями.

Кованые поршни достигают большей прочности, чем литые, за счет использования различных алюминиевых сплавов и производственных процессов. Процесс ковки поршней приводит к получению готовых компонентов, которые имеют более плотную молекулярную структуру и поток зерна, оптимизированный для обеспечения прочности.Для сравнения, литые поршни не отливают под высоким давлением и имеют молекулярные структуры, которые не являются такими плотными или организованными, что в тяжелых случаях может привести к образованию пустот, включений и воздушных карманов.

Ковка поршней приводит к лучшему выравниванию потока зерна и повышению прочности на разрыв.

Подробнее о ковке поршня Wiseco читайте здесь.

Wiseco занимается ковкой поршней в США на протяжении десятилетий и потратила бесчисленное количество часов на исследования и разработки, чтобы сделать свои кованые поршни вариантом, наилучшим образом сочетающим производительность и износостойкость.Тем не менее, у поршня есть срок службы, и приведенные выше советы следует использовать для регулярного технического обслуживания вашей машины.

Поршень | Инжиниринг | Фэндом

Поршень

+ шатун

Обычно поршень представляет собой скользящую заглушку, которая плотно прилегает к внутреннему диаметру цилиндра.

Его цель — либо изменить объем, заключенный в цилиндре, либо приложить силу к жидкости внутри цилиндра.

Двигатель внутреннего сгорания []

Большинство поршней, устанавливаемых в цилиндр, имеют поршневые кольца.Обычно есть два пружинно-компрессионных кольца, которые действуют как уплотнение между поршнем и стенкой цилиндра, и одно или несколько маслосъемных колец под компрессионными кольцами. Головка поршня может быть плоской, выпуклой или другой формы. Поршни могут быть коваными или литыми. Особый тип литого поршня — заэвтектический поршень. Поршень — важный компонент поршневого двигателя и гидравлических пневматических систем.

В двигателе Отто или дизельном двигателе головка поршня образует одну стенку камеры расширения внутри цилиндра.Противоположная стенка, называемая головкой блока цилиндров, содержит впускной и выпускной клапаны для газов.

При движении поршня внутри цилиндра он преобразует энергию расширения горящего газа (обычно смеси бензина или дизельного топлива и воздуха) в механическую энергию (в форме возвратно-поступательного линейного движения). Оттуда мощность передается через шатун на коленчатый вал, который преобразует ее во вращательное движение, которое обычно приводит в движение коробку передач через муфту.

Способы получения энергии []

Поршневой двигатель может вырабатывать мощность двумя способами.Это двухтактный цикл и четырехтактный цикл. Двухтактный двигатель вырабатывает мощность при каждом такте и вызывает больше загрязнения, чем четырехтактный двигатель, который вырабатывает мощность при каждом втором такте. Теоретически четырехтактный двигатель должен быть больше двухтактного, чтобы производить эквивалентную мощность. В наши дни двухтактные двигатели становятся все реже, в основном из-за загрязнения воздуха. Двухтактные двигатели обычно требуют более тщательного обслуживания и изнашиваются быстрее, чем четырехтактные.

Двигатель внешнего сгорания []

Паровая машина — это еще один тип поршневой машины. В большинстве паровых двигателей используются поршни двойного действия, : пар поочередно подается к любому концу цилиндра, так что каждый ход поршня производит мощность. .

Внешние ссылки []

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *